]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/net/s2io.c
Merge branch 'upstream-jgarzik' of git://git.kernel.org/pub/scm/linux/kernel/git...
[net-next-2.6.git] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2005 Neterion Inc.
4
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explaination of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2 and 3.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     1(MSI), 2(MSI_X). Default value is '0(INTA)'
41  * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42  *     Possible values '1' for enable '0' for disable. Default is '0'
43  * lro_max_pkts: This parameter defines maximum number of packets can be
44  *     aggregated as a single large packet
45  ************************************************************************/
46
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/errno.h>
50 #include <linux/ioport.h>
51 #include <linux/pci.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/kernel.h>
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/skbuff.h>
57 #include <linux/init.h>
58 #include <linux/delay.h>
59 #include <linux/stddef.h>
60 #include <linux/ioctl.h>
61 #include <linux/timex.h>
62 #include <linux/ethtool.h>
63 #include <linux/workqueue.h>
64 #include <linux/if_vlan.h>
65 #include <linux/ip.h>
66 #include <linux/tcp.h>
67 #include <net/tcp.h>
68
69 #include <asm/system.h>
70 #include <asm/uaccess.h>
71 #include <asm/io.h>
72 #include <asm/div64.h>
73 #include <asm/irq.h>
74
75 /* local include */
76 #include "s2io.h"
77 #include "s2io-regs.h"
78
79 #define DRV_VERSION "2.0.16.1"
80
81 /* S2io Driver name & version. */
82 static char s2io_driver_name[] = "Neterion";
83 static char s2io_driver_version[] = DRV_VERSION;
84
85 static int rxd_size[4] = {32,48,48,64};
86 static int rxd_count[4] = {127,85,85,63};
87
88 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
89 {
90         int ret;
91
92         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
93                 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
94
95         return ret;
96 }
97
98 /*
99  * Cards with following subsystem_id have a link state indication
100  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
101  * macro below identifies these cards given the subsystem_id.
102  */
103 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
104         (dev_type == XFRAME_I_DEVICE) ?                 \
105                 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
106                  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
107
108 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
109                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
110 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
111 #define PANIC   1
112 #define LOW     2
113 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
114 {
115         struct mac_info *mac_control;
116
117         mac_control = &sp->mac_control;
118         if (rxb_size <= rxd_count[sp->rxd_mode])
119                 return PANIC;
120         else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
121                 return  LOW;
122         return 0;
123 }
124
125 /* Ethtool related variables and Macros. */
126 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
127         "Register test\t(offline)",
128         "Eeprom test\t(offline)",
129         "Link test\t(online)",
130         "RLDRAM test\t(offline)",
131         "BIST Test\t(offline)"
132 };
133
134 static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
135         {"tmac_frms"},
136         {"tmac_data_octets"},
137         {"tmac_drop_frms"},
138         {"tmac_mcst_frms"},
139         {"tmac_bcst_frms"},
140         {"tmac_pause_ctrl_frms"},
141         {"tmac_ttl_octets"},
142         {"tmac_ucst_frms"},
143         {"tmac_nucst_frms"},
144         {"tmac_any_err_frms"},
145         {"tmac_ttl_less_fb_octets"},
146         {"tmac_vld_ip_octets"},
147         {"tmac_vld_ip"},
148         {"tmac_drop_ip"},
149         {"tmac_icmp"},
150         {"tmac_rst_tcp"},
151         {"tmac_tcp"},
152         {"tmac_udp"},
153         {"rmac_vld_frms"},
154         {"rmac_data_octets"},
155         {"rmac_fcs_err_frms"},
156         {"rmac_drop_frms"},
157         {"rmac_vld_mcst_frms"},
158         {"rmac_vld_bcst_frms"},
159         {"rmac_in_rng_len_err_frms"},
160         {"rmac_out_rng_len_err_frms"},
161         {"rmac_long_frms"},
162         {"rmac_pause_ctrl_frms"},
163         {"rmac_unsup_ctrl_frms"},
164         {"rmac_ttl_octets"},
165         {"rmac_accepted_ucst_frms"},
166         {"rmac_accepted_nucst_frms"},
167         {"rmac_discarded_frms"},
168         {"rmac_drop_events"},
169         {"rmac_ttl_less_fb_octets"},
170         {"rmac_ttl_frms"},
171         {"rmac_usized_frms"},
172         {"rmac_osized_frms"},
173         {"rmac_frag_frms"},
174         {"rmac_jabber_frms"},
175         {"rmac_ttl_64_frms"},
176         {"rmac_ttl_65_127_frms"},
177         {"rmac_ttl_128_255_frms"},
178         {"rmac_ttl_256_511_frms"},
179         {"rmac_ttl_512_1023_frms"},
180         {"rmac_ttl_1024_1518_frms"},
181         {"rmac_ip"},
182         {"rmac_ip_octets"},
183         {"rmac_hdr_err_ip"},
184         {"rmac_drop_ip"},
185         {"rmac_icmp"},
186         {"rmac_tcp"},
187         {"rmac_udp"},
188         {"rmac_err_drp_udp"},
189         {"rmac_xgmii_err_sym"},
190         {"rmac_frms_q0"},
191         {"rmac_frms_q1"},
192         {"rmac_frms_q2"},
193         {"rmac_frms_q3"},
194         {"rmac_frms_q4"},
195         {"rmac_frms_q5"},
196         {"rmac_frms_q6"},
197         {"rmac_frms_q7"},
198         {"rmac_full_q0"},
199         {"rmac_full_q1"},
200         {"rmac_full_q2"},
201         {"rmac_full_q3"},
202         {"rmac_full_q4"},
203         {"rmac_full_q5"},
204         {"rmac_full_q6"},
205         {"rmac_full_q7"},
206         {"rmac_pause_cnt"},
207         {"rmac_xgmii_data_err_cnt"},
208         {"rmac_xgmii_ctrl_err_cnt"},
209         {"rmac_accepted_ip"},
210         {"rmac_err_tcp"},
211         {"rd_req_cnt"},
212         {"new_rd_req_cnt"},
213         {"new_rd_req_rtry_cnt"},
214         {"rd_rtry_cnt"},
215         {"wr_rtry_rd_ack_cnt"},
216         {"wr_req_cnt"},
217         {"new_wr_req_cnt"},
218         {"new_wr_req_rtry_cnt"},
219         {"wr_rtry_cnt"},
220         {"wr_disc_cnt"},
221         {"rd_rtry_wr_ack_cnt"},
222         {"txp_wr_cnt"},
223         {"txd_rd_cnt"},
224         {"txd_wr_cnt"},
225         {"rxd_rd_cnt"},
226         {"rxd_wr_cnt"},
227         {"txf_rd_cnt"},
228         {"rxf_wr_cnt"},
229         {"rmac_ttl_1519_4095_frms"},
230         {"rmac_ttl_4096_8191_frms"},
231         {"rmac_ttl_8192_max_frms"},
232         {"rmac_ttl_gt_max_frms"},
233         {"rmac_osized_alt_frms"},
234         {"rmac_jabber_alt_frms"},
235         {"rmac_gt_max_alt_frms"},
236         {"rmac_vlan_frms"},
237         {"rmac_len_discard"},
238         {"rmac_fcs_discard"},
239         {"rmac_pf_discard"},
240         {"rmac_da_discard"},
241         {"rmac_red_discard"},
242         {"rmac_rts_discard"},
243         {"rmac_ingm_full_discard"},
244         {"link_fault_cnt"},
245         {"\n DRIVER STATISTICS"},
246         {"single_bit_ecc_errs"},
247         {"double_bit_ecc_errs"},
248         {"parity_err_cnt"},
249         {"serious_err_cnt"},
250         {"soft_reset_cnt"},
251         {"fifo_full_cnt"},
252         {"ring_full_cnt"},
253         ("alarm_transceiver_temp_high"),
254         ("alarm_transceiver_temp_low"),
255         ("alarm_laser_bias_current_high"),
256         ("alarm_laser_bias_current_low"),
257         ("alarm_laser_output_power_high"),
258         ("alarm_laser_output_power_low"),
259         ("warn_transceiver_temp_high"),
260         ("warn_transceiver_temp_low"),
261         ("warn_laser_bias_current_high"),
262         ("warn_laser_bias_current_low"),
263         ("warn_laser_output_power_high"),
264         ("warn_laser_output_power_low"),
265         ("lro_aggregated_pkts"),
266         ("lro_flush_both_count"),
267         ("lro_out_of_sequence_pkts"),
268         ("lro_flush_due_to_max_pkts"),
269         ("lro_avg_aggr_pkts"),
270 };
271
272 #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
273 #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
274
275 #define S2IO_TEST_LEN   sizeof(s2io_gstrings) / ETH_GSTRING_LEN
276 #define S2IO_STRINGS_LEN        S2IO_TEST_LEN * ETH_GSTRING_LEN
277
278 #define S2IO_TIMER_CONF(timer, handle, arg, exp)                \
279                         init_timer(&timer);                     \
280                         timer.function = handle;                \
281                         timer.data = (unsigned long) arg;       \
282                         mod_timer(&timer, (jiffies + exp))      \
283
284 /* Add the vlan */
285 static void s2io_vlan_rx_register(struct net_device *dev,
286                                         struct vlan_group *grp)
287 {
288         struct s2io_nic *nic = dev->priv;
289         unsigned long flags;
290
291         spin_lock_irqsave(&nic->tx_lock, flags);
292         nic->vlgrp = grp;
293         spin_unlock_irqrestore(&nic->tx_lock, flags);
294 }
295
296 /* Unregister the vlan */
297 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
298 {
299         struct s2io_nic *nic = dev->priv;
300         unsigned long flags;
301
302         spin_lock_irqsave(&nic->tx_lock, flags);
303         if (nic->vlgrp)
304                 nic->vlgrp->vlan_devices[vid] = NULL;
305         spin_unlock_irqrestore(&nic->tx_lock, flags);
306 }
307
308 /*
309  * Constants to be programmed into the Xena's registers, to configure
310  * the XAUI.
311  */
312
313 #define END_SIGN        0x0
314 static const u64 herc_act_dtx_cfg[] = {
315         /* Set address */
316         0x8000051536750000ULL, 0x80000515367500E0ULL,
317         /* Write data */
318         0x8000051536750004ULL, 0x80000515367500E4ULL,
319         /* Set address */
320         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
321         /* Write data */
322         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
323         /* Set address */
324         0x801205150D440000ULL, 0x801205150D4400E0ULL,
325         /* Write data */
326         0x801205150D440004ULL, 0x801205150D4400E4ULL,
327         /* Set address */
328         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
329         /* Write data */
330         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
331         /* Done */
332         END_SIGN
333 };
334
335 static const u64 xena_dtx_cfg[] = {
336         /* Set address */
337         0x8000051500000000ULL, 0x80000515000000E0ULL,
338         /* Write data */
339         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
340         /* Set address */
341         0x8001051500000000ULL, 0x80010515000000E0ULL,
342         /* Write data */
343         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
344         /* Set address */
345         0x8002051500000000ULL, 0x80020515000000E0ULL,
346         /* Write data */
347         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
348         END_SIGN
349 };
350
351 /*
352  * Constants for Fixing the MacAddress problem seen mostly on
353  * Alpha machines.
354  */
355 static const u64 fix_mac[] = {
356         0x0060000000000000ULL, 0x0060600000000000ULL,
357         0x0040600000000000ULL, 0x0000600000000000ULL,
358         0x0020600000000000ULL, 0x0060600000000000ULL,
359         0x0020600000000000ULL, 0x0060600000000000ULL,
360         0x0020600000000000ULL, 0x0060600000000000ULL,
361         0x0020600000000000ULL, 0x0060600000000000ULL,
362         0x0020600000000000ULL, 0x0060600000000000ULL,
363         0x0020600000000000ULL, 0x0060600000000000ULL,
364         0x0020600000000000ULL, 0x0060600000000000ULL,
365         0x0020600000000000ULL, 0x0060600000000000ULL,
366         0x0020600000000000ULL, 0x0060600000000000ULL,
367         0x0020600000000000ULL, 0x0060600000000000ULL,
368         0x0020600000000000ULL, 0x0000600000000000ULL,
369         0x0040600000000000ULL, 0x0060600000000000ULL,
370         END_SIGN
371 };
372
373 MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
374 MODULE_LICENSE("GPL");
375 MODULE_VERSION(DRV_VERSION);
376
377
378 /* Module Loadable parameters. */
379 S2IO_PARM_INT(tx_fifo_num, 1);
380 S2IO_PARM_INT(rx_ring_num, 1);
381
382
383 S2IO_PARM_INT(rx_ring_mode, 1);
384 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
385 S2IO_PARM_INT(rmac_pause_time, 0x100);
386 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
387 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
388 S2IO_PARM_INT(shared_splits, 0);
389 S2IO_PARM_INT(tmac_util_period, 5);
390 S2IO_PARM_INT(rmac_util_period, 5);
391 S2IO_PARM_INT(bimodal, 0);
392 S2IO_PARM_INT(l3l4hdr_size, 128);
393 /* Frequency of Rx desc syncs expressed as power of 2 */
394 S2IO_PARM_INT(rxsync_frequency, 3);
395 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
396 S2IO_PARM_INT(intr_type, 0);
397 /* Large receive offload feature */
398 S2IO_PARM_INT(lro, 0);
399 /* Max pkts to be aggregated by LRO at one time. If not specified,
400  * aggregation happens until we hit max IP pkt size(64K)
401  */
402 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
403 S2IO_PARM_INT(indicate_max_pkts, 0);
404
405 S2IO_PARM_INT(napi, 1);
406 S2IO_PARM_INT(ufo, 0);
407
408 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
409     {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
410 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
411     {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
412 static unsigned int rts_frm_len[MAX_RX_RINGS] =
413     {[0 ...(MAX_RX_RINGS - 1)] = 0 };
414
415 module_param_array(tx_fifo_len, uint, NULL, 0);
416 module_param_array(rx_ring_sz, uint, NULL, 0);
417 module_param_array(rts_frm_len, uint, NULL, 0);
418
419 /*
420  * S2IO device table.
421  * This table lists all the devices that this driver supports.
422  */
423 static struct pci_device_id s2io_tbl[] __devinitdata = {
424         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
425          PCI_ANY_ID, PCI_ANY_ID},
426         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
427          PCI_ANY_ID, PCI_ANY_ID},
428         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
429          PCI_ANY_ID, PCI_ANY_ID},
430         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
431          PCI_ANY_ID, PCI_ANY_ID},
432         {0,}
433 };
434
435 MODULE_DEVICE_TABLE(pci, s2io_tbl);
436
437 static struct pci_driver s2io_driver = {
438       .name = "S2IO",
439       .id_table = s2io_tbl,
440       .probe = s2io_init_nic,
441       .remove = __devexit_p(s2io_rem_nic),
442 };
443
444 /* A simplifier macro used both by init and free shared_mem Fns(). */
445 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
446
447 /**
448  * init_shared_mem - Allocation and Initialization of Memory
449  * @nic: Device private variable.
450  * Description: The function allocates all the memory areas shared
451  * between the NIC and the driver. This includes Tx descriptors,
452  * Rx descriptors and the statistics block.
453  */
454
455 static int init_shared_mem(struct s2io_nic *nic)
456 {
457         u32 size;
458         void *tmp_v_addr, *tmp_v_addr_next;
459         dma_addr_t tmp_p_addr, tmp_p_addr_next;
460         struct RxD_block *pre_rxd_blk = NULL;
461         int i, j, blk_cnt;
462         int lst_size, lst_per_page;
463         struct net_device *dev = nic->dev;
464         unsigned long tmp;
465         struct buffAdd *ba;
466
467         struct mac_info *mac_control;
468         struct config_param *config;
469
470         mac_control = &nic->mac_control;
471         config = &nic->config;
472
473
474         /* Allocation and initialization of TXDLs in FIOFs */
475         size = 0;
476         for (i = 0; i < config->tx_fifo_num; i++) {
477                 size += config->tx_cfg[i].fifo_len;
478         }
479         if (size > MAX_AVAILABLE_TXDS) {
480                 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
481                 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
482                 return -EINVAL;
483         }
484
485         lst_size = (sizeof(struct TxD) * config->max_txds);
486         lst_per_page = PAGE_SIZE / lst_size;
487
488         for (i = 0; i < config->tx_fifo_num; i++) {
489                 int fifo_len = config->tx_cfg[i].fifo_len;
490                 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
491                 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
492                                                           GFP_KERNEL);
493                 if (!mac_control->fifos[i].list_info) {
494                         DBG_PRINT(ERR_DBG,
495                                   "Malloc failed for list_info\n");
496                         return -ENOMEM;
497                 }
498                 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
499         }
500         for (i = 0; i < config->tx_fifo_num; i++) {
501                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
502                                                 lst_per_page);
503                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
504                 mac_control->fifos[i].tx_curr_put_info.fifo_len =
505                     config->tx_cfg[i].fifo_len - 1;
506                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
507                 mac_control->fifos[i].tx_curr_get_info.fifo_len =
508                     config->tx_cfg[i].fifo_len - 1;
509                 mac_control->fifos[i].fifo_no = i;
510                 mac_control->fifos[i].nic = nic;
511                 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
512
513                 for (j = 0; j < page_num; j++) {
514                         int k = 0;
515                         dma_addr_t tmp_p;
516                         void *tmp_v;
517                         tmp_v = pci_alloc_consistent(nic->pdev,
518                                                      PAGE_SIZE, &tmp_p);
519                         if (!tmp_v) {
520                                 DBG_PRINT(ERR_DBG,
521                                           "pci_alloc_consistent ");
522                                 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
523                                 return -ENOMEM;
524                         }
525                         /* If we got a zero DMA address(can happen on
526                          * certain platforms like PPC), reallocate.
527                          * Store virtual address of page we don't want,
528                          * to be freed later.
529                          */
530                         if (!tmp_p) {
531                                 mac_control->zerodma_virt_addr = tmp_v;
532                                 DBG_PRINT(INIT_DBG,
533                                 "%s: Zero DMA address for TxDL. ", dev->name);
534                                 DBG_PRINT(INIT_DBG,
535                                 "Virtual address %p\n", tmp_v);
536                                 tmp_v = pci_alloc_consistent(nic->pdev,
537                                                      PAGE_SIZE, &tmp_p);
538                                 if (!tmp_v) {
539                                         DBG_PRINT(ERR_DBG,
540                                           "pci_alloc_consistent ");
541                                         DBG_PRINT(ERR_DBG, "failed for TxDL\n");
542                                         return -ENOMEM;
543                                 }
544                         }
545                         while (k < lst_per_page) {
546                                 int l = (j * lst_per_page) + k;
547                                 if (l == config->tx_cfg[i].fifo_len)
548                                         break;
549                                 mac_control->fifos[i].list_info[l].list_virt_addr =
550                                     tmp_v + (k * lst_size);
551                                 mac_control->fifos[i].list_info[l].list_phy_addr =
552                                     tmp_p + (k * lst_size);
553                                 k++;
554                         }
555                 }
556         }
557
558         nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
559         if (!nic->ufo_in_band_v)
560                 return -ENOMEM;
561
562         /* Allocation and initialization of RXDs in Rings */
563         size = 0;
564         for (i = 0; i < config->rx_ring_num; i++) {
565                 if (config->rx_cfg[i].num_rxd %
566                     (rxd_count[nic->rxd_mode] + 1)) {
567                         DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
568                         DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
569                                   i);
570                         DBG_PRINT(ERR_DBG, "RxDs per Block");
571                         return FAILURE;
572                 }
573                 size += config->rx_cfg[i].num_rxd;
574                 mac_control->rings[i].block_count =
575                         config->rx_cfg[i].num_rxd /
576                         (rxd_count[nic->rxd_mode] + 1 );
577                 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
578                         mac_control->rings[i].block_count;
579         }
580         if (nic->rxd_mode == RXD_MODE_1)
581                 size = (size * (sizeof(struct RxD1)));
582         else
583                 size = (size * (sizeof(struct RxD3)));
584
585         for (i = 0; i < config->rx_ring_num; i++) {
586                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
587                 mac_control->rings[i].rx_curr_get_info.offset = 0;
588                 mac_control->rings[i].rx_curr_get_info.ring_len =
589                     config->rx_cfg[i].num_rxd - 1;
590                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
591                 mac_control->rings[i].rx_curr_put_info.offset = 0;
592                 mac_control->rings[i].rx_curr_put_info.ring_len =
593                     config->rx_cfg[i].num_rxd - 1;
594                 mac_control->rings[i].nic = nic;
595                 mac_control->rings[i].ring_no = i;
596
597                 blk_cnt = config->rx_cfg[i].num_rxd /
598                                 (rxd_count[nic->rxd_mode] + 1);
599                 /*  Allocating all the Rx blocks */
600                 for (j = 0; j < blk_cnt; j++) {
601                         struct rx_block_info *rx_blocks;
602                         int l;
603
604                         rx_blocks = &mac_control->rings[i].rx_blocks[j];
605                         size = SIZE_OF_BLOCK; //size is always page size
606                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
607                                                           &tmp_p_addr);
608                         if (tmp_v_addr == NULL) {
609                                 /*
610                                  * In case of failure, free_shared_mem()
611                                  * is called, which should free any
612                                  * memory that was alloced till the
613                                  * failure happened.
614                                  */
615                                 rx_blocks->block_virt_addr = tmp_v_addr;
616                                 return -ENOMEM;
617                         }
618                         memset(tmp_v_addr, 0, size);
619                         rx_blocks->block_virt_addr = tmp_v_addr;
620                         rx_blocks->block_dma_addr = tmp_p_addr;
621                         rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
622                                                   rxd_count[nic->rxd_mode],
623                                                   GFP_KERNEL);
624                         if (!rx_blocks->rxds)
625                                 return -ENOMEM;
626                         for (l=0; l<rxd_count[nic->rxd_mode];l++) {
627                                 rx_blocks->rxds[l].virt_addr =
628                                         rx_blocks->block_virt_addr +
629                                         (rxd_size[nic->rxd_mode] * l);
630                                 rx_blocks->rxds[l].dma_addr =
631                                         rx_blocks->block_dma_addr +
632                                         (rxd_size[nic->rxd_mode] * l);
633                         }
634                 }
635                 /* Interlinking all Rx Blocks */
636                 for (j = 0; j < blk_cnt; j++) {
637                         tmp_v_addr =
638                                 mac_control->rings[i].rx_blocks[j].block_virt_addr;
639                         tmp_v_addr_next =
640                                 mac_control->rings[i].rx_blocks[(j + 1) %
641                                               blk_cnt].block_virt_addr;
642                         tmp_p_addr =
643                                 mac_control->rings[i].rx_blocks[j].block_dma_addr;
644                         tmp_p_addr_next =
645                                 mac_control->rings[i].rx_blocks[(j + 1) %
646                                               blk_cnt].block_dma_addr;
647
648                         pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
649                         pre_rxd_blk->reserved_2_pNext_RxD_block =
650                             (unsigned long) tmp_v_addr_next;
651                         pre_rxd_blk->pNext_RxD_Blk_physical =
652                             (u64) tmp_p_addr_next;
653                 }
654         }
655         if (nic->rxd_mode >= RXD_MODE_3A) {
656                 /*
657                  * Allocation of Storages for buffer addresses in 2BUFF mode
658                  * and the buffers as well.
659                  */
660                 for (i = 0; i < config->rx_ring_num; i++) {
661                         blk_cnt = config->rx_cfg[i].num_rxd /
662                            (rxd_count[nic->rxd_mode]+ 1);
663                         mac_control->rings[i].ba =
664                                 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
665                                      GFP_KERNEL);
666                         if (!mac_control->rings[i].ba)
667                                 return -ENOMEM;
668                         for (j = 0; j < blk_cnt; j++) {
669                                 int k = 0;
670                                 mac_control->rings[i].ba[j] =
671                                         kmalloc((sizeof(struct buffAdd) *
672                                                 (rxd_count[nic->rxd_mode] + 1)),
673                                                 GFP_KERNEL);
674                                 if (!mac_control->rings[i].ba[j])
675                                         return -ENOMEM;
676                                 while (k != rxd_count[nic->rxd_mode]) {
677                                         ba = &mac_control->rings[i].ba[j][k];
678
679                                         ba->ba_0_org = (void *) kmalloc
680                                             (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
681                                         if (!ba->ba_0_org)
682                                                 return -ENOMEM;
683                                         tmp = (unsigned long)ba->ba_0_org;
684                                         tmp += ALIGN_SIZE;
685                                         tmp &= ~((unsigned long) ALIGN_SIZE);
686                                         ba->ba_0 = (void *) tmp;
687
688                                         ba->ba_1_org = (void *) kmalloc
689                                             (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
690                                         if (!ba->ba_1_org)
691                                                 return -ENOMEM;
692                                         tmp = (unsigned long) ba->ba_1_org;
693                                         tmp += ALIGN_SIZE;
694                                         tmp &= ~((unsigned long) ALIGN_SIZE);
695                                         ba->ba_1 = (void *) tmp;
696                                         k++;
697                                 }
698                         }
699                 }
700         }
701
702         /* Allocation and initialization of Statistics block */
703         size = sizeof(struct stat_block);
704         mac_control->stats_mem = pci_alloc_consistent
705             (nic->pdev, size, &mac_control->stats_mem_phy);
706
707         if (!mac_control->stats_mem) {
708                 /*
709                  * In case of failure, free_shared_mem() is called, which
710                  * should free any memory that was alloced till the
711                  * failure happened.
712                  */
713                 return -ENOMEM;
714         }
715         mac_control->stats_mem_sz = size;
716
717         tmp_v_addr = mac_control->stats_mem;
718         mac_control->stats_info = (struct stat_block *) tmp_v_addr;
719         memset(tmp_v_addr, 0, size);
720         DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
721                   (unsigned long long) tmp_p_addr);
722
723         return SUCCESS;
724 }
725
726 /**
727  * free_shared_mem - Free the allocated Memory
728  * @nic:  Device private variable.
729  * Description: This function is to free all memory locations allocated by
730  * the init_shared_mem() function and return it to the kernel.
731  */
732
733 static void free_shared_mem(struct s2io_nic *nic)
734 {
735         int i, j, blk_cnt, size;
736         void *tmp_v_addr;
737         dma_addr_t tmp_p_addr;
738         struct mac_info *mac_control;
739         struct config_param *config;
740         int lst_size, lst_per_page;
741         struct net_device *dev = nic->dev;
742
743         if (!nic)
744                 return;
745
746         mac_control = &nic->mac_control;
747         config = &nic->config;
748
749         lst_size = (sizeof(struct TxD) * config->max_txds);
750         lst_per_page = PAGE_SIZE / lst_size;
751
752         for (i = 0; i < config->tx_fifo_num; i++) {
753                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
754                                                 lst_per_page);
755                 for (j = 0; j < page_num; j++) {
756                         int mem_blks = (j * lst_per_page);
757                         if (!mac_control->fifos[i].list_info)
758                                 return;
759                         if (!mac_control->fifos[i].list_info[mem_blks].
760                                  list_virt_addr)
761                                 break;
762                         pci_free_consistent(nic->pdev, PAGE_SIZE,
763                                             mac_control->fifos[i].
764                                             list_info[mem_blks].
765                                             list_virt_addr,
766                                             mac_control->fifos[i].
767                                             list_info[mem_blks].
768                                             list_phy_addr);
769                 }
770                 /* If we got a zero DMA address during allocation,
771                  * free the page now
772                  */
773                 if (mac_control->zerodma_virt_addr) {
774                         pci_free_consistent(nic->pdev, PAGE_SIZE,
775                                             mac_control->zerodma_virt_addr,
776                                             (dma_addr_t)0);
777                         DBG_PRINT(INIT_DBG,
778                                 "%s: Freeing TxDL with zero DMA addr. ",
779                                 dev->name);
780                         DBG_PRINT(INIT_DBG, "Virtual address %p\n",
781                                 mac_control->zerodma_virt_addr);
782                 }
783                 kfree(mac_control->fifos[i].list_info);
784         }
785
786         size = SIZE_OF_BLOCK;
787         for (i = 0; i < config->rx_ring_num; i++) {
788                 blk_cnt = mac_control->rings[i].block_count;
789                 for (j = 0; j < blk_cnt; j++) {
790                         tmp_v_addr = mac_control->rings[i].rx_blocks[j].
791                                 block_virt_addr;
792                         tmp_p_addr = mac_control->rings[i].rx_blocks[j].
793                                 block_dma_addr;
794                         if (tmp_v_addr == NULL)
795                                 break;
796                         pci_free_consistent(nic->pdev, size,
797                                             tmp_v_addr, tmp_p_addr);
798                         kfree(mac_control->rings[i].rx_blocks[j].rxds);
799                 }
800         }
801
802         if (nic->rxd_mode >= RXD_MODE_3A) {
803                 /* Freeing buffer storage addresses in 2BUFF mode. */
804                 for (i = 0; i < config->rx_ring_num; i++) {
805                         blk_cnt = config->rx_cfg[i].num_rxd /
806                             (rxd_count[nic->rxd_mode] + 1);
807                         for (j = 0; j < blk_cnt; j++) {
808                                 int k = 0;
809                                 if (!mac_control->rings[i].ba[j])
810                                         continue;
811                                 while (k != rxd_count[nic->rxd_mode]) {
812                                         struct buffAdd *ba =
813                                                 &mac_control->rings[i].ba[j][k];
814                                         kfree(ba->ba_0_org);
815                                         kfree(ba->ba_1_org);
816                                         k++;
817                                 }
818                                 kfree(mac_control->rings[i].ba[j]);
819                         }
820                         kfree(mac_control->rings[i].ba);
821                 }
822         }
823
824         if (mac_control->stats_mem) {
825                 pci_free_consistent(nic->pdev,
826                                     mac_control->stats_mem_sz,
827                                     mac_control->stats_mem,
828                                     mac_control->stats_mem_phy);
829         }
830         if (nic->ufo_in_band_v)
831                 kfree(nic->ufo_in_band_v);
832 }
833
834 /**
835  * s2io_verify_pci_mode -
836  */
837
838 static int s2io_verify_pci_mode(struct s2io_nic *nic)
839 {
840         struct XENA_dev_config __iomem *bar0 = nic->bar0;
841         register u64 val64 = 0;
842         int     mode;
843
844         val64 = readq(&bar0->pci_mode);
845         mode = (u8)GET_PCI_MODE(val64);
846
847         if ( val64 & PCI_MODE_UNKNOWN_MODE)
848                 return -1;      /* Unknown PCI mode */
849         return mode;
850 }
851
852 #define NEC_VENID   0x1033
853 #define NEC_DEVID   0x0125
854 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
855 {
856         struct pci_dev *tdev = NULL;
857         while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
858                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
859                         if (tdev->bus == s2io_pdev->bus->parent)
860                                 pci_dev_put(tdev);
861                                 return 1;
862                 }
863         }
864         return 0;
865 }
866
867 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
868 /**
869  * s2io_print_pci_mode -
870  */
871 static int s2io_print_pci_mode(struct s2io_nic *nic)
872 {
873         struct XENA_dev_config __iomem *bar0 = nic->bar0;
874         register u64 val64 = 0;
875         int     mode;
876         struct config_param *config = &nic->config;
877
878         val64 = readq(&bar0->pci_mode);
879         mode = (u8)GET_PCI_MODE(val64);
880
881         if ( val64 & PCI_MODE_UNKNOWN_MODE)
882                 return -1;      /* Unknown PCI mode */
883
884         config->bus_speed = bus_speed[mode];
885
886         if (s2io_on_nec_bridge(nic->pdev)) {
887                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
888                                                         nic->dev->name);
889                 return mode;
890         }
891
892         if (val64 & PCI_MODE_32_BITS) {
893                 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
894         } else {
895                 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
896         }
897
898         switch(mode) {
899                 case PCI_MODE_PCI_33:
900                         DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
901                         break;
902                 case PCI_MODE_PCI_66:
903                         DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
904                         break;
905                 case PCI_MODE_PCIX_M1_66:
906                         DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
907                         break;
908                 case PCI_MODE_PCIX_M1_100:
909                         DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
910                         break;
911                 case PCI_MODE_PCIX_M1_133:
912                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
913                         break;
914                 case PCI_MODE_PCIX_M2_66:
915                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
916                         break;
917                 case PCI_MODE_PCIX_M2_100:
918                         DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
919                         break;
920                 case PCI_MODE_PCIX_M2_133:
921                         DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
922                         break;
923                 default:
924                         return -1;      /* Unsupported bus speed */
925         }
926
927         return mode;
928 }
929
930 /**
931  *  init_nic - Initialization of hardware
932  *  @nic: device peivate variable
933  *  Description: The function sequentially configures every block
934  *  of the H/W from their reset values.
935  *  Return Value:  SUCCESS on success and
936  *  '-1' on failure (endian settings incorrect).
937  */
938
939 static int init_nic(struct s2io_nic *nic)
940 {
941         struct XENA_dev_config __iomem *bar0 = nic->bar0;
942         struct net_device *dev = nic->dev;
943         register u64 val64 = 0;
944         void __iomem *add;
945         u32 time;
946         int i, j;
947         struct mac_info *mac_control;
948         struct config_param *config;
949         int dtx_cnt = 0;
950         unsigned long long mem_share;
951         int mem_size;
952
953         mac_control = &nic->mac_control;
954         config = &nic->config;
955
956         /* to set the swapper controle on the card */
957         if(s2io_set_swapper(nic)) {
958                 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
959                 return -1;
960         }
961
962         /*
963          * Herc requires EOI to be removed from reset before XGXS, so..
964          */
965         if (nic->device_type & XFRAME_II_DEVICE) {
966                 val64 = 0xA500000000ULL;
967                 writeq(val64, &bar0->sw_reset);
968                 msleep(500);
969                 val64 = readq(&bar0->sw_reset);
970         }
971
972         /* Remove XGXS from reset state */
973         val64 = 0;
974         writeq(val64, &bar0->sw_reset);
975         msleep(500);
976         val64 = readq(&bar0->sw_reset);
977
978         /*  Enable Receiving broadcasts */
979         add = &bar0->mac_cfg;
980         val64 = readq(&bar0->mac_cfg);
981         val64 |= MAC_RMAC_BCAST_ENABLE;
982         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
983         writel((u32) val64, add);
984         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
985         writel((u32) (val64 >> 32), (add + 4));
986
987         /* Read registers in all blocks */
988         val64 = readq(&bar0->mac_int_mask);
989         val64 = readq(&bar0->mc_int_mask);
990         val64 = readq(&bar0->xgxs_int_mask);
991
992         /*  Set MTU */
993         val64 = dev->mtu;
994         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
995
996         if (nic->device_type & XFRAME_II_DEVICE) {
997                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
998                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
999                                           &bar0->dtx_control, UF);
1000                         if (dtx_cnt & 0x1)
1001                                 msleep(1); /* Necessary!! */
1002                         dtx_cnt++;
1003                 }
1004         } else {
1005                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1006                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1007                                           &bar0->dtx_control, UF);
1008                         val64 = readq(&bar0->dtx_control);
1009                         dtx_cnt++;
1010                 }
1011         }
1012
1013         /*  Tx DMA Initialization */
1014         val64 = 0;
1015         writeq(val64, &bar0->tx_fifo_partition_0);
1016         writeq(val64, &bar0->tx_fifo_partition_1);
1017         writeq(val64, &bar0->tx_fifo_partition_2);
1018         writeq(val64, &bar0->tx_fifo_partition_3);
1019
1020
1021         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1022                 val64 |=
1023                     vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1024                          13) | vBIT(config->tx_cfg[i].fifo_priority,
1025                                     ((i * 32) + 5), 3);
1026
1027                 if (i == (config->tx_fifo_num - 1)) {
1028                         if (i % 2 == 0)
1029                                 i++;
1030                 }
1031
1032                 switch (i) {
1033                 case 1:
1034                         writeq(val64, &bar0->tx_fifo_partition_0);
1035                         val64 = 0;
1036                         break;
1037                 case 3:
1038                         writeq(val64, &bar0->tx_fifo_partition_1);
1039                         val64 = 0;
1040                         break;
1041                 case 5:
1042                         writeq(val64, &bar0->tx_fifo_partition_2);
1043                         val64 = 0;
1044                         break;
1045                 case 7:
1046                         writeq(val64, &bar0->tx_fifo_partition_3);
1047                         break;
1048                 }
1049         }
1050
1051         /*
1052          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1053          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1054          */
1055         if ((nic->device_type == XFRAME_I_DEVICE) &&
1056                 (get_xena_rev_id(nic->pdev) < 4))
1057                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1058
1059         val64 = readq(&bar0->tx_fifo_partition_0);
1060         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1061                   &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1062
1063         /*
1064          * Initialization of Tx_PA_CONFIG register to ignore packet
1065          * integrity checking.
1066          */
1067         val64 = readq(&bar0->tx_pa_cfg);
1068         val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1069             TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1070         writeq(val64, &bar0->tx_pa_cfg);
1071
1072         /* Rx DMA intialization. */
1073         val64 = 0;
1074         for (i = 0; i < config->rx_ring_num; i++) {
1075                 val64 |=
1076                     vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1077                          3);
1078         }
1079         writeq(val64, &bar0->rx_queue_priority);
1080
1081         /*
1082          * Allocating equal share of memory to all the
1083          * configured Rings.
1084          */
1085         val64 = 0;
1086         if (nic->device_type & XFRAME_II_DEVICE)
1087                 mem_size = 32;
1088         else
1089                 mem_size = 64;
1090
1091         for (i = 0; i < config->rx_ring_num; i++) {
1092                 switch (i) {
1093                 case 0:
1094                         mem_share = (mem_size / config->rx_ring_num +
1095                                      mem_size % config->rx_ring_num);
1096                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1097                         continue;
1098                 case 1:
1099                         mem_share = (mem_size / config->rx_ring_num);
1100                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1101                         continue;
1102                 case 2:
1103                         mem_share = (mem_size / config->rx_ring_num);
1104                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1105                         continue;
1106                 case 3:
1107                         mem_share = (mem_size / config->rx_ring_num);
1108                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1109                         continue;
1110                 case 4:
1111                         mem_share = (mem_size / config->rx_ring_num);
1112                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1113                         continue;
1114                 case 5:
1115                         mem_share = (mem_size / config->rx_ring_num);
1116                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1117                         continue;
1118                 case 6:
1119                         mem_share = (mem_size / config->rx_ring_num);
1120                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1121                         continue;
1122                 case 7:
1123                         mem_share = (mem_size / config->rx_ring_num);
1124                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1125                         continue;
1126                 }
1127         }
1128         writeq(val64, &bar0->rx_queue_cfg);
1129
1130         /*
1131          * Filling Tx round robin registers
1132          * as per the number of FIFOs
1133          */
1134         switch (config->tx_fifo_num) {
1135         case 1:
1136                 val64 = 0x0000000000000000ULL;
1137                 writeq(val64, &bar0->tx_w_round_robin_0);
1138                 writeq(val64, &bar0->tx_w_round_robin_1);
1139                 writeq(val64, &bar0->tx_w_round_robin_2);
1140                 writeq(val64, &bar0->tx_w_round_robin_3);
1141                 writeq(val64, &bar0->tx_w_round_robin_4);
1142                 break;
1143         case 2:
1144                 val64 = 0x0000010000010000ULL;
1145                 writeq(val64, &bar0->tx_w_round_robin_0);
1146                 val64 = 0x0100000100000100ULL;
1147                 writeq(val64, &bar0->tx_w_round_robin_1);
1148                 val64 = 0x0001000001000001ULL;
1149                 writeq(val64, &bar0->tx_w_round_robin_2);
1150                 val64 = 0x0000010000010000ULL;
1151                 writeq(val64, &bar0->tx_w_round_robin_3);
1152                 val64 = 0x0100000000000000ULL;
1153                 writeq(val64, &bar0->tx_w_round_robin_4);
1154                 break;
1155         case 3:
1156                 val64 = 0x0001000102000001ULL;
1157                 writeq(val64, &bar0->tx_w_round_robin_0);
1158                 val64 = 0x0001020000010001ULL;
1159                 writeq(val64, &bar0->tx_w_round_robin_1);
1160                 val64 = 0x0200000100010200ULL;
1161                 writeq(val64, &bar0->tx_w_round_robin_2);
1162                 val64 = 0x0001000102000001ULL;
1163                 writeq(val64, &bar0->tx_w_round_robin_3);
1164                 val64 = 0x0001020000000000ULL;
1165                 writeq(val64, &bar0->tx_w_round_robin_4);
1166                 break;
1167         case 4:
1168                 val64 = 0x0001020300010200ULL;
1169                 writeq(val64, &bar0->tx_w_round_robin_0);
1170                 val64 = 0x0100000102030001ULL;
1171                 writeq(val64, &bar0->tx_w_round_robin_1);
1172                 val64 = 0x0200010000010203ULL;
1173                 writeq(val64, &bar0->tx_w_round_robin_2);
1174                 val64 = 0x0001020001000001ULL;
1175                 writeq(val64, &bar0->tx_w_round_robin_3);
1176                 val64 = 0x0203000100000000ULL;
1177                 writeq(val64, &bar0->tx_w_round_robin_4);
1178                 break;
1179         case 5:
1180                 val64 = 0x0001000203000102ULL;
1181                 writeq(val64, &bar0->tx_w_round_robin_0);
1182                 val64 = 0x0001020001030004ULL;
1183                 writeq(val64, &bar0->tx_w_round_robin_1);
1184                 val64 = 0x0001000203000102ULL;
1185                 writeq(val64, &bar0->tx_w_round_robin_2);
1186                 val64 = 0x0001020001030004ULL;
1187                 writeq(val64, &bar0->tx_w_round_robin_3);
1188                 val64 = 0x0001000000000000ULL;
1189                 writeq(val64, &bar0->tx_w_round_robin_4);
1190                 break;
1191         case 6:
1192                 val64 = 0x0001020304000102ULL;
1193                 writeq(val64, &bar0->tx_w_round_robin_0);
1194                 val64 = 0x0304050001020001ULL;
1195                 writeq(val64, &bar0->tx_w_round_robin_1);
1196                 val64 = 0x0203000100000102ULL;
1197                 writeq(val64, &bar0->tx_w_round_robin_2);
1198                 val64 = 0x0304000102030405ULL;
1199                 writeq(val64, &bar0->tx_w_round_robin_3);
1200                 val64 = 0x0001000200000000ULL;
1201                 writeq(val64, &bar0->tx_w_round_robin_4);
1202                 break;
1203         case 7:
1204                 val64 = 0x0001020001020300ULL;
1205                 writeq(val64, &bar0->tx_w_round_robin_0);
1206                 val64 = 0x0102030400010203ULL;
1207                 writeq(val64, &bar0->tx_w_round_robin_1);
1208                 val64 = 0x0405060001020001ULL;
1209                 writeq(val64, &bar0->tx_w_round_robin_2);
1210                 val64 = 0x0304050000010200ULL;
1211                 writeq(val64, &bar0->tx_w_round_robin_3);
1212                 val64 = 0x0102030000000000ULL;
1213                 writeq(val64, &bar0->tx_w_round_robin_4);
1214                 break;
1215         case 8:
1216                 val64 = 0x0001020300040105ULL;
1217                 writeq(val64, &bar0->tx_w_round_robin_0);
1218                 val64 = 0x0200030106000204ULL;
1219                 writeq(val64, &bar0->tx_w_round_robin_1);
1220                 val64 = 0x0103000502010007ULL;
1221                 writeq(val64, &bar0->tx_w_round_robin_2);
1222                 val64 = 0x0304010002060500ULL;
1223                 writeq(val64, &bar0->tx_w_round_robin_3);
1224                 val64 = 0x0103020400000000ULL;
1225                 writeq(val64, &bar0->tx_w_round_robin_4);
1226                 break;
1227         }
1228
1229         /* Enable all configured Tx FIFO partitions */
1230         val64 = readq(&bar0->tx_fifo_partition_0);
1231         val64 |= (TX_FIFO_PARTITION_EN);
1232         writeq(val64, &bar0->tx_fifo_partition_0);
1233
1234         /* Filling the Rx round robin registers as per the
1235          * number of Rings and steering based on QoS.
1236          */
1237         switch (config->rx_ring_num) {
1238         case 1:
1239                 val64 = 0x8080808080808080ULL;
1240                 writeq(val64, &bar0->rts_qos_steering);
1241                 break;
1242         case 2:
1243                 val64 = 0x0000010000010000ULL;
1244                 writeq(val64, &bar0->rx_w_round_robin_0);
1245                 val64 = 0x0100000100000100ULL;
1246                 writeq(val64, &bar0->rx_w_round_robin_1);
1247                 val64 = 0x0001000001000001ULL;
1248                 writeq(val64, &bar0->rx_w_round_robin_2);
1249                 val64 = 0x0000010000010000ULL;
1250                 writeq(val64, &bar0->rx_w_round_robin_3);
1251                 val64 = 0x0100000000000000ULL;
1252                 writeq(val64, &bar0->rx_w_round_robin_4);
1253
1254                 val64 = 0x8080808040404040ULL;
1255                 writeq(val64, &bar0->rts_qos_steering);
1256                 break;
1257         case 3:
1258                 val64 = 0x0001000102000001ULL;
1259                 writeq(val64, &bar0->rx_w_round_robin_0);
1260                 val64 = 0x0001020000010001ULL;
1261                 writeq(val64, &bar0->rx_w_round_robin_1);
1262                 val64 = 0x0200000100010200ULL;
1263                 writeq(val64, &bar0->rx_w_round_robin_2);
1264                 val64 = 0x0001000102000001ULL;
1265                 writeq(val64, &bar0->rx_w_round_robin_3);
1266                 val64 = 0x0001020000000000ULL;
1267                 writeq(val64, &bar0->rx_w_round_robin_4);
1268
1269                 val64 = 0x8080804040402020ULL;
1270                 writeq(val64, &bar0->rts_qos_steering);
1271                 break;
1272         case 4:
1273                 val64 = 0x0001020300010200ULL;
1274                 writeq(val64, &bar0->rx_w_round_robin_0);
1275                 val64 = 0x0100000102030001ULL;
1276                 writeq(val64, &bar0->rx_w_round_robin_1);
1277                 val64 = 0x0200010000010203ULL;
1278                 writeq(val64, &bar0->rx_w_round_robin_2);
1279                 val64 = 0x0001020001000001ULL;
1280                 writeq(val64, &bar0->rx_w_round_robin_3);
1281                 val64 = 0x0203000100000000ULL;
1282                 writeq(val64, &bar0->rx_w_round_robin_4);
1283
1284                 val64 = 0x8080404020201010ULL;
1285                 writeq(val64, &bar0->rts_qos_steering);
1286                 break;
1287         case 5:
1288                 val64 = 0x0001000203000102ULL;
1289                 writeq(val64, &bar0->rx_w_round_robin_0);
1290                 val64 = 0x0001020001030004ULL;
1291                 writeq(val64, &bar0->rx_w_round_robin_1);
1292                 val64 = 0x0001000203000102ULL;
1293                 writeq(val64, &bar0->rx_w_round_robin_2);
1294                 val64 = 0x0001020001030004ULL;
1295                 writeq(val64, &bar0->rx_w_round_robin_3);
1296                 val64 = 0x0001000000000000ULL;
1297                 writeq(val64, &bar0->rx_w_round_robin_4);
1298
1299                 val64 = 0x8080404020201008ULL;
1300                 writeq(val64, &bar0->rts_qos_steering);
1301                 break;
1302         case 6:
1303                 val64 = 0x0001020304000102ULL;
1304                 writeq(val64, &bar0->rx_w_round_robin_0);
1305                 val64 = 0x0304050001020001ULL;
1306                 writeq(val64, &bar0->rx_w_round_robin_1);
1307                 val64 = 0x0203000100000102ULL;
1308                 writeq(val64, &bar0->rx_w_round_robin_2);
1309                 val64 = 0x0304000102030405ULL;
1310                 writeq(val64, &bar0->rx_w_round_robin_3);
1311                 val64 = 0x0001000200000000ULL;
1312                 writeq(val64, &bar0->rx_w_round_robin_4);
1313
1314                 val64 = 0x8080404020100804ULL;
1315                 writeq(val64, &bar0->rts_qos_steering);
1316                 break;
1317         case 7:
1318                 val64 = 0x0001020001020300ULL;
1319                 writeq(val64, &bar0->rx_w_round_robin_0);
1320                 val64 = 0x0102030400010203ULL;
1321                 writeq(val64, &bar0->rx_w_round_robin_1);
1322                 val64 = 0x0405060001020001ULL;
1323                 writeq(val64, &bar0->rx_w_round_robin_2);
1324                 val64 = 0x0304050000010200ULL;
1325                 writeq(val64, &bar0->rx_w_round_robin_3);
1326                 val64 = 0x0102030000000000ULL;
1327                 writeq(val64, &bar0->rx_w_round_robin_4);
1328
1329                 val64 = 0x8080402010080402ULL;
1330                 writeq(val64, &bar0->rts_qos_steering);
1331                 break;
1332         case 8:
1333                 val64 = 0x0001020300040105ULL;
1334                 writeq(val64, &bar0->rx_w_round_robin_0);
1335                 val64 = 0x0200030106000204ULL;
1336                 writeq(val64, &bar0->rx_w_round_robin_1);
1337                 val64 = 0x0103000502010007ULL;
1338                 writeq(val64, &bar0->rx_w_round_robin_2);
1339                 val64 = 0x0304010002060500ULL;
1340                 writeq(val64, &bar0->rx_w_round_robin_3);
1341                 val64 = 0x0103020400000000ULL;
1342                 writeq(val64, &bar0->rx_w_round_robin_4);
1343
1344                 val64 = 0x8040201008040201ULL;
1345                 writeq(val64, &bar0->rts_qos_steering);
1346                 break;
1347         }
1348
1349         /* UDP Fix */
1350         val64 = 0;
1351         for (i = 0; i < 8; i++)
1352                 writeq(val64, &bar0->rts_frm_len_n[i]);
1353
1354         /* Set the default rts frame length for the rings configured */
1355         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1356         for (i = 0 ; i < config->rx_ring_num ; i++)
1357                 writeq(val64, &bar0->rts_frm_len_n[i]);
1358
1359         /* Set the frame length for the configured rings
1360          * desired by the user
1361          */
1362         for (i = 0; i < config->rx_ring_num; i++) {
1363                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1364                  * specified frame length steering.
1365                  * If the user provides the frame length then program
1366                  * the rts_frm_len register for those values or else
1367                  * leave it as it is.
1368                  */
1369                 if (rts_frm_len[i] != 0) {
1370                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1371                                 &bar0->rts_frm_len_n[i]);
1372                 }
1373         }
1374
1375         /* Program statistics memory */
1376         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1377
1378         if (nic->device_type == XFRAME_II_DEVICE) {
1379                 val64 = STAT_BC(0x320);
1380                 writeq(val64, &bar0->stat_byte_cnt);
1381         }
1382
1383         /*
1384          * Initializing the sampling rate for the device to calculate the
1385          * bandwidth utilization.
1386          */
1387         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1388             MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1389         writeq(val64, &bar0->mac_link_util);
1390
1391
1392         /*
1393          * Initializing the Transmit and Receive Traffic Interrupt
1394          * Scheme.
1395          */
1396         /*
1397          * TTI Initialization. Default Tx timer gets us about
1398          * 250 interrupts per sec. Continuous interrupts are enabled
1399          * by default.
1400          */
1401         if (nic->device_type == XFRAME_II_DEVICE) {
1402                 int count = (nic->config.bus_speed * 125)/2;
1403                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1404         } else {
1405
1406                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1407         }
1408         val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1409             TTI_DATA1_MEM_TX_URNG_B(0x10) |
1410             TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1411                 if (use_continuous_tx_intrs)
1412                         val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1413         writeq(val64, &bar0->tti_data1_mem);
1414
1415         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1416             TTI_DATA2_MEM_TX_UFC_B(0x20) |
1417             TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1418         writeq(val64, &bar0->tti_data2_mem);
1419
1420         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1421         writeq(val64, &bar0->tti_command_mem);
1422
1423         /*
1424          * Once the operation completes, the Strobe bit of the command
1425          * register will be reset. We poll for this particular condition
1426          * We wait for a maximum of 500ms for the operation to complete,
1427          * if it's not complete by then we return error.
1428          */
1429         time = 0;
1430         while (TRUE) {
1431                 val64 = readq(&bar0->tti_command_mem);
1432                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1433                         break;
1434                 }
1435                 if (time > 10) {
1436                         DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1437                                   dev->name);
1438                         return -1;
1439                 }
1440                 msleep(50);
1441                 time++;
1442         }
1443
1444         if (nic->config.bimodal) {
1445                 int k = 0;
1446                 for (k = 0; k < config->rx_ring_num; k++) {
1447                         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1448                         val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1449                         writeq(val64, &bar0->tti_command_mem);
1450
1451                 /*
1452                  * Once the operation completes, the Strobe bit of the command
1453                  * register will be reset. We poll for this particular condition
1454                  * We wait for a maximum of 500ms for the operation to complete,
1455                  * if it's not complete by then we return error.
1456                 */
1457                         time = 0;
1458                         while (TRUE) {
1459                                 val64 = readq(&bar0->tti_command_mem);
1460                                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1461                                         break;
1462                                 }
1463                                 if (time > 10) {
1464                                         DBG_PRINT(ERR_DBG,
1465                                                 "%s: TTI init Failed\n",
1466                                         dev->name);
1467                                         return -1;
1468                                 }
1469                                 time++;
1470                                 msleep(50);
1471                         }
1472                 }
1473         } else {
1474
1475                 /* RTI Initialization */
1476                 if (nic->device_type == XFRAME_II_DEVICE) {
1477                         /*
1478                          * Programmed to generate Apprx 500 Intrs per
1479                          * second
1480                          */
1481                         int count = (nic->config.bus_speed * 125)/4;
1482                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1483                 } else {
1484                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1485                 }
1486                 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1487                     RTI_DATA1_MEM_RX_URNG_B(0x10) |
1488                     RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1489
1490                 writeq(val64, &bar0->rti_data1_mem);
1491
1492                 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1493                     RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1494                 if (nic->intr_type == MSI_X)
1495                     val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1496                                 RTI_DATA2_MEM_RX_UFC_D(0x40));
1497                 else
1498                     val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1499                                 RTI_DATA2_MEM_RX_UFC_D(0x80));
1500                 writeq(val64, &bar0->rti_data2_mem);
1501
1502                 for (i = 0; i < config->rx_ring_num; i++) {
1503                         val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1504                                         | RTI_CMD_MEM_OFFSET(i);
1505                         writeq(val64, &bar0->rti_command_mem);
1506
1507                         /*
1508                          * Once the operation completes, the Strobe bit of the
1509                          * command register will be reset. We poll for this
1510                          * particular condition. We wait for a maximum of 500ms
1511                          * for the operation to complete, if it's not complete
1512                          * by then we return error.
1513                          */
1514                         time = 0;
1515                         while (TRUE) {
1516                                 val64 = readq(&bar0->rti_command_mem);
1517                                 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1518                                         break;
1519                                 }
1520                                 if (time > 10) {
1521                                         DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1522                                                   dev->name);
1523                                         return -1;
1524                                 }
1525                                 time++;
1526                                 msleep(50);
1527                         }
1528                 }
1529         }
1530
1531         /*
1532          * Initializing proper values as Pause threshold into all
1533          * the 8 Queues on Rx side.
1534          */
1535         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1536         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1537
1538         /* Disable RMAC PAD STRIPPING */
1539         add = &bar0->mac_cfg;
1540         val64 = readq(&bar0->mac_cfg);
1541         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1542         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1543         writel((u32) (val64), add);
1544         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1545         writel((u32) (val64 >> 32), (add + 4));
1546         val64 = readq(&bar0->mac_cfg);
1547
1548         /* Enable FCS stripping by adapter */
1549         add = &bar0->mac_cfg;
1550         val64 = readq(&bar0->mac_cfg);
1551         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1552         if (nic->device_type == XFRAME_II_DEVICE)
1553                 writeq(val64, &bar0->mac_cfg);
1554         else {
1555                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1556                 writel((u32) (val64), add);
1557                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1558                 writel((u32) (val64 >> 32), (add + 4));
1559         }
1560
1561         /*
1562          * Set the time value to be inserted in the pause frame
1563          * generated by xena.
1564          */
1565         val64 = readq(&bar0->rmac_pause_cfg);
1566         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1567         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1568         writeq(val64, &bar0->rmac_pause_cfg);
1569
1570         /*
1571          * Set the Threshold Limit for Generating the pause frame
1572          * If the amount of data in any Queue exceeds ratio of
1573          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1574          * pause frame is generated
1575          */
1576         val64 = 0;
1577         for (i = 0; i < 4; i++) {
1578                 val64 |=
1579                     (((u64) 0xFF00 | nic->mac_control.
1580                       mc_pause_threshold_q0q3)
1581                      << (i * 2 * 8));
1582         }
1583         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1584
1585         val64 = 0;
1586         for (i = 0; i < 4; i++) {
1587                 val64 |=
1588                     (((u64) 0xFF00 | nic->mac_control.
1589                       mc_pause_threshold_q4q7)
1590                      << (i * 2 * 8));
1591         }
1592         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1593
1594         /*
1595          * TxDMA will stop Read request if the number of read split has
1596          * exceeded the limit pointed by shared_splits
1597          */
1598         val64 = readq(&bar0->pic_control);
1599         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1600         writeq(val64, &bar0->pic_control);
1601
1602         if (nic->config.bus_speed == 266) {
1603                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1604                 writeq(0x0, &bar0->read_retry_delay);
1605                 writeq(0x0, &bar0->write_retry_delay);
1606         }
1607
1608         /*
1609          * Programming the Herc to split every write transaction
1610          * that does not start on an ADB to reduce disconnects.
1611          */
1612         if (nic->device_type == XFRAME_II_DEVICE) {
1613                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1614                         MISC_LINK_STABILITY_PRD(3);
1615                 writeq(val64, &bar0->misc_control);
1616                 val64 = readq(&bar0->pic_control2);
1617                 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1618                 writeq(val64, &bar0->pic_control2);
1619         }
1620         if (strstr(nic->product_name, "CX4")) {
1621                 val64 = TMAC_AVG_IPG(0x17);
1622                 writeq(val64, &bar0->tmac_avg_ipg);
1623         }
1624
1625         return SUCCESS;
1626 }
1627 #define LINK_UP_DOWN_INTERRUPT          1
1628 #define MAC_RMAC_ERR_TIMER              2
1629
1630 static int s2io_link_fault_indication(struct s2io_nic *nic)
1631 {
1632         if (nic->intr_type != INTA)
1633                 return MAC_RMAC_ERR_TIMER;
1634         if (nic->device_type == XFRAME_II_DEVICE)
1635                 return LINK_UP_DOWN_INTERRUPT;
1636         else
1637                 return MAC_RMAC_ERR_TIMER;
1638 }
1639
1640 /**
1641  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1642  *  @nic: device private variable,
1643  *  @mask: A mask indicating which Intr block must be modified and,
1644  *  @flag: A flag indicating whether to enable or disable the Intrs.
1645  *  Description: This function will either disable or enable the interrupts
1646  *  depending on the flag argument. The mask argument can be used to
1647  *  enable/disable any Intr block.
1648  *  Return Value: NONE.
1649  */
1650
1651 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1652 {
1653         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1654         register u64 val64 = 0, temp64 = 0;
1655
1656         /*  Top level interrupt classification */
1657         /*  PIC Interrupts */
1658         if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1659                 /*  Enable PIC Intrs in the general intr mask register */
1660                 val64 = TXPIC_INT_M;
1661                 if (flag == ENABLE_INTRS) {
1662                         temp64 = readq(&bar0->general_int_mask);
1663                         temp64 &= ~((u64) val64);
1664                         writeq(temp64, &bar0->general_int_mask);
1665                         /*
1666                          * If Hercules adapter enable GPIO otherwise
1667                          * disable all PCIX, Flash, MDIO, IIC and GPIO
1668                          * interrupts for now.
1669                          * TODO
1670                          */
1671                         if (s2io_link_fault_indication(nic) ==
1672                                         LINK_UP_DOWN_INTERRUPT ) {
1673                                 temp64 = readq(&bar0->pic_int_mask);
1674                                 temp64 &= ~((u64) PIC_INT_GPIO);
1675                                 writeq(temp64, &bar0->pic_int_mask);
1676                                 temp64 = readq(&bar0->gpio_int_mask);
1677                                 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1678                                 writeq(temp64, &bar0->gpio_int_mask);
1679                         } else {
1680                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1681                         }
1682                         /*
1683                          * No MSI Support is available presently, so TTI and
1684                          * RTI interrupts are also disabled.
1685                          */
1686                 } else if (flag == DISABLE_INTRS) {
1687                         /*
1688                          * Disable PIC Intrs in the general
1689                          * intr mask register
1690                          */
1691                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1692                         temp64 = readq(&bar0->general_int_mask);
1693                         val64 |= temp64;
1694                         writeq(val64, &bar0->general_int_mask);
1695                 }
1696         }
1697
1698         /*  MAC Interrupts */
1699         /*  Enabling/Disabling MAC interrupts */
1700         if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1701                 val64 = TXMAC_INT_M | RXMAC_INT_M;
1702                 if (flag == ENABLE_INTRS) {
1703                         temp64 = readq(&bar0->general_int_mask);
1704                         temp64 &= ~((u64) val64);
1705                         writeq(temp64, &bar0->general_int_mask);
1706                         /*
1707                          * All MAC block error interrupts are disabled for now
1708                          * TODO
1709                          */
1710                 } else if (flag == DISABLE_INTRS) {
1711                         /*
1712                          * Disable MAC Intrs in the general intr mask register
1713                          */
1714                         writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1715                         writeq(DISABLE_ALL_INTRS,
1716                                &bar0->mac_rmac_err_mask);
1717
1718                         temp64 = readq(&bar0->general_int_mask);
1719                         val64 |= temp64;
1720                         writeq(val64, &bar0->general_int_mask);
1721                 }
1722         }
1723
1724         /*  Tx traffic interrupts */
1725         if (mask & TX_TRAFFIC_INTR) {
1726                 val64 = TXTRAFFIC_INT_M;
1727                 if (flag == ENABLE_INTRS) {
1728                         temp64 = readq(&bar0->general_int_mask);
1729                         temp64 &= ~((u64) val64);
1730                         writeq(temp64, &bar0->general_int_mask);
1731                         /*
1732                          * Enable all the Tx side interrupts
1733                          * writing 0 Enables all 64 TX interrupt levels
1734                          */
1735                         writeq(0x0, &bar0->tx_traffic_mask);
1736                 } else if (flag == DISABLE_INTRS) {
1737                         /*
1738                          * Disable Tx Traffic Intrs in the general intr mask
1739                          * register.
1740                          */
1741                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1742                         temp64 = readq(&bar0->general_int_mask);
1743                         val64 |= temp64;
1744                         writeq(val64, &bar0->general_int_mask);
1745                 }
1746         }
1747
1748         /*  Rx traffic interrupts */
1749         if (mask & RX_TRAFFIC_INTR) {
1750                 val64 = RXTRAFFIC_INT_M;
1751                 if (flag == ENABLE_INTRS) {
1752                         temp64 = readq(&bar0->general_int_mask);
1753                         temp64 &= ~((u64) val64);
1754                         writeq(temp64, &bar0->general_int_mask);
1755                         /* writing 0 Enables all 8 RX interrupt levels */
1756                         writeq(0x0, &bar0->rx_traffic_mask);
1757                 } else if (flag == DISABLE_INTRS) {
1758                         /*
1759                          * Disable Rx Traffic Intrs in the general intr mask
1760                          * register.
1761                          */
1762                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1763                         temp64 = readq(&bar0->general_int_mask);
1764                         val64 |= temp64;
1765                         writeq(val64, &bar0->general_int_mask);
1766                 }
1767         }
1768 }
1769
1770 /**
1771  *  verify_pcc_quiescent- Checks for PCC quiescent state
1772  *  Return: 1 If PCC is quiescence
1773  *          0 If PCC is not quiescence
1774  */
1775 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
1776 {
1777         int ret = 0, herc;
1778         struct XENA_dev_config __iomem *bar0 = sp->bar0;
1779         u64 val64 = readq(&bar0->adapter_status);
1780         
1781         herc = (sp->device_type == XFRAME_II_DEVICE);
1782
1783         if (flag == FALSE) {
1784                 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1785                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
1786                                 ret = 1;
1787                 } else {
1788                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1789                                 ret = 1;
1790                 }
1791         } else {
1792                 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1793                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1794                              ADAPTER_STATUS_RMAC_PCC_IDLE))
1795                                 ret = 1;
1796                 } else {
1797                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1798                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1799                                 ret = 1;
1800                 }
1801         }
1802
1803         return ret;
1804 }
1805 /**
1806  *  verify_xena_quiescence - Checks whether the H/W is ready
1807  *  Description: Returns whether the H/W is ready to go or not. Depending
1808  *  on whether adapter enable bit was written or not the comparison
1809  *  differs and the calling function passes the input argument flag to
1810  *  indicate this.
1811  *  Return: 1 If xena is quiescence
1812  *          0 If Xena is not quiescence
1813  */
1814
1815 static int verify_xena_quiescence(struct s2io_nic *sp)
1816 {
1817         int  mode;
1818         struct XENA_dev_config __iomem *bar0 = sp->bar0;
1819         u64 val64 = readq(&bar0->adapter_status);
1820         mode = s2io_verify_pci_mode(sp);
1821
1822         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
1823                 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
1824                 return 0;
1825         }
1826         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
1827         DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
1828                 return 0;
1829         }
1830         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
1831                 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
1832                 return 0;
1833         }
1834         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
1835                 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
1836                 return 0;
1837         }
1838         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
1839                 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
1840                 return 0;
1841         }
1842         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
1843                 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
1844                 return 0;
1845         }
1846         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
1847                 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
1848                 return 0;
1849         }
1850         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
1851                 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
1852                 return 0;
1853         }
1854
1855         /*
1856          * In PCI 33 mode, the P_PLL is not used, and therefore,
1857          * the the P_PLL_LOCK bit in the adapter_status register will
1858          * not be asserted.
1859          */
1860         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
1861                 sp->device_type == XFRAME_II_DEVICE && mode !=
1862                 PCI_MODE_PCI_33) {
1863                 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
1864                 return 0;
1865         }
1866         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1867                         ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1868                 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
1869                 return 0;
1870         }
1871         return 1;
1872 }
1873
1874 /**
1875  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
1876  * @sp: Pointer to device specifc structure
1877  * Description :
1878  * New procedure to clear mac address reading  problems on Alpha platforms
1879  *
1880  */
1881
1882 static void fix_mac_address(struct s2io_nic * sp)
1883 {
1884         struct XENA_dev_config __iomem *bar0 = sp->bar0;
1885         u64 val64;
1886         int i = 0;
1887
1888         while (fix_mac[i] != END_SIGN) {
1889                 writeq(fix_mac[i++], &bar0->gpio_control);
1890                 udelay(10);
1891                 val64 = readq(&bar0->gpio_control);
1892         }
1893 }
1894
1895 /**
1896  *  start_nic - Turns the device on
1897  *  @nic : device private variable.
1898  *  Description:
1899  *  This function actually turns the device on. Before this  function is
1900  *  called,all Registers are configured from their reset states
1901  *  and shared memory is allocated but the NIC is still quiescent. On
1902  *  calling this function, the device interrupts are cleared and the NIC is
1903  *  literally switched on by writing into the adapter control register.
1904  *  Return Value:
1905  *  SUCCESS on success and -1 on failure.
1906  */
1907
1908 static int start_nic(struct s2io_nic *nic)
1909 {
1910         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1911         struct net_device *dev = nic->dev;
1912         register u64 val64 = 0;
1913         u16 subid, i;
1914         struct mac_info *mac_control;
1915         struct config_param *config;
1916
1917         mac_control = &nic->mac_control;
1918         config = &nic->config;
1919
1920         /*  PRC Initialization and configuration */
1921         for (i = 0; i < config->rx_ring_num; i++) {
1922                 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1923                        &bar0->prc_rxd0_n[i]);
1924
1925                 val64 = readq(&bar0->prc_ctrl_n[i]);
1926                 if (nic->config.bimodal)
1927                         val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
1928                 if (nic->rxd_mode == RXD_MODE_1)
1929                         val64 |= PRC_CTRL_RC_ENABLED;
1930                 else
1931                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
1932                 if (nic->device_type == XFRAME_II_DEVICE)
1933                         val64 |= PRC_CTRL_GROUP_READS;
1934                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
1935                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1936                 writeq(val64, &bar0->prc_ctrl_n[i]);
1937         }
1938
1939         if (nic->rxd_mode == RXD_MODE_3B) {
1940                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
1941                 val64 = readq(&bar0->rx_pa_cfg);
1942                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
1943                 writeq(val64, &bar0->rx_pa_cfg);
1944         }
1945
1946         /*
1947          * Enabling MC-RLDRAM. After enabling the device, we timeout
1948          * for around 100ms, which is approximately the time required
1949          * for the device to be ready for operation.
1950          */
1951         val64 = readq(&bar0->mc_rldram_mrs);
1952         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
1953         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
1954         val64 = readq(&bar0->mc_rldram_mrs);
1955
1956         msleep(100);    /* Delay by around 100 ms. */
1957
1958         /* Enabling ECC Protection. */
1959         val64 = readq(&bar0->adapter_control);
1960         val64 &= ~ADAPTER_ECC_EN;
1961         writeq(val64, &bar0->adapter_control);
1962
1963         /*
1964          * Clearing any possible Link state change interrupts that
1965          * could have popped up just before Enabling the card.
1966          */
1967         val64 = readq(&bar0->mac_rmac_err_reg);
1968         if (val64)
1969                 writeq(val64, &bar0->mac_rmac_err_reg);
1970
1971         /*
1972          * Verify if the device is ready to be enabled, if so enable
1973          * it.
1974          */
1975         val64 = readq(&bar0->adapter_status);
1976         if (!verify_xena_quiescence(nic)) {
1977                 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
1978                 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
1979                           (unsigned long long) val64);
1980                 return FAILURE;
1981         }
1982
1983         /*
1984          * With some switches, link might be already up at this point.
1985          * Because of this weird behavior, when we enable laser,
1986          * we may not get link. We need to handle this. We cannot
1987          * figure out which switch is misbehaving. So we are forced to
1988          * make a global change.
1989          */
1990
1991         /* Enabling Laser. */
1992         val64 = readq(&bar0->adapter_control);
1993         val64 |= ADAPTER_EOI_TX_ON;
1994         writeq(val64, &bar0->adapter_control);
1995
1996         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
1997                 /*
1998                  * Dont see link state interrupts initally on some switches,
1999                  * so directly scheduling the link state task here.
2000                  */
2001                 schedule_work(&nic->set_link_task);
2002         }
2003         /* SXE-002: Initialize link and activity LED */
2004         subid = nic->pdev->subsystem_device;
2005         if (((subid & 0xFF) >= 0x07) &&
2006             (nic->device_type == XFRAME_I_DEVICE)) {
2007                 val64 = readq(&bar0->gpio_control);
2008                 val64 |= 0x0000800000000000ULL;
2009                 writeq(val64, &bar0->gpio_control);
2010                 val64 = 0x0411040400000000ULL;
2011                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2012         }
2013
2014         return SUCCESS;
2015 }
2016 /**
2017  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2018  */
2019 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2020                                         TxD *txdlp, int get_off)
2021 {
2022         struct s2io_nic *nic = fifo_data->nic;
2023         struct sk_buff *skb;
2024         struct TxD *txds;
2025         u16 j, frg_cnt;
2026
2027         txds = txdlp;
2028         if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2029                 pci_unmap_single(nic->pdev, (dma_addr_t)
2030                         txds->Buffer_Pointer, sizeof(u64),
2031                         PCI_DMA_TODEVICE);
2032                 txds++;
2033         }
2034
2035         skb = (struct sk_buff *) ((unsigned long)
2036                         txds->Host_Control);
2037         if (!skb) {
2038                 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2039                 return NULL;
2040         }
2041         pci_unmap_single(nic->pdev, (dma_addr_t)
2042                          txds->Buffer_Pointer,
2043                          skb->len - skb->data_len,
2044                          PCI_DMA_TODEVICE);
2045         frg_cnt = skb_shinfo(skb)->nr_frags;
2046         if (frg_cnt) {
2047                 txds++;
2048                 for (j = 0; j < frg_cnt; j++, txds++) {
2049                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2050                         if (!txds->Buffer_Pointer)
2051                                 break;
2052                         pci_unmap_page(nic->pdev, (dma_addr_t)
2053                                         txds->Buffer_Pointer,
2054                                        frag->size, PCI_DMA_TODEVICE);
2055                 }
2056         }
2057         memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2058         return(skb);
2059 }
2060
2061 /**
2062  *  free_tx_buffers - Free all queued Tx buffers
2063  *  @nic : device private variable.
2064  *  Description:
2065  *  Free all queued Tx buffers.
2066  *  Return Value: void
2067 */
2068
2069 static void free_tx_buffers(struct s2io_nic *nic)
2070 {
2071         struct net_device *dev = nic->dev;
2072         struct sk_buff *skb;
2073         struct TxD *txdp;
2074         int i, j;
2075         struct mac_info *mac_control;
2076         struct config_param *config;
2077         int cnt = 0;
2078
2079         mac_control = &nic->mac_control;
2080         config = &nic->config;
2081
2082         for (i = 0; i < config->tx_fifo_num; i++) {
2083                 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2084                         txdp = (struct TxD *) mac_control->fifos[i].list_info[j].
2085                             list_virt_addr;
2086                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2087                         if (skb) {
2088                                 dev_kfree_skb(skb);
2089                                 cnt++;
2090                         }
2091                 }
2092                 DBG_PRINT(INTR_DBG,
2093                           "%s:forcibly freeing %d skbs on FIFO%d\n",
2094                           dev->name, cnt, i);
2095                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2096                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2097         }
2098 }
2099
2100 /**
2101  *   stop_nic -  To stop the nic
2102  *   @nic ; device private variable.
2103  *   Description:
2104  *   This function does exactly the opposite of what the start_nic()
2105  *   function does. This function is called to stop the device.
2106  *   Return Value:
2107  *   void.
2108  */
2109
2110 static void stop_nic(struct s2io_nic *nic)
2111 {
2112         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2113         register u64 val64 = 0;
2114         u16 interruptible;
2115         struct mac_info *mac_control;
2116         struct config_param *config;
2117
2118         mac_control = &nic->mac_control;
2119         config = &nic->config;
2120
2121         /*  Disable all interrupts */
2122         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2123         interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2124         interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2125         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2126
2127         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2128         val64 = readq(&bar0->adapter_control);
2129         val64 &= ~(ADAPTER_CNTL_EN);
2130         writeq(val64, &bar0->adapter_control);
2131 }
2132
2133 static int fill_rxd_3buf(struct s2io_nic *nic, struct RxD_t *rxdp, struct \
2134                                 sk_buff *skb)
2135 {
2136         struct net_device *dev = nic->dev;
2137         struct sk_buff *frag_list;
2138         void *tmp;
2139
2140         /* Buffer-1 receives L3/L4 headers */
2141         ((struct RxD3*)rxdp)->Buffer1_ptr = pci_map_single
2142                         (nic->pdev, skb->data, l3l4hdr_size + 4,
2143                         PCI_DMA_FROMDEVICE);
2144
2145         /* skb_shinfo(skb)->frag_list will have L4 data payload */
2146         skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2147         if (skb_shinfo(skb)->frag_list == NULL) {
2148                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2149                 return -ENOMEM ;
2150         }
2151         frag_list = skb_shinfo(skb)->frag_list;
2152         skb->truesize += frag_list->truesize;
2153         frag_list->next = NULL;
2154         tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2155         frag_list->data = tmp;
2156         frag_list->tail = tmp;
2157
2158         /* Buffer-2 receives L4 data payload */
2159         ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2160                                 frag_list->data, dev->mtu,
2161                                 PCI_DMA_FROMDEVICE);
2162         rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2163         rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2164
2165         return SUCCESS;
2166 }
2167
2168 /**
2169  *  fill_rx_buffers - Allocates the Rx side skbs
2170  *  @nic:  device private variable
2171  *  @ring_no: ring number
2172  *  Description:
2173  *  The function allocates Rx side skbs and puts the physical
2174  *  address of these buffers into the RxD buffer pointers, so that the NIC
2175  *  can DMA the received frame into these locations.
2176  *  The NIC supports 3 receive modes, viz
2177  *  1. single buffer,
2178  *  2. three buffer and
2179  *  3. Five buffer modes.
2180  *  Each mode defines how many fragments the received frame will be split
2181  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2182  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2183  *  is split into 3 fragments. As of now only single buffer mode is
2184  *  supported.
2185  *   Return Value:
2186  *  SUCCESS on success or an appropriate -ve value on failure.
2187  */
2188
2189 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2190 {
2191         struct net_device *dev = nic->dev;
2192         struct sk_buff *skb;
2193         struct RxD_t *rxdp;
2194         int off, off1, size, block_no, block_no1;
2195         u32 alloc_tab = 0;
2196         u32 alloc_cnt;
2197         struct mac_info *mac_control;
2198         struct config_param *config;
2199         u64 tmp;
2200         struct buffAdd *ba;
2201         unsigned long flags;
2202         struct RxD_t *first_rxdp = NULL;
2203
2204         mac_control = &nic->mac_control;
2205         config = &nic->config;
2206         alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2207             atomic_read(&nic->rx_bufs_left[ring_no]);
2208
2209         block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2210         off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2211         while (alloc_tab < alloc_cnt) {
2212                 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2213                     block_index;
2214                 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2215
2216                 rxdp = mac_control->rings[ring_no].
2217                                 rx_blocks[block_no].rxds[off].virt_addr;
2218
2219                 if ((block_no == block_no1) && (off == off1) &&
2220                                         (rxdp->Host_Control)) {
2221                         DBG_PRINT(INTR_DBG, "%s: Get and Put",
2222                                   dev->name);
2223                         DBG_PRINT(INTR_DBG, " info equated\n");
2224                         goto end;
2225                 }
2226                 if (off && (off == rxd_count[nic->rxd_mode])) {
2227                         mac_control->rings[ring_no].rx_curr_put_info.
2228                             block_index++;
2229                         if (mac_control->rings[ring_no].rx_curr_put_info.
2230                             block_index == mac_control->rings[ring_no].
2231                                         block_count)
2232                                 mac_control->rings[ring_no].rx_curr_put_info.
2233                                         block_index = 0;
2234                         block_no = mac_control->rings[ring_no].
2235                                         rx_curr_put_info.block_index;
2236                         if (off == rxd_count[nic->rxd_mode])
2237                                 off = 0;
2238                         mac_control->rings[ring_no].rx_curr_put_info.
2239                                 offset = off;
2240                         rxdp = mac_control->rings[ring_no].
2241                                 rx_blocks[block_no].block_virt_addr;
2242                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2243                                   dev->name, rxdp);
2244                 }
2245                 if(!napi) {
2246                         spin_lock_irqsave(&nic->put_lock, flags);
2247                         mac_control->rings[ring_no].put_pos =
2248                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2249                         spin_unlock_irqrestore(&nic->put_lock, flags);
2250                 } else {
2251                         mac_control->rings[ring_no].put_pos =
2252                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2253                 }
2254                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2255                         ((nic->rxd_mode >= RXD_MODE_3A) &&
2256                                 (rxdp->Control_2 & BIT(0)))) {
2257                         mac_control->rings[ring_no].rx_curr_put_info.
2258                                         offset = off;
2259                         goto end;
2260                 }
2261                 /* calculate size of skb based on ring mode */
2262                 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2263                                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2264                 if (nic->rxd_mode == RXD_MODE_1)
2265                         size += NET_IP_ALIGN;
2266                 else if (nic->rxd_mode == RXD_MODE_3B)
2267                         size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2268                 else
2269                         size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
2270
2271                 /* allocate skb */
2272                 skb = dev_alloc_skb(size);
2273                 if(!skb) {
2274                         DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2275                         DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
2276                         if (first_rxdp) {
2277                                 wmb();
2278                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2279                         }
2280                         return -ENOMEM ;
2281                 }
2282                 if (nic->rxd_mode == RXD_MODE_1) {
2283                         /* 1 buffer mode - normal operation mode */
2284                         memset(rxdp, 0, sizeof(struct RxD1));
2285                         skb_reserve(skb, NET_IP_ALIGN);
2286                         ((struct RxD1*)rxdp)->Buffer0_ptr = pci_map_single
2287                             (nic->pdev, skb->data, size - NET_IP_ALIGN,
2288                                 PCI_DMA_FROMDEVICE);
2289                         rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2290
2291                 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2292                         /*
2293                          * 2 or 3 buffer mode -
2294                          * Both 2 buffer mode and 3 buffer mode provides 128
2295                          * byte aligned receive buffers.
2296                          *
2297                          * 3 buffer mode provides header separation where in
2298                          * skb->data will have L3/L4 headers where as
2299                          * skb_shinfo(skb)->frag_list will have the L4 data
2300                          * payload
2301                          */
2302
2303                         memset(rxdp, 0, sizeof(struct RxD3));
2304                         ba = &mac_control->rings[ring_no].ba[block_no][off];
2305                         skb_reserve(skb, BUF0_LEN);
2306                         tmp = (u64)(unsigned long) skb->data;
2307                         tmp += ALIGN_SIZE;
2308                         tmp &= ~ALIGN_SIZE;
2309                         skb->data = (void *) (unsigned long)tmp;
2310                         skb->tail = (void *) (unsigned long)tmp;
2311
2312                         if (!(((struct RxD3*)rxdp)->Buffer0_ptr))
2313                                 ((struct RxD3*)rxdp)->Buffer0_ptr =
2314                                    pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2315                                            PCI_DMA_FROMDEVICE);
2316                         else
2317                                 pci_dma_sync_single_for_device(nic->pdev,
2318                                     (dma_addr_t) ((struct RxD3*)rxdp)->Buffer0_ptr,
2319                                     BUF0_LEN, PCI_DMA_FROMDEVICE);
2320                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2321                         if (nic->rxd_mode == RXD_MODE_3B) {
2322                                 /* Two buffer mode */
2323
2324                                 /*
2325                                  * Buffer2 will have L3/L4 header plus
2326                                  * L4 payload
2327                                  */
2328                                 ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single
2329                                 (nic->pdev, skb->data, dev->mtu + 4,
2330                                                 PCI_DMA_FROMDEVICE);
2331
2332                                 /* Buffer-1 will be dummy buffer. Not used */
2333                                 if (!(((struct RxD3*)rxdp)->Buffer1_ptr)) {
2334                                         ((struct RxD3*)rxdp)->Buffer1_ptr =
2335                                                 pci_map_single(nic->pdev,
2336                                                 ba->ba_1, BUF1_LEN,
2337                                                 PCI_DMA_FROMDEVICE);
2338                                 }
2339                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2340                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2341                                                                 (dev->mtu + 4);
2342                         } else {
2343                                 /* 3 buffer mode */
2344                                 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2345                                         dev_kfree_skb_irq(skb);
2346                                         if (first_rxdp) {
2347                                                 wmb();
2348                                                 first_rxdp->Control_1 |=
2349                                                         RXD_OWN_XENA;
2350                                         }
2351                                         return -ENOMEM ;
2352                                 }
2353                         }
2354                         rxdp->Control_2 |= BIT(0);
2355                 }
2356                 rxdp->Host_Control = (unsigned long) (skb);
2357                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2358                         rxdp->Control_1 |= RXD_OWN_XENA;
2359                 off++;
2360                 if (off == (rxd_count[nic->rxd_mode] + 1))
2361                         off = 0;
2362                 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2363
2364                 rxdp->Control_2 |= SET_RXD_MARKER;
2365                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2366                         if (first_rxdp) {
2367                                 wmb();
2368                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2369                         }
2370                         first_rxdp = rxdp;
2371                 }
2372                 atomic_inc(&nic->rx_bufs_left[ring_no]);
2373                 alloc_tab++;
2374         }
2375
2376       end:
2377         /* Transfer ownership of first descriptor to adapter just before
2378          * exiting. Before that, use memory barrier so that ownership
2379          * and other fields are seen by adapter correctly.
2380          */
2381         if (first_rxdp) {
2382                 wmb();
2383                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2384         }
2385
2386         return SUCCESS;
2387 }
2388
2389 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2390 {
2391         struct net_device *dev = sp->dev;
2392         int j;
2393         struct sk_buff *skb;
2394         struct RxD_t *rxdp;
2395         struct mac_info *mac_control;
2396         struct buffAdd *ba;
2397
2398         mac_control = &sp->mac_control;
2399         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2400                 rxdp = mac_control->rings[ring_no].
2401                                 rx_blocks[blk].rxds[j].virt_addr;
2402                 skb = (struct sk_buff *)
2403                         ((unsigned long) rxdp->Host_Control);
2404                 if (!skb) {
2405                         continue;
2406                 }
2407                 if (sp->rxd_mode == RXD_MODE_1) {
2408                         pci_unmap_single(sp->pdev, (dma_addr_t)
2409                                  ((struct RxD1*)rxdp)->Buffer0_ptr,
2410                                  dev->mtu +
2411                                  HEADER_ETHERNET_II_802_3_SIZE
2412                                  + HEADER_802_2_SIZE +
2413                                  HEADER_SNAP_SIZE,
2414                                  PCI_DMA_FROMDEVICE);
2415                         memset(rxdp, 0, sizeof(struct RxD1));
2416                 } else if(sp->rxd_mode == RXD_MODE_3B) {
2417                         ba = &mac_control->rings[ring_no].
2418                                 ba[blk][j];
2419                         pci_unmap_single(sp->pdev, (dma_addr_t)
2420                                  ((struct RxD3*)rxdp)->Buffer0_ptr,
2421                                  BUF0_LEN,
2422                                  PCI_DMA_FROMDEVICE);
2423                         pci_unmap_single(sp->pdev, (dma_addr_t)
2424                                  ((struct RxD3*)rxdp)->Buffer1_ptr,
2425                                  BUF1_LEN,
2426                                  PCI_DMA_FROMDEVICE);
2427                         pci_unmap_single(sp->pdev, (dma_addr_t)
2428                                  ((struct RxD3*)rxdp)->Buffer2_ptr,
2429                                  dev->mtu + 4,
2430                                  PCI_DMA_FROMDEVICE);
2431                         memset(rxdp, 0, sizeof(struct RxD3));
2432                 } else {
2433                         pci_unmap_single(sp->pdev, (dma_addr_t)
2434                                 ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
2435                                 PCI_DMA_FROMDEVICE);
2436                         pci_unmap_single(sp->pdev, (dma_addr_t)
2437                                 ((struct RxD3*)rxdp)->Buffer1_ptr,
2438                                 l3l4hdr_size + 4,
2439                                 PCI_DMA_FROMDEVICE);
2440                         pci_unmap_single(sp->pdev, (dma_addr_t)
2441                                 ((struct RxD3*)rxdp)->Buffer2_ptr, dev->mtu,
2442                                 PCI_DMA_FROMDEVICE);
2443                         memset(rxdp, 0, sizeof(struct RxD3));
2444                 }
2445                 dev_kfree_skb(skb);
2446                 atomic_dec(&sp->rx_bufs_left[ring_no]);
2447         }
2448 }
2449
2450 /**
2451  *  free_rx_buffers - Frees all Rx buffers
2452  *  @sp: device private variable.
2453  *  Description:
2454  *  This function will free all Rx buffers allocated by host.
2455  *  Return Value:
2456  *  NONE.
2457  */
2458
2459 static void free_rx_buffers(struct s2io_nic *sp)
2460 {
2461         struct net_device *dev = sp->dev;
2462         int i, blk = 0, buf_cnt = 0;
2463         struct mac_info *mac_control;
2464         struct config_param *config;
2465
2466         mac_control = &sp->mac_control;
2467         config = &sp->config;
2468
2469         for (i = 0; i < config->rx_ring_num; i++) {
2470                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2471                         free_rxd_blk(sp,i,blk);
2472
2473                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2474                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2475                 mac_control->rings[i].rx_curr_put_info.offset = 0;
2476                 mac_control->rings[i].rx_curr_get_info.offset = 0;
2477                 atomic_set(&sp->rx_bufs_left[i], 0);
2478                 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2479                           dev->name, buf_cnt, i);
2480         }
2481 }
2482
2483 /**
2484  * s2io_poll - Rx interrupt handler for NAPI support
2485  * @dev : pointer to the device structure.
2486  * @budget : The number of packets that were budgeted to be processed
2487  * during  one pass through the 'Poll" function.
2488  * Description:
2489  * Comes into picture only if NAPI support has been incorporated. It does
2490  * the same thing that rx_intr_handler does, but not in a interrupt context
2491  * also It will process only a given number of packets.
2492  * Return value:
2493  * 0 on success and 1 if there are No Rx packets to be processed.
2494  */
2495
2496 static int s2io_poll(struct net_device *dev, int *budget)
2497 {
2498         struct s2io_nic *nic = dev->priv;
2499         int pkt_cnt = 0, org_pkts_to_process;
2500         struct mac_info *mac_control;
2501         struct config_param *config;
2502         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2503         int i;
2504
2505         atomic_inc(&nic->isr_cnt);
2506         mac_control = &nic->mac_control;
2507         config = &nic->config;
2508
2509         nic->pkts_to_process = *budget;
2510         if (nic->pkts_to_process > dev->quota)
2511                 nic->pkts_to_process = dev->quota;
2512         org_pkts_to_process = nic->pkts_to_process;
2513
2514         writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2515         readl(&bar0->rx_traffic_int);
2516
2517         for (i = 0; i < config->rx_ring_num; i++) {
2518                 rx_intr_handler(&mac_control->rings[i]);
2519                 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2520                 if (!nic->pkts_to_process) {
2521                         /* Quota for the current iteration has been met */
2522                         goto no_rx;
2523                 }
2524         }
2525         if (!pkt_cnt)
2526                 pkt_cnt = 1;
2527
2528         dev->quota -= pkt_cnt;
2529         *budget -= pkt_cnt;
2530         netif_rx_complete(dev);
2531
2532         for (i = 0; i < config->rx_ring_num; i++) {
2533                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2534                         DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2535                         DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2536                         break;
2537                 }
2538         }
2539         /* Re enable the Rx interrupts. */
2540         writeq(0x0, &bar0->rx_traffic_mask);
2541         readl(&bar0->rx_traffic_mask);
2542         atomic_dec(&nic->isr_cnt);
2543         return 0;
2544
2545 no_rx:
2546         dev->quota -= pkt_cnt;
2547         *budget -= pkt_cnt;
2548
2549         for (i = 0; i < config->rx_ring_num; i++) {
2550                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2551                         DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2552                         DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2553                         break;
2554                 }
2555         }
2556         atomic_dec(&nic->isr_cnt);
2557         return 1;
2558 }
2559
2560 #ifdef CONFIG_NET_POLL_CONTROLLER
2561 /**
2562  * s2io_netpoll - netpoll event handler entry point
2563  * @dev : pointer to the device structure.
2564  * Description:
2565  *      This function will be called by upper layer to check for events on the
2566  * interface in situations where interrupts are disabled. It is used for
2567  * specific in-kernel networking tasks, such as remote consoles and kernel
2568  * debugging over the network (example netdump in RedHat).
2569  */
2570 static void s2io_netpoll(struct net_device *dev)
2571 {
2572         struct s2io_nic *nic = dev->priv;
2573         struct mac_info *mac_control;
2574         struct config_param *config;
2575         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2576         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2577         int i;
2578
2579         disable_irq(dev->irq);
2580
2581         atomic_inc(&nic->isr_cnt);
2582         mac_control = &nic->mac_control;
2583         config = &nic->config;
2584
2585         writeq(val64, &bar0->rx_traffic_int);
2586         writeq(val64, &bar0->tx_traffic_int);
2587
2588         /* we need to free up the transmitted skbufs or else netpoll will
2589          * run out of skbs and will fail and eventually netpoll application such
2590          * as netdump will fail.
2591          */
2592         for (i = 0; i < config->tx_fifo_num; i++)
2593                 tx_intr_handler(&mac_control->fifos[i]);
2594
2595         /* check for received packet and indicate up to network */
2596         for (i = 0; i < config->rx_ring_num; i++)
2597                 rx_intr_handler(&mac_control->rings[i]);
2598
2599         for (i = 0; i < config->rx_ring_num; i++) {
2600                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2601                         DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2602                         DBG_PRINT(ERR_DBG, " in Rx Netpoll!!\n");
2603                         break;
2604                 }
2605         }
2606         atomic_dec(&nic->isr_cnt);
2607         enable_irq(dev->irq);
2608         return;
2609 }
2610 #endif
2611
2612 /**
2613  *  rx_intr_handler - Rx interrupt handler
2614  *  @nic: device private variable.
2615  *  Description:
2616  *  If the interrupt is because of a received frame or if the
2617  *  receive ring contains fresh as yet un-processed frames,this function is
2618  *  called. It picks out the RxD at which place the last Rx processing had
2619  *  stopped and sends the skb to the OSM's Rx handler and then increments
2620  *  the offset.
2621  *  Return Value:
2622  *  NONE.
2623  */
2624 static void rx_intr_handler(struct ring_info *ring_data)
2625 {
2626         struct s2io_nic *nic = ring_data->nic;
2627         struct net_device *dev = (struct net_device *) nic->dev;
2628         int get_block, put_block, put_offset;
2629         struct rx_curr_get_info get_info, put_info;
2630         struct RxD_t *rxdp;
2631         struct sk_buff *skb;
2632         int pkt_cnt = 0;
2633         int i;
2634
2635         spin_lock(&nic->rx_lock);
2636         if (atomic_read(&nic->card_state) == CARD_DOWN) {
2637                 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2638                           __FUNCTION__, dev->name);
2639                 spin_unlock(&nic->rx_lock);
2640                 return;
2641         }
2642
2643         get_info = ring_data->rx_curr_get_info;
2644         get_block = get_info.block_index;
2645         memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2646         put_block = put_info.block_index;
2647         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2648         if (!napi) {
2649                 spin_lock(&nic->put_lock);
2650                 put_offset = ring_data->put_pos;
2651                 spin_unlock(&nic->put_lock);
2652         } else
2653                 put_offset = ring_data->put_pos;
2654
2655         while (RXD_IS_UP2DT(rxdp)) {
2656                 /*
2657                  * If your are next to put index then it's
2658                  * FIFO full condition
2659                  */
2660                 if ((get_block == put_block) &&
2661                     (get_info.offset + 1) == put_info.offset) {
2662                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2663                         break;
2664                 }
2665                 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2666                 if (skb == NULL) {
2667                         DBG_PRINT(ERR_DBG, "%s: The skb is ",
2668                                   dev->name);
2669                         DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2670                         spin_unlock(&nic->rx_lock);
2671                         return;
2672                 }
2673                 if (nic->rxd_mode == RXD_MODE_1) {
2674                         pci_unmap_single(nic->pdev, (dma_addr_t)
2675                                  ((struct RxD1*)rxdp)->Buffer0_ptr,
2676                                  dev->mtu +
2677                                  HEADER_ETHERNET_II_802_3_SIZE +
2678                                  HEADER_802_2_SIZE +
2679                                  HEADER_SNAP_SIZE,
2680                                  PCI_DMA_FROMDEVICE);
2681                 } else if (nic->rxd_mode == RXD_MODE_3B) {
2682                         pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2683                                  ((struct RxD3*)rxdp)->Buffer0_ptr,
2684                                  BUF0_LEN, PCI_DMA_FROMDEVICE);
2685                         pci_unmap_single(nic->pdev, (dma_addr_t)
2686                                  ((struct RxD3*)rxdp)->Buffer2_ptr,
2687                                  dev->mtu + 4,
2688                                  PCI_DMA_FROMDEVICE);
2689                 } else {
2690                         pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2691                                          ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
2692                                          PCI_DMA_FROMDEVICE);
2693                         pci_unmap_single(nic->pdev, (dma_addr_t)
2694                                          ((struct RxD3*)rxdp)->Buffer1_ptr,
2695                                          l3l4hdr_size + 4,
2696                                          PCI_DMA_FROMDEVICE);
2697                         pci_unmap_single(nic->pdev, (dma_addr_t)
2698                                          ((struct RxD3*)rxdp)->Buffer2_ptr,
2699                                          dev->mtu, PCI_DMA_FROMDEVICE);
2700                 }
2701                 prefetch(skb->data);
2702                 rx_osm_handler(ring_data, rxdp);
2703                 get_info.offset++;
2704                 ring_data->rx_curr_get_info.offset = get_info.offset;
2705                 rxdp = ring_data->rx_blocks[get_block].
2706                                 rxds[get_info.offset].virt_addr;
2707                 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2708                         get_info.offset = 0;
2709                         ring_data->rx_curr_get_info.offset = get_info.offset;
2710                         get_block++;
2711                         if (get_block == ring_data->block_count)
2712                                 get_block = 0;
2713                         ring_data->rx_curr_get_info.block_index = get_block;
2714                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2715                 }
2716
2717                 nic->pkts_to_process -= 1;
2718                 if ((napi) && (!nic->pkts_to_process))
2719                         break;
2720                 pkt_cnt++;
2721                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2722                         break;
2723         }
2724         if (nic->lro) {
2725                 /* Clear all LRO sessions before exiting */
2726                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2727                         struct lro *lro = &nic->lro0_n[i];
2728                         if (lro->in_use) {
2729                                 update_L3L4_header(nic, lro);
2730                                 queue_rx_frame(lro->parent);
2731                                 clear_lro_session(lro);
2732                         }
2733                 }
2734         }
2735
2736         spin_unlock(&nic->rx_lock);
2737 }
2738
2739 /**
2740  *  tx_intr_handler - Transmit interrupt handler
2741  *  @nic : device private variable
2742  *  Description:
2743  *  If an interrupt was raised to indicate DMA complete of the
2744  *  Tx packet, this function is called. It identifies the last TxD
2745  *  whose buffer was freed and frees all skbs whose data have already
2746  *  DMA'ed into the NICs internal memory.
2747  *  Return Value:
2748  *  NONE
2749  */
2750
2751 static void tx_intr_handler(struct fifo_info *fifo_data)
2752 {
2753         struct s2io_nic *nic = fifo_data->nic;
2754         struct net_device *dev = (struct net_device *) nic->dev;
2755         struct tx_curr_get_info get_info, put_info;
2756         struct sk_buff *skb;
2757         struct TxD *txdlp;
2758
2759         get_info = fifo_data->tx_curr_get_info;
2760         memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2761         txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2762             list_virt_addr;
2763         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2764                (get_info.offset != put_info.offset) &&
2765                (txdlp->Host_Control)) {
2766                 /* Check for TxD errors */
2767                 if (txdlp->Control_1 & TXD_T_CODE) {
2768                         unsigned long long err;
2769                         err = txdlp->Control_1 & TXD_T_CODE;
2770                         if (err & 0x1) {
2771                                 nic->mac_control.stats_info->sw_stat.
2772                                                 parity_err_cnt++;
2773                         }
2774                         if ((err >> 48) == 0xA) {
2775                                 DBG_PRINT(TX_DBG, "TxD returned due \
2776                                                 to loss of link\n");
2777                         }
2778                         else {
2779                                 DBG_PRINT(ERR_DBG, "***TxD error %llx\n", err);
2780                         }
2781                 }
2782
2783                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2784                 if (skb == NULL) {
2785                         DBG_PRINT(ERR_DBG, "%s: Null skb ",
2786                         __FUNCTION__);
2787                         DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2788                         return;
2789                 }
2790
2791                 /* Updating the statistics block */
2792                 nic->stats.tx_bytes += skb->len;
2793                 dev_kfree_skb_irq(skb);
2794
2795                 get_info.offset++;
2796                 if (get_info.offset == get_info.fifo_len + 1)
2797                         get_info.offset = 0;
2798                 txdlp = (struct TxD *) fifo_data->list_info
2799                     [get_info.offset].list_virt_addr;
2800                 fifo_data->tx_curr_get_info.offset =
2801                     get_info.offset;
2802         }
2803
2804         spin_lock(&nic->tx_lock);
2805         if (netif_queue_stopped(dev))
2806                 netif_wake_queue(dev);
2807         spin_unlock(&nic->tx_lock);
2808 }
2809
2810 /**
2811  *  s2io_mdio_write - Function to write in to MDIO registers
2812  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2813  *  @addr     : address value
2814  *  @value    : data value
2815  *  @dev      : pointer to net_device structure
2816  *  Description:
2817  *  This function is used to write values to the MDIO registers
2818  *  NONE
2819  */
2820 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2821 {
2822         u64 val64 = 0x0;
2823         struct s2io_nic *sp = dev->priv;
2824         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2825
2826         //address transaction
2827         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2828                         | MDIO_MMD_DEV_ADDR(mmd_type)
2829                         | MDIO_MMS_PRT_ADDR(0x0);
2830         writeq(val64, &bar0->mdio_control);
2831         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2832         writeq(val64, &bar0->mdio_control);
2833         udelay(100);
2834
2835         //Data transaction
2836         val64 = 0x0;
2837         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2838                         | MDIO_MMD_DEV_ADDR(mmd_type)
2839                         | MDIO_MMS_PRT_ADDR(0x0)
2840                         | MDIO_MDIO_DATA(value)
2841                         | MDIO_OP(MDIO_OP_WRITE_TRANS);
2842         writeq(val64, &bar0->mdio_control);
2843         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2844         writeq(val64, &bar0->mdio_control);
2845         udelay(100);
2846
2847         val64 = 0x0;
2848         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2849         | MDIO_MMD_DEV_ADDR(mmd_type)
2850         | MDIO_MMS_PRT_ADDR(0x0)
2851         | MDIO_OP(MDIO_OP_READ_TRANS);
2852         writeq(val64, &bar0->mdio_control);
2853         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2854         writeq(val64, &bar0->mdio_control);
2855         udelay(100);
2856
2857 }
2858
2859 /**
2860  *  s2io_mdio_read - Function to write in to MDIO registers
2861  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2862  *  @addr     : address value
2863  *  @dev      : pointer to net_device structure
2864  *  Description:
2865  *  This function is used to read values to the MDIO registers
2866  *  NONE
2867  */
2868 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2869 {
2870         u64 val64 = 0x0;
2871         u64 rval64 = 0x0;
2872         struct s2io_nic *sp = dev->priv;
2873         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2874
2875         /* address transaction */
2876         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2877                         | MDIO_MMD_DEV_ADDR(mmd_type)
2878                         | MDIO_MMS_PRT_ADDR(0x0);
2879         writeq(val64, &bar0->mdio_control);
2880         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2881         writeq(val64, &bar0->mdio_control);
2882         udelay(100);
2883
2884         /* Data transaction */
2885         val64 = 0x0;
2886         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2887                         | MDIO_MMD_DEV_ADDR(mmd_type)
2888                         | MDIO_MMS_PRT_ADDR(0x0)
2889                         | MDIO_OP(MDIO_OP_READ_TRANS);
2890         writeq(val64, &bar0->mdio_control);
2891         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2892         writeq(val64, &bar0->mdio_control);
2893         udelay(100);
2894
2895         /* Read the value from regs */
2896         rval64 = readq(&bar0->mdio_control);
2897         rval64 = rval64 & 0xFFFF0000;
2898         rval64 = rval64 >> 16;
2899         return rval64;
2900 }
2901 /**
2902  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
2903  *  @counter      : couter value to be updated
2904  *  @flag         : flag to indicate the status
2905  *  @type         : counter type
2906  *  Description:
2907  *  This function is to check the status of the xpak counters value
2908  *  NONE
2909  */
2910
2911 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
2912 {
2913         u64 mask = 0x3;
2914         u64 val64;
2915         int i;
2916         for(i = 0; i <index; i++)
2917                 mask = mask << 0x2;
2918
2919         if(flag > 0)
2920         {
2921                 *counter = *counter + 1;
2922                 val64 = *regs_stat & mask;
2923                 val64 = val64 >> (index * 0x2);
2924                 val64 = val64 + 1;
2925                 if(val64 == 3)
2926                 {
2927                         switch(type)
2928                         {
2929                         case 1:
2930                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2931                                           "service. Excessive temperatures may "
2932                                           "result in premature transceiver "
2933                                           "failure \n");
2934                         break;
2935                         case 2:
2936                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2937                                           "service Excessive bias currents may "
2938                                           "indicate imminent laser diode "
2939                                           "failure \n");
2940                         break;
2941                         case 3:
2942                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2943                                           "service Excessive laser output "
2944                                           "power may saturate far-end "
2945                                           "receiver\n");
2946                         break;
2947                         default:
2948                                 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
2949                                           "type \n");
2950                         }
2951                         val64 = 0x0;
2952                 }
2953                 val64 = val64 << (index * 0x2);
2954                 *regs_stat = (*regs_stat & (~mask)) | (val64);
2955
2956         } else {
2957                 *regs_stat = *regs_stat & (~mask);
2958         }
2959 }
2960
2961 /**
2962  *  s2io_updt_xpak_counter - Function to update the xpak counters
2963  *  @dev         : pointer to net_device struct
2964  *  Description:
2965  *  This function is to upate the status of the xpak counters value
2966  *  NONE
2967  */
2968 static void s2io_updt_xpak_counter(struct net_device *dev)
2969 {
2970         u16 flag  = 0x0;
2971         u16 type  = 0x0;
2972         u16 val16 = 0x0;
2973         u64 val64 = 0x0;
2974         u64 addr  = 0x0;
2975
2976         struct s2io_nic *sp = dev->priv;
2977         struct stat_block *stat_info = sp->mac_control.stats_info;
2978
2979         /* Check the communication with the MDIO slave */
2980         addr = 0x0000;
2981         val64 = 0x0;
2982         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
2983         if((val64 == 0xFFFF) || (val64 == 0x0000))
2984         {
2985                 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
2986                           "Returned %llx\n", (unsigned long long)val64);
2987                 return;
2988         }
2989
2990         /* Check for the expecte value of 2040 at PMA address 0x0000 */
2991         if(val64 != 0x2040)
2992         {
2993                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
2994                 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
2995                           (unsigned long long)val64);
2996                 return;
2997         }
2998
2999         /* Loading the DOM register to MDIO register */
3000         addr = 0xA100;
3001         s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3002         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3003
3004         /* Reading the Alarm flags */
3005         addr = 0xA070;
3006         val64 = 0x0;
3007         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3008
3009         flag = CHECKBIT(val64, 0x7);
3010         type = 1;
3011         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3012                                 &stat_info->xpak_stat.xpak_regs_stat,
3013                                 0x0, flag, type);
3014
3015         if(CHECKBIT(val64, 0x6))
3016                 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3017
3018         flag = CHECKBIT(val64, 0x3);
3019         type = 2;
3020         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3021                                 &stat_info->xpak_stat.xpak_regs_stat,
3022                                 0x2, flag, type);
3023
3024         if(CHECKBIT(val64, 0x2))
3025                 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3026
3027         flag = CHECKBIT(val64, 0x1);
3028         type = 3;
3029         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3030                                 &stat_info->xpak_stat.xpak_regs_stat,
3031                                 0x4, flag, type);
3032
3033         if(CHECKBIT(val64, 0x0))
3034                 stat_info->xpak_stat.alarm_laser_output_power_low++;
3035
3036         /* Reading the Warning flags */
3037         addr = 0xA074;
3038         val64 = 0x0;
3039         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3040
3041         if(CHECKBIT(val64, 0x7))
3042                 stat_info->xpak_stat.warn_transceiver_temp_high++;
3043
3044         if(CHECKBIT(val64, 0x6))
3045                 stat_info->xpak_stat.warn_transceiver_temp_low++;
3046
3047         if(CHECKBIT(val64, 0x3))
3048                 stat_info->xpak_stat.warn_laser_bias_current_high++;
3049
3050         if(CHECKBIT(val64, 0x2))
3051                 stat_info->xpak_stat.warn_laser_bias_current_low++;
3052
3053         if(CHECKBIT(val64, 0x1))
3054                 stat_info->xpak_stat.warn_laser_output_power_high++;
3055
3056         if(CHECKBIT(val64, 0x0))
3057                 stat_info->xpak_stat.warn_laser_output_power_low++;
3058 }
3059
3060 /**
3061  *  alarm_intr_handler - Alarm Interrrupt handler
3062  *  @nic: device private variable
3063  *  Description: If the interrupt was neither because of Rx packet or Tx
3064  *  complete, this function is called. If the interrupt was to indicate
3065  *  a loss of link, the OSM link status handler is invoked for any other
3066  *  alarm interrupt the block that raised the interrupt is displayed
3067  *  and a H/W reset is issued.
3068  *  Return Value:
3069  *  NONE
3070 */
3071
3072 static void alarm_intr_handler(struct s2io_nic *nic)
3073 {
3074         struct net_device *dev = (struct net_device *) nic->dev;
3075         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3076         register u64 val64 = 0, err_reg = 0;
3077         u64 cnt;
3078         int i;
3079         if (atomic_read(&nic->card_state) == CARD_DOWN)
3080                 return;
3081         nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3082         /* Handling the XPAK counters update */
3083         if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3084                 /* waiting for an hour */
3085                 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3086         } else {
3087                 s2io_updt_xpak_counter(dev);
3088                 /* reset the count to zero */
3089                 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3090         }
3091
3092         /* Handling link status change error Intr */
3093         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3094                 err_reg = readq(&bar0->mac_rmac_err_reg);
3095                 writeq(err_reg, &bar0->mac_rmac_err_reg);
3096                 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3097                         schedule_work(&nic->set_link_task);
3098                 }
3099         }
3100
3101         /* Handling Ecc errors */
3102         val64 = readq(&bar0->mc_err_reg);
3103         writeq(val64, &bar0->mc_err_reg);
3104         if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3105                 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
3106                         nic->mac_control.stats_info->sw_stat.
3107                                 double_ecc_errs++;
3108                         DBG_PRINT(INIT_DBG, "%s: Device indicates ",
3109                                   dev->name);
3110                         DBG_PRINT(INIT_DBG, "double ECC error!!\n");
3111                         if (nic->device_type != XFRAME_II_DEVICE) {
3112                                 /* Reset XframeI only if critical error */
3113                                 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3114                                              MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3115                                         netif_stop_queue(dev);
3116                                         schedule_work(&nic->rst_timer_task);
3117                                         nic->mac_control.stats_info->sw_stat.
3118                                                         soft_reset_cnt++;
3119                                 }
3120                         }
3121                 } else {
3122                         nic->mac_control.stats_info->sw_stat.
3123                                 single_ecc_errs++;
3124                 }
3125         }
3126
3127         /* In case of a serious error, the device will be Reset. */
3128         val64 = readq(&bar0->serr_source);
3129         if (val64 & SERR_SOURCE_ANY) {
3130                 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
3131                 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
3132                 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
3133                           (unsigned long long)val64);
3134                 netif_stop_queue(dev);
3135                 schedule_work(&nic->rst_timer_task);
3136                 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3137         }
3138
3139         /*
3140          * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3141          * Error occurs, the adapter will be recycled by disabling the
3142          * adapter enable bit and enabling it again after the device
3143          * becomes Quiescent.
3144          */
3145         val64 = readq(&bar0->pcc_err_reg);
3146         writeq(val64, &bar0->pcc_err_reg);
3147         if (val64 & PCC_FB_ECC_DB_ERR) {
3148                 u64 ac = readq(&bar0->adapter_control);
3149                 ac &= ~(ADAPTER_CNTL_EN);
3150                 writeq(ac, &bar0->adapter_control);
3151                 ac = readq(&bar0->adapter_control);
3152                 schedule_work(&nic->set_link_task);
3153         }
3154         /* Check for data parity error */
3155         val64 = readq(&bar0->pic_int_status);
3156         if (val64 & PIC_INT_GPIO) {
3157                 val64 = readq(&bar0->gpio_int_reg);
3158                 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3159                         nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3160                         schedule_work(&nic->rst_timer_task);
3161                         nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3162                 }
3163         }
3164
3165         /* Check for ring full counter */
3166         if (nic->device_type & XFRAME_II_DEVICE) {
3167                 val64 = readq(&bar0->ring_bump_counter1);
3168                 for (i=0; i<4; i++) {
3169                         cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3170                         cnt >>= 64 - ((i+1)*16);
3171                         nic->mac_control.stats_info->sw_stat.ring_full_cnt
3172                                 += cnt;
3173                 }
3174
3175                 val64 = readq(&bar0->ring_bump_counter2);
3176                 for (i=0; i<4; i++) {
3177                         cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3178                         cnt >>= 64 - ((i+1)*16);
3179                         nic->mac_control.stats_info->sw_stat.ring_full_cnt
3180                                 += cnt;
3181                 }
3182         }
3183
3184         /* Other type of interrupts are not being handled now,  TODO */
3185 }
3186
3187 /**
3188  *  wait_for_cmd_complete - waits for a command to complete.
3189  *  @sp : private member of the device structure, which is a pointer to the
3190  *  s2io_nic structure.
3191  *  Description: Function that waits for a command to Write into RMAC
3192  *  ADDR DATA registers to be completed and returns either success or
3193  *  error depending on whether the command was complete or not.
3194  *  Return value:
3195  *   SUCCESS on success and FAILURE on failure.
3196  */
3197
3198 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit)
3199 {
3200         int ret = FAILURE, cnt = 0;
3201         u64 val64;
3202
3203         while (TRUE) {
3204                 val64 = readq(addr);
3205                 if (!(val64 & busy_bit)) {
3206                         ret = SUCCESS;
3207                         break;
3208                 }
3209
3210                 if(in_interrupt())
3211                         mdelay(50);
3212                 else
3213                         msleep(50);
3214
3215                 if (cnt++ > 10)
3216                         break;
3217         }
3218         return ret;
3219 }
3220 /*
3221  * check_pci_device_id - Checks if the device id is supported
3222  * @id : device id
3223  * Description: Function to check if the pci device id is supported by driver.
3224  * Return value: Actual device id if supported else PCI_ANY_ID
3225  */
3226 static u16 check_pci_device_id(u16 id)
3227 {
3228         switch (id) {
3229         case PCI_DEVICE_ID_HERC_WIN:
3230         case PCI_DEVICE_ID_HERC_UNI:
3231                 return XFRAME_II_DEVICE;
3232         case PCI_DEVICE_ID_S2IO_UNI:
3233         case PCI_DEVICE_ID_S2IO_WIN:
3234                 return XFRAME_I_DEVICE;
3235         default:
3236                 return PCI_ANY_ID;
3237         }
3238 }
3239
3240 /**
3241  *  s2io_reset - Resets the card.
3242  *  @sp : private member of the device structure.
3243  *  Description: Function to Reset the card. This function then also
3244  *  restores the previously saved PCI configuration space registers as
3245  *  the card reset also resets the configuration space.
3246  *  Return value:
3247  *  void.
3248  */
3249
3250 static void s2io_reset(struct s2io_nic * sp)
3251 {
3252         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3253         u64 val64;
3254         u16 subid, pci_cmd;
3255         int i;
3256         u16 val16;
3257         DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3258                         __FUNCTION__, sp->dev->name);
3259
3260         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3261         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3262
3263         if (sp->device_type == XFRAME_II_DEVICE) {
3264                 int ret;
3265                 ret = pci_set_power_state(sp->pdev, 3);
3266                 if (!ret)
3267                         ret = pci_set_power_state(sp->pdev, 0);
3268                 else {
3269                         DBG_PRINT(ERR_DBG,"%s PME based SW_Reset failed!\n",
3270                                         __FUNCTION__);
3271                         goto old_way;
3272                 }
3273                 msleep(20);
3274                 goto new_way;
3275         }
3276 old_way:
3277         val64 = SW_RESET_ALL;
3278         writeq(val64, &bar0->sw_reset);
3279 new_way:
3280         if (strstr(sp->product_name, "CX4")) {
3281                 msleep(750);
3282         }
3283         msleep(250);
3284         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3285
3286                 /* Restore the PCI state saved during initialization. */
3287                 pci_restore_state(sp->pdev);
3288                 pci_read_config_word(sp->pdev, 0x2, &val16);
3289                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3290                         break;
3291                 msleep(200);
3292         }
3293
3294         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3295                 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3296         }
3297
3298         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3299
3300         s2io_init_pci(sp);
3301
3302         /* Set swapper to enable I/O register access */
3303         s2io_set_swapper(sp);
3304
3305         /* Restore the MSIX table entries from local variables */
3306         restore_xmsi_data(sp);
3307
3308         /* Clear certain PCI/PCI-X fields after reset */
3309         if (sp->device_type == XFRAME_II_DEVICE) {
3310                 /* Clear "detected parity error" bit */
3311                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3312
3313                 /* Clearing PCIX Ecc status register */
3314                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3315
3316                 /* Clearing PCI_STATUS error reflected here */
3317                 writeq(BIT(62), &bar0->txpic_int_reg);
3318         }
3319
3320         /* Reset device statistics maintained by OS */
3321         memset(&sp->stats, 0, sizeof (struct net_device_stats));
3322
3323         /* SXE-002: Configure link and activity LED to turn it off */
3324         subid = sp->pdev->subsystem_device;
3325         if (((subid & 0xFF) >= 0x07) &&
3326             (sp->device_type == XFRAME_I_DEVICE)) {
3327                 val64 = readq(&bar0->gpio_control);
3328                 val64 |= 0x0000800000000000ULL;
3329                 writeq(val64, &bar0->gpio_control);
3330                 val64 = 0x0411040400000000ULL;
3331                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3332         }
3333
3334         /*
3335          * Clear spurious ECC interrupts that would have occured on
3336          * XFRAME II cards after reset.
3337          */
3338         if (sp->device_type == XFRAME_II_DEVICE) {
3339                 val64 = readq(&bar0->pcc_err_reg);
3340                 writeq(val64, &bar0->pcc_err_reg);
3341         }
3342
3343         sp->device_enabled_once = FALSE;
3344 }
3345
3346 /**
3347  *  s2io_set_swapper - to set the swapper controle on the card
3348  *  @sp : private member of the device structure,
3349  *  pointer to the s2io_nic structure.
3350  *  Description: Function to set the swapper control on the card
3351  *  correctly depending on the 'endianness' of the system.
3352  *  Return value:
3353  *  SUCCESS on success and FAILURE on failure.
3354  */
3355
3356 static int s2io_set_swapper(struct s2io_nic * sp)
3357 {
3358         struct net_device *dev = sp->dev;
3359         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3360         u64 val64, valt, valr;
3361
3362         /*
3363          * Set proper endian settings and verify the same by reading
3364          * the PIF Feed-back register.
3365          */
3366
3367         val64 = readq(&bar0->pif_rd_swapper_fb);
3368         if (val64 != 0x0123456789ABCDEFULL) {
3369                 int i = 0;
3370                 u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
3371                                 0x8100008181000081ULL,  /* FE=1, SE=0 */
3372                                 0x4200004242000042ULL,  /* FE=0, SE=1 */
3373                                 0};                     /* FE=0, SE=0 */
3374
3375                 while(i<4) {
3376                         writeq(value[i], &bar0->swapper_ctrl);
3377                         val64 = readq(&bar0->pif_rd_swapper_fb);
3378                         if (val64 == 0x0123456789ABCDEFULL)
3379                                 break;
3380                         i++;
3381                 }
3382                 if (i == 4) {
3383                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3384                                 dev->name);
3385                         DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3386                                 (unsigned long long) val64);
3387                         return FAILURE;
3388                 }
3389                 valr = value[i];
3390         } else {
3391                 valr = readq(&bar0->swapper_ctrl);
3392         }
3393
3394         valt = 0x0123456789ABCDEFULL;
3395         writeq(valt, &bar0->xmsi_address);
3396         val64 = readq(&bar0->xmsi_address);
3397
3398         if(val64 != valt) {
3399                 int i = 0;
3400                 u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3401                                 0x0081810000818100ULL,  /* FE=1, SE=0 */
3402                                 0x0042420000424200ULL,  /* FE=0, SE=1 */
3403                                 0};                     /* FE=0, SE=0 */
3404
3405                 while(i<4) {
3406                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3407                         writeq(valt, &bar0->xmsi_address);
3408                         val64 = readq(&bar0->xmsi_address);
3409                         if(val64 == valt)
3410                                 break;
3411                         i++;
3412                 }
3413                 if(i == 4) {
3414                         unsigned long long x = val64;
3415                         DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3416                         DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3417                         return FAILURE;
3418                 }
3419         }
3420         val64 = readq(&bar0->swapper_ctrl);
3421         val64 &= 0xFFFF000000000000ULL;
3422
3423 #ifdef  __BIG_ENDIAN
3424         /*
3425          * The device by default set to a big endian format, so a
3426          * big endian driver need not set anything.
3427          */
3428         val64 |= (SWAPPER_CTRL_TXP_FE |
3429                  SWAPPER_CTRL_TXP_SE |
3430                  SWAPPER_CTRL_TXD_R_FE |
3431                  SWAPPER_CTRL_TXD_W_FE |
3432                  SWAPPER_CTRL_TXF_R_FE |
3433                  SWAPPER_CTRL_RXD_R_FE |
3434                  SWAPPER_CTRL_RXD_W_FE |
3435                  SWAPPER_CTRL_RXF_W_FE |
3436                  SWAPPER_CTRL_XMSI_FE |
3437                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3438         if (sp->intr_type == INTA)
3439                 val64 |= SWAPPER_CTRL_XMSI_SE;
3440         writeq(val64, &bar0->swapper_ctrl);
3441 #else
3442         /*
3443          * Initially we enable all bits to make it accessible by the
3444          * driver, then we selectively enable only those bits that
3445          * we want to set.
3446          */
3447         val64 |= (SWAPPER_CTRL_TXP_FE |
3448                  SWAPPER_CTRL_TXP_SE |
3449                  SWAPPER_CTRL_TXD_R_FE |
3450                  SWAPPER_CTRL_TXD_R_SE |
3451                  SWAPPER_CTRL_TXD_W_FE |
3452                  SWAPPER_CTRL_TXD_W_SE |
3453                  SWAPPER_CTRL_TXF_R_FE |
3454                  SWAPPER_CTRL_RXD_R_FE |
3455                  SWAPPER_CTRL_RXD_R_SE |
3456                  SWAPPER_CTRL_RXD_W_FE |
3457                  SWAPPER_CTRL_RXD_W_SE |
3458                  SWAPPER_CTRL_RXF_W_FE |
3459                  SWAPPER_CTRL_XMSI_FE |
3460                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3461         if (sp->intr_type == INTA)
3462                 val64 |= SWAPPER_CTRL_XMSI_SE;
3463         writeq(val64, &bar0->swapper_ctrl);
3464 #endif
3465         val64 = readq(&bar0->swapper_ctrl);
3466
3467         /*
3468          * Verifying if endian settings are accurate by reading a
3469          * feedback register.
3470          */
3471         val64 = readq(&bar0->pif_rd_swapper_fb);
3472         if (val64 != 0x0123456789ABCDEFULL) {
3473                 /* Endian settings are incorrect, calls for another dekko. */
3474                 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3475                           dev->name);
3476                 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3477                           (unsigned long long) val64);
3478                 return FAILURE;
3479         }
3480
3481         return SUCCESS;
3482 }
3483
3484 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3485 {
3486         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3487         u64 val64;
3488         int ret = 0, cnt = 0;
3489
3490         do {
3491                 val64 = readq(&bar0->xmsi_access);
3492                 if (!(val64 & BIT(15)))
3493                         break;
3494                 mdelay(1);
3495                 cnt++;
3496         } while(cnt < 5);
3497         if (cnt == 5) {
3498                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3499                 ret = 1;
3500         }
3501
3502         return ret;
3503 }
3504
3505 static void restore_xmsi_data(struct s2io_nic *nic)
3506 {
3507         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3508         u64 val64;
3509         int i;
3510
3511         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3512                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3513                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3514                 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3515                 writeq(val64, &bar0->xmsi_access);
3516                 if (wait_for_msix_trans(nic, i)) {
3517                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3518                         continue;
3519                 }
3520         }
3521 }
3522
3523 static void store_xmsi_data(struct s2io_nic *nic)
3524 {
3525         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3526         u64 val64, addr, data;
3527         int i;
3528
3529         /* Store and display */
3530         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3531                 val64 = (BIT(15) | vBIT(i, 26, 6));
3532                 writeq(val64, &bar0->xmsi_access);
3533                 if (wait_for_msix_trans(nic, i)) {
3534                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3535                         continue;
3536                 }
3537                 addr = readq(&bar0->xmsi_address);
3538                 data = readq(&bar0->xmsi_data);
3539                 if (addr && data) {
3540                         nic->msix_info[i].addr = addr;
3541                         nic->msix_info[i].data = data;
3542                 }
3543         }
3544 }
3545
3546 int s2io_enable_msi(struct s2io_nic *nic)
3547 {
3548         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3549         u16 msi_ctrl, msg_val;
3550         struct config_param *config = &nic->config;
3551         struct net_device *dev = nic->dev;
3552         u64 val64, tx_mat, rx_mat;
3553         int i, err;
3554
3555         val64 = readq(&bar0->pic_control);
3556         val64 &= ~BIT(1);
3557         writeq(val64, &bar0->pic_control);
3558
3559         err = pci_enable_msi(nic->pdev);
3560         if (err) {
3561                 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3562                           nic->dev->name);
3563                 return err;
3564         }
3565
3566         /*
3567          * Enable MSI and use MSI-1 in stead of the standard MSI-0
3568          * for interrupt handling.
3569          */
3570         pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3571         msg_val ^= 0x1;
3572         pci_write_config_word(nic->pdev, 0x4c, msg_val);
3573         pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3574
3575         pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3576         msi_ctrl |= 0x10;
3577         pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3578
3579         /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3580         tx_mat = readq(&bar0->tx_mat0_n[0]);
3581         for (i=0; i<config->tx_fifo_num; i++) {
3582                 tx_mat |= TX_MAT_SET(i, 1);
3583         }
3584         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3585
3586         rx_mat = readq(&bar0->rx_mat);
3587         for (i=0; i<config->rx_ring_num; i++) {
3588                 rx_mat |= RX_MAT_SET(i, 1);
3589         }
3590         writeq(rx_mat, &bar0->rx_mat);
3591
3592         dev->irq = nic->pdev->irq;
3593         return 0;
3594 }
3595
3596 static int s2io_enable_msi_x(struct s2io_nic *nic)
3597 {
3598         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3599         u64 tx_mat, rx_mat;
3600         u16 msi_control; /* Temp variable */
3601         int ret, i, j, msix_indx = 1;
3602
3603         nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3604                                GFP_KERNEL);
3605         if (nic->entries == NULL) {
3606                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3607                 return -ENOMEM;
3608         }
3609         memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3610
3611         nic->s2io_entries =
3612                 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3613                                    GFP_KERNEL);
3614         if (nic->s2io_entries == NULL) {
3615                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3616                 kfree(nic->entries);
3617                 return -ENOMEM;
3618         }
3619         memset(nic->s2io_entries, 0,
3620                MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3621
3622         for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3623                 nic->entries[i].entry = i;
3624                 nic->s2io_entries[i].entry = i;
3625                 nic->s2io_entries[i].arg = NULL;
3626                 nic->s2io_entries[i].in_use = 0;
3627         }
3628
3629         tx_mat = readq(&bar0->tx_mat0_n[0]);
3630         for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3631                 tx_mat |= TX_MAT_SET(i, msix_indx);
3632                 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3633                 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3634                 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3635         }
3636         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3637
3638         if (!nic->config.bimodal) {
3639                 rx_mat = readq(&bar0->rx_mat);
3640                 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3641                         rx_mat |= RX_MAT_SET(j, msix_indx);
3642                         nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3643                         nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3644                         nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3645                 }
3646                 writeq(rx_mat, &bar0->rx_mat);
3647         } else {
3648                 tx_mat = readq(&bar0->tx_mat0_n[7]);
3649                 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3650                         tx_mat |= TX_MAT_SET(i, msix_indx);
3651                         nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3652                         nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3653                         nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3654                 }
3655                 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3656         }
3657
3658         nic->avail_msix_vectors = 0;
3659         ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3660         /* We fail init if error or we get less vectors than min required */
3661         if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3662                 nic->avail_msix_vectors = ret;
3663                 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3664         }
3665         if (ret) {
3666                 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3667                 kfree(nic->entries);
3668                 kfree(nic->s2io_entries);
3669                 nic->entries = NULL;
3670                 nic->s2io_entries = NULL;
3671                 nic->avail_msix_vectors = 0;
3672                 return -ENOMEM;
3673         }
3674         if (!nic->avail_msix_vectors)
3675                 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3676
3677         /*
3678          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3679          * in the herc NIC. (Temp change, needs to be removed later)
3680          */
3681         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3682         msi_control |= 0x1; /* Enable MSI */
3683         pci_write_config_word(nic->pdev, 0x42, msi_control);
3684
3685         return 0;
3686 }
3687
3688 /* ********************************************************* *
3689  * Functions defined below concern the OS part of the driver *
3690  * ********************************************************* */
3691
3692 /**
3693  *  s2io_open - open entry point of the driver
3694  *  @dev : pointer to the device structure.
3695  *  Description:
3696  *  This function is the open entry point of the driver. It mainly calls a
3697  *  function to allocate Rx buffers and inserts them into the buffer
3698  *  descriptors and then enables the Rx part of the NIC.
3699  *  Return value:
3700  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3701  *   file on failure.
3702  */
3703
3704 static int s2io_open(struct net_device *dev)
3705 {
3706         struct s2io_nic *sp = dev->priv;
3707         int err = 0;
3708
3709         /*
3710          * Make sure you have link off by default every time
3711          * Nic is initialized
3712          */
3713         netif_carrier_off(dev);
3714         sp->last_link_state = 0;
3715
3716         /* Initialize H/W and enable interrupts */
3717         err = s2io_card_up(sp);
3718         if (err) {
3719                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3720                           dev->name);
3721                 goto hw_init_failed;
3722         }
3723
3724         if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3725                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3726                 s2io_card_down(sp);
3727                 err = -ENODEV;
3728                 goto hw_init_failed;
3729         }
3730
3731         netif_start_queue(dev);
3732         return 0;
3733
3734 hw_init_failed:
3735         if (sp->intr_type == MSI_X) {
3736                 if (sp->entries)
3737                         kfree(sp->entries);
3738                 if (sp->s2io_entries)
3739                         kfree(sp->s2io_entries);
3740         }
3741         return err;
3742 }
3743
3744 /**
3745  *  s2io_close -close entry point of the driver
3746  *  @dev : device pointer.
3747  *  Description:
3748  *  This is the stop entry point of the driver. It needs to undo exactly
3749  *  whatever was done by the open entry point,thus it's usually referred to
3750  *  as the close function.Among other things this function mainly stops the
3751  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3752  *  Return value:
3753  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3754  *  file on failure.
3755  */
3756
3757 static int s2io_close(struct net_device *dev)
3758 {
3759         struct s2io_nic *sp = dev->priv;
3760
3761         netif_stop_queue(dev);
3762         /* Reset card, kill tasklet and free Tx and Rx buffers. */
3763         s2io_card_down(sp);
3764
3765         sp->device_close_flag = TRUE;   /* Device is shut down. */
3766         return 0;
3767 }
3768
3769 /**
3770  *  s2io_xmit - Tx entry point of te driver
3771  *  @skb : the socket buffer containing the Tx data.
3772  *  @dev : device pointer.
3773  *  Description :
3774  *  This function is the Tx entry point of the driver. S2IO NIC supports
3775  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
3776  *  NOTE: when device cant queue the pkt,just the trans_start variable will
3777  *  not be upadted.
3778  *  Return value:
3779  *  0 on success & 1 on failure.
3780  */
3781
3782 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3783 {
3784         struct s2io_nic *sp = dev->priv;
3785         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3786         register u64 val64;
3787         struct TxD *txdp;
3788         struct TxFIFO_element __iomem *tx_fifo;
3789         unsigned long flags;
3790         u16 vlan_tag = 0;
3791         int vlan_priority = 0;
3792         struct mac_info *mac_control;
3793         struct config_param *config;
3794         int offload_type;
3795
3796         mac_control = &sp->mac_control;
3797         config = &sp->config;
3798
3799         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3800         spin_lock_irqsave(&sp->tx_lock, flags);
3801         if (atomic_read(&sp->card_state) == CARD_DOWN) {
3802                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3803                           dev->name);
3804                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3805                 dev_kfree_skb(skb);
3806                 return 0;
3807         }
3808
3809         queue = 0;
3810
3811         /* Get Fifo number to Transmit based on vlan priority */
3812         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3813                 vlan_tag = vlan_tx_tag_get(skb);
3814                 vlan_priority = vlan_tag >> 13;
3815                 queue = config->fifo_mapping[vlan_priority];
3816         }
3817
3818         put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3819         get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3820         txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
3821                 list_virt_addr;
3822
3823         queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3824         /* Avoid "put" pointer going beyond "get" pointer */
3825         if (txdp->Host_Control ||
3826                    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3827                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3828                 netif_stop_queue(dev);
3829                 dev_kfree_skb(skb);
3830                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3831                 return 0;
3832         }
3833
3834         /* A buffer with no data will be dropped */
3835         if (!skb->len) {
3836                 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3837                 dev_kfree_skb(skb);
3838                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3839                 return 0;
3840         }
3841
3842         offload_type = s2io_offload_type(skb);
3843         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3844                 txdp->Control_1 |= TXD_TCP_LSO_EN;
3845                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
3846         }
3847         if (skb->ip_summed == CHECKSUM_PARTIAL) {
3848                 txdp->Control_2 |=
3849                     (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3850                      TXD_TX_CKO_UDP_EN);
3851         }
3852         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3853         txdp->Control_1 |= TXD_LIST_OWN_XENA;
3854         txdp->Control_2 |= config->tx_intr_type;
3855
3856         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3857                 txdp->Control_2 |= TXD_VLAN_ENABLE;
3858                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3859         }
3860
3861         frg_len = skb->len - skb->data_len;
3862         if (offload_type == SKB_GSO_UDP) {
3863                 int ufo_size;
3864
3865                 ufo_size = s2io_udp_mss(skb);
3866                 ufo_size &= ~7;
3867                 txdp->Control_1 |= TXD_UFO_EN;
3868                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
3869                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
3870 #ifdef __BIG_ENDIAN
3871                 sp->ufo_in_band_v[put_off] =
3872                                 (u64)skb_shinfo(skb)->ip6_frag_id;
3873 #else
3874                 sp->ufo_in_band_v[put_off] =
3875                                 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
3876 #endif
3877                 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
3878                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
3879                                         sp->ufo_in_band_v,
3880                                         sizeof(u64), PCI_DMA_TODEVICE);
3881                 txdp++;
3882         }
3883
3884         txdp->Buffer_Pointer = pci_map_single
3885             (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3886         txdp->Host_Control = (unsigned long) skb;
3887         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
3888         if (offload_type == SKB_GSO_UDP)
3889                 txdp->Control_1 |= TXD_UFO_EN;
3890
3891         frg_cnt = skb_shinfo(skb)->nr_frags;
3892         /* For fragmented SKB. */
3893         for (i = 0; i < frg_cnt; i++) {
3894                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3895                 /* A '0' length fragment will be ignored */
3896                 if (!frag->size)
3897                         continue;
3898                 txdp++;
3899                 txdp->Buffer_Pointer = (u64) pci_map_page
3900                     (sp->pdev, frag->page, frag->page_offset,
3901                      frag->size, PCI_DMA_TODEVICE);
3902                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
3903                 if (offload_type == SKB_GSO_UDP)
3904                         txdp->Control_1 |= TXD_UFO_EN;
3905         }
3906         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
3907
3908         if (offload_type == SKB_GSO_UDP)
3909                 frg_cnt++; /* as Txd0 was used for inband header */
3910
3911         tx_fifo = mac_control->tx_FIFO_start[queue];
3912         val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
3913         writeq(val64, &tx_fifo->TxDL_Pointer);
3914
3915         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
3916                  TX_FIFO_LAST_LIST);
3917         if (offload_type)
3918                 val64 |= TX_FIFO_SPECIAL_FUNC;
3919
3920         writeq(val64, &tx_fifo->List_Control);
3921
3922         mmiowb();
3923
3924         put_off++;
3925         if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
3926                 put_off = 0;
3927         mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
3928
3929         /* Avoid "put" pointer going beyond "get" pointer */
3930         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3931                 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
3932                 DBG_PRINT(TX_DBG,
3933                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
3934                           put_off, get_off);
3935                 netif_stop_queue(dev);
3936         }
3937
3938         dev->trans_start = jiffies;
3939         spin_unlock_irqrestore(&sp->tx_lock, flags);
3940
3941         return 0;
3942 }
3943
3944 static void
3945 s2io_alarm_handle(unsigned long data)
3946 {
3947         struct s2io_nic *sp = (struct s2io_nic *)data;
3948
3949         alarm_intr_handler(sp);
3950         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
3951 }
3952
3953 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
3954 {
3955         int rxb_size, level;
3956
3957         if (!sp->lro) {
3958                 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
3959                 level = rx_buffer_level(sp, rxb_size, rng_n);
3960
3961                 if ((level == PANIC) && (!TASKLET_IN_USE)) {
3962                         int ret;
3963                         DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
3964                         DBG_PRINT(INTR_DBG, "PANIC levels\n");
3965                         if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
3966                                 DBG_PRINT(ERR_DBG, "Out of memory in %s",
3967                                           __FUNCTION__);
3968                                 clear_bit(0, (&sp->tasklet_status));
3969                                 return -1;
3970                         }
3971                         clear_bit(0, (&sp->tasklet_status));
3972                 } else if (level == LOW)
3973                         tasklet_schedule(&sp->task);
3974
3975         } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
3976                         DBG_PRINT(ERR_DBG, "%s:Out of memory", sp->dev->name);
3977                         DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
3978         }
3979         return 0;
3980 }
3981
3982 static irqreturn_t s2io_msi_handle(int irq, void *dev_id)
3983 {
3984         struct net_device *dev = (struct net_device *) dev_id;
3985         struct s2io_nic *sp = dev->priv;
3986         int i;
3987         struct mac_info *mac_control;
3988         struct config_param *config;
3989
3990         atomic_inc(&sp->isr_cnt);
3991         mac_control = &sp->mac_control;
3992         config = &sp->config;
3993         DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
3994
3995         /* If Intr is because of Rx Traffic */
3996         for (i = 0; i < config->rx_ring_num; i++)
3997                 rx_intr_handler(&mac_control->rings[i]);
3998
3999         /* If Intr is because of Tx Traffic */
4000         for (i = 0; i < config->tx_fifo_num; i++)
4001                 tx_intr_handler(&mac_control->fifos[i]);
4002
4003         /*
4004          * If the Rx buffer count is below the panic threshold then
4005          * reallocate the buffers from the interrupt handler itself,
4006          * else schedule a tasklet to reallocate the buffers.
4007          */
4008         for (i = 0; i < config->rx_ring_num; i++)
4009                 s2io_chk_rx_buffers(sp, i);
4010
4011         atomic_dec(&sp->isr_cnt);
4012         return IRQ_HANDLED;
4013 }
4014
4015 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4016 {
4017         struct ring_info *ring = (struct ring_info *)dev_id;
4018         struct s2io_nic *sp = ring->nic;
4019
4020         atomic_inc(&sp->isr_cnt);
4021
4022         rx_intr_handler(ring);
4023         s2io_chk_rx_buffers(sp, ring->ring_no);
4024
4025         atomic_dec(&sp->isr_cnt);
4026         return IRQ_HANDLED;
4027 }
4028
4029 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4030 {
4031         struct fifo_info *fifo = (struct fifo_info *)dev_id;
4032         struct s2io_nic *sp = fifo->nic;
4033
4034         atomic_inc(&sp->isr_cnt);
4035         tx_intr_handler(fifo);
4036         atomic_dec(&sp->isr_cnt);
4037         return IRQ_HANDLED;
4038 }
4039 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4040 {
4041         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4042         u64 val64;
4043
4044         val64 = readq(&bar0->pic_int_status);
4045         if (val64 & PIC_INT_GPIO) {
4046                 val64 = readq(&bar0->gpio_int_reg);
4047                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4048                     (val64 & GPIO_INT_REG_LINK_UP)) {
4049                         /*
4050                          * This is unstable state so clear both up/down
4051                          * interrupt and adapter to re-evaluate the link state.
4052                          */
4053                         val64 |=  GPIO_INT_REG_LINK_DOWN;
4054                         val64 |= GPIO_INT_REG_LINK_UP;
4055                         writeq(val64, &bar0->gpio_int_reg);
4056                         val64 = readq(&bar0->gpio_int_mask);
4057                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4058                                    GPIO_INT_MASK_LINK_DOWN);
4059                         writeq(val64, &bar0->gpio_int_mask);
4060                 }
4061                 else if (val64 & GPIO_INT_REG_LINK_UP) {
4062                         val64 = readq(&bar0->adapter_status);
4063                                 /* Enable Adapter */
4064                         val64 = readq(&bar0->adapter_control);
4065                         val64 |= ADAPTER_CNTL_EN;
4066                         writeq(val64, &bar0->adapter_control);
4067                         val64 |= ADAPTER_LED_ON;
4068                         writeq(val64, &bar0->adapter_control);
4069                         if (!sp->device_enabled_once)
4070                                 sp->device_enabled_once = 1;
4071
4072                         s2io_link(sp, LINK_UP);
4073                         /*
4074                          * unmask link down interrupt and mask link-up
4075                          * intr
4076                          */
4077                         val64 = readq(&bar0->gpio_int_mask);
4078                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4079                         val64 |= GPIO_INT_MASK_LINK_UP;
4080                         writeq(val64, &bar0->gpio_int_mask);
4081
4082                 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4083                         val64 = readq(&bar0->adapter_status);
4084                         s2io_link(sp, LINK_DOWN);
4085                         /* Link is down so unmaks link up interrupt */
4086                         val64 = readq(&bar0->gpio_int_mask);
4087                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4088                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4089                         writeq(val64, &bar0->gpio_int_mask);
4090                 }
4091         }
4092         val64 = readq(&bar0->gpio_int_mask);
4093 }
4094
4095 /**
4096  *  s2io_isr - ISR handler of the device .
4097  *  @irq: the irq of the device.
4098  *  @dev_id: a void pointer to the dev structure of the NIC.
4099  *  Description:  This function is the ISR handler of the device. It
4100  *  identifies the reason for the interrupt and calls the relevant
4101  *  service routines. As a contongency measure, this ISR allocates the
4102  *  recv buffers, if their numbers are below the panic value which is
4103  *  presently set to 25% of the original number of rcv buffers allocated.
4104  *  Return value:
4105  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4106  *   IRQ_NONE: will be returned if interrupt is not from our device
4107  */
4108 static irqreturn_t s2io_isr(int irq, void *dev_id)
4109 {
4110         struct net_device *dev = (struct net_device *) dev_id;
4111         struct s2io_nic *sp = dev->priv;
4112         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4113         int i;
4114         u64 reason = 0;
4115         struct mac_info *mac_control;
4116         struct config_param *config;
4117
4118         atomic_inc(&sp->isr_cnt);
4119         mac_control = &sp->mac_control;
4120         config = &sp->config;
4121
4122         /*
4123          * Identify the cause for interrupt and call the appropriate
4124          * interrupt handler. Causes for the interrupt could be;
4125          * 1. Rx of packet.
4126          * 2. Tx complete.
4127          * 3. Link down.
4128          * 4. Error in any functional blocks of the NIC.
4129          */
4130         reason = readq(&bar0->general_int_status);
4131
4132         if (!reason) {
4133                 /* The interrupt was not raised by us. */
4134                 atomic_dec(&sp->isr_cnt);
4135                 return IRQ_NONE;
4136         }
4137         else if (unlikely(reason == S2IO_MINUS_ONE) ) {
4138                 /* Disable device and get out */
4139                 atomic_dec(&sp->isr_cnt);
4140                 return IRQ_NONE;
4141         }
4142
4143         if (napi) {
4144                 if (reason & GEN_INTR_RXTRAFFIC) {
4145                         if ( likely ( netif_rx_schedule_prep(dev)) ) {
4146                                 __netif_rx_schedule(dev);
4147                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4148                         }
4149                         else
4150                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4151                 }
4152         } else {
4153                 /*
4154                  * Rx handler is called by default, without checking for the
4155                  * cause of interrupt.
4156                  * rx_traffic_int reg is an R1 register, writing all 1's
4157                  * will ensure that the actual interrupt causing bit get's
4158                  * cleared and hence a read can be avoided.
4159                  */
4160                 if (reason & GEN_INTR_RXTRAFFIC)
4161                         writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4162
4163                 for (i = 0; i < config->rx_ring_num; i++) {
4164                         rx_intr_handler(&mac_control->rings[i]);
4165                 }
4166         }
4167
4168         /*
4169          * tx_traffic_int reg is an R1 register, writing all 1's
4170          * will ensure that the actual interrupt causing bit get's
4171          * cleared and hence a read can be avoided.
4172          */
4173         if (reason & GEN_INTR_TXTRAFFIC)
4174                 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4175
4176         for (i = 0; i < config->tx_fifo_num; i++)
4177                 tx_intr_handler(&mac_control->fifos[i]);
4178
4179         if (reason & GEN_INTR_TXPIC)
4180                 s2io_txpic_intr_handle(sp);
4181         /*
4182          * If the Rx buffer count is below the panic threshold then
4183          * reallocate the buffers from the interrupt handler itself,
4184          * else schedule a tasklet to reallocate the buffers.
4185          */
4186         if (!napi) {
4187                 for (i = 0; i < config->rx_ring_num; i++)
4188                         s2io_chk_rx_buffers(sp, i);
4189         }
4190
4191         writeq(0, &bar0->general_int_mask);
4192         readl(&bar0->general_int_status);
4193
4194         atomic_dec(&sp->isr_cnt);
4195         return IRQ_HANDLED;
4196 }
4197
4198 /**
4199  * s2io_updt_stats -
4200  */
4201 static void s2io_updt_stats(struct s2io_nic *sp)
4202 {
4203         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4204         u64 val64;
4205         int cnt = 0;
4206
4207         if (atomic_read(&sp->card_state) == CARD_UP) {
4208                 /* Apprx 30us on a 133 MHz bus */
4209                 val64 = SET_UPDT_CLICKS(10) |
4210                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4211                 writeq(val64, &bar0->stat_cfg);
4212                 do {
4213                         udelay(100);
4214                         val64 = readq(&bar0->stat_cfg);
4215                         if (!(val64 & BIT(0)))
4216                                 break;
4217                         cnt++;
4218                         if (cnt == 5)
4219                                 break; /* Updt failed */
4220                 } while(1);
4221         } else {
4222                 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
4223         }
4224 }
4225
4226 /**
4227  *  s2io_get_stats - Updates the device statistics structure.
4228  *  @dev : pointer to the device structure.
4229  *  Description:
4230  *  This function updates the device statistics structure in the s2io_nic
4231  *  structure and returns a pointer to the same.
4232  *  Return value:
4233  *  pointer to the updated net_device_stats structure.
4234  */
4235
4236 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4237 {
4238         struct s2io_nic *sp = dev->priv;
4239         struct mac_info *mac_control;
4240         struct config_param *config;
4241
4242
4243         mac_control = &sp->mac_control;
4244         config = &sp->config;
4245
4246         /* Configure Stats for immediate updt */
4247         s2io_updt_stats(sp);
4248
4249         sp->stats.tx_packets =
4250                 le32_to_cpu(mac_control->stats_info->tmac_frms);
4251         sp->stats.tx_errors =
4252                 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4253         sp->stats.rx_errors =
4254                 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4255         sp->stats.multicast =
4256                 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4257         sp->stats.rx_length_errors =
4258                 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4259
4260         return (&sp->stats);
4261 }
4262
4263 /**
4264  *  s2io_set_multicast - entry point for multicast address enable/disable.
4265  *  @dev : pointer to the device structure
4266  *  Description:
4267  *  This function is a driver entry point which gets called by the kernel
4268  *  whenever multicast addresses must be enabled/disabled. This also gets
4269  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4270  *  determine, if multicast address must be enabled or if promiscuous mode
4271  *  is to be disabled etc.
4272  *  Return value:
4273  *  void.
4274  */
4275
4276 static void s2io_set_multicast(struct net_device *dev)
4277 {
4278         int i, j, prev_cnt;
4279         struct dev_mc_list *mclist;
4280         struct s2io_nic *sp = dev->priv;
4281         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4282         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4283             0xfeffffffffffULL;
4284         u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4285         void __iomem *add;
4286
4287         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4288                 /*  Enable all Multicast addresses */
4289                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4290                        &bar0->rmac_addr_data0_mem);
4291                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4292                        &bar0->rmac_addr_data1_mem);
4293                 val64 = RMAC_ADDR_CMD_MEM_WE |
4294                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4295                     RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4296                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4297                 /* Wait till command completes */
4298                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4299                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4300
4301                 sp->m_cast_flg = 1;
4302                 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4303         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4304                 /*  Disable all Multicast addresses */
4305                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4306                        &bar0->rmac_addr_data0_mem);
4307                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4308                        &bar0->rmac_addr_data1_mem);
4309                 val64 = RMAC_ADDR_CMD_MEM_WE |
4310                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4311                     RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4312                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4313                 /* Wait till command completes */
4314                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4315                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4316
4317                 sp->m_cast_flg = 0;
4318                 sp->all_multi_pos = 0;
4319         }
4320
4321         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4322                 /*  Put the NIC into promiscuous mode */
4323                 add = &bar0->mac_cfg;
4324                 val64 = readq(&bar0->mac_cfg);
4325                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4326
4327                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4328                 writel((u32) val64, add);
4329                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4330                 writel((u32) (val64 >> 32), (add + 4));
4331
4332                 val64 = readq(&bar0->mac_cfg);
4333                 sp->promisc_flg = 1;
4334                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4335                           dev->name);
4336         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4337                 /*  Remove the NIC from promiscuous mode */
4338                 add = &bar0->mac_cfg;
4339                 val64 = readq(&bar0->mac_cfg);
4340                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4341
4342                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4343                 writel((u32) val64, add);
4344                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4345                 writel((u32) (val64 >> 32), (add + 4));
4346
4347                 val64 = readq(&bar0->mac_cfg);
4348                 sp->promisc_flg = 0;
4349                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4350                           dev->name);
4351         }
4352
4353         /*  Update individual M_CAST address list */
4354         if ((!sp->m_cast_flg) && dev->mc_count) {
4355                 if (dev->mc_count >
4356                     (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4357                         DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4358                                   dev->name);
4359                         DBG_PRINT(ERR_DBG, "can be added, please enable ");
4360                         DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4361                         return;
4362                 }
4363
4364                 prev_cnt = sp->mc_addr_count;
4365                 sp->mc_addr_count = dev->mc_count;
4366
4367                 /* Clear out the previous list of Mc in the H/W. */
4368                 for (i = 0; i < prev_cnt; i++) {
4369                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4370                                &bar0->rmac_addr_data0_mem);
4371                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4372                                 &bar0->rmac_addr_data1_mem);
4373                         val64 = RMAC_ADDR_CMD_MEM_WE |
4374                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4375                             RMAC_ADDR_CMD_MEM_OFFSET
4376                             (MAC_MC_ADDR_START_OFFSET + i);
4377                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4378
4379                         /* Wait for command completes */
4380                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4381                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4382                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4383                                           dev->name);
4384                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4385                                 return;
4386                         }
4387                 }
4388
4389                 /* Create the new Rx filter list and update the same in H/W. */
4390                 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4391                      i++, mclist = mclist->next) {
4392                         memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4393                                ETH_ALEN);
4394                         mac_addr = 0;
4395                         for (j = 0; j < ETH_ALEN; j++) {
4396                                 mac_addr |= mclist->dmi_addr[j];
4397                                 mac_addr <<= 8;
4398                         }
4399                         mac_addr >>= 8;
4400                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4401                                &bar0->rmac_addr_data0_mem);
4402                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4403                                 &bar0->rmac_addr_data1_mem);
4404                         val64 = RMAC_ADDR_CMD_MEM_WE |
4405                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4406                             RMAC_ADDR_CMD_MEM_OFFSET
4407                             (i + MAC_MC_ADDR_START_OFFSET);
4408                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4409
4410                         /* Wait for command completes */
4411                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4412                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4413                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4414                                           dev->name);
4415                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4416                                 return;
4417                         }
4418                 }
4419         }
4420 }
4421
4422 /**
4423  *  s2io_set_mac_addr - Programs the Xframe mac address
4424  *  @dev : pointer to the device structure.
4425  *  @addr: a uchar pointer to the new mac address which is to be set.
4426  *  Description : This procedure will program the Xframe to receive
4427  *  frames with new Mac Address
4428  *  Return value: SUCCESS on success and an appropriate (-)ve integer
4429  *  as defined in errno.h file on failure.
4430  */
4431
4432 static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4433 {
4434         struct s2io_nic *sp = dev->priv;
4435         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4436         register u64 val64, mac_addr = 0;
4437         int i;
4438
4439         /*
4440          * Set the new MAC address as the new unicast filter and reflect this
4441          * change on the device address registered with the OS. It will be
4442          * at offset 0.
4443          */
4444         for (i = 0; i < ETH_ALEN; i++) {
4445                 mac_addr <<= 8;
4446                 mac_addr |= addr[i];
4447         }
4448
4449         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4450                &bar0->rmac_addr_data0_mem);
4451
4452         val64 =
4453             RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4454             RMAC_ADDR_CMD_MEM_OFFSET(0);
4455         writeq(val64, &bar0->rmac_addr_cmd_mem);
4456         /* Wait till command completes */
4457         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4458                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4459                 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4460                 return FAILURE;
4461         }
4462
4463         return SUCCESS;
4464 }
4465
4466 /**
4467  * s2io_ethtool_sset - Sets different link parameters.
4468  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
4469  * @info: pointer to the structure with parameters given by ethtool to set
4470  * link information.
4471  * Description:
4472  * The function sets different link parameters provided by the user onto
4473  * the NIC.
4474  * Return value:
4475  * 0 on success.
4476 */
4477
4478 static int s2io_ethtool_sset(struct net_device *dev,
4479                              struct ethtool_cmd *info)
4480 {
4481         struct s2io_nic *sp = dev->priv;
4482         if ((info->autoneg == AUTONEG_ENABLE) ||
4483             (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4484                 return -EINVAL;
4485         else {
4486                 s2io_close(sp->dev);
4487                 s2io_open(sp->dev);
4488         }
4489
4490         return 0;
4491 }
4492
4493 /**
4494  * s2io_ethtol_gset - Return link specific information.
4495  * @sp : private member of the device structure, pointer to the
4496  *      s2io_nic structure.
4497  * @info : pointer to the structure with parameters given by ethtool
4498  * to return link information.
4499  * Description:
4500  * Returns link specific information like speed, duplex etc.. to ethtool.
4501  * Return value :
4502  * return 0 on success.
4503  */
4504
4505 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4506 {
4507         struct s2io_nic *sp = dev->priv;
4508         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4509         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4510         info->port = PORT_FIBRE;
4511         /* info->transceiver?? TODO */
4512
4513         if (netif_carrier_ok(sp->dev)) {
4514                 info->speed = 10000;
4515                 info->duplex = DUPLEX_FULL;
4516         } else {
4517                 info->speed = -1;
4518                 info->duplex = -1;
4519         }
4520
4521         info->autoneg = AUTONEG_DISABLE;
4522         return 0;
4523 }
4524
4525 /**
4526  * s2io_ethtool_gdrvinfo - Returns driver specific information.
4527  * @sp : private member of the device structure, which is a pointer to the
4528  * s2io_nic structure.
4529  * @info : pointer to the structure with parameters given by ethtool to
4530  * return driver information.
4531  * Description:
4532  * Returns driver specefic information like name, version etc.. to ethtool.
4533  * Return value:
4534  *  void
4535  */
4536
4537 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4538                                   struct ethtool_drvinfo *info)
4539 {
4540         struct s2io_nic *sp = dev->priv;
4541
4542         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4543         strncpy(info->version, s2io_driver_version, sizeof(info->version));
4544         strncpy(info->fw_version, "", sizeof(info->fw_version));
4545         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4546         info->regdump_len = XENA_REG_SPACE;
4547         info->eedump_len = XENA_EEPROM_SPACE;
4548         info->testinfo_len = S2IO_TEST_LEN;
4549         info->n_stats = S2IO_STAT_LEN;
4550 }
4551
4552 /**
4553  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4554  *  @sp: private member of the device structure, which is a pointer to the
4555  *  s2io_nic structure.
4556  *  @regs : pointer to the structure with parameters given by ethtool for
4557  *  dumping the registers.
4558  *  @reg_space: The input argumnet into which all the registers are dumped.
4559  *  Description:
4560  *  Dumps the entire register space of xFrame NIC into the user given
4561  *  buffer area.
4562  * Return value :
4563  * void .
4564 */
4565
4566 static void s2io_ethtool_gregs(struct net_device *dev,
4567                                struct ethtool_regs *regs, void *space)
4568 {
4569         int i;
4570         u64 reg;
4571         u8 *reg_space = (u8 *) space;
4572         struct s2io_nic *sp = dev->priv;
4573
4574         regs->len = XENA_REG_SPACE;
4575         regs->version = sp->pdev->subsystem_device;
4576
4577         for (i = 0; i < regs->len; i += 8) {
4578                 reg = readq(sp->bar0 + i);
4579                 memcpy((reg_space + i), &reg, 8);
4580         }
4581 }
4582
4583 /**
4584  *  s2io_phy_id  - timer function that alternates adapter LED.
4585  *  @data : address of the private member of the device structure, which
4586  *  is a pointer to the s2io_nic structure, provided as an u32.
4587  * Description: This is actually the timer function that alternates the
4588  * adapter LED bit of the adapter control bit to set/reset every time on
4589  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4590  *  once every second.
4591 */
4592 static void s2io_phy_id(unsigned long data)
4593 {
4594         struct s2io_nic *sp = (struct s2io_nic *) data;
4595         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4596         u64 val64 = 0;
4597         u16 subid;
4598
4599         subid = sp->pdev->subsystem_device;
4600         if ((sp->device_type == XFRAME_II_DEVICE) ||
4601                    ((subid & 0xFF) >= 0x07)) {
4602                 val64 = readq(&bar0->gpio_control);
4603                 val64 ^= GPIO_CTRL_GPIO_0;
4604                 writeq(val64, &bar0->gpio_control);
4605         } else {
4606                 val64 = readq(&bar0->adapter_control);
4607                 val64 ^= ADAPTER_LED_ON;
4608                 writeq(val64, &bar0->adapter_control);
4609         }
4610
4611         mod_timer(&sp->id_timer, jiffies + HZ / 2);
4612 }
4613
4614 /**
4615  * s2io_ethtool_idnic - To physically identify the nic on the system.
4616  * @sp : private member of the device structure, which is a pointer to the
4617  * s2io_nic structure.
4618  * @id : pointer to the structure with identification parameters given by
4619  * ethtool.
4620  * Description: Used to physically identify the NIC on the system.
4621  * The Link LED will blink for a time specified by the user for
4622  * identification.
4623  * NOTE: The Link has to be Up to be able to blink the LED. Hence
4624  * identification is possible only if it's link is up.
4625  * Return value:
4626  * int , returns 0 on success
4627  */
4628
4629 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4630 {
4631         u64 val64 = 0, last_gpio_ctrl_val;
4632         struct s2io_nic *sp = dev->priv;
4633         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4634         u16 subid;
4635
4636         subid = sp->pdev->subsystem_device;
4637         last_gpio_ctrl_val = readq(&bar0->gpio_control);
4638         if ((sp->device_type == XFRAME_I_DEVICE) &&
4639                 ((subid & 0xFF) < 0x07)) {
4640                 val64 = readq(&bar0->adapter_control);
4641                 if (!(val64 & ADAPTER_CNTL_EN)) {
4642                         printk(KERN_ERR
4643                                "Adapter Link down, cannot blink LED\n");
4644                         return -EFAULT;
4645                 }
4646         }
4647         if (sp->id_timer.function == NULL) {
4648                 init_timer(&sp->id_timer);
4649                 sp->id_timer.function = s2io_phy_id;
4650                 sp->id_timer.data = (unsigned long) sp;
4651         }
4652         mod_timer(&sp->id_timer, jiffies);
4653         if (data)
4654                 msleep_interruptible(data * HZ);
4655         else
4656                 msleep_interruptible(MAX_FLICKER_TIME);
4657         del_timer_sync(&sp->id_timer);
4658
4659         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4660                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4661                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4662         }
4663
4664         return 0;
4665 }
4666
4667 /**
4668  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4669  * @sp : private member of the device structure, which is a pointer to the
4670  *      s2io_nic structure.
4671  * @ep : pointer to the structure with pause parameters given by ethtool.
4672  * Description:
4673  * Returns the Pause frame generation and reception capability of the NIC.
4674  * Return value:
4675  *  void
4676  */
4677 static void s2io_ethtool_getpause_data(struct net_device *dev,
4678                                        struct ethtool_pauseparam *ep)
4679 {
4680         u64 val64;
4681         struct s2io_nic *sp = dev->priv;
4682         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4683
4684         val64 = readq(&bar0->rmac_pause_cfg);
4685         if (val64 & RMAC_PAUSE_GEN_ENABLE)
4686                 ep->tx_pause = TRUE;
4687         if (val64 & RMAC_PAUSE_RX_ENABLE)
4688                 ep->rx_pause = TRUE;
4689         ep->autoneg = FALSE;
4690 }
4691
4692 /**
4693  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
4694  * @sp : private member of the device structure, which is a pointer to the
4695  *      s2io_nic structure.
4696  * @ep : pointer to the structure with pause parameters given by ethtool.
4697  * Description:
4698  * It can be used to set or reset Pause frame generation or reception
4699  * support of the NIC.
4700  * Return value:
4701  * int, returns 0 on Success
4702  */
4703
4704 static int s2io_ethtool_setpause_data(struct net_device *dev,
4705                                struct ethtool_pauseparam *ep)
4706 {
4707         u64 val64;
4708         struct s2io_nic *sp = dev->priv;
4709         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4710
4711         val64 = readq(&bar0->rmac_pause_cfg);
4712         if (ep->tx_pause)
4713                 val64 |= RMAC_PAUSE_GEN_ENABLE;
4714         else
4715                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4716         if (ep->rx_pause)
4717                 val64 |= RMAC_PAUSE_RX_ENABLE;
4718         else
4719                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4720         writeq(val64, &bar0->rmac_pause_cfg);
4721         return 0;
4722 }
4723
4724 /**
4725  * read_eeprom - reads 4 bytes of data from user given offset.
4726  * @sp : private member of the device structure, which is a pointer to the
4727  *      s2io_nic structure.
4728  * @off : offset at which the data must be written
4729  * @data : Its an output parameter where the data read at the given
4730  *      offset is stored.
4731  * Description:
4732  * Will read 4 bytes of data from the user given offset and return the
4733  * read data.
4734  * NOTE: Will allow to read only part of the EEPROM visible through the
4735  *   I2C bus.
4736  * Return value:
4737  *  -1 on failure and 0 on success.
4738  */
4739
4740 #define S2IO_DEV_ID             5
4741 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
4742 {
4743         int ret = -1;
4744         u32 exit_cnt = 0;
4745         u64 val64;
4746         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4747
4748         if (sp->device_type == XFRAME_I_DEVICE) {
4749                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4750                     I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4751                     I2C_CONTROL_CNTL_START;
4752                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4753
4754                 while (exit_cnt < 5) {
4755                         val64 = readq(&bar0->i2c_control);
4756                         if (I2C_CONTROL_CNTL_END(val64)) {
4757                                 *data = I2C_CONTROL_GET_DATA(val64);
4758                                 ret = 0;
4759                                 break;
4760                         }
4761                         msleep(50);
4762                         exit_cnt++;
4763                 }
4764         }
4765
4766         if (sp->device_type == XFRAME_II_DEVICE) {
4767                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4768                         SPI_CONTROL_BYTECNT(0x3) |
4769                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4770                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4771                 val64 |= SPI_CONTROL_REQ;
4772                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4773                 while (exit_cnt < 5) {
4774                         val64 = readq(&bar0->spi_control);
4775                         if (val64 & SPI_CONTROL_NACK) {
4776                                 ret = 1;
4777                                 break;
4778                         } else if (val64 & SPI_CONTROL_DONE) {
4779                                 *data = readq(&bar0->spi_data);
4780                                 *data &= 0xffffff;
4781                                 ret = 0;
4782                                 break;
4783                         }
4784                         msleep(50);
4785                         exit_cnt++;
4786                 }
4787         }
4788         return ret;
4789 }
4790
4791 /**
4792  *  write_eeprom - actually writes the relevant part of the data value.
4793  *  @sp : private member of the device structure, which is a pointer to the
4794  *       s2io_nic structure.
4795  *  @off : offset at which the data must be written
4796  *  @data : The data that is to be written
4797  *  @cnt : Number of bytes of the data that are actually to be written into
4798  *  the Eeprom. (max of 3)
4799  * Description:
4800  *  Actually writes the relevant part of the data value into the Eeprom
4801  *  through the I2C bus.
4802  * Return value:
4803  *  0 on success, -1 on failure.
4804  */
4805
4806 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
4807 {
4808         int exit_cnt = 0, ret = -1;
4809         u64 val64;
4810         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4811
4812         if (sp->device_type == XFRAME_I_DEVICE) {
4813                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4814                     I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4815                     I2C_CONTROL_CNTL_START;
4816                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4817
4818                 while (exit_cnt < 5) {
4819                         val64 = readq(&bar0->i2c_control);
4820                         if (I2C_CONTROL_CNTL_END(val64)) {
4821                                 if (!(val64 & I2C_CONTROL_NACK))
4822                                         ret = 0;
4823                                 break;
4824                         }
4825                         msleep(50);
4826                         exit_cnt++;
4827                 }
4828         }
4829
4830         if (sp->device_type == XFRAME_II_DEVICE) {
4831                 int write_cnt = (cnt == 8) ? 0 : cnt;
4832                 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4833
4834                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4835                         SPI_CONTROL_BYTECNT(write_cnt) |
4836                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4837                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4838                 val64 |= SPI_CONTROL_REQ;
4839                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4840                 while (exit_cnt < 5) {
4841                         val64 = readq(&bar0->spi_control);
4842                         if (val64 & SPI_CONTROL_NACK) {
4843                                 ret = 1;
4844                                 break;
4845                         } else if (val64 & SPI_CONTROL_DONE) {
4846                                 ret = 0;
4847                                 break;
4848                         }
4849                         msleep(50);
4850                         exit_cnt++;
4851                 }
4852         }
4853         return ret;
4854 }
4855 static void s2io_vpd_read(struct s2io_nic *nic)
4856 {
4857         u8 *vpd_data;
4858         u8 data;
4859         int i=0, cnt, fail = 0;
4860         int vpd_addr = 0x80;
4861
4862         if (nic->device_type == XFRAME_II_DEVICE) {
4863                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
4864                 vpd_addr = 0x80;
4865         }
4866         else {
4867                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
4868                 vpd_addr = 0x50;
4869         }
4870         strcpy(nic->serial_num, "NOT AVAILABLE");
4871
4872         vpd_data = kmalloc(256, GFP_KERNEL);
4873         if (!vpd_data)
4874                 return;
4875
4876         for (i = 0; i < 256; i +=4 ) {
4877                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
4878                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
4879                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
4880                 for (cnt = 0; cnt <5; cnt++) {
4881                         msleep(2);
4882                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
4883                         if (data == 0x80)
4884                                 break;
4885                 }
4886                 if (cnt >= 5) {
4887                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
4888                         fail = 1;
4889                         break;
4890                 }
4891                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
4892                                       (u32 *)&vpd_data[i]);
4893         }
4894
4895         if(!fail) {
4896                 /* read serial number of adapter */
4897                 for (cnt = 0; cnt < 256; cnt++) {
4898                 if ((vpd_data[cnt] == 'S') &&
4899                         (vpd_data[cnt+1] == 'N') &&
4900                         (vpd_data[cnt+2] < VPD_STRING_LEN)) {
4901                                 memset(nic->serial_num, 0, VPD_STRING_LEN);
4902                                 memcpy(nic->serial_num, &vpd_data[cnt + 3],
4903                                         vpd_data[cnt+2]);
4904                                 break;
4905                         }
4906                 }
4907         }
4908
4909         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
4910                 memset(nic->product_name, 0, vpd_data[1]);
4911                 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
4912         }
4913         kfree(vpd_data);
4914 }
4915
4916 /**
4917  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
4918  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
4919  *  @eeprom : pointer to the user level structure provided by ethtool,
4920  *  containing all relevant information.
4921  *  @data_buf : user defined value to be written into Eeprom.
4922  *  Description: Reads the values stored in the Eeprom at given offset
4923  *  for a given length. Stores these values int the input argument data
4924  *  buffer 'data_buf' and returns these to the caller (ethtool.)
4925  *  Return value:
4926  *  int  0 on success
4927  */
4928
4929 static int s2io_ethtool_geeprom(struct net_device *dev,
4930                          struct ethtool_eeprom *eeprom, u8 * data_buf)
4931 {
4932         u32 i, valid;
4933         u64 data;
4934         struct s2io_nic *sp = dev->priv;
4935
4936         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
4937
4938         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
4939                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
4940
4941         for (i = 0; i < eeprom->len; i += 4) {
4942                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
4943                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
4944                         return -EFAULT;
4945                 }
4946                 valid = INV(data);
4947                 memcpy((data_buf + i), &valid, 4);
4948         }
4949         return 0;
4950 }
4951
4952 /**
4953  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
4954  *  @sp : private member of the device structure, which is a pointer to the
4955  *  s2io_nic structure.
4956  *  @eeprom : pointer to the user level structure provided by ethtool,
4957  *  containing all relevant information.
4958  *  @data_buf ; user defined value to be written into Eeprom.
4959  *  Description:
4960  *  Tries to write the user provided value in the Eeprom, at the offset
4961  *  given by the user.
4962  *  Return value:
4963  *  0 on success, -EFAULT on failure.
4964  */
4965
4966 static int s2io_ethtool_seeprom(struct net_device *dev,
4967                                 struct ethtool_eeprom *eeprom,
4968                                 u8 * data_buf)
4969 {
4970         int len = eeprom->len, cnt = 0;
4971         u64 valid = 0, data;
4972         struct s2io_nic *sp = dev->priv;
4973
4974         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
4975                 DBG_PRINT(ERR_DBG,
4976                           "ETHTOOL_WRITE_EEPROM Err: Magic value ");
4977                 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
4978                           eeprom->magic);
4979                 return -EFAULT;
4980         }
4981
4982         while (len) {
4983                 data = (u32) data_buf[cnt] & 0x000000FF;
4984                 if (data) {
4985                         valid = (u32) (data << 24);
4986                 } else
4987                         valid = data;
4988
4989                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
4990                         DBG_PRINT(ERR_DBG,
4991                                   "ETHTOOL_WRITE_EEPROM Err: Cannot ");
4992                         DBG_PRINT(ERR_DBG,
4993                                   "write into the specified offset\n");
4994                         return -EFAULT;
4995                 }
4996                 cnt++;
4997                 len--;
4998         }
4999
5000         return 0;
5001 }
5002
5003 /**
5004  * s2io_register_test - reads and writes into all clock domains.
5005  * @sp : private member of the device structure, which is a pointer to the
5006  * s2io_nic structure.
5007  * @data : variable that returns the result of each of the test conducted b
5008  * by the driver.
5009  * Description:
5010  * Read and write into all clock domains. The NIC has 3 clock domains,
5011  * see that registers in all the three regions are accessible.
5012  * Return value:
5013  * 0 on success.
5014  */
5015
5016 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5017 {
5018         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5019         u64 val64 = 0, exp_val;
5020         int fail = 0;
5021
5022         val64 = readq(&bar0->pif_rd_swapper_fb);
5023         if (val64 != 0x123456789abcdefULL) {
5024                 fail = 1;
5025                 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5026         }
5027
5028         val64 = readq(&bar0->rmac_pause_cfg);
5029         if (val64 != 0xc000ffff00000000ULL) {
5030                 fail = 1;
5031                 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5032         }
5033
5034         val64 = readq(&bar0->rx_queue_cfg);
5035         if (sp->device_type == XFRAME_II_DEVICE)
5036                 exp_val = 0x0404040404040404ULL;
5037         else
5038                 exp_val = 0x0808080808080808ULL;
5039         if (val64 != exp_val) {
5040                 fail = 1;
5041                 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5042         }
5043
5044         val64 = readq(&bar0->xgxs_efifo_cfg);
5045         if (val64 != 0x000000001923141EULL) {
5046                 fail = 1;
5047                 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5048         }
5049
5050         val64 = 0x5A5A5A5A5A5A5A5AULL;
5051         writeq(val64, &bar0->xmsi_data);
5052         val64 = readq(&bar0->xmsi_data);
5053         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5054                 fail = 1;
5055                 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5056         }
5057
5058         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5059         writeq(val64, &bar0->xmsi_data);
5060         val64 = readq(&bar0->xmsi_data);
5061         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5062                 fail = 1;
5063                 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5064         }
5065
5066         *data = fail;
5067         return fail;
5068 }
5069
5070 /**
5071  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5072  * @sp : private member of the device structure, which is a pointer to the
5073  * s2io_nic structure.
5074  * @data:variable that returns the result of each of the test conducted by
5075  * the driver.
5076  * Description:
5077  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5078  * register.
5079  * Return value:
5080  * 0 on success.
5081  */
5082
5083 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5084 {
5085         int fail = 0;
5086         u64 ret_data, org_4F0, org_7F0;
5087         u8 saved_4F0 = 0, saved_7F0 = 0;
5088         struct net_device *dev = sp->dev;
5089
5090         /* Test Write Error at offset 0 */
5091         /* Note that SPI interface allows write access to all areas
5092          * of EEPROM. Hence doing all negative testing only for Xframe I.
5093          */
5094         if (sp->device_type == XFRAME_I_DEVICE)
5095                 if (!write_eeprom(sp, 0, 0, 3))
5096                         fail = 1;
5097
5098         /* Save current values at offsets 0x4F0 and 0x7F0 */
5099         if (!read_eeprom(sp, 0x4F0, &org_4F0))
5100                 saved_4F0 = 1;
5101         if (!read_eeprom(sp, 0x7F0, &org_7F0))
5102                 saved_7F0 = 1;
5103
5104         /* Test Write at offset 4f0 */
5105         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5106                 fail = 1;
5107         if (read_eeprom(sp, 0x4F0, &ret_data))
5108                 fail = 1;
5109
5110         if (ret_data != 0x012345) {
5111                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5112                         "Data written %llx Data read %llx\n",
5113                         dev->name, (unsigned long long)0x12345,
5114                         (unsigned long long)ret_data);
5115                 fail = 1;
5116         }
5117
5118         /* Reset the EEPROM data go FFFF */
5119         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5120
5121         /* Test Write Request Error at offset 0x7c */
5122         if (sp->device_type == XFRAME_I_DEVICE)
5123                 if (!write_eeprom(sp, 0x07C, 0, 3))
5124                         fail = 1;
5125
5126         /* Test Write Request at offset 0x7f0 */
5127         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5128                 fail = 1;
5129         if (read_eeprom(sp, 0x7F0, &ret_data))
5130                 fail = 1;
5131
5132         if (ret_data != 0x012345) {
5133                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5134                         "Data written %llx Data read %llx\n",
5135                         dev->name, (unsigned long long)0x12345,
5136                         (unsigned long long)ret_data);
5137                 fail = 1;
5138         }
5139
5140         /* Reset the EEPROM data go FFFF */
5141         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5142
5143         if (sp->device_type == XFRAME_I_DEVICE) {
5144                 /* Test Write Error at offset 0x80 */
5145                 if (!write_eeprom(sp, 0x080, 0, 3))
5146                         fail = 1;
5147
5148                 /* Test Write Error at offset 0xfc */
5149                 if (!write_eeprom(sp, 0x0FC, 0, 3))
5150                         fail = 1;
5151
5152                 /* Test Write Error at offset 0x100 */
5153                 if (!write_eeprom(sp, 0x100, 0, 3))
5154                         fail = 1;
5155
5156                 /* Test Write Error at offset 4ec */
5157                 if (!write_eeprom(sp, 0x4EC, 0, 3))
5158                         fail = 1;
5159         }
5160
5161         /* Restore values at offsets 0x4F0 and 0x7F0 */
5162         if (saved_4F0)
5163                 write_eeprom(sp, 0x4F0, org_4F0, 3);
5164         if (saved_7F0)
5165                 write_eeprom(sp, 0x7F0, org_7F0, 3);
5166
5167         *data = fail;
5168         return fail;
5169 }
5170
5171 /**
5172  * s2io_bist_test - invokes the MemBist test of the card .
5173  * @sp : private member of the device structure, which is a pointer to the
5174  * s2io_nic structure.
5175  * @data:variable that returns the result of each of the test conducted by
5176  * the driver.
5177  * Description:
5178  * This invokes the MemBist test of the card. We give around
5179  * 2 secs time for the Test to complete. If it's still not complete
5180  * within this peiod, we consider that the test failed.
5181  * Return value:
5182  * 0 on success and -1 on failure.
5183  */
5184
5185 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
5186 {
5187         u8 bist = 0;
5188         int cnt = 0, ret = -1;
5189
5190         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5191         bist |= PCI_BIST_START;
5192         pci_write_config_word(sp->pdev, PCI_BIST, bist);
5193
5194         while (cnt < 20) {
5195                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5196                 if (!(bist & PCI_BIST_START)) {
5197                         *data = (bist & PCI_BIST_CODE_MASK);
5198                         ret = 0;
5199                         break;
5200                 }
5201                 msleep(100);
5202                 cnt++;
5203         }
5204
5205         return ret;
5206 }
5207
5208 /**
5209  * s2io-link_test - verifies the link state of the nic
5210  * @sp ; private member of the device structure, which is a pointer to the
5211  * s2io_nic structure.
5212  * @data: variable that returns the result of each of the test conducted by
5213  * the driver.
5214  * Description:
5215  * The function verifies the link state of the NIC and updates the input
5216  * argument 'data' appropriately.
5217  * Return value:
5218  * 0 on success.
5219  */
5220
5221 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
5222 {
5223         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5224         u64 val64;
5225
5226         val64 = readq(&bar0->adapter_status);
5227         if(!(LINK_IS_UP(val64)))
5228                 *data = 1;
5229         else
5230                 *data = 0;
5231
5232         return *data;
5233 }
5234
5235 /**
5236  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5237  * @sp - private member of the device structure, which is a pointer to the
5238  * s2io_nic structure.
5239  * @data - variable that returns the result of each of the test
5240  * conducted by the driver.
5241  * Description:
5242  *  This is one of the offline test that tests the read and write
5243  *  access to the RldRam chip on the NIC.
5244  * Return value:
5245  *  0 on success.
5246  */
5247
5248 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
5249 {
5250         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5251         u64 val64;
5252         int cnt, iteration = 0, test_fail = 0;
5253
5254         val64 = readq(&bar0->adapter_control);
5255         val64 &= ~ADAPTER_ECC_EN;
5256         writeq(val64, &bar0->adapter_control);
5257
5258         val64 = readq(&bar0->mc_rldram_test_ctrl);
5259         val64 |= MC_RLDRAM_TEST_MODE;
5260         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5261
5262         val64 = readq(&bar0->mc_rldram_mrs);
5263         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5264         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5265
5266         val64 |= MC_RLDRAM_MRS_ENABLE;
5267         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5268
5269         while (iteration < 2) {
5270                 val64 = 0x55555555aaaa0000ULL;
5271                 if (iteration == 1) {
5272                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5273                 }
5274                 writeq(val64, &bar0->mc_rldram_test_d0);
5275
5276                 val64 = 0xaaaa5a5555550000ULL;
5277                 if (iteration == 1) {
5278                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5279                 }
5280                 writeq(val64, &bar0->mc_rldram_test_d1);
5281
5282                 val64 = 0x55aaaaaaaa5a0000ULL;
5283                 if (iteration == 1) {
5284                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5285                 }
5286                 writeq(val64, &bar0->mc_rldram_test_d2);
5287
5288                 val64 = (u64) (0x0000003ffffe0100ULL);
5289                 writeq(val64, &bar0->mc_rldram_test_add);
5290
5291                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5292                         MC_RLDRAM_TEST_GO;
5293                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5294
5295                 for (cnt = 0; cnt < 5; cnt++) {
5296                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5297                         if (val64 & MC_RLDRAM_TEST_DONE)
5298                                 break;
5299                         msleep(200);
5300                 }
5301
5302                 if (cnt == 5)
5303                         break;
5304
5305                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5306                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5307
5308                 for (cnt = 0; cnt < 5; cnt++) {
5309                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5310                         if (val64 & MC_RLDRAM_TEST_DONE)
5311                                 break;
5312                         msleep(500);
5313                 }
5314
5315                 if (cnt == 5)
5316                         break;
5317
5318                 val64 = readq(&bar0->mc_rldram_test_ctrl);
5319                 if (!(val64 & MC_RLDRAM_TEST_PASS))
5320                         test_fail = 1;
5321
5322                 iteration++;
5323         }
5324
5325         *data = test_fail;
5326
5327         /* Bring the adapter out of test mode */
5328         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5329
5330         return test_fail;
5331 }
5332
5333 /**
5334  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5335  *  @sp : private member of the device structure, which is a pointer to the
5336  *  s2io_nic structure.
5337  *  @ethtest : pointer to a ethtool command specific structure that will be
5338  *  returned to the user.
5339  *  @data : variable that returns the result of each of the test
5340  * conducted by the driver.
5341  * Description:
5342  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
5343  *  the health of the card.
5344  * Return value:
5345  *  void
5346  */
5347
5348 static void s2io_ethtool_test(struct net_device *dev,
5349                               struct ethtool_test *ethtest,
5350                               uint64_t * data)
5351 {
5352         struct s2io_nic *sp = dev->priv;
5353         int orig_state = netif_running(sp->dev);
5354
5355         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5356                 /* Offline Tests. */
5357                 if (orig_state)
5358                         s2io_close(sp->dev);
5359
5360                 if (s2io_register_test(sp, &data[0]))
5361                         ethtest->flags |= ETH_TEST_FL_FAILED;
5362
5363                 s2io_reset(sp);
5364
5365                 if (s2io_rldram_test(sp, &data[3]))
5366                         ethtest->flags |= ETH_TEST_FL_FAILED;
5367
5368                 s2io_reset(sp);
5369
5370                 if (s2io_eeprom_test(sp, &data[1]))
5371                         ethtest->flags |= ETH_TEST_FL_FAILED;
5372
5373                 if (s2io_bist_test(sp, &data[4]))
5374                         ethtest->flags |= ETH_TEST_FL_FAILED;
5375
5376                 if (orig_state)
5377                         s2io_open(sp->dev);
5378
5379                 data[2] = 0;
5380         } else {
5381                 /* Online Tests. */
5382                 if (!orig_state) {
5383                         DBG_PRINT(ERR_DBG,
5384                                   "%s: is not up, cannot run test\n",
5385                                   dev->name);
5386                         data[0] = -1;
5387                         data[1] = -1;
5388                         data[2] = -1;
5389                         data[3] = -1;
5390                         data[4] = -1;
5391                 }
5392
5393                 if (s2io_link_test(sp, &data[2]))
5394                         ethtest->flags |= ETH_TEST_FL_FAILED;
5395
5396                 data[0] = 0;
5397                 data[1] = 0;
5398                 data[3] = 0;
5399                 data[4] = 0;
5400         }
5401 }
5402
5403 static void s2io_get_ethtool_stats(struct net_device *dev,
5404                                    struct ethtool_stats *estats,
5405                                    u64 * tmp_stats)
5406 {
5407         int i = 0;
5408         struct s2io_nic *sp = dev->priv;
5409         struct stat_block *stat_info = sp->mac_control.stats_info;
5410
5411         s2io_updt_stats(sp);
5412         tmp_stats[i++] =
5413                 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32  |
5414                 le32_to_cpu(stat_info->tmac_frms);
5415         tmp_stats[i++] =
5416                 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5417                 le32_to_cpu(stat_info->tmac_data_octets);
5418         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5419         tmp_stats[i++] =
5420                 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5421                 le32_to_cpu(stat_info->tmac_mcst_frms);
5422         tmp_stats[i++] =
5423                 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5424                 le32_to_cpu(stat_info->tmac_bcst_frms);
5425         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5426         tmp_stats[i++] =
5427                 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5428                 le32_to_cpu(stat_info->tmac_ttl_octets);
5429         tmp_stats[i++] =
5430                 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5431                 le32_to_cpu(stat_info->tmac_ucst_frms);
5432         tmp_stats[i++] =
5433                 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5434                 le32_to_cpu(stat_info->tmac_nucst_frms);
5435         tmp_stats[i++] =
5436                 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5437                 le32_to_cpu(stat_info->tmac_any_err_frms);
5438         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5439         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5440         tmp_stats[i++] =
5441                 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5442                 le32_to_cpu(stat_info->tmac_vld_ip);
5443         tmp_stats[i++] =
5444                 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5445                 le32_to_cpu(stat_info->tmac_drop_ip);
5446         tmp_stats[i++] =
5447                 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5448                 le32_to_cpu(stat_info->tmac_icmp);
5449         tmp_stats[i++] =
5450                 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5451                 le32_to_cpu(stat_info->tmac_rst_tcp);
5452         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5453         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5454                 le32_to_cpu(stat_info->tmac_udp);
5455         tmp_stats[i++] =
5456                 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5457                 le32_to_cpu(stat_info->rmac_vld_frms);
5458         tmp_stats[i++] =
5459                 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5460                 le32_to_cpu(stat_info->rmac_data_octets);
5461         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5462         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5463         tmp_stats[i++] =
5464                 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5465                 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5466         tmp_stats[i++] =
5467                 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5468                 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5469         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5470         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5471         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5472         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5473         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5474         tmp_stats[i++] =
5475                 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5476                 le32_to_cpu(stat_info->rmac_ttl_octets);
5477         tmp_stats[i++] =
5478                 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5479                 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5480         tmp_stats[i++] =
5481                 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5482                  << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5483         tmp_stats[i++] =
5484                 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5485                 le32_to_cpu(stat_info->rmac_discarded_frms);
5486         tmp_stats[i++] =
5487                 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5488                  << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5489         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5490         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5491         tmp_stats[i++] =
5492                 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5493                 le32_to_cpu(stat_info->rmac_usized_frms);
5494         tmp_stats[i++] =
5495                 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5496                 le32_to_cpu(stat_info->rmac_osized_frms);
5497         tmp_stats[i++] =
5498                 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5499                 le32_to_cpu(stat_info->rmac_frag_frms);
5500         tmp_stats[i++] =
5501                 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5502                 le32_to_cpu(stat_info->rmac_jabber_frms);
5503         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5504         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5505         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5506         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5507         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5508         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5509         tmp_stats[i++] =
5510                 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5511                 le32_to_cpu(stat_info->rmac_ip);
5512         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5513         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5514         tmp_stats[i++] =
5515                 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5516                 le32_to_cpu(stat_info->rmac_drop_ip);
5517         tmp_stats[i++] =
5518                 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5519                 le32_to_cpu(stat_info->rmac_icmp);
5520         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5521         tmp_stats[i++] =
5522                 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5523                 le32_to_cpu(stat_info->rmac_udp);
5524         tmp_stats[i++] =
5525                 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5526                 le32_to_cpu(stat_info->rmac_err_drp_udp);
5527         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5528         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5529         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5530         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5531         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5532         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5533         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5534         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5535         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5536         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5537         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5538         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5539         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5540         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5541         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5542         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5543         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
5544         tmp_stats[i++] =
5545                 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5546                 le32_to_cpu(stat_info->rmac_pause_cnt);
5547         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5548         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
5549         tmp_stats[i++] =
5550                 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5551                 le32_to_cpu(stat_info->rmac_accepted_ip);
5552         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5553         tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5554         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5555         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5556         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5557         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5558         tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5559         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5560         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5561         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5562         tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5563         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5564         tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5565         tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5566         tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5567         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5568         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5569         tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5570         tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5571         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5572         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5573         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5574         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5575         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5576         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5577         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5578         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5579         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5580         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5581         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5582         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5583         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5584         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5585         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5586         tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5587         tmp_stats[i++] = 0;
5588         tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5589         tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5590         tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5591         tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5592         tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5593         tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5594         tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5595         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5596         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5597         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5598         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5599         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5600         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5601         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5602         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5603         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5604         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5605         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5606         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
5607         tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5608         tmp_stats[i++] = stat_info->sw_stat.sending_both;
5609         tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5610         tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
5611         if (stat_info->sw_stat.num_aggregations) {
5612                 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5613                 int count = 0;
5614                 /*
5615                  * Since 64-bit divide does not work on all platforms,
5616                  * do repeated subtraction.
5617                  */
5618                 while (tmp >= stat_info->sw_stat.num_aggregations) {
5619                         tmp -= stat_info->sw_stat.num_aggregations;
5620                         count++;
5621                 }
5622                 tmp_stats[i++] = count;
5623         }
5624         else
5625                 tmp_stats[i++] = 0;
5626 }
5627
5628 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5629 {
5630         return (XENA_REG_SPACE);
5631 }
5632
5633
5634 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5635 {
5636         struct s2io_nic *sp = dev->priv;
5637
5638         return (sp->rx_csum);
5639 }
5640
5641 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5642 {
5643         struct s2io_nic *sp = dev->priv;
5644
5645         if (data)
5646                 sp->rx_csum = 1;
5647         else
5648                 sp->rx_csum = 0;
5649
5650         return 0;
5651 }
5652
5653 static int s2io_get_eeprom_len(struct net_device *dev)
5654 {
5655         return (XENA_EEPROM_SPACE);
5656 }
5657
5658 static int s2io_ethtool_self_test_count(struct net_device *dev)
5659 {
5660         return (S2IO_TEST_LEN);
5661 }
5662
5663 static void s2io_ethtool_get_strings(struct net_device *dev,
5664                                      u32 stringset, u8 * data)
5665 {
5666         switch (stringset) {
5667         case ETH_SS_TEST:
5668                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5669                 break;
5670         case ETH_SS_STATS:
5671                 memcpy(data, &ethtool_stats_keys,
5672                        sizeof(ethtool_stats_keys));
5673         }
5674 }
5675 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5676 {
5677         return (S2IO_STAT_LEN);
5678 }
5679
5680 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
5681 {
5682         if (data)
5683                 dev->features |= NETIF_F_IP_CSUM;
5684         else
5685                 dev->features &= ~NETIF_F_IP_CSUM;
5686
5687         return 0;
5688 }
5689
5690 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
5691 {
5692         return (dev->features & NETIF_F_TSO) != 0;
5693 }
5694 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
5695 {
5696         if (data)
5697                 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
5698         else
5699                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
5700
5701         return 0;
5702 }
5703
5704 static const struct ethtool_ops netdev_ethtool_ops = {
5705         .get_settings = s2io_ethtool_gset,
5706         .set_settings = s2io_ethtool_sset,
5707         .get_drvinfo = s2io_ethtool_gdrvinfo,
5708         .get_regs_len = s2io_ethtool_get_regs_len,
5709         .get_regs = s2io_ethtool_gregs,
5710         .get_link = ethtool_op_get_link,
5711         .get_eeprom_len = s2io_get_eeprom_len,
5712         .get_eeprom = s2io_ethtool_geeprom,
5713         .set_eeprom = s2io_ethtool_seeprom,
5714         .get_pauseparam = s2io_ethtool_getpause_data,
5715         .set_pauseparam = s2io_ethtool_setpause_data,
5716         .get_rx_csum = s2io_ethtool_get_rx_csum,
5717         .set_rx_csum = s2io_ethtool_set_rx_csum,
5718         .get_tx_csum = ethtool_op_get_tx_csum,
5719         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5720         .get_sg = ethtool_op_get_sg,
5721         .set_sg = ethtool_op_set_sg,
5722         .get_tso = s2io_ethtool_op_get_tso,
5723         .set_tso = s2io_ethtool_op_set_tso,
5724         .get_ufo = ethtool_op_get_ufo,
5725         .set_ufo = ethtool_op_set_ufo,
5726         .self_test_count = s2io_ethtool_self_test_count,
5727         .self_test = s2io_ethtool_test,
5728         .get_strings = s2io_ethtool_get_strings,
5729         .phys_id = s2io_ethtool_idnic,
5730         .get_stats_count = s2io_ethtool_get_stats_count,
5731         .get_ethtool_stats = s2io_get_ethtool_stats
5732 };
5733
5734 /**
5735  *  s2io_ioctl - Entry point for the Ioctl
5736  *  @dev :  Device pointer.
5737  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
5738  *  a proprietary structure used to pass information to the driver.
5739  *  @cmd :  This is used to distinguish between the different commands that
5740  *  can be passed to the IOCTL functions.
5741  *  Description:
5742  *  Currently there are no special functionality supported in IOCTL, hence
5743  *  function always return EOPNOTSUPPORTED
5744  */
5745
5746 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5747 {
5748         return -EOPNOTSUPP;
5749 }
5750
5751 /**
5752  *  s2io_change_mtu - entry point to change MTU size for the device.
5753  *   @dev : device pointer.
5754  *   @new_mtu : the new MTU size for the device.
5755  *   Description: A driver entry point to change MTU size for the device.
5756  *   Before changing the MTU the device must be stopped.
5757  *  Return value:
5758  *   0 on success and an appropriate (-)ve integer as defined in errno.h
5759  *   file on failure.
5760  */
5761
5762 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
5763 {
5764         struct s2io_nic *sp = dev->priv;
5765
5766         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5767                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5768                           dev->name);
5769                 return -EPERM;
5770         }
5771
5772         dev->mtu = new_mtu;
5773         if (netif_running(dev)) {
5774                 s2io_card_down(sp);
5775                 netif_stop_queue(dev);
5776                 if (s2io_card_up(sp)) {
5777                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5778                                   __FUNCTION__);
5779                 }
5780                 if (netif_queue_stopped(dev))
5781                         netif_wake_queue(dev);
5782         } else { /* Device is down */
5783                 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5784                 u64 val64 = new_mtu;
5785
5786                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5787         }
5788
5789         return 0;
5790 }
5791
5792 /**
5793  *  s2io_tasklet - Bottom half of the ISR.
5794  *  @dev_adr : address of the device structure in dma_addr_t format.
5795  *  Description:
5796  *  This is the tasklet or the bottom half of the ISR. This is
5797  *  an extension of the ISR which is scheduled by the scheduler to be run
5798  *  when the load on the CPU is low. All low priority tasks of the ISR can
5799  *  be pushed into the tasklet. For now the tasklet is used only to
5800  *  replenish the Rx buffers in the Rx buffer descriptors.
5801  *  Return value:
5802  *  void.
5803  */
5804
5805 static void s2io_tasklet(unsigned long dev_addr)
5806 {
5807         struct net_device *dev = (struct net_device *) dev_addr;
5808         struct s2io_nic *sp = dev->priv;
5809         int i, ret;
5810         struct mac_info *mac_control;
5811         struct config_param *config;
5812
5813         mac_control = &sp->mac_control;
5814         config = &sp->config;
5815
5816         if (!TASKLET_IN_USE) {
5817                 for (i = 0; i < config->rx_ring_num; i++) {
5818                         ret = fill_rx_buffers(sp, i);
5819                         if (ret == -ENOMEM) {
5820                                 DBG_PRINT(ERR_DBG, "%s: Out of ",
5821                                           dev->name);
5822                                 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5823                                 break;
5824                         } else if (ret == -EFILL) {
5825                                 DBG_PRINT(ERR_DBG,
5826                                           "%s: Rx Ring %d is full\n",
5827                                           dev->name, i);
5828                                 break;
5829                         }
5830                 }
5831                 clear_bit(0, (&sp->tasklet_status));
5832         }
5833 }
5834
5835 /**
5836  * s2io_set_link - Set the LInk status
5837  * @data: long pointer to device private structue
5838  * Description: Sets the link status for the adapter
5839  */
5840
5841 static void s2io_set_link(struct work_struct *work)
5842 {
5843         struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
5844         struct net_device *dev = nic->dev;
5845         struct XENA_dev_config __iomem *bar0 = nic->bar0;
5846         register u64 val64;
5847         u16 subid;
5848
5849         rtnl_lock();
5850
5851         if (!netif_running(dev))
5852                 goto out_unlock;
5853
5854         if (test_and_set_bit(0, &(nic->link_state))) {
5855                 /* The card is being reset, no point doing anything */
5856                 goto out_unlock;
5857         }
5858
5859         subid = nic->pdev->subsystem_device;
5860         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
5861                 /*
5862                  * Allow a small delay for the NICs self initiated
5863                  * cleanup to complete.
5864                  */
5865                 msleep(100);
5866         }
5867
5868         val64 = readq(&bar0->adapter_status);
5869         if (LINK_IS_UP(val64)) {
5870                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
5871                         if (verify_xena_quiescence(nic)) {
5872                                 val64 = readq(&bar0->adapter_control);
5873                                 val64 |= ADAPTER_CNTL_EN;
5874                                 writeq(val64, &bar0->adapter_control);
5875                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
5876                                         nic->device_type, subid)) {
5877                                         val64 = readq(&bar0->gpio_control);
5878                                         val64 |= GPIO_CTRL_GPIO_0;
5879                                         writeq(val64, &bar0->gpio_control);
5880                                         val64 = readq(&bar0->gpio_control);
5881                                 } else {
5882                                         val64 |= ADAPTER_LED_ON;
5883                                         writeq(val64, &bar0->adapter_control);
5884                                 }
5885                                 nic->device_enabled_once = TRUE;
5886                         } else {
5887                                 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
5888                                 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
5889                                 netif_stop_queue(dev);
5890                         }
5891                 }
5892                 val64 = readq(&bar0->adapter_status);
5893                 if (!LINK_IS_UP(val64)) {
5894                         DBG_PRINT(ERR_DBG, "%s:", dev->name);
5895                         DBG_PRINT(ERR_DBG, " Link down after enabling ");
5896                         DBG_PRINT(ERR_DBG, "device \n");
5897                 } else
5898                         s2io_link(nic, LINK_UP);
5899         } else {
5900                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5901                                                       subid)) {
5902                         val64 = readq(&bar0->gpio_control);
5903                         val64 &= ~GPIO_CTRL_GPIO_0;
5904                         writeq(val64, &bar0->gpio_control);
5905                         val64 = readq(&bar0->gpio_control);
5906                 }
5907                 s2io_link(nic, LINK_DOWN);
5908         }
5909         clear_bit(0, &(nic->link_state));
5910
5911 out_unlock:
5912         rtnl_lock();
5913 }
5914
5915 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
5916                                 struct buffAdd *ba,
5917                                 struct sk_buff **skb, u64 *temp0, u64 *temp1,
5918                                 u64 *temp2, int size)
5919 {
5920         struct net_device *dev = sp->dev;
5921         struct sk_buff *frag_list;
5922
5923         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
5924                 /* allocate skb */
5925                 if (*skb) {
5926                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
5927                         /*
5928                          * As Rx frame are not going to be processed,
5929                          * using same mapped address for the Rxd
5930                          * buffer pointer
5931                          */
5932                         ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0;
5933                 } else {
5934                         *skb = dev_alloc_skb(size);
5935                         if (!(*skb)) {
5936                                 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
5937                                 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
5938                                 return -ENOMEM ;
5939                         }
5940                         /* storing the mapped addr in a temp variable
5941                          * such it will be used for next rxd whose
5942                          * Host Control is NULL
5943                          */
5944                         ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0 =
5945                                 pci_map_single( sp->pdev, (*skb)->data,
5946                                         size - NET_IP_ALIGN,
5947                                         PCI_DMA_FROMDEVICE);
5948                         rxdp->Host_Control = (unsigned long) (*skb);
5949                 }
5950         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
5951                 /* Two buffer Mode */
5952                 if (*skb) {
5953                         ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
5954                         ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
5955                         ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
5956                 } else {
5957                         *skb = dev_alloc_skb(size);
5958                         if (!(*skb)) {
5959                                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n",
5960                                         dev->name);
5961                                 return -ENOMEM;
5962                         }
5963                         ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
5964                                 pci_map_single(sp->pdev, (*skb)->data,
5965                                                dev->mtu + 4,
5966                                                PCI_DMA_FROMDEVICE);
5967                         ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
5968                                 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
5969                                                 PCI_DMA_FROMDEVICE);
5970                         rxdp->Host_Control = (unsigned long) (*skb);
5971
5972                         /* Buffer-1 will be dummy buffer not used */
5973                         ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
5974                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
5975                                                PCI_DMA_FROMDEVICE);
5976                 }
5977         } else if ((rxdp->Host_Control == 0)) {
5978                 /* Three buffer mode */
5979                 if (*skb) {
5980                         ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
5981                         ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
5982                         ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
5983                 } else {
5984                         *skb = dev_alloc_skb(size);
5985                         if (!(*skb)) {
5986                                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n",
5987                                           dev->name);
5988                                 return -ENOMEM;
5989                         }
5990                         ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
5991                                 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
5992                                                PCI_DMA_FROMDEVICE);
5993                         /* Buffer-1 receives L3/L4 headers */
5994                         ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
5995                                 pci_map_single( sp->pdev, (*skb)->data,
5996                                                 l3l4hdr_size + 4,
5997                                                 PCI_DMA_FROMDEVICE);
5998                         /*
5999                          * skb_shinfo(skb)->frag_list will have L4
6000                          * data payload
6001                          */
6002                         skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
6003                                                                    ALIGN_SIZE);
6004                         if (skb_shinfo(*skb)->frag_list == NULL) {
6005                                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
6006                                           failed\n ", dev->name);
6007                                 return -ENOMEM ;
6008                         }
6009                         frag_list = skb_shinfo(*skb)->frag_list;
6010                         frag_list->next = NULL;
6011                         /*
6012                          * Buffer-2 receives L4 data payload
6013                          */
6014                         ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
6015                                 pci_map_single( sp->pdev, frag_list->data,
6016                                                 dev->mtu, PCI_DMA_FROMDEVICE);
6017                 }
6018         }
6019         return 0;
6020 }
6021 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6022                                 int size)
6023 {
6024         struct net_device *dev = sp->dev;
6025         if (sp->rxd_mode == RXD_MODE_1) {
6026                 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6027         } else if (sp->rxd_mode == RXD_MODE_3B) {
6028                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6029                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6030                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6031         } else {
6032                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6033                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
6034                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
6035         }
6036 }
6037
6038 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6039 {
6040         int i, j, k, blk_cnt = 0, size;
6041         struct mac_info * mac_control = &sp->mac_control;
6042         struct config_param *config = &sp->config;
6043         struct net_device *dev = sp->dev;
6044         struct RxD_t *rxdp = NULL;
6045         struct sk_buff *skb = NULL;
6046         struct buffAdd *ba = NULL;
6047         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6048
6049         /* Calculate the size based on ring mode */
6050         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6051                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6052         if (sp->rxd_mode == RXD_MODE_1)
6053                 size += NET_IP_ALIGN;
6054         else if (sp->rxd_mode == RXD_MODE_3B)
6055                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6056         else
6057                 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
6058
6059         for (i = 0; i < config->rx_ring_num; i++) {
6060                 blk_cnt = config->rx_cfg[i].num_rxd /
6061                         (rxd_count[sp->rxd_mode] +1);
6062
6063                 for (j = 0; j < blk_cnt; j++) {
6064                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6065                                 rxdp = mac_control->rings[i].
6066                                         rx_blocks[j].rxds[k].virt_addr;
6067                                 if(sp->rxd_mode >= RXD_MODE_3A)
6068                                         ba = &mac_control->rings[i].ba[j][k];
6069                                 set_rxd_buffer_pointer(sp, rxdp, ba,
6070                                                        &skb,(u64 *)&temp0_64,
6071                                                        (u64 *)&temp1_64,
6072                                                        (u64 *)&temp2_64, size);
6073
6074                                 set_rxd_buffer_size(sp, rxdp, size);
6075                                 wmb();
6076                                 /* flip the Ownership bit to Hardware */
6077                                 rxdp->Control_1 |= RXD_OWN_XENA;
6078                         }
6079                 }
6080         }
6081         return 0;
6082
6083 }
6084
6085 static int s2io_add_isr(struct s2io_nic * sp)
6086 {
6087         int ret = 0;
6088         struct net_device *dev = sp->dev;
6089         int err = 0;
6090
6091         if (sp->intr_type == MSI)
6092                 ret = s2io_enable_msi(sp);
6093         else if (sp->intr_type == MSI_X)
6094                 ret = s2io_enable_msi_x(sp);
6095         if (ret) {
6096                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6097                 sp->intr_type = INTA;
6098         }
6099
6100         /* Store the values of the MSIX table in the struct s2io_nic structure */
6101         store_xmsi_data(sp);
6102
6103         /* After proper initialization of H/W, register ISR */
6104         if (sp->intr_type == MSI) {
6105                 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
6106                         IRQF_SHARED, sp->name, dev);
6107                 if (err) {
6108                         pci_disable_msi(sp->pdev);
6109                         DBG_PRINT(ERR_DBG, "%s: MSI registration failed\n",
6110                                   dev->name);
6111                         return -1;
6112                 }
6113         }
6114         if (sp->intr_type == MSI_X) {
6115                 int i;
6116
6117                 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6118                         if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6119                                 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6120                                         dev->name, i);
6121                                 err = request_irq(sp->entries[i].vector,
6122                                           s2io_msix_fifo_handle, 0, sp->desc[i],
6123                                                   sp->s2io_entries[i].arg);
6124                                 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc[i],
6125                                 (unsigned long long)sp->msix_info[i].addr);
6126                         } else {
6127                                 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6128                                         dev->name, i);
6129                                 err = request_irq(sp->entries[i].vector,
6130                                           s2io_msix_ring_handle, 0, sp->desc[i],
6131                                                   sp->s2io_entries[i].arg);
6132                                 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc[i],
6133                                 (unsigned long long)sp->msix_info[i].addr);
6134                         }
6135                         if (err) {
6136                                 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6137                                           "failed\n", dev->name, i);
6138                                 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6139                                 return -1;
6140                         }
6141                         sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6142                 }
6143         }
6144         if (sp->intr_type == INTA) {
6145                 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6146                                 sp->name, dev);
6147                 if (err) {
6148                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6149                                   dev->name);
6150                         return -1;
6151                 }
6152         }
6153         return 0;
6154 }
6155 static void s2io_rem_isr(struct s2io_nic * sp)
6156 {
6157         int cnt = 0;
6158         struct net_device *dev = sp->dev;
6159
6160         if (sp->intr_type == MSI_X) {
6161                 int i;
6162                 u16 msi_control;
6163
6164                 for (i=1; (sp->s2io_entries[i].in_use ==
6165                         MSIX_REGISTERED_SUCCESS); i++) {
6166                         int vector = sp->entries[i].vector;
6167                         void *arg = sp->s2io_entries[i].arg;
6168
6169                         free_irq(vector, arg);
6170                 }
6171                 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6172                 msi_control &= 0xFFFE; /* Disable MSI */
6173                 pci_write_config_word(sp->pdev, 0x42, msi_control);
6174
6175                 pci_disable_msix(sp->pdev);
6176         } else {
6177                 free_irq(sp->pdev->irq, dev);
6178                 if (sp->intr_type == MSI) {
6179                         u16 val;
6180
6181                         pci_disable_msi(sp->pdev);
6182                         pci_read_config_word(sp->pdev, 0x4c, &val);
6183                         val ^= 0x1;
6184                         pci_write_config_word(sp->pdev, 0x4c, val);
6185                 }
6186         }
6187         /* Waiting till all Interrupt handlers are complete */
6188         cnt = 0;
6189         do {
6190                 msleep(10);
6191                 if (!atomic_read(&sp->isr_cnt))
6192                         break;
6193                 cnt++;
6194         } while(cnt < 5);
6195 }
6196
6197 static void s2io_card_down(struct s2io_nic * sp)
6198 {
6199         int cnt = 0;
6200         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6201         unsigned long flags;
6202         register u64 val64 = 0;
6203
6204         del_timer_sync(&sp->alarm_timer);
6205         /* If s2io_set_link task is executing, wait till it completes. */
6206         while (test_and_set_bit(0, &(sp->link_state))) {
6207                 msleep(50);
6208         }
6209         atomic_set(&sp->card_state, CARD_DOWN);
6210
6211         /* disable Tx and Rx traffic on the NIC */
6212         stop_nic(sp);
6213
6214         s2io_rem_isr(sp);
6215
6216         /* Kill tasklet. */
6217         tasklet_kill(&sp->task);
6218
6219         /* Check if the device is Quiescent and then Reset the NIC */
6220         do {
6221                 /* As per the HW requirement we need to replenish the
6222                  * receive buffer to avoid the ring bump. Since there is
6223                  * no intention of processing the Rx frame at this pointwe are
6224                  * just settting the ownership bit of rxd in Each Rx
6225                  * ring to HW and set the appropriate buffer size
6226                  * based on the ring mode
6227                  */
6228                 rxd_owner_bit_reset(sp);
6229
6230                 val64 = readq(&bar0->adapter_status);
6231                 if (verify_xena_quiescence(sp)) {
6232                         if(verify_pcc_quiescent(sp, sp->device_enabled_once))
6233                         break;
6234                 }
6235
6236                 msleep(50);
6237                 cnt++;
6238                 if (cnt == 10) {
6239                         DBG_PRINT(ERR_DBG,
6240                                   "s2io_close:Device not Quiescent ");
6241                         DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6242                                   (unsigned long long) val64);
6243                         break;
6244                 }
6245         } while (1);
6246         s2io_reset(sp);
6247
6248         spin_lock_irqsave(&sp->tx_lock, flags);
6249         /* Free all Tx buffers */
6250         free_tx_buffers(sp);
6251         spin_unlock_irqrestore(&sp->tx_lock, flags);
6252
6253         /* Free all Rx buffers */
6254         spin_lock_irqsave(&sp->rx_lock, flags);
6255         free_rx_buffers(sp);
6256         spin_unlock_irqrestore(&sp->rx_lock, flags);
6257
6258         clear_bit(0, &(sp->link_state));
6259 }
6260
6261 static int s2io_card_up(struct s2io_nic * sp)
6262 {
6263         int i, ret = 0;
6264         struct mac_info *mac_control;
6265         struct config_param *config;
6266         struct net_device *dev = (struct net_device *) sp->dev;
6267         u16 interruptible;
6268
6269         /* Initialize the H/W I/O registers */
6270         if (init_nic(sp) != 0) {
6271                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6272                           dev->name);
6273                 s2io_reset(sp);
6274                 return -ENODEV;
6275         }
6276
6277         /*
6278          * Initializing the Rx buffers. For now we are considering only 1
6279          * Rx ring and initializing buffers into 30 Rx blocks
6280          */
6281         mac_control = &sp->mac_control;
6282         config = &sp->config;
6283
6284         for (i = 0; i < config->rx_ring_num; i++) {
6285                 if ((ret = fill_rx_buffers(sp, i))) {
6286                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6287                                   dev->name);
6288                         s2io_reset(sp);
6289                         free_rx_buffers(sp);
6290                         return -ENOMEM;
6291                 }
6292                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6293                           atomic_read(&sp->rx_bufs_left[i]));
6294         }
6295         /* Maintain the state prior to the open */
6296         if (sp->promisc_flg)
6297                 sp->promisc_flg = 0;
6298         if (sp->m_cast_flg) {
6299                 sp->m_cast_flg = 0;
6300                 sp->all_multi_pos= 0;
6301         }
6302
6303         /* Setting its receive mode */
6304         s2io_set_multicast(dev);
6305
6306         if (sp->lro) {
6307                 /* Initialize max aggregatable pkts per session based on MTU */
6308                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6309                 /* Check if we can use(if specified) user provided value */
6310                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6311                         sp->lro_max_aggr_per_sess = lro_max_pkts;
6312         }
6313
6314         /* Enable Rx Traffic and interrupts on the NIC */
6315         if (start_nic(sp)) {
6316                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6317                 s2io_reset(sp);
6318                 free_rx_buffers(sp);
6319                 return -ENODEV;
6320         }
6321
6322         /* Add interrupt service routine */
6323         if (s2io_add_isr(sp) != 0) {
6324                 if (sp->intr_type == MSI_X)
6325                         s2io_rem_isr(sp);
6326                 s2io_reset(sp);
6327                 free_rx_buffers(sp);
6328                 return -ENODEV;
6329         }
6330
6331         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6332
6333         /* Enable tasklet for the device */
6334         tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6335
6336         /*  Enable select interrupts */
6337         if (sp->intr_type != INTA)
6338                 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6339         else {
6340                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6341                 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6342                 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6343                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6344         }
6345
6346
6347         atomic_set(&sp->card_state, CARD_UP);
6348         return 0;
6349 }
6350
6351 /**
6352  * s2io_restart_nic - Resets the NIC.
6353  * @data : long pointer to the device private structure
6354  * Description:
6355  * This function is scheduled to be run by the s2io_tx_watchdog
6356  * function after 0.5 secs to reset the NIC. The idea is to reduce
6357  * the run time of the watch dog routine which is run holding a
6358  * spin lock.
6359  */
6360
6361 static void s2io_restart_nic(struct work_struct *work)
6362 {
6363         struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
6364         struct net_device *dev = sp->dev;
6365
6366         rtnl_lock();
6367
6368         if (!netif_running(dev))
6369                 goto out_unlock;
6370
6371         s2io_card_down(sp);
6372         if (s2io_card_up(sp)) {
6373                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6374                           dev->name);
6375         }
6376         netif_wake_queue(dev);
6377         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6378                   dev->name);
6379 out_unlock:
6380         rtnl_unlock();
6381 }
6382
6383 /**
6384  *  s2io_tx_watchdog - Watchdog for transmit side.
6385  *  @dev : Pointer to net device structure
6386  *  Description:
6387  *  This function is triggered if the Tx Queue is stopped
6388  *  for a pre-defined amount of time when the Interface is still up.
6389  *  If the Interface is jammed in such a situation, the hardware is
6390  *  reset (by s2io_close) and restarted again (by s2io_open) to
6391  *  overcome any problem that might have been caused in the hardware.
6392  *  Return value:
6393  *  void
6394  */
6395
6396 static void s2io_tx_watchdog(struct net_device *dev)
6397 {
6398         struct s2io_nic *sp = dev->priv;
6399
6400         if (netif_carrier_ok(dev)) {
6401                 schedule_work(&sp->rst_timer_task);
6402                 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6403         }
6404 }
6405
6406 /**
6407  *   rx_osm_handler - To perform some OS related operations on SKB.
6408  *   @sp: private member of the device structure,pointer to s2io_nic structure.
6409  *   @skb : the socket buffer pointer.
6410  *   @len : length of the packet
6411  *   @cksum : FCS checksum of the frame.
6412  *   @ring_no : the ring from which this RxD was extracted.
6413  *   Description:
6414  *   This function is called by the Rx interrupt serivce routine to perform
6415  *   some OS related operations on the SKB before passing it to the upper
6416  *   layers. It mainly checks if the checksum is OK, if so adds it to the
6417  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
6418  *   to the upper layer. If the checksum is wrong, it increments the Rx
6419  *   packet error count, frees the SKB and returns error.
6420  *   Return value:
6421  *   SUCCESS on success and -1 on failure.
6422  */
6423 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
6424 {
6425         struct s2io_nic *sp = ring_data->nic;
6426         struct net_device *dev = (struct net_device *) sp->dev;
6427         struct sk_buff *skb = (struct sk_buff *)
6428                 ((unsigned long) rxdp->Host_Control);
6429         int ring_no = ring_data->ring_no;
6430         u16 l3_csum, l4_csum;
6431         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
6432         struct lro *lro;
6433
6434         skb->dev = dev;
6435
6436         if (err) {
6437                 /* Check for parity error */
6438                 if (err & 0x1) {
6439                         sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6440                 }
6441
6442                 /*
6443                 * Drop the packet if bad transfer code. Exception being
6444                 * 0x5, which could be due to unsupported IPv6 extension header.
6445                 * In this case, we let stack handle the packet.
6446                 * Note that in this case, since checksum will be incorrect,
6447                 * stack will validate the same.
6448                 */
6449                 if (err && ((err >> 48) != 0x5)) {
6450                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
6451                                 dev->name, err);
6452                         sp->stats.rx_crc_errors++;
6453                         dev_kfree_skb(skb);
6454                         atomic_dec(&sp->rx_bufs_left[ring_no]);
6455                         rxdp->Host_Control = 0;
6456                         return 0;
6457                 }
6458         }
6459
6460         /* Updating statistics */
6461         rxdp->Host_Control = 0;
6462         sp->rx_pkt_count++;
6463         sp->stats.rx_packets++;
6464         if (sp->rxd_mode == RXD_MODE_1) {
6465                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
6466
6467                 sp->stats.rx_bytes += len;
6468                 skb_put(skb, len);
6469
6470         } else if (sp->rxd_mode >= RXD_MODE_3A) {
6471                 int get_block = ring_data->rx_curr_get_info.block_index;
6472                 int get_off = ring_data->rx_curr_get_info.offset;
6473                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6474                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6475                 unsigned char *buff = skb_push(skb, buf0_len);
6476
6477                 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
6478                 sp->stats.rx_bytes += buf0_len + buf2_len;
6479                 memcpy(buff, ba->ba_0, buf0_len);
6480
6481                 if (sp->rxd_mode == RXD_MODE_3A) {
6482                         int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6483
6484                         skb_put(skb, buf1_len);
6485                         skb->len += buf2_len;
6486                         skb->data_len += buf2_len;
6487                         skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6488                         sp->stats.rx_bytes += buf1_len;
6489
6490                 } else
6491                         skb_put(skb, buf2_len);
6492         }
6493
6494         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6495             (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
6496             (sp->rx_csum)) {
6497                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
6498                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6499                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
6500                         /*
6501                          * NIC verifies if the Checksum of the received
6502                          * frame is Ok or not and accordingly returns
6503                          * a flag in the RxD.
6504                          */
6505                         skb->ip_summed = CHECKSUM_UNNECESSARY;
6506                         if (sp->lro) {
6507                                 u32 tcp_len;
6508                                 u8 *tcp;
6509                                 int ret = 0;
6510
6511                                 ret = s2io_club_tcp_session(skb->data, &tcp,
6512                                                 &tcp_len, &lro, rxdp, sp);
6513                                 switch (ret) {
6514                                         case 3: /* Begin anew */
6515                                                 lro->parent = skb;
6516                                                 goto aggregate;
6517                                         case 1: /* Aggregate */
6518                                         {
6519                                                 lro_append_pkt(sp, lro,
6520                                                         skb, tcp_len);
6521                                                 goto aggregate;
6522                                         }
6523                                         case 4: /* Flush session */
6524                                         {
6525                                                 lro_append_pkt(sp, lro,
6526                                                         skb, tcp_len);
6527                                                 queue_rx_frame(lro->parent);
6528                                                 clear_lro_session(lro);
6529                                                 sp->mac_control.stats_info->
6530                                                     sw_stat.flush_max_pkts++;
6531                                                 goto aggregate;
6532                                         }
6533                                         case 2: /* Flush both */
6534                                                 lro->parent->data_len =
6535                                                         lro->frags_len;
6536                                                 sp->mac_control.stats_info->
6537                                                      sw_stat.sending_both++;
6538                                                 queue_rx_frame(lro->parent);
6539                                                 clear_lro_session(lro);
6540                                                 goto send_up;
6541                                         case 0: /* sessions exceeded */
6542                                         case -1: /* non-TCP or not
6543                                                   * L2 aggregatable
6544                                                   */
6545                                         case 5: /*
6546                                                  * First pkt in session not
6547                                                  * L3/L4 aggregatable
6548                                                  */
6549                                                 break;
6550                                         default:
6551                                                 DBG_PRINT(ERR_DBG,
6552                                                         "%s: Samadhana!!\n",
6553                                                          __FUNCTION__);
6554                                                 BUG();
6555                                 }
6556                         }
6557                 } else {
6558                         /*
6559                          * Packet with erroneous checksum, let the
6560                          * upper layers deal with it.
6561                          */
6562                         skb->ip_summed = CHECKSUM_NONE;
6563                 }
6564         } else {
6565                 skb->ip_summed = CHECKSUM_NONE;
6566         }
6567
6568         if (!sp->lro) {
6569                 skb->protocol = eth_type_trans(skb, dev);
6570                 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6571                         /* Queueing the vlan frame to the upper layer */
6572                         if (napi)
6573                                 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6574                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
6575                         else
6576                                 vlan_hwaccel_rx(skb, sp->vlgrp,
6577                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
6578                 } else {
6579                         if (napi)
6580                                 netif_receive_skb(skb);
6581                         else
6582                                 netif_rx(skb);
6583                 }
6584         } else {
6585 send_up:
6586                 queue_rx_frame(skb);
6587         }
6588         dev->last_rx = jiffies;
6589 aggregate:
6590         atomic_dec(&sp->rx_bufs_left[ring_no]);
6591         return SUCCESS;
6592 }
6593
6594 /**
6595  *  s2io_link - stops/starts the Tx queue.
6596  *  @sp : private member of the device structure, which is a pointer to the
6597  *  s2io_nic structure.
6598  *  @link : inidicates whether link is UP/DOWN.
6599  *  Description:
6600  *  This function stops/starts the Tx queue depending on whether the link
6601  *  status of the NIC is is down or up. This is called by the Alarm
6602  *  interrupt handler whenever a link change interrupt comes up.
6603  *  Return value:
6604  *  void.
6605  */
6606
6607 static void s2io_link(struct s2io_nic * sp, int link)
6608 {
6609         struct net_device *dev = (struct net_device *) sp->dev;
6610
6611         if (link != sp->last_link_state) {
6612                 if (link == LINK_DOWN) {
6613                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6614                         netif_carrier_off(dev);
6615                 } else {
6616                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
6617                         netif_carrier_on(dev);
6618                 }
6619         }
6620         sp->last_link_state = link;
6621 }
6622
6623 /**
6624  *  get_xena_rev_id - to identify revision ID of xena.
6625  *  @pdev : PCI Dev structure
6626  *  Description:
6627  *  Function to identify the Revision ID of xena.
6628  *  Return value:
6629  *  returns the revision ID of the device.
6630  */
6631
6632 static int get_xena_rev_id(struct pci_dev *pdev)
6633 {
6634         u8 id = 0;
6635         int ret;
6636         ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
6637         return id;
6638 }
6639
6640 /**
6641  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6642  *  @sp : private member of the device structure, which is a pointer to the
6643  *  s2io_nic structure.
6644  *  Description:
6645  *  This function initializes a few of the PCI and PCI-X configuration registers
6646  *  with recommended values.
6647  *  Return value:
6648  *  void
6649  */
6650
6651 static void s2io_init_pci(struct s2io_nic * sp)
6652 {
6653         u16 pci_cmd = 0, pcix_cmd = 0;
6654
6655         /* Enable Data Parity Error Recovery in PCI-X command register. */
6656         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6657                              &(pcix_cmd));
6658         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6659                               (pcix_cmd | 1));
6660         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6661                              &(pcix_cmd));
6662
6663         /* Set the PErr Response bit in PCI command register. */
6664         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6665         pci_write_config_word(sp->pdev, PCI_COMMAND,
6666                               (pci_cmd | PCI_COMMAND_PARITY));
6667         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6668 }
6669
6670 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
6671 {
6672         if ( tx_fifo_num > 8) {
6673                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
6674                          "supported\n");
6675                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
6676                 tx_fifo_num = 8;
6677         }
6678         if ( rx_ring_num > 8) {
6679                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
6680                          "supported\n");
6681                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
6682                 rx_ring_num = 8;
6683         }
6684         if (*dev_intr_type != INTA)
6685                 napi = 0;
6686
6687 #ifndef CONFIG_PCI_MSI
6688         if (*dev_intr_type != INTA) {
6689                 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
6690                           "MSI/MSI-X. Defaulting to INTA\n");
6691                 *dev_intr_type = INTA;
6692         }
6693 #else
6694         if (*dev_intr_type > MSI_X) {
6695                 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
6696                           "Defaulting to INTA\n");
6697                 *dev_intr_type = INTA;
6698         }
6699 #endif
6700         if ((*dev_intr_type == MSI_X) &&
6701                         ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
6702                         (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6703                 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
6704                                         "Defaulting to INTA\n");
6705                 *dev_intr_type = INTA;
6706         }
6707         if ( (rx_ring_num > 1) && (*dev_intr_type != INTA) )
6708                 napi = 0;
6709         if (rx_ring_mode > 3) {
6710                 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6711                 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
6712                 rx_ring_mode = 3;
6713         }
6714         return SUCCESS;
6715 }
6716
6717 /**
6718  *  s2io_init_nic - Initialization of the adapter .
6719  *  @pdev : structure containing the PCI related information of the device.
6720  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
6721  *  Description:
6722  *  The function initializes an adapter identified by the pci_dec structure.
6723  *  All OS related initialization including memory and device structure and
6724  *  initlaization of the device private variable is done. Also the swapper
6725  *  control register is initialized to enable read and write into the I/O
6726  *  registers of the device.
6727  *  Return value:
6728  *  returns 0 on success and negative on failure.
6729  */
6730
6731 static int __devinit
6732 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
6733 {
6734         struct s2io_nic *sp;
6735         struct net_device *dev;
6736         int i, j, ret;
6737         int dma_flag = FALSE;
6738         u32 mac_up, mac_down;
6739         u64 val64 = 0, tmp64 = 0;
6740         struct XENA_dev_config __iomem *bar0 = NULL;
6741         u16 subid;
6742         struct mac_info *mac_control;
6743         struct config_param *config;
6744         int mode;
6745         u8 dev_intr_type = intr_type;
6746
6747         if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
6748                 return ret;
6749
6750         if ((ret = pci_enable_device(pdev))) {
6751                 DBG_PRINT(ERR_DBG,
6752                           "s2io_init_nic: pci_enable_device failed\n");
6753                 return ret;
6754         }
6755
6756         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
6757                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
6758                 dma_flag = TRUE;
6759                 if (pci_set_consistent_dma_mask
6760                     (pdev, DMA_64BIT_MASK)) {
6761                         DBG_PRINT(ERR_DBG,
6762                                   "Unable to obtain 64bit DMA for \
6763                                         consistent allocations\n");
6764                         pci_disable_device(pdev);
6765                         return -ENOMEM;
6766                 }
6767         } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
6768                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
6769         } else {
6770                 pci_disable_device(pdev);
6771                 return -ENOMEM;
6772         }
6773         if (dev_intr_type != MSI_X) {
6774                 if (pci_request_regions(pdev, s2io_driver_name)) {
6775                         DBG_PRINT(ERR_DBG, "Request Regions failed\n");
6776                         pci_disable_device(pdev);
6777                         return -ENODEV;
6778                 }
6779         }
6780         else {
6781                 if (!(request_mem_region(pci_resource_start(pdev, 0),
6782                          pci_resource_len(pdev, 0), s2io_driver_name))) {
6783                         DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
6784                         pci_disable_device(pdev);
6785                         return -ENODEV;
6786                 }
6787                 if (!(request_mem_region(pci_resource_start(pdev, 2),
6788                          pci_resource_len(pdev, 2), s2io_driver_name))) {
6789                         DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
6790                         release_mem_region(pci_resource_start(pdev, 0),
6791                                    pci_resource_len(pdev, 0));
6792                         pci_disable_device(pdev);
6793                         return -ENODEV;
6794                 }
6795         }
6796
6797         dev = alloc_etherdev(sizeof(struct s2io_nic));
6798         if (dev == NULL) {
6799                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
6800                 pci_disable_device(pdev);
6801                 pci_release_regions(pdev);
6802                 return -ENODEV;
6803         }
6804
6805         pci_set_master(pdev);
6806         pci_set_drvdata(pdev, dev);
6807         SET_MODULE_OWNER(dev);
6808         SET_NETDEV_DEV(dev, &pdev->dev);
6809
6810         /*  Private member variable initialized to s2io NIC structure */
6811         sp = dev->priv;
6812         memset(sp, 0, sizeof(struct s2io_nic));
6813         sp->dev = dev;
6814         sp->pdev = pdev;
6815         sp->high_dma_flag = dma_flag;
6816         sp->device_enabled_once = FALSE;
6817         if (rx_ring_mode == 1)
6818                 sp->rxd_mode = RXD_MODE_1;
6819         if (rx_ring_mode == 2)
6820                 sp->rxd_mode = RXD_MODE_3B;
6821         if (rx_ring_mode == 3)
6822                 sp->rxd_mode = RXD_MODE_3A;
6823
6824         sp->intr_type = dev_intr_type;
6825
6826         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
6827                 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
6828                 sp->device_type = XFRAME_II_DEVICE;
6829         else
6830                 sp->device_type = XFRAME_I_DEVICE;
6831
6832         sp->lro = lro;
6833
6834         /* Initialize some PCI/PCI-X fields of the NIC. */
6835         s2io_init_pci(sp);
6836
6837         /*
6838          * Setting the device configuration parameters.
6839          * Most of these parameters can be specified by the user during
6840          * module insertion as they are module loadable parameters. If
6841          * these parameters are not not specified during load time, they
6842          * are initialized with default values.
6843          */
6844         mac_control = &sp->mac_control;
6845         config = &sp->config;
6846
6847         /* Tx side parameters. */
6848         config->tx_fifo_num = tx_fifo_num;
6849         for (i = 0; i < MAX_TX_FIFOS; i++) {
6850                 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
6851                 config->tx_cfg[i].fifo_priority = i;
6852         }
6853
6854         /* mapping the QoS priority to the configured fifos */
6855         for (i = 0; i < MAX_TX_FIFOS; i++)
6856                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
6857
6858         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
6859         for (i = 0; i < config->tx_fifo_num; i++) {
6860                 config->tx_cfg[i].f_no_snoop =
6861                     (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
6862                 if (config->tx_cfg[i].fifo_len < 65) {
6863                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
6864                         break;
6865                 }
6866         }
6867         /* + 2 because one Txd for skb->data and one Txd for UFO */
6868         config->max_txds = MAX_SKB_FRAGS + 2;
6869
6870         /* Rx side parameters. */
6871         config->rx_ring_num = rx_ring_num;
6872         for (i = 0; i < MAX_RX_RINGS; i++) {
6873                 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
6874                     (rxd_count[sp->rxd_mode] + 1);
6875                 config->rx_cfg[i].ring_priority = i;
6876         }
6877
6878         for (i = 0; i < rx_ring_num; i++) {
6879                 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
6880                 config->rx_cfg[i].f_no_snoop =
6881                     (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
6882         }
6883
6884         /*  Setting Mac Control parameters */
6885         mac_control->rmac_pause_time = rmac_pause_time;
6886         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
6887         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
6888
6889
6890         /* Initialize Ring buffer parameters. */
6891         for (i = 0; i < config->rx_ring_num; i++)
6892                 atomic_set(&sp->rx_bufs_left[i], 0);
6893
6894         /* Initialize the number of ISRs currently running */
6895         atomic_set(&sp->isr_cnt, 0);
6896
6897         /*  initialize the shared memory used by the NIC and the host */
6898         if (init_shared_mem(sp)) {
6899                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
6900                           dev->name);
6901                 ret = -ENOMEM;
6902                 goto mem_alloc_failed;
6903         }
6904
6905         sp->bar0 = ioremap(pci_resource_start(pdev, 0),
6906                                      pci_resource_len(pdev, 0));
6907         if (!sp->bar0) {
6908                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
6909                           dev->name);
6910                 ret = -ENOMEM;
6911                 goto bar0_remap_failed;
6912         }
6913
6914         sp->bar1 = ioremap(pci_resource_start(pdev, 2),
6915                                      pci_resource_len(pdev, 2));
6916         if (!sp->bar1) {
6917                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
6918                           dev->name);
6919                 ret = -ENOMEM;
6920                 goto bar1_remap_failed;
6921         }
6922
6923         dev->irq = pdev->irq;
6924         dev->base_addr = (unsigned long) sp->bar0;
6925
6926         /* Initializing the BAR1 address as the start of the FIFO pointer. */
6927         for (j = 0; j < MAX_TX_FIFOS; j++) {
6928                 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
6929                     (sp->bar1 + (j * 0x00020000));
6930         }
6931
6932         /*  Driver entry points */
6933         dev->open = &s2io_open;
6934         dev->stop = &s2io_close;
6935         dev->hard_start_xmit = &s2io_xmit;
6936         dev->get_stats = &s2io_get_stats;
6937         dev->set_multicast_list = &s2io_set_multicast;
6938         dev->do_ioctl = &s2io_ioctl;
6939         dev->change_mtu = &s2io_change_mtu;
6940         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
6941         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
6942         dev->vlan_rx_register = s2io_vlan_rx_register;
6943         dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
6944
6945         /*
6946          * will use eth_mac_addr() for  dev->set_mac_address
6947          * mac address will be set every time dev->open() is called
6948          */
6949         dev->poll = s2io_poll;
6950         dev->weight = 32;
6951
6952 #ifdef CONFIG_NET_POLL_CONTROLLER
6953         dev->poll_controller = s2io_netpoll;
6954 #endif
6955
6956         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
6957         if (sp->high_dma_flag == TRUE)
6958                 dev->features |= NETIF_F_HIGHDMA;
6959         dev->features |= NETIF_F_TSO;
6960         dev->features |= NETIF_F_TSO6;
6961         if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  {
6962                 dev->features |= NETIF_F_UFO;
6963                 dev->features |= NETIF_F_HW_CSUM;
6964         }
6965
6966         dev->tx_timeout = &s2io_tx_watchdog;
6967         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
6968         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
6969         INIT_WORK(&sp->set_link_task, s2io_set_link);
6970
6971         pci_save_state(sp->pdev);
6972
6973         /* Setting swapper control on the NIC, for proper reset operation */
6974         if (s2io_set_swapper(sp)) {
6975                 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
6976                           dev->name);
6977                 ret = -EAGAIN;
6978                 goto set_swap_failed;
6979         }
6980
6981         /* Verify if the Herc works on the slot its placed into */
6982         if (sp->device_type & XFRAME_II_DEVICE) {
6983                 mode = s2io_verify_pci_mode(sp);
6984                 if (mode < 0) {
6985                         DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
6986                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
6987                         ret = -EBADSLT;
6988                         goto set_swap_failed;
6989                 }
6990         }
6991
6992         /* Not needed for Herc */
6993         if (sp->device_type & XFRAME_I_DEVICE) {
6994                 /*
6995                  * Fix for all "FFs" MAC address problems observed on
6996                  * Alpha platforms
6997                  */
6998                 fix_mac_address(sp);
6999                 s2io_reset(sp);
7000         }
7001
7002         /*
7003          * MAC address initialization.
7004          * For now only one mac address will be read and used.
7005          */
7006         bar0 = sp->bar0;
7007         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7008             RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7009         writeq(val64, &bar0->rmac_addr_cmd_mem);
7010         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7011                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
7012         tmp64 = readq(&bar0->rmac_addr_data0_mem);
7013         mac_down = (u32) tmp64;
7014         mac_up = (u32) (tmp64 >> 32);
7015
7016         memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
7017
7018         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7019         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7020         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7021         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7022         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7023         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7024
7025         /*  Set the factory defined MAC address initially   */
7026         dev->addr_len = ETH_ALEN;
7027         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7028
7029         /* reset Nic and bring it to known state */
7030         s2io_reset(sp);
7031
7032         /*
7033          * Initialize the tasklet status and link state flags
7034          * and the card state parameter
7035          */
7036         atomic_set(&(sp->card_state), 0);
7037         sp->tasklet_status = 0;
7038         sp->link_state = 0;
7039
7040         /* Initialize spinlocks */
7041         spin_lock_init(&sp->tx_lock);
7042
7043         if (!napi)
7044                 spin_lock_init(&sp->put_lock);
7045         spin_lock_init(&sp->rx_lock);
7046
7047         /*
7048          * SXE-002: Configure link and activity LED to init state
7049          * on driver load.
7050          */
7051         subid = sp->pdev->subsystem_device;
7052         if ((subid & 0xFF) >= 0x07) {
7053                 val64 = readq(&bar0->gpio_control);
7054                 val64 |= 0x0000800000000000ULL;
7055                 writeq(val64, &bar0->gpio_control);
7056                 val64 = 0x0411040400000000ULL;
7057                 writeq(val64, (void __iomem *) bar0 + 0x2700);
7058                 val64 = readq(&bar0->gpio_control);
7059         }
7060
7061         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
7062
7063         if (register_netdev(dev)) {
7064                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7065                 ret = -ENODEV;
7066                 goto register_failed;
7067         }
7068         s2io_vpd_read(sp);
7069         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2005 Neterion Inc.\n");
7070         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7071                   sp->product_name, get_xena_rev_id(sp->pdev));
7072         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7073                   s2io_driver_version);
7074         DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
7075                           "%02x:%02x:%02x:%02x:%02x:%02x", dev->name,
7076                           sp->def_mac_addr[0].mac_addr[0],
7077                           sp->def_mac_addr[0].mac_addr[1],
7078                           sp->def_mac_addr[0].mac_addr[2],
7079                           sp->def_mac_addr[0].mac_addr[3],
7080                           sp->def_mac_addr[0].mac_addr[4],
7081                           sp->def_mac_addr[0].mac_addr[5]);
7082         DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7083         if (sp->device_type & XFRAME_II_DEVICE) {
7084                 mode = s2io_print_pci_mode(sp);
7085                 if (mode < 0) {
7086                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7087                         ret = -EBADSLT;
7088                         unregister_netdev(dev);
7089                         goto set_swap_failed;
7090                 }
7091         }
7092         switch(sp->rxd_mode) {
7093                 case RXD_MODE_1:
7094                     DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7095                                                 dev->name);
7096                     break;
7097                 case RXD_MODE_3B:
7098                     DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7099                                                 dev->name);
7100                     break;
7101                 case RXD_MODE_3A:
7102                     DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
7103                                                 dev->name);
7104                     break;
7105         }
7106
7107         if (napi)
7108                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7109         switch(sp->intr_type) {
7110                 case INTA:
7111                     DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7112                     break;
7113                 case MSI:
7114                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7115                     break;
7116                 case MSI_X:
7117                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7118                     break;
7119         }
7120         if (sp->lro)
7121                 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7122                           dev->name);
7123         if (ufo)
7124                 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7125                                         " enabled\n", dev->name);
7126         /* Initialize device name */
7127         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7128
7129         /* Initialize bimodal Interrupts */
7130         sp->config.bimodal = bimodal;
7131         if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7132                 sp->config.bimodal = 0;
7133                 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7134                         dev->name);
7135         }
7136
7137         /*
7138          * Make Link state as off at this point, when the Link change
7139          * interrupt comes the state will be automatically changed to
7140          * the right state.
7141          */
7142         netif_carrier_off(dev);
7143
7144         return 0;
7145
7146       register_failed:
7147       set_swap_failed:
7148         iounmap(sp->bar1);
7149       bar1_remap_failed:
7150         iounmap(sp->bar0);
7151       bar0_remap_failed:
7152       mem_alloc_failed:
7153         free_shared_mem(sp);
7154         pci_disable_device(pdev);
7155         if (dev_intr_type != MSI_X)
7156                 pci_release_regions(pdev);
7157         else {
7158                 release_mem_region(pci_resource_start(pdev, 0),
7159                         pci_resource_len(pdev, 0));
7160                 release_mem_region(pci_resource_start(pdev, 2),
7161                         pci_resource_len(pdev, 2));
7162         }
7163         pci_set_drvdata(pdev, NULL);
7164         free_netdev(dev);
7165
7166         return ret;
7167 }
7168
7169 /**
7170  * s2io_rem_nic - Free the PCI device
7171  * @pdev: structure containing the PCI related information of the device.
7172  * Description: This function is called by the Pci subsystem to release a
7173  * PCI device and free up all resource held up by the device. This could
7174  * be in response to a Hot plug event or when the driver is to be removed
7175  * from memory.
7176  */
7177
7178 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7179 {
7180         struct net_device *dev =
7181             (struct net_device *) pci_get_drvdata(pdev);
7182         struct s2io_nic *sp;
7183
7184         if (dev == NULL) {
7185                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7186                 return;
7187         }
7188
7189         flush_scheduled_work();
7190
7191         sp = dev->priv;
7192         unregister_netdev(dev);
7193
7194         free_shared_mem(sp);
7195         iounmap(sp->bar0);
7196         iounmap(sp->bar1);
7197         if (sp->intr_type != MSI_X)
7198                 pci_release_regions(pdev);
7199         else {
7200                 release_mem_region(pci_resource_start(pdev, 0),
7201                         pci_resource_len(pdev, 0));
7202                 release_mem_region(pci_resource_start(pdev, 2),
7203                         pci_resource_len(pdev, 2));
7204         }
7205         pci_set_drvdata(pdev, NULL);
7206         free_netdev(dev);
7207         pci_disable_device(pdev);
7208 }
7209
7210 /**
7211  * s2io_starter - Entry point for the driver
7212  * Description: This function is the entry point for the driver. It verifies
7213  * the module loadable parameters and initializes PCI configuration space.
7214  */
7215
7216 int __init s2io_starter(void)
7217 {
7218         return pci_register_driver(&s2io_driver);
7219 }
7220
7221 /**
7222  * s2io_closer - Cleanup routine for the driver
7223  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7224  */
7225
7226 static __exit void s2io_closer(void)
7227 {
7228         pci_unregister_driver(&s2io_driver);
7229         DBG_PRINT(INIT_DBG, "cleanup done\n");
7230 }
7231
7232 module_init(s2io_starter);
7233 module_exit(s2io_closer);
7234
7235 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7236                 struct tcphdr **tcp, struct RxD_t *rxdp)
7237 {
7238         int ip_off;
7239         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7240
7241         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7242                 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7243                           __FUNCTION__);
7244                 return -1;
7245         }
7246
7247         /* TODO:
7248          * By default the VLAN field in the MAC is stripped by the card, if this
7249          * feature is turned off in rx_pa_cfg register, then the ip_off field
7250          * has to be shifted by a further 2 bytes
7251          */
7252         switch (l2_type) {
7253                 case 0: /* DIX type */
7254                 case 4: /* DIX type with VLAN */
7255                         ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7256                         break;
7257                 /* LLC, SNAP etc are considered non-mergeable */
7258                 default:
7259                         return -1;
7260         }
7261
7262         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7263         ip_len = (u8)((*ip)->ihl);
7264         ip_len <<= 2;
7265         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7266
7267         return 0;
7268 }
7269
7270 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7271                                   struct tcphdr *tcp)
7272 {
7273         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7274         if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7275            (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7276                 return -1;
7277         return 0;
7278 }
7279
7280 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7281 {
7282         return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7283 }
7284
7285 static void initiate_new_session(struct lro *lro, u8 *l2h,
7286                      struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7287 {
7288         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7289         lro->l2h = l2h;
7290         lro->iph = ip;
7291         lro->tcph = tcp;
7292         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7293         lro->tcp_ack = ntohl(tcp->ack_seq);
7294         lro->sg_num = 1;
7295         lro->total_len = ntohs(ip->tot_len);
7296         lro->frags_len = 0;
7297         /*
7298          * check if we saw TCP timestamp. Other consistency checks have
7299          * already been done.
7300          */
7301         if (tcp->doff == 8) {
7302                 u32 *ptr;
7303                 ptr = (u32 *)(tcp+1);
7304                 lro->saw_ts = 1;
7305                 lro->cur_tsval = *(ptr+1);
7306                 lro->cur_tsecr = *(ptr+2);
7307         }
7308         lro->in_use = 1;
7309 }
7310
7311 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7312 {
7313         struct iphdr *ip = lro->iph;
7314         struct tcphdr *tcp = lro->tcph;
7315         __sum16 nchk;
7316         struct stat_block *statinfo = sp->mac_control.stats_info;
7317         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7318
7319         /* Update L3 header */
7320         ip->tot_len = htons(lro->total_len);
7321         ip->check = 0;
7322         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7323         ip->check = nchk;
7324
7325         /* Update L4 header */
7326         tcp->ack_seq = lro->tcp_ack;
7327         tcp->window = lro->window;
7328
7329         /* Update tsecr field if this session has timestamps enabled */
7330         if (lro->saw_ts) {
7331                 u32 *ptr = (u32 *)(tcp + 1);
7332                 *(ptr+2) = lro->cur_tsecr;
7333         }
7334
7335         /* Update counters required for calculation of
7336          * average no. of packets aggregated.
7337          */
7338         statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7339         statinfo->sw_stat.num_aggregations++;
7340 }
7341
7342 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7343                 struct tcphdr *tcp, u32 l4_pyld)
7344 {
7345         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7346         lro->total_len += l4_pyld;
7347         lro->frags_len += l4_pyld;
7348         lro->tcp_next_seq += l4_pyld;
7349         lro->sg_num++;
7350
7351         /* Update ack seq no. and window ad(from this pkt) in LRO object */
7352         lro->tcp_ack = tcp->ack_seq;
7353         lro->window = tcp->window;
7354
7355         if (lro->saw_ts) {
7356                 u32 *ptr;
7357                 /* Update tsecr and tsval from this packet */
7358                 ptr = (u32 *) (tcp + 1);
7359                 lro->cur_tsval = *(ptr + 1);
7360                 lro->cur_tsecr = *(ptr + 2);
7361         }
7362 }
7363
7364 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7365                                     struct tcphdr *tcp, u32 tcp_pyld_len)
7366 {
7367         u8 *ptr;
7368
7369         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7370
7371         if (!tcp_pyld_len) {
7372                 /* Runt frame or a pure ack */
7373                 return -1;
7374         }
7375
7376         if (ip->ihl != 5) /* IP has options */
7377                 return -1;
7378
7379         /* If we see CE codepoint in IP header, packet is not mergeable */
7380         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7381                 return -1;
7382
7383         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7384         if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7385                                     tcp->ece || tcp->cwr || !tcp->ack) {
7386                 /*
7387                  * Currently recognize only the ack control word and
7388                  * any other control field being set would result in
7389                  * flushing the LRO session
7390                  */
7391                 return -1;
7392         }
7393
7394         /*
7395          * Allow only one TCP timestamp option. Don't aggregate if
7396          * any other options are detected.
7397          */
7398         if (tcp->doff != 5 && tcp->doff != 8)
7399                 return -1;
7400
7401         if (tcp->doff == 8) {
7402                 ptr = (u8 *)(tcp + 1);
7403                 while (*ptr == TCPOPT_NOP)
7404                         ptr++;
7405                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7406                         return -1;
7407
7408                 /* Ensure timestamp value increases monotonically */
7409                 if (l_lro)
7410                         if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7411                                 return -1;
7412
7413                 /* timestamp echo reply should be non-zero */
7414                 if (*((u32 *)(ptr+6)) == 0)
7415                         return -1;
7416         }
7417
7418         return 0;
7419 }
7420
7421 static int
7422 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
7423                       struct RxD_t *rxdp, struct s2io_nic *sp)
7424 {
7425         struct iphdr *ip;
7426         struct tcphdr *tcph;
7427         int ret = 0, i;
7428
7429         if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7430                                          rxdp))) {
7431                 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7432                           ip->saddr, ip->daddr);
7433         } else {
7434                 return ret;
7435         }
7436
7437         tcph = (struct tcphdr *)*tcp;
7438         *tcp_len = get_l4_pyld_length(ip, tcph);
7439         for (i=0; i<MAX_LRO_SESSIONS; i++) {
7440                 struct lro *l_lro = &sp->lro0_n[i];
7441                 if (l_lro->in_use) {
7442                         if (check_for_socket_match(l_lro, ip, tcph))
7443                                 continue;
7444                         /* Sock pair matched */
7445                         *lro = l_lro;
7446
7447                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7448                                 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7449                                           "0x%x, actual 0x%x\n", __FUNCTION__,
7450                                           (*lro)->tcp_next_seq,
7451                                           ntohl(tcph->seq));
7452
7453                                 sp->mac_control.stats_info->
7454                                    sw_stat.outof_sequence_pkts++;
7455                                 ret = 2;
7456                                 break;
7457                         }
7458
7459                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7460                                 ret = 1; /* Aggregate */
7461                         else
7462                                 ret = 2; /* Flush both */
7463                         break;
7464                 }
7465         }
7466
7467         if (ret == 0) {
7468                 /* Before searching for available LRO objects,
7469                  * check if the pkt is L3/L4 aggregatable. If not
7470                  * don't create new LRO session. Just send this
7471                  * packet up.
7472                  */
7473                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7474                         return 5;
7475                 }
7476
7477                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7478                         struct lro *l_lro = &sp->lro0_n[i];
7479                         if (!(l_lro->in_use)) {
7480                                 *lro = l_lro;
7481                                 ret = 3; /* Begin anew */
7482                                 break;
7483                         }
7484                 }
7485         }
7486
7487         if (ret == 0) { /* sessions exceeded */
7488                 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7489                           __FUNCTION__);
7490                 *lro = NULL;
7491                 return ret;
7492         }
7493
7494         switch (ret) {
7495                 case 3:
7496                         initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7497                         break;
7498                 case 2:
7499                         update_L3L4_header(sp, *lro);
7500                         break;
7501                 case 1:
7502                         aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7503                         if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7504                                 update_L3L4_header(sp, *lro);
7505                                 ret = 4; /* Flush the LRO */
7506                         }
7507                         break;
7508                 default:
7509                         DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7510                                 __FUNCTION__);
7511                         break;
7512         }
7513
7514         return ret;
7515 }
7516
7517 static void clear_lro_session(struct lro *lro)
7518 {
7519         static u16 lro_struct_size = sizeof(struct lro);
7520
7521         memset(lro, 0, lro_struct_size);
7522 }
7523
7524 static void queue_rx_frame(struct sk_buff *skb)
7525 {
7526         struct net_device *dev = skb->dev;
7527
7528         skb->protocol = eth_type_trans(skb, dev);
7529         if (napi)
7530                 netif_receive_skb(skb);
7531         else
7532                 netif_rx(skb);
7533 }
7534
7535 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
7536                            struct sk_buff *skb,
7537                            u32 tcp_len)
7538 {
7539         struct sk_buff *first = lro->parent;
7540
7541         first->len += tcp_len;
7542         first->data_len = lro->frags_len;
7543         skb_pull(skb, (skb->len - tcp_len));
7544         if (skb_shinfo(first)->frag_list)
7545                 lro->last_frag->next = skb;
7546         else
7547                 skb_shinfo(first)->frag_list = skb;
7548         first->truesize += skb->truesize;
7549         lro->last_frag = skb;
7550         sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
7551         return;
7552 }