]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/net/qlge/qlge_main.c
225930fda5af418ec324412f58302813c1bbe5c8
[net-next-2.6.git] / drivers / net / qlge / qlge_main.c
1 /*
2  * QLogic qlge NIC HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  * See LICENSE.qlge for copyright and licensing details.
5  * Author:     Linux qlge network device driver by
6  *                      Ron Mercer <ron.mercer@qlogic.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/if_vlan.h>
39 #include <linux/delay.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <net/ip6_checksum.h>
43
44 #include "qlge.h"
45
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
48
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
53
54 static const u32 default_msg =
55     NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER |    */
57     NETIF_MSG_IFDOWN |
58     NETIF_MSG_IFUP |
59     NETIF_MSG_RX_ERR |
60     NETIF_MSG_TX_ERR |
61     NETIF_MSG_TX_QUEUED |
62     NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
63 /* NETIF_MSG_PKTDATA | */
64     NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66 static int debug = 0x00007fff;  /* defaults above */
67 module_param(debug, int, 0);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int irq_type = MSIX_IRQ;
74 module_param(irq_type, int, MSIX_IRQ);
75 MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77 static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
78         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
79         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID1)},
80         /* required last entry */
81         {0,}
82 };
83
84 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
85
86 /* This hardware semaphore causes exclusive access to
87  * resources shared between the NIC driver, MPI firmware,
88  * FCOE firmware and the FC driver.
89  */
90 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
91 {
92         u32 sem_bits = 0;
93
94         switch (sem_mask) {
95         case SEM_XGMAC0_MASK:
96                 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
97                 break;
98         case SEM_XGMAC1_MASK:
99                 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
100                 break;
101         case SEM_ICB_MASK:
102                 sem_bits = SEM_SET << SEM_ICB_SHIFT;
103                 break;
104         case SEM_MAC_ADDR_MASK:
105                 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
106                 break;
107         case SEM_FLASH_MASK:
108                 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
109                 break;
110         case SEM_PROBE_MASK:
111                 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
112                 break;
113         case SEM_RT_IDX_MASK:
114                 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
115                 break;
116         case SEM_PROC_REG_MASK:
117                 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
118                 break;
119         default:
120                 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
121                 return -EINVAL;
122         }
123
124         ql_write32(qdev, SEM, sem_bits | sem_mask);
125         return !(ql_read32(qdev, SEM) & sem_bits);
126 }
127
128 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
129 {
130         unsigned int seconds = 3;
131         do {
132                 if (!ql_sem_trylock(qdev, sem_mask))
133                         return 0;
134                 ssleep(1);
135         } while (--seconds);
136         return -ETIMEDOUT;
137 }
138
139 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
140 {
141         ql_write32(qdev, SEM, sem_mask);
142         ql_read32(qdev, SEM);   /* flush */
143 }
144
145 /* This function waits for a specific bit to come ready
146  * in a given register.  It is used mostly by the initialize
147  * process, but is also used in kernel thread API such as
148  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
149  */
150 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
151 {
152         u32 temp;
153         int count = UDELAY_COUNT;
154
155         while (count) {
156                 temp = ql_read32(qdev, reg);
157
158                 /* check for errors */
159                 if (temp & err_bit) {
160                         QPRINTK(qdev, PROBE, ALERT,
161                                 "register 0x%.08x access error, value = 0x%.08x!.\n",
162                                 reg, temp);
163                         return -EIO;
164                 } else if (temp & bit)
165                         return 0;
166                 udelay(UDELAY_DELAY);
167                 count--;
168         }
169         QPRINTK(qdev, PROBE, ALERT,
170                 "Timed out waiting for reg %x to come ready.\n", reg);
171         return -ETIMEDOUT;
172 }
173
174 /* The CFG register is used to download TX and RX control blocks
175  * to the chip. This function waits for an operation to complete.
176  */
177 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
178 {
179         int count = UDELAY_COUNT;
180         u32 temp;
181
182         while (count) {
183                 temp = ql_read32(qdev, CFG);
184                 if (temp & CFG_LE)
185                         return -EIO;
186                 if (!(temp & bit))
187                         return 0;
188                 udelay(UDELAY_DELAY);
189                 count--;
190         }
191         return -ETIMEDOUT;
192 }
193
194
195 /* Used to issue init control blocks to hw. Maps control block,
196  * sets address, triggers download, waits for completion.
197  */
198 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
199                  u16 q_id)
200 {
201         u64 map;
202         int status = 0;
203         int direction;
204         u32 mask;
205         u32 value;
206
207         direction =
208             (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
209             PCI_DMA_FROMDEVICE;
210
211         map = pci_map_single(qdev->pdev, ptr, size, direction);
212         if (pci_dma_mapping_error(qdev->pdev, map)) {
213                 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
214                 return -ENOMEM;
215         }
216
217         status = ql_wait_cfg(qdev, bit);
218         if (status) {
219                 QPRINTK(qdev, IFUP, ERR,
220                         "Timed out waiting for CFG to come ready.\n");
221                 goto exit;
222         }
223
224         status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
225         if (status)
226                 goto exit;
227         ql_write32(qdev, ICB_L, (u32) map);
228         ql_write32(qdev, ICB_H, (u32) (map >> 32));
229         ql_sem_unlock(qdev, SEM_ICB_MASK);      /* does flush too */
230
231         mask = CFG_Q_MASK | (bit << 16);
232         value = bit | (q_id << CFG_Q_SHIFT);
233         ql_write32(qdev, CFG, (mask | value));
234
235         /*
236          * Wait for the bit to clear after signaling hw.
237          */
238         status = ql_wait_cfg(qdev, bit);
239 exit:
240         pci_unmap_single(qdev->pdev, map, size, direction);
241         return status;
242 }
243
244 /* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
245 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
246                         u32 *value)
247 {
248         u32 offset = 0;
249         int status;
250
251         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
252         if (status)
253                 return status;
254         switch (type) {
255         case MAC_ADDR_TYPE_MULTI_MAC:
256         case MAC_ADDR_TYPE_CAM_MAC:
257                 {
258                         status =
259                             ql_wait_reg_rdy(qdev,
260                                 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
261                         if (status)
262                                 goto exit;
263                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
264                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
265                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
266                         status =
267                             ql_wait_reg_rdy(qdev,
268                                 MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E);
269                         if (status)
270                                 goto exit;
271                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
272                         status =
273                             ql_wait_reg_rdy(qdev,
274                                 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
275                         if (status)
276                                 goto exit;
277                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
278                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
279                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
280                         status =
281                             ql_wait_reg_rdy(qdev,
282                                 MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E);
283                         if (status)
284                                 goto exit;
285                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
286                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
287                                 status =
288                                     ql_wait_reg_rdy(qdev,
289                                         MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
290                                 if (status)
291                                         goto exit;
292                                 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
293                                            (index << MAC_ADDR_IDX_SHIFT) | /* index */
294                                            MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
295                                 status =
296                                     ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
297                                                     MAC_ADDR_MR, MAC_ADDR_E);
298                                 if (status)
299                                         goto exit;
300                                 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
301                         }
302                         break;
303                 }
304         case MAC_ADDR_TYPE_VLAN:
305         case MAC_ADDR_TYPE_MULTI_FLTR:
306         default:
307                 QPRINTK(qdev, IFUP, CRIT,
308                         "Address type %d not yet supported.\n", type);
309                 status = -EPERM;
310         }
311 exit:
312         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
313         return status;
314 }
315
316 /* Set up a MAC, multicast or VLAN address for the
317  * inbound frame matching.
318  */
319 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
320                                u16 index)
321 {
322         u32 offset = 0;
323         int status = 0;
324
325         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
326         if (status)
327                 return status;
328         switch (type) {
329         case MAC_ADDR_TYPE_MULTI_MAC:
330         case MAC_ADDR_TYPE_CAM_MAC:
331                 {
332                         u32 cam_output;
333                         u32 upper = (addr[0] << 8) | addr[1];
334                         u32 lower =
335                             (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
336                             (addr[5]);
337
338                         QPRINTK(qdev, IFUP, INFO,
339                                 "Adding %s address %pM"
340                                 " at index %d in the CAM.\n",
341                                 ((type ==
342                                   MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
343                                  "UNICAST"), addr, index);
344
345                         status =
346                             ql_wait_reg_rdy(qdev,
347                                 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
348                         if (status)
349                                 goto exit;
350                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
351                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
352                                    type);       /* type */
353                         ql_write32(qdev, MAC_ADDR_DATA, lower);
354                         status =
355                             ql_wait_reg_rdy(qdev,
356                                 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
357                         if (status)
358                                 goto exit;
359                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
360                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
361                                    type);       /* type */
362                         ql_write32(qdev, MAC_ADDR_DATA, upper);
363                         status =
364                             ql_wait_reg_rdy(qdev,
365                                 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
366                         if (status)
367                                 goto exit;
368                         ql_write32(qdev, MAC_ADDR_IDX, (offset) |       /* offset */
369                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
370                                    type);       /* type */
371                         /* This field should also include the queue id
372                            and possibly the function id.  Right now we hardcode
373                            the route field to NIC core.
374                          */
375                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
376                                 cam_output = (CAM_OUT_ROUTE_NIC |
377                                               (qdev->
378                                                func << CAM_OUT_FUNC_SHIFT) |
379                                               (qdev->
380                                                rss_ring_first_cq_id <<
381                                                CAM_OUT_CQ_ID_SHIFT));
382                                 if (qdev->vlgrp)
383                                         cam_output |= CAM_OUT_RV;
384                                 /* route to NIC core */
385                                 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
386                         }
387                         break;
388                 }
389         case MAC_ADDR_TYPE_VLAN:
390                 {
391                         u32 enable_bit = *((u32 *) &addr[0]);
392                         /* For VLAN, the addr actually holds a bit that
393                          * either enables or disables the vlan id we are
394                          * addressing. It's either MAC_ADDR_E on or off.
395                          * That's bit-27 we're talking about.
396                          */
397                         QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
398                                 (enable_bit ? "Adding" : "Removing"),
399                                 index, (enable_bit ? "to" : "from"));
400
401                         status =
402                             ql_wait_reg_rdy(qdev,
403                                 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
404                         if (status)
405                                 goto exit;
406                         ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
407                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
408                                    type |       /* type */
409                                    enable_bit); /* enable/disable */
410                         break;
411                 }
412         case MAC_ADDR_TYPE_MULTI_FLTR:
413         default:
414                 QPRINTK(qdev, IFUP, CRIT,
415                         "Address type %d not yet supported.\n", type);
416                 status = -EPERM;
417         }
418 exit:
419         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
420         return status;
421 }
422
423 /* Get a specific frame routing value from the CAM.
424  * Used for debug and reg dump.
425  */
426 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
427 {
428         int status = 0;
429
430         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
431         if (status)
432                 goto exit;
433
434         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, RT_IDX_E);
435         if (status)
436                 goto exit;
437
438         ql_write32(qdev, RT_IDX,
439                    RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
440         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, RT_IDX_E);
441         if (status)
442                 goto exit;
443         *value = ql_read32(qdev, RT_DATA);
444 exit:
445         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
446         return status;
447 }
448
449 /* The NIC function for this chip has 16 routing indexes.  Each one can be used
450  * to route different frame types to various inbound queues.  We send broadcast/
451  * multicast/error frames to the default queue for slow handling,
452  * and CAM hit/RSS frames to the fast handling queues.
453  */
454 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
455                               int enable)
456 {
457         int status;
458         u32 value = 0;
459
460         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
461         if (status)
462                 return status;
463
464         QPRINTK(qdev, IFUP, DEBUG,
465                 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
466                 (enable ? "Adding" : "Removing"),
467                 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
468                 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
469                 ((index ==
470                   RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
471                 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
472                 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
473                 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
474                 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
475                 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
476                 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
477                 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
478                 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
479                 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
480                 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
481                 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
482                 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
483                 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
484                 (enable ? "to" : "from"));
485
486         switch (mask) {
487         case RT_IDX_CAM_HIT:
488                 {
489                         value = RT_IDX_DST_CAM_Q |      /* dest */
490                             RT_IDX_TYPE_NICQ |  /* type */
491                             (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
492                         break;
493                 }
494         case RT_IDX_VALID:      /* Promiscuous Mode frames. */
495                 {
496                         value = RT_IDX_DST_DFLT_Q |     /* dest */
497                             RT_IDX_TYPE_NICQ |  /* type */
498                             (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
499                         break;
500                 }
501         case RT_IDX_ERR:        /* Pass up MAC,IP,TCP/UDP error frames. */
502                 {
503                         value = RT_IDX_DST_DFLT_Q |     /* dest */
504                             RT_IDX_TYPE_NICQ |  /* type */
505                             (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
506                         break;
507                 }
508         case RT_IDX_BCAST:      /* Pass up Broadcast frames to default Q. */
509                 {
510                         value = RT_IDX_DST_DFLT_Q |     /* dest */
511                             RT_IDX_TYPE_NICQ |  /* type */
512                             (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
513                         break;
514                 }
515         case RT_IDX_MCAST:      /* Pass up All Multicast frames. */
516                 {
517                         value = RT_IDX_DST_CAM_Q |      /* dest */
518                             RT_IDX_TYPE_NICQ |  /* type */
519                             (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
520                         break;
521                 }
522         case RT_IDX_MCAST_MATCH:        /* Pass up matched Multicast frames. */
523                 {
524                         value = RT_IDX_DST_CAM_Q |      /* dest */
525                             RT_IDX_TYPE_NICQ |  /* type */
526                             (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
527                         break;
528                 }
529         case RT_IDX_RSS_MATCH:  /* Pass up matched RSS frames. */
530                 {
531                         value = RT_IDX_DST_RSS |        /* dest */
532                             RT_IDX_TYPE_NICQ |  /* type */
533                             (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
534                         break;
535                 }
536         case 0:         /* Clear the E-bit on an entry. */
537                 {
538                         value = RT_IDX_DST_DFLT_Q |     /* dest */
539                             RT_IDX_TYPE_NICQ |  /* type */
540                             (index << RT_IDX_IDX_SHIFT);/* index */
541                         break;
542                 }
543         default:
544                 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
545                         mask);
546                 status = -EPERM;
547                 goto exit;
548         }
549
550         if (value) {
551                 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
552                 if (status)
553                         goto exit;
554                 value |= (enable ? RT_IDX_E : 0);
555                 ql_write32(qdev, RT_IDX, value);
556                 ql_write32(qdev, RT_DATA, enable ? mask : 0);
557         }
558 exit:
559         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
560         return status;
561 }
562
563 static void ql_enable_interrupts(struct ql_adapter *qdev)
564 {
565         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
566 }
567
568 static void ql_disable_interrupts(struct ql_adapter *qdev)
569 {
570         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
571 }
572
573 /* If we're running with multiple MSI-X vectors then we enable on the fly.
574  * Otherwise, we may have multiple outstanding workers and don't want to
575  * enable until the last one finishes. In this case, the irq_cnt gets
576  * incremented everytime we queue a worker and decremented everytime
577  * a worker finishes.  Once it hits zero we enable the interrupt.
578  */
579 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
580 {
581         u32 var = 0;
582         unsigned long hw_flags = 0;
583         struct intr_context *ctx = qdev->intr_context + intr;
584
585         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
586                 /* Always enable if we're MSIX multi interrupts and
587                  * it's not the default (zeroeth) interrupt.
588                  */
589                 ql_write32(qdev, INTR_EN,
590                            ctx->intr_en_mask);
591                 var = ql_read32(qdev, STS);
592                 return var;
593         }
594
595         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
596         if (atomic_dec_and_test(&ctx->irq_cnt)) {
597                 ql_write32(qdev, INTR_EN,
598                            ctx->intr_en_mask);
599                 var = ql_read32(qdev, STS);
600         }
601         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
602         return var;
603 }
604
605 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
606 {
607         u32 var = 0;
608         unsigned long hw_flags;
609         struct intr_context *ctx;
610
611         /* HW disables for us if we're MSIX multi interrupts and
612          * it's not the default (zeroeth) interrupt.
613          */
614         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
615                 return 0;
616
617         ctx = qdev->intr_context + intr;
618         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
619         if (!atomic_read(&ctx->irq_cnt)) {
620                 ql_write32(qdev, INTR_EN,
621                 ctx->intr_dis_mask);
622                 var = ql_read32(qdev, STS);
623         }
624         atomic_inc(&ctx->irq_cnt);
625         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
626         return var;
627 }
628
629 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
630 {
631         int i;
632         for (i = 0; i < qdev->intr_count; i++) {
633                 /* The enable call does a atomic_dec_and_test
634                  * and enables only if the result is zero.
635                  * So we precharge it here.
636                  */
637                 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
638                         i == 0))
639                         atomic_set(&qdev->intr_context[i].irq_cnt, 1);
640                 ql_enable_completion_interrupt(qdev, i);
641         }
642
643 }
644
645 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, u32 *data)
646 {
647         int status = 0;
648         /* wait for reg to come ready */
649         status = ql_wait_reg_rdy(qdev,
650                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
651         if (status)
652                 goto exit;
653         /* set up for reg read */
654         ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
655         /* wait for reg to come ready */
656         status = ql_wait_reg_rdy(qdev,
657                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
658         if (status)
659                 goto exit;
660         /* get the data */
661         *data = ql_read32(qdev, FLASH_DATA);
662 exit:
663         return status;
664 }
665
666 static int ql_get_flash_params(struct ql_adapter *qdev)
667 {
668         int i;
669         int status;
670         u32 *p = (u32 *)&qdev->flash;
671
672         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
673                 return -ETIMEDOUT;
674
675         for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
676                 status = ql_read_flash_word(qdev, i, p);
677                 if (status) {
678                         QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
679                         goto exit;
680                 }
681
682         }
683 exit:
684         ql_sem_unlock(qdev, SEM_FLASH_MASK);
685         return status;
686 }
687
688 /* xgmac register are located behind the xgmac_addr and xgmac_data
689  * register pair.  Each read/write requires us to wait for the ready
690  * bit before reading/writing the data.
691  */
692 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
693 {
694         int status;
695         /* wait for reg to come ready */
696         status = ql_wait_reg_rdy(qdev,
697                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
698         if (status)
699                 return status;
700         /* write the data to the data reg */
701         ql_write32(qdev, XGMAC_DATA, data);
702         /* trigger the write */
703         ql_write32(qdev, XGMAC_ADDR, reg);
704         return status;
705 }
706
707 /* xgmac register are located behind the xgmac_addr and xgmac_data
708  * register pair.  Each read/write requires us to wait for the ready
709  * bit before reading/writing the data.
710  */
711 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
712 {
713         int status = 0;
714         /* wait for reg to come ready */
715         status = ql_wait_reg_rdy(qdev,
716                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
717         if (status)
718                 goto exit;
719         /* set up for reg read */
720         ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
721         /* wait for reg to come ready */
722         status = ql_wait_reg_rdy(qdev,
723                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
724         if (status)
725                 goto exit;
726         /* get the data */
727         *data = ql_read32(qdev, XGMAC_DATA);
728 exit:
729         return status;
730 }
731
732 /* This is used for reading the 64-bit statistics regs. */
733 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
734 {
735         int status = 0;
736         u32 hi = 0;
737         u32 lo = 0;
738
739         status = ql_read_xgmac_reg(qdev, reg, &lo);
740         if (status)
741                 goto exit;
742
743         status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
744         if (status)
745                 goto exit;
746
747         *data = (u64) lo | ((u64) hi << 32);
748
749 exit:
750         return status;
751 }
752
753 /* Take the MAC Core out of reset.
754  * Enable statistics counting.
755  * Take the transmitter/receiver out of reset.
756  * This functionality may be done in the MPI firmware at a
757  * later date.
758  */
759 static int ql_port_initialize(struct ql_adapter *qdev)
760 {
761         int status = 0;
762         u32 data;
763
764         if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
765                 /* Another function has the semaphore, so
766                  * wait for the port init bit to come ready.
767                  */
768                 QPRINTK(qdev, LINK, INFO,
769                         "Another function has the semaphore, so wait for the port init bit to come ready.\n");
770                 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
771                 if (status) {
772                         QPRINTK(qdev, LINK, CRIT,
773                                 "Port initialize timed out.\n");
774                 }
775                 return status;
776         }
777
778         QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
779         /* Set the core reset. */
780         status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
781         if (status)
782                 goto end;
783         data |= GLOBAL_CFG_RESET;
784         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
785         if (status)
786                 goto end;
787
788         /* Clear the core reset and turn on jumbo for receiver. */
789         data &= ~GLOBAL_CFG_RESET;      /* Clear core reset. */
790         data |= GLOBAL_CFG_JUMBO;       /* Turn on jumbo. */
791         data |= GLOBAL_CFG_TX_STAT_EN;
792         data |= GLOBAL_CFG_RX_STAT_EN;
793         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
794         if (status)
795                 goto end;
796
797         /* Enable transmitter, and clear it's reset. */
798         status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
799         if (status)
800                 goto end;
801         data &= ~TX_CFG_RESET;  /* Clear the TX MAC reset. */
802         data |= TX_CFG_EN;      /* Enable the transmitter. */
803         status = ql_write_xgmac_reg(qdev, TX_CFG, data);
804         if (status)
805                 goto end;
806
807         /* Enable receiver and clear it's reset. */
808         status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
809         if (status)
810                 goto end;
811         data &= ~RX_CFG_RESET;  /* Clear the RX MAC reset. */
812         data |= RX_CFG_EN;      /* Enable the receiver. */
813         status = ql_write_xgmac_reg(qdev, RX_CFG, data);
814         if (status)
815                 goto end;
816
817         /* Turn on jumbo. */
818         status =
819             ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
820         if (status)
821                 goto end;
822         status =
823             ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
824         if (status)
825                 goto end;
826
827         /* Signal to the world that the port is enabled.        */
828         ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
829 end:
830         ql_sem_unlock(qdev, qdev->xg_sem_mask);
831         return status;
832 }
833
834 /* Get the next large buffer. */
835 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
836 {
837         struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
838         rx_ring->lbq_curr_idx++;
839         if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
840                 rx_ring->lbq_curr_idx = 0;
841         rx_ring->lbq_free_cnt++;
842         return lbq_desc;
843 }
844
845 /* Get the next small buffer. */
846 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
847 {
848         struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
849         rx_ring->sbq_curr_idx++;
850         if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
851                 rx_ring->sbq_curr_idx = 0;
852         rx_ring->sbq_free_cnt++;
853         return sbq_desc;
854 }
855
856 /* Update an rx ring index. */
857 static void ql_update_cq(struct rx_ring *rx_ring)
858 {
859         rx_ring->cnsmr_idx++;
860         rx_ring->curr_entry++;
861         if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
862                 rx_ring->cnsmr_idx = 0;
863                 rx_ring->curr_entry = rx_ring->cq_base;
864         }
865 }
866
867 static void ql_write_cq_idx(struct rx_ring *rx_ring)
868 {
869         ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
870 }
871
872 /* Process (refill) a large buffer queue. */
873 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
874 {
875         int clean_idx = rx_ring->lbq_clean_idx;
876         struct bq_desc *lbq_desc;
877         struct bq_element *bq;
878         u64 map;
879         int i;
880
881         while (rx_ring->lbq_free_cnt > 16) {
882                 for (i = 0; i < 16; i++) {
883                         QPRINTK(qdev, RX_STATUS, DEBUG,
884                                 "lbq: try cleaning clean_idx = %d.\n",
885                                 clean_idx);
886                         lbq_desc = &rx_ring->lbq[clean_idx];
887                         bq = lbq_desc->bq;
888                         if (lbq_desc->p.lbq_page == NULL) {
889                                 QPRINTK(qdev, RX_STATUS, DEBUG,
890                                         "lbq: getting new page for index %d.\n",
891                                         lbq_desc->index);
892                                 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
893                                 if (lbq_desc->p.lbq_page == NULL) {
894                                         QPRINTK(qdev, RX_STATUS, ERR,
895                                                 "Couldn't get a page.\n");
896                                         return;
897                                 }
898                                 map = pci_map_page(qdev->pdev,
899                                                    lbq_desc->p.lbq_page,
900                                                    0, PAGE_SIZE,
901                                                    PCI_DMA_FROMDEVICE);
902                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
903                                         QPRINTK(qdev, RX_STATUS, ERR,
904                                                 "PCI mapping failed.\n");
905                                         return;
906                                 }
907                                 pci_unmap_addr_set(lbq_desc, mapaddr, map);
908                                 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
909                                 bq->addr_lo =   /*lbq_desc->addr_lo = */
910                                     cpu_to_le32(map);
911                                 bq->addr_hi =   /*lbq_desc->addr_hi = */
912                                     cpu_to_le32(map >> 32);
913                         }
914                         clean_idx++;
915                         if (clean_idx == rx_ring->lbq_len)
916                                 clean_idx = 0;
917                 }
918
919                 rx_ring->lbq_clean_idx = clean_idx;
920                 rx_ring->lbq_prod_idx += 16;
921                 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
922                         rx_ring->lbq_prod_idx = 0;
923                 QPRINTK(qdev, RX_STATUS, DEBUG,
924                         "lbq: updating prod idx = %d.\n",
925                         rx_ring->lbq_prod_idx);
926                 ql_write_db_reg(rx_ring->lbq_prod_idx,
927                                 rx_ring->lbq_prod_idx_db_reg);
928                 rx_ring->lbq_free_cnt -= 16;
929         }
930 }
931
932 /* Process (refill) a small buffer queue. */
933 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
934 {
935         int clean_idx = rx_ring->sbq_clean_idx;
936         struct bq_desc *sbq_desc;
937         struct bq_element *bq;
938         u64 map;
939         int i;
940
941         while (rx_ring->sbq_free_cnt > 16) {
942                 for (i = 0; i < 16; i++) {
943                         sbq_desc = &rx_ring->sbq[clean_idx];
944                         QPRINTK(qdev, RX_STATUS, DEBUG,
945                                 "sbq: try cleaning clean_idx = %d.\n",
946                                 clean_idx);
947                         bq = sbq_desc->bq;
948                         if (sbq_desc->p.skb == NULL) {
949                                 QPRINTK(qdev, RX_STATUS, DEBUG,
950                                         "sbq: getting new skb for index %d.\n",
951                                         sbq_desc->index);
952                                 sbq_desc->p.skb =
953                                     netdev_alloc_skb(qdev->ndev,
954                                                      rx_ring->sbq_buf_size);
955                                 if (sbq_desc->p.skb == NULL) {
956                                         QPRINTK(qdev, PROBE, ERR,
957                                                 "Couldn't get an skb.\n");
958                                         rx_ring->sbq_clean_idx = clean_idx;
959                                         return;
960                                 }
961                                 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
962                                 map = pci_map_single(qdev->pdev,
963                                                      sbq_desc->p.skb->data,
964                                                      rx_ring->sbq_buf_size /
965                                                      2, PCI_DMA_FROMDEVICE);
966                                 pci_unmap_addr_set(sbq_desc, mapaddr, map);
967                                 pci_unmap_len_set(sbq_desc, maplen,
968                                                   rx_ring->sbq_buf_size / 2);
969                                 bq->addr_lo = cpu_to_le32(map);
970                                 bq->addr_hi = cpu_to_le32(map >> 32);
971                         }
972
973                         clean_idx++;
974                         if (clean_idx == rx_ring->sbq_len)
975                                 clean_idx = 0;
976                 }
977                 rx_ring->sbq_clean_idx = clean_idx;
978                 rx_ring->sbq_prod_idx += 16;
979                 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
980                         rx_ring->sbq_prod_idx = 0;
981                 QPRINTK(qdev, RX_STATUS, DEBUG,
982                         "sbq: updating prod idx = %d.\n",
983                         rx_ring->sbq_prod_idx);
984                 ql_write_db_reg(rx_ring->sbq_prod_idx,
985                                 rx_ring->sbq_prod_idx_db_reg);
986
987                 rx_ring->sbq_free_cnt -= 16;
988         }
989 }
990
991 static void ql_update_buffer_queues(struct ql_adapter *qdev,
992                                     struct rx_ring *rx_ring)
993 {
994         ql_update_sbq(qdev, rx_ring);
995         ql_update_lbq(qdev, rx_ring);
996 }
997
998 /* Unmaps tx buffers.  Can be called from send() if a pci mapping
999  * fails at some stage, or from the interrupt when a tx completes.
1000  */
1001 static void ql_unmap_send(struct ql_adapter *qdev,
1002                           struct tx_ring_desc *tx_ring_desc, int mapped)
1003 {
1004         int i;
1005         for (i = 0; i < mapped; i++) {
1006                 if (i == 0 || (i == 7 && mapped > 7)) {
1007                         /*
1008                          * Unmap the skb->data area, or the
1009                          * external sglist (AKA the Outbound
1010                          * Address List (OAL)).
1011                          * If its the zeroeth element, then it's
1012                          * the skb->data area.  If it's the 7th
1013                          * element and there is more than 6 frags,
1014                          * then its an OAL.
1015                          */
1016                         if (i == 7) {
1017                                 QPRINTK(qdev, TX_DONE, DEBUG,
1018                                         "unmapping OAL area.\n");
1019                         }
1020                         pci_unmap_single(qdev->pdev,
1021                                          pci_unmap_addr(&tx_ring_desc->map[i],
1022                                                         mapaddr),
1023                                          pci_unmap_len(&tx_ring_desc->map[i],
1024                                                        maplen),
1025                                          PCI_DMA_TODEVICE);
1026                 } else {
1027                         QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1028                                 i);
1029                         pci_unmap_page(qdev->pdev,
1030                                        pci_unmap_addr(&tx_ring_desc->map[i],
1031                                                       mapaddr),
1032                                        pci_unmap_len(&tx_ring_desc->map[i],
1033                                                      maplen), PCI_DMA_TODEVICE);
1034                 }
1035         }
1036
1037 }
1038
1039 /* Map the buffers for this transmit.  This will return
1040  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1041  */
1042 static int ql_map_send(struct ql_adapter *qdev,
1043                        struct ob_mac_iocb_req *mac_iocb_ptr,
1044                        struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1045 {
1046         int len = skb_headlen(skb);
1047         dma_addr_t map;
1048         int frag_idx, err, map_idx = 0;
1049         struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1050         int frag_cnt = skb_shinfo(skb)->nr_frags;
1051
1052         if (frag_cnt) {
1053                 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1054         }
1055         /*
1056          * Map the skb buffer first.
1057          */
1058         map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1059
1060         err = pci_dma_mapping_error(qdev->pdev, map);
1061         if (err) {
1062                 QPRINTK(qdev, TX_QUEUED, ERR,
1063                         "PCI mapping failed with error: %d\n", err);
1064
1065                 return NETDEV_TX_BUSY;
1066         }
1067
1068         tbd->len = cpu_to_le32(len);
1069         tbd->addr = cpu_to_le64(map);
1070         pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1071         pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1072         map_idx++;
1073
1074         /*
1075          * This loop fills the remainder of the 8 address descriptors
1076          * in the IOCB.  If there are more than 7 fragments, then the
1077          * eighth address desc will point to an external list (OAL).
1078          * When this happens, the remainder of the frags will be stored
1079          * in this list.
1080          */
1081         for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1082                 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1083                 tbd++;
1084                 if (frag_idx == 6 && frag_cnt > 7) {
1085                         /* Let's tack on an sglist.
1086                          * Our control block will now
1087                          * look like this:
1088                          * iocb->seg[0] = skb->data
1089                          * iocb->seg[1] = frag[0]
1090                          * iocb->seg[2] = frag[1]
1091                          * iocb->seg[3] = frag[2]
1092                          * iocb->seg[4] = frag[3]
1093                          * iocb->seg[5] = frag[4]
1094                          * iocb->seg[6] = frag[5]
1095                          * iocb->seg[7] = ptr to OAL (external sglist)
1096                          * oal->seg[0] = frag[6]
1097                          * oal->seg[1] = frag[7]
1098                          * oal->seg[2] = frag[8]
1099                          * oal->seg[3] = frag[9]
1100                          * oal->seg[4] = frag[10]
1101                          *      etc...
1102                          */
1103                         /* Tack on the OAL in the eighth segment of IOCB. */
1104                         map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1105                                              sizeof(struct oal),
1106                                              PCI_DMA_TODEVICE);
1107                         err = pci_dma_mapping_error(qdev->pdev, map);
1108                         if (err) {
1109                                 QPRINTK(qdev, TX_QUEUED, ERR,
1110                                         "PCI mapping outbound address list with error: %d\n",
1111                                         err);
1112                                 goto map_error;
1113                         }
1114
1115                         tbd->addr = cpu_to_le64(map);
1116                         /*
1117                          * The length is the number of fragments
1118                          * that remain to be mapped times the length
1119                          * of our sglist (OAL).
1120                          */
1121                         tbd->len =
1122                             cpu_to_le32((sizeof(struct tx_buf_desc) *
1123                                          (frag_cnt - frag_idx)) | TX_DESC_C);
1124                         pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1125                                            map);
1126                         pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1127                                           sizeof(struct oal));
1128                         tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1129                         map_idx++;
1130                 }
1131
1132                 map =
1133                     pci_map_page(qdev->pdev, frag->page,
1134                                  frag->page_offset, frag->size,
1135                                  PCI_DMA_TODEVICE);
1136
1137                 err = pci_dma_mapping_error(qdev->pdev, map);
1138                 if (err) {
1139                         QPRINTK(qdev, TX_QUEUED, ERR,
1140                                 "PCI mapping frags failed with error: %d.\n",
1141                                 err);
1142                         goto map_error;
1143                 }
1144
1145                 tbd->addr = cpu_to_le64(map);
1146                 tbd->len = cpu_to_le32(frag->size);
1147                 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1148                 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1149                                   frag->size);
1150
1151         }
1152         /* Save the number of segments we've mapped. */
1153         tx_ring_desc->map_cnt = map_idx;
1154         /* Terminate the last segment. */
1155         tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1156         return NETDEV_TX_OK;
1157
1158 map_error:
1159         /*
1160          * If the first frag mapping failed, then i will be zero.
1161          * This causes the unmap of the skb->data area.  Otherwise
1162          * we pass in the number of frags that mapped successfully
1163          * so they can be umapped.
1164          */
1165         ql_unmap_send(qdev, tx_ring_desc, map_idx);
1166         return NETDEV_TX_BUSY;
1167 }
1168
1169 static void ql_realign_skb(struct sk_buff *skb, int len)
1170 {
1171         void *temp_addr = skb->data;
1172
1173         /* Undo the skb_reserve(skb,32) we did before
1174          * giving to hardware, and realign data on
1175          * a 2-byte boundary.
1176          */
1177         skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1178         skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1179         skb_copy_to_linear_data(skb, temp_addr,
1180                 (unsigned int)len);
1181 }
1182
1183 /*
1184  * This function builds an skb for the given inbound
1185  * completion.  It will be rewritten for readability in the near
1186  * future, but for not it works well.
1187  */
1188 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1189                                        struct rx_ring *rx_ring,
1190                                        struct ib_mac_iocb_rsp *ib_mac_rsp)
1191 {
1192         struct bq_desc *lbq_desc;
1193         struct bq_desc *sbq_desc;
1194         struct sk_buff *skb = NULL;
1195         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1196        u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1197
1198         /*
1199          * Handle the header buffer if present.
1200          */
1201         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1202             ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1203                 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1204                 /*
1205                  * Headers fit nicely into a small buffer.
1206                  */
1207                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1208                 pci_unmap_single(qdev->pdev,
1209                                 pci_unmap_addr(sbq_desc, mapaddr),
1210                                 pci_unmap_len(sbq_desc, maplen),
1211                                 PCI_DMA_FROMDEVICE);
1212                 skb = sbq_desc->p.skb;
1213                 ql_realign_skb(skb, hdr_len);
1214                 skb_put(skb, hdr_len);
1215                 sbq_desc->p.skb = NULL;
1216         }
1217
1218         /*
1219          * Handle the data buffer(s).
1220          */
1221         if (unlikely(!length)) {        /* Is there data too? */
1222                 QPRINTK(qdev, RX_STATUS, DEBUG,
1223                         "No Data buffer in this packet.\n");
1224                 return skb;
1225         }
1226
1227         if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1228                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1229                         QPRINTK(qdev, RX_STATUS, DEBUG,
1230                                 "Headers in small, data of %d bytes in small, combine them.\n", length);
1231                         /*
1232                          * Data is less than small buffer size so it's
1233                          * stuffed in a small buffer.
1234                          * For this case we append the data
1235                          * from the "data" small buffer to the "header" small
1236                          * buffer.
1237                          */
1238                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1239                         pci_dma_sync_single_for_cpu(qdev->pdev,
1240                                                     pci_unmap_addr
1241                                                     (sbq_desc, mapaddr),
1242                                                     pci_unmap_len
1243                                                     (sbq_desc, maplen),
1244                                                     PCI_DMA_FROMDEVICE);
1245                         memcpy(skb_put(skb, length),
1246                                sbq_desc->p.skb->data, length);
1247                         pci_dma_sync_single_for_device(qdev->pdev,
1248                                                        pci_unmap_addr
1249                                                        (sbq_desc,
1250                                                         mapaddr),
1251                                                        pci_unmap_len
1252                                                        (sbq_desc,
1253                                                         maplen),
1254                                                        PCI_DMA_FROMDEVICE);
1255                 } else {
1256                         QPRINTK(qdev, RX_STATUS, DEBUG,
1257                                 "%d bytes in a single small buffer.\n", length);
1258                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1259                         skb = sbq_desc->p.skb;
1260                         ql_realign_skb(skb, length);
1261                         skb_put(skb, length);
1262                         pci_unmap_single(qdev->pdev,
1263                                          pci_unmap_addr(sbq_desc,
1264                                                         mapaddr),
1265                                          pci_unmap_len(sbq_desc,
1266                                                        maplen),
1267                                          PCI_DMA_FROMDEVICE);
1268                         sbq_desc->p.skb = NULL;
1269                 }
1270         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1271                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1272                         QPRINTK(qdev, RX_STATUS, DEBUG,
1273                                 "Header in small, %d bytes in large. Chain large to small!\n", length);
1274                         /*
1275                          * The data is in a single large buffer.  We
1276                          * chain it to the header buffer's skb and let
1277                          * it rip.
1278                          */
1279                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1280                         pci_unmap_page(qdev->pdev,
1281                                        pci_unmap_addr(lbq_desc,
1282                                                       mapaddr),
1283                                        pci_unmap_len(lbq_desc, maplen),
1284                                        PCI_DMA_FROMDEVICE);
1285                         QPRINTK(qdev, RX_STATUS, DEBUG,
1286                                 "Chaining page to skb.\n");
1287                         skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1288                                            0, length);
1289                         skb->len += length;
1290                         skb->data_len += length;
1291                         skb->truesize += length;
1292                         lbq_desc->p.lbq_page = NULL;
1293                 } else {
1294                         /*
1295                          * The headers and data are in a single large buffer. We
1296                          * copy it to a new skb and let it go. This can happen with
1297                          * jumbo mtu on a non-TCP/UDP frame.
1298                          */
1299                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1300                         skb = netdev_alloc_skb(qdev->ndev, length);
1301                         if (skb == NULL) {
1302                                 QPRINTK(qdev, PROBE, DEBUG,
1303                                         "No skb available, drop the packet.\n");
1304                                 return NULL;
1305                         }
1306                         skb_reserve(skb, NET_IP_ALIGN);
1307                         QPRINTK(qdev, RX_STATUS, DEBUG,
1308                                 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1309                         skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1310                                            0, length);
1311                         skb->len += length;
1312                         skb->data_len += length;
1313                         skb->truesize += length;
1314                         length -= length;
1315                         lbq_desc->p.lbq_page = NULL;
1316                         __pskb_pull_tail(skb,
1317                                 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1318                                 VLAN_ETH_HLEN : ETH_HLEN);
1319                 }
1320         } else {
1321                 /*
1322                  * The data is in a chain of large buffers
1323                  * pointed to by a small buffer.  We loop
1324                  * thru and chain them to the our small header
1325                  * buffer's skb.
1326                  * frags:  There are 18 max frags and our small
1327                  *         buffer will hold 32 of them. The thing is,
1328                  *         we'll use 3 max for our 9000 byte jumbo
1329                  *         frames.  If the MTU goes up we could
1330                  *          eventually be in trouble.
1331                  */
1332                 int size, offset, i = 0;
1333                 struct bq_element *bq, bq_array[8];
1334                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1335                 pci_unmap_single(qdev->pdev,
1336                                  pci_unmap_addr(sbq_desc, mapaddr),
1337                                  pci_unmap_len(sbq_desc, maplen),
1338                                  PCI_DMA_FROMDEVICE);
1339                 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1340                         /*
1341                          * This is an non TCP/UDP IP frame, so
1342                          * the headers aren't split into a small
1343                          * buffer.  We have to use the small buffer
1344                          * that contains our sg list as our skb to
1345                          * send upstairs. Copy the sg list here to
1346                          * a local buffer and use it to find the
1347                          * pages to chain.
1348                          */
1349                         QPRINTK(qdev, RX_STATUS, DEBUG,
1350                                 "%d bytes of headers & data in chain of large.\n", length);
1351                         skb = sbq_desc->p.skb;
1352                         bq = &bq_array[0];
1353                         memcpy(bq, skb->data, sizeof(bq_array));
1354                         sbq_desc->p.skb = NULL;
1355                         skb_reserve(skb, NET_IP_ALIGN);
1356                 } else {
1357                         QPRINTK(qdev, RX_STATUS, DEBUG,
1358                                 "Headers in small, %d bytes of data in chain of large.\n", length);
1359                         bq = (struct bq_element *)sbq_desc->p.skb->data;
1360                 }
1361                 while (length > 0) {
1362                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1363                         if ((bq->addr_lo & ~BQ_MASK) != lbq_desc->bq->addr_lo) {
1364                                 QPRINTK(qdev, RX_STATUS, ERR,
1365                                         "Panic!!! bad large buffer address, expected 0x%.08x, got 0x%.08x.\n",
1366                                         lbq_desc->bq->addr_lo, bq->addr_lo);
1367                                 return NULL;
1368                         }
1369                         pci_unmap_page(qdev->pdev,
1370                                        pci_unmap_addr(lbq_desc,
1371                                                       mapaddr),
1372                                        pci_unmap_len(lbq_desc,
1373                                                      maplen),
1374                                        PCI_DMA_FROMDEVICE);
1375                         size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1376                         offset = 0;
1377
1378                         QPRINTK(qdev, RX_STATUS, DEBUG,
1379                                 "Adding page %d to skb for %d bytes.\n",
1380                                 i, size);
1381                         skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1382                                            offset, size);
1383                         skb->len += size;
1384                         skb->data_len += size;
1385                         skb->truesize += size;
1386                         length -= size;
1387                         lbq_desc->p.lbq_page = NULL;
1388                         bq++;
1389                         i++;
1390                 }
1391                 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1392                                 VLAN_ETH_HLEN : ETH_HLEN);
1393         }
1394         return skb;
1395 }
1396
1397 /* Process an inbound completion from an rx ring. */
1398 static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1399                                    struct rx_ring *rx_ring,
1400                                    struct ib_mac_iocb_rsp *ib_mac_rsp)
1401 {
1402         struct net_device *ndev = qdev->ndev;
1403         struct sk_buff *skb = NULL;
1404
1405         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1406
1407         skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1408         if (unlikely(!skb)) {
1409                 QPRINTK(qdev, RX_STATUS, DEBUG,
1410                         "No skb available, drop packet.\n");
1411                 return;
1412         }
1413
1414         prefetch(skb->data);
1415         skb->dev = ndev;
1416         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1417                 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1418                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1419                         IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1420                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1421                         IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1422                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1423                         IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1424         }
1425         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1426                 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1427         }
1428         if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
1429                 QPRINTK(qdev, RX_STATUS, ERR,
1430                         "Bad checksum for this %s packet.\n",
1431                         ((ib_mac_rsp->
1432                           flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
1433                 skb->ip_summed = CHECKSUM_NONE;
1434         } else if (qdev->rx_csum &&
1435                    ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
1436                     ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1437                      !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
1438                 QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
1439                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1440         }
1441         qdev->stats.rx_packets++;
1442         qdev->stats.rx_bytes += skb->len;
1443         skb->protocol = eth_type_trans(skb, ndev);
1444         if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
1445                 QPRINTK(qdev, RX_STATUS, DEBUG,
1446                         "Passing a VLAN packet upstream.\n");
1447                 vlan_hwaccel_rx(skb, qdev->vlgrp,
1448                                 le16_to_cpu(ib_mac_rsp->vlan_id));
1449         } else {
1450                 QPRINTK(qdev, RX_STATUS, DEBUG,
1451                         "Passing a normal packet upstream.\n");
1452                 netif_rx(skb);
1453         }
1454 }
1455
1456 /* Process an outbound completion from an rx ring. */
1457 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1458                                    struct ob_mac_iocb_rsp *mac_rsp)
1459 {
1460         struct tx_ring *tx_ring;
1461         struct tx_ring_desc *tx_ring_desc;
1462
1463         QL_DUMP_OB_MAC_RSP(mac_rsp);
1464         tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1465         tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1466         ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1467         qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
1468         qdev->stats.tx_packets++;
1469         dev_kfree_skb(tx_ring_desc->skb);
1470         tx_ring_desc->skb = NULL;
1471
1472         if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1473                                         OB_MAC_IOCB_RSP_S |
1474                                         OB_MAC_IOCB_RSP_L |
1475                                         OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1476                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1477                         QPRINTK(qdev, TX_DONE, WARNING,
1478                                 "Total descriptor length did not match transfer length.\n");
1479                 }
1480                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1481                         QPRINTK(qdev, TX_DONE, WARNING,
1482                                 "Frame too short to be legal, not sent.\n");
1483                 }
1484                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1485                         QPRINTK(qdev, TX_DONE, WARNING,
1486                                 "Frame too long, but sent anyway.\n");
1487                 }
1488                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1489                         QPRINTK(qdev, TX_DONE, WARNING,
1490                                 "PCI backplane error. Frame not sent.\n");
1491                 }
1492         }
1493         atomic_inc(&tx_ring->tx_count);
1494 }
1495
1496 /* Fire up a handler to reset the MPI processor. */
1497 void ql_queue_fw_error(struct ql_adapter *qdev)
1498 {
1499         netif_stop_queue(qdev->ndev);
1500         netif_carrier_off(qdev->ndev);
1501         queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1502 }
1503
1504 void ql_queue_asic_error(struct ql_adapter *qdev)
1505 {
1506         netif_stop_queue(qdev->ndev);
1507         netif_carrier_off(qdev->ndev);
1508         ql_disable_interrupts(qdev);
1509         queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1510 }
1511
1512 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1513                                     struct ib_ae_iocb_rsp *ib_ae_rsp)
1514 {
1515         switch (ib_ae_rsp->event) {
1516         case MGMT_ERR_EVENT:
1517                 QPRINTK(qdev, RX_ERR, ERR,
1518                         "Management Processor Fatal Error.\n");
1519                 ql_queue_fw_error(qdev);
1520                 return;
1521
1522         case CAM_LOOKUP_ERR_EVENT:
1523                 QPRINTK(qdev, LINK, ERR,
1524                         "Multiple CAM hits lookup occurred.\n");
1525                 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1526                 ql_queue_asic_error(qdev);
1527                 return;
1528
1529         case SOFT_ECC_ERROR_EVENT:
1530                 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1531                 ql_queue_asic_error(qdev);
1532                 break;
1533
1534         case PCI_ERR_ANON_BUF_RD:
1535                 QPRINTK(qdev, RX_ERR, ERR,
1536                         "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1537                         ib_ae_rsp->q_id);
1538                 ql_queue_asic_error(qdev);
1539                 break;
1540
1541         default:
1542                 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1543                         ib_ae_rsp->event);
1544                 ql_queue_asic_error(qdev);
1545                 break;
1546         }
1547 }
1548
1549 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1550 {
1551         struct ql_adapter *qdev = rx_ring->qdev;
1552         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1553         struct ob_mac_iocb_rsp *net_rsp = NULL;
1554         int count = 0;
1555
1556         /* While there are entries in the completion queue. */
1557         while (prod != rx_ring->cnsmr_idx) {
1558
1559                 QPRINTK(qdev, RX_STATUS, DEBUG,
1560                         "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1561                         prod, rx_ring->cnsmr_idx);
1562
1563                 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1564                 rmb();
1565                 switch (net_rsp->opcode) {
1566
1567                 case OPCODE_OB_MAC_TSO_IOCB:
1568                 case OPCODE_OB_MAC_IOCB:
1569                         ql_process_mac_tx_intr(qdev, net_rsp);
1570                         break;
1571                 default:
1572                         QPRINTK(qdev, RX_STATUS, DEBUG,
1573                                 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1574                                 net_rsp->opcode);
1575                 }
1576                 count++;
1577                 ql_update_cq(rx_ring);
1578                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1579         }
1580         ql_write_cq_idx(rx_ring);
1581         if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
1582                 struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1583                 if (atomic_read(&tx_ring->queue_stopped) &&
1584                     (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1585                         /*
1586                          * The queue got stopped because the tx_ring was full.
1587                          * Wake it up, because it's now at least 25% empty.
1588                          */
1589                         netif_wake_queue(qdev->ndev);
1590         }
1591
1592         return count;
1593 }
1594
1595 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1596 {
1597         struct ql_adapter *qdev = rx_ring->qdev;
1598         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1599         struct ql_net_rsp_iocb *net_rsp;
1600         int count = 0;
1601
1602         /* While there are entries in the completion queue. */
1603         while (prod != rx_ring->cnsmr_idx) {
1604
1605                 QPRINTK(qdev, RX_STATUS, DEBUG,
1606                         "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1607                         prod, rx_ring->cnsmr_idx);
1608
1609                 net_rsp = rx_ring->curr_entry;
1610                 rmb();
1611                 switch (net_rsp->opcode) {
1612                 case OPCODE_IB_MAC_IOCB:
1613                         ql_process_mac_rx_intr(qdev, rx_ring,
1614                                                (struct ib_mac_iocb_rsp *)
1615                                                net_rsp);
1616                         break;
1617
1618                 case OPCODE_IB_AE_IOCB:
1619                         ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1620                                                 net_rsp);
1621                         break;
1622                 default:
1623                         {
1624                                 QPRINTK(qdev, RX_STATUS, DEBUG,
1625                                         "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1626                                         net_rsp->opcode);
1627                         }
1628                 }
1629                 count++;
1630                 ql_update_cq(rx_ring);
1631                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1632                 if (count == budget)
1633                         break;
1634         }
1635         ql_update_buffer_queues(qdev, rx_ring);
1636         ql_write_cq_idx(rx_ring);
1637         return count;
1638 }
1639
1640 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1641 {
1642         struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1643         struct ql_adapter *qdev = rx_ring->qdev;
1644         int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1645
1646         QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1647                 rx_ring->cq_id);
1648
1649         if (work_done < budget) {
1650                 __netif_rx_complete(qdev->ndev, napi);
1651                 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1652         }
1653         return work_done;
1654 }
1655
1656 static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1657 {
1658         struct ql_adapter *qdev = netdev_priv(ndev);
1659
1660         qdev->vlgrp = grp;
1661         if (grp) {
1662                 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1663                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1664                            NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1665         } else {
1666                 QPRINTK(qdev, IFUP, DEBUG,
1667                         "Turning off VLAN in NIC_RCV_CFG.\n");
1668                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1669         }
1670 }
1671
1672 static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1673 {
1674         struct ql_adapter *qdev = netdev_priv(ndev);
1675         u32 enable_bit = MAC_ADDR_E;
1676
1677         spin_lock(&qdev->hw_lock);
1678         if (ql_set_mac_addr_reg
1679             (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1680                 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1681         }
1682         spin_unlock(&qdev->hw_lock);
1683 }
1684
1685 static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1686 {
1687         struct ql_adapter *qdev = netdev_priv(ndev);
1688         u32 enable_bit = 0;
1689
1690         spin_lock(&qdev->hw_lock);
1691         if (ql_set_mac_addr_reg
1692             (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1693                 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1694         }
1695         spin_unlock(&qdev->hw_lock);
1696
1697 }
1698
1699 /* Worker thread to process a given rx_ring that is dedicated
1700  * to outbound completions.
1701  */
1702 static void ql_tx_clean(struct work_struct *work)
1703 {
1704         struct rx_ring *rx_ring =
1705             container_of(work, struct rx_ring, rx_work.work);
1706         ql_clean_outbound_rx_ring(rx_ring);
1707         ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1708
1709 }
1710
1711 /* Worker thread to process a given rx_ring that is dedicated
1712  * to inbound completions.
1713  */
1714 static void ql_rx_clean(struct work_struct *work)
1715 {
1716         struct rx_ring *rx_ring =
1717             container_of(work, struct rx_ring, rx_work.work);
1718         ql_clean_inbound_rx_ring(rx_ring, 64);
1719         ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1720 }
1721
1722 /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1723 static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1724 {
1725         struct rx_ring *rx_ring = dev_id;
1726         queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1727                               &rx_ring->rx_work, 0);
1728         return IRQ_HANDLED;
1729 }
1730
1731 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1732 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1733 {
1734         struct rx_ring *rx_ring = dev_id;
1735         struct ql_adapter *qdev = rx_ring->qdev;
1736         netif_rx_schedule(qdev->ndev, &rx_ring->napi);
1737         return IRQ_HANDLED;
1738 }
1739
1740 /* This handles a fatal error, MPI activity, and the default
1741  * rx_ring in an MSI-X multiple vector environment.
1742  * In MSI/Legacy environment it also process the rest of
1743  * the rx_rings.
1744  */
1745 static irqreturn_t qlge_isr(int irq, void *dev_id)
1746 {
1747         struct rx_ring *rx_ring = dev_id;
1748         struct ql_adapter *qdev = rx_ring->qdev;
1749         struct intr_context *intr_context = &qdev->intr_context[0];
1750         u32 var;
1751         int i;
1752         int work_done = 0;
1753
1754         spin_lock(&qdev->hw_lock);
1755         if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
1756                 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
1757                 spin_unlock(&qdev->hw_lock);
1758                 return IRQ_NONE;
1759         }
1760         spin_unlock(&qdev->hw_lock);
1761
1762         var = ql_disable_completion_interrupt(qdev, intr_context->intr);
1763
1764         /*
1765          * Check for fatal error.
1766          */
1767         if (var & STS_FE) {
1768                 ql_queue_asic_error(qdev);
1769                 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1770                 var = ql_read32(qdev, ERR_STS);
1771                 QPRINTK(qdev, INTR, ERR,
1772                         "Resetting chip. Error Status Register = 0x%x\n", var);
1773                 return IRQ_HANDLED;
1774         }
1775
1776         /*
1777          * Check MPI processor activity.
1778          */
1779         if (var & STS_PI) {
1780                 /*
1781                  * We've got an async event or mailbox completion.
1782                  * Handle it and clear the source of the interrupt.
1783                  */
1784                 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
1785                 ql_disable_completion_interrupt(qdev, intr_context->intr);
1786                 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
1787                                       &qdev->mpi_work, 0);
1788                 work_done++;
1789         }
1790
1791         /*
1792          * Check the default queue and wake handler if active.
1793          */
1794         rx_ring = &qdev->rx_ring[0];
1795         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
1796                 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
1797                 ql_disable_completion_interrupt(qdev, intr_context->intr);
1798                 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
1799                                       &rx_ring->rx_work, 0);
1800                 work_done++;
1801         }
1802
1803         if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
1804                 /*
1805                  * Start the DPC for each active queue.
1806                  */
1807                 for (i = 1; i < qdev->rx_ring_count; i++) {
1808                         rx_ring = &qdev->rx_ring[i];
1809                         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
1810                             rx_ring->cnsmr_idx) {
1811                                 QPRINTK(qdev, INTR, INFO,
1812                                         "Waking handler for rx_ring[%d].\n", i);
1813                                 ql_disable_completion_interrupt(qdev,
1814                                                                 intr_context->
1815                                                                 intr);
1816                                 if (i < qdev->rss_ring_first_cq_id)
1817                                         queue_delayed_work_on(rx_ring->cpu,
1818                                                               qdev->q_workqueue,
1819                                                               &rx_ring->rx_work,
1820                                                               0);
1821                                 else
1822                                         netif_rx_schedule(qdev->ndev,
1823                                                           &rx_ring->napi);
1824                                 work_done++;
1825                         }
1826                 }
1827         }
1828         ql_enable_completion_interrupt(qdev, intr_context->intr);
1829         return work_done ? IRQ_HANDLED : IRQ_NONE;
1830 }
1831
1832 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1833 {
1834
1835         if (skb_is_gso(skb)) {
1836                 int err;
1837                 if (skb_header_cloned(skb)) {
1838                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1839                         if (err)
1840                                 return err;
1841                 }
1842
1843                 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1844                 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
1845                 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1846                 mac_iocb_ptr->total_hdrs_len =
1847                     cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
1848                 mac_iocb_ptr->net_trans_offset =
1849                     cpu_to_le16(skb_network_offset(skb) |
1850                                 skb_transport_offset(skb)
1851                                 << OB_MAC_TRANSPORT_HDR_SHIFT);
1852                 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
1853                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
1854                 if (likely(skb->protocol == htons(ETH_P_IP))) {
1855                         struct iphdr *iph = ip_hdr(skb);
1856                         iph->check = 0;
1857                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1858                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1859                                                                  iph->daddr, 0,
1860                                                                  IPPROTO_TCP,
1861                                                                  0);
1862                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
1863                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
1864                         tcp_hdr(skb)->check =
1865                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1866                                              &ipv6_hdr(skb)->daddr,
1867                                              0, IPPROTO_TCP, 0);
1868                 }
1869                 return 1;
1870         }
1871         return 0;
1872 }
1873
1874 static void ql_hw_csum_setup(struct sk_buff *skb,
1875                              struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1876 {
1877         int len;
1878         struct iphdr *iph = ip_hdr(skb);
1879         u16 *check;
1880         mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1881         mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1882         mac_iocb_ptr->net_trans_offset =
1883                 cpu_to_le16(skb_network_offset(skb) |
1884                 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
1885
1886         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1887         len = (ntohs(iph->tot_len) - (iph->ihl << 2));
1888         if (likely(iph->protocol == IPPROTO_TCP)) {
1889                 check = &(tcp_hdr(skb)->check);
1890                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
1891                 mac_iocb_ptr->total_hdrs_len =
1892                     cpu_to_le16(skb_transport_offset(skb) +
1893                                 (tcp_hdr(skb)->doff << 2));
1894         } else {
1895                 check = &(udp_hdr(skb)->check);
1896                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
1897                 mac_iocb_ptr->total_hdrs_len =
1898                     cpu_to_le16(skb_transport_offset(skb) +
1899                                 sizeof(struct udphdr));
1900         }
1901         *check = ~csum_tcpudp_magic(iph->saddr,
1902                                     iph->daddr, len, iph->protocol, 0);
1903 }
1904
1905 static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
1906 {
1907         struct tx_ring_desc *tx_ring_desc;
1908         struct ob_mac_iocb_req *mac_iocb_ptr;
1909         struct ql_adapter *qdev = netdev_priv(ndev);
1910         int tso;
1911         struct tx_ring *tx_ring;
1912         u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
1913
1914         tx_ring = &qdev->tx_ring[tx_ring_idx];
1915
1916         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
1917                 QPRINTK(qdev, TX_QUEUED, INFO,
1918                         "%s: shutting down tx queue %d du to lack of resources.\n",
1919                         __func__, tx_ring_idx);
1920                 netif_stop_queue(ndev);
1921                 atomic_inc(&tx_ring->queue_stopped);
1922                 return NETDEV_TX_BUSY;
1923         }
1924         tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
1925         mac_iocb_ptr = tx_ring_desc->queue_entry;
1926         memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
1927         if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != NETDEV_TX_OK) {
1928                 QPRINTK(qdev, TX_QUEUED, ERR, "Could not map the segments.\n");
1929                 return NETDEV_TX_BUSY;
1930         }
1931
1932         mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
1933         mac_iocb_ptr->tid = tx_ring_desc->index;
1934         /* We use the upper 32-bits to store the tx queue for this IO.
1935          * When we get the completion we can use it to establish the context.
1936          */
1937         mac_iocb_ptr->txq_idx = tx_ring_idx;
1938         tx_ring_desc->skb = skb;
1939
1940         mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
1941
1942         if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
1943                 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
1944                         vlan_tx_tag_get(skb));
1945                 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
1946                 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
1947         }
1948         tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1949         if (tso < 0) {
1950                 dev_kfree_skb_any(skb);
1951                 return NETDEV_TX_OK;
1952         } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
1953                 ql_hw_csum_setup(skb,
1954                                  (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1955         }
1956         QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
1957         tx_ring->prod_idx++;
1958         if (tx_ring->prod_idx == tx_ring->wq_len)
1959                 tx_ring->prod_idx = 0;
1960         wmb();
1961
1962         ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
1963         ndev->trans_start = jiffies;
1964         QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
1965                 tx_ring->prod_idx, skb->len);
1966
1967         atomic_dec(&tx_ring->tx_count);
1968         return NETDEV_TX_OK;
1969 }
1970
1971 static void ql_free_shadow_space(struct ql_adapter *qdev)
1972 {
1973         if (qdev->rx_ring_shadow_reg_area) {
1974                 pci_free_consistent(qdev->pdev,
1975                                     PAGE_SIZE,
1976                                     qdev->rx_ring_shadow_reg_area,
1977                                     qdev->rx_ring_shadow_reg_dma);
1978                 qdev->rx_ring_shadow_reg_area = NULL;
1979         }
1980         if (qdev->tx_ring_shadow_reg_area) {
1981                 pci_free_consistent(qdev->pdev,
1982                                     PAGE_SIZE,
1983                                     qdev->tx_ring_shadow_reg_area,
1984                                     qdev->tx_ring_shadow_reg_dma);
1985                 qdev->tx_ring_shadow_reg_area = NULL;
1986         }
1987 }
1988
1989 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
1990 {
1991         qdev->rx_ring_shadow_reg_area =
1992             pci_alloc_consistent(qdev->pdev,
1993                                  PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
1994         if (qdev->rx_ring_shadow_reg_area == NULL) {
1995                 QPRINTK(qdev, IFUP, ERR,
1996                         "Allocation of RX shadow space failed.\n");
1997                 return -ENOMEM;
1998         }
1999         qdev->tx_ring_shadow_reg_area =
2000             pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2001                                  &qdev->tx_ring_shadow_reg_dma);
2002         if (qdev->tx_ring_shadow_reg_area == NULL) {
2003                 QPRINTK(qdev, IFUP, ERR,
2004                         "Allocation of TX shadow space failed.\n");
2005                 goto err_wqp_sh_area;
2006         }
2007         return 0;
2008
2009 err_wqp_sh_area:
2010         pci_free_consistent(qdev->pdev,
2011                             PAGE_SIZE,
2012                             qdev->rx_ring_shadow_reg_area,
2013                             qdev->rx_ring_shadow_reg_dma);
2014         return -ENOMEM;
2015 }
2016
2017 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2018 {
2019         struct tx_ring_desc *tx_ring_desc;
2020         int i;
2021         struct ob_mac_iocb_req *mac_iocb_ptr;
2022
2023         mac_iocb_ptr = tx_ring->wq_base;
2024         tx_ring_desc = tx_ring->q;
2025         for (i = 0; i < tx_ring->wq_len; i++) {
2026                 tx_ring_desc->index = i;
2027                 tx_ring_desc->skb = NULL;
2028                 tx_ring_desc->queue_entry = mac_iocb_ptr;
2029                 mac_iocb_ptr++;
2030                 tx_ring_desc++;
2031         }
2032         atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2033         atomic_set(&tx_ring->queue_stopped, 0);
2034 }
2035
2036 static void ql_free_tx_resources(struct ql_adapter *qdev,
2037                                  struct tx_ring *tx_ring)
2038 {
2039         if (tx_ring->wq_base) {
2040                 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2041                                     tx_ring->wq_base, tx_ring->wq_base_dma);
2042                 tx_ring->wq_base = NULL;
2043         }
2044         kfree(tx_ring->q);
2045         tx_ring->q = NULL;
2046 }
2047
2048 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2049                                  struct tx_ring *tx_ring)
2050 {
2051         tx_ring->wq_base =
2052             pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2053                                  &tx_ring->wq_base_dma);
2054
2055         if ((tx_ring->wq_base == NULL)
2056             || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
2057                 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2058                 return -ENOMEM;
2059         }
2060         tx_ring->q =
2061             kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2062         if (tx_ring->q == NULL)
2063                 goto err;
2064
2065         return 0;
2066 err:
2067         pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2068                             tx_ring->wq_base, tx_ring->wq_base_dma);
2069         return -ENOMEM;
2070 }
2071
2072 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2073 {
2074         int i;
2075         struct bq_desc *lbq_desc;
2076
2077         for (i = 0; i < rx_ring->lbq_len; i++) {
2078                 lbq_desc = &rx_ring->lbq[i];
2079                 if (lbq_desc->p.lbq_page) {
2080                         pci_unmap_page(qdev->pdev,
2081                                        pci_unmap_addr(lbq_desc, mapaddr),
2082                                        pci_unmap_len(lbq_desc, maplen),
2083                                        PCI_DMA_FROMDEVICE);
2084
2085                         put_page(lbq_desc->p.lbq_page);
2086                         lbq_desc->p.lbq_page = NULL;
2087                 }
2088                 lbq_desc->bq->addr_lo = 0;
2089                 lbq_desc->bq->addr_hi = 0;
2090         }
2091 }
2092
2093 /*
2094  * Allocate and map a page for each element of the lbq.
2095  */
2096 static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
2097                                 struct rx_ring *rx_ring)
2098 {
2099         int i;
2100         struct bq_desc *lbq_desc;
2101         u64 map;
2102         struct bq_element *bq = rx_ring->lbq_base;
2103
2104         for (i = 0; i < rx_ring->lbq_len; i++) {
2105                 lbq_desc = &rx_ring->lbq[i];
2106                 memset(lbq_desc, 0, sizeof(lbq_desc));
2107                 lbq_desc->bq = bq;
2108                 lbq_desc->index = i;
2109                 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
2110                 if (unlikely(!lbq_desc->p.lbq_page)) {
2111                         QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
2112                         goto mem_error;
2113                 } else {
2114                         map = pci_map_page(qdev->pdev,
2115                                            lbq_desc->p.lbq_page,
2116                                            0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
2117                         if (pci_dma_mapping_error(qdev->pdev, map)) {
2118                                 QPRINTK(qdev, IFUP, ERR,
2119                                         "PCI mapping failed.\n");
2120                                 goto mem_error;
2121                         }
2122                         pci_unmap_addr_set(lbq_desc, mapaddr, map);
2123                         pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
2124                         bq->addr_lo = cpu_to_le32(map);
2125                         bq->addr_hi = cpu_to_le32(map >> 32);
2126                 }
2127                 bq++;
2128         }
2129         return 0;
2130 mem_error:
2131         ql_free_lbq_buffers(qdev, rx_ring);
2132         return -ENOMEM;
2133 }
2134
2135 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2136 {
2137         int i;
2138         struct bq_desc *sbq_desc;
2139
2140         for (i = 0; i < rx_ring->sbq_len; i++) {
2141                 sbq_desc = &rx_ring->sbq[i];
2142                 if (sbq_desc == NULL) {
2143                         QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2144                         return;
2145                 }
2146                 if (sbq_desc->p.skb) {
2147                         pci_unmap_single(qdev->pdev,
2148                                          pci_unmap_addr(sbq_desc, mapaddr),
2149                                          pci_unmap_len(sbq_desc, maplen),
2150                                          PCI_DMA_FROMDEVICE);
2151                         dev_kfree_skb(sbq_desc->p.skb);
2152                         sbq_desc->p.skb = NULL;
2153                 }
2154                 if (sbq_desc->bq == NULL) {
2155                         QPRINTK(qdev, IFUP, ERR, "sbq_desc->bq %d is NULL.\n",
2156                                 i);
2157                         return;
2158                 }
2159                 sbq_desc->bq->addr_lo = 0;
2160                 sbq_desc->bq->addr_hi = 0;
2161         }
2162 }
2163
2164 /* Allocate and map an skb for each element of the sbq. */
2165 static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
2166                                 struct rx_ring *rx_ring)
2167 {
2168         int i;
2169         struct bq_desc *sbq_desc;
2170         struct sk_buff *skb;
2171         u64 map;
2172         struct bq_element *bq = rx_ring->sbq_base;
2173
2174         for (i = 0; i < rx_ring->sbq_len; i++) {
2175                 sbq_desc = &rx_ring->sbq[i];
2176                 memset(sbq_desc, 0, sizeof(sbq_desc));
2177                 sbq_desc->index = i;
2178                 sbq_desc->bq = bq;
2179                 skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
2180                 if (unlikely(!skb)) {
2181                         /* Better luck next round */
2182                         QPRINTK(qdev, IFUP, ERR,
2183                                 "small buff alloc failed for %d bytes at index %d.\n",
2184                                 rx_ring->sbq_buf_size, i);
2185                         goto mem_err;
2186                 }
2187                 skb_reserve(skb, QLGE_SB_PAD);
2188                 sbq_desc->p.skb = skb;
2189                 /*
2190                  * Map only half the buffer. Because the
2191                  * other half may get some data copied to it
2192                  * when the completion arrives.
2193                  */
2194                 map = pci_map_single(qdev->pdev,
2195                                      skb->data,
2196                                      rx_ring->sbq_buf_size / 2,
2197                                      PCI_DMA_FROMDEVICE);
2198                 if (pci_dma_mapping_error(qdev->pdev, map)) {
2199                         QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
2200                         goto mem_err;
2201                 }
2202                 pci_unmap_addr_set(sbq_desc, mapaddr, map);
2203                 pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
2204                 bq->addr_lo =   /*sbq_desc->addr_lo = */
2205                     cpu_to_le32(map);
2206                 bq->addr_hi =   /*sbq_desc->addr_hi = */
2207                     cpu_to_le32(map >> 32);
2208                 bq++;
2209         }
2210         return 0;
2211 mem_err:
2212         ql_free_sbq_buffers(qdev, rx_ring);
2213         return -ENOMEM;
2214 }
2215
2216 static void ql_free_rx_resources(struct ql_adapter *qdev,
2217                                  struct rx_ring *rx_ring)
2218 {
2219         if (rx_ring->sbq_len)
2220                 ql_free_sbq_buffers(qdev, rx_ring);
2221         if (rx_ring->lbq_len)
2222                 ql_free_lbq_buffers(qdev, rx_ring);
2223
2224         /* Free the small buffer queue. */
2225         if (rx_ring->sbq_base) {
2226                 pci_free_consistent(qdev->pdev,
2227                                     rx_ring->sbq_size,
2228                                     rx_ring->sbq_base, rx_ring->sbq_base_dma);
2229                 rx_ring->sbq_base = NULL;
2230         }
2231
2232         /* Free the small buffer queue control blocks. */
2233         kfree(rx_ring->sbq);
2234         rx_ring->sbq = NULL;
2235
2236         /* Free the large buffer queue. */
2237         if (rx_ring->lbq_base) {
2238                 pci_free_consistent(qdev->pdev,
2239                                     rx_ring->lbq_size,
2240                                     rx_ring->lbq_base, rx_ring->lbq_base_dma);
2241                 rx_ring->lbq_base = NULL;
2242         }
2243
2244         /* Free the large buffer queue control blocks. */
2245         kfree(rx_ring->lbq);
2246         rx_ring->lbq = NULL;
2247
2248         /* Free the rx queue. */
2249         if (rx_ring->cq_base) {
2250                 pci_free_consistent(qdev->pdev,
2251                                     rx_ring->cq_size,
2252                                     rx_ring->cq_base, rx_ring->cq_base_dma);
2253                 rx_ring->cq_base = NULL;
2254         }
2255 }
2256
2257 /* Allocate queues and buffers for this completions queue based
2258  * on the values in the parameter structure. */
2259 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2260                                  struct rx_ring *rx_ring)
2261 {
2262
2263         /*
2264          * Allocate the completion queue for this rx_ring.
2265          */
2266         rx_ring->cq_base =
2267             pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2268                                  &rx_ring->cq_base_dma);
2269
2270         if (rx_ring->cq_base == NULL) {
2271                 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2272                 return -ENOMEM;
2273         }
2274
2275         if (rx_ring->sbq_len) {
2276                 /*
2277                  * Allocate small buffer queue.
2278                  */
2279                 rx_ring->sbq_base =
2280                     pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2281                                          &rx_ring->sbq_base_dma);
2282
2283                 if (rx_ring->sbq_base == NULL) {
2284                         QPRINTK(qdev, IFUP, ERR,
2285                                 "Small buffer queue allocation failed.\n");
2286                         goto err_mem;
2287                 }
2288
2289                 /*
2290                  * Allocate small buffer queue control blocks.
2291                  */
2292                 rx_ring->sbq =
2293                     kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2294                             GFP_KERNEL);
2295                 if (rx_ring->sbq == NULL) {
2296                         QPRINTK(qdev, IFUP, ERR,
2297                                 "Small buffer queue control block allocation failed.\n");
2298                         goto err_mem;
2299                 }
2300
2301                 if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
2302                         QPRINTK(qdev, IFUP, ERR,
2303                                 "Small buffer allocation failed.\n");
2304                         goto err_mem;
2305                 }
2306         }
2307
2308         if (rx_ring->lbq_len) {
2309                 /*
2310                  * Allocate large buffer queue.
2311                  */
2312                 rx_ring->lbq_base =
2313                     pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2314                                          &rx_ring->lbq_base_dma);
2315
2316                 if (rx_ring->lbq_base == NULL) {
2317                         QPRINTK(qdev, IFUP, ERR,
2318                                 "Large buffer queue allocation failed.\n");
2319                         goto err_mem;
2320                 }
2321                 /*
2322                  * Allocate large buffer queue control blocks.
2323                  */
2324                 rx_ring->lbq =
2325                     kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2326                             GFP_KERNEL);
2327                 if (rx_ring->lbq == NULL) {
2328                         QPRINTK(qdev, IFUP, ERR,
2329                                 "Large buffer queue control block allocation failed.\n");
2330                         goto err_mem;
2331                 }
2332
2333                 /*
2334                  * Allocate the buffers.
2335                  */
2336                 if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
2337                         QPRINTK(qdev, IFUP, ERR,
2338                                 "Large buffer allocation failed.\n");
2339                         goto err_mem;
2340                 }
2341         }
2342
2343         return 0;
2344
2345 err_mem:
2346         ql_free_rx_resources(qdev, rx_ring);
2347         return -ENOMEM;
2348 }
2349
2350 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2351 {
2352         struct tx_ring *tx_ring;
2353         struct tx_ring_desc *tx_ring_desc;
2354         int i, j;
2355
2356         /*
2357          * Loop through all queues and free
2358          * any resources.
2359          */
2360         for (j = 0; j < qdev->tx_ring_count; j++) {
2361                 tx_ring = &qdev->tx_ring[j];
2362                 for (i = 0; i < tx_ring->wq_len; i++) {
2363                         tx_ring_desc = &tx_ring->q[i];
2364                         if (tx_ring_desc && tx_ring_desc->skb) {
2365                                 QPRINTK(qdev, IFDOWN, ERR,
2366                                 "Freeing lost SKB %p, from queue %d, index %d.\n",
2367                                         tx_ring_desc->skb, j,
2368                                         tx_ring_desc->index);
2369                                 ql_unmap_send(qdev, tx_ring_desc,
2370                                               tx_ring_desc->map_cnt);
2371                                 dev_kfree_skb(tx_ring_desc->skb);
2372                                 tx_ring_desc->skb = NULL;
2373                         }
2374                 }
2375         }
2376 }
2377
2378 static void ql_free_ring_cb(struct ql_adapter *qdev)
2379 {
2380         kfree(qdev->ring_mem);
2381 }
2382
2383 static int ql_alloc_ring_cb(struct ql_adapter *qdev)
2384 {
2385         /* Allocate space for tx/rx ring control blocks. */
2386         qdev->ring_mem_size =
2387             (qdev->tx_ring_count * sizeof(struct tx_ring)) +
2388             (qdev->rx_ring_count * sizeof(struct rx_ring));
2389         qdev->ring_mem = kmalloc(qdev->ring_mem_size, GFP_KERNEL);
2390         if (qdev->ring_mem == NULL) {
2391                 return -ENOMEM;
2392         } else {
2393                 qdev->rx_ring = qdev->ring_mem;
2394                 qdev->tx_ring = qdev->ring_mem +
2395                     (qdev->rx_ring_count * sizeof(struct rx_ring));
2396         }
2397         return 0;
2398 }
2399
2400 static void ql_free_mem_resources(struct ql_adapter *qdev)
2401 {
2402         int i;
2403
2404         for (i = 0; i < qdev->tx_ring_count; i++)
2405                 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2406         for (i = 0; i < qdev->rx_ring_count; i++)
2407                 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2408         ql_free_shadow_space(qdev);
2409 }
2410
2411 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2412 {
2413         int i;
2414
2415         /* Allocate space for our shadow registers and such. */
2416         if (ql_alloc_shadow_space(qdev))
2417                 return -ENOMEM;
2418
2419         for (i = 0; i < qdev->rx_ring_count; i++) {
2420                 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2421                         QPRINTK(qdev, IFUP, ERR,
2422                                 "RX resource allocation failed.\n");
2423                         goto err_mem;
2424                 }
2425         }
2426         /* Allocate tx queue resources */
2427         for (i = 0; i < qdev->tx_ring_count; i++) {
2428                 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2429                         QPRINTK(qdev, IFUP, ERR,
2430                                 "TX resource allocation failed.\n");
2431                         goto err_mem;
2432                 }
2433         }
2434         return 0;
2435
2436 err_mem:
2437         ql_free_mem_resources(qdev);
2438         return -ENOMEM;
2439 }
2440
2441 /* Set up the rx ring control block and pass it to the chip.
2442  * The control block is defined as
2443  * "Completion Queue Initialization Control Block", or cqicb.
2444  */
2445 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2446 {
2447         struct cqicb *cqicb = &rx_ring->cqicb;
2448         void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2449             (rx_ring->cq_id * sizeof(u64) * 4);
2450         u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2451             (rx_ring->cq_id * sizeof(u64) * 4);
2452         void __iomem *doorbell_area =
2453             qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2454         int err = 0;
2455         u16 bq_len;
2456
2457         /* Set up the shadow registers for this ring. */
2458         rx_ring->prod_idx_sh_reg = shadow_reg;
2459         rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2460         shadow_reg += sizeof(u64);
2461         shadow_reg_dma += sizeof(u64);
2462         rx_ring->lbq_base_indirect = shadow_reg;
2463         rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2464         shadow_reg += sizeof(u64);
2465         shadow_reg_dma += sizeof(u64);
2466         rx_ring->sbq_base_indirect = shadow_reg;
2467         rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2468
2469         /* PCI doorbell mem area + 0x00 for consumer index register */
2470         rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
2471         rx_ring->cnsmr_idx = 0;
2472         rx_ring->curr_entry = rx_ring->cq_base;
2473
2474         /* PCI doorbell mem area + 0x04 for valid register */
2475         rx_ring->valid_db_reg = doorbell_area + 0x04;
2476
2477         /* PCI doorbell mem area + 0x18 for large buffer consumer */
2478         rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
2479
2480         /* PCI doorbell mem area + 0x1c */
2481         rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
2482
2483         memset((void *)cqicb, 0, sizeof(struct cqicb));
2484         cqicb->msix_vect = rx_ring->irq;
2485
2486         cqicb->len = cpu_to_le16(rx_ring->cq_len | LEN_V | LEN_CPP_CONT);
2487
2488         cqicb->addr_lo = cpu_to_le32(rx_ring->cq_base_dma);
2489         cqicb->addr_hi = cpu_to_le32((u64) rx_ring->cq_base_dma >> 32);
2490
2491         cqicb->prod_idx_addr_lo = cpu_to_le32(rx_ring->prod_idx_sh_reg_dma);
2492         cqicb->prod_idx_addr_hi =
2493             cpu_to_le32((u64) rx_ring->prod_idx_sh_reg_dma >> 32);
2494
2495         /*
2496          * Set up the control block load flags.
2497          */
2498         cqicb->flags = FLAGS_LC |       /* Load queue base address */
2499             FLAGS_LV |          /* Load MSI-X vector */
2500             FLAGS_LI;           /* Load irq delay values */
2501         if (rx_ring->lbq_len) {
2502                 cqicb->flags |= FLAGS_LL;       /* Load lbq values */
2503                 *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
2504                 cqicb->lbq_addr_lo =
2505                     cpu_to_le32(rx_ring->lbq_base_indirect_dma);
2506                 cqicb->lbq_addr_hi =
2507                     cpu_to_le32((u64) rx_ring->lbq_base_indirect_dma >> 32);
2508                 cqicb->lbq_buf_size = cpu_to_le32(rx_ring->lbq_buf_size);
2509                 bq_len = (u16) rx_ring->lbq_len;
2510                 cqicb->lbq_len = cpu_to_le16(bq_len);
2511                 rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
2512                 rx_ring->lbq_curr_idx = 0;
2513                 rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
2514                 rx_ring->lbq_free_cnt = 16;
2515         }
2516         if (rx_ring->sbq_len) {
2517                 cqicb->flags |= FLAGS_LS;       /* Load sbq values */
2518                 *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
2519                 cqicb->sbq_addr_lo =
2520                     cpu_to_le32(rx_ring->sbq_base_indirect_dma);
2521                 cqicb->sbq_addr_hi =
2522                     cpu_to_le32((u64) rx_ring->sbq_base_indirect_dma >> 32);
2523                 cqicb->sbq_buf_size =
2524                     cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
2525                 bq_len = (u16) rx_ring->sbq_len;
2526                 cqicb->sbq_len = cpu_to_le16(bq_len);
2527                 rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
2528                 rx_ring->sbq_curr_idx = 0;
2529                 rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
2530                 rx_ring->sbq_free_cnt = 16;
2531         }
2532         switch (rx_ring->type) {
2533         case TX_Q:
2534                 /* If there's only one interrupt, then we use
2535                  * worker threads to process the outbound
2536                  * completion handling rx_rings. We do this so
2537                  * they can be run on multiple CPUs. There is
2538                  * room to play with this more where we would only
2539                  * run in a worker if there are more than x number
2540                  * of outbound completions on the queue and more
2541                  * than one queue active.  Some threshold that
2542                  * would indicate a benefit in spite of the cost
2543                  * of a context switch.
2544                  * If there's more than one interrupt, then the
2545                  * outbound completions are processed in the ISR.
2546                  */
2547                 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2548                         INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2549                 else {
2550                         /* With all debug warnings on we see a WARN_ON message
2551                          * when we free the skb in the interrupt context.
2552                          */
2553                         INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2554                 }
2555                 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2556                 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2557                 break;
2558         case DEFAULT_Q:
2559                 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2560                 cqicb->irq_delay = 0;
2561                 cqicb->pkt_delay = 0;
2562                 break;
2563         case RX_Q:
2564                 /* Inbound completion handling rx_rings run in
2565                  * separate NAPI contexts.
2566                  */
2567                 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2568                                64);
2569                 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2570                 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2571                 break;
2572         default:
2573                 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2574                         rx_ring->type);
2575         }
2576         QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
2577         err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2578                            CFG_LCQ, rx_ring->cq_id);
2579         if (err) {
2580                 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2581                 return err;
2582         }
2583         QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
2584         /*
2585          * Advance the producer index for the buffer queues.
2586          */
2587         wmb();
2588         if (rx_ring->lbq_len)
2589                 ql_write_db_reg(rx_ring->lbq_prod_idx,
2590                                 rx_ring->lbq_prod_idx_db_reg);
2591         if (rx_ring->sbq_len)
2592                 ql_write_db_reg(rx_ring->sbq_prod_idx,
2593                                 rx_ring->sbq_prod_idx_db_reg);
2594         return err;
2595 }
2596
2597 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2598 {
2599         struct wqicb *wqicb = (struct wqicb *)tx_ring;
2600         void __iomem *doorbell_area =
2601             qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2602         void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2603             (tx_ring->wq_id * sizeof(u64));
2604         u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2605             (tx_ring->wq_id * sizeof(u64));
2606         int err = 0;
2607
2608         /*
2609          * Assign doorbell registers for this tx_ring.
2610          */
2611         /* TX PCI doorbell mem area for tx producer index */
2612         tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
2613         tx_ring->prod_idx = 0;
2614         /* TX PCI doorbell mem area + 0x04 */
2615         tx_ring->valid_db_reg = doorbell_area + 0x04;
2616
2617         /*
2618          * Assign shadow registers for this tx_ring.
2619          */
2620         tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2621         tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2622
2623         wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2624         wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2625                                    Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2626         wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2627         wqicb->rid = 0;
2628         wqicb->addr_lo = cpu_to_le32(tx_ring->wq_base_dma);
2629         wqicb->addr_hi = cpu_to_le32((u64) tx_ring->wq_base_dma >> 32);
2630
2631         wqicb->cnsmr_idx_addr_lo = cpu_to_le32(tx_ring->cnsmr_idx_sh_reg_dma);
2632         wqicb->cnsmr_idx_addr_hi =
2633             cpu_to_le32((u64) tx_ring->cnsmr_idx_sh_reg_dma >> 32);
2634
2635         ql_init_tx_ring(qdev, tx_ring);
2636
2637         err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
2638                            (u16) tx_ring->wq_id);
2639         if (err) {
2640                 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2641                 return err;
2642         }
2643         QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
2644         return err;
2645 }
2646
2647 static void ql_disable_msix(struct ql_adapter *qdev)
2648 {
2649         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2650                 pci_disable_msix(qdev->pdev);
2651                 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2652                 kfree(qdev->msi_x_entry);
2653                 qdev->msi_x_entry = NULL;
2654         } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2655                 pci_disable_msi(qdev->pdev);
2656                 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2657         }
2658 }
2659
2660 static void ql_enable_msix(struct ql_adapter *qdev)
2661 {
2662         int i;
2663
2664         qdev->intr_count = 1;
2665         /* Get the MSIX vectors. */
2666         if (irq_type == MSIX_IRQ) {
2667                 /* Try to alloc space for the msix struct,
2668                  * if it fails then go to MSI/legacy.
2669                  */
2670                 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2671                                             sizeof(struct msix_entry),
2672                                             GFP_KERNEL);
2673                 if (!qdev->msi_x_entry) {
2674                         irq_type = MSI_IRQ;
2675                         goto msi;
2676                 }
2677
2678                 for (i = 0; i < qdev->rx_ring_count; i++)
2679                         qdev->msi_x_entry[i].entry = i;
2680
2681                 if (!pci_enable_msix
2682                     (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2683                         set_bit(QL_MSIX_ENABLED, &qdev->flags);
2684                         qdev->intr_count = qdev->rx_ring_count;
2685                         QPRINTK(qdev, IFUP, INFO,
2686                                 "MSI-X Enabled, got %d vectors.\n",
2687                                 qdev->intr_count);
2688                         return;
2689                 } else {
2690                         kfree(qdev->msi_x_entry);
2691                         qdev->msi_x_entry = NULL;
2692                         QPRINTK(qdev, IFUP, WARNING,
2693                                 "MSI-X Enable failed, trying MSI.\n");
2694                         irq_type = MSI_IRQ;
2695                 }
2696         }
2697 msi:
2698         if (irq_type == MSI_IRQ) {
2699                 if (!pci_enable_msi(qdev->pdev)) {
2700                         set_bit(QL_MSI_ENABLED, &qdev->flags);
2701                         QPRINTK(qdev, IFUP, INFO,
2702                                 "Running with MSI interrupts.\n");
2703                         return;
2704                 }
2705         }
2706         irq_type = LEG_IRQ;
2707         QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2708 }
2709
2710 /*
2711  * Here we build the intr_context structures based on
2712  * our rx_ring count and intr vector count.
2713  * The intr_context structure is used to hook each vector
2714  * to possibly different handlers.
2715  */
2716 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2717 {
2718         int i = 0;
2719         struct intr_context *intr_context = &qdev->intr_context[0];
2720
2721         ql_enable_msix(qdev);
2722
2723         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2724                 /* Each rx_ring has it's
2725                  * own intr_context since we have separate
2726                  * vectors for each queue.
2727                  * This only true when MSI-X is enabled.
2728                  */
2729                 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2730                         qdev->rx_ring[i].irq = i;
2731                         intr_context->intr = i;
2732                         intr_context->qdev = qdev;
2733                         /*
2734                          * We set up each vectors enable/disable/read bits so
2735                          * there's no bit/mask calculations in the critical path.
2736                          */
2737                         intr_context->intr_en_mask =
2738                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2739                             INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2740                             | i;
2741                         intr_context->intr_dis_mask =
2742                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2743                             INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2744                             INTR_EN_IHD | i;
2745                         intr_context->intr_read_mask =
2746                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2747                             INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2748                             i;
2749
2750                         if (i == 0) {
2751                                 /*
2752                                  * Default queue handles bcast/mcast plus
2753                                  * async events.  Needs buffers.
2754                                  */
2755                                 intr_context->handler = qlge_isr;
2756                                 sprintf(intr_context->name, "%s-default-queue",
2757                                         qdev->ndev->name);
2758                         } else if (i < qdev->rss_ring_first_cq_id) {
2759                                 /*
2760                                  * Outbound queue is for outbound completions only.
2761                                  */
2762                                 intr_context->handler = qlge_msix_tx_isr;
2763                                 sprintf(intr_context->name, "%s-txq-%d",
2764                                         qdev->ndev->name, i);
2765                         } else {
2766                                 /*
2767                                  * Inbound queues handle unicast frames only.
2768                                  */
2769                                 intr_context->handler = qlge_msix_rx_isr;
2770                                 sprintf(intr_context->name, "%s-rxq-%d",
2771                                         qdev->ndev->name, i);
2772                         }
2773                 }
2774         } else {
2775                 /*
2776                  * All rx_rings use the same intr_context since
2777                  * there is only one vector.
2778                  */
2779                 intr_context->intr = 0;
2780                 intr_context->qdev = qdev;
2781                 /*
2782                  * We set up each vectors enable/disable/read bits so
2783                  * there's no bit/mask calculations in the critical path.
2784                  */
2785                 intr_context->intr_en_mask =
2786                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2787                 intr_context->intr_dis_mask =
2788                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2789                     INTR_EN_TYPE_DISABLE;
2790                 intr_context->intr_read_mask =
2791                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2792                 /*
2793                  * Single interrupt means one handler for all rings.
2794                  */
2795                 intr_context->handler = qlge_isr;
2796                 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2797                 for (i = 0; i < qdev->rx_ring_count; i++)
2798                         qdev->rx_ring[i].irq = 0;
2799         }
2800 }
2801
2802 static void ql_free_irq(struct ql_adapter *qdev)
2803 {
2804         int i;
2805         struct intr_context *intr_context = &qdev->intr_context[0];
2806
2807         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2808                 if (intr_context->hooked) {
2809                         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2810                                 free_irq(qdev->msi_x_entry[i].vector,
2811                                          &qdev->rx_ring[i]);
2812                                 QPRINTK(qdev, IFDOWN, ERR,
2813                                         "freeing msix interrupt %d.\n", i);
2814                         } else {
2815                                 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
2816                                 QPRINTK(qdev, IFDOWN, ERR,
2817                                         "freeing msi interrupt %d.\n", i);
2818                         }
2819                 }
2820         }
2821         ql_disable_msix(qdev);
2822 }
2823
2824 static int ql_request_irq(struct ql_adapter *qdev)
2825 {
2826         int i;
2827         int status = 0;
2828         struct pci_dev *pdev = qdev->pdev;
2829         struct intr_context *intr_context = &qdev->intr_context[0];
2830
2831         ql_resolve_queues_to_irqs(qdev);
2832
2833         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2834                 atomic_set(&intr_context->irq_cnt, 0);
2835                 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2836                         status = request_irq(qdev->msi_x_entry[i].vector,
2837                                              intr_context->handler,
2838                                              0,
2839                                              intr_context->name,
2840                                              &qdev->rx_ring[i]);
2841                         if (status) {
2842                                 QPRINTK(qdev, IFUP, ERR,
2843                                         "Failed request for MSIX interrupt %d.\n",
2844                                         i);
2845                                 goto err_irq;
2846                         } else {
2847                                 QPRINTK(qdev, IFUP, INFO,
2848                                         "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2849                                         i,
2850                                         qdev->rx_ring[i].type ==
2851                                         DEFAULT_Q ? "DEFAULT_Q" : "",
2852                                         qdev->rx_ring[i].type ==
2853                                         TX_Q ? "TX_Q" : "",
2854                                         qdev->rx_ring[i].type ==
2855                                         RX_Q ? "RX_Q" : "", intr_context->name);
2856                         }
2857                 } else {
2858                         QPRINTK(qdev, IFUP, DEBUG,
2859                                 "trying msi or legacy interrupts.\n");
2860                         QPRINTK(qdev, IFUP, DEBUG,
2861                                 "%s: irq = %d.\n", __func__, pdev->irq);
2862                         QPRINTK(qdev, IFUP, DEBUG,
2863                                 "%s: context->name = %s.\n", __func__,
2864                                intr_context->name);
2865                         QPRINTK(qdev, IFUP, DEBUG,
2866                                 "%s: dev_id = 0x%p.\n", __func__,
2867                                &qdev->rx_ring[0]);
2868                         status =
2869                             request_irq(pdev->irq, qlge_isr,
2870                                         test_bit(QL_MSI_ENABLED,
2871                                                  &qdev->
2872                                                  flags) ? 0 : IRQF_SHARED,
2873                                         intr_context->name, &qdev->rx_ring[0]);
2874                         if (status)
2875                                 goto err_irq;
2876
2877                         QPRINTK(qdev, IFUP, ERR,
2878                                 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2879                                 i,
2880                                 qdev->rx_ring[0].type ==
2881                                 DEFAULT_Q ? "DEFAULT_Q" : "",
2882                                 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
2883                                 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
2884                                 intr_context->name);
2885                 }
2886                 intr_context->hooked = 1;
2887         }
2888         return status;
2889 err_irq:
2890         QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
2891         ql_free_irq(qdev);
2892         return status;
2893 }
2894
2895 static int ql_start_rss(struct ql_adapter *qdev)
2896 {
2897         struct ricb *ricb = &qdev->ricb;
2898         int status = 0;
2899         int i;
2900         u8 *hash_id = (u8 *) ricb->hash_cq_id;
2901
2902         memset((void *)ricb, 0, sizeof(ricb));
2903
2904         ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
2905         ricb->flags =
2906             (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
2907              RSS_RT6);
2908         ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
2909
2910         /*
2911          * Fill out the Indirection Table.
2912          */
2913         for (i = 0; i < 32; i++)
2914                 hash_id[i] = i & 1;
2915
2916         /*
2917          * Random values for the IPv6 and IPv4 Hash Keys.
2918          */
2919         get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
2920         get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
2921
2922         QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
2923
2924         status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
2925         if (status) {
2926                 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
2927                 return status;
2928         }
2929         QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
2930         return status;
2931 }
2932
2933 /* Initialize the frame-to-queue routing. */
2934 static int ql_route_initialize(struct ql_adapter *qdev)
2935 {
2936         int status = 0;
2937         int i;
2938
2939         /* Clear all the entries in the routing table. */
2940         for (i = 0; i < 16; i++) {
2941                 status = ql_set_routing_reg(qdev, i, 0, 0);
2942                 if (status) {
2943                         QPRINTK(qdev, IFUP, ERR,
2944                                 "Failed to init routing register for CAM packets.\n");
2945                         return status;
2946                 }
2947         }
2948
2949         status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
2950         if (status) {
2951                 QPRINTK(qdev, IFUP, ERR,
2952                         "Failed to init routing register for error packets.\n");
2953                 return status;
2954         }
2955         status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
2956         if (status) {
2957                 QPRINTK(qdev, IFUP, ERR,
2958                         "Failed to init routing register for broadcast packets.\n");
2959                 return status;
2960         }
2961         /* If we have more than one inbound queue, then turn on RSS in the
2962          * routing block.
2963          */
2964         if (qdev->rss_ring_count > 1) {
2965                 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
2966                                         RT_IDX_RSS_MATCH, 1);
2967                 if (status) {
2968                         QPRINTK(qdev, IFUP, ERR,
2969                                 "Failed to init routing register for MATCH RSS packets.\n");
2970                         return status;
2971                 }
2972         }
2973
2974         status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
2975                                     RT_IDX_CAM_HIT, 1);
2976         if (status) {
2977                 QPRINTK(qdev, IFUP, ERR,
2978                         "Failed to init routing register for CAM packets.\n");
2979                 return status;
2980         }
2981         return status;
2982 }
2983
2984 static int ql_adapter_initialize(struct ql_adapter *qdev)
2985 {
2986         u32 value, mask;
2987         int i;
2988         int status = 0;
2989
2990         /*
2991          * Set up the System register to halt on errors.
2992          */
2993         value = SYS_EFE | SYS_FAE;
2994         mask = value << 16;
2995         ql_write32(qdev, SYS, mask | value);
2996
2997         /* Set the default queue. */
2998         value = NIC_RCV_CFG_DFQ;
2999         mask = NIC_RCV_CFG_DFQ_MASK;
3000         ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3001
3002         /* Set the MPI interrupt to enabled. */
3003         ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3004
3005         /* Enable the function, set pagesize, enable error checking. */
3006         value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3007             FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
3008
3009         /* Set/clear header splitting. */
3010         mask = FSC_VM_PAGESIZE_MASK |
3011             FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3012         ql_write32(qdev, FSC, mask | value);
3013
3014         ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
3015                 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
3016
3017         /* Start up the rx queues. */
3018         for (i = 0; i < qdev->rx_ring_count; i++) {
3019                 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3020                 if (status) {
3021                         QPRINTK(qdev, IFUP, ERR,
3022                                 "Failed to start rx ring[%d].\n", i);
3023                         return status;
3024                 }
3025         }
3026
3027         /* If there is more than one inbound completion queue
3028          * then download a RICB to configure RSS.
3029          */
3030         if (qdev->rss_ring_count > 1) {
3031                 status = ql_start_rss(qdev);
3032                 if (status) {
3033                         QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3034                         return status;
3035                 }
3036         }
3037
3038         /* Start up the tx queues. */
3039         for (i = 0; i < qdev->tx_ring_count; i++) {
3040                 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3041                 if (status) {
3042                         QPRINTK(qdev, IFUP, ERR,
3043                                 "Failed to start tx ring[%d].\n", i);
3044                         return status;
3045                 }
3046         }
3047
3048         status = ql_port_initialize(qdev);
3049         if (status) {
3050                 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3051                 return status;
3052         }
3053
3054         status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
3055                                      MAC_ADDR_TYPE_CAM_MAC, qdev->func);
3056         if (status) {
3057                 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3058                 return status;
3059         }
3060
3061         status = ql_route_initialize(qdev);
3062         if (status) {
3063                 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3064                 return status;
3065         }
3066
3067         /* Start NAPI for the RSS queues. */
3068         for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
3069                 QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
3070                         i);
3071                 napi_enable(&qdev->rx_ring[i].napi);
3072         }
3073
3074         return status;
3075 }
3076
3077 /* Issue soft reset to chip. */
3078 static int ql_adapter_reset(struct ql_adapter *qdev)
3079 {
3080         u32 value;
3081         int max_wait_time;
3082         int status = 0;
3083         int resetCnt = 0;
3084
3085 #define MAX_RESET_CNT   1
3086 issueReset:
3087         resetCnt++;
3088         QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
3089         ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3090         /* Wait for reset to complete. */
3091         max_wait_time = 3;
3092         QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
3093                 max_wait_time);
3094         do {
3095                 value = ql_read32(qdev, RST_FO);
3096                 if ((value & RST_FO_FR) == 0)
3097                         break;
3098
3099                 ssleep(1);
3100         } while ((--max_wait_time));
3101         if (value & RST_FO_FR) {
3102                 QPRINTK(qdev, IFDOWN, ERR,
3103                         "Stuck in SoftReset:  FSC_SR:0x%08x\n", value);
3104                 if (resetCnt < MAX_RESET_CNT)
3105                         goto issueReset;
3106         }
3107         if (max_wait_time == 0) {
3108                 status = -ETIMEDOUT;
3109                 QPRINTK(qdev, IFDOWN, ERR,
3110                         "ETIMEOUT!!! errored out of resetting the chip!\n");
3111         }
3112
3113         return status;
3114 }
3115
3116 static void ql_display_dev_info(struct net_device *ndev)
3117 {
3118         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3119
3120         QPRINTK(qdev, PROBE, INFO,
3121                 "Function #%d, NIC Roll %d, NIC Rev = %d, "
3122                 "XG Roll = %d, XG Rev = %d.\n",
3123                 qdev->func,
3124                 qdev->chip_rev_id & 0x0000000f,
3125                 qdev->chip_rev_id >> 4 & 0x0000000f,
3126                 qdev->chip_rev_id >> 8 & 0x0000000f,
3127                 qdev->chip_rev_id >> 12 & 0x0000000f);
3128         QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
3129 }
3130
3131 static int ql_adapter_down(struct ql_adapter *qdev)
3132 {
3133         struct net_device *ndev = qdev->ndev;
3134         int i, status = 0;
3135         struct rx_ring *rx_ring;
3136
3137         netif_stop_queue(ndev);
3138         netif_carrier_off(ndev);
3139
3140         cancel_delayed_work_sync(&qdev->asic_reset_work);
3141         cancel_delayed_work_sync(&qdev->mpi_reset_work);
3142         cancel_delayed_work_sync(&qdev->mpi_work);
3143
3144         /* The default queue at index 0 is always processed in
3145          * a workqueue.
3146          */
3147         cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3148
3149         /* The rest of the rx_rings are processed in
3150          * a workqueue only if it's a single interrupt
3151          * environment (MSI/Legacy).
3152          */
3153         for (i = 1; i > qdev->rx_ring_count; i++) {
3154                 rx_ring = &qdev->rx_ring[i];
3155                 /* Only the RSS rings use NAPI on multi irq
3156                  * environment.  Outbound completion processing
3157                  * is done in interrupt context.
3158                  */
3159                 if (i >= qdev->rss_ring_first_cq_id) {
3160                         napi_disable(&rx_ring->napi);
3161                 } else {
3162                         cancel_delayed_work_sync(&rx_ring->rx_work);
3163                 }
3164         }
3165
3166         clear_bit(QL_ADAPTER_UP, &qdev->flags);
3167
3168         ql_disable_interrupts(qdev);
3169
3170         ql_tx_ring_clean(qdev);
3171
3172         spin_lock(&qdev->hw_lock);
3173         status = ql_adapter_reset(qdev);
3174         if (status)
3175                 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3176                         qdev->func);
3177         spin_unlock(&qdev->hw_lock);
3178         return status;
3179 }
3180
3181 static int ql_adapter_up(struct ql_adapter *qdev)
3182 {
3183         int err = 0;
3184
3185         spin_lock(&qdev->hw_lock);
3186         err = ql_adapter_initialize(qdev);
3187         if (err) {
3188                 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3189                 spin_unlock(&qdev->hw_lock);
3190                 goto err_init;
3191         }
3192         spin_unlock(&qdev->hw_lock);
3193         set_bit(QL_ADAPTER_UP, &qdev->flags);
3194         ql_enable_interrupts(qdev);
3195         ql_enable_all_completion_interrupts(qdev);
3196         if ((ql_read32(qdev, STS) & qdev->port_init)) {
3197                 netif_carrier_on(qdev->ndev);
3198                 netif_start_queue(qdev->ndev);
3199         }
3200
3201         return 0;
3202 err_init:
3203         ql_adapter_reset(qdev);
3204         return err;
3205 }
3206
3207 static int ql_cycle_adapter(struct ql_adapter *qdev)
3208 {
3209         int status;
3210
3211         status = ql_adapter_down(qdev);
3212         if (status)
3213                 goto error;
3214
3215         status = ql_adapter_up(qdev);
3216         if (status)
3217                 goto error;
3218
3219         return status;
3220 error:
3221         QPRINTK(qdev, IFUP, ALERT,
3222                 "Driver up/down cycle failed, closing device\n");
3223         rtnl_lock();
3224         dev_close(qdev->ndev);
3225         rtnl_unlock();
3226         return status;
3227 }
3228
3229 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3230 {
3231         ql_free_mem_resources(qdev);
3232         ql_free_irq(qdev);
3233 }
3234
3235 static int ql_get_adapter_resources(struct ql_adapter *qdev)
3236 {
3237         int status = 0;
3238
3239         if (ql_alloc_mem_resources(qdev)) {
3240                 QPRINTK(qdev, IFUP, ERR, "Unable to  allocate memory.\n");
3241                 return -ENOMEM;
3242         }
3243         status = ql_request_irq(qdev);
3244         if (status)
3245                 goto err_irq;
3246         return status;
3247 err_irq:
3248         ql_free_mem_resources(qdev);
3249         return status;
3250 }
3251
3252 static int qlge_close(struct net_device *ndev)
3253 {
3254         struct ql_adapter *qdev = netdev_priv(ndev);
3255
3256         /*
3257          * Wait for device to recover from a reset.
3258          * (Rarely happens, but possible.)
3259          */
3260         while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3261                 msleep(1);
3262         ql_adapter_down(qdev);
3263         ql_release_adapter_resources(qdev);
3264         ql_free_ring_cb(qdev);
3265         return 0;
3266 }
3267
3268 static int ql_configure_rings(struct ql_adapter *qdev)
3269 {
3270         int i;
3271         struct rx_ring *rx_ring;
3272         struct tx_ring *tx_ring;
3273         int cpu_cnt = num_online_cpus();
3274
3275         /*
3276          * For each processor present we allocate one
3277          * rx_ring for outbound completions, and one
3278          * rx_ring for inbound completions.  Plus there is
3279          * always the one default queue.  For the CPU
3280          * counts we end up with the following rx_rings:
3281          * rx_ring count =
3282          *  one default queue +
3283          *  (CPU count * outbound completion rx_ring) +
3284          *  (CPU count * inbound (RSS) completion rx_ring)
3285          * To keep it simple we limit the total number of
3286          * queues to < 32, so we truncate CPU to 8.
3287          * This limitation can be removed when requested.
3288          */
3289
3290         if (cpu_cnt > 8)
3291                 cpu_cnt = 8;
3292
3293         /*
3294          * rx_ring[0] is always the default queue.
3295          */
3296         /* Allocate outbound completion ring for each CPU. */
3297         qdev->tx_ring_count = cpu_cnt;
3298         /* Allocate inbound completion (RSS) ring for each CPU. */
3299         qdev->rss_ring_count = cpu_cnt;
3300         /* cq_id for the first inbound ring handler. */
3301         qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3302         /*
3303          * qdev->rx_ring_count:
3304          * Total number of rx_rings.  This includes the one
3305          * default queue, a number of outbound completion
3306          * handler rx_rings, and the number of inbound
3307          * completion handler rx_rings.
3308          */
3309         qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3310
3311         if (ql_alloc_ring_cb(qdev))
3312                 return -ENOMEM;
3313
3314         for (i = 0; i < qdev->tx_ring_count; i++) {
3315                 tx_ring = &qdev->tx_ring[i];
3316                 memset((void *)tx_ring, 0, sizeof(tx_ring));
3317                 tx_ring->qdev = qdev;
3318                 tx_ring->wq_id = i;
3319                 tx_ring->wq_len = qdev->tx_ring_size;
3320                 tx_ring->wq_size =
3321                     tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3322
3323                 /*
3324                  * The completion queue ID for the tx rings start
3325                  * immediately after the default Q ID, which is zero.
3326                  */
3327                 tx_ring->cq_id = i + 1;
3328         }
3329
3330         for (i = 0; i < qdev->rx_ring_count; i++) {
3331                 rx_ring = &qdev->rx_ring[i];
3332                 memset((void *)rx_ring, 0, sizeof(rx_ring));
3333                 rx_ring->qdev = qdev;
3334                 rx_ring->cq_id = i;
3335                 rx_ring->cpu = i % cpu_cnt;     /* CPU to run handler on. */
3336                 if (i == 0) {   /* Default queue at index 0. */
3337                         /*
3338                          * Default queue handles bcast/mcast plus
3339                          * async events.  Needs buffers.
3340                          */
3341                         rx_ring->cq_len = qdev->rx_ring_size;
3342                         rx_ring->cq_size =
3343                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3344                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3345                         rx_ring->lbq_size =
3346                             rx_ring->lbq_len * sizeof(struct bq_element);
3347                         rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3348                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3349                         rx_ring->sbq_size =
3350                             rx_ring->sbq_len * sizeof(struct bq_element);
3351                         rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3352                         rx_ring->type = DEFAULT_Q;
3353                 } else if (i < qdev->rss_ring_first_cq_id) {
3354                         /*
3355                          * Outbound queue handles outbound completions only.
3356                          */
3357                         /* outbound cq is same size as tx_ring it services. */
3358                         rx_ring->cq_len = qdev->tx_ring_size;
3359                         rx_ring->cq_size =
3360                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3361                         rx_ring->lbq_len = 0;
3362                         rx_ring->lbq_size = 0;
3363                         rx_ring->lbq_buf_size = 0;
3364                         rx_ring->sbq_len = 0;
3365                         rx_ring->sbq_size = 0;
3366                         rx_ring->sbq_buf_size = 0;
3367                         rx_ring->type = TX_Q;
3368                 } else {        /* Inbound completions (RSS) queues */
3369                         /*
3370                          * Inbound queues handle unicast frames only.
3371                          */
3372                         rx_ring->cq_len = qdev->rx_ring_size;
3373                         rx_ring->cq_size =
3374                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3375                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3376                         rx_ring->lbq_size =
3377                             rx_ring->lbq_len * sizeof(struct bq_element);
3378                         rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3379                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3380                         rx_ring->sbq_size =
3381                             rx_ring->sbq_len * sizeof(struct bq_element);
3382                         rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3383                         rx_ring->type = RX_Q;
3384                 }
3385         }
3386         return 0;
3387 }
3388
3389 static int qlge_open(struct net_device *ndev)
3390 {
3391         int err = 0;
3392         struct ql_adapter *qdev = netdev_priv(ndev);
3393
3394         err = ql_configure_rings(qdev);
3395         if (err)
3396                 return err;
3397
3398         err = ql_get_adapter_resources(qdev);
3399         if (err)
3400                 goto error_up;
3401
3402         err = ql_adapter_up(qdev);
3403         if (err)
3404                 goto error_up;
3405
3406         return err;
3407
3408 error_up:
3409         ql_release_adapter_resources(qdev);
3410         ql_free_ring_cb(qdev);
3411         return err;
3412 }
3413
3414 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3415 {
3416         struct ql_adapter *qdev = netdev_priv(ndev);
3417
3418         if (ndev->mtu == 1500 && new_mtu == 9000) {
3419                 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3420         } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3421                 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3422         } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3423                    (ndev->mtu == 9000 && new_mtu == 9000)) {
3424                 return 0;
3425         } else
3426                 return -EINVAL;
3427         ndev->mtu = new_mtu;
3428         return 0;
3429 }
3430
3431 static struct net_device_stats *qlge_get_stats(struct net_device
3432                                                *ndev)
3433 {
3434         struct ql_adapter *qdev = netdev_priv(ndev);
3435         return &qdev->stats;
3436 }
3437
3438 static void qlge_set_multicast_list(struct net_device *ndev)
3439 {
3440         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3441         struct dev_mc_list *mc_ptr;
3442         int i;
3443
3444         spin_lock(&qdev->hw_lock);
3445         /*
3446          * Set or clear promiscuous mode if a
3447          * transition is taking place.
3448          */
3449         if (ndev->flags & IFF_PROMISC) {
3450                 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3451                         if (ql_set_routing_reg
3452                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3453                                 QPRINTK(qdev, HW, ERR,
3454                                         "Failed to set promiscous mode.\n");
3455                         } else {
3456                                 set_bit(QL_PROMISCUOUS, &qdev->flags);
3457                         }
3458                 }
3459         } else {
3460                 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3461                         if (ql_set_routing_reg
3462                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3463                                 QPRINTK(qdev, HW, ERR,
3464                                         "Failed to clear promiscous mode.\n");
3465                         } else {
3466                                 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3467                         }
3468                 }
3469         }
3470
3471         /*
3472          * Set or clear all multicast mode if a
3473          * transition is taking place.
3474          */
3475         if ((ndev->flags & IFF_ALLMULTI) ||
3476             (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3477                 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3478                         if (ql_set_routing_reg
3479                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3480                                 QPRINTK(qdev, HW, ERR,
3481                                         "Failed to set all-multi mode.\n");
3482                         } else {
3483                                 set_bit(QL_ALLMULTI, &qdev->flags);
3484                         }
3485                 }
3486         } else {
3487                 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3488                         if (ql_set_routing_reg
3489                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3490                                 QPRINTK(qdev, HW, ERR,
3491                                         "Failed to clear all-multi mode.\n");
3492                         } else {
3493                                 clear_bit(QL_ALLMULTI, &qdev->flags);
3494                         }
3495                 }
3496         }
3497
3498         if (ndev->mc_count) {
3499                 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3500                      i++, mc_ptr = mc_ptr->next)
3501                         if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3502                                                 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3503                                 QPRINTK(qdev, HW, ERR,
3504                                         "Failed to loadmulticast address.\n");
3505                                 goto exit;
3506                         }
3507                 if (ql_set_routing_reg
3508                     (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3509                         QPRINTK(qdev, HW, ERR,
3510                                 "Failed to set multicast match mode.\n");
3511                 } else {
3512                         set_bit(QL_ALLMULTI, &qdev->flags);
3513                 }
3514         }
3515 exit:
3516         spin_unlock(&qdev->hw_lock);
3517 }
3518
3519 static int qlge_set_mac_address(struct net_device *ndev, void *p)
3520 {
3521         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3522         struct sockaddr *addr = p;
3523         int ret = 0;
3524
3525         if (netif_running(ndev))
3526                 return -EBUSY;
3527
3528         if (!is_valid_ether_addr(addr->sa_data))
3529                 return -EADDRNOTAVAIL;
3530         memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3531
3532         spin_lock(&qdev->hw_lock);
3533         if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3534                         MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
3535                 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3536                 ret = -1;
3537         }
3538         spin_unlock(&qdev->hw_lock);
3539
3540         return ret;
3541 }
3542
3543 static void qlge_tx_timeout(struct net_device *ndev)
3544 {
3545         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3546         queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
3547 }
3548
3549 static void ql_asic_reset_work(struct work_struct *work)
3550 {
3551         struct ql_adapter *qdev =
3552             container_of(work, struct ql_adapter, asic_reset_work.work);
3553         ql_cycle_adapter(qdev);
3554 }
3555
3556 static void ql_get_board_info(struct ql_adapter *qdev)
3557 {
3558         qdev->func =
3559             (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3560         if (qdev->func) {
3561                 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3562                 qdev->port_link_up = STS_PL1;
3563                 qdev->port_init = STS_PI1;
3564                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3565                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3566         } else {
3567                 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3568                 qdev->port_link_up = STS_PL0;
3569                 qdev->port_init = STS_PI0;
3570                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3571                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3572         }
3573         qdev->chip_rev_id = ql_read32(qdev, REV_ID);
3574 }
3575
3576 static void ql_release_all(struct pci_dev *pdev)
3577 {
3578         struct net_device *ndev = pci_get_drvdata(pdev);
3579         struct ql_adapter *qdev = netdev_priv(ndev);
3580
3581         if (qdev->workqueue) {
3582                 destroy_workqueue(qdev->workqueue);
3583                 qdev->workqueue = NULL;
3584         }
3585         if (qdev->q_workqueue) {
3586                 destroy_workqueue(qdev->q_workqueue);
3587                 qdev->q_workqueue = NULL;
3588         }
3589         if (qdev->reg_base)
3590                 iounmap(qdev->reg_base);
3591         if (qdev->doorbell_area)
3592                 iounmap(qdev->doorbell_area);
3593         pci_release_regions(pdev);
3594         pci_set_drvdata(pdev, NULL);
3595 }
3596
3597 static int __devinit ql_init_device(struct pci_dev *pdev,
3598                                     struct net_device *ndev, int cards_found)
3599 {
3600         struct ql_adapter *qdev = netdev_priv(ndev);
3601         int pos, err = 0;
3602         u16 val16;
3603
3604         memset((void *)qdev, 0, sizeof(qdev));
3605         err = pci_enable_device(pdev);
3606         if (err) {
3607                 dev_err(&pdev->dev, "PCI device enable failed.\n");
3608                 return err;
3609         }
3610
3611         pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3612         if (pos <= 0) {
3613                 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3614                         "aborting.\n");
3615                 goto err_out;
3616         } else {
3617                 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3618                 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3619                 val16 |= (PCI_EXP_DEVCTL_CERE |
3620                           PCI_EXP_DEVCTL_NFERE |
3621                           PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3622                 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3623         }
3624
3625         err = pci_request_regions(pdev, DRV_NAME);
3626         if (err) {
3627                 dev_err(&pdev->dev, "PCI region request failed.\n");
3628                 goto err_out;
3629         }
3630
3631         pci_set_master(pdev);
3632         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3633                 set_bit(QL_DMA64, &qdev->flags);
3634                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3635         } else {
3636                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3637                 if (!err)
3638                        err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3639         }
3640
3641         if (err) {
3642                 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3643                 goto err_out;
3644         }
3645
3646         pci_set_drvdata(pdev, ndev);
3647         qdev->reg_base =
3648             ioremap_nocache(pci_resource_start(pdev, 1),
3649                             pci_resource_len(pdev, 1));
3650         if (!qdev->reg_base) {
3651                 dev_err(&pdev->dev, "Register mapping failed.\n");
3652                 err = -ENOMEM;
3653                 goto err_out;
3654         }
3655
3656         qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3657         qdev->doorbell_area =
3658             ioremap_nocache(pci_resource_start(pdev, 3),
3659                             pci_resource_len(pdev, 3));
3660         if (!qdev->doorbell_area) {
3661                 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3662                 err = -ENOMEM;
3663                 goto err_out;
3664         }
3665
3666         ql_get_board_info(qdev);
3667         qdev->ndev = ndev;
3668         qdev->pdev = pdev;
3669         qdev->msg_enable = netif_msg_init(debug, default_msg);
3670         spin_lock_init(&qdev->hw_lock);
3671         spin_lock_init(&qdev->stats_lock);
3672
3673         /* make sure the EEPROM is good */
3674         err = ql_get_flash_params(qdev);
3675         if (err) {
3676                 dev_err(&pdev->dev, "Invalid FLASH.\n");
3677                 goto err_out;
3678         }
3679
3680         if (!is_valid_ether_addr(qdev->flash.mac_addr))
3681                 goto err_out;
3682
3683         memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
3684         memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3685
3686         /* Set up the default ring sizes. */
3687         qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3688         qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3689
3690         /* Set up the coalescing parameters. */
3691         qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3692         qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3693         qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3694         qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3695
3696         /*
3697          * Set up the operating parameters.
3698          */
3699         qdev->rx_csum = 1;
3700
3701         qdev->q_workqueue = create_workqueue(ndev->name);
3702         qdev->workqueue = create_singlethread_workqueue(ndev->name);
3703         INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3704         INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3705         INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
3706
3707         if (!cards_found) {
3708                 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3709                 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3710                          DRV_NAME, DRV_VERSION);
3711         }
3712         return 0;
3713 err_out:
3714         ql_release_all(pdev);
3715         pci_disable_device(pdev);
3716         return err;
3717 }
3718
3719
3720 static const struct net_device_ops qlge_netdev_ops = {
3721         .ndo_open               = qlge_open,
3722         .ndo_stop               = qlge_close,
3723         .ndo_start_xmit         = qlge_send,
3724         .ndo_change_mtu         = qlge_change_mtu,
3725         .ndo_get_stats          = qlge_get_stats,
3726         .ndo_set_multicast_list = qlge_set_multicast_list,
3727         .ndo_set_mac_address    = qlge_set_mac_address,
3728         .ndo_validate_addr      = eth_validate_addr,
3729         .ndo_tx_timeout         = qlge_tx_timeout,
3730         .ndo_vlan_rx_register   = ql_vlan_rx_register,
3731         .ndo_vlan_rx_add_vid    = ql_vlan_rx_add_vid,
3732         .ndo_vlan_rx_kill_vid   = ql_vlan_rx_kill_vid,
3733 };
3734
3735 static int __devinit qlge_probe(struct pci_dev *pdev,
3736                                 const struct pci_device_id *pci_entry)
3737 {
3738         struct net_device *ndev = NULL;
3739         struct ql_adapter *qdev = NULL;
3740         static int cards_found = 0;
3741         int err = 0;
3742
3743         ndev = alloc_etherdev(sizeof(struct ql_adapter));
3744         if (!ndev)
3745                 return -ENOMEM;
3746
3747         err = ql_init_device(pdev, ndev, cards_found);
3748         if (err < 0) {
3749                 free_netdev(ndev);
3750                 return err;
3751         }
3752
3753         qdev = netdev_priv(ndev);
3754         SET_NETDEV_DEV(ndev, &pdev->dev);
3755         ndev->features = (0
3756                           | NETIF_F_IP_CSUM
3757                           | NETIF_F_SG
3758                           | NETIF_F_TSO
3759                           | NETIF_F_TSO6
3760                           | NETIF_F_TSO_ECN
3761                           | NETIF_F_HW_VLAN_TX
3762                           | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
3763
3764         if (test_bit(QL_DMA64, &qdev->flags))
3765                 ndev->features |= NETIF_F_HIGHDMA;
3766
3767         /*
3768          * Set up net_device structure.
3769          */
3770         ndev->tx_queue_len = qdev->tx_ring_size;
3771         ndev->irq = pdev->irq;
3772
3773         ndev->netdev_ops = &qlge_netdev_ops;
3774         SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
3775         ndev->watchdog_timeo = 10 * HZ;
3776
3777         err = register_netdev(ndev);
3778         if (err) {
3779                 dev_err(&pdev->dev, "net device registration failed.\n");
3780                 ql_release_all(pdev);
3781                 pci_disable_device(pdev);
3782                 return err;
3783         }
3784         netif_carrier_off(ndev);
3785         netif_stop_queue(ndev);
3786         ql_display_dev_info(ndev);
3787         cards_found++;
3788         return 0;
3789 }
3790
3791 static void __devexit qlge_remove(struct pci_dev *pdev)
3792 {
3793         struct net_device *ndev = pci_get_drvdata(pdev);
3794         unregister_netdev(ndev);
3795         ql_release_all(pdev);
3796         pci_disable_device(pdev);
3797         free_netdev(ndev);
3798 }
3799
3800 /*
3801  * This callback is called by the PCI subsystem whenever
3802  * a PCI bus error is detected.
3803  */
3804 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
3805                                                enum pci_channel_state state)
3806 {
3807         struct net_device *ndev = pci_get_drvdata(pdev);
3808         struct ql_adapter *qdev = netdev_priv(ndev);
3809
3810         if (netif_running(ndev))
3811                 ql_adapter_down(qdev);
3812
3813         pci_disable_device(pdev);
3814
3815         /* Request a slot reset. */
3816         return PCI_ERS_RESULT_NEED_RESET;
3817 }
3818
3819 /*
3820  * This callback is called after the PCI buss has been reset.
3821  * Basically, this tries to restart the card from scratch.
3822  * This is a shortened version of the device probe/discovery code,
3823  * it resembles the first-half of the () routine.
3824  */
3825 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
3826 {
3827         struct net_device *ndev = pci_get_drvdata(pdev);
3828         struct ql_adapter *qdev = netdev_priv(ndev);
3829
3830         if (pci_enable_device(pdev)) {
3831                 QPRINTK(qdev, IFUP, ERR,
3832                         "Cannot re-enable PCI device after reset.\n");
3833                 return PCI_ERS_RESULT_DISCONNECT;
3834         }
3835
3836         pci_set_master(pdev);
3837
3838         netif_carrier_off(ndev);
3839         netif_stop_queue(ndev);
3840         ql_adapter_reset(qdev);
3841
3842         /* Make sure the EEPROM is good */
3843         memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3844
3845         if (!is_valid_ether_addr(ndev->perm_addr)) {
3846                 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
3847                 return PCI_ERS_RESULT_DISCONNECT;
3848         }
3849
3850         return PCI_ERS_RESULT_RECOVERED;
3851 }
3852
3853 static void qlge_io_resume(struct pci_dev *pdev)
3854 {
3855         struct net_device *ndev = pci_get_drvdata(pdev);
3856         struct ql_adapter *qdev = netdev_priv(ndev);
3857
3858         pci_set_master(pdev);
3859
3860         if (netif_running(ndev)) {
3861                 if (ql_adapter_up(qdev)) {
3862                         QPRINTK(qdev, IFUP, ERR,
3863                                 "Device initialization failed after reset.\n");
3864                         return;
3865                 }
3866         }
3867
3868         netif_device_attach(ndev);
3869 }
3870
3871 static struct pci_error_handlers qlge_err_handler = {
3872         .error_detected = qlge_io_error_detected,
3873         .slot_reset = qlge_io_slot_reset,
3874         .resume = qlge_io_resume,
3875 };
3876
3877 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
3878 {
3879         struct net_device *ndev = pci_get_drvdata(pdev);
3880         struct ql_adapter *qdev = netdev_priv(ndev);
3881         int err;
3882
3883         netif_device_detach(ndev);
3884
3885         if (netif_running(ndev)) {
3886                 err = ql_adapter_down(qdev);
3887                 if (!err)
3888                         return err;
3889         }
3890
3891         err = pci_save_state(pdev);
3892         if (err)
3893                 return err;
3894
3895         pci_disable_device(pdev);
3896
3897         pci_set_power_state(pdev, pci_choose_state(pdev, state));
3898
3899         return 0;
3900 }
3901
3902 #ifdef CONFIG_PM
3903 static int qlge_resume(struct pci_dev *pdev)
3904 {
3905         struct net_device *ndev = pci_get_drvdata(pdev);
3906         struct ql_adapter *qdev = netdev_priv(ndev);
3907         int err;
3908
3909         pci_set_power_state(pdev, PCI_D0);
3910         pci_restore_state(pdev);
3911         err = pci_enable_device(pdev);
3912         if (err) {
3913                 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
3914                 return err;
3915         }
3916         pci_set_master(pdev);
3917
3918         pci_enable_wake(pdev, PCI_D3hot, 0);
3919         pci_enable_wake(pdev, PCI_D3cold, 0);
3920
3921         if (netif_running(ndev)) {
3922                 err = ql_adapter_up(qdev);
3923                 if (err)
3924                         return err;
3925         }
3926
3927         netif_device_attach(ndev);
3928
3929         return 0;
3930 }
3931 #endif /* CONFIG_PM */
3932
3933 static void qlge_shutdown(struct pci_dev *pdev)
3934 {
3935         qlge_suspend(pdev, PMSG_SUSPEND);
3936 }
3937
3938 static struct pci_driver qlge_driver = {
3939         .name = DRV_NAME,
3940         .id_table = qlge_pci_tbl,
3941         .probe = qlge_probe,
3942         .remove = __devexit_p(qlge_remove),
3943 #ifdef CONFIG_PM
3944         .suspend = qlge_suspend,
3945         .resume = qlge_resume,
3946 #endif
3947         .shutdown = qlge_shutdown,
3948         .err_handler = &qlge_err_handler
3949 };
3950
3951 static int __init qlge_init_module(void)
3952 {
3953         return pci_register_driver(&qlge_driver);
3954 }
3955
3956 static void __exit qlge_exit(void)
3957 {
3958         pci_unregister_driver(&qlge_driver);
3959 }
3960
3961 module_init(qlge_init_module);
3962 module_exit(qlge_exit);