]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/net/igb/igb_ethtool.c
scm: lower SCM_MAX_FD
[net-next-2.6.git] / drivers / net / igb / igb_ethtool.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* ethtool support for igb */
29
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39
40 #include "igb.h"
41
42 struct igb_stats {
43         char stat_string[ETH_GSTRING_LEN];
44         int sizeof_stat;
45         int stat_offset;
46 };
47
48 #define IGB_STAT(_name, _stat) { \
49         .stat_string = _name, \
50         .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
51         .stat_offset = offsetof(struct igb_adapter, _stat) \
52 }
53 static const struct igb_stats igb_gstrings_stats[] = {
54         IGB_STAT("rx_packets", stats.gprc),
55         IGB_STAT("tx_packets", stats.gptc),
56         IGB_STAT("rx_bytes", stats.gorc),
57         IGB_STAT("tx_bytes", stats.gotc),
58         IGB_STAT("rx_broadcast", stats.bprc),
59         IGB_STAT("tx_broadcast", stats.bptc),
60         IGB_STAT("rx_multicast", stats.mprc),
61         IGB_STAT("tx_multicast", stats.mptc),
62         IGB_STAT("multicast", stats.mprc),
63         IGB_STAT("collisions", stats.colc),
64         IGB_STAT("rx_crc_errors", stats.crcerrs),
65         IGB_STAT("rx_no_buffer_count", stats.rnbc),
66         IGB_STAT("rx_missed_errors", stats.mpc),
67         IGB_STAT("tx_aborted_errors", stats.ecol),
68         IGB_STAT("tx_carrier_errors", stats.tncrs),
69         IGB_STAT("tx_window_errors", stats.latecol),
70         IGB_STAT("tx_abort_late_coll", stats.latecol),
71         IGB_STAT("tx_deferred_ok", stats.dc),
72         IGB_STAT("tx_single_coll_ok", stats.scc),
73         IGB_STAT("tx_multi_coll_ok", stats.mcc),
74         IGB_STAT("tx_timeout_count", tx_timeout_count),
75         IGB_STAT("rx_long_length_errors", stats.roc),
76         IGB_STAT("rx_short_length_errors", stats.ruc),
77         IGB_STAT("rx_align_errors", stats.algnerrc),
78         IGB_STAT("tx_tcp_seg_good", stats.tsctc),
79         IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
80         IGB_STAT("rx_flow_control_xon", stats.xonrxc),
81         IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
82         IGB_STAT("tx_flow_control_xon", stats.xontxc),
83         IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
84         IGB_STAT("rx_long_byte_count", stats.gorc),
85         IGB_STAT("tx_dma_out_of_sync", stats.doosync),
86         IGB_STAT("tx_smbus", stats.mgptc),
87         IGB_STAT("rx_smbus", stats.mgprc),
88         IGB_STAT("dropped_smbus", stats.mgpdc),
89 };
90
91 #define IGB_NETDEV_STAT(_net_stat) { \
92         .stat_string = __stringify(_net_stat), \
93         .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
94         .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
95 }
96 static const struct igb_stats igb_gstrings_net_stats[] = {
97         IGB_NETDEV_STAT(rx_errors),
98         IGB_NETDEV_STAT(tx_errors),
99         IGB_NETDEV_STAT(tx_dropped),
100         IGB_NETDEV_STAT(rx_length_errors),
101         IGB_NETDEV_STAT(rx_over_errors),
102         IGB_NETDEV_STAT(rx_frame_errors),
103         IGB_NETDEV_STAT(rx_fifo_errors),
104         IGB_NETDEV_STAT(tx_fifo_errors),
105         IGB_NETDEV_STAT(tx_heartbeat_errors)
106 };
107
108 #define IGB_GLOBAL_STATS_LEN    \
109         (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
110 #define IGB_NETDEV_STATS_LEN    \
111         (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
112 #define IGB_RX_QUEUE_STATS_LEN \
113         (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
114
115 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
116
117 #define IGB_QUEUE_STATS_LEN \
118         ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
119           IGB_RX_QUEUE_STATS_LEN) + \
120          (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
121           IGB_TX_QUEUE_STATS_LEN))
122 #define IGB_STATS_LEN \
123         (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
124
125 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
126         "Register test  (offline)", "Eeprom test    (offline)",
127         "Interrupt test (offline)", "Loopback test  (offline)",
128         "Link test   (on/offline)"
129 };
130 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
131
132 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
133 {
134         struct igb_adapter *adapter = netdev_priv(netdev);
135         struct e1000_hw *hw = &adapter->hw;
136         u32 status;
137
138         if (hw->phy.media_type == e1000_media_type_copper) {
139
140                 ecmd->supported = (SUPPORTED_10baseT_Half |
141                                    SUPPORTED_10baseT_Full |
142                                    SUPPORTED_100baseT_Half |
143                                    SUPPORTED_100baseT_Full |
144                                    SUPPORTED_1000baseT_Full|
145                                    SUPPORTED_Autoneg |
146                                    SUPPORTED_TP);
147                 ecmd->advertising = ADVERTISED_TP;
148
149                 if (hw->mac.autoneg == 1) {
150                         ecmd->advertising |= ADVERTISED_Autoneg;
151                         /* the e1000 autoneg seems to match ethtool nicely */
152                         ecmd->advertising |= hw->phy.autoneg_advertised;
153                 }
154
155                 ecmd->port = PORT_TP;
156                 ecmd->phy_address = hw->phy.addr;
157         } else {
158                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
159                                      SUPPORTED_FIBRE |
160                                      SUPPORTED_Autoneg);
161
162                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
163                                      ADVERTISED_FIBRE |
164                                      ADVERTISED_Autoneg);
165
166                 ecmd->port = PORT_FIBRE;
167         }
168
169         ecmd->transceiver = XCVR_INTERNAL;
170
171         status = rd32(E1000_STATUS);
172
173         if (status & E1000_STATUS_LU) {
174
175                 if ((status & E1000_STATUS_SPEED_1000) ||
176                     hw->phy.media_type != e1000_media_type_copper)
177                         ecmd->speed = SPEED_1000;
178                 else if (status & E1000_STATUS_SPEED_100)
179                         ecmd->speed = SPEED_100;
180                 else
181                         ecmd->speed = SPEED_10;
182
183                 if ((status & E1000_STATUS_FD) ||
184                     hw->phy.media_type != e1000_media_type_copper)
185                         ecmd->duplex = DUPLEX_FULL;
186                 else
187                         ecmd->duplex = DUPLEX_HALF;
188         } else {
189                 ecmd->speed = -1;
190                 ecmd->duplex = -1;
191         }
192
193         ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
194         return 0;
195 }
196
197 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
198 {
199         struct igb_adapter *adapter = netdev_priv(netdev);
200         struct e1000_hw *hw = &adapter->hw;
201
202         /* When SoL/IDER sessions are active, autoneg/speed/duplex
203          * cannot be changed */
204         if (igb_check_reset_block(hw)) {
205                 dev_err(&adapter->pdev->dev, "Cannot change link "
206                         "characteristics when SoL/IDER is active.\n");
207                 return -EINVAL;
208         }
209
210         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
211                 msleep(1);
212
213         if (ecmd->autoneg == AUTONEG_ENABLE) {
214                 hw->mac.autoneg = 1;
215                 hw->phy.autoneg_advertised = ecmd->advertising |
216                                              ADVERTISED_TP |
217                                              ADVERTISED_Autoneg;
218                 ecmd->advertising = hw->phy.autoneg_advertised;
219                 if (adapter->fc_autoneg)
220                         hw->fc.requested_mode = e1000_fc_default;
221         } else {
222                 if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
223                         clear_bit(__IGB_RESETTING, &adapter->state);
224                         return -EINVAL;
225                 }
226         }
227
228         /* reset the link */
229         if (netif_running(adapter->netdev)) {
230                 igb_down(adapter);
231                 igb_up(adapter);
232         } else
233                 igb_reset(adapter);
234
235         clear_bit(__IGB_RESETTING, &adapter->state);
236         return 0;
237 }
238
239 static u32 igb_get_link(struct net_device *netdev)
240 {
241         struct igb_adapter *adapter = netdev_priv(netdev);
242         struct e1000_mac_info *mac = &adapter->hw.mac;
243
244         /*
245          * If the link is not reported up to netdev, interrupts are disabled,
246          * and so the physical link state may have changed since we last
247          * looked. Set get_link_status to make sure that the true link
248          * state is interrogated, rather than pulling a cached and possibly
249          * stale link state from the driver.
250          */
251         if (!netif_carrier_ok(netdev))
252                 mac->get_link_status = 1;
253
254         return igb_has_link(adapter);
255 }
256
257 static void igb_get_pauseparam(struct net_device *netdev,
258                                struct ethtool_pauseparam *pause)
259 {
260         struct igb_adapter *adapter = netdev_priv(netdev);
261         struct e1000_hw *hw = &adapter->hw;
262
263         pause->autoneg =
264                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
265
266         if (hw->fc.current_mode == e1000_fc_rx_pause)
267                 pause->rx_pause = 1;
268         else if (hw->fc.current_mode == e1000_fc_tx_pause)
269                 pause->tx_pause = 1;
270         else if (hw->fc.current_mode == e1000_fc_full) {
271                 pause->rx_pause = 1;
272                 pause->tx_pause = 1;
273         }
274 }
275
276 static int igb_set_pauseparam(struct net_device *netdev,
277                               struct ethtool_pauseparam *pause)
278 {
279         struct igb_adapter *adapter = netdev_priv(netdev);
280         struct e1000_hw *hw = &adapter->hw;
281         int retval = 0;
282
283         adapter->fc_autoneg = pause->autoneg;
284
285         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
286                 msleep(1);
287
288         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
289                 hw->fc.requested_mode = e1000_fc_default;
290                 if (netif_running(adapter->netdev)) {
291                         igb_down(adapter);
292                         igb_up(adapter);
293                 } else {
294                         igb_reset(adapter);
295                 }
296         } else {
297                 if (pause->rx_pause && pause->tx_pause)
298                         hw->fc.requested_mode = e1000_fc_full;
299                 else if (pause->rx_pause && !pause->tx_pause)
300                         hw->fc.requested_mode = e1000_fc_rx_pause;
301                 else if (!pause->rx_pause && pause->tx_pause)
302                         hw->fc.requested_mode = e1000_fc_tx_pause;
303                 else if (!pause->rx_pause && !pause->tx_pause)
304                         hw->fc.requested_mode = e1000_fc_none;
305
306                 hw->fc.current_mode = hw->fc.requested_mode;
307
308                 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
309                           igb_force_mac_fc(hw) : igb_setup_link(hw));
310         }
311
312         clear_bit(__IGB_RESETTING, &adapter->state);
313         return retval;
314 }
315
316 static u32 igb_get_rx_csum(struct net_device *netdev)
317 {
318         struct igb_adapter *adapter = netdev_priv(netdev);
319         return !!(adapter->rx_ring[0]->flags & IGB_RING_FLAG_RX_CSUM);
320 }
321
322 static int igb_set_rx_csum(struct net_device *netdev, u32 data)
323 {
324         struct igb_adapter *adapter = netdev_priv(netdev);
325         int i;
326
327         for (i = 0; i < adapter->num_rx_queues; i++) {
328                 if (data)
329                         adapter->rx_ring[i]->flags |= IGB_RING_FLAG_RX_CSUM;
330                 else
331                         adapter->rx_ring[i]->flags &= ~IGB_RING_FLAG_RX_CSUM;
332         }
333
334         return 0;
335 }
336
337 static u32 igb_get_tx_csum(struct net_device *netdev)
338 {
339         return (netdev->features & NETIF_F_IP_CSUM) != 0;
340 }
341
342 static int igb_set_tx_csum(struct net_device *netdev, u32 data)
343 {
344         struct igb_adapter *adapter = netdev_priv(netdev);
345
346         if (data) {
347                 netdev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
348                 if (adapter->hw.mac.type >= e1000_82576)
349                         netdev->features |= NETIF_F_SCTP_CSUM;
350         } else {
351                 netdev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
352                                       NETIF_F_SCTP_CSUM);
353         }
354
355         return 0;
356 }
357
358 static int igb_set_tso(struct net_device *netdev, u32 data)
359 {
360         struct igb_adapter *adapter = netdev_priv(netdev);
361
362         if (data) {
363                 netdev->features |= NETIF_F_TSO;
364                 netdev->features |= NETIF_F_TSO6;
365         } else {
366                 netdev->features &= ~NETIF_F_TSO;
367                 netdev->features &= ~NETIF_F_TSO6;
368         }
369
370         dev_info(&adapter->pdev->dev, "TSO is %s\n",
371                  data ? "Enabled" : "Disabled");
372         return 0;
373 }
374
375 static u32 igb_get_msglevel(struct net_device *netdev)
376 {
377         struct igb_adapter *adapter = netdev_priv(netdev);
378         return adapter->msg_enable;
379 }
380
381 static void igb_set_msglevel(struct net_device *netdev, u32 data)
382 {
383         struct igb_adapter *adapter = netdev_priv(netdev);
384         adapter->msg_enable = data;
385 }
386
387 static int igb_get_regs_len(struct net_device *netdev)
388 {
389 #define IGB_REGS_LEN 551
390         return IGB_REGS_LEN * sizeof(u32);
391 }
392
393 static void igb_get_regs(struct net_device *netdev,
394                          struct ethtool_regs *regs, void *p)
395 {
396         struct igb_adapter *adapter = netdev_priv(netdev);
397         struct e1000_hw *hw = &adapter->hw;
398         u32 *regs_buff = p;
399         u8 i;
400
401         memset(p, 0, IGB_REGS_LEN * sizeof(u32));
402
403         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
404
405         /* General Registers */
406         regs_buff[0] = rd32(E1000_CTRL);
407         regs_buff[1] = rd32(E1000_STATUS);
408         regs_buff[2] = rd32(E1000_CTRL_EXT);
409         regs_buff[3] = rd32(E1000_MDIC);
410         regs_buff[4] = rd32(E1000_SCTL);
411         regs_buff[5] = rd32(E1000_CONNSW);
412         regs_buff[6] = rd32(E1000_VET);
413         regs_buff[7] = rd32(E1000_LEDCTL);
414         regs_buff[8] = rd32(E1000_PBA);
415         regs_buff[9] = rd32(E1000_PBS);
416         regs_buff[10] = rd32(E1000_FRTIMER);
417         regs_buff[11] = rd32(E1000_TCPTIMER);
418
419         /* NVM Register */
420         regs_buff[12] = rd32(E1000_EECD);
421
422         /* Interrupt */
423         /* Reading EICS for EICR because they read the
424          * same but EICS does not clear on read */
425         regs_buff[13] = rd32(E1000_EICS);
426         regs_buff[14] = rd32(E1000_EICS);
427         regs_buff[15] = rd32(E1000_EIMS);
428         regs_buff[16] = rd32(E1000_EIMC);
429         regs_buff[17] = rd32(E1000_EIAC);
430         regs_buff[18] = rd32(E1000_EIAM);
431         /* Reading ICS for ICR because they read the
432          * same but ICS does not clear on read */
433         regs_buff[19] = rd32(E1000_ICS);
434         regs_buff[20] = rd32(E1000_ICS);
435         regs_buff[21] = rd32(E1000_IMS);
436         regs_buff[22] = rd32(E1000_IMC);
437         regs_buff[23] = rd32(E1000_IAC);
438         regs_buff[24] = rd32(E1000_IAM);
439         regs_buff[25] = rd32(E1000_IMIRVP);
440
441         /* Flow Control */
442         regs_buff[26] = rd32(E1000_FCAL);
443         regs_buff[27] = rd32(E1000_FCAH);
444         regs_buff[28] = rd32(E1000_FCTTV);
445         regs_buff[29] = rd32(E1000_FCRTL);
446         regs_buff[30] = rd32(E1000_FCRTH);
447         regs_buff[31] = rd32(E1000_FCRTV);
448
449         /* Receive */
450         regs_buff[32] = rd32(E1000_RCTL);
451         regs_buff[33] = rd32(E1000_RXCSUM);
452         regs_buff[34] = rd32(E1000_RLPML);
453         regs_buff[35] = rd32(E1000_RFCTL);
454         regs_buff[36] = rd32(E1000_MRQC);
455         regs_buff[37] = rd32(E1000_VT_CTL);
456
457         /* Transmit */
458         regs_buff[38] = rd32(E1000_TCTL);
459         regs_buff[39] = rd32(E1000_TCTL_EXT);
460         regs_buff[40] = rd32(E1000_TIPG);
461         regs_buff[41] = rd32(E1000_DTXCTL);
462
463         /* Wake Up */
464         regs_buff[42] = rd32(E1000_WUC);
465         regs_buff[43] = rd32(E1000_WUFC);
466         regs_buff[44] = rd32(E1000_WUS);
467         regs_buff[45] = rd32(E1000_IPAV);
468         regs_buff[46] = rd32(E1000_WUPL);
469
470         /* MAC */
471         regs_buff[47] = rd32(E1000_PCS_CFG0);
472         regs_buff[48] = rd32(E1000_PCS_LCTL);
473         regs_buff[49] = rd32(E1000_PCS_LSTAT);
474         regs_buff[50] = rd32(E1000_PCS_ANADV);
475         regs_buff[51] = rd32(E1000_PCS_LPAB);
476         regs_buff[52] = rd32(E1000_PCS_NPTX);
477         regs_buff[53] = rd32(E1000_PCS_LPABNP);
478
479         /* Statistics */
480         regs_buff[54] = adapter->stats.crcerrs;
481         regs_buff[55] = adapter->stats.algnerrc;
482         regs_buff[56] = adapter->stats.symerrs;
483         regs_buff[57] = adapter->stats.rxerrc;
484         regs_buff[58] = adapter->stats.mpc;
485         regs_buff[59] = adapter->stats.scc;
486         regs_buff[60] = adapter->stats.ecol;
487         regs_buff[61] = adapter->stats.mcc;
488         regs_buff[62] = adapter->stats.latecol;
489         regs_buff[63] = adapter->stats.colc;
490         regs_buff[64] = adapter->stats.dc;
491         regs_buff[65] = adapter->stats.tncrs;
492         regs_buff[66] = adapter->stats.sec;
493         regs_buff[67] = adapter->stats.htdpmc;
494         regs_buff[68] = adapter->stats.rlec;
495         regs_buff[69] = adapter->stats.xonrxc;
496         regs_buff[70] = adapter->stats.xontxc;
497         regs_buff[71] = adapter->stats.xoffrxc;
498         regs_buff[72] = adapter->stats.xofftxc;
499         regs_buff[73] = adapter->stats.fcruc;
500         regs_buff[74] = adapter->stats.prc64;
501         regs_buff[75] = adapter->stats.prc127;
502         regs_buff[76] = adapter->stats.prc255;
503         regs_buff[77] = adapter->stats.prc511;
504         regs_buff[78] = adapter->stats.prc1023;
505         regs_buff[79] = adapter->stats.prc1522;
506         regs_buff[80] = adapter->stats.gprc;
507         regs_buff[81] = adapter->stats.bprc;
508         regs_buff[82] = adapter->stats.mprc;
509         regs_buff[83] = adapter->stats.gptc;
510         regs_buff[84] = adapter->stats.gorc;
511         regs_buff[86] = adapter->stats.gotc;
512         regs_buff[88] = adapter->stats.rnbc;
513         regs_buff[89] = adapter->stats.ruc;
514         regs_buff[90] = adapter->stats.rfc;
515         regs_buff[91] = adapter->stats.roc;
516         regs_buff[92] = adapter->stats.rjc;
517         regs_buff[93] = adapter->stats.mgprc;
518         regs_buff[94] = adapter->stats.mgpdc;
519         regs_buff[95] = adapter->stats.mgptc;
520         regs_buff[96] = adapter->stats.tor;
521         regs_buff[98] = adapter->stats.tot;
522         regs_buff[100] = adapter->stats.tpr;
523         regs_buff[101] = adapter->stats.tpt;
524         regs_buff[102] = adapter->stats.ptc64;
525         regs_buff[103] = adapter->stats.ptc127;
526         regs_buff[104] = adapter->stats.ptc255;
527         regs_buff[105] = adapter->stats.ptc511;
528         regs_buff[106] = adapter->stats.ptc1023;
529         regs_buff[107] = adapter->stats.ptc1522;
530         regs_buff[108] = adapter->stats.mptc;
531         regs_buff[109] = adapter->stats.bptc;
532         regs_buff[110] = adapter->stats.tsctc;
533         regs_buff[111] = adapter->stats.iac;
534         regs_buff[112] = adapter->stats.rpthc;
535         regs_buff[113] = adapter->stats.hgptc;
536         regs_buff[114] = adapter->stats.hgorc;
537         regs_buff[116] = adapter->stats.hgotc;
538         regs_buff[118] = adapter->stats.lenerrs;
539         regs_buff[119] = adapter->stats.scvpc;
540         regs_buff[120] = adapter->stats.hrmpc;
541
542         for (i = 0; i < 4; i++)
543                 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
544         for (i = 0; i < 4; i++)
545                 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
546         for (i = 0; i < 4; i++)
547                 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
548         for (i = 0; i < 4; i++)
549                 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
550         for (i = 0; i < 4; i++)
551                 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
552         for (i = 0; i < 4; i++)
553                 regs_buff[141 + i] = rd32(E1000_RDH(i));
554         for (i = 0; i < 4; i++)
555                 regs_buff[145 + i] = rd32(E1000_RDT(i));
556         for (i = 0; i < 4; i++)
557                 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
558
559         for (i = 0; i < 10; i++)
560                 regs_buff[153 + i] = rd32(E1000_EITR(i));
561         for (i = 0; i < 8; i++)
562                 regs_buff[163 + i] = rd32(E1000_IMIR(i));
563         for (i = 0; i < 8; i++)
564                 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
565         for (i = 0; i < 16; i++)
566                 regs_buff[179 + i] = rd32(E1000_RAL(i));
567         for (i = 0; i < 16; i++)
568                 regs_buff[195 + i] = rd32(E1000_RAH(i));
569
570         for (i = 0; i < 4; i++)
571                 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
572         for (i = 0; i < 4; i++)
573                 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
574         for (i = 0; i < 4; i++)
575                 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
576         for (i = 0; i < 4; i++)
577                 regs_buff[223 + i] = rd32(E1000_TDH(i));
578         for (i = 0; i < 4; i++)
579                 regs_buff[227 + i] = rd32(E1000_TDT(i));
580         for (i = 0; i < 4; i++)
581                 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
582         for (i = 0; i < 4; i++)
583                 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
584         for (i = 0; i < 4; i++)
585                 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
586         for (i = 0; i < 4; i++)
587                 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
588
589         for (i = 0; i < 4; i++)
590                 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
591         for (i = 0; i < 4; i++)
592                 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
593         for (i = 0; i < 32; i++)
594                 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
595         for (i = 0; i < 128; i++)
596                 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
597         for (i = 0; i < 128; i++)
598                 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
599         for (i = 0; i < 4; i++)
600                 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
601
602         regs_buff[547] = rd32(E1000_TDFH);
603         regs_buff[548] = rd32(E1000_TDFT);
604         regs_buff[549] = rd32(E1000_TDFHS);
605         regs_buff[550] = rd32(E1000_TDFPC);
606
607 }
608
609 static int igb_get_eeprom_len(struct net_device *netdev)
610 {
611         struct igb_adapter *adapter = netdev_priv(netdev);
612         return adapter->hw.nvm.word_size * 2;
613 }
614
615 static int igb_get_eeprom(struct net_device *netdev,
616                           struct ethtool_eeprom *eeprom, u8 *bytes)
617 {
618         struct igb_adapter *adapter = netdev_priv(netdev);
619         struct e1000_hw *hw = &adapter->hw;
620         u16 *eeprom_buff;
621         int first_word, last_word;
622         int ret_val = 0;
623         u16 i;
624
625         if (eeprom->len == 0)
626                 return -EINVAL;
627
628         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
629
630         first_word = eeprom->offset >> 1;
631         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
632
633         eeprom_buff = kmalloc(sizeof(u16) *
634                         (last_word - first_word + 1), GFP_KERNEL);
635         if (!eeprom_buff)
636                 return -ENOMEM;
637
638         if (hw->nvm.type == e1000_nvm_eeprom_spi)
639                 ret_val = hw->nvm.ops.read(hw, first_word,
640                                             last_word - first_word + 1,
641                                             eeprom_buff);
642         else {
643                 for (i = 0; i < last_word - first_word + 1; i++) {
644                         ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
645                                                     &eeprom_buff[i]);
646                         if (ret_val)
647                                 break;
648                 }
649         }
650
651         /* Device's eeprom is always little-endian, word addressable */
652         for (i = 0; i < last_word - first_word + 1; i++)
653                 le16_to_cpus(&eeprom_buff[i]);
654
655         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
656                         eeprom->len);
657         kfree(eeprom_buff);
658
659         return ret_val;
660 }
661
662 static int igb_set_eeprom(struct net_device *netdev,
663                           struct ethtool_eeprom *eeprom, u8 *bytes)
664 {
665         struct igb_adapter *adapter = netdev_priv(netdev);
666         struct e1000_hw *hw = &adapter->hw;
667         u16 *eeprom_buff;
668         void *ptr;
669         int max_len, first_word, last_word, ret_val = 0;
670         u16 i;
671
672         if (eeprom->len == 0)
673                 return -EOPNOTSUPP;
674
675         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
676                 return -EFAULT;
677
678         max_len = hw->nvm.word_size * 2;
679
680         first_word = eeprom->offset >> 1;
681         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
682         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
683         if (!eeprom_buff)
684                 return -ENOMEM;
685
686         ptr = (void *)eeprom_buff;
687
688         if (eeprom->offset & 1) {
689                 /* need read/modify/write of first changed EEPROM word */
690                 /* only the second byte of the word is being modified */
691                 ret_val = hw->nvm.ops.read(hw, first_word, 1,
692                                             &eeprom_buff[0]);
693                 ptr++;
694         }
695         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
696                 /* need read/modify/write of last changed EEPROM word */
697                 /* only the first byte of the word is being modified */
698                 ret_val = hw->nvm.ops.read(hw, last_word, 1,
699                                    &eeprom_buff[last_word - first_word]);
700         }
701
702         /* Device's eeprom is always little-endian, word addressable */
703         for (i = 0; i < last_word - first_word + 1; i++)
704                 le16_to_cpus(&eeprom_buff[i]);
705
706         memcpy(ptr, bytes, eeprom->len);
707
708         for (i = 0; i < last_word - first_word + 1; i++)
709                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
710
711         ret_val = hw->nvm.ops.write(hw, first_word,
712                                      last_word - first_word + 1, eeprom_buff);
713
714         /* Update the checksum over the first part of the EEPROM if needed
715          * and flush shadow RAM for 82573 controllers */
716         if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
717                 igb_update_nvm_checksum(hw);
718
719         kfree(eeprom_buff);
720         return ret_val;
721 }
722
723 static void igb_get_drvinfo(struct net_device *netdev,
724                             struct ethtool_drvinfo *drvinfo)
725 {
726         struct igb_adapter *adapter = netdev_priv(netdev);
727         char firmware_version[32];
728         u16 eeprom_data;
729
730         strncpy(drvinfo->driver,  igb_driver_name, 32);
731         strncpy(drvinfo->version, igb_driver_version, 32);
732
733         /* EEPROM image version # is reported as firmware version # for
734          * 82575 controllers */
735         adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
736         sprintf(firmware_version, "%d.%d-%d",
737                 (eeprom_data & 0xF000) >> 12,
738                 (eeprom_data & 0x0FF0) >> 4,
739                 eeprom_data & 0x000F);
740
741         strncpy(drvinfo->fw_version, firmware_version, 32);
742         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
743         drvinfo->n_stats = IGB_STATS_LEN;
744         drvinfo->testinfo_len = IGB_TEST_LEN;
745         drvinfo->regdump_len = igb_get_regs_len(netdev);
746         drvinfo->eedump_len = igb_get_eeprom_len(netdev);
747 }
748
749 static void igb_get_ringparam(struct net_device *netdev,
750                               struct ethtool_ringparam *ring)
751 {
752         struct igb_adapter *adapter = netdev_priv(netdev);
753
754         ring->rx_max_pending = IGB_MAX_RXD;
755         ring->tx_max_pending = IGB_MAX_TXD;
756         ring->rx_mini_max_pending = 0;
757         ring->rx_jumbo_max_pending = 0;
758         ring->rx_pending = adapter->rx_ring_count;
759         ring->tx_pending = adapter->tx_ring_count;
760         ring->rx_mini_pending = 0;
761         ring->rx_jumbo_pending = 0;
762 }
763
764 static int igb_set_ringparam(struct net_device *netdev,
765                              struct ethtool_ringparam *ring)
766 {
767         struct igb_adapter *adapter = netdev_priv(netdev);
768         struct igb_ring *temp_ring;
769         int i, err = 0;
770         u16 new_rx_count, new_tx_count;
771
772         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
773                 return -EINVAL;
774
775         new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
776         new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
777         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
778
779         new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
780         new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
781         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
782
783         if ((new_tx_count == adapter->tx_ring_count) &&
784             (new_rx_count == adapter->rx_ring_count)) {
785                 /* nothing to do */
786                 return 0;
787         }
788
789         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
790                 msleep(1);
791
792         if (!netif_running(adapter->netdev)) {
793                 for (i = 0; i < adapter->num_tx_queues; i++)
794                         adapter->tx_ring[i]->count = new_tx_count;
795                 for (i = 0; i < adapter->num_rx_queues; i++)
796                         adapter->rx_ring[i]->count = new_rx_count;
797                 adapter->tx_ring_count = new_tx_count;
798                 adapter->rx_ring_count = new_rx_count;
799                 goto clear_reset;
800         }
801
802         if (adapter->num_tx_queues > adapter->num_rx_queues)
803                 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
804         else
805                 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
806
807         if (!temp_ring) {
808                 err = -ENOMEM;
809                 goto clear_reset;
810         }
811
812         igb_down(adapter);
813
814         /*
815          * We can't just free everything and then setup again,
816          * because the ISRs in MSI-X mode get passed pointers
817          * to the tx and rx ring structs.
818          */
819         if (new_tx_count != adapter->tx_ring_count) {
820                 for (i = 0; i < adapter->num_tx_queues; i++) {
821                         memcpy(&temp_ring[i], adapter->tx_ring[i],
822                                sizeof(struct igb_ring));
823
824                         temp_ring[i].count = new_tx_count;
825                         err = igb_setup_tx_resources(&temp_ring[i]);
826                         if (err) {
827                                 while (i) {
828                                         i--;
829                                         igb_free_tx_resources(&temp_ring[i]);
830                                 }
831                                 goto err_setup;
832                         }
833                 }
834
835                 for (i = 0; i < adapter->num_tx_queues; i++) {
836                         igb_free_tx_resources(adapter->tx_ring[i]);
837
838                         memcpy(adapter->tx_ring[i], &temp_ring[i],
839                                sizeof(struct igb_ring));
840                 }
841
842                 adapter->tx_ring_count = new_tx_count;
843         }
844
845         if (new_rx_count != adapter->rx_ring_count) {
846                 for (i = 0; i < adapter->num_rx_queues; i++) {
847                         memcpy(&temp_ring[i], adapter->rx_ring[i],
848                                sizeof(struct igb_ring));
849
850                         temp_ring[i].count = new_rx_count;
851                         err = igb_setup_rx_resources(&temp_ring[i]);
852                         if (err) {
853                                 while (i) {
854                                         i--;
855                                         igb_free_rx_resources(&temp_ring[i]);
856                                 }
857                                 goto err_setup;
858                         }
859
860                 }
861
862                 for (i = 0; i < adapter->num_rx_queues; i++) {
863                         igb_free_rx_resources(adapter->rx_ring[i]);
864
865                         memcpy(adapter->rx_ring[i], &temp_ring[i],
866                                sizeof(struct igb_ring));
867                 }
868
869                 adapter->rx_ring_count = new_rx_count;
870         }
871 err_setup:
872         igb_up(adapter);
873         vfree(temp_ring);
874 clear_reset:
875         clear_bit(__IGB_RESETTING, &adapter->state);
876         return err;
877 }
878
879 /* ethtool register test data */
880 struct igb_reg_test {
881         u16 reg;
882         u16 reg_offset;
883         u16 array_len;
884         u16 test_type;
885         u32 mask;
886         u32 write;
887 };
888
889 /* In the hardware, registers are laid out either singly, in arrays
890  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
891  * most tests take place on arrays or single registers (handled
892  * as a single-element array) and special-case the tables.
893  * Table tests are always pattern tests.
894  *
895  * We also make provision for some required setup steps by specifying
896  * registers to be written without any read-back testing.
897  */
898
899 #define PATTERN_TEST    1
900 #define SET_READ_TEST   2
901 #define WRITE_NO_TEST   3
902 #define TABLE32_TEST    4
903 #define TABLE64_TEST_LO 5
904 #define TABLE64_TEST_HI 6
905
906 /* i350 reg test */
907 static struct igb_reg_test reg_test_i350[] = {
908         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
909         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
910         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
911         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
912         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
913         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
914         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
915         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
916         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
917         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
918         /* RDH is read-only for i350, only test RDT. */
919         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
920         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
921         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
922         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
923         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
924         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
925         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
926         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
927         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
928         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
929         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
930         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
931         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
932         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
933         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
934         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
935         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
936         { E1000_RA,        0, 16, TABLE64_TEST_LO,
937                                                 0xFFFFFFFF, 0xFFFFFFFF },
938         { E1000_RA,        0, 16, TABLE64_TEST_HI,
939                                                 0xC3FFFFFF, 0xFFFFFFFF },
940         { E1000_RA2,       0, 16, TABLE64_TEST_LO,
941                                                 0xFFFFFFFF, 0xFFFFFFFF },
942         { E1000_RA2,       0, 16, TABLE64_TEST_HI,
943                                                 0xC3FFFFFF, 0xFFFFFFFF },
944         { E1000_MTA,       0, 128, TABLE32_TEST,
945                                                 0xFFFFFFFF, 0xFFFFFFFF },
946         { 0, 0, 0, 0 }
947 };
948
949 /* 82580 reg test */
950 static struct igb_reg_test reg_test_82580[] = {
951         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
952         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
953         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
954         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
955         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
956         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
957         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
958         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
959         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
960         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
961         /* RDH is read-only for 82580, only test RDT. */
962         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
963         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
964         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
965         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
966         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
967         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
968         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
969         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
970         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
971         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
972         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
973         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
974         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
975         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
976         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
977         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
978         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
979         { E1000_RA,        0, 16, TABLE64_TEST_LO,
980                                                 0xFFFFFFFF, 0xFFFFFFFF },
981         { E1000_RA,        0, 16, TABLE64_TEST_HI,
982                                                 0x83FFFFFF, 0xFFFFFFFF },
983         { E1000_RA2,       0, 8, TABLE64_TEST_LO,
984                                                 0xFFFFFFFF, 0xFFFFFFFF },
985         { E1000_RA2,       0, 8, TABLE64_TEST_HI,
986                                                 0x83FFFFFF, 0xFFFFFFFF },
987         { E1000_MTA,       0, 128, TABLE32_TEST,
988                                                 0xFFFFFFFF, 0xFFFFFFFF },
989         { 0, 0, 0, 0 }
990 };
991
992 /* 82576 reg test */
993 static struct igb_reg_test reg_test_82576[] = {
994         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
995         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
996         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
997         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
998         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
999         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1000         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1001         { E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1002         { E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1003         { E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1004         /* Enable all RX queues before testing. */
1005         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1006         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1007         /* RDH is read-only for 82576, only test RDT. */
1008         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1009         { E1000_RDT(4),    0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1010         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1011         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1012         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1013         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1014         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1015         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1016         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1017         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1018         { E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1019         { E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1020         { E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1021         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1022         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1023         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1024         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1025         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1026         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1027         { E1000_RA2,       0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1028         { E1000_RA2,       0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1029         { E1000_MTA,       0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1030         { 0, 0, 0, 0 }
1031 };
1032
1033 /* 82575 register test */
1034 static struct igb_reg_test reg_test_82575[] = {
1035         { E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1036         { E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1037         { E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1038         { E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1039         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1040         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1041         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1042         /* Enable all four RX queues before testing. */
1043         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1044         /* RDH is read-only for 82575, only test RDT. */
1045         { E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1046         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1047         { E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1048         { E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1049         { E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1050         { E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1051         { E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1052         { E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1053         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1054         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1055         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1056         { E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1057         { E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1058         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1059         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1060         { E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1061         { 0, 0, 0, 0 }
1062 };
1063
1064 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1065                              int reg, u32 mask, u32 write)
1066 {
1067         struct e1000_hw *hw = &adapter->hw;
1068         u32 pat, val;
1069         static const u32 _test[] =
1070                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1071         for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1072                 wr32(reg, (_test[pat] & write));
1073                 val = rd32(reg);
1074                 if (val != (_test[pat] & write & mask)) {
1075                         dev_err(&adapter->pdev->dev, "pattern test reg %04X "
1076                                 "failed: got 0x%08X expected 0x%08X\n",
1077                                 reg, val, (_test[pat] & write & mask));
1078                         *data = reg;
1079                         return 1;
1080                 }
1081         }
1082
1083         return 0;
1084 }
1085
1086 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1087                               int reg, u32 mask, u32 write)
1088 {
1089         struct e1000_hw *hw = &adapter->hw;
1090         u32 val;
1091         wr32(reg, write & mask);
1092         val = rd32(reg);
1093         if ((write & mask) != (val & mask)) {
1094                 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
1095                         " got 0x%08X expected 0x%08X\n", reg,
1096                         (val & mask), (write & mask));
1097                 *data = reg;
1098                 return 1;
1099         }
1100
1101         return 0;
1102 }
1103
1104 #define REG_PATTERN_TEST(reg, mask, write) \
1105         do { \
1106                 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1107                         return 1; \
1108         } while (0)
1109
1110 #define REG_SET_AND_CHECK(reg, mask, write) \
1111         do { \
1112                 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1113                         return 1; \
1114         } while (0)
1115
1116 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1117 {
1118         struct e1000_hw *hw = &adapter->hw;
1119         struct igb_reg_test *test;
1120         u32 value, before, after;
1121         u32 i, toggle;
1122
1123         switch (adapter->hw.mac.type) {
1124         case e1000_i350:
1125                 test = reg_test_i350;
1126                 toggle = 0x7FEFF3FF;
1127                 break;
1128         case e1000_82580:
1129                 test = reg_test_82580;
1130                 toggle = 0x7FEFF3FF;
1131                 break;
1132         case e1000_82576:
1133                 test = reg_test_82576;
1134                 toggle = 0x7FFFF3FF;
1135                 break;
1136         default:
1137                 test = reg_test_82575;
1138                 toggle = 0x7FFFF3FF;
1139                 break;
1140         }
1141
1142         /* Because the status register is such a special case,
1143          * we handle it separately from the rest of the register
1144          * tests.  Some bits are read-only, some toggle, and some
1145          * are writable on newer MACs.
1146          */
1147         before = rd32(E1000_STATUS);
1148         value = (rd32(E1000_STATUS) & toggle);
1149         wr32(E1000_STATUS, toggle);
1150         after = rd32(E1000_STATUS) & toggle;
1151         if (value != after) {
1152                 dev_err(&adapter->pdev->dev, "failed STATUS register test "
1153                         "got: 0x%08X expected: 0x%08X\n", after, value);
1154                 *data = 1;
1155                 return 1;
1156         }
1157         /* restore previous status */
1158         wr32(E1000_STATUS, before);
1159
1160         /* Perform the remainder of the register test, looping through
1161          * the test table until we either fail or reach the null entry.
1162          */
1163         while (test->reg) {
1164                 for (i = 0; i < test->array_len; i++) {
1165                         switch (test->test_type) {
1166                         case PATTERN_TEST:
1167                                 REG_PATTERN_TEST(test->reg +
1168                                                 (i * test->reg_offset),
1169                                                 test->mask,
1170                                                 test->write);
1171                                 break;
1172                         case SET_READ_TEST:
1173                                 REG_SET_AND_CHECK(test->reg +
1174                                                 (i * test->reg_offset),
1175                                                 test->mask,
1176                                                 test->write);
1177                                 break;
1178                         case WRITE_NO_TEST:
1179                                 writel(test->write,
1180                                     (adapter->hw.hw_addr + test->reg)
1181                                         + (i * test->reg_offset));
1182                                 break;
1183                         case TABLE32_TEST:
1184                                 REG_PATTERN_TEST(test->reg + (i * 4),
1185                                                 test->mask,
1186                                                 test->write);
1187                                 break;
1188                         case TABLE64_TEST_LO:
1189                                 REG_PATTERN_TEST(test->reg + (i * 8),
1190                                                 test->mask,
1191                                                 test->write);
1192                                 break;
1193                         case TABLE64_TEST_HI:
1194                                 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1195                                                 test->mask,
1196                                                 test->write);
1197                                 break;
1198                         }
1199                 }
1200                 test++;
1201         }
1202
1203         *data = 0;
1204         return 0;
1205 }
1206
1207 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1208 {
1209         u16 temp;
1210         u16 checksum = 0;
1211         u16 i;
1212
1213         *data = 0;
1214         /* Read and add up the contents of the EEPROM */
1215         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1216                 if ((adapter->hw.nvm.ops.read(&adapter->hw, i, 1, &temp)) < 0) {
1217                         *data = 1;
1218                         break;
1219                 }
1220                 checksum += temp;
1221         }
1222
1223         /* If Checksum is not Correct return error else test passed */
1224         if ((checksum != (u16) NVM_SUM) && !(*data))
1225                 *data = 2;
1226
1227         return *data;
1228 }
1229
1230 static irqreturn_t igb_test_intr(int irq, void *data)
1231 {
1232         struct igb_adapter *adapter = (struct igb_adapter *) data;
1233         struct e1000_hw *hw = &adapter->hw;
1234
1235         adapter->test_icr |= rd32(E1000_ICR);
1236
1237         return IRQ_HANDLED;
1238 }
1239
1240 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1241 {
1242         struct e1000_hw *hw = &adapter->hw;
1243         struct net_device *netdev = adapter->netdev;
1244         u32 mask, ics_mask, i = 0, shared_int = true;
1245         u32 irq = adapter->pdev->irq;
1246
1247         *data = 0;
1248
1249         /* Hook up test interrupt handler just for this test */
1250         if (adapter->msix_entries) {
1251                 if (request_irq(adapter->msix_entries[0].vector,
1252                                 igb_test_intr, 0, netdev->name, adapter)) {
1253                         *data = 1;
1254                         return -1;
1255                 }
1256         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1257                 shared_int = false;
1258                 if (request_irq(irq,
1259                                 igb_test_intr, 0, netdev->name, adapter)) {
1260                         *data = 1;
1261                         return -1;
1262                 }
1263         } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1264                                 netdev->name, adapter)) {
1265                 shared_int = false;
1266         } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1267                  netdev->name, adapter)) {
1268                 *data = 1;
1269                 return -1;
1270         }
1271         dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1272                 (shared_int ? "shared" : "unshared"));
1273
1274         /* Disable all the interrupts */
1275         wr32(E1000_IMC, ~0);
1276         msleep(10);
1277
1278         /* Define all writable bits for ICS */
1279         switch (hw->mac.type) {
1280         case e1000_82575:
1281                 ics_mask = 0x37F47EDD;
1282                 break;
1283         case e1000_82576:
1284                 ics_mask = 0x77D4FBFD;
1285                 break;
1286         case e1000_82580:
1287                 ics_mask = 0x77DCFED5;
1288                 break;
1289         case e1000_i350:
1290                 ics_mask = 0x77DCFED5;
1291                 break;
1292         default:
1293                 ics_mask = 0x7FFFFFFF;
1294                 break;
1295         }
1296
1297         /* Test each interrupt */
1298         for (; i < 31; i++) {
1299                 /* Interrupt to test */
1300                 mask = 1 << i;
1301
1302                 if (!(mask & ics_mask))
1303                         continue;
1304
1305                 if (!shared_int) {
1306                         /* Disable the interrupt to be reported in
1307                          * the cause register and then force the same
1308                          * interrupt and see if one gets posted.  If
1309                          * an interrupt was posted to the bus, the
1310                          * test failed.
1311                          */
1312                         adapter->test_icr = 0;
1313
1314                         /* Flush any pending interrupts */
1315                         wr32(E1000_ICR, ~0);
1316
1317                         wr32(E1000_IMC, mask);
1318                         wr32(E1000_ICS, mask);
1319                         msleep(10);
1320
1321                         if (adapter->test_icr & mask) {
1322                                 *data = 3;
1323                                 break;
1324                         }
1325                 }
1326
1327                 /* Enable the interrupt to be reported in
1328                  * the cause register and then force the same
1329                  * interrupt and see if one gets posted.  If
1330                  * an interrupt was not posted to the bus, the
1331                  * test failed.
1332                  */
1333                 adapter->test_icr = 0;
1334
1335                 /* Flush any pending interrupts */
1336                 wr32(E1000_ICR, ~0);
1337
1338                 wr32(E1000_IMS, mask);
1339                 wr32(E1000_ICS, mask);
1340                 msleep(10);
1341
1342                 if (!(adapter->test_icr & mask)) {
1343                         *data = 4;
1344                         break;
1345                 }
1346
1347                 if (!shared_int) {
1348                         /* Disable the other interrupts to be reported in
1349                          * the cause register and then force the other
1350                          * interrupts and see if any get posted.  If
1351                          * an interrupt was posted to the bus, the
1352                          * test failed.
1353                          */
1354                         adapter->test_icr = 0;
1355
1356                         /* Flush any pending interrupts */
1357                         wr32(E1000_ICR, ~0);
1358
1359                         wr32(E1000_IMC, ~mask);
1360                         wr32(E1000_ICS, ~mask);
1361                         msleep(10);
1362
1363                         if (adapter->test_icr & mask) {
1364                                 *data = 5;
1365                                 break;
1366                         }
1367                 }
1368         }
1369
1370         /* Disable all the interrupts */
1371         wr32(E1000_IMC, ~0);
1372         msleep(10);
1373
1374         /* Unhook test interrupt handler */
1375         if (adapter->msix_entries)
1376                 free_irq(adapter->msix_entries[0].vector, adapter);
1377         else
1378                 free_irq(irq, adapter);
1379
1380         return *data;
1381 }
1382
1383 static void igb_free_desc_rings(struct igb_adapter *adapter)
1384 {
1385         igb_free_tx_resources(&adapter->test_tx_ring);
1386         igb_free_rx_resources(&adapter->test_rx_ring);
1387 }
1388
1389 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1390 {
1391         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1392         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1393         struct e1000_hw *hw = &adapter->hw;
1394         int ret_val;
1395
1396         /* Setup Tx descriptor ring and Tx buffers */
1397         tx_ring->count = IGB_DEFAULT_TXD;
1398         tx_ring->dev = &adapter->pdev->dev;
1399         tx_ring->netdev = adapter->netdev;
1400         tx_ring->reg_idx = adapter->vfs_allocated_count;
1401
1402         if (igb_setup_tx_resources(tx_ring)) {
1403                 ret_val = 1;
1404                 goto err_nomem;
1405         }
1406
1407         igb_setup_tctl(adapter);
1408         igb_configure_tx_ring(adapter, tx_ring);
1409
1410         /* Setup Rx descriptor ring and Rx buffers */
1411         rx_ring->count = IGB_DEFAULT_RXD;
1412         rx_ring->dev = &adapter->pdev->dev;
1413         rx_ring->netdev = adapter->netdev;
1414         rx_ring->rx_buffer_len = IGB_RXBUFFER_2048;
1415         rx_ring->reg_idx = adapter->vfs_allocated_count;
1416
1417         if (igb_setup_rx_resources(rx_ring)) {
1418                 ret_val = 3;
1419                 goto err_nomem;
1420         }
1421
1422         /* set the default queue to queue 0 of PF */
1423         wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1424
1425         /* enable receive ring */
1426         igb_setup_rctl(adapter);
1427         igb_configure_rx_ring(adapter, rx_ring);
1428
1429         igb_alloc_rx_buffers_adv(rx_ring, igb_desc_unused(rx_ring));
1430
1431         return 0;
1432
1433 err_nomem:
1434         igb_free_desc_rings(adapter);
1435         return ret_val;
1436 }
1437
1438 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1439 {
1440         struct e1000_hw *hw = &adapter->hw;
1441
1442         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1443         igb_write_phy_reg(hw, 29, 0x001F);
1444         igb_write_phy_reg(hw, 30, 0x8FFC);
1445         igb_write_phy_reg(hw, 29, 0x001A);
1446         igb_write_phy_reg(hw, 30, 0x8FF0);
1447 }
1448
1449 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1450 {
1451         struct e1000_hw *hw = &adapter->hw;
1452         u32 ctrl_reg = 0;
1453
1454         hw->mac.autoneg = false;
1455
1456         if (hw->phy.type == e1000_phy_m88) {
1457                 /* Auto-MDI/MDIX Off */
1458                 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1459                 /* reset to update Auto-MDI/MDIX */
1460                 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1461                 /* autoneg off */
1462                 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1463         } else if (hw->phy.type == e1000_phy_82580) {
1464                 /* enable MII loopback */
1465                 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1466         }
1467
1468         ctrl_reg = rd32(E1000_CTRL);
1469
1470         /* force 1000, set loopback */
1471         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1472
1473         /* Now set up the MAC to the same speed/duplex as the PHY. */
1474         ctrl_reg = rd32(E1000_CTRL);
1475         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1476         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1477                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1478                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1479                      E1000_CTRL_FD |     /* Force Duplex to FULL */
1480                      E1000_CTRL_SLU);    /* Set link up enable bit */
1481
1482         if (hw->phy.type == e1000_phy_m88)
1483                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1484
1485         wr32(E1000_CTRL, ctrl_reg);
1486
1487         /* Disable the receiver on the PHY so when a cable is plugged in, the
1488          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1489          */
1490         if (hw->phy.type == e1000_phy_m88)
1491                 igb_phy_disable_receiver(adapter);
1492
1493         udelay(500);
1494
1495         return 0;
1496 }
1497
1498 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1499 {
1500         return igb_integrated_phy_loopback(adapter);
1501 }
1502
1503 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1504 {
1505         struct e1000_hw *hw = &adapter->hw;
1506         u32 reg;
1507
1508         reg = rd32(E1000_CTRL_EXT);
1509
1510         /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1511         if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1512                 reg = rd32(E1000_RCTL);
1513                 reg |= E1000_RCTL_LBM_TCVR;
1514                 wr32(E1000_RCTL, reg);
1515
1516                 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1517
1518                 reg = rd32(E1000_CTRL);
1519                 reg &= ~(E1000_CTRL_RFCE |
1520                          E1000_CTRL_TFCE |
1521                          E1000_CTRL_LRST);
1522                 reg |= E1000_CTRL_SLU |
1523                        E1000_CTRL_FD;
1524                 wr32(E1000_CTRL, reg);
1525
1526                 /* Unset switch control to serdes energy detect */
1527                 reg = rd32(E1000_CONNSW);
1528                 reg &= ~E1000_CONNSW_ENRGSRC;
1529                 wr32(E1000_CONNSW, reg);
1530
1531                 /* Set PCS register for forced speed */
1532                 reg = rd32(E1000_PCS_LCTL);
1533                 reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1534                 reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1535                        E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1536                        E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1537                        E1000_PCS_LCTL_FSD |           /* Force Speed */
1538                        E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1539                 wr32(E1000_PCS_LCTL, reg);
1540
1541                 return 0;
1542         }
1543
1544         return igb_set_phy_loopback(adapter);
1545 }
1546
1547 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1548 {
1549         struct e1000_hw *hw = &adapter->hw;
1550         u32 rctl;
1551         u16 phy_reg;
1552
1553         rctl = rd32(E1000_RCTL);
1554         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1555         wr32(E1000_RCTL, rctl);
1556
1557         hw->mac.autoneg = true;
1558         igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1559         if (phy_reg & MII_CR_LOOPBACK) {
1560                 phy_reg &= ~MII_CR_LOOPBACK;
1561                 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1562                 igb_phy_sw_reset(hw);
1563         }
1564 }
1565
1566 static void igb_create_lbtest_frame(struct sk_buff *skb,
1567                                     unsigned int frame_size)
1568 {
1569         memset(skb->data, 0xFF, frame_size);
1570         frame_size /= 2;
1571         memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1572         memset(&skb->data[frame_size + 10], 0xBE, 1);
1573         memset(&skb->data[frame_size + 12], 0xAF, 1);
1574 }
1575
1576 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1577 {
1578         frame_size /= 2;
1579         if (*(skb->data + 3) == 0xFF) {
1580                 if ((*(skb->data + frame_size + 10) == 0xBE) &&
1581                    (*(skb->data + frame_size + 12) == 0xAF)) {
1582                         return 0;
1583                 }
1584         }
1585         return 13;
1586 }
1587
1588 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1589                                 struct igb_ring *tx_ring,
1590                                 unsigned int size)
1591 {
1592         union e1000_adv_rx_desc *rx_desc;
1593         struct igb_buffer *buffer_info;
1594         int rx_ntc, tx_ntc, count = 0;
1595         u32 staterr;
1596
1597         /* initialize next to clean and descriptor values */
1598         rx_ntc = rx_ring->next_to_clean;
1599         tx_ntc = tx_ring->next_to_clean;
1600         rx_desc = E1000_RX_DESC_ADV(*rx_ring, rx_ntc);
1601         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1602
1603         while (staterr & E1000_RXD_STAT_DD) {
1604                 /* check rx buffer */
1605                 buffer_info = &rx_ring->buffer_info[rx_ntc];
1606
1607                 /* unmap rx buffer, will be remapped by alloc_rx_buffers */
1608                 dma_unmap_single(rx_ring->dev,
1609                                  buffer_info->dma,
1610                                  rx_ring->rx_buffer_len,
1611                                  DMA_FROM_DEVICE);
1612                 buffer_info->dma = 0;
1613
1614                 /* verify contents of skb */
1615                 if (!igb_check_lbtest_frame(buffer_info->skb, size))
1616                         count++;
1617
1618                 /* unmap buffer on tx side */
1619                 buffer_info = &tx_ring->buffer_info[tx_ntc];
1620                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
1621
1622                 /* increment rx/tx next to clean counters */
1623                 rx_ntc++;
1624                 if (rx_ntc == rx_ring->count)
1625                         rx_ntc = 0;
1626                 tx_ntc++;
1627                 if (tx_ntc == tx_ring->count)
1628                         tx_ntc = 0;
1629
1630                 /* fetch next descriptor */
1631                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, rx_ntc);
1632                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1633         }
1634
1635         /* re-map buffers to ring, store next to clean values */
1636         igb_alloc_rx_buffers_adv(rx_ring, count);
1637         rx_ring->next_to_clean = rx_ntc;
1638         tx_ring->next_to_clean = tx_ntc;
1639
1640         return count;
1641 }
1642
1643 static int igb_run_loopback_test(struct igb_adapter *adapter)
1644 {
1645         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1646         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1647         int i, j, lc, good_cnt, ret_val = 0;
1648         unsigned int size = 1024;
1649         netdev_tx_t tx_ret_val;
1650         struct sk_buff *skb;
1651
1652         /* allocate test skb */
1653         skb = alloc_skb(size, GFP_KERNEL);
1654         if (!skb)
1655                 return 11;
1656
1657         /* place data into test skb */
1658         igb_create_lbtest_frame(skb, size);
1659         skb_put(skb, size);
1660
1661         /*
1662          * Calculate the loop count based on the largest descriptor ring
1663          * The idea is to wrap the largest ring a number of times using 64
1664          * send/receive pairs during each loop
1665          */
1666
1667         if (rx_ring->count <= tx_ring->count)
1668                 lc = ((tx_ring->count / 64) * 2) + 1;
1669         else
1670                 lc = ((rx_ring->count / 64) * 2) + 1;
1671
1672         for (j = 0; j <= lc; j++) { /* loop count loop */
1673                 /* reset count of good packets */
1674                 good_cnt = 0;
1675
1676                 /* place 64 packets on the transmit queue*/
1677                 for (i = 0; i < 64; i++) {
1678                         skb_get(skb);
1679                         tx_ret_val = igb_xmit_frame_ring_adv(skb, tx_ring);
1680                         if (tx_ret_val == NETDEV_TX_OK)
1681                                 good_cnt++;
1682                 }
1683
1684                 if (good_cnt != 64) {
1685                         ret_val = 12;
1686                         break;
1687                 }
1688
1689                 /* allow 200 milliseconds for packets to go from tx to rx */
1690                 msleep(200);
1691
1692                 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1693                 if (good_cnt != 64) {
1694                         ret_val = 13;
1695                         break;
1696                 }
1697         } /* end loop count loop */
1698
1699         /* free the original skb */
1700         kfree_skb(skb);
1701
1702         return ret_val;
1703 }
1704
1705 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1706 {
1707         /* PHY loopback cannot be performed if SoL/IDER
1708          * sessions are active */
1709         if (igb_check_reset_block(&adapter->hw)) {
1710                 dev_err(&adapter->pdev->dev,
1711                         "Cannot do PHY loopback test "
1712                         "when SoL/IDER is active.\n");
1713                 *data = 0;
1714                 goto out;
1715         }
1716         *data = igb_setup_desc_rings(adapter);
1717         if (*data)
1718                 goto out;
1719         *data = igb_setup_loopback_test(adapter);
1720         if (*data)
1721                 goto err_loopback;
1722         *data = igb_run_loopback_test(adapter);
1723         igb_loopback_cleanup(adapter);
1724
1725 err_loopback:
1726         igb_free_desc_rings(adapter);
1727 out:
1728         return *data;
1729 }
1730
1731 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1732 {
1733         struct e1000_hw *hw = &adapter->hw;
1734         *data = 0;
1735         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1736                 int i = 0;
1737                 hw->mac.serdes_has_link = false;
1738
1739                 /* On some blade server designs, link establishment
1740                  * could take as long as 2-3 minutes */
1741                 do {
1742                         hw->mac.ops.check_for_link(&adapter->hw);
1743                         if (hw->mac.serdes_has_link)
1744                                 return *data;
1745                         msleep(20);
1746                 } while (i++ < 3750);
1747
1748                 *data = 1;
1749         } else {
1750                 hw->mac.ops.check_for_link(&adapter->hw);
1751                 if (hw->mac.autoneg)
1752                         msleep(4000);
1753
1754                 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1755                         *data = 1;
1756         }
1757         return *data;
1758 }
1759
1760 static void igb_diag_test(struct net_device *netdev,
1761                           struct ethtool_test *eth_test, u64 *data)
1762 {
1763         struct igb_adapter *adapter = netdev_priv(netdev);
1764         u16 autoneg_advertised;
1765         u8 forced_speed_duplex, autoneg;
1766         bool if_running = netif_running(netdev);
1767
1768         set_bit(__IGB_TESTING, &adapter->state);
1769         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1770                 /* Offline tests */
1771
1772                 /* save speed, duplex, autoneg settings */
1773                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1774                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1775                 autoneg = adapter->hw.mac.autoneg;
1776
1777                 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1778
1779                 /* power up link for link test */
1780                 igb_power_up_link(adapter);
1781
1782                 /* Link test performed before hardware reset so autoneg doesn't
1783                  * interfere with test result */
1784                 if (igb_link_test(adapter, &data[4]))
1785                         eth_test->flags |= ETH_TEST_FL_FAILED;
1786
1787                 if (if_running)
1788                         /* indicate we're in test mode */
1789                         dev_close(netdev);
1790                 else
1791                         igb_reset(adapter);
1792
1793                 if (igb_reg_test(adapter, &data[0]))
1794                         eth_test->flags |= ETH_TEST_FL_FAILED;
1795
1796                 igb_reset(adapter);
1797                 if (igb_eeprom_test(adapter, &data[1]))
1798                         eth_test->flags |= ETH_TEST_FL_FAILED;
1799
1800                 igb_reset(adapter);
1801                 if (igb_intr_test(adapter, &data[2]))
1802                         eth_test->flags |= ETH_TEST_FL_FAILED;
1803
1804                 igb_reset(adapter);
1805                 /* power up link for loopback test */
1806                 igb_power_up_link(adapter);
1807                 if (igb_loopback_test(adapter, &data[3]))
1808                         eth_test->flags |= ETH_TEST_FL_FAILED;
1809
1810                 /* restore speed, duplex, autoneg settings */
1811                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1812                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1813                 adapter->hw.mac.autoneg = autoneg;
1814
1815                 /* force this routine to wait until autoneg complete/timeout */
1816                 adapter->hw.phy.autoneg_wait_to_complete = true;
1817                 igb_reset(adapter);
1818                 adapter->hw.phy.autoneg_wait_to_complete = false;
1819
1820                 clear_bit(__IGB_TESTING, &adapter->state);
1821                 if (if_running)
1822                         dev_open(netdev);
1823         } else {
1824                 dev_info(&adapter->pdev->dev, "online testing starting\n");
1825
1826                 /* PHY is powered down when interface is down */
1827                 if (if_running && igb_link_test(adapter, &data[4]))
1828                         eth_test->flags |= ETH_TEST_FL_FAILED;
1829                 else
1830                         data[4] = 0;
1831
1832                 /* Online tests aren't run; pass by default */
1833                 data[0] = 0;
1834                 data[1] = 0;
1835                 data[2] = 0;
1836                 data[3] = 0;
1837
1838                 clear_bit(__IGB_TESTING, &adapter->state);
1839         }
1840         msleep_interruptible(4 * 1000);
1841 }
1842
1843 static int igb_wol_exclusion(struct igb_adapter *adapter,
1844                              struct ethtool_wolinfo *wol)
1845 {
1846         struct e1000_hw *hw = &adapter->hw;
1847         int retval = 1; /* fail by default */
1848
1849         switch (hw->device_id) {
1850         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1851                 /* WoL not supported */
1852                 wol->supported = 0;
1853                 break;
1854         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1855         case E1000_DEV_ID_82576_FIBER:
1856         case E1000_DEV_ID_82576_SERDES:
1857                 /* Wake events not supported on port B */
1858                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1859                         wol->supported = 0;
1860                         break;
1861                 }
1862                 /* return success for non excluded adapter ports */
1863                 retval = 0;
1864                 break;
1865         case E1000_DEV_ID_82576_QUAD_COPPER:
1866         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1867                 /* quad port adapters only support WoL on port A */
1868                 if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1869                         wol->supported = 0;
1870                         break;
1871                 }
1872                 /* return success for non excluded adapter ports */
1873                 retval = 0;
1874                 break;
1875         default:
1876                 /* dual port cards only support WoL on port A from now on
1877                  * unless it was enabled in the eeprom for port B
1878                  * so exclude FUNC_1 ports from having WoL enabled */
1879                 if ((rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) &&
1880                     !adapter->eeprom_wol) {
1881                         wol->supported = 0;
1882                         break;
1883                 }
1884
1885                 retval = 0;
1886         }
1887
1888         return retval;
1889 }
1890
1891 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1892 {
1893         struct igb_adapter *adapter = netdev_priv(netdev);
1894
1895         wol->supported = WAKE_UCAST | WAKE_MCAST |
1896                          WAKE_BCAST | WAKE_MAGIC |
1897                          WAKE_PHY;
1898         wol->wolopts = 0;
1899
1900         /* this function will set ->supported = 0 and return 1 if wol is not
1901          * supported by this hardware */
1902         if (igb_wol_exclusion(adapter, wol) ||
1903             !device_can_wakeup(&adapter->pdev->dev))
1904                 return;
1905
1906         /* apply any specific unsupported masks here */
1907         switch (adapter->hw.device_id) {
1908         default:
1909                 break;
1910         }
1911
1912         if (adapter->wol & E1000_WUFC_EX)
1913                 wol->wolopts |= WAKE_UCAST;
1914         if (adapter->wol & E1000_WUFC_MC)
1915                 wol->wolopts |= WAKE_MCAST;
1916         if (adapter->wol & E1000_WUFC_BC)
1917                 wol->wolopts |= WAKE_BCAST;
1918         if (adapter->wol & E1000_WUFC_MAG)
1919                 wol->wolopts |= WAKE_MAGIC;
1920         if (adapter->wol & E1000_WUFC_LNKC)
1921                 wol->wolopts |= WAKE_PHY;
1922 }
1923
1924 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1925 {
1926         struct igb_adapter *adapter = netdev_priv(netdev);
1927
1928         if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
1929                 return -EOPNOTSUPP;
1930
1931         if (igb_wol_exclusion(adapter, wol) ||
1932             !device_can_wakeup(&adapter->pdev->dev))
1933                 return wol->wolopts ? -EOPNOTSUPP : 0;
1934
1935         /* these settings will always override what we currently have */
1936         adapter->wol = 0;
1937
1938         if (wol->wolopts & WAKE_UCAST)
1939                 adapter->wol |= E1000_WUFC_EX;
1940         if (wol->wolopts & WAKE_MCAST)
1941                 adapter->wol |= E1000_WUFC_MC;
1942         if (wol->wolopts & WAKE_BCAST)
1943                 adapter->wol |= E1000_WUFC_BC;
1944         if (wol->wolopts & WAKE_MAGIC)
1945                 adapter->wol |= E1000_WUFC_MAG;
1946         if (wol->wolopts & WAKE_PHY)
1947                 adapter->wol |= E1000_WUFC_LNKC;
1948         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1949
1950         return 0;
1951 }
1952
1953 /* bit defines for adapter->led_status */
1954 #define IGB_LED_ON              0
1955
1956 static int igb_phys_id(struct net_device *netdev, u32 data)
1957 {
1958         struct igb_adapter *adapter = netdev_priv(netdev);
1959         struct e1000_hw *hw = &adapter->hw;
1960         unsigned long timeout;
1961
1962         timeout = data * 1000;
1963
1964         /*
1965          *  msleep_interruptable only accepts unsigned int so we are limited
1966          * in how long a duration we can wait
1967          */
1968         if (!timeout || timeout > UINT_MAX)
1969                 timeout = UINT_MAX;
1970
1971         igb_blink_led(hw);
1972         msleep_interruptible(timeout);
1973
1974         igb_led_off(hw);
1975         clear_bit(IGB_LED_ON, &adapter->led_status);
1976         igb_cleanup_led(hw);
1977
1978         return 0;
1979 }
1980
1981 static int igb_set_coalesce(struct net_device *netdev,
1982                             struct ethtool_coalesce *ec)
1983 {
1984         struct igb_adapter *adapter = netdev_priv(netdev);
1985         int i;
1986
1987         if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1988             ((ec->rx_coalesce_usecs > 3) &&
1989              (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1990             (ec->rx_coalesce_usecs == 2))
1991                 return -EINVAL;
1992
1993         if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1994             ((ec->tx_coalesce_usecs > 3) &&
1995              (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1996             (ec->tx_coalesce_usecs == 2))
1997                 return -EINVAL;
1998
1999         if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2000                 return -EINVAL;
2001
2002         /* convert to rate of irq's per second */
2003         if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2004                 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2005         else
2006                 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2007
2008         /* convert to rate of irq's per second */
2009         if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2010                 adapter->tx_itr_setting = adapter->rx_itr_setting;
2011         else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2012                 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2013         else
2014                 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2015
2016         for (i = 0; i < adapter->num_q_vectors; i++) {
2017                 struct igb_q_vector *q_vector = adapter->q_vector[i];
2018                 if (q_vector->rx_ring)
2019                         q_vector->itr_val = adapter->rx_itr_setting;
2020                 else
2021                         q_vector->itr_val = adapter->tx_itr_setting;
2022                 if (q_vector->itr_val && q_vector->itr_val <= 3)
2023                         q_vector->itr_val = IGB_START_ITR;
2024                 q_vector->set_itr = 1;
2025         }
2026
2027         return 0;
2028 }
2029
2030 static int igb_get_coalesce(struct net_device *netdev,
2031                             struct ethtool_coalesce *ec)
2032 {
2033         struct igb_adapter *adapter = netdev_priv(netdev);
2034
2035         if (adapter->rx_itr_setting <= 3)
2036                 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2037         else
2038                 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2039
2040         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2041                 if (adapter->tx_itr_setting <= 3)
2042                         ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2043                 else
2044                         ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2045         }
2046
2047         return 0;
2048 }
2049
2050 static int igb_nway_reset(struct net_device *netdev)
2051 {
2052         struct igb_adapter *adapter = netdev_priv(netdev);
2053         if (netif_running(netdev))
2054                 igb_reinit_locked(adapter);
2055         return 0;
2056 }
2057
2058 static int igb_get_sset_count(struct net_device *netdev, int sset)
2059 {
2060         switch (sset) {
2061         case ETH_SS_STATS:
2062                 return IGB_STATS_LEN;
2063         case ETH_SS_TEST:
2064                 return IGB_TEST_LEN;
2065         default:
2066                 return -ENOTSUPP;
2067         }
2068 }
2069
2070 static void igb_get_ethtool_stats(struct net_device *netdev,
2071                                   struct ethtool_stats *stats, u64 *data)
2072 {
2073         struct igb_adapter *adapter = netdev_priv(netdev);
2074         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2075         unsigned int start;
2076         struct igb_ring *ring;
2077         int i, j;
2078         char *p;
2079
2080         spin_lock(&adapter->stats64_lock);
2081         igb_update_stats(adapter, net_stats);
2082
2083         for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2084                 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2085                 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2086                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2087         }
2088         for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2089                 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2090                 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2091                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2092         }
2093         for (j = 0; j < adapter->num_tx_queues; j++) {
2094                 u64     restart2;
2095
2096                 ring = adapter->tx_ring[j];
2097                 do {
2098                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2099                         data[i]   = ring->tx_stats.packets;
2100                         data[i+1] = ring->tx_stats.bytes;
2101                         data[i+2] = ring->tx_stats.restart_queue;
2102                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2103                 do {
2104                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2105                         restart2  = ring->tx_stats.restart_queue2;
2106                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2107                 data[i+2] += restart2;
2108
2109                 i += IGB_TX_QUEUE_STATS_LEN;
2110         }
2111         for (j = 0; j < adapter->num_rx_queues; j++) {
2112                 ring = adapter->rx_ring[j];
2113                 do {
2114                         start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2115                         data[i]   = ring->rx_stats.packets;
2116                         data[i+1] = ring->rx_stats.bytes;
2117                         data[i+2] = ring->rx_stats.drops;
2118                         data[i+3] = ring->rx_stats.csum_err;
2119                         data[i+4] = ring->rx_stats.alloc_failed;
2120                 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2121                 i += IGB_RX_QUEUE_STATS_LEN;
2122         }
2123         spin_unlock(&adapter->stats64_lock);
2124 }
2125
2126 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2127 {
2128         struct igb_adapter *adapter = netdev_priv(netdev);
2129         u8 *p = data;
2130         int i;
2131
2132         switch (stringset) {
2133         case ETH_SS_TEST:
2134                 memcpy(data, *igb_gstrings_test,
2135                         IGB_TEST_LEN*ETH_GSTRING_LEN);
2136                 break;
2137         case ETH_SS_STATS:
2138                 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2139                         memcpy(p, igb_gstrings_stats[i].stat_string,
2140                                ETH_GSTRING_LEN);
2141                         p += ETH_GSTRING_LEN;
2142                 }
2143                 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2144                         memcpy(p, igb_gstrings_net_stats[i].stat_string,
2145                                ETH_GSTRING_LEN);
2146                         p += ETH_GSTRING_LEN;
2147                 }
2148                 for (i = 0; i < adapter->num_tx_queues; i++) {
2149                         sprintf(p, "tx_queue_%u_packets", i);
2150                         p += ETH_GSTRING_LEN;
2151                         sprintf(p, "tx_queue_%u_bytes", i);
2152                         p += ETH_GSTRING_LEN;
2153                         sprintf(p, "tx_queue_%u_restart", i);
2154                         p += ETH_GSTRING_LEN;
2155                 }
2156                 for (i = 0; i < adapter->num_rx_queues; i++) {
2157                         sprintf(p, "rx_queue_%u_packets", i);
2158                         p += ETH_GSTRING_LEN;
2159                         sprintf(p, "rx_queue_%u_bytes", i);
2160                         p += ETH_GSTRING_LEN;
2161                         sprintf(p, "rx_queue_%u_drops", i);
2162                         p += ETH_GSTRING_LEN;
2163                         sprintf(p, "rx_queue_%u_csum_err", i);
2164                         p += ETH_GSTRING_LEN;
2165                         sprintf(p, "rx_queue_%u_alloc_failed", i);
2166                         p += ETH_GSTRING_LEN;
2167                 }
2168 /*              BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2169                 break;
2170         }
2171 }
2172
2173 static const struct ethtool_ops igb_ethtool_ops = {
2174         .get_settings           = igb_get_settings,
2175         .set_settings           = igb_set_settings,
2176         .get_drvinfo            = igb_get_drvinfo,
2177         .get_regs_len           = igb_get_regs_len,
2178         .get_regs               = igb_get_regs,
2179         .get_wol                = igb_get_wol,
2180         .set_wol                = igb_set_wol,
2181         .get_msglevel           = igb_get_msglevel,
2182         .set_msglevel           = igb_set_msglevel,
2183         .nway_reset             = igb_nway_reset,
2184         .get_link               = igb_get_link,
2185         .get_eeprom_len         = igb_get_eeprom_len,
2186         .get_eeprom             = igb_get_eeprom,
2187         .set_eeprom             = igb_set_eeprom,
2188         .get_ringparam          = igb_get_ringparam,
2189         .set_ringparam          = igb_set_ringparam,
2190         .get_pauseparam         = igb_get_pauseparam,
2191         .set_pauseparam         = igb_set_pauseparam,
2192         .get_rx_csum            = igb_get_rx_csum,
2193         .set_rx_csum            = igb_set_rx_csum,
2194         .get_tx_csum            = igb_get_tx_csum,
2195         .set_tx_csum            = igb_set_tx_csum,
2196         .get_sg                 = ethtool_op_get_sg,
2197         .set_sg                 = ethtool_op_set_sg,
2198         .get_tso                = ethtool_op_get_tso,
2199         .set_tso                = igb_set_tso,
2200         .self_test              = igb_diag_test,
2201         .get_strings            = igb_get_strings,
2202         .phys_id                = igb_phys_id,
2203         .get_sset_count         = igb_get_sset_count,
2204         .get_ethtool_stats      = igb_get_ethtool_stats,
2205         .get_coalesce           = igb_get_coalesce,
2206         .set_coalesce           = igb_set_coalesce,
2207 };
2208
2209 void igb_set_ethtool_ops(struct net_device *netdev)
2210 {
2211         SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2212 }