]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/net/e1000e/82571.c
b979464091bb1cba01db7ebf477de6e442e4ab19
[net-next-2.6.git] / drivers / net / e1000e / 82571.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82571EB Gigabit Ethernet Controller
31  * 82571EB Gigabit Ethernet Controller (Copper)
32  * 82571EB Gigabit Ethernet Controller (Fiber)
33  * 82571EB Dual Port Gigabit Mezzanine Adapter
34  * 82571EB Quad Port Gigabit Mezzanine Adapter
35  * 82571PT Gigabit PT Quad Port Server ExpressModule
36  * 82572EI Gigabit Ethernet Controller (Copper)
37  * 82572EI Gigabit Ethernet Controller (Fiber)
38  * 82572EI Gigabit Ethernet Controller
39  * 82573V Gigabit Ethernet Controller (Copper)
40  * 82573E Gigabit Ethernet Controller (Copper)
41  * 82573L Gigabit Ethernet Controller
42  * 82574L Gigabit Network Connection
43  * 82583V Gigabit Network Connection
44  */
45
46 #include "e1000.h"
47
48 #define ID_LED_RESERVED_F746 0xF746
49 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50                               (ID_LED_OFF1_ON2  <<  8) | \
51                               (ID_LED_DEF1_DEF2 <<  4) | \
52                               (ID_LED_DEF1_DEF2))
53
54 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55
56 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
57
58 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
59 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
60 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
61 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
62 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
63                                       u16 words, u16 *data);
64 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
65 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
66 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
67 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
68 static void e1000_clear_vfta_82571(struct e1000_hw *hw);
69 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
70 static s32 e1000_led_on_82574(struct e1000_hw *hw);
71 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
72 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
73
74 /**
75  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
76  *  @hw: pointer to the HW structure
77  **/
78 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
79 {
80         struct e1000_phy_info *phy = &hw->phy;
81         s32 ret_val;
82
83         if (hw->phy.media_type != e1000_media_type_copper) {
84                 phy->type = e1000_phy_none;
85                 return 0;
86         }
87
88         phy->addr                        = 1;
89         phy->autoneg_mask                = AUTONEG_ADVERTISE_SPEED_DEFAULT;
90         phy->reset_delay_us              = 100;
91
92         phy->ops.power_up                = e1000_power_up_phy_copper;
93         phy->ops.power_down              = e1000_power_down_phy_copper_82571;
94
95         switch (hw->mac.type) {
96         case e1000_82571:
97         case e1000_82572:
98                 phy->type                = e1000_phy_igp_2;
99                 break;
100         case e1000_82573:
101                 phy->type                = e1000_phy_m88;
102                 break;
103         case e1000_82574:
104         case e1000_82583:
105                 phy->type                = e1000_phy_bm;
106                 break;
107         default:
108                 return -E1000_ERR_PHY;
109                 break;
110         }
111
112         /* This can only be done after all function pointers are setup. */
113         ret_val = e1000_get_phy_id_82571(hw);
114
115         /* Verify phy id */
116         switch (hw->mac.type) {
117         case e1000_82571:
118         case e1000_82572:
119                 if (phy->id != IGP01E1000_I_PHY_ID)
120                         return -E1000_ERR_PHY;
121                 break;
122         case e1000_82573:
123                 if (phy->id != M88E1111_I_PHY_ID)
124                         return -E1000_ERR_PHY;
125                 break;
126         case e1000_82574:
127         case e1000_82583:
128                 if (phy->id != BME1000_E_PHY_ID_R2)
129                         return -E1000_ERR_PHY;
130                 break;
131         default:
132                 return -E1000_ERR_PHY;
133                 break;
134         }
135
136         return 0;
137 }
138
139 /**
140  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
141  *  @hw: pointer to the HW structure
142  **/
143 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
144 {
145         struct e1000_nvm_info *nvm = &hw->nvm;
146         u32 eecd = er32(EECD);
147         u16 size;
148
149         nvm->opcode_bits = 8;
150         nvm->delay_usec = 1;
151         switch (nvm->override) {
152         case e1000_nvm_override_spi_large:
153                 nvm->page_size = 32;
154                 nvm->address_bits = 16;
155                 break;
156         case e1000_nvm_override_spi_small:
157                 nvm->page_size = 8;
158                 nvm->address_bits = 8;
159                 break;
160         default:
161                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
162                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
163                 break;
164         }
165
166         switch (hw->mac.type) {
167         case e1000_82573:
168         case e1000_82574:
169         case e1000_82583:
170                 if (((eecd >> 15) & 0x3) == 0x3) {
171                         nvm->type = e1000_nvm_flash_hw;
172                         nvm->word_size = 2048;
173                         /*
174                          * Autonomous Flash update bit must be cleared due
175                          * to Flash update issue.
176                          */
177                         eecd &= ~E1000_EECD_AUPDEN;
178                         ew32(EECD, eecd);
179                         break;
180                 }
181                 /* Fall Through */
182         default:
183                 nvm->type = e1000_nvm_eeprom_spi;
184                 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
185                                   E1000_EECD_SIZE_EX_SHIFT);
186                 /*
187                  * Added to a constant, "size" becomes the left-shift value
188                  * for setting word_size.
189                  */
190                 size += NVM_WORD_SIZE_BASE_SHIFT;
191
192                 /* EEPROM access above 16k is unsupported */
193                 if (size > 14)
194                         size = 14;
195                 nvm->word_size  = 1 << size;
196                 break;
197         }
198
199         return 0;
200 }
201
202 /**
203  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
204  *  @hw: pointer to the HW structure
205  **/
206 static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
207 {
208         struct e1000_hw *hw = &adapter->hw;
209         struct e1000_mac_info *mac = &hw->mac;
210         struct e1000_mac_operations *func = &mac->ops;
211         u32 swsm = 0;
212         u32 swsm2 = 0;
213         bool force_clear_smbi = false;
214
215         /* Set media type */
216         switch (adapter->pdev->device) {
217         case E1000_DEV_ID_82571EB_FIBER:
218         case E1000_DEV_ID_82572EI_FIBER:
219         case E1000_DEV_ID_82571EB_QUAD_FIBER:
220                 hw->phy.media_type = e1000_media_type_fiber;
221                 break;
222         case E1000_DEV_ID_82571EB_SERDES:
223         case E1000_DEV_ID_82572EI_SERDES:
224         case E1000_DEV_ID_82571EB_SERDES_DUAL:
225         case E1000_DEV_ID_82571EB_SERDES_QUAD:
226                 hw->phy.media_type = e1000_media_type_internal_serdes;
227                 break;
228         default:
229                 hw->phy.media_type = e1000_media_type_copper;
230                 break;
231         }
232
233         /* Set mta register count */
234         mac->mta_reg_count = 128;
235         /* Set rar entry count */
236         mac->rar_entry_count = E1000_RAR_ENTRIES;
237         /* Set if manageability features are enabled. */
238         mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK)
239                         ? true : false;
240
241         /* check for link */
242         switch (hw->phy.media_type) {
243         case e1000_media_type_copper:
244                 func->setup_physical_interface = e1000_setup_copper_link_82571;
245                 func->check_for_link = e1000e_check_for_copper_link;
246                 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
247                 break;
248         case e1000_media_type_fiber:
249                 func->setup_physical_interface =
250                         e1000_setup_fiber_serdes_link_82571;
251                 func->check_for_link = e1000e_check_for_fiber_link;
252                 func->get_link_up_info =
253                         e1000e_get_speed_and_duplex_fiber_serdes;
254                 break;
255         case e1000_media_type_internal_serdes:
256                 func->setup_physical_interface =
257                         e1000_setup_fiber_serdes_link_82571;
258                 func->check_for_link = e1000_check_for_serdes_link_82571;
259                 func->get_link_up_info =
260                         e1000e_get_speed_and_duplex_fiber_serdes;
261                 break;
262         default:
263                 return -E1000_ERR_CONFIG;
264                 break;
265         }
266
267         switch (hw->mac.type) {
268         case e1000_82574:
269         case e1000_82583:
270                 func->check_mng_mode = e1000_check_mng_mode_82574;
271                 func->led_on = e1000_led_on_82574;
272                 break;
273         default:
274                 func->check_mng_mode = e1000e_check_mng_mode_generic;
275                 func->led_on = e1000e_led_on_generic;
276                 break;
277         }
278
279         /*
280          * Ensure that the inter-port SWSM.SMBI lock bit is clear before
281          * first NVM or PHY acess. This should be done for single-port
282          * devices, and for one port only on dual-port devices so that
283          * for those devices we can still use the SMBI lock to synchronize
284          * inter-port accesses to the PHY & NVM.
285          */
286         switch (hw->mac.type) {
287         case e1000_82571:
288         case e1000_82572:
289                 swsm2 = er32(SWSM2);
290
291                 if (!(swsm2 & E1000_SWSM2_LOCK)) {
292                         /* Only do this for the first interface on this card */
293                         ew32(SWSM2,
294                             swsm2 | E1000_SWSM2_LOCK);
295                         force_clear_smbi = true;
296                 } else
297                         force_clear_smbi = false;
298                 break;
299         default:
300                 force_clear_smbi = true;
301                 break;
302         }
303
304         if (force_clear_smbi) {
305                 /* Make sure SWSM.SMBI is clear */
306                 swsm = er32(SWSM);
307                 if (swsm & E1000_SWSM_SMBI) {
308                         /* This bit should not be set on a first interface, and
309                          * indicates that the bootagent or EFI code has
310                          * improperly left this bit enabled
311                          */
312                         e_dbg("Please update your 82571 Bootagent\n");
313                 }
314                 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
315         }
316
317         /*
318          * Initialze device specific counter of SMBI acquisition
319          * timeouts.
320          */
321          hw->dev_spec.e82571.smb_counter = 0;
322
323         return 0;
324 }
325
326 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
327 {
328         struct e1000_hw *hw = &adapter->hw;
329         static int global_quad_port_a; /* global port a indication */
330         struct pci_dev *pdev = adapter->pdev;
331         u16 eeprom_data = 0;
332         int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
333         s32 rc;
334
335         rc = e1000_init_mac_params_82571(adapter);
336         if (rc)
337                 return rc;
338
339         rc = e1000_init_nvm_params_82571(hw);
340         if (rc)
341                 return rc;
342
343         rc = e1000_init_phy_params_82571(hw);
344         if (rc)
345                 return rc;
346
347         /* tag quad port adapters first, it's used below */
348         switch (pdev->device) {
349         case E1000_DEV_ID_82571EB_QUAD_COPPER:
350         case E1000_DEV_ID_82571EB_QUAD_FIBER:
351         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
352         case E1000_DEV_ID_82571PT_QUAD_COPPER:
353                 adapter->flags |= FLAG_IS_QUAD_PORT;
354                 /* mark the first port */
355                 if (global_quad_port_a == 0)
356                         adapter->flags |= FLAG_IS_QUAD_PORT_A;
357                 /* Reset for multiple quad port adapters */
358                 global_quad_port_a++;
359                 if (global_quad_port_a == 4)
360                         global_quad_port_a = 0;
361                 break;
362         default:
363                 break;
364         }
365
366         switch (adapter->hw.mac.type) {
367         case e1000_82571:
368                 /* these dual ports don't have WoL on port B at all */
369                 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
370                      (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
371                      (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
372                     (is_port_b))
373                         adapter->flags &= ~FLAG_HAS_WOL;
374                 /* quad ports only support WoL on port A */
375                 if (adapter->flags & FLAG_IS_QUAD_PORT &&
376                     (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
377                         adapter->flags &= ~FLAG_HAS_WOL;
378                 /* Does not support WoL on any port */
379                 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
380                         adapter->flags &= ~FLAG_HAS_WOL;
381                 break;
382
383         case e1000_82573:
384                 if (pdev->device == E1000_DEV_ID_82573L) {
385                         if (e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1,
386                                        &eeprom_data) < 0)
387                                 break;
388                         if (!(eeprom_data & NVM_WORD1A_ASPM_MASK)) {
389                                 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
390                                 adapter->max_hw_frame_size = DEFAULT_JUMBO;
391                         }
392                 }
393                 break;
394         default:
395                 break;
396         }
397
398         return 0;
399 }
400
401 /**
402  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
403  *  @hw: pointer to the HW structure
404  *
405  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
406  *  revision in the hardware structure.
407  **/
408 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
409 {
410         struct e1000_phy_info *phy = &hw->phy;
411         s32 ret_val;
412         u16 phy_id = 0;
413
414         switch (hw->mac.type) {
415         case e1000_82571:
416         case e1000_82572:
417                 /*
418                  * The 82571 firmware may still be configuring the PHY.
419                  * In this case, we cannot access the PHY until the
420                  * configuration is done.  So we explicitly set the
421                  * PHY ID.
422                  */
423                 phy->id = IGP01E1000_I_PHY_ID;
424                 break;
425         case e1000_82573:
426                 return e1000e_get_phy_id(hw);
427                 break;
428         case e1000_82574:
429         case e1000_82583:
430                 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
431                 if (ret_val)
432                         return ret_val;
433
434                 phy->id = (u32)(phy_id << 16);
435                 udelay(20);
436                 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
437                 if (ret_val)
438                         return ret_val;
439
440                 phy->id |= (u32)(phy_id);
441                 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
442                 break;
443         default:
444                 return -E1000_ERR_PHY;
445                 break;
446         }
447
448         return 0;
449 }
450
451 /**
452  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
453  *  @hw: pointer to the HW structure
454  *
455  *  Acquire the HW semaphore to access the PHY or NVM
456  **/
457 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
458 {
459         u32 swsm;
460         s32 sw_timeout = hw->nvm.word_size + 1;
461         s32 fw_timeout = hw->nvm.word_size + 1;
462         s32 i = 0;
463
464         /*
465          * If we have timedout 3 times on trying to acquire
466          * the inter-port SMBI semaphore, there is old code
467          * operating on the other port, and it is not
468          * releasing SMBI. Modify the number of times that
469          * we try for the semaphore to interwork with this
470          * older code.
471          */
472         if (hw->dev_spec.e82571.smb_counter > 2)
473                 sw_timeout = 1;
474
475         /* Get the SW semaphore */
476         while (i < sw_timeout) {
477                 swsm = er32(SWSM);
478                 if (!(swsm & E1000_SWSM_SMBI))
479                         break;
480
481                 udelay(50);
482                 i++;
483         }
484
485         if (i == sw_timeout) {
486                 e_dbg("Driver can't access device - SMBI bit is set.\n");
487                 hw->dev_spec.e82571.smb_counter++;
488         }
489         /* Get the FW semaphore. */
490         for (i = 0; i < fw_timeout; i++) {
491                 swsm = er32(SWSM);
492                 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
493
494                 /* Semaphore acquired if bit latched */
495                 if (er32(SWSM) & E1000_SWSM_SWESMBI)
496                         break;
497
498                 udelay(50);
499         }
500
501         if (i == fw_timeout) {
502                 /* Release semaphores */
503                 e1000_put_hw_semaphore_82571(hw);
504                 e_dbg("Driver can't access the NVM\n");
505                 return -E1000_ERR_NVM;
506         }
507
508         return 0;
509 }
510
511 /**
512  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
513  *  @hw: pointer to the HW structure
514  *
515  *  Release hardware semaphore used to access the PHY or NVM
516  **/
517 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
518 {
519         u32 swsm;
520
521         swsm = er32(SWSM);
522         swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
523         ew32(SWSM, swsm);
524 }
525
526 /**
527  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
528  *  @hw: pointer to the HW structure
529  *
530  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
531  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
532  *  for EEPROM access grant bit.  If the access grant bit is not set, release
533  *  hardware semaphore.
534  **/
535 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
536 {
537         s32 ret_val;
538
539         ret_val = e1000_get_hw_semaphore_82571(hw);
540         if (ret_val)
541                 return ret_val;
542
543         switch (hw->mac.type) {
544         case e1000_82573:
545         case e1000_82574:
546         case e1000_82583:
547                 break;
548         default:
549                 ret_val = e1000e_acquire_nvm(hw);
550                 break;
551         }
552
553         if (ret_val)
554                 e1000_put_hw_semaphore_82571(hw);
555
556         return ret_val;
557 }
558
559 /**
560  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
561  *  @hw: pointer to the HW structure
562  *
563  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
564  **/
565 static void e1000_release_nvm_82571(struct e1000_hw *hw)
566 {
567         e1000e_release_nvm(hw);
568         e1000_put_hw_semaphore_82571(hw);
569 }
570
571 /**
572  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
573  *  @hw: pointer to the HW structure
574  *  @offset: offset within the EEPROM to be written to
575  *  @words: number of words to write
576  *  @data: 16 bit word(s) to be written to the EEPROM
577  *
578  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
579  *
580  *  If e1000e_update_nvm_checksum is not called after this function, the
581  *  EEPROM will most likely contain an invalid checksum.
582  **/
583 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
584                                  u16 *data)
585 {
586         s32 ret_val;
587
588         switch (hw->mac.type) {
589         case e1000_82573:
590         case e1000_82574:
591         case e1000_82583:
592                 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
593                 break;
594         case e1000_82571:
595         case e1000_82572:
596                 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
597                 break;
598         default:
599                 ret_val = -E1000_ERR_NVM;
600                 break;
601         }
602
603         return ret_val;
604 }
605
606 /**
607  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
608  *  @hw: pointer to the HW structure
609  *
610  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
611  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
612  *  value to the EEPROM.
613  **/
614 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
615 {
616         u32 eecd;
617         s32 ret_val;
618         u16 i;
619
620         ret_val = e1000e_update_nvm_checksum_generic(hw);
621         if (ret_val)
622                 return ret_val;
623
624         /*
625          * If our nvm is an EEPROM, then we're done
626          * otherwise, commit the checksum to the flash NVM.
627          */
628         if (hw->nvm.type != e1000_nvm_flash_hw)
629                 return ret_val;
630
631         /* Check for pending operations. */
632         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
633                 msleep(1);
634                 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
635                         break;
636         }
637
638         if (i == E1000_FLASH_UPDATES)
639                 return -E1000_ERR_NVM;
640
641         /* Reset the firmware if using STM opcode. */
642         if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
643                 /*
644                  * The enabling of and the actual reset must be done
645                  * in two write cycles.
646                  */
647                 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
648                 e1e_flush();
649                 ew32(HICR, E1000_HICR_FW_RESET);
650         }
651
652         /* Commit the write to flash */
653         eecd = er32(EECD) | E1000_EECD_FLUPD;
654         ew32(EECD, eecd);
655
656         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
657                 msleep(1);
658                 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
659                         break;
660         }
661
662         if (i == E1000_FLASH_UPDATES)
663                 return -E1000_ERR_NVM;
664
665         return 0;
666 }
667
668 /**
669  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
670  *  @hw: pointer to the HW structure
671  *
672  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
673  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
674  **/
675 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
676 {
677         if (hw->nvm.type == e1000_nvm_flash_hw)
678                 e1000_fix_nvm_checksum_82571(hw);
679
680         return e1000e_validate_nvm_checksum_generic(hw);
681 }
682
683 /**
684  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
685  *  @hw: pointer to the HW structure
686  *  @offset: offset within the EEPROM to be written to
687  *  @words: number of words to write
688  *  @data: 16 bit word(s) to be written to the EEPROM
689  *
690  *  After checking for invalid values, poll the EEPROM to ensure the previous
691  *  command has completed before trying to write the next word.  After write
692  *  poll for completion.
693  *
694  *  If e1000e_update_nvm_checksum is not called after this function, the
695  *  EEPROM will most likely contain an invalid checksum.
696  **/
697 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
698                                       u16 words, u16 *data)
699 {
700         struct e1000_nvm_info *nvm = &hw->nvm;
701         u32 i, eewr = 0;
702         s32 ret_val = 0;
703
704         /*
705          * A check for invalid values:  offset too large, too many words,
706          * and not enough words.
707          */
708         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
709             (words == 0)) {
710                 e_dbg("nvm parameter(s) out of bounds\n");
711                 return -E1000_ERR_NVM;
712         }
713
714         for (i = 0; i < words; i++) {
715                 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
716                        ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
717                        E1000_NVM_RW_REG_START;
718
719                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
720                 if (ret_val)
721                         break;
722
723                 ew32(EEWR, eewr);
724
725                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
726                 if (ret_val)
727                         break;
728         }
729
730         return ret_val;
731 }
732
733 /**
734  *  e1000_get_cfg_done_82571 - Poll for configuration done
735  *  @hw: pointer to the HW structure
736  *
737  *  Reads the management control register for the config done bit to be set.
738  **/
739 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
740 {
741         s32 timeout = PHY_CFG_TIMEOUT;
742
743         while (timeout) {
744                 if (er32(EEMNGCTL) &
745                     E1000_NVM_CFG_DONE_PORT_0)
746                         break;
747                 msleep(1);
748                 timeout--;
749         }
750         if (!timeout) {
751                 e_dbg("MNG configuration cycle has not completed.\n");
752                 return -E1000_ERR_RESET;
753         }
754
755         return 0;
756 }
757
758 /**
759  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
760  *  @hw: pointer to the HW structure
761  *  @active: true to enable LPLU, false to disable
762  *
763  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
764  *  this function also disables smart speed and vice versa.  LPLU will not be
765  *  activated unless the device autonegotiation advertisement meets standards
766  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
767  *  pointer entry point only called by PHY setup routines.
768  **/
769 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
770 {
771         struct e1000_phy_info *phy = &hw->phy;
772         s32 ret_val;
773         u16 data;
774
775         ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
776         if (ret_val)
777                 return ret_val;
778
779         if (active) {
780                 data |= IGP02E1000_PM_D0_LPLU;
781                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
782                 if (ret_val)
783                         return ret_val;
784
785                 /* When LPLU is enabled, we should disable SmartSpeed */
786                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
787                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
788                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
789                 if (ret_val)
790                         return ret_val;
791         } else {
792                 data &= ~IGP02E1000_PM_D0_LPLU;
793                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
794                 /*
795                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
796                  * during Dx states where the power conservation is most
797                  * important.  During driver activity we should enable
798                  * SmartSpeed, so performance is maintained.
799                  */
800                 if (phy->smart_speed == e1000_smart_speed_on) {
801                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
802                                            &data);
803                         if (ret_val)
804                                 return ret_val;
805
806                         data |= IGP01E1000_PSCFR_SMART_SPEED;
807                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
808                                            data);
809                         if (ret_val)
810                                 return ret_val;
811                 } else if (phy->smart_speed == e1000_smart_speed_off) {
812                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
813                                            &data);
814                         if (ret_val)
815                                 return ret_val;
816
817                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
818                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
819                                            data);
820                         if (ret_val)
821                                 return ret_val;
822                 }
823         }
824
825         return 0;
826 }
827
828 /**
829  *  e1000_reset_hw_82571 - Reset hardware
830  *  @hw: pointer to the HW structure
831  *
832  *  This resets the hardware into a known state.
833  **/
834 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
835 {
836         u32 ctrl, extcnf_ctrl, ctrl_ext, icr;
837         s32 ret_val;
838         u16 i = 0;
839
840         /*
841          * Prevent the PCI-E bus from sticking if there is no TLP connection
842          * on the last TLP read/write transaction when MAC is reset.
843          */
844         ret_val = e1000e_disable_pcie_master(hw);
845         if (ret_val)
846                 e_dbg("PCI-E Master disable polling has failed.\n");
847
848         e_dbg("Masking off all interrupts\n");
849         ew32(IMC, 0xffffffff);
850
851         ew32(RCTL, 0);
852         ew32(TCTL, E1000_TCTL_PSP);
853         e1e_flush();
854
855         msleep(10);
856
857         /*
858          * Must acquire the MDIO ownership before MAC reset.
859          * Ownership defaults to firmware after a reset.
860          */
861         switch (hw->mac.type) {
862         case e1000_82573:
863         case e1000_82574:
864         case e1000_82583:
865                 extcnf_ctrl = er32(EXTCNF_CTRL);
866                 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
867
868                 do {
869                         ew32(EXTCNF_CTRL, extcnf_ctrl);
870                         extcnf_ctrl = er32(EXTCNF_CTRL);
871
872                         if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
873                                 break;
874
875                         extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
876
877                         msleep(2);
878                         i++;
879                 } while (i < MDIO_OWNERSHIP_TIMEOUT);
880                 break;
881         default:
882                 break;
883         }
884
885         ctrl = er32(CTRL);
886
887         e_dbg("Issuing a global reset to MAC\n");
888         ew32(CTRL, ctrl | E1000_CTRL_RST);
889
890         if (hw->nvm.type == e1000_nvm_flash_hw) {
891                 udelay(10);
892                 ctrl_ext = er32(CTRL_EXT);
893                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
894                 ew32(CTRL_EXT, ctrl_ext);
895                 e1e_flush();
896         }
897
898         ret_val = e1000e_get_auto_rd_done(hw);
899         if (ret_val)
900                 /* We don't want to continue accessing MAC registers. */
901                 return ret_val;
902
903         /*
904          * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
905          * Need to wait for Phy configuration completion before accessing
906          * NVM and Phy.
907          */
908
909         switch (hw->mac.type) {
910         case e1000_82573:
911         case e1000_82574:
912         case e1000_82583:
913                 msleep(25);
914                 break;
915         default:
916                 break;
917         }
918
919         /* Clear any pending interrupt events. */
920         ew32(IMC, 0xffffffff);
921         icr = er32(ICR);
922
923         if (hw->mac.type == e1000_82571 &&
924                 hw->dev_spec.e82571.alt_mac_addr_is_present)
925                         e1000e_set_laa_state_82571(hw, true);
926
927         /* Reinitialize the 82571 serdes link state machine */
928         if (hw->phy.media_type == e1000_media_type_internal_serdes)
929                 hw->mac.serdes_link_state = e1000_serdes_link_down;
930
931         return 0;
932 }
933
934 /**
935  *  e1000_init_hw_82571 - Initialize hardware
936  *  @hw: pointer to the HW structure
937  *
938  *  This inits the hardware readying it for operation.
939  **/
940 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
941 {
942         struct e1000_mac_info *mac = &hw->mac;
943         u32 reg_data;
944         s32 ret_val;
945         u16 i, rar_count = mac->rar_entry_count;
946
947         e1000_initialize_hw_bits_82571(hw);
948
949         /* Initialize identification LED */
950         ret_val = e1000e_id_led_init(hw);
951         if (ret_val)
952                 e_dbg("Error initializing identification LED\n");
953                 /* This is not fatal and we should not stop init due to this */
954
955         /* Disabling VLAN filtering */
956         e_dbg("Initializing the IEEE VLAN\n");
957         mac->ops.clear_vfta(hw);
958
959         /* Setup the receive address. */
960         /*
961          * If, however, a locally administered address was assigned to the
962          * 82571, we must reserve a RAR for it to work around an issue where
963          * resetting one port will reload the MAC on the other port.
964          */
965         if (e1000e_get_laa_state_82571(hw))
966                 rar_count--;
967         e1000e_init_rx_addrs(hw, rar_count);
968
969         /* Zero out the Multicast HASH table */
970         e_dbg("Zeroing the MTA\n");
971         for (i = 0; i < mac->mta_reg_count; i++)
972                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
973
974         /* Setup link and flow control */
975         ret_val = e1000_setup_link_82571(hw);
976
977         /* Set the transmit descriptor write-back policy */
978         reg_data = er32(TXDCTL(0));
979         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
980                    E1000_TXDCTL_FULL_TX_DESC_WB |
981                    E1000_TXDCTL_COUNT_DESC;
982         ew32(TXDCTL(0), reg_data);
983
984         /* ...for both queues. */
985         switch (mac->type) {
986         case e1000_82573:
987         case e1000_82574:
988         case e1000_82583:
989                 e1000e_enable_tx_pkt_filtering(hw);
990                 reg_data = er32(GCR);
991                 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
992                 ew32(GCR, reg_data);
993                 break;
994         default:
995                 reg_data = er32(TXDCTL(1));
996                 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
997                            E1000_TXDCTL_FULL_TX_DESC_WB |
998                            E1000_TXDCTL_COUNT_DESC;
999                 ew32(TXDCTL(1), reg_data);
1000                 break;
1001         }
1002
1003         /*
1004          * Clear all of the statistics registers (clear on read).  It is
1005          * important that we do this after we have tried to establish link
1006          * because the symbol error count will increment wildly if there
1007          * is no link.
1008          */
1009         e1000_clear_hw_cntrs_82571(hw);
1010
1011         return ret_val;
1012 }
1013
1014 /**
1015  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1016  *  @hw: pointer to the HW structure
1017  *
1018  *  Initializes required hardware-dependent bits needed for normal operation.
1019  **/
1020 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1021 {
1022         u32 reg;
1023
1024         /* Transmit Descriptor Control 0 */
1025         reg = er32(TXDCTL(0));
1026         reg |= (1 << 22);
1027         ew32(TXDCTL(0), reg);
1028
1029         /* Transmit Descriptor Control 1 */
1030         reg = er32(TXDCTL(1));
1031         reg |= (1 << 22);
1032         ew32(TXDCTL(1), reg);
1033
1034         /* Transmit Arbitration Control 0 */
1035         reg = er32(TARC(0));
1036         reg &= ~(0xF << 27); /* 30:27 */
1037         switch (hw->mac.type) {
1038         case e1000_82571:
1039         case e1000_82572:
1040                 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1041                 break;
1042         default:
1043                 break;
1044         }
1045         ew32(TARC(0), reg);
1046
1047         /* Transmit Arbitration Control 1 */
1048         reg = er32(TARC(1));
1049         switch (hw->mac.type) {
1050         case e1000_82571:
1051         case e1000_82572:
1052                 reg &= ~((1 << 29) | (1 << 30));
1053                 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1054                 if (er32(TCTL) & E1000_TCTL_MULR)
1055                         reg &= ~(1 << 28);
1056                 else
1057                         reg |= (1 << 28);
1058                 ew32(TARC(1), reg);
1059                 break;
1060         default:
1061                 break;
1062         }
1063
1064         /* Device Control */
1065         switch (hw->mac.type) {
1066         case e1000_82573:
1067         case e1000_82574:
1068         case e1000_82583:
1069                 reg = er32(CTRL);
1070                 reg &= ~(1 << 29);
1071                 ew32(CTRL, reg);
1072                 break;
1073         default:
1074                 break;
1075         }
1076
1077         /* Extended Device Control */
1078         switch (hw->mac.type) {
1079         case e1000_82573:
1080         case e1000_82574:
1081         case e1000_82583:
1082                 reg = er32(CTRL_EXT);
1083                 reg &= ~(1 << 23);
1084                 reg |= (1 << 22);
1085                 ew32(CTRL_EXT, reg);
1086                 break;
1087         default:
1088                 break;
1089         }
1090
1091         if (hw->mac.type == e1000_82571) {
1092                 reg = er32(PBA_ECC);
1093                 reg |= E1000_PBA_ECC_CORR_EN;
1094                 ew32(PBA_ECC, reg);
1095         }
1096         /*
1097          * Workaround for hardware errata.
1098          * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1099          */
1100
1101         if ((hw->mac.type == e1000_82571) ||
1102            (hw->mac.type == e1000_82572)) {
1103                 reg = er32(CTRL_EXT);
1104                 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1105                 ew32(CTRL_EXT, reg);
1106         }
1107
1108
1109         /* PCI-Ex Control Registers */
1110         switch (hw->mac.type) {
1111         case e1000_82574:
1112         case e1000_82583:
1113                 reg = er32(GCR);
1114                 reg |= (1 << 22);
1115                 ew32(GCR, reg);
1116
1117                 /*
1118                  * Workaround for hardware errata.
1119                  * apply workaround for hardware errata documented in errata
1120                  * docs Fixes issue where some error prone or unreliable PCIe
1121                  * completions are occurring, particularly with ASPM enabled.
1122                  * Without fix, issue can cause tx timeouts.
1123                  */
1124                 reg = er32(GCR2);
1125                 reg |= 1;
1126                 ew32(GCR2, reg);
1127                 break;
1128         default:
1129                 break;
1130         }
1131
1132         return;
1133 }
1134
1135 /**
1136  *  e1000_clear_vfta_82571 - Clear VLAN filter table
1137  *  @hw: pointer to the HW structure
1138  *
1139  *  Clears the register array which contains the VLAN filter table by
1140  *  setting all the values to 0.
1141  **/
1142 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1143 {
1144         u32 offset;
1145         u32 vfta_value = 0;
1146         u32 vfta_offset = 0;
1147         u32 vfta_bit_in_reg = 0;
1148
1149         switch (hw->mac.type) {
1150         case e1000_82573:
1151         case e1000_82574:
1152         case e1000_82583:
1153                 if (hw->mng_cookie.vlan_id != 0) {
1154                         /*
1155                          * The VFTA is a 4096b bit-field, each identifying
1156                          * a single VLAN ID.  The following operations
1157                          * determine which 32b entry (i.e. offset) into the
1158                          * array we want to set the VLAN ID (i.e. bit) of
1159                          * the manageability unit.
1160                          */
1161                         vfta_offset = (hw->mng_cookie.vlan_id >>
1162                                        E1000_VFTA_ENTRY_SHIFT) &
1163                                       E1000_VFTA_ENTRY_MASK;
1164                         vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1165                                                E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1166                 }
1167                 break;
1168         default:
1169                 break;
1170         }
1171         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1172                 /*
1173                  * If the offset we want to clear is the same offset of the
1174                  * manageability VLAN ID, then clear all bits except that of
1175                  * the manageability unit.
1176                  */
1177                 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1178                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1179                 e1e_flush();
1180         }
1181 }
1182
1183 /**
1184  *  e1000_check_mng_mode_82574 - Check manageability is enabled
1185  *  @hw: pointer to the HW structure
1186  *
1187  *  Reads the NVM Initialization Control Word 2 and returns true
1188  *  (>0) if any manageability is enabled, else false (0).
1189  **/
1190 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1191 {
1192         u16 data;
1193
1194         e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1195         return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1196 }
1197
1198 /**
1199  *  e1000_led_on_82574 - Turn LED on
1200  *  @hw: pointer to the HW structure
1201  *
1202  *  Turn LED on.
1203  **/
1204 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1205 {
1206         u32 ctrl;
1207         u32 i;
1208
1209         ctrl = hw->mac.ledctl_mode2;
1210         if (!(E1000_STATUS_LU & er32(STATUS))) {
1211                 /*
1212                  * If no link, then turn LED on by setting the invert bit
1213                  * for each LED that's "on" (0x0E) in ledctl_mode2.
1214                  */
1215                 for (i = 0; i < 4; i++)
1216                         if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1217                             E1000_LEDCTL_MODE_LED_ON)
1218                                 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1219         }
1220         ew32(LEDCTL, ctrl);
1221
1222         return 0;
1223 }
1224
1225 /**
1226  *  e1000_update_mc_addr_list_82571 - Update Multicast addresses
1227  *  @hw: pointer to the HW structure
1228  *  @mc_addr_list: array of multicast addresses to program
1229  *  @mc_addr_count: number of multicast addresses to program
1230  *  @rar_used_count: the first RAR register free to program
1231  *  @rar_count: total number of supported Receive Address Registers
1232  *
1233  *  Updates the Receive Address Registers and Multicast Table Array.
1234  *  The caller must have a packed mc_addr_list of multicast addresses.
1235  *  The parameter rar_count will usually be hw->mac.rar_entry_count
1236  *  unless there are workarounds that change this.
1237  **/
1238 static void e1000_update_mc_addr_list_82571(struct e1000_hw *hw,
1239                                             u8 *mc_addr_list,
1240                                             u32 mc_addr_count,
1241                                             u32 rar_used_count,
1242                                             u32 rar_count)
1243 {
1244         if (e1000e_get_laa_state_82571(hw))
1245                 rar_count--;
1246
1247         e1000e_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count,
1248                                            rar_used_count, rar_count);
1249 }
1250
1251 /**
1252  *  e1000_setup_link_82571 - Setup flow control and link settings
1253  *  @hw: pointer to the HW structure
1254  *
1255  *  Determines which flow control settings to use, then configures flow
1256  *  control.  Calls the appropriate media-specific link configuration
1257  *  function.  Assuming the adapter has a valid link partner, a valid link
1258  *  should be established.  Assumes the hardware has previously been reset
1259  *  and the transmitter and receiver are not enabled.
1260  **/
1261 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1262 {
1263         /*
1264          * 82573 does not have a word in the NVM to determine
1265          * the default flow control setting, so we explicitly
1266          * set it to full.
1267          */
1268         switch (hw->mac.type) {
1269         case e1000_82573:
1270         case e1000_82574:
1271         case e1000_82583:
1272                 if (hw->fc.requested_mode == e1000_fc_default)
1273                         hw->fc.requested_mode = e1000_fc_full;
1274                 break;
1275         default:
1276                 break;
1277         }
1278
1279         return e1000e_setup_link(hw);
1280 }
1281
1282 /**
1283  *  e1000_setup_copper_link_82571 - Configure copper link settings
1284  *  @hw: pointer to the HW structure
1285  *
1286  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1287  *  for link, once link is established calls to configure collision distance
1288  *  and flow control are called.
1289  **/
1290 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1291 {
1292         u32 ctrl;
1293         s32 ret_val;
1294
1295         ctrl = er32(CTRL);
1296         ctrl |= E1000_CTRL_SLU;
1297         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1298         ew32(CTRL, ctrl);
1299
1300         switch (hw->phy.type) {
1301         case e1000_phy_m88:
1302         case e1000_phy_bm:
1303                 ret_val = e1000e_copper_link_setup_m88(hw);
1304                 break;
1305         case e1000_phy_igp_2:
1306                 ret_val = e1000e_copper_link_setup_igp(hw);
1307                 break;
1308         default:
1309                 return -E1000_ERR_PHY;
1310                 break;
1311         }
1312
1313         if (ret_val)
1314                 return ret_val;
1315
1316         ret_val = e1000e_setup_copper_link(hw);
1317
1318         return ret_val;
1319 }
1320
1321 /**
1322  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1323  *  @hw: pointer to the HW structure
1324  *
1325  *  Configures collision distance and flow control for fiber and serdes links.
1326  *  Upon successful setup, poll for link.
1327  **/
1328 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1329 {
1330         switch (hw->mac.type) {
1331         case e1000_82571:
1332         case e1000_82572:
1333                 /*
1334                  * If SerDes loopback mode is entered, there is no form
1335                  * of reset to take the adapter out of that mode.  So we
1336                  * have to explicitly take the adapter out of loopback
1337                  * mode.  This prevents drivers from twiddling their thumbs
1338                  * if another tool failed to take it out of loopback mode.
1339                  */
1340                 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1341                 break;
1342         default:
1343                 break;
1344         }
1345
1346         return e1000e_setup_fiber_serdes_link(hw);
1347 }
1348
1349 /**
1350  *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1351  *  @hw: pointer to the HW structure
1352  *
1353  *  Reports the link state as up or down.
1354  *
1355  *  If autonegotiation is supported by the link partner, the link state is
1356  *  determined by the result of autonegotiation. This is the most likely case.
1357  *  If autonegotiation is not supported by the link partner, and the link
1358  *  has a valid signal, force the link up.
1359  *
1360  *  The link state is represented internally here by 4 states:
1361  *
1362  *  1) down
1363  *  2) autoneg_progress
1364  *  3) autoneg_complete (the link sucessfully autonegotiated)
1365  *  4) forced_up (the link has been forced up, it did not autonegotiate)
1366  *
1367  **/
1368 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1369 {
1370         struct e1000_mac_info *mac = &hw->mac;
1371         u32 rxcw;
1372         u32 ctrl;
1373         u32 status;
1374         s32 ret_val = 0;
1375
1376         ctrl = er32(CTRL);
1377         status = er32(STATUS);
1378         rxcw = er32(RXCW);
1379
1380         if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1381
1382                 /* Receiver is synchronized with no invalid bits.  */
1383                 switch (mac->serdes_link_state) {
1384                 case e1000_serdes_link_autoneg_complete:
1385                         if (!(status & E1000_STATUS_LU)) {
1386                                 /*
1387                                  * We have lost link, retry autoneg before
1388                                  * reporting link failure
1389                                  */
1390                                 mac->serdes_link_state =
1391                                     e1000_serdes_link_autoneg_progress;
1392                                 mac->serdes_has_link = false;
1393                                 e_dbg("AN_UP     -> AN_PROG\n");
1394                         }
1395                 break;
1396
1397                 case e1000_serdes_link_forced_up:
1398                         /*
1399                          * If we are receiving /C/ ordered sets, re-enable
1400                          * auto-negotiation in the TXCW register and disable
1401                          * forced link in the Device Control register in an
1402                          * attempt to auto-negotiate with our link partner.
1403                          */
1404                         if (rxcw & E1000_RXCW_C) {
1405                                 /* Enable autoneg, and unforce link up */
1406                                 ew32(TXCW, mac->txcw);
1407                                 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1408                                 mac->serdes_link_state =
1409                                     e1000_serdes_link_autoneg_progress;
1410                                 mac->serdes_has_link = false;
1411                                 e_dbg("FORCED_UP -> AN_PROG\n");
1412                         }
1413                         break;
1414
1415                 case e1000_serdes_link_autoneg_progress:
1416                         if (rxcw & E1000_RXCW_C) {
1417                                 /*
1418                                  * We received /C/ ordered sets, meaning the
1419                                  * link partner has autonegotiated, and we can
1420                                  * trust the Link Up (LU) status bit.
1421                                  */
1422                                 if (status & E1000_STATUS_LU) {
1423                                         mac->serdes_link_state =
1424                                             e1000_serdes_link_autoneg_complete;
1425                                         e_dbg("AN_PROG   -> AN_UP\n");
1426                                         mac->serdes_has_link = true;
1427                                 } else {
1428                                         /* Autoneg completed, but failed. */
1429                                         mac->serdes_link_state =
1430                                             e1000_serdes_link_down;
1431                                         e_dbg("AN_PROG   -> DOWN\n");
1432                                 }
1433                         } else {
1434                                 /*
1435                                  * The link partner did not autoneg.
1436                                  * Force link up and full duplex, and change
1437                                  * state to forced.
1438                                  */
1439                                 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1440                                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1441                                 ew32(CTRL, ctrl);
1442
1443                                 /* Configure Flow Control after link up. */
1444                                 ret_val = e1000e_config_fc_after_link_up(hw);
1445                                 if (ret_val) {
1446                                         e_dbg("Error config flow control\n");
1447                                         break;
1448                                 }
1449                                 mac->serdes_link_state =
1450                                     e1000_serdes_link_forced_up;
1451                                 mac->serdes_has_link = true;
1452                                 e_dbg("AN_PROG   -> FORCED_UP\n");
1453                         }
1454                         break;
1455
1456                 case e1000_serdes_link_down:
1457                 default:
1458                         /*
1459                          * The link was down but the receiver has now gained
1460                          * valid sync, so lets see if we can bring the link
1461                          * up.
1462                          */
1463                         ew32(TXCW, mac->txcw);
1464                         ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1465                         mac->serdes_link_state =
1466                             e1000_serdes_link_autoneg_progress;
1467                         e_dbg("DOWN      -> AN_PROG\n");
1468                         break;
1469                 }
1470         } else {
1471                 if (!(rxcw & E1000_RXCW_SYNCH)) {
1472                         mac->serdes_has_link = false;
1473                         mac->serdes_link_state = e1000_serdes_link_down;
1474                         e_dbg("ANYSTATE  -> DOWN\n");
1475                 } else {
1476                         /*
1477                          * We have sync, and can tolerate one invalid (IV)
1478                          * codeword before declaring link down, so reread
1479                          * to look again.
1480                          */
1481                         udelay(10);
1482                         rxcw = er32(RXCW);
1483                         if (rxcw & E1000_RXCW_IV) {
1484                                 mac->serdes_link_state = e1000_serdes_link_down;
1485                                 mac->serdes_has_link = false;
1486                                 e_dbg("ANYSTATE  -> DOWN\n");
1487                         }
1488                 }
1489         }
1490
1491         return ret_val;
1492 }
1493
1494 /**
1495  *  e1000_valid_led_default_82571 - Verify a valid default LED config
1496  *  @hw: pointer to the HW structure
1497  *  @data: pointer to the NVM (EEPROM)
1498  *
1499  *  Read the EEPROM for the current default LED configuration.  If the
1500  *  LED configuration is not valid, set to a valid LED configuration.
1501  **/
1502 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1503 {
1504         s32 ret_val;
1505
1506         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1507         if (ret_val) {
1508                 e_dbg("NVM Read Error\n");
1509                 return ret_val;
1510         }
1511
1512         switch (hw->mac.type) {
1513         case e1000_82573:
1514         case e1000_82574:
1515         case e1000_82583:
1516                 if (*data == ID_LED_RESERVED_F746)
1517                         *data = ID_LED_DEFAULT_82573;
1518                 break;
1519         default:
1520                 if (*data == ID_LED_RESERVED_0000 ||
1521                     *data == ID_LED_RESERVED_FFFF)
1522                         *data = ID_LED_DEFAULT;
1523                 break;
1524         }
1525
1526         return 0;
1527 }
1528
1529 /**
1530  *  e1000e_get_laa_state_82571 - Get locally administered address state
1531  *  @hw: pointer to the HW structure
1532  *
1533  *  Retrieve and return the current locally administered address state.
1534  **/
1535 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1536 {
1537         if (hw->mac.type != e1000_82571)
1538                 return false;
1539
1540         return hw->dev_spec.e82571.laa_is_present;
1541 }
1542
1543 /**
1544  *  e1000e_set_laa_state_82571 - Set locally administered address state
1545  *  @hw: pointer to the HW structure
1546  *  @state: enable/disable locally administered address
1547  *
1548  *  Enable/Disable the current locally administered address state.
1549  **/
1550 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1551 {
1552         if (hw->mac.type != e1000_82571)
1553                 return;
1554
1555         hw->dev_spec.e82571.laa_is_present = state;
1556
1557         /* If workaround is activated... */
1558         if (state)
1559                 /*
1560                  * Hold a copy of the LAA in RAR[14] This is done so that
1561                  * between the time RAR[0] gets clobbered and the time it
1562                  * gets fixed, the actual LAA is in one of the RARs and no
1563                  * incoming packets directed to this port are dropped.
1564                  * Eventually the LAA will be in RAR[0] and RAR[14].
1565                  */
1566                 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1567 }
1568
1569 /**
1570  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1571  *  @hw: pointer to the HW structure
1572  *
1573  *  Verifies that the EEPROM has completed the update.  After updating the
1574  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1575  *  the checksum fix is not implemented, we need to set the bit and update
1576  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1577  *  we need to return bad checksum.
1578  **/
1579 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1580 {
1581         struct e1000_nvm_info *nvm = &hw->nvm;
1582         s32 ret_val;
1583         u16 data;
1584
1585         if (nvm->type != e1000_nvm_flash_hw)
1586                 return 0;
1587
1588         /*
1589          * Check bit 4 of word 10h.  If it is 0, firmware is done updating
1590          * 10h-12h.  Checksum may need to be fixed.
1591          */
1592         ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1593         if (ret_val)
1594                 return ret_val;
1595
1596         if (!(data & 0x10)) {
1597                 /*
1598                  * Read 0x23 and check bit 15.  This bit is a 1
1599                  * when the checksum has already been fixed.  If
1600                  * the checksum is still wrong and this bit is a
1601                  * 1, we need to return bad checksum.  Otherwise,
1602                  * we need to set this bit to a 1 and update the
1603                  * checksum.
1604                  */
1605                 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1606                 if (ret_val)
1607                         return ret_val;
1608
1609                 if (!(data & 0x8000)) {
1610                         data |= 0x8000;
1611                         ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1612                         if (ret_val)
1613                                 return ret_val;
1614                         ret_val = e1000e_update_nvm_checksum(hw);
1615                 }
1616         }
1617
1618         return 0;
1619 }
1620
1621 /**
1622  * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1623  * @hw: pointer to the HW structure
1624  *
1625  * In the case of a PHY power down to save power, or to turn off link during a
1626  * driver unload, or wake on lan is not enabled, remove the link.
1627  **/
1628 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1629 {
1630         struct e1000_phy_info *phy = &hw->phy;
1631         struct e1000_mac_info *mac = &hw->mac;
1632
1633         if (!(phy->ops.check_reset_block))
1634                 return;
1635
1636         /* If the management interface is not enabled, then power down */
1637         if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1638                 e1000_power_down_phy_copper(hw);
1639
1640         return;
1641 }
1642
1643 /**
1644  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1645  *  @hw: pointer to the HW structure
1646  *
1647  *  Clears the hardware counters by reading the counter registers.
1648  **/
1649 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1650 {
1651         e1000e_clear_hw_cntrs_base(hw);
1652
1653         er32(PRC64);
1654         er32(PRC127);
1655         er32(PRC255);
1656         er32(PRC511);
1657         er32(PRC1023);
1658         er32(PRC1522);
1659         er32(PTC64);
1660         er32(PTC127);
1661         er32(PTC255);
1662         er32(PTC511);
1663         er32(PTC1023);
1664         er32(PTC1522);
1665
1666         er32(ALGNERRC);
1667         er32(RXERRC);
1668         er32(TNCRS);
1669         er32(CEXTERR);
1670         er32(TSCTC);
1671         er32(TSCTFC);
1672
1673         er32(MGTPRC);
1674         er32(MGTPDC);
1675         er32(MGTPTC);
1676
1677         er32(IAC);
1678         er32(ICRXOC);
1679
1680         er32(ICRXPTC);
1681         er32(ICRXATC);
1682         er32(ICTXPTC);
1683         er32(ICTXATC);
1684         er32(ICTXQEC);
1685         er32(ICTXQMTC);
1686         er32(ICRXDMTC);
1687 }
1688
1689 static struct e1000_mac_operations e82571_mac_ops = {
1690         /* .check_mng_mode: mac type dependent */
1691         /* .check_for_link: media type dependent */
1692         .id_led_init            = e1000e_id_led_init,
1693         .cleanup_led            = e1000e_cleanup_led_generic,
1694         .clear_hw_cntrs         = e1000_clear_hw_cntrs_82571,
1695         .get_bus_info           = e1000e_get_bus_info_pcie,
1696         /* .get_link_up_info: media type dependent */
1697         /* .led_on: mac type dependent */
1698         .led_off                = e1000e_led_off_generic,
1699         .update_mc_addr_list    = e1000_update_mc_addr_list_82571,
1700         .write_vfta             = e1000_write_vfta_generic,
1701         .clear_vfta             = e1000_clear_vfta_82571,
1702         .reset_hw               = e1000_reset_hw_82571,
1703         .init_hw                = e1000_init_hw_82571,
1704         .setup_link             = e1000_setup_link_82571,
1705         /* .setup_physical_interface: media type dependent */
1706         .setup_led              = e1000e_setup_led_generic,
1707 };
1708
1709 static struct e1000_phy_operations e82_phy_ops_igp = {
1710         .acquire                = e1000_get_hw_semaphore_82571,
1711         .check_polarity         = e1000_check_polarity_igp,
1712         .check_reset_block      = e1000e_check_reset_block_generic,
1713         .commit                 = NULL,
1714         .force_speed_duplex     = e1000e_phy_force_speed_duplex_igp,
1715         .get_cfg_done           = e1000_get_cfg_done_82571,
1716         .get_cable_length       = e1000e_get_cable_length_igp_2,
1717         .get_info               = e1000e_get_phy_info_igp,
1718         .read_reg               = e1000e_read_phy_reg_igp,
1719         .release                = e1000_put_hw_semaphore_82571,
1720         .reset                  = e1000e_phy_hw_reset_generic,
1721         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1722         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1723         .write_reg              = e1000e_write_phy_reg_igp,
1724         .cfg_on_link_up         = NULL,
1725 };
1726
1727 static struct e1000_phy_operations e82_phy_ops_m88 = {
1728         .acquire                = e1000_get_hw_semaphore_82571,
1729         .check_polarity         = e1000_check_polarity_m88,
1730         .check_reset_block      = e1000e_check_reset_block_generic,
1731         .commit                 = e1000e_phy_sw_reset,
1732         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1733         .get_cfg_done           = e1000e_get_cfg_done,
1734         .get_cable_length       = e1000e_get_cable_length_m88,
1735         .get_info               = e1000e_get_phy_info_m88,
1736         .read_reg               = e1000e_read_phy_reg_m88,
1737         .release                = e1000_put_hw_semaphore_82571,
1738         .reset                  = e1000e_phy_hw_reset_generic,
1739         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1740         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1741         .write_reg              = e1000e_write_phy_reg_m88,
1742         .cfg_on_link_up         = NULL,
1743 };
1744
1745 static struct e1000_phy_operations e82_phy_ops_bm = {
1746         .acquire                = e1000_get_hw_semaphore_82571,
1747         .check_polarity         = e1000_check_polarity_m88,
1748         .check_reset_block      = e1000e_check_reset_block_generic,
1749         .commit                 = e1000e_phy_sw_reset,
1750         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1751         .get_cfg_done           = e1000e_get_cfg_done,
1752         .get_cable_length       = e1000e_get_cable_length_m88,
1753         .get_info               = e1000e_get_phy_info_m88,
1754         .read_reg               = e1000e_read_phy_reg_bm2,
1755         .release                = e1000_put_hw_semaphore_82571,
1756         .reset                  = e1000e_phy_hw_reset_generic,
1757         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1758         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1759         .write_reg              = e1000e_write_phy_reg_bm2,
1760         .cfg_on_link_up         = NULL,
1761 };
1762
1763 static struct e1000_nvm_operations e82571_nvm_ops = {
1764         .acquire                = e1000_acquire_nvm_82571,
1765         .read                   = e1000e_read_nvm_eerd,
1766         .release                = e1000_release_nvm_82571,
1767         .update                 = e1000_update_nvm_checksum_82571,
1768         .valid_led_default      = e1000_valid_led_default_82571,
1769         .validate               = e1000_validate_nvm_checksum_82571,
1770         .write                  = e1000_write_nvm_82571,
1771 };
1772
1773 struct e1000_info e1000_82571_info = {
1774         .mac                    = e1000_82571,
1775         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1776                                   | FLAG_HAS_JUMBO_FRAMES
1777                                   | FLAG_HAS_WOL
1778                                   | FLAG_APME_IN_CTRL3
1779                                   | FLAG_RX_CSUM_ENABLED
1780                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1781                                   | FLAG_HAS_SMART_POWER_DOWN
1782                                   | FLAG_RESET_OVERWRITES_LAA /* errata */
1783                                   | FLAG_TARC_SPEED_MODE_BIT /* errata */
1784                                   | FLAG_APME_CHECK_PORT_B,
1785         .pba                    = 38,
1786         .max_hw_frame_size      = DEFAULT_JUMBO,
1787         .get_variants           = e1000_get_variants_82571,
1788         .mac_ops                = &e82571_mac_ops,
1789         .phy_ops                = &e82_phy_ops_igp,
1790         .nvm_ops                = &e82571_nvm_ops,
1791 };
1792
1793 struct e1000_info e1000_82572_info = {
1794         .mac                    = e1000_82572,
1795         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1796                                   | FLAG_HAS_JUMBO_FRAMES
1797                                   | FLAG_HAS_WOL
1798                                   | FLAG_APME_IN_CTRL3
1799                                   | FLAG_RX_CSUM_ENABLED
1800                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1801                                   | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1802         .pba                    = 38,
1803         .max_hw_frame_size      = DEFAULT_JUMBO,
1804         .get_variants           = e1000_get_variants_82571,
1805         .mac_ops                = &e82571_mac_ops,
1806         .phy_ops                = &e82_phy_ops_igp,
1807         .nvm_ops                = &e82571_nvm_ops,
1808 };
1809
1810 struct e1000_info e1000_82573_info = {
1811         .mac                    = e1000_82573,
1812         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1813                                   | FLAG_HAS_JUMBO_FRAMES
1814                                   | FLAG_HAS_WOL
1815                                   | FLAG_APME_IN_CTRL3
1816                                   | FLAG_RX_CSUM_ENABLED
1817                                   | FLAG_HAS_SMART_POWER_DOWN
1818                                   | FLAG_HAS_AMT
1819                                   | FLAG_HAS_ERT
1820                                   | FLAG_HAS_SWSM_ON_LOAD,
1821         .pba                    = 20,
1822         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
1823         .get_variants           = e1000_get_variants_82571,
1824         .mac_ops                = &e82571_mac_ops,
1825         .phy_ops                = &e82_phy_ops_m88,
1826         .nvm_ops                = &e82571_nvm_ops,
1827 };
1828
1829 struct e1000_info e1000_82574_info = {
1830         .mac                    = e1000_82574,
1831         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1832                                   | FLAG_HAS_MSIX
1833                                   | FLAG_HAS_JUMBO_FRAMES
1834                                   | FLAG_HAS_WOL
1835                                   | FLAG_APME_IN_CTRL3
1836                                   | FLAG_RX_CSUM_ENABLED
1837                                   | FLAG_HAS_SMART_POWER_DOWN
1838                                   | FLAG_HAS_AMT
1839                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
1840         .pba                    = 20,
1841         .max_hw_frame_size      = DEFAULT_JUMBO,
1842         .get_variants           = e1000_get_variants_82571,
1843         .mac_ops                = &e82571_mac_ops,
1844         .phy_ops                = &e82_phy_ops_bm,
1845         .nvm_ops                = &e82571_nvm_ops,
1846 };
1847
1848 struct e1000_info e1000_82583_info = {
1849         .mac                    = e1000_82583,
1850         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1851                                   | FLAG_HAS_WOL
1852                                   | FLAG_APME_IN_CTRL3
1853                                   | FLAG_RX_CSUM_ENABLED
1854                                   | FLAG_HAS_SMART_POWER_DOWN
1855                                   | FLAG_HAS_AMT
1856                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
1857         .pba                    = 20,
1858         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
1859         .get_variants           = e1000_get_variants_82571,
1860         .mac_ops                = &e82571_mac_ops,
1861         .phy_ops                = &e82_phy_ops_bm,
1862         .nvm_ops                = &e82571_nvm_ops,
1863 };
1864