]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/net/e1000e/82571.c
fsnotify: drop two useless bools in the fnsotify main loop
[net-next-2.6.git] / drivers / net / e1000e / 82571.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2010 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82571EB Gigabit Ethernet Controller
31  * 82571EB Gigabit Ethernet Controller (Copper)
32  * 82571EB Gigabit Ethernet Controller (Fiber)
33  * 82571EB Dual Port Gigabit Mezzanine Adapter
34  * 82571EB Quad Port Gigabit Mezzanine Adapter
35  * 82571PT Gigabit PT Quad Port Server ExpressModule
36  * 82572EI Gigabit Ethernet Controller (Copper)
37  * 82572EI Gigabit Ethernet Controller (Fiber)
38  * 82572EI Gigabit Ethernet Controller
39  * 82573V Gigabit Ethernet Controller (Copper)
40  * 82573E Gigabit Ethernet Controller (Copper)
41  * 82573L Gigabit Ethernet Controller
42  * 82574L Gigabit Network Connection
43  * 82583V Gigabit Network Connection
44  */
45
46 #include "e1000.h"
47
48 #define ID_LED_RESERVED_F746 0xF746
49 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50                               (ID_LED_OFF1_ON2  <<  8) | \
51                               (ID_LED_DEF1_DEF2 <<  4) | \
52                               (ID_LED_DEF1_DEF2))
53
54 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55
56 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
57
58 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
59 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
60 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
61 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
62 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
63                                       u16 words, u16 *data);
64 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
65 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
66 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
67 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
68 static void e1000_clear_vfta_82571(struct e1000_hw *hw);
69 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
70 static s32 e1000_led_on_82574(struct e1000_hw *hw);
71 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
72 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
73
74 /**
75  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
76  *  @hw: pointer to the HW structure
77  **/
78 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
79 {
80         struct e1000_phy_info *phy = &hw->phy;
81         s32 ret_val;
82
83         if (hw->phy.media_type != e1000_media_type_copper) {
84                 phy->type = e1000_phy_none;
85                 return 0;
86         }
87
88         phy->addr                        = 1;
89         phy->autoneg_mask                = AUTONEG_ADVERTISE_SPEED_DEFAULT;
90         phy->reset_delay_us              = 100;
91
92         phy->ops.power_up                = e1000_power_up_phy_copper;
93         phy->ops.power_down              = e1000_power_down_phy_copper_82571;
94
95         switch (hw->mac.type) {
96         case e1000_82571:
97         case e1000_82572:
98                 phy->type                = e1000_phy_igp_2;
99                 break;
100         case e1000_82573:
101                 phy->type                = e1000_phy_m88;
102                 break;
103         case e1000_82574:
104         case e1000_82583:
105                 phy->type                = e1000_phy_bm;
106                 break;
107         default:
108                 return -E1000_ERR_PHY;
109                 break;
110         }
111
112         /* This can only be done after all function pointers are setup. */
113         ret_val = e1000_get_phy_id_82571(hw);
114
115         /* Verify phy id */
116         switch (hw->mac.type) {
117         case e1000_82571:
118         case e1000_82572:
119                 if (phy->id != IGP01E1000_I_PHY_ID)
120                         return -E1000_ERR_PHY;
121                 break;
122         case e1000_82573:
123                 if (phy->id != M88E1111_I_PHY_ID)
124                         return -E1000_ERR_PHY;
125                 break;
126         case e1000_82574:
127         case e1000_82583:
128                 if (phy->id != BME1000_E_PHY_ID_R2)
129                         return -E1000_ERR_PHY;
130                 break;
131         default:
132                 return -E1000_ERR_PHY;
133                 break;
134         }
135
136         return 0;
137 }
138
139 /**
140  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
141  *  @hw: pointer to the HW structure
142  **/
143 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
144 {
145         struct e1000_nvm_info *nvm = &hw->nvm;
146         u32 eecd = er32(EECD);
147         u16 size;
148
149         nvm->opcode_bits = 8;
150         nvm->delay_usec = 1;
151         switch (nvm->override) {
152         case e1000_nvm_override_spi_large:
153                 nvm->page_size = 32;
154                 nvm->address_bits = 16;
155                 break;
156         case e1000_nvm_override_spi_small:
157                 nvm->page_size = 8;
158                 nvm->address_bits = 8;
159                 break;
160         default:
161                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
162                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
163                 break;
164         }
165
166         switch (hw->mac.type) {
167         case e1000_82573:
168         case e1000_82574:
169         case e1000_82583:
170                 if (((eecd >> 15) & 0x3) == 0x3) {
171                         nvm->type = e1000_nvm_flash_hw;
172                         nvm->word_size = 2048;
173                         /*
174                          * Autonomous Flash update bit must be cleared due
175                          * to Flash update issue.
176                          */
177                         eecd &= ~E1000_EECD_AUPDEN;
178                         ew32(EECD, eecd);
179                         break;
180                 }
181                 /* Fall Through */
182         default:
183                 nvm->type = e1000_nvm_eeprom_spi;
184                 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
185                                   E1000_EECD_SIZE_EX_SHIFT);
186                 /*
187                  * Added to a constant, "size" becomes the left-shift value
188                  * for setting word_size.
189                  */
190                 size += NVM_WORD_SIZE_BASE_SHIFT;
191
192                 /* EEPROM access above 16k is unsupported */
193                 if (size > 14)
194                         size = 14;
195                 nvm->word_size  = 1 << size;
196                 break;
197         }
198
199         return 0;
200 }
201
202 /**
203  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
204  *  @hw: pointer to the HW structure
205  **/
206 static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
207 {
208         struct e1000_hw *hw = &adapter->hw;
209         struct e1000_mac_info *mac = &hw->mac;
210         struct e1000_mac_operations *func = &mac->ops;
211         u32 swsm = 0;
212         u32 swsm2 = 0;
213         bool force_clear_smbi = false;
214
215         /* Set media type */
216         switch (adapter->pdev->device) {
217         case E1000_DEV_ID_82571EB_FIBER:
218         case E1000_DEV_ID_82572EI_FIBER:
219         case E1000_DEV_ID_82571EB_QUAD_FIBER:
220                 hw->phy.media_type = e1000_media_type_fiber;
221                 break;
222         case E1000_DEV_ID_82571EB_SERDES:
223         case E1000_DEV_ID_82572EI_SERDES:
224         case E1000_DEV_ID_82571EB_SERDES_DUAL:
225         case E1000_DEV_ID_82571EB_SERDES_QUAD:
226                 hw->phy.media_type = e1000_media_type_internal_serdes;
227                 break;
228         default:
229                 hw->phy.media_type = e1000_media_type_copper;
230                 break;
231         }
232
233         /* Set mta register count */
234         mac->mta_reg_count = 128;
235         /* Set rar entry count */
236         mac->rar_entry_count = E1000_RAR_ENTRIES;
237         /* Adaptive IFS supported */
238         mac->adaptive_ifs = true;
239
240         /* check for link */
241         switch (hw->phy.media_type) {
242         case e1000_media_type_copper:
243                 func->setup_physical_interface = e1000_setup_copper_link_82571;
244                 func->check_for_link = e1000e_check_for_copper_link;
245                 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
246                 break;
247         case e1000_media_type_fiber:
248                 func->setup_physical_interface =
249                         e1000_setup_fiber_serdes_link_82571;
250                 func->check_for_link = e1000e_check_for_fiber_link;
251                 func->get_link_up_info =
252                         e1000e_get_speed_and_duplex_fiber_serdes;
253                 break;
254         case e1000_media_type_internal_serdes:
255                 func->setup_physical_interface =
256                         e1000_setup_fiber_serdes_link_82571;
257                 func->check_for_link = e1000_check_for_serdes_link_82571;
258                 func->get_link_up_info =
259                         e1000e_get_speed_and_duplex_fiber_serdes;
260                 break;
261         default:
262                 return -E1000_ERR_CONFIG;
263                 break;
264         }
265
266         switch (hw->mac.type) {
267         case e1000_82573:
268                 func->set_lan_id = e1000_set_lan_id_single_port;
269                 func->check_mng_mode = e1000e_check_mng_mode_generic;
270                 func->led_on = e1000e_led_on_generic;
271
272                 /* FWSM register */
273                 mac->has_fwsm = true;
274                 /*
275                  * ARC supported; valid only if manageability features are
276                  * enabled.
277                  */
278                 mac->arc_subsystem_valid =
279                         (er32(FWSM) & E1000_FWSM_MODE_MASK)
280                         ? true : false;
281                 break;
282         case e1000_82574:
283         case e1000_82583:
284                 func->set_lan_id = e1000_set_lan_id_single_port;
285                 func->check_mng_mode = e1000_check_mng_mode_82574;
286                 func->led_on = e1000_led_on_82574;
287                 break;
288         default:
289                 func->check_mng_mode = e1000e_check_mng_mode_generic;
290                 func->led_on = e1000e_led_on_generic;
291
292                 /* FWSM register */
293                 mac->has_fwsm = true;
294                 break;
295         }
296
297         /*
298          * Ensure that the inter-port SWSM.SMBI lock bit is clear before
299          * first NVM or PHY acess. This should be done for single-port
300          * devices, and for one port only on dual-port devices so that
301          * for those devices we can still use the SMBI lock to synchronize
302          * inter-port accesses to the PHY & NVM.
303          */
304         switch (hw->mac.type) {
305         case e1000_82571:
306         case e1000_82572:
307                 swsm2 = er32(SWSM2);
308
309                 if (!(swsm2 & E1000_SWSM2_LOCK)) {
310                         /* Only do this for the first interface on this card */
311                         ew32(SWSM2,
312                             swsm2 | E1000_SWSM2_LOCK);
313                         force_clear_smbi = true;
314                 } else
315                         force_clear_smbi = false;
316                 break;
317         default:
318                 force_clear_smbi = true;
319                 break;
320         }
321
322         if (force_clear_smbi) {
323                 /* Make sure SWSM.SMBI is clear */
324                 swsm = er32(SWSM);
325                 if (swsm & E1000_SWSM_SMBI) {
326                         /* This bit should not be set on a first interface, and
327                          * indicates that the bootagent or EFI code has
328                          * improperly left this bit enabled
329                          */
330                         e_dbg("Please update your 82571 Bootagent\n");
331                 }
332                 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
333         }
334
335         /*
336          * Initialize device specific counter of SMBI acquisition
337          * timeouts.
338          */
339          hw->dev_spec.e82571.smb_counter = 0;
340
341         return 0;
342 }
343
344 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
345 {
346         struct e1000_hw *hw = &adapter->hw;
347         static int global_quad_port_a; /* global port a indication */
348         struct pci_dev *pdev = adapter->pdev;
349         int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
350         s32 rc;
351
352         rc = e1000_init_mac_params_82571(adapter);
353         if (rc)
354                 return rc;
355
356         rc = e1000_init_nvm_params_82571(hw);
357         if (rc)
358                 return rc;
359
360         rc = e1000_init_phy_params_82571(hw);
361         if (rc)
362                 return rc;
363
364         /* tag quad port adapters first, it's used below */
365         switch (pdev->device) {
366         case E1000_DEV_ID_82571EB_QUAD_COPPER:
367         case E1000_DEV_ID_82571EB_QUAD_FIBER:
368         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
369         case E1000_DEV_ID_82571PT_QUAD_COPPER:
370                 adapter->flags |= FLAG_IS_QUAD_PORT;
371                 /* mark the first port */
372                 if (global_quad_port_a == 0)
373                         adapter->flags |= FLAG_IS_QUAD_PORT_A;
374                 /* Reset for multiple quad port adapters */
375                 global_quad_port_a++;
376                 if (global_quad_port_a == 4)
377                         global_quad_port_a = 0;
378                 break;
379         default:
380                 break;
381         }
382
383         switch (adapter->hw.mac.type) {
384         case e1000_82571:
385                 /* these dual ports don't have WoL on port B at all */
386                 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
387                      (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
388                      (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
389                     (is_port_b))
390                         adapter->flags &= ~FLAG_HAS_WOL;
391                 /* quad ports only support WoL on port A */
392                 if (adapter->flags & FLAG_IS_QUAD_PORT &&
393                     (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
394                         adapter->flags &= ~FLAG_HAS_WOL;
395                 /* Does not support WoL on any port */
396                 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
397                         adapter->flags &= ~FLAG_HAS_WOL;
398                 break;
399         case e1000_82573:
400         case e1000_82574:
401         case e1000_82583:
402                 /* Disable ASPM L0s due to hardware errata */
403                 e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L0S);
404
405                 if (pdev->device == E1000_DEV_ID_82573L) {
406                         adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
407                         adapter->max_hw_frame_size = DEFAULT_JUMBO;
408                 }
409                 break;
410         default:
411                 break;
412         }
413
414         return 0;
415 }
416
417 /**
418  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
419  *  @hw: pointer to the HW structure
420  *
421  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
422  *  revision in the hardware structure.
423  **/
424 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
425 {
426         struct e1000_phy_info *phy = &hw->phy;
427         s32 ret_val;
428         u16 phy_id = 0;
429
430         switch (hw->mac.type) {
431         case e1000_82571:
432         case e1000_82572:
433                 /*
434                  * The 82571 firmware may still be configuring the PHY.
435                  * In this case, we cannot access the PHY until the
436                  * configuration is done.  So we explicitly set the
437                  * PHY ID.
438                  */
439                 phy->id = IGP01E1000_I_PHY_ID;
440                 break;
441         case e1000_82573:
442                 return e1000e_get_phy_id(hw);
443                 break;
444         case e1000_82574:
445         case e1000_82583:
446                 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
447                 if (ret_val)
448                         return ret_val;
449
450                 phy->id = (u32)(phy_id << 16);
451                 udelay(20);
452                 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
453                 if (ret_val)
454                         return ret_val;
455
456                 phy->id |= (u32)(phy_id);
457                 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
458                 break;
459         default:
460                 return -E1000_ERR_PHY;
461                 break;
462         }
463
464         return 0;
465 }
466
467 /**
468  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
469  *  @hw: pointer to the HW structure
470  *
471  *  Acquire the HW semaphore to access the PHY or NVM
472  **/
473 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
474 {
475         u32 swsm;
476         s32 sw_timeout = hw->nvm.word_size + 1;
477         s32 fw_timeout = hw->nvm.word_size + 1;
478         s32 i = 0;
479
480         /*
481          * If we have timedout 3 times on trying to acquire
482          * the inter-port SMBI semaphore, there is old code
483          * operating on the other port, and it is not
484          * releasing SMBI. Modify the number of times that
485          * we try for the semaphore to interwork with this
486          * older code.
487          */
488         if (hw->dev_spec.e82571.smb_counter > 2)
489                 sw_timeout = 1;
490
491         /* Get the SW semaphore */
492         while (i < sw_timeout) {
493                 swsm = er32(SWSM);
494                 if (!(swsm & E1000_SWSM_SMBI))
495                         break;
496
497                 udelay(50);
498                 i++;
499         }
500
501         if (i == sw_timeout) {
502                 e_dbg("Driver can't access device - SMBI bit is set.\n");
503                 hw->dev_spec.e82571.smb_counter++;
504         }
505         /* Get the FW semaphore. */
506         for (i = 0; i < fw_timeout; i++) {
507                 swsm = er32(SWSM);
508                 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
509
510                 /* Semaphore acquired if bit latched */
511                 if (er32(SWSM) & E1000_SWSM_SWESMBI)
512                         break;
513
514                 udelay(50);
515         }
516
517         if (i == fw_timeout) {
518                 /* Release semaphores */
519                 e1000_put_hw_semaphore_82571(hw);
520                 e_dbg("Driver can't access the NVM\n");
521                 return -E1000_ERR_NVM;
522         }
523
524         return 0;
525 }
526
527 /**
528  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
529  *  @hw: pointer to the HW structure
530  *
531  *  Release hardware semaphore used to access the PHY or NVM
532  **/
533 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
534 {
535         u32 swsm;
536
537         swsm = er32(SWSM);
538         swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
539         ew32(SWSM, swsm);
540 }
541
542 /**
543  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
544  *  @hw: pointer to the HW structure
545  *
546  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
547  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
548  *  for EEPROM access grant bit.  If the access grant bit is not set, release
549  *  hardware semaphore.
550  **/
551 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
552 {
553         s32 ret_val;
554
555         ret_val = e1000_get_hw_semaphore_82571(hw);
556         if (ret_val)
557                 return ret_val;
558
559         switch (hw->mac.type) {
560         case e1000_82573:
561         case e1000_82574:
562         case e1000_82583:
563                 break;
564         default:
565                 ret_val = e1000e_acquire_nvm(hw);
566                 break;
567         }
568
569         if (ret_val)
570                 e1000_put_hw_semaphore_82571(hw);
571
572         return ret_val;
573 }
574
575 /**
576  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
577  *  @hw: pointer to the HW structure
578  *
579  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
580  **/
581 static void e1000_release_nvm_82571(struct e1000_hw *hw)
582 {
583         e1000e_release_nvm(hw);
584         e1000_put_hw_semaphore_82571(hw);
585 }
586
587 /**
588  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
589  *  @hw: pointer to the HW structure
590  *  @offset: offset within the EEPROM to be written to
591  *  @words: number of words to write
592  *  @data: 16 bit word(s) to be written to the EEPROM
593  *
594  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
595  *
596  *  If e1000e_update_nvm_checksum is not called after this function, the
597  *  EEPROM will most likely contain an invalid checksum.
598  **/
599 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
600                                  u16 *data)
601 {
602         s32 ret_val;
603
604         switch (hw->mac.type) {
605         case e1000_82573:
606         case e1000_82574:
607         case e1000_82583:
608                 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
609                 break;
610         case e1000_82571:
611         case e1000_82572:
612                 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
613                 break;
614         default:
615                 ret_val = -E1000_ERR_NVM;
616                 break;
617         }
618
619         return ret_val;
620 }
621
622 /**
623  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
624  *  @hw: pointer to the HW structure
625  *
626  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
627  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
628  *  value to the EEPROM.
629  **/
630 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
631 {
632         u32 eecd;
633         s32 ret_val;
634         u16 i;
635
636         ret_val = e1000e_update_nvm_checksum_generic(hw);
637         if (ret_val)
638                 return ret_val;
639
640         /*
641          * If our nvm is an EEPROM, then we're done
642          * otherwise, commit the checksum to the flash NVM.
643          */
644         if (hw->nvm.type != e1000_nvm_flash_hw)
645                 return ret_val;
646
647         /* Check for pending operations. */
648         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
649                 msleep(1);
650                 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
651                         break;
652         }
653
654         if (i == E1000_FLASH_UPDATES)
655                 return -E1000_ERR_NVM;
656
657         /* Reset the firmware if using STM opcode. */
658         if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
659                 /*
660                  * The enabling of and the actual reset must be done
661                  * in two write cycles.
662                  */
663                 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
664                 e1e_flush();
665                 ew32(HICR, E1000_HICR_FW_RESET);
666         }
667
668         /* Commit the write to flash */
669         eecd = er32(EECD) | E1000_EECD_FLUPD;
670         ew32(EECD, eecd);
671
672         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
673                 msleep(1);
674                 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
675                         break;
676         }
677
678         if (i == E1000_FLASH_UPDATES)
679                 return -E1000_ERR_NVM;
680
681         return 0;
682 }
683
684 /**
685  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
686  *  @hw: pointer to the HW structure
687  *
688  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
689  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
690  **/
691 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
692 {
693         if (hw->nvm.type == e1000_nvm_flash_hw)
694                 e1000_fix_nvm_checksum_82571(hw);
695
696         return e1000e_validate_nvm_checksum_generic(hw);
697 }
698
699 /**
700  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
701  *  @hw: pointer to the HW structure
702  *  @offset: offset within the EEPROM to be written to
703  *  @words: number of words to write
704  *  @data: 16 bit word(s) to be written to the EEPROM
705  *
706  *  After checking for invalid values, poll the EEPROM to ensure the previous
707  *  command has completed before trying to write the next word.  After write
708  *  poll for completion.
709  *
710  *  If e1000e_update_nvm_checksum is not called after this function, the
711  *  EEPROM will most likely contain an invalid checksum.
712  **/
713 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
714                                       u16 words, u16 *data)
715 {
716         struct e1000_nvm_info *nvm = &hw->nvm;
717         u32 i, eewr = 0;
718         s32 ret_val = 0;
719
720         /*
721          * A check for invalid values:  offset too large, too many words,
722          * and not enough words.
723          */
724         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
725             (words == 0)) {
726                 e_dbg("nvm parameter(s) out of bounds\n");
727                 return -E1000_ERR_NVM;
728         }
729
730         for (i = 0; i < words; i++) {
731                 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
732                        ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
733                        E1000_NVM_RW_REG_START;
734
735                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
736                 if (ret_val)
737                         break;
738
739                 ew32(EEWR, eewr);
740
741                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
742                 if (ret_val)
743                         break;
744         }
745
746         return ret_val;
747 }
748
749 /**
750  *  e1000_get_cfg_done_82571 - Poll for configuration done
751  *  @hw: pointer to the HW structure
752  *
753  *  Reads the management control register for the config done bit to be set.
754  **/
755 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
756 {
757         s32 timeout = PHY_CFG_TIMEOUT;
758
759         while (timeout) {
760                 if (er32(EEMNGCTL) &
761                     E1000_NVM_CFG_DONE_PORT_0)
762                         break;
763                 msleep(1);
764                 timeout--;
765         }
766         if (!timeout) {
767                 e_dbg("MNG configuration cycle has not completed.\n");
768                 return -E1000_ERR_RESET;
769         }
770
771         return 0;
772 }
773
774 /**
775  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
776  *  @hw: pointer to the HW structure
777  *  @active: true to enable LPLU, false to disable
778  *
779  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
780  *  this function also disables smart speed and vice versa.  LPLU will not be
781  *  activated unless the device autonegotiation advertisement meets standards
782  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
783  *  pointer entry point only called by PHY setup routines.
784  **/
785 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
786 {
787         struct e1000_phy_info *phy = &hw->phy;
788         s32 ret_val;
789         u16 data;
790
791         ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
792         if (ret_val)
793                 return ret_val;
794
795         if (active) {
796                 data |= IGP02E1000_PM_D0_LPLU;
797                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
798                 if (ret_val)
799                         return ret_val;
800
801                 /* When LPLU is enabled, we should disable SmartSpeed */
802                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
803                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
804                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
805                 if (ret_val)
806                         return ret_val;
807         } else {
808                 data &= ~IGP02E1000_PM_D0_LPLU;
809                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
810                 /*
811                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
812                  * during Dx states where the power conservation is most
813                  * important.  During driver activity we should enable
814                  * SmartSpeed, so performance is maintained.
815                  */
816                 if (phy->smart_speed == e1000_smart_speed_on) {
817                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
818                                            &data);
819                         if (ret_val)
820                                 return ret_val;
821
822                         data |= IGP01E1000_PSCFR_SMART_SPEED;
823                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
824                                            data);
825                         if (ret_val)
826                                 return ret_val;
827                 } else if (phy->smart_speed == e1000_smart_speed_off) {
828                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
829                                            &data);
830                         if (ret_val)
831                                 return ret_val;
832
833                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
834                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
835                                            data);
836                         if (ret_val)
837                                 return ret_val;
838                 }
839         }
840
841         return 0;
842 }
843
844 /**
845  *  e1000_reset_hw_82571 - Reset hardware
846  *  @hw: pointer to the HW structure
847  *
848  *  This resets the hardware into a known state.
849  **/
850 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
851 {
852         u32 ctrl, extcnf_ctrl, ctrl_ext, icr;
853         s32 ret_val;
854         u16 i = 0;
855
856         /*
857          * Prevent the PCI-E bus from sticking if there is no TLP connection
858          * on the last TLP read/write transaction when MAC is reset.
859          */
860         ret_val = e1000e_disable_pcie_master(hw);
861         if (ret_val)
862                 e_dbg("PCI-E Master disable polling has failed.\n");
863
864         e_dbg("Masking off all interrupts\n");
865         ew32(IMC, 0xffffffff);
866
867         ew32(RCTL, 0);
868         ew32(TCTL, E1000_TCTL_PSP);
869         e1e_flush();
870
871         msleep(10);
872
873         /*
874          * Must acquire the MDIO ownership before MAC reset.
875          * Ownership defaults to firmware after a reset.
876          */
877         switch (hw->mac.type) {
878         case e1000_82573:
879         case e1000_82574:
880         case e1000_82583:
881                 extcnf_ctrl = er32(EXTCNF_CTRL);
882                 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
883
884                 do {
885                         ew32(EXTCNF_CTRL, extcnf_ctrl);
886                         extcnf_ctrl = er32(EXTCNF_CTRL);
887
888                         if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
889                                 break;
890
891                         extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
892
893                         msleep(2);
894                         i++;
895                 } while (i < MDIO_OWNERSHIP_TIMEOUT);
896                 break;
897         default:
898                 break;
899         }
900
901         ctrl = er32(CTRL);
902
903         e_dbg("Issuing a global reset to MAC\n");
904         ew32(CTRL, ctrl | E1000_CTRL_RST);
905
906         if (hw->nvm.type == e1000_nvm_flash_hw) {
907                 udelay(10);
908                 ctrl_ext = er32(CTRL_EXT);
909                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
910                 ew32(CTRL_EXT, ctrl_ext);
911                 e1e_flush();
912         }
913
914         ret_val = e1000e_get_auto_rd_done(hw);
915         if (ret_val)
916                 /* We don't want to continue accessing MAC registers. */
917                 return ret_val;
918
919         /*
920          * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
921          * Need to wait for Phy configuration completion before accessing
922          * NVM and Phy.
923          */
924
925         switch (hw->mac.type) {
926         case e1000_82573:
927         case e1000_82574:
928         case e1000_82583:
929                 msleep(25);
930                 break;
931         default:
932                 break;
933         }
934
935         /* Clear any pending interrupt events. */
936         ew32(IMC, 0xffffffff);
937         icr = er32(ICR);
938
939         /* Install any alternate MAC address into RAR0 */
940         ret_val = e1000_check_alt_mac_addr_generic(hw);
941         if (ret_val)
942                 return ret_val;
943
944         e1000e_set_laa_state_82571(hw, true);
945
946         /* Reinitialize the 82571 serdes link state machine */
947         if (hw->phy.media_type == e1000_media_type_internal_serdes)
948                 hw->mac.serdes_link_state = e1000_serdes_link_down;
949
950         return 0;
951 }
952
953 /**
954  *  e1000_init_hw_82571 - Initialize hardware
955  *  @hw: pointer to the HW structure
956  *
957  *  This inits the hardware readying it for operation.
958  **/
959 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
960 {
961         struct e1000_mac_info *mac = &hw->mac;
962         u32 reg_data;
963         s32 ret_val;
964         u16 i, rar_count = mac->rar_entry_count;
965
966         e1000_initialize_hw_bits_82571(hw);
967
968         /* Initialize identification LED */
969         ret_val = e1000e_id_led_init(hw);
970         if (ret_val)
971                 e_dbg("Error initializing identification LED\n");
972                 /* This is not fatal and we should not stop init due to this */
973
974         /* Disabling VLAN filtering */
975         e_dbg("Initializing the IEEE VLAN\n");
976         mac->ops.clear_vfta(hw);
977
978         /* Setup the receive address. */
979         /*
980          * If, however, a locally administered address was assigned to the
981          * 82571, we must reserve a RAR for it to work around an issue where
982          * resetting one port will reload the MAC on the other port.
983          */
984         if (e1000e_get_laa_state_82571(hw))
985                 rar_count--;
986         e1000e_init_rx_addrs(hw, rar_count);
987
988         /* Zero out the Multicast HASH table */
989         e_dbg("Zeroing the MTA\n");
990         for (i = 0; i < mac->mta_reg_count; i++)
991                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
992
993         /* Setup link and flow control */
994         ret_val = e1000_setup_link_82571(hw);
995
996         /* Set the transmit descriptor write-back policy */
997         reg_data = er32(TXDCTL(0));
998         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
999                    E1000_TXDCTL_FULL_TX_DESC_WB |
1000                    E1000_TXDCTL_COUNT_DESC;
1001         ew32(TXDCTL(0), reg_data);
1002
1003         /* ...for both queues. */
1004         switch (mac->type) {
1005         case e1000_82573:
1006                 e1000e_enable_tx_pkt_filtering(hw);
1007                 /* fall through */
1008         case e1000_82574:
1009         case e1000_82583:
1010                 reg_data = er32(GCR);
1011                 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1012                 ew32(GCR, reg_data);
1013                 break;
1014         default:
1015                 reg_data = er32(TXDCTL(1));
1016                 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1017                            E1000_TXDCTL_FULL_TX_DESC_WB |
1018                            E1000_TXDCTL_COUNT_DESC;
1019                 ew32(TXDCTL(1), reg_data);
1020                 break;
1021         }
1022
1023         /*
1024          * Clear all of the statistics registers (clear on read).  It is
1025          * important that we do this after we have tried to establish link
1026          * because the symbol error count will increment wildly if there
1027          * is no link.
1028          */
1029         e1000_clear_hw_cntrs_82571(hw);
1030
1031         return ret_val;
1032 }
1033
1034 /**
1035  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1036  *  @hw: pointer to the HW structure
1037  *
1038  *  Initializes required hardware-dependent bits needed for normal operation.
1039  **/
1040 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1041 {
1042         u32 reg;
1043
1044         /* Transmit Descriptor Control 0 */
1045         reg = er32(TXDCTL(0));
1046         reg |= (1 << 22);
1047         ew32(TXDCTL(0), reg);
1048
1049         /* Transmit Descriptor Control 1 */
1050         reg = er32(TXDCTL(1));
1051         reg |= (1 << 22);
1052         ew32(TXDCTL(1), reg);
1053
1054         /* Transmit Arbitration Control 0 */
1055         reg = er32(TARC(0));
1056         reg &= ~(0xF << 27); /* 30:27 */
1057         switch (hw->mac.type) {
1058         case e1000_82571:
1059         case e1000_82572:
1060                 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1061                 break;
1062         default:
1063                 break;
1064         }
1065         ew32(TARC(0), reg);
1066
1067         /* Transmit Arbitration Control 1 */
1068         reg = er32(TARC(1));
1069         switch (hw->mac.type) {
1070         case e1000_82571:
1071         case e1000_82572:
1072                 reg &= ~((1 << 29) | (1 << 30));
1073                 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1074                 if (er32(TCTL) & E1000_TCTL_MULR)
1075                         reg &= ~(1 << 28);
1076                 else
1077                         reg |= (1 << 28);
1078                 ew32(TARC(1), reg);
1079                 break;
1080         default:
1081                 break;
1082         }
1083
1084         /* Device Control */
1085         switch (hw->mac.type) {
1086         case e1000_82573:
1087         case e1000_82574:
1088         case e1000_82583:
1089                 reg = er32(CTRL);
1090                 reg &= ~(1 << 29);
1091                 ew32(CTRL, reg);
1092                 break;
1093         default:
1094                 break;
1095         }
1096
1097         /* Extended Device Control */
1098         switch (hw->mac.type) {
1099         case e1000_82573:
1100         case e1000_82574:
1101         case e1000_82583:
1102                 reg = er32(CTRL_EXT);
1103                 reg &= ~(1 << 23);
1104                 reg |= (1 << 22);
1105                 ew32(CTRL_EXT, reg);
1106                 break;
1107         default:
1108                 break;
1109         }
1110
1111         if (hw->mac.type == e1000_82571) {
1112                 reg = er32(PBA_ECC);
1113                 reg |= E1000_PBA_ECC_CORR_EN;
1114                 ew32(PBA_ECC, reg);
1115         }
1116         /*
1117          * Workaround for hardware errata.
1118          * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1119          */
1120
1121         if ((hw->mac.type == e1000_82571) ||
1122            (hw->mac.type == e1000_82572)) {
1123                 reg = er32(CTRL_EXT);
1124                 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1125                 ew32(CTRL_EXT, reg);
1126         }
1127
1128
1129         /* PCI-Ex Control Registers */
1130         switch (hw->mac.type) {
1131         case e1000_82574:
1132         case e1000_82583:
1133                 reg = er32(GCR);
1134                 reg |= (1 << 22);
1135                 ew32(GCR, reg);
1136
1137                 /*
1138                  * Workaround for hardware errata.
1139                  * apply workaround for hardware errata documented in errata
1140                  * docs Fixes issue where some error prone or unreliable PCIe
1141                  * completions are occurring, particularly with ASPM enabled.
1142                  * Without fix, issue can cause tx timeouts.
1143                  */
1144                 reg = er32(GCR2);
1145                 reg |= 1;
1146                 ew32(GCR2, reg);
1147                 break;
1148         default:
1149                 break;
1150         }
1151 }
1152
1153 /**
1154  *  e1000_clear_vfta_82571 - Clear VLAN filter table
1155  *  @hw: pointer to the HW structure
1156  *
1157  *  Clears the register array which contains the VLAN filter table by
1158  *  setting all the values to 0.
1159  **/
1160 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1161 {
1162         u32 offset;
1163         u32 vfta_value = 0;
1164         u32 vfta_offset = 0;
1165         u32 vfta_bit_in_reg = 0;
1166
1167         switch (hw->mac.type) {
1168         case e1000_82573:
1169         case e1000_82574:
1170         case e1000_82583:
1171                 if (hw->mng_cookie.vlan_id != 0) {
1172                         /*
1173                          * The VFTA is a 4096b bit-field, each identifying
1174                          * a single VLAN ID.  The following operations
1175                          * determine which 32b entry (i.e. offset) into the
1176                          * array we want to set the VLAN ID (i.e. bit) of
1177                          * the manageability unit.
1178                          */
1179                         vfta_offset = (hw->mng_cookie.vlan_id >>
1180                                        E1000_VFTA_ENTRY_SHIFT) &
1181                                       E1000_VFTA_ENTRY_MASK;
1182                         vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1183                                                E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1184                 }
1185                 break;
1186         default:
1187                 break;
1188         }
1189         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1190                 /*
1191                  * If the offset we want to clear is the same offset of the
1192                  * manageability VLAN ID, then clear all bits except that of
1193                  * the manageability unit.
1194                  */
1195                 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1196                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1197                 e1e_flush();
1198         }
1199 }
1200
1201 /**
1202  *  e1000_check_mng_mode_82574 - Check manageability is enabled
1203  *  @hw: pointer to the HW structure
1204  *
1205  *  Reads the NVM Initialization Control Word 2 and returns true
1206  *  (>0) if any manageability is enabled, else false (0).
1207  **/
1208 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1209 {
1210         u16 data;
1211
1212         e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1213         return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1214 }
1215
1216 /**
1217  *  e1000_led_on_82574 - Turn LED on
1218  *  @hw: pointer to the HW structure
1219  *
1220  *  Turn LED on.
1221  **/
1222 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1223 {
1224         u32 ctrl;
1225         u32 i;
1226
1227         ctrl = hw->mac.ledctl_mode2;
1228         if (!(E1000_STATUS_LU & er32(STATUS))) {
1229                 /*
1230                  * If no link, then turn LED on by setting the invert bit
1231                  * for each LED that's "on" (0x0E) in ledctl_mode2.
1232                  */
1233                 for (i = 0; i < 4; i++)
1234                         if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1235                             E1000_LEDCTL_MODE_LED_ON)
1236                                 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1237         }
1238         ew32(LEDCTL, ctrl);
1239
1240         return 0;
1241 }
1242
1243 /**
1244  *  e1000_setup_link_82571 - Setup flow control and link settings
1245  *  @hw: pointer to the HW structure
1246  *
1247  *  Determines which flow control settings to use, then configures flow
1248  *  control.  Calls the appropriate media-specific link configuration
1249  *  function.  Assuming the adapter has a valid link partner, a valid link
1250  *  should be established.  Assumes the hardware has previously been reset
1251  *  and the transmitter and receiver are not enabled.
1252  **/
1253 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1254 {
1255         /*
1256          * 82573 does not have a word in the NVM to determine
1257          * the default flow control setting, so we explicitly
1258          * set it to full.
1259          */
1260         switch (hw->mac.type) {
1261         case e1000_82573:
1262         case e1000_82574:
1263         case e1000_82583:
1264                 if (hw->fc.requested_mode == e1000_fc_default)
1265                         hw->fc.requested_mode = e1000_fc_full;
1266                 break;
1267         default:
1268                 break;
1269         }
1270
1271         return e1000e_setup_link(hw);
1272 }
1273
1274 /**
1275  *  e1000_setup_copper_link_82571 - Configure copper link settings
1276  *  @hw: pointer to the HW structure
1277  *
1278  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1279  *  for link, once link is established calls to configure collision distance
1280  *  and flow control are called.
1281  **/
1282 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1283 {
1284         u32 ctrl;
1285         s32 ret_val;
1286
1287         ctrl = er32(CTRL);
1288         ctrl |= E1000_CTRL_SLU;
1289         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1290         ew32(CTRL, ctrl);
1291
1292         switch (hw->phy.type) {
1293         case e1000_phy_m88:
1294         case e1000_phy_bm:
1295                 ret_val = e1000e_copper_link_setup_m88(hw);
1296                 break;
1297         case e1000_phy_igp_2:
1298                 ret_val = e1000e_copper_link_setup_igp(hw);
1299                 break;
1300         default:
1301                 return -E1000_ERR_PHY;
1302                 break;
1303         }
1304
1305         if (ret_val)
1306                 return ret_val;
1307
1308         ret_val = e1000e_setup_copper_link(hw);
1309
1310         return ret_val;
1311 }
1312
1313 /**
1314  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1315  *  @hw: pointer to the HW structure
1316  *
1317  *  Configures collision distance and flow control for fiber and serdes links.
1318  *  Upon successful setup, poll for link.
1319  **/
1320 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1321 {
1322         switch (hw->mac.type) {
1323         case e1000_82571:
1324         case e1000_82572:
1325                 /*
1326                  * If SerDes loopback mode is entered, there is no form
1327                  * of reset to take the adapter out of that mode.  So we
1328                  * have to explicitly take the adapter out of loopback
1329                  * mode.  This prevents drivers from twiddling their thumbs
1330                  * if another tool failed to take it out of loopback mode.
1331                  */
1332                 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1333                 break;
1334         default:
1335                 break;
1336         }
1337
1338         return e1000e_setup_fiber_serdes_link(hw);
1339 }
1340
1341 /**
1342  *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1343  *  @hw: pointer to the HW structure
1344  *
1345  *  Reports the link state as up or down.
1346  *
1347  *  If autonegotiation is supported by the link partner, the link state is
1348  *  determined by the result of autonegotiation. This is the most likely case.
1349  *  If autonegotiation is not supported by the link partner, and the link
1350  *  has a valid signal, force the link up.
1351  *
1352  *  The link state is represented internally here by 4 states:
1353  *
1354  *  1) down
1355  *  2) autoneg_progress
1356  *  3) autoneg_complete (the link successfully autonegotiated)
1357  *  4) forced_up (the link has been forced up, it did not autonegotiate)
1358  *
1359  **/
1360 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1361 {
1362         struct e1000_mac_info *mac = &hw->mac;
1363         u32 rxcw;
1364         u32 ctrl;
1365         u32 status;
1366         s32 ret_val = 0;
1367
1368         ctrl = er32(CTRL);
1369         status = er32(STATUS);
1370         rxcw = er32(RXCW);
1371
1372         if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1373
1374                 /* Receiver is synchronized with no invalid bits.  */
1375                 switch (mac->serdes_link_state) {
1376                 case e1000_serdes_link_autoneg_complete:
1377                         if (!(status & E1000_STATUS_LU)) {
1378                                 /*
1379                                  * We have lost link, retry autoneg before
1380                                  * reporting link failure
1381                                  */
1382                                 mac->serdes_link_state =
1383                                     e1000_serdes_link_autoneg_progress;
1384                                 mac->serdes_has_link = false;
1385                                 e_dbg("AN_UP     -> AN_PROG\n");
1386                         }
1387                 break;
1388
1389                 case e1000_serdes_link_forced_up:
1390                         /*
1391                          * If we are receiving /C/ ordered sets, re-enable
1392                          * auto-negotiation in the TXCW register and disable
1393                          * forced link in the Device Control register in an
1394                          * attempt to auto-negotiate with our link partner.
1395                          */
1396                         if (rxcw & E1000_RXCW_C) {
1397                                 /* Enable autoneg, and unforce link up */
1398                                 ew32(TXCW, mac->txcw);
1399                                 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1400                                 mac->serdes_link_state =
1401                                     e1000_serdes_link_autoneg_progress;
1402                                 mac->serdes_has_link = false;
1403                                 e_dbg("FORCED_UP -> AN_PROG\n");
1404                         }
1405                         break;
1406
1407                 case e1000_serdes_link_autoneg_progress:
1408                         if (rxcw & E1000_RXCW_C) {
1409                                 /*
1410                                  * We received /C/ ordered sets, meaning the
1411                                  * link partner has autonegotiated, and we can
1412                                  * trust the Link Up (LU) status bit.
1413                                  */
1414                                 if (status & E1000_STATUS_LU) {
1415                                         mac->serdes_link_state =
1416                                             e1000_serdes_link_autoneg_complete;
1417                                         e_dbg("AN_PROG   -> AN_UP\n");
1418                                         mac->serdes_has_link = true;
1419                                 } else {
1420                                         /* Autoneg completed, but failed. */
1421                                         mac->serdes_link_state =
1422                                             e1000_serdes_link_down;
1423                                         e_dbg("AN_PROG   -> DOWN\n");
1424                                 }
1425                         } else {
1426                                 /*
1427                                  * The link partner did not autoneg.
1428                                  * Force link up and full duplex, and change
1429                                  * state to forced.
1430                                  */
1431                                 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1432                                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1433                                 ew32(CTRL, ctrl);
1434
1435                                 /* Configure Flow Control after link up. */
1436                                 ret_val = e1000e_config_fc_after_link_up(hw);
1437                                 if (ret_val) {
1438                                         e_dbg("Error config flow control\n");
1439                                         break;
1440                                 }
1441                                 mac->serdes_link_state =
1442                                     e1000_serdes_link_forced_up;
1443                                 mac->serdes_has_link = true;
1444                                 e_dbg("AN_PROG   -> FORCED_UP\n");
1445                         }
1446                         break;
1447
1448                 case e1000_serdes_link_down:
1449                 default:
1450                         /*
1451                          * The link was down but the receiver has now gained
1452                          * valid sync, so lets see if we can bring the link
1453                          * up.
1454                          */
1455                         ew32(TXCW, mac->txcw);
1456                         ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1457                         mac->serdes_link_state =
1458                             e1000_serdes_link_autoneg_progress;
1459                         e_dbg("DOWN      -> AN_PROG\n");
1460                         break;
1461                 }
1462         } else {
1463                 if (!(rxcw & E1000_RXCW_SYNCH)) {
1464                         mac->serdes_has_link = false;
1465                         mac->serdes_link_state = e1000_serdes_link_down;
1466                         e_dbg("ANYSTATE  -> DOWN\n");
1467                 } else {
1468                         /*
1469                          * We have sync, and can tolerate one invalid (IV)
1470                          * codeword before declaring link down, so reread
1471                          * to look again.
1472                          */
1473                         udelay(10);
1474                         rxcw = er32(RXCW);
1475                         if (rxcw & E1000_RXCW_IV) {
1476                                 mac->serdes_link_state = e1000_serdes_link_down;
1477                                 mac->serdes_has_link = false;
1478                                 e_dbg("ANYSTATE  -> DOWN\n");
1479                         }
1480                 }
1481         }
1482
1483         return ret_val;
1484 }
1485
1486 /**
1487  *  e1000_valid_led_default_82571 - Verify a valid default LED config
1488  *  @hw: pointer to the HW structure
1489  *  @data: pointer to the NVM (EEPROM)
1490  *
1491  *  Read the EEPROM for the current default LED configuration.  If the
1492  *  LED configuration is not valid, set to a valid LED configuration.
1493  **/
1494 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1495 {
1496         s32 ret_val;
1497
1498         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1499         if (ret_val) {
1500                 e_dbg("NVM Read Error\n");
1501                 return ret_val;
1502         }
1503
1504         switch (hw->mac.type) {
1505         case e1000_82573:
1506         case e1000_82574:
1507         case e1000_82583:
1508                 if (*data == ID_LED_RESERVED_F746)
1509                         *data = ID_LED_DEFAULT_82573;
1510                 break;
1511         default:
1512                 if (*data == ID_LED_RESERVED_0000 ||
1513                     *data == ID_LED_RESERVED_FFFF)
1514                         *data = ID_LED_DEFAULT;
1515                 break;
1516         }
1517
1518         return 0;
1519 }
1520
1521 /**
1522  *  e1000e_get_laa_state_82571 - Get locally administered address state
1523  *  @hw: pointer to the HW structure
1524  *
1525  *  Retrieve and return the current locally administered address state.
1526  **/
1527 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1528 {
1529         if (hw->mac.type != e1000_82571)
1530                 return false;
1531
1532         return hw->dev_spec.e82571.laa_is_present;
1533 }
1534
1535 /**
1536  *  e1000e_set_laa_state_82571 - Set locally administered address state
1537  *  @hw: pointer to the HW structure
1538  *  @state: enable/disable locally administered address
1539  *
1540  *  Enable/Disable the current locally administered address state.
1541  **/
1542 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1543 {
1544         if (hw->mac.type != e1000_82571)
1545                 return;
1546
1547         hw->dev_spec.e82571.laa_is_present = state;
1548
1549         /* If workaround is activated... */
1550         if (state)
1551                 /*
1552                  * Hold a copy of the LAA in RAR[14] This is done so that
1553                  * between the time RAR[0] gets clobbered and the time it
1554                  * gets fixed, the actual LAA is in one of the RARs and no
1555                  * incoming packets directed to this port are dropped.
1556                  * Eventually the LAA will be in RAR[0] and RAR[14].
1557                  */
1558                 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1559 }
1560
1561 /**
1562  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1563  *  @hw: pointer to the HW structure
1564  *
1565  *  Verifies that the EEPROM has completed the update.  After updating the
1566  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1567  *  the checksum fix is not implemented, we need to set the bit and update
1568  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1569  *  we need to return bad checksum.
1570  **/
1571 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1572 {
1573         struct e1000_nvm_info *nvm = &hw->nvm;
1574         s32 ret_val;
1575         u16 data;
1576
1577         if (nvm->type != e1000_nvm_flash_hw)
1578                 return 0;
1579
1580         /*
1581          * Check bit 4 of word 10h.  If it is 0, firmware is done updating
1582          * 10h-12h.  Checksum may need to be fixed.
1583          */
1584         ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1585         if (ret_val)
1586                 return ret_val;
1587
1588         if (!(data & 0x10)) {
1589                 /*
1590                  * Read 0x23 and check bit 15.  This bit is a 1
1591                  * when the checksum has already been fixed.  If
1592                  * the checksum is still wrong and this bit is a
1593                  * 1, we need to return bad checksum.  Otherwise,
1594                  * we need to set this bit to a 1 and update the
1595                  * checksum.
1596                  */
1597                 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1598                 if (ret_val)
1599                         return ret_val;
1600
1601                 if (!(data & 0x8000)) {
1602                         data |= 0x8000;
1603                         ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1604                         if (ret_val)
1605                                 return ret_val;
1606                         ret_val = e1000e_update_nvm_checksum(hw);
1607                 }
1608         }
1609
1610         return 0;
1611 }
1612
1613 /**
1614  *  e1000_read_mac_addr_82571 - Read device MAC address
1615  *  @hw: pointer to the HW structure
1616  **/
1617 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1618 {
1619         s32 ret_val = 0;
1620
1621         /*
1622          * If there's an alternate MAC address place it in RAR0
1623          * so that it will override the Si installed default perm
1624          * address.
1625          */
1626         ret_val = e1000_check_alt_mac_addr_generic(hw);
1627         if (ret_val)
1628                 goto out;
1629
1630         ret_val = e1000_read_mac_addr_generic(hw);
1631
1632 out:
1633         return ret_val;
1634 }
1635
1636 /**
1637  * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1638  * @hw: pointer to the HW structure
1639  *
1640  * In the case of a PHY power down to save power, or to turn off link during a
1641  * driver unload, or wake on lan is not enabled, remove the link.
1642  **/
1643 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1644 {
1645         struct e1000_phy_info *phy = &hw->phy;
1646         struct e1000_mac_info *mac = &hw->mac;
1647
1648         if (!(phy->ops.check_reset_block))
1649                 return;
1650
1651         /* If the management interface is not enabled, then power down */
1652         if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1653                 e1000_power_down_phy_copper(hw);
1654 }
1655
1656 /**
1657  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1658  *  @hw: pointer to the HW structure
1659  *
1660  *  Clears the hardware counters by reading the counter registers.
1661  **/
1662 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1663 {
1664         e1000e_clear_hw_cntrs_base(hw);
1665
1666         er32(PRC64);
1667         er32(PRC127);
1668         er32(PRC255);
1669         er32(PRC511);
1670         er32(PRC1023);
1671         er32(PRC1522);
1672         er32(PTC64);
1673         er32(PTC127);
1674         er32(PTC255);
1675         er32(PTC511);
1676         er32(PTC1023);
1677         er32(PTC1522);
1678
1679         er32(ALGNERRC);
1680         er32(RXERRC);
1681         er32(TNCRS);
1682         er32(CEXTERR);
1683         er32(TSCTC);
1684         er32(TSCTFC);
1685
1686         er32(MGTPRC);
1687         er32(MGTPDC);
1688         er32(MGTPTC);
1689
1690         er32(IAC);
1691         er32(ICRXOC);
1692
1693         er32(ICRXPTC);
1694         er32(ICRXATC);
1695         er32(ICTXPTC);
1696         er32(ICTXATC);
1697         er32(ICTXQEC);
1698         er32(ICTXQMTC);
1699         er32(ICRXDMTC);
1700 }
1701
1702 static struct e1000_mac_operations e82571_mac_ops = {
1703         /* .check_mng_mode: mac type dependent */
1704         /* .check_for_link: media type dependent */
1705         .id_led_init            = e1000e_id_led_init,
1706         .cleanup_led            = e1000e_cleanup_led_generic,
1707         .clear_hw_cntrs         = e1000_clear_hw_cntrs_82571,
1708         .get_bus_info           = e1000e_get_bus_info_pcie,
1709         .set_lan_id             = e1000_set_lan_id_multi_port_pcie,
1710         /* .get_link_up_info: media type dependent */
1711         /* .led_on: mac type dependent */
1712         .led_off                = e1000e_led_off_generic,
1713         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1714         .write_vfta             = e1000_write_vfta_generic,
1715         .clear_vfta             = e1000_clear_vfta_82571,
1716         .reset_hw               = e1000_reset_hw_82571,
1717         .init_hw                = e1000_init_hw_82571,
1718         .setup_link             = e1000_setup_link_82571,
1719         /* .setup_physical_interface: media type dependent */
1720         .setup_led              = e1000e_setup_led_generic,
1721         .read_mac_addr          = e1000_read_mac_addr_82571,
1722 };
1723
1724 static struct e1000_phy_operations e82_phy_ops_igp = {
1725         .acquire                = e1000_get_hw_semaphore_82571,
1726         .check_polarity         = e1000_check_polarity_igp,
1727         .check_reset_block      = e1000e_check_reset_block_generic,
1728         .commit                 = NULL,
1729         .force_speed_duplex     = e1000e_phy_force_speed_duplex_igp,
1730         .get_cfg_done           = e1000_get_cfg_done_82571,
1731         .get_cable_length       = e1000e_get_cable_length_igp_2,
1732         .get_info               = e1000e_get_phy_info_igp,
1733         .read_reg               = e1000e_read_phy_reg_igp,
1734         .release                = e1000_put_hw_semaphore_82571,
1735         .reset                  = e1000e_phy_hw_reset_generic,
1736         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1737         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1738         .write_reg              = e1000e_write_phy_reg_igp,
1739         .cfg_on_link_up         = NULL,
1740 };
1741
1742 static struct e1000_phy_operations e82_phy_ops_m88 = {
1743         .acquire                = e1000_get_hw_semaphore_82571,
1744         .check_polarity         = e1000_check_polarity_m88,
1745         .check_reset_block      = e1000e_check_reset_block_generic,
1746         .commit                 = e1000e_phy_sw_reset,
1747         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1748         .get_cfg_done           = e1000e_get_cfg_done,
1749         .get_cable_length       = e1000e_get_cable_length_m88,
1750         .get_info               = e1000e_get_phy_info_m88,
1751         .read_reg               = e1000e_read_phy_reg_m88,
1752         .release                = e1000_put_hw_semaphore_82571,
1753         .reset                  = e1000e_phy_hw_reset_generic,
1754         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1755         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1756         .write_reg              = e1000e_write_phy_reg_m88,
1757         .cfg_on_link_up         = NULL,
1758 };
1759
1760 static struct e1000_phy_operations e82_phy_ops_bm = {
1761         .acquire                = e1000_get_hw_semaphore_82571,
1762         .check_polarity         = e1000_check_polarity_m88,
1763         .check_reset_block      = e1000e_check_reset_block_generic,
1764         .commit                 = e1000e_phy_sw_reset,
1765         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1766         .get_cfg_done           = e1000e_get_cfg_done,
1767         .get_cable_length       = e1000e_get_cable_length_m88,
1768         .get_info               = e1000e_get_phy_info_m88,
1769         .read_reg               = e1000e_read_phy_reg_bm2,
1770         .release                = e1000_put_hw_semaphore_82571,
1771         .reset                  = e1000e_phy_hw_reset_generic,
1772         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1773         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1774         .write_reg              = e1000e_write_phy_reg_bm2,
1775         .cfg_on_link_up         = NULL,
1776 };
1777
1778 static struct e1000_nvm_operations e82571_nvm_ops = {
1779         .acquire                = e1000_acquire_nvm_82571,
1780         .read                   = e1000e_read_nvm_eerd,
1781         .release                = e1000_release_nvm_82571,
1782         .update                 = e1000_update_nvm_checksum_82571,
1783         .valid_led_default      = e1000_valid_led_default_82571,
1784         .validate               = e1000_validate_nvm_checksum_82571,
1785         .write                  = e1000_write_nvm_82571,
1786 };
1787
1788 struct e1000_info e1000_82571_info = {
1789         .mac                    = e1000_82571,
1790         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1791                                   | FLAG_HAS_JUMBO_FRAMES
1792                                   | FLAG_HAS_WOL
1793                                   | FLAG_APME_IN_CTRL3
1794                                   | FLAG_RX_CSUM_ENABLED
1795                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1796                                   | FLAG_HAS_SMART_POWER_DOWN
1797                                   | FLAG_RESET_OVERWRITES_LAA /* errata */
1798                                   | FLAG_TARC_SPEED_MODE_BIT /* errata */
1799                                   | FLAG_APME_CHECK_PORT_B,
1800         .flags2                 = FLAG2_DISABLE_ASPM_L1, /* errata 13 */
1801         .pba                    = 38,
1802         .max_hw_frame_size      = DEFAULT_JUMBO,
1803         .get_variants           = e1000_get_variants_82571,
1804         .mac_ops                = &e82571_mac_ops,
1805         .phy_ops                = &e82_phy_ops_igp,
1806         .nvm_ops                = &e82571_nvm_ops,
1807 };
1808
1809 struct e1000_info e1000_82572_info = {
1810         .mac                    = e1000_82572,
1811         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1812                                   | FLAG_HAS_JUMBO_FRAMES
1813                                   | FLAG_HAS_WOL
1814                                   | FLAG_APME_IN_CTRL3
1815                                   | FLAG_RX_CSUM_ENABLED
1816                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1817                                   | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1818         .flags2                 = FLAG2_DISABLE_ASPM_L1, /* errata 13 */
1819         .pba                    = 38,
1820         .max_hw_frame_size      = DEFAULT_JUMBO,
1821         .get_variants           = e1000_get_variants_82571,
1822         .mac_ops                = &e82571_mac_ops,
1823         .phy_ops                = &e82_phy_ops_igp,
1824         .nvm_ops                = &e82571_nvm_ops,
1825 };
1826
1827 struct e1000_info e1000_82573_info = {
1828         .mac                    = e1000_82573,
1829         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1830                                   | FLAG_HAS_WOL
1831                                   | FLAG_APME_IN_CTRL3
1832                                   | FLAG_RX_CSUM_ENABLED
1833                                   | FLAG_HAS_SMART_POWER_DOWN
1834                                   | FLAG_HAS_AMT
1835                                   | FLAG_HAS_SWSM_ON_LOAD,
1836         .pba                    = 20,
1837         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
1838         .get_variants           = e1000_get_variants_82571,
1839         .mac_ops                = &e82571_mac_ops,
1840         .phy_ops                = &e82_phy_ops_m88,
1841         .nvm_ops                = &e82571_nvm_ops,
1842 };
1843
1844 struct e1000_info e1000_82574_info = {
1845         .mac                    = e1000_82574,
1846         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1847                                   | FLAG_HAS_MSIX
1848                                   | FLAG_HAS_JUMBO_FRAMES
1849                                   | FLAG_HAS_WOL
1850                                   | FLAG_APME_IN_CTRL3
1851                                   | FLAG_RX_CSUM_ENABLED
1852                                   | FLAG_HAS_SMART_POWER_DOWN
1853                                   | FLAG_HAS_AMT
1854                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
1855         .pba                    = 36,
1856         .max_hw_frame_size      = DEFAULT_JUMBO,
1857         .get_variants           = e1000_get_variants_82571,
1858         .mac_ops                = &e82571_mac_ops,
1859         .phy_ops                = &e82_phy_ops_bm,
1860         .nvm_ops                = &e82571_nvm_ops,
1861 };
1862
1863 struct e1000_info e1000_82583_info = {
1864         .mac                    = e1000_82583,
1865         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1866                                   | FLAG_HAS_WOL
1867                                   | FLAG_APME_IN_CTRL3
1868                                   | FLAG_RX_CSUM_ENABLED
1869                                   | FLAG_HAS_SMART_POWER_DOWN
1870                                   | FLAG_HAS_AMT
1871                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
1872         .pba                    = 36,
1873         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
1874         .get_variants           = e1000_get_variants_82571,
1875         .mac_ops                = &e82571_mac_ops,
1876         .phy_ops                = &e82_phy_ops_bm,
1877         .nvm_ops                = &e82571_nvm_ops,
1878 };
1879