]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/net/e1000/e1000_main.c
e1000: remove changelog in driver
[net-next-2.6.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
26   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27
28 *******************************************************************************/
29
30 #include "e1000.h"
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.0.38-k2"DRIVERNAPI
40 char e1000_driver_version[] = DRV_VERSION;
41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44  *
45  * Last entry must be all 0s
46  *
47  * Macro expands to...
48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49  */
50 static struct pci_device_id e1000_pci_tbl[] = {
51         INTEL_E1000_ETHERNET_DEVICE(0x1000),
52         INTEL_E1000_ETHERNET_DEVICE(0x1001),
53         INTEL_E1000_ETHERNET_DEVICE(0x1004),
54         INTEL_E1000_ETHERNET_DEVICE(0x1008),
55         INTEL_E1000_ETHERNET_DEVICE(0x1009),
56         INTEL_E1000_ETHERNET_DEVICE(0x100C),
57         INTEL_E1000_ETHERNET_DEVICE(0x100D),
58         INTEL_E1000_ETHERNET_DEVICE(0x100E),
59         INTEL_E1000_ETHERNET_DEVICE(0x100F),
60         INTEL_E1000_ETHERNET_DEVICE(0x1010),
61         INTEL_E1000_ETHERNET_DEVICE(0x1011),
62         INTEL_E1000_ETHERNET_DEVICE(0x1012),
63         INTEL_E1000_ETHERNET_DEVICE(0x1013),
64         INTEL_E1000_ETHERNET_DEVICE(0x1014),
65         INTEL_E1000_ETHERNET_DEVICE(0x1015),
66         INTEL_E1000_ETHERNET_DEVICE(0x1016),
67         INTEL_E1000_ETHERNET_DEVICE(0x1017),
68         INTEL_E1000_ETHERNET_DEVICE(0x1018),
69         INTEL_E1000_ETHERNET_DEVICE(0x1019),
70         INTEL_E1000_ETHERNET_DEVICE(0x101A),
71         INTEL_E1000_ETHERNET_DEVICE(0x101D),
72         INTEL_E1000_ETHERNET_DEVICE(0x101E),
73         INTEL_E1000_ETHERNET_DEVICE(0x1026),
74         INTEL_E1000_ETHERNET_DEVICE(0x1027),
75         INTEL_E1000_ETHERNET_DEVICE(0x1028),
76         INTEL_E1000_ETHERNET_DEVICE(0x105E),
77         INTEL_E1000_ETHERNET_DEVICE(0x105F),
78         INTEL_E1000_ETHERNET_DEVICE(0x1060),
79         INTEL_E1000_ETHERNET_DEVICE(0x1075),
80         INTEL_E1000_ETHERNET_DEVICE(0x1076),
81         INTEL_E1000_ETHERNET_DEVICE(0x1077),
82         INTEL_E1000_ETHERNET_DEVICE(0x1078),
83         INTEL_E1000_ETHERNET_DEVICE(0x1079),
84         INTEL_E1000_ETHERNET_DEVICE(0x107A),
85         INTEL_E1000_ETHERNET_DEVICE(0x107B),
86         INTEL_E1000_ETHERNET_DEVICE(0x107C),
87         INTEL_E1000_ETHERNET_DEVICE(0x107D),
88         INTEL_E1000_ETHERNET_DEVICE(0x107E),
89         INTEL_E1000_ETHERNET_DEVICE(0x107F),
90         INTEL_E1000_ETHERNET_DEVICE(0x108A),
91         INTEL_E1000_ETHERNET_DEVICE(0x108B),
92         INTEL_E1000_ETHERNET_DEVICE(0x108C),
93         INTEL_E1000_ETHERNET_DEVICE(0x1096),
94         INTEL_E1000_ETHERNET_DEVICE(0x1098),
95         INTEL_E1000_ETHERNET_DEVICE(0x1099),
96         INTEL_E1000_ETHERNET_DEVICE(0x109A),
97         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
98         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
99         /* required last entry */
100         {0,}
101 };
102
103 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
104
105 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
106                                     struct e1000_tx_ring *txdr);
107 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
108                                     struct e1000_rx_ring *rxdr);
109 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
110                                     struct e1000_tx_ring *tx_ring);
111 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
112                                     struct e1000_rx_ring *rx_ring);
113
114 /* Local Function Prototypes */
115
116 static int e1000_init_module(void);
117 static void e1000_exit_module(void);
118 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
119 static void __devexit e1000_remove(struct pci_dev *pdev);
120 static int e1000_alloc_queues(struct e1000_adapter *adapter);
121 static int e1000_sw_init(struct e1000_adapter *adapter);
122 static int e1000_open(struct net_device *netdev);
123 static int e1000_close(struct net_device *netdev);
124 static void e1000_configure_tx(struct e1000_adapter *adapter);
125 static void e1000_configure_rx(struct e1000_adapter *adapter);
126 static void e1000_setup_rctl(struct e1000_adapter *adapter);
127 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
128 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
129 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
130                                 struct e1000_tx_ring *tx_ring);
131 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
132                                 struct e1000_rx_ring *rx_ring);
133 static void e1000_set_multi(struct net_device *netdev);
134 static void e1000_update_phy_info(unsigned long data);
135 static void e1000_watchdog(unsigned long data);
136 static void e1000_watchdog_task(struct e1000_adapter *adapter);
137 static void e1000_82547_tx_fifo_stall(unsigned long data);
138 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
139 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
140 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
141 static int e1000_set_mac(struct net_device *netdev, void *p);
142 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
143 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
144                                     struct e1000_tx_ring *tx_ring);
145 #ifdef CONFIG_E1000_NAPI
146 static int e1000_clean(struct net_device *poll_dev, int *budget);
147 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
148                                     struct e1000_rx_ring *rx_ring,
149                                     int *work_done, int work_to_do);
150 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
151                                        struct e1000_rx_ring *rx_ring,
152                                        int *work_done, int work_to_do);
153 #else
154 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
155                                     struct e1000_rx_ring *rx_ring);
156 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
157                                        struct e1000_rx_ring *rx_ring);
158 #endif
159 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
160                                    struct e1000_rx_ring *rx_ring,
161                                    int cleaned_count);
162 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
163                                       struct e1000_rx_ring *rx_ring,
164                                       int cleaned_count);
165 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
166 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
167                            int cmd);
168 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
169 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
170 static void e1000_tx_timeout(struct net_device *dev);
171 static void e1000_reset_task(struct net_device *dev);
172 static void e1000_smartspeed(struct e1000_adapter *adapter);
173 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
174                                        struct sk_buff *skb);
175
176 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
177 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
178 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
179 static void e1000_restore_vlan(struct e1000_adapter *adapter);
180
181 #ifdef CONFIG_PM
182 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
183 static int e1000_resume(struct pci_dev *pdev);
184 #endif
185 static void e1000_shutdown(struct pci_dev *pdev);
186
187 #ifdef CONFIG_NET_POLL_CONTROLLER
188 /* for netdump / net console */
189 static void e1000_netpoll (struct net_device *netdev);
190 #endif
191
192
193 static struct pci_driver e1000_driver = {
194         .name     = e1000_driver_name,
195         .id_table = e1000_pci_tbl,
196         .probe    = e1000_probe,
197         .remove   = __devexit_p(e1000_remove),
198         /* Power Managment Hooks */
199 #ifdef CONFIG_PM
200         .suspend  = e1000_suspend,
201         .resume   = e1000_resume,
202 #endif
203         .shutdown = e1000_shutdown
204 };
205
206 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
207 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
208 MODULE_LICENSE("GPL");
209 MODULE_VERSION(DRV_VERSION);
210
211 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
212 module_param(debug, int, 0);
213 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
214
215 /**
216  * e1000_init_module - Driver Registration Routine
217  *
218  * e1000_init_module is the first routine called when the driver is
219  * loaded. All it does is register with the PCI subsystem.
220  **/
221
222 static int __init
223 e1000_init_module(void)
224 {
225         int ret;
226         printk(KERN_INFO "%s - version %s\n",
227                e1000_driver_string, e1000_driver_version);
228
229         printk(KERN_INFO "%s\n", e1000_copyright);
230
231         ret = pci_module_init(&e1000_driver);
232
233         return ret;
234 }
235
236 module_init(e1000_init_module);
237
238 /**
239  * e1000_exit_module - Driver Exit Cleanup Routine
240  *
241  * e1000_exit_module is called just before the driver is removed
242  * from memory.
243  **/
244
245 static void __exit
246 e1000_exit_module(void)
247 {
248         pci_unregister_driver(&e1000_driver);
249 }
250
251 module_exit(e1000_exit_module);
252
253 /**
254  * e1000_irq_disable - Mask off interrupt generation on the NIC
255  * @adapter: board private structure
256  **/
257
258 static void
259 e1000_irq_disable(struct e1000_adapter *adapter)
260 {
261         atomic_inc(&adapter->irq_sem);
262         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
263         E1000_WRITE_FLUSH(&adapter->hw);
264         synchronize_irq(adapter->pdev->irq);
265 }
266
267 /**
268  * e1000_irq_enable - Enable default interrupt generation settings
269  * @adapter: board private structure
270  **/
271
272 static void
273 e1000_irq_enable(struct e1000_adapter *adapter)
274 {
275         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
276                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
277                 E1000_WRITE_FLUSH(&adapter->hw);
278         }
279 }
280
281 static void
282 e1000_update_mng_vlan(struct e1000_adapter *adapter)
283 {
284         struct net_device *netdev = adapter->netdev;
285         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
286         uint16_t old_vid = adapter->mng_vlan_id;
287         if (adapter->vlgrp) {
288                 if (!adapter->vlgrp->vlan_devices[vid]) {
289                         if (adapter->hw.mng_cookie.status &
290                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
291                                 e1000_vlan_rx_add_vid(netdev, vid);
292                                 adapter->mng_vlan_id = vid;
293                         } else
294                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
295
296                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
297                                         (vid != old_vid) &&
298                                         !adapter->vlgrp->vlan_devices[old_vid])
299                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
300                 } else
301                         adapter->mng_vlan_id = vid;
302         }
303 }
304
305 /**
306  * e1000_release_hw_control - release control of the h/w to f/w
307  * @adapter: address of board private structure
308  *
309  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
310  * For ASF and Pass Through versions of f/w this means that the
311  * driver is no longer loaded. For AMT version (only with 82573) i
312  * of the f/w this means that the netowrk i/f is closed.
313  *
314  **/
315
316 static void
317 e1000_release_hw_control(struct e1000_adapter *adapter)
318 {
319         uint32_t ctrl_ext;
320         uint32_t swsm;
321
322         /* Let firmware taken over control of h/w */
323         switch (adapter->hw.mac_type) {
324         case e1000_82571:
325         case e1000_82572:
326         case e1000_80003es2lan:
327                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
328                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
329                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
330                 break;
331         case e1000_82573:
332                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
333                 E1000_WRITE_REG(&adapter->hw, SWSM,
334                                 swsm & ~E1000_SWSM_DRV_LOAD);
335         default:
336                 break;
337         }
338 }
339
340 /**
341  * e1000_get_hw_control - get control of the h/w from f/w
342  * @adapter: address of board private structure
343  *
344  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
345  * For ASF and Pass Through versions of f/w this means that
346  * the driver is loaded. For AMT version (only with 82573)
347  * of the f/w this means that the netowrk i/f is open.
348  *
349  **/
350
351 static void
352 e1000_get_hw_control(struct e1000_adapter *adapter)
353 {
354         uint32_t ctrl_ext;
355         uint32_t swsm;
356         /* Let firmware know the driver has taken over */
357         switch (adapter->hw.mac_type) {
358         case e1000_82571:
359         case e1000_82572:
360         case e1000_80003es2lan:
361                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
362                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
363                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
364                 break;
365         case e1000_82573:
366                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
367                 E1000_WRITE_REG(&adapter->hw, SWSM,
368                                 swsm | E1000_SWSM_DRV_LOAD);
369                 break;
370         default:
371                 break;
372         }
373 }
374
375 int
376 e1000_up(struct e1000_adapter *adapter)
377 {
378         struct net_device *netdev = adapter->netdev;
379         int i, err;
380
381         /* hardware has been reset, we need to reload some things */
382
383         /* Reset the PHY if it was previously powered down */
384         if (adapter->hw.media_type == e1000_media_type_copper) {
385                 uint16_t mii_reg;
386                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
387                 if (mii_reg & MII_CR_POWER_DOWN)
388                         e1000_phy_hw_reset(&adapter->hw);
389         }
390
391         e1000_set_multi(netdev);
392
393         e1000_restore_vlan(adapter);
394
395         e1000_configure_tx(adapter);
396         e1000_setup_rctl(adapter);
397         e1000_configure_rx(adapter);
398         /* call E1000_DESC_UNUSED which always leaves
399          * at least 1 descriptor unused to make sure
400          * next_to_use != next_to_clean */
401         for (i = 0; i < adapter->num_rx_queues; i++) {
402                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
403                 adapter->alloc_rx_buf(adapter, ring,
404                                       E1000_DESC_UNUSED(ring));
405         }
406
407 #ifdef CONFIG_PCI_MSI
408         if (adapter->hw.mac_type > e1000_82547_rev_2) {
409                 adapter->have_msi = TRUE;
410                 if ((err = pci_enable_msi(adapter->pdev))) {
411                         DPRINTK(PROBE, ERR,
412                          "Unable to allocate MSI interrupt Error: %d\n", err);
413                         adapter->have_msi = FALSE;
414                 }
415         }
416 #endif
417         if ((err = request_irq(adapter->pdev->irq, &e1000_intr,
418                               SA_SHIRQ | SA_SAMPLE_RANDOM,
419                               netdev->name, netdev))) {
420                 DPRINTK(PROBE, ERR,
421                     "Unable to allocate interrupt Error: %d\n", err);
422                 return err;
423         }
424
425         adapter->tx_queue_len = netdev->tx_queue_len;
426
427         mod_timer(&adapter->watchdog_timer, jiffies);
428
429 #ifdef CONFIG_E1000_NAPI
430         netif_poll_enable(netdev);
431 #endif
432         e1000_irq_enable(adapter);
433
434         return 0;
435 }
436
437 void
438 e1000_down(struct e1000_adapter *adapter)
439 {
440         struct net_device *netdev = adapter->netdev;
441         boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
442                                      e1000_check_mng_mode(&adapter->hw);
443
444         e1000_irq_disable(adapter);
445
446         free_irq(adapter->pdev->irq, netdev);
447 #ifdef CONFIG_PCI_MSI
448         if (adapter->hw.mac_type > e1000_82547_rev_2 &&
449            adapter->have_msi == TRUE)
450                 pci_disable_msi(adapter->pdev);
451 #endif
452         del_timer_sync(&adapter->tx_fifo_stall_timer);
453         del_timer_sync(&adapter->watchdog_timer);
454         del_timer_sync(&adapter->phy_info_timer);
455
456 #ifdef CONFIG_E1000_NAPI
457         netif_poll_disable(netdev);
458 #endif
459         netdev->tx_queue_len = adapter->tx_queue_len;
460         adapter->link_speed = 0;
461         adapter->link_duplex = 0;
462         netif_carrier_off(netdev);
463         netif_stop_queue(netdev);
464
465         e1000_reset(adapter);
466         e1000_clean_all_tx_rings(adapter);
467         e1000_clean_all_rx_rings(adapter);
468
469         /* Power down the PHY so no link is implied when interface is down *
470          * The PHY cannot be powered down if any of the following is TRUE *
471          * (a) WoL is enabled
472          * (b) AMT is active
473          * (c) SoL/IDER session is active */
474         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
475            adapter->hw.media_type == e1000_media_type_copper &&
476            !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
477            !mng_mode_enabled &&
478            !e1000_check_phy_reset_block(&adapter->hw)) {
479                 uint16_t mii_reg;
480                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
481                 mii_reg |= MII_CR_POWER_DOWN;
482                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
483                 mdelay(1);
484         }
485 }
486
487 void
488 e1000_reset(struct e1000_adapter *adapter)
489 {
490         uint32_t pba, manc;
491         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
492
493         /* Repartition Pba for greater than 9k mtu
494          * To take effect CTRL.RST is required.
495          */
496
497         switch (adapter->hw.mac_type) {
498         case e1000_82547:
499         case e1000_82547_rev_2:
500                 pba = E1000_PBA_30K;
501                 break;
502         case e1000_82571:
503         case e1000_82572:
504         case e1000_80003es2lan:
505                 pba = E1000_PBA_38K;
506                 break;
507         case e1000_82573:
508                 pba = E1000_PBA_12K;
509                 break;
510         default:
511                 pba = E1000_PBA_48K;
512                 break;
513         }
514
515         if ((adapter->hw.mac_type != e1000_82573) &&
516            (adapter->netdev->mtu > E1000_RXBUFFER_8192))
517                 pba -= 8; /* allocate more FIFO for Tx */
518
519
520         if (adapter->hw.mac_type == e1000_82547) {
521                 adapter->tx_fifo_head = 0;
522                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
523                 adapter->tx_fifo_size =
524                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
525                 atomic_set(&adapter->tx_fifo_stall, 0);
526         }
527
528         E1000_WRITE_REG(&adapter->hw, PBA, pba);
529
530         /* flow control settings */
531         /* Set the FC high water mark to 90% of the FIFO size.
532          * Required to clear last 3 LSB */
533         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
534
535         adapter->hw.fc_high_water = fc_high_water_mark;
536         adapter->hw.fc_low_water = fc_high_water_mark - 8;
537         if (adapter->hw.mac_type == e1000_80003es2lan)
538                 adapter->hw.fc_pause_time = 0xFFFF;
539         else
540                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
541         adapter->hw.fc_send_xon = 1;
542         adapter->hw.fc = adapter->hw.original_fc;
543
544         /* Allow time for pending master requests to run */
545         e1000_reset_hw(&adapter->hw);
546         if (adapter->hw.mac_type >= e1000_82544)
547                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
548         if (e1000_init_hw(&adapter->hw))
549                 DPRINTK(PROBE, ERR, "Hardware Error\n");
550         e1000_update_mng_vlan(adapter);
551         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
552         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
553
554         e1000_reset_adaptive(&adapter->hw);
555         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
556         if (adapter->en_mng_pt) {
557                 manc = E1000_READ_REG(&adapter->hw, MANC);
558                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
559                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
560         }
561 }
562
563 /**
564  * e1000_probe - Device Initialization Routine
565  * @pdev: PCI device information struct
566  * @ent: entry in e1000_pci_tbl
567  *
568  * Returns 0 on success, negative on failure
569  *
570  * e1000_probe initializes an adapter identified by a pci_dev structure.
571  * The OS initialization, configuring of the adapter private structure,
572  * and a hardware reset occur.
573  **/
574
575 static int __devinit
576 e1000_probe(struct pci_dev *pdev,
577             const struct pci_device_id *ent)
578 {
579         struct net_device *netdev;
580         struct e1000_adapter *adapter;
581         unsigned long mmio_start, mmio_len;
582
583         static int cards_found = 0;
584         static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */
585         int i, err, pci_using_dac;
586         uint16_t eeprom_data;
587         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
588         if ((err = pci_enable_device(pdev)))
589                 return err;
590
591         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
592                 pci_using_dac = 1;
593         } else {
594                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
595                         E1000_ERR("No usable DMA configuration, aborting\n");
596                         return err;
597                 }
598                 pci_using_dac = 0;
599         }
600
601         if ((err = pci_request_regions(pdev, e1000_driver_name)))
602                 return err;
603
604         pci_set_master(pdev);
605
606         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
607         if (!netdev) {
608                 err = -ENOMEM;
609                 goto err_alloc_etherdev;
610         }
611
612         SET_MODULE_OWNER(netdev);
613         SET_NETDEV_DEV(netdev, &pdev->dev);
614
615         pci_set_drvdata(pdev, netdev);
616         adapter = netdev_priv(netdev);
617         adapter->netdev = netdev;
618         adapter->pdev = pdev;
619         adapter->hw.back = adapter;
620         adapter->msg_enable = (1 << debug) - 1;
621
622         mmio_start = pci_resource_start(pdev, BAR_0);
623         mmio_len = pci_resource_len(pdev, BAR_0);
624
625         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
626         if (!adapter->hw.hw_addr) {
627                 err = -EIO;
628                 goto err_ioremap;
629         }
630
631         for (i = BAR_1; i <= BAR_5; i++) {
632                 if (pci_resource_len(pdev, i) == 0)
633                         continue;
634                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
635                         adapter->hw.io_base = pci_resource_start(pdev, i);
636                         break;
637                 }
638         }
639
640         netdev->open = &e1000_open;
641         netdev->stop = &e1000_close;
642         netdev->hard_start_xmit = &e1000_xmit_frame;
643         netdev->get_stats = &e1000_get_stats;
644         netdev->set_multicast_list = &e1000_set_multi;
645         netdev->set_mac_address = &e1000_set_mac;
646         netdev->change_mtu = &e1000_change_mtu;
647         netdev->do_ioctl = &e1000_ioctl;
648         e1000_set_ethtool_ops(netdev);
649         netdev->tx_timeout = &e1000_tx_timeout;
650         netdev->watchdog_timeo = 5 * HZ;
651 #ifdef CONFIG_E1000_NAPI
652         netdev->poll = &e1000_clean;
653         netdev->weight = 64;
654 #endif
655         netdev->vlan_rx_register = e1000_vlan_rx_register;
656         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
657         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
658 #ifdef CONFIG_NET_POLL_CONTROLLER
659         netdev->poll_controller = e1000_netpoll;
660 #endif
661         strcpy(netdev->name, pci_name(pdev));
662
663         netdev->mem_start = mmio_start;
664         netdev->mem_end = mmio_start + mmio_len;
665         netdev->base_addr = adapter->hw.io_base;
666
667         adapter->bd_number = cards_found;
668
669         /* setup the private structure */
670
671         if ((err = e1000_sw_init(adapter)))
672                 goto err_sw_init;
673
674         if ((err = e1000_check_phy_reset_block(&adapter->hw)))
675                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
676
677         /* if ksp3, indicate if it's port a being setup */
678         if (pdev->device == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 &&
679                         e1000_ksp3_port_a == 0)
680                 adapter->ksp3_port_a = 1;
681         e1000_ksp3_port_a++;
682         /* Reset for multiple KP3 adapters */
683         if (e1000_ksp3_port_a == 4)
684                 e1000_ksp3_port_a = 0;
685
686         if (adapter->hw.mac_type >= e1000_82543) {
687                 netdev->features = NETIF_F_SG |
688                                    NETIF_F_HW_CSUM |
689                                    NETIF_F_HW_VLAN_TX |
690                                    NETIF_F_HW_VLAN_RX |
691                                    NETIF_F_HW_VLAN_FILTER;
692         }
693
694 #ifdef NETIF_F_TSO
695         if ((adapter->hw.mac_type >= e1000_82544) &&
696            (adapter->hw.mac_type != e1000_82547))
697                 netdev->features |= NETIF_F_TSO;
698
699 #ifdef NETIF_F_TSO_IPV6
700         if (adapter->hw.mac_type > e1000_82547_rev_2)
701                 netdev->features |= NETIF_F_TSO_IPV6;
702 #endif
703 #endif
704         if (pci_using_dac)
705                 netdev->features |= NETIF_F_HIGHDMA;
706
707         /* hard_start_xmit is safe against parallel locking */
708         netdev->features |= NETIF_F_LLTX;
709
710         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
711
712         /* before reading the EEPROM, reset the controller to
713          * put the device in a known good starting state */
714
715         e1000_reset_hw(&adapter->hw);
716
717         /* make sure the EEPROM is good */
718
719         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
720                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
721                 err = -EIO;
722                 goto err_eeprom;
723         }
724
725         /* copy the MAC address out of the EEPROM */
726
727         if (e1000_read_mac_addr(&adapter->hw))
728                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
729         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
730         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
731
732         if (!is_valid_ether_addr(netdev->perm_addr)) {
733                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
734                 err = -EIO;
735                 goto err_eeprom;
736         }
737
738         e1000_read_part_num(&adapter->hw, &(adapter->part_num));
739
740         e1000_get_bus_info(&adapter->hw);
741
742         init_timer(&adapter->tx_fifo_stall_timer);
743         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
744         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
745
746         init_timer(&adapter->watchdog_timer);
747         adapter->watchdog_timer.function = &e1000_watchdog;
748         adapter->watchdog_timer.data = (unsigned long) adapter;
749
750         INIT_WORK(&adapter->watchdog_task,
751                 (void (*)(void *))e1000_watchdog_task, adapter);
752
753         init_timer(&adapter->phy_info_timer);
754         adapter->phy_info_timer.function = &e1000_update_phy_info;
755         adapter->phy_info_timer.data = (unsigned long) adapter;
756
757         INIT_WORK(&adapter->reset_task,
758                 (void (*)(void *))e1000_reset_task, netdev);
759
760         /* we're going to reset, so assume we have no link for now */
761
762         netif_carrier_off(netdev);
763         netif_stop_queue(netdev);
764
765         e1000_check_options(adapter);
766
767         /* Initial Wake on LAN setting
768          * If APM wake is enabled in the EEPROM,
769          * enable the ACPI Magic Packet filter
770          */
771
772         switch (adapter->hw.mac_type) {
773         case e1000_82542_rev2_0:
774         case e1000_82542_rev2_1:
775         case e1000_82543:
776                 break;
777         case e1000_82544:
778                 e1000_read_eeprom(&adapter->hw,
779                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
780                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
781                 break;
782         case e1000_82546:
783         case e1000_82546_rev_3:
784         case e1000_82571:
785         case e1000_80003es2lan:
786                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
787                         e1000_read_eeprom(&adapter->hw,
788                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
789                         break;
790                 }
791                 /* Fall Through */
792         default:
793                 e1000_read_eeprom(&adapter->hw,
794                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
795                 break;
796         }
797         if (eeprom_data & eeprom_apme_mask)
798                 adapter->wol |= E1000_WUFC_MAG;
799
800         /* print bus type/speed/width info */
801         {
802         struct e1000_hw *hw = &adapter->hw;
803         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
804                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
805                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
806                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
807                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
808                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
809                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
810                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
811                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
812                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
813                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
814                  "32-bit"));
815         }
816
817         for (i = 0; i < 6; i++)
818                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
819
820         /* reset the hardware with the new settings */
821         e1000_reset(adapter);
822
823         /* If the controller is 82573 and f/w is AMT, do not set
824          * DRV_LOAD until the interface is up.  For all other cases,
825          * let the f/w know that the h/w is now under the control
826          * of the driver. */
827         if (adapter->hw.mac_type != e1000_82573 ||
828             !e1000_check_mng_mode(&adapter->hw))
829                 e1000_get_hw_control(adapter);
830
831         strcpy(netdev->name, "eth%d");
832         if ((err = register_netdev(netdev)))
833                 goto err_register;
834
835         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
836
837         cards_found++;
838         return 0;
839
840 err_register:
841 err_sw_init:
842 err_eeprom:
843         iounmap(adapter->hw.hw_addr);
844 err_ioremap:
845         free_netdev(netdev);
846 err_alloc_etherdev:
847         pci_release_regions(pdev);
848         return err;
849 }
850
851 /**
852  * e1000_remove - Device Removal Routine
853  * @pdev: PCI device information struct
854  *
855  * e1000_remove is called by the PCI subsystem to alert the driver
856  * that it should release a PCI device.  The could be caused by a
857  * Hot-Plug event, or because the driver is going to be removed from
858  * memory.
859  **/
860
861 static void __devexit
862 e1000_remove(struct pci_dev *pdev)
863 {
864         struct net_device *netdev = pci_get_drvdata(pdev);
865         struct e1000_adapter *adapter = netdev_priv(netdev);
866         uint32_t manc;
867 #ifdef CONFIG_E1000_NAPI
868         int i;
869 #endif
870
871         flush_scheduled_work();
872
873         if (adapter->hw.mac_type >= e1000_82540 &&
874            adapter->hw.media_type == e1000_media_type_copper) {
875                 manc = E1000_READ_REG(&adapter->hw, MANC);
876                 if (manc & E1000_MANC_SMBUS_EN) {
877                         manc |= E1000_MANC_ARP_EN;
878                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
879                 }
880         }
881
882         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
883          * would have already happened in close and is redundant. */
884         e1000_release_hw_control(adapter);
885
886         unregister_netdev(netdev);
887 #ifdef CONFIG_E1000_NAPI
888         for (i = 0; i < adapter->num_rx_queues; i++)
889                 dev_put(&adapter->polling_netdev[i]);
890 #endif
891
892         if (!e1000_check_phy_reset_block(&adapter->hw))
893                 e1000_phy_hw_reset(&adapter->hw);
894
895         kfree(adapter->tx_ring);
896         kfree(adapter->rx_ring);
897 #ifdef CONFIG_E1000_NAPI
898         kfree(adapter->polling_netdev);
899 #endif
900
901         iounmap(adapter->hw.hw_addr);
902         pci_release_regions(pdev);
903
904         free_netdev(netdev);
905
906         pci_disable_device(pdev);
907 }
908
909 /**
910  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
911  * @adapter: board private structure to initialize
912  *
913  * e1000_sw_init initializes the Adapter private data structure.
914  * Fields are initialized based on PCI device information and
915  * OS network device settings (MTU size).
916  **/
917
918 static int __devinit
919 e1000_sw_init(struct e1000_adapter *adapter)
920 {
921         struct e1000_hw *hw = &adapter->hw;
922         struct net_device *netdev = adapter->netdev;
923         struct pci_dev *pdev = adapter->pdev;
924 #ifdef CONFIG_E1000_NAPI
925         int i;
926 #endif
927
928         /* PCI config space info */
929
930         hw->vendor_id = pdev->vendor;
931         hw->device_id = pdev->device;
932         hw->subsystem_vendor_id = pdev->subsystem_vendor;
933         hw->subsystem_id = pdev->subsystem_device;
934
935         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
936
937         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
938
939         adapter->rx_buffer_len = MAXIMUM_ETHERNET_FRAME_SIZE;
940         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
941         hw->max_frame_size = netdev->mtu +
942                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
943         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
944
945         /* identify the MAC */
946
947         if (e1000_set_mac_type(hw)) {
948                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
949                 return -EIO;
950         }
951
952         /* initialize eeprom parameters */
953
954         if (e1000_init_eeprom_params(hw)) {
955                 E1000_ERR("EEPROM initialization failed\n");
956                 return -EIO;
957         }
958
959         switch (hw->mac_type) {
960         default:
961                 break;
962         case e1000_82541:
963         case e1000_82547:
964         case e1000_82541_rev_2:
965         case e1000_82547_rev_2:
966                 hw->phy_init_script = 1;
967                 break;
968         }
969
970         e1000_set_media_type(hw);
971
972         hw->wait_autoneg_complete = FALSE;
973         hw->tbi_compatibility_en = TRUE;
974         hw->adaptive_ifs = TRUE;
975
976         /* Copper options */
977
978         if (hw->media_type == e1000_media_type_copper) {
979                 hw->mdix = AUTO_ALL_MODES;
980                 hw->disable_polarity_correction = FALSE;
981                 hw->master_slave = E1000_MASTER_SLAVE;
982         }
983
984         adapter->num_tx_queues = 1;
985         adapter->num_rx_queues = 1;
986
987         if (e1000_alloc_queues(adapter)) {
988                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
989                 return -ENOMEM;
990         }
991
992 #ifdef CONFIG_E1000_NAPI
993         for (i = 0; i < adapter->num_rx_queues; i++) {
994                 adapter->polling_netdev[i].priv = adapter;
995                 adapter->polling_netdev[i].poll = &e1000_clean;
996                 adapter->polling_netdev[i].weight = 64;
997                 dev_hold(&adapter->polling_netdev[i]);
998                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
999         }
1000         spin_lock_init(&adapter->tx_queue_lock);
1001 #endif
1002
1003         atomic_set(&adapter->irq_sem, 1);
1004         spin_lock_init(&adapter->stats_lock);
1005
1006         return 0;
1007 }
1008
1009 /**
1010  * e1000_alloc_queues - Allocate memory for all rings
1011  * @adapter: board private structure to initialize
1012  *
1013  * We allocate one ring per queue at run-time since we don't know the
1014  * number of queues at compile-time.  The polling_netdev array is
1015  * intended for Multiqueue, but should work fine with a single queue.
1016  **/
1017
1018 static int __devinit
1019 e1000_alloc_queues(struct e1000_adapter *adapter)
1020 {
1021         int size;
1022
1023         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1024         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1025         if (!adapter->tx_ring)
1026                 return -ENOMEM;
1027         memset(adapter->tx_ring, 0, size);
1028
1029         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1030         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1031         if (!adapter->rx_ring) {
1032                 kfree(adapter->tx_ring);
1033                 return -ENOMEM;
1034         }
1035         memset(adapter->rx_ring, 0, size);
1036
1037 #ifdef CONFIG_E1000_NAPI
1038         size = sizeof(struct net_device) * adapter->num_rx_queues;
1039         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1040         if (!adapter->polling_netdev) {
1041                 kfree(adapter->tx_ring);
1042                 kfree(adapter->rx_ring);
1043                 return -ENOMEM;
1044         }
1045         memset(adapter->polling_netdev, 0, size);
1046 #endif
1047
1048         return E1000_SUCCESS;
1049 }
1050
1051 /**
1052  * e1000_open - Called when a network interface is made active
1053  * @netdev: network interface device structure
1054  *
1055  * Returns 0 on success, negative value on failure
1056  *
1057  * The open entry point is called when a network interface is made
1058  * active by the system (IFF_UP).  At this point all resources needed
1059  * for transmit and receive operations are allocated, the interrupt
1060  * handler is registered with the OS, the watchdog timer is started,
1061  * and the stack is notified that the interface is ready.
1062  **/
1063
1064 static int
1065 e1000_open(struct net_device *netdev)
1066 {
1067         struct e1000_adapter *adapter = netdev_priv(netdev);
1068         int err;
1069
1070         /* allocate transmit descriptors */
1071
1072         if ((err = e1000_setup_all_tx_resources(adapter)))
1073                 goto err_setup_tx;
1074
1075         /* allocate receive descriptors */
1076
1077         if ((err = e1000_setup_all_rx_resources(adapter)))
1078                 goto err_setup_rx;
1079
1080         if ((err = e1000_up(adapter)))
1081                 goto err_up;
1082         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1083         if ((adapter->hw.mng_cookie.status &
1084                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1085                 e1000_update_mng_vlan(adapter);
1086         }
1087
1088         /* If AMT is enabled, let the firmware know that the network
1089          * interface is now open */
1090         if (adapter->hw.mac_type == e1000_82573 &&
1091             e1000_check_mng_mode(&adapter->hw))
1092                 e1000_get_hw_control(adapter);
1093
1094         return E1000_SUCCESS;
1095
1096 err_up:
1097         e1000_free_all_rx_resources(adapter);
1098 err_setup_rx:
1099         e1000_free_all_tx_resources(adapter);
1100 err_setup_tx:
1101         e1000_reset(adapter);
1102
1103         return err;
1104 }
1105
1106 /**
1107  * e1000_close - Disables a network interface
1108  * @netdev: network interface device structure
1109  *
1110  * Returns 0, this is not allowed to fail
1111  *
1112  * The close entry point is called when an interface is de-activated
1113  * by the OS.  The hardware is still under the drivers control, but
1114  * needs to be disabled.  A global MAC reset is issued to stop the
1115  * hardware, and all transmit and receive resources are freed.
1116  **/
1117
1118 static int
1119 e1000_close(struct net_device *netdev)
1120 {
1121         struct e1000_adapter *adapter = netdev_priv(netdev);
1122
1123         e1000_down(adapter);
1124
1125         e1000_free_all_tx_resources(adapter);
1126         e1000_free_all_rx_resources(adapter);
1127
1128         if ((adapter->hw.mng_cookie.status &
1129                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1130                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1131         }
1132
1133         /* If AMT is enabled, let the firmware know that the network
1134          * interface is now closed */
1135         if (adapter->hw.mac_type == e1000_82573 &&
1136             e1000_check_mng_mode(&adapter->hw))
1137                 e1000_release_hw_control(adapter);
1138
1139         return 0;
1140 }
1141
1142 /**
1143  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1144  * @adapter: address of board private structure
1145  * @start: address of beginning of memory
1146  * @len: length of memory
1147  **/
1148 static boolean_t
1149 e1000_check_64k_bound(struct e1000_adapter *adapter,
1150                       void *start, unsigned long len)
1151 {
1152         unsigned long begin = (unsigned long) start;
1153         unsigned long end = begin + len;
1154
1155         /* First rev 82545 and 82546 need to not allow any memory
1156          * write location to cross 64k boundary due to errata 23 */
1157         if (adapter->hw.mac_type == e1000_82545 ||
1158             adapter->hw.mac_type == e1000_82546) {
1159                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1160         }
1161
1162         return TRUE;
1163 }
1164
1165 /**
1166  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1167  * @adapter: board private structure
1168  * @txdr:    tx descriptor ring (for a specific queue) to setup
1169  *
1170  * Return 0 on success, negative on failure
1171  **/
1172
1173 static int
1174 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1175                          struct e1000_tx_ring *txdr)
1176 {
1177         struct pci_dev *pdev = adapter->pdev;
1178         int size;
1179
1180         size = sizeof(struct e1000_buffer) * txdr->count;
1181
1182         txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1183         if (!txdr->buffer_info) {
1184                 DPRINTK(PROBE, ERR,
1185                 "Unable to allocate memory for the transmit descriptor ring\n");
1186                 return -ENOMEM;
1187         }
1188         memset(txdr->buffer_info, 0, size);
1189
1190         /* round up to nearest 4K */
1191
1192         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1193         E1000_ROUNDUP(txdr->size, 4096);
1194
1195         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1196         if (!txdr->desc) {
1197 setup_tx_desc_die:
1198                 vfree(txdr->buffer_info);
1199                 DPRINTK(PROBE, ERR,
1200                 "Unable to allocate memory for the transmit descriptor ring\n");
1201                 return -ENOMEM;
1202         }
1203
1204         /* Fix for errata 23, can't cross 64kB boundary */
1205         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1206                 void *olddesc = txdr->desc;
1207                 dma_addr_t olddma = txdr->dma;
1208                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1209                                      "at %p\n", txdr->size, txdr->desc);
1210                 /* Try again, without freeing the previous */
1211                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1212                 /* Failed allocation, critical failure */
1213                 if (!txdr->desc) {
1214                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1215                         goto setup_tx_desc_die;
1216                 }
1217
1218                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1219                         /* give up */
1220                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1221                                             txdr->dma);
1222                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1223                         DPRINTK(PROBE, ERR,
1224                                 "Unable to allocate aligned memory "
1225                                 "for the transmit descriptor ring\n");
1226                         vfree(txdr->buffer_info);
1227                         return -ENOMEM;
1228                 } else {
1229                         /* Free old allocation, new allocation was successful */
1230                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1231                 }
1232         }
1233         memset(txdr->desc, 0, txdr->size);
1234
1235         txdr->next_to_use = 0;
1236         txdr->next_to_clean = 0;
1237         spin_lock_init(&txdr->tx_lock);
1238
1239         return 0;
1240 }
1241
1242 /**
1243  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1244  *                                (Descriptors) for all queues
1245  * @adapter: board private structure
1246  *
1247  * If this function returns with an error, then it's possible one or
1248  * more of the rings is populated (while the rest are not).  It is the
1249  * callers duty to clean those orphaned rings.
1250  *
1251  * Return 0 on success, negative on failure
1252  **/
1253
1254 int
1255 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1256 {
1257         int i, err = 0;
1258
1259         for (i = 0; i < adapter->num_tx_queues; i++) {
1260                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1261                 if (err) {
1262                         DPRINTK(PROBE, ERR,
1263                                 "Allocation for Tx Queue %u failed\n", i);
1264                         break;
1265                 }
1266         }
1267
1268         return err;
1269 }
1270
1271 /**
1272  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1273  * @adapter: board private structure
1274  *
1275  * Configure the Tx unit of the MAC after a reset.
1276  **/
1277
1278 static void
1279 e1000_configure_tx(struct e1000_adapter *adapter)
1280 {
1281         uint64_t tdba;
1282         struct e1000_hw *hw = &adapter->hw;
1283         uint32_t tdlen, tctl, tipg, tarc;
1284         uint32_t ipgr1, ipgr2;
1285
1286         /* Setup the HW Tx Head and Tail descriptor pointers */
1287
1288         switch (adapter->num_tx_queues) {
1289         case 1:
1290         default:
1291                 tdba = adapter->tx_ring[0].dma;
1292                 tdlen = adapter->tx_ring[0].count *
1293                         sizeof(struct e1000_tx_desc);
1294                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1295                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1296                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1297                 E1000_WRITE_REG(hw, TDH, 0);
1298                 E1000_WRITE_REG(hw, TDT, 0);
1299                 adapter->tx_ring[0].tdh = E1000_TDH;
1300                 adapter->tx_ring[0].tdt = E1000_TDT;
1301                 break;
1302         }
1303
1304         /* Set the default values for the Tx Inter Packet Gap timer */
1305
1306         if (hw->media_type == e1000_media_type_fiber ||
1307             hw->media_type == e1000_media_type_internal_serdes)
1308                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1309         else
1310                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1311
1312         switch (hw->mac_type) {
1313         case e1000_82542_rev2_0:
1314         case e1000_82542_rev2_1:
1315                 tipg = DEFAULT_82542_TIPG_IPGT;
1316                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1317                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1318                 break;
1319         case e1000_80003es2lan:
1320                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1321                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1322                 break;
1323         default:
1324                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1325                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1326                 break;
1327         }
1328         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1329         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1330         E1000_WRITE_REG(hw, TIPG, tipg);
1331
1332         /* Set the Tx Interrupt Delay register */
1333
1334         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1335         if (hw->mac_type >= e1000_82540)
1336                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1337
1338         /* Program the Transmit Control Register */
1339
1340         tctl = E1000_READ_REG(hw, TCTL);
1341
1342         tctl &= ~E1000_TCTL_CT;
1343         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1344                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1345
1346 #ifdef DISABLE_MULR
1347         /* disable Multiple Reads for debugging */
1348         tctl &= ~E1000_TCTL_MULR;
1349 #endif
1350
1351         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1352                 tarc = E1000_READ_REG(hw, TARC0);
1353                 tarc |= ((1 << 25) | (1 << 21));
1354                 E1000_WRITE_REG(hw, TARC0, tarc);
1355                 tarc = E1000_READ_REG(hw, TARC1);
1356                 tarc |= (1 << 25);
1357                 if (tctl & E1000_TCTL_MULR)
1358                         tarc &= ~(1 << 28);
1359                 else
1360                         tarc |= (1 << 28);
1361                 E1000_WRITE_REG(hw, TARC1, tarc);
1362         } else if (hw->mac_type == e1000_80003es2lan) {
1363                 tarc = E1000_READ_REG(hw, TARC0);
1364                 tarc |= 1;
1365                 if (hw->media_type == e1000_media_type_internal_serdes)
1366                         tarc |= (1 << 20);
1367                 E1000_WRITE_REG(hw, TARC0, tarc);
1368                 tarc = E1000_READ_REG(hw, TARC1);
1369                 tarc |= 1;
1370                 E1000_WRITE_REG(hw, TARC1, tarc);
1371         }
1372
1373         e1000_config_collision_dist(hw);
1374
1375         /* Setup Transmit Descriptor Settings for eop descriptor */
1376         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1377                 E1000_TXD_CMD_IFCS;
1378
1379         if (hw->mac_type < e1000_82543)
1380                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1381         else
1382                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1383
1384         /* Cache if we're 82544 running in PCI-X because we'll
1385          * need this to apply a workaround later in the send path. */
1386         if (hw->mac_type == e1000_82544 &&
1387             hw->bus_type == e1000_bus_type_pcix)
1388                 adapter->pcix_82544 = 1;
1389
1390         E1000_WRITE_REG(hw, TCTL, tctl);
1391
1392 }
1393
1394 /**
1395  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1396  * @adapter: board private structure
1397  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1398  *
1399  * Returns 0 on success, negative on failure
1400  **/
1401
1402 static int
1403 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1404                          struct e1000_rx_ring *rxdr)
1405 {
1406         struct pci_dev *pdev = adapter->pdev;
1407         int size, desc_len;
1408
1409         size = sizeof(struct e1000_buffer) * rxdr->count;
1410         rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1411         if (!rxdr->buffer_info) {
1412                 DPRINTK(PROBE, ERR,
1413                 "Unable to allocate memory for the receive descriptor ring\n");
1414                 return -ENOMEM;
1415         }
1416         memset(rxdr->buffer_info, 0, size);
1417
1418         size = sizeof(struct e1000_ps_page) * rxdr->count;
1419         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1420         if (!rxdr->ps_page) {
1421                 vfree(rxdr->buffer_info);
1422                 DPRINTK(PROBE, ERR,
1423                 "Unable to allocate memory for the receive descriptor ring\n");
1424                 return -ENOMEM;
1425         }
1426         memset(rxdr->ps_page, 0, size);
1427
1428         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1429         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1430         if (!rxdr->ps_page_dma) {
1431                 vfree(rxdr->buffer_info);
1432                 kfree(rxdr->ps_page);
1433                 DPRINTK(PROBE, ERR,
1434                 "Unable to allocate memory for the receive descriptor ring\n");
1435                 return -ENOMEM;
1436         }
1437         memset(rxdr->ps_page_dma, 0, size);
1438
1439         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1440                 desc_len = sizeof(struct e1000_rx_desc);
1441         else
1442                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1443
1444         /* Round up to nearest 4K */
1445
1446         rxdr->size = rxdr->count * desc_len;
1447         E1000_ROUNDUP(rxdr->size, 4096);
1448
1449         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1450
1451         if (!rxdr->desc) {
1452                 DPRINTK(PROBE, ERR,
1453                 "Unable to allocate memory for the receive descriptor ring\n");
1454 setup_rx_desc_die:
1455                 vfree(rxdr->buffer_info);
1456                 kfree(rxdr->ps_page);
1457                 kfree(rxdr->ps_page_dma);
1458                 return -ENOMEM;
1459         }
1460
1461         /* Fix for errata 23, can't cross 64kB boundary */
1462         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1463                 void *olddesc = rxdr->desc;
1464                 dma_addr_t olddma = rxdr->dma;
1465                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1466                                      "at %p\n", rxdr->size, rxdr->desc);
1467                 /* Try again, without freeing the previous */
1468                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1469                 /* Failed allocation, critical failure */
1470                 if (!rxdr->desc) {
1471                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1472                         DPRINTK(PROBE, ERR,
1473                                 "Unable to allocate memory "
1474                                 "for the receive descriptor ring\n");
1475                         goto setup_rx_desc_die;
1476                 }
1477
1478                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1479                         /* give up */
1480                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1481                                             rxdr->dma);
1482                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1483                         DPRINTK(PROBE, ERR,
1484                                 "Unable to allocate aligned memory "
1485                                 "for the receive descriptor ring\n");
1486                         goto setup_rx_desc_die;
1487                 } else {
1488                         /* Free old allocation, new allocation was successful */
1489                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1490                 }
1491         }
1492         memset(rxdr->desc, 0, rxdr->size);
1493
1494         rxdr->next_to_clean = 0;
1495         rxdr->next_to_use = 0;
1496
1497         return 0;
1498 }
1499
1500 /**
1501  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1502  *                                (Descriptors) for all queues
1503  * @adapter: board private structure
1504  *
1505  * If this function returns with an error, then it's possible one or
1506  * more of the rings is populated (while the rest are not).  It is the
1507  * callers duty to clean those orphaned rings.
1508  *
1509  * Return 0 on success, negative on failure
1510  **/
1511
1512 int
1513 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1514 {
1515         int i, err = 0;
1516
1517         for (i = 0; i < adapter->num_rx_queues; i++) {
1518                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1519                 if (err) {
1520                         DPRINTK(PROBE, ERR,
1521                                 "Allocation for Rx Queue %u failed\n", i);
1522                         break;
1523                 }
1524         }
1525
1526         return err;
1527 }
1528
1529 /**
1530  * e1000_setup_rctl - configure the receive control registers
1531  * @adapter: Board private structure
1532  **/
1533 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1534                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1535 static void
1536 e1000_setup_rctl(struct e1000_adapter *adapter)
1537 {
1538         uint32_t rctl, rfctl;
1539         uint32_t psrctl = 0;
1540 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1541         uint32_t pages = 0;
1542 #endif
1543
1544         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1545
1546         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1547
1548         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1549                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1550                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1551
1552         if (adapter->hw.mac_type > e1000_82543)
1553                 rctl |= E1000_RCTL_SECRC;
1554
1555         if (adapter->hw.tbi_compatibility_on == 1)
1556                 rctl |= E1000_RCTL_SBP;
1557         else
1558                 rctl &= ~E1000_RCTL_SBP;
1559
1560         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1561                 rctl &= ~E1000_RCTL_LPE;
1562         else
1563                 rctl |= E1000_RCTL_LPE;
1564
1565         /* Setup buffer sizes */
1566         rctl &= ~E1000_RCTL_SZ_4096;
1567         rctl |= E1000_RCTL_BSEX;
1568         switch (adapter->rx_buffer_len) {
1569                 case E1000_RXBUFFER_256:
1570                         rctl |= E1000_RCTL_SZ_256;
1571                         rctl &= ~E1000_RCTL_BSEX;
1572                         break;
1573                 case E1000_RXBUFFER_512:
1574                         rctl |= E1000_RCTL_SZ_512;
1575                         rctl &= ~E1000_RCTL_BSEX;
1576                         break;
1577                 case E1000_RXBUFFER_1024:
1578                         rctl |= E1000_RCTL_SZ_1024;
1579                         rctl &= ~E1000_RCTL_BSEX;
1580                         break;
1581                 case E1000_RXBUFFER_2048:
1582                 default:
1583                         rctl |= E1000_RCTL_SZ_2048;
1584                         rctl &= ~E1000_RCTL_BSEX;
1585                         break;
1586                 case E1000_RXBUFFER_4096:
1587                         rctl |= E1000_RCTL_SZ_4096;
1588                         break;
1589                 case E1000_RXBUFFER_8192:
1590                         rctl |= E1000_RCTL_SZ_8192;
1591                         break;
1592                 case E1000_RXBUFFER_16384:
1593                         rctl |= E1000_RCTL_SZ_16384;
1594                         break;
1595         }
1596
1597 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1598         /* 82571 and greater support packet-split where the protocol
1599          * header is placed in skb->data and the packet data is
1600          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1601          * In the case of a non-split, skb->data is linearly filled,
1602          * followed by the page buffers.  Therefore, skb->data is
1603          * sized to hold the largest protocol header.
1604          */
1605         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1606         if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1607             PAGE_SIZE <= 16384)
1608                 adapter->rx_ps_pages = pages;
1609         else
1610                 adapter->rx_ps_pages = 0;
1611 #endif
1612         if (adapter->rx_ps_pages) {
1613                 /* Configure extra packet-split registers */
1614                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1615                 rfctl |= E1000_RFCTL_EXTEN;
1616                 /* disable IPv6 packet split support */
1617                 rfctl |= E1000_RFCTL_IPV6_DIS;
1618                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1619
1620                 rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
1621
1622                 psrctl |= adapter->rx_ps_bsize0 >>
1623                         E1000_PSRCTL_BSIZE0_SHIFT;
1624
1625                 switch (adapter->rx_ps_pages) {
1626                 case 3:
1627                         psrctl |= PAGE_SIZE <<
1628                                 E1000_PSRCTL_BSIZE3_SHIFT;
1629                 case 2:
1630                         psrctl |= PAGE_SIZE <<
1631                                 E1000_PSRCTL_BSIZE2_SHIFT;
1632                 case 1:
1633                         psrctl |= PAGE_SIZE >>
1634                                 E1000_PSRCTL_BSIZE1_SHIFT;
1635                         break;
1636                 }
1637
1638                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1639         }
1640
1641         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1642 }
1643
1644 /**
1645  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1646  * @adapter: board private structure
1647  *
1648  * Configure the Rx unit of the MAC after a reset.
1649  **/
1650
1651 static void
1652 e1000_configure_rx(struct e1000_adapter *adapter)
1653 {
1654         uint64_t rdba;
1655         struct e1000_hw *hw = &adapter->hw;
1656         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1657
1658         if (adapter->rx_ps_pages) {
1659                 /* this is a 32 byte descriptor */
1660                 rdlen = adapter->rx_ring[0].count *
1661                         sizeof(union e1000_rx_desc_packet_split);
1662                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1663                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1664         } else {
1665                 rdlen = adapter->rx_ring[0].count *
1666                         sizeof(struct e1000_rx_desc);
1667                 adapter->clean_rx = e1000_clean_rx_irq;
1668                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1669         }
1670
1671         /* disable receives while setting up the descriptors */
1672         rctl = E1000_READ_REG(hw, RCTL);
1673         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1674
1675         /* set the Receive Delay Timer Register */
1676         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1677
1678         if (hw->mac_type >= e1000_82540) {
1679                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1680                 if (adapter->itr > 1)
1681                         E1000_WRITE_REG(hw, ITR,
1682                                 1000000000 / (adapter->itr * 256));
1683         }
1684
1685         if (hw->mac_type >= e1000_82571) {
1686                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1687                 /* Reset delay timers after every interrupt */
1688                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1689 #ifdef CONFIG_E1000_NAPI
1690                 /* Auto-Mask interrupts upon ICR read. */
1691                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1692 #endif
1693                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1694                 E1000_WRITE_REG(hw, IAM, ~0);
1695                 E1000_WRITE_FLUSH(hw);
1696         }
1697
1698         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1699          * the Base and Length of the Rx Descriptor Ring */
1700         switch (adapter->num_rx_queues) {
1701         case 1:
1702         default:
1703                 rdba = adapter->rx_ring[0].dma;
1704                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1705                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1706                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1707                 E1000_WRITE_REG(hw, RDH, 0);
1708                 E1000_WRITE_REG(hw, RDT, 0);
1709                 adapter->rx_ring[0].rdh = E1000_RDH;
1710                 adapter->rx_ring[0].rdt = E1000_RDT;
1711                 break;
1712         }
1713
1714         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1715         if (hw->mac_type >= e1000_82543) {
1716                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1717                 if (adapter->rx_csum == TRUE) {
1718                         rxcsum |= E1000_RXCSUM_TUOFL;
1719
1720                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1721                          * Must be used in conjunction with packet-split. */
1722                         if ((hw->mac_type >= e1000_82571) &&
1723                             (adapter->rx_ps_pages)) {
1724                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1725                         }
1726                 } else {
1727                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1728                         /* don't need to clear IPPCSE as it defaults to 0 */
1729                 }
1730                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1731         }
1732
1733         if (hw->mac_type == e1000_82573)
1734                 E1000_WRITE_REG(hw, ERT, 0x0100);
1735
1736         /* Enable Receives */
1737         E1000_WRITE_REG(hw, RCTL, rctl);
1738 }
1739
1740 /**
1741  * e1000_free_tx_resources - Free Tx Resources per Queue
1742  * @adapter: board private structure
1743  * @tx_ring: Tx descriptor ring for a specific queue
1744  *
1745  * Free all transmit software resources
1746  **/
1747
1748 static void
1749 e1000_free_tx_resources(struct e1000_adapter *adapter,
1750                         struct e1000_tx_ring *tx_ring)
1751 {
1752         struct pci_dev *pdev = adapter->pdev;
1753
1754         e1000_clean_tx_ring(adapter, tx_ring);
1755
1756         vfree(tx_ring->buffer_info);
1757         tx_ring->buffer_info = NULL;
1758
1759         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1760
1761         tx_ring->desc = NULL;
1762 }
1763
1764 /**
1765  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1766  * @adapter: board private structure
1767  *
1768  * Free all transmit software resources
1769  **/
1770
1771 void
1772 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1773 {
1774         int i;
1775
1776         for (i = 0; i < adapter->num_tx_queues; i++)
1777                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1778 }
1779
1780 static void
1781 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1782                         struct e1000_buffer *buffer_info)
1783 {
1784         if (buffer_info->dma) {
1785                 pci_unmap_page(adapter->pdev,
1786                                 buffer_info->dma,
1787                                 buffer_info->length,
1788                                 PCI_DMA_TODEVICE);
1789         }
1790         if (buffer_info->skb)
1791                 dev_kfree_skb_any(buffer_info->skb);
1792         memset(buffer_info, 0, sizeof(struct e1000_buffer));
1793 }
1794
1795 /**
1796  * e1000_clean_tx_ring - Free Tx Buffers
1797  * @adapter: board private structure
1798  * @tx_ring: ring to be cleaned
1799  **/
1800
1801 static void
1802 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1803                     struct e1000_tx_ring *tx_ring)
1804 {
1805         struct e1000_buffer *buffer_info;
1806         unsigned long size;
1807         unsigned int i;
1808
1809         /* Free all the Tx ring sk_buffs */
1810
1811         for (i = 0; i < tx_ring->count; i++) {
1812                 buffer_info = &tx_ring->buffer_info[i];
1813                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1814         }
1815
1816         size = sizeof(struct e1000_buffer) * tx_ring->count;
1817         memset(tx_ring->buffer_info, 0, size);
1818
1819         /* Zero out the descriptor ring */
1820
1821         memset(tx_ring->desc, 0, tx_ring->size);
1822
1823         tx_ring->next_to_use = 0;
1824         tx_ring->next_to_clean = 0;
1825         tx_ring->last_tx_tso = 0;
1826
1827         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
1828         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
1829 }
1830
1831 /**
1832  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1833  * @adapter: board private structure
1834  **/
1835
1836 static void
1837 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1838 {
1839         int i;
1840
1841         for (i = 0; i < adapter->num_tx_queues; i++)
1842                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1843 }
1844
1845 /**
1846  * e1000_free_rx_resources - Free Rx Resources
1847  * @adapter: board private structure
1848  * @rx_ring: ring to clean the resources from
1849  *
1850  * Free all receive software resources
1851  **/
1852
1853 static void
1854 e1000_free_rx_resources(struct e1000_adapter *adapter,
1855                         struct e1000_rx_ring *rx_ring)
1856 {
1857         struct pci_dev *pdev = adapter->pdev;
1858
1859         e1000_clean_rx_ring(adapter, rx_ring);
1860
1861         vfree(rx_ring->buffer_info);
1862         rx_ring->buffer_info = NULL;
1863         kfree(rx_ring->ps_page);
1864         rx_ring->ps_page = NULL;
1865         kfree(rx_ring->ps_page_dma);
1866         rx_ring->ps_page_dma = NULL;
1867
1868         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1869
1870         rx_ring->desc = NULL;
1871 }
1872
1873 /**
1874  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1875  * @adapter: board private structure
1876  *
1877  * Free all receive software resources
1878  **/
1879
1880 void
1881 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1882 {
1883         int i;
1884
1885         for (i = 0; i < adapter->num_rx_queues; i++)
1886                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1887 }
1888
1889 /**
1890  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1891  * @adapter: board private structure
1892  * @rx_ring: ring to free buffers from
1893  **/
1894
1895 static void
1896 e1000_clean_rx_ring(struct e1000_adapter *adapter,
1897                     struct e1000_rx_ring *rx_ring)
1898 {
1899         struct e1000_buffer *buffer_info;
1900         struct e1000_ps_page *ps_page;
1901         struct e1000_ps_page_dma *ps_page_dma;
1902         struct pci_dev *pdev = adapter->pdev;
1903         unsigned long size;
1904         unsigned int i, j;
1905
1906         /* Free all the Rx ring sk_buffs */
1907         for (i = 0; i < rx_ring->count; i++) {
1908                 buffer_info = &rx_ring->buffer_info[i];
1909                 if (buffer_info->skb) {
1910                         pci_unmap_single(pdev,
1911                                          buffer_info->dma,
1912                                          buffer_info->length,
1913                                          PCI_DMA_FROMDEVICE);
1914
1915                         dev_kfree_skb(buffer_info->skb);
1916                         buffer_info->skb = NULL;
1917                 }
1918                 ps_page = &rx_ring->ps_page[i];
1919                 ps_page_dma = &rx_ring->ps_page_dma[i];
1920                 for (j = 0; j < adapter->rx_ps_pages; j++) {
1921                         if (!ps_page->ps_page[j]) break;
1922                         pci_unmap_page(pdev,
1923                                        ps_page_dma->ps_page_dma[j],
1924                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
1925                         ps_page_dma->ps_page_dma[j] = 0;
1926                         put_page(ps_page->ps_page[j]);
1927                         ps_page->ps_page[j] = NULL;
1928                 }
1929         }
1930
1931         size = sizeof(struct e1000_buffer) * rx_ring->count;
1932         memset(rx_ring->buffer_info, 0, size);
1933         size = sizeof(struct e1000_ps_page) * rx_ring->count;
1934         memset(rx_ring->ps_page, 0, size);
1935         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
1936         memset(rx_ring->ps_page_dma, 0, size);
1937
1938         /* Zero out the descriptor ring */
1939
1940         memset(rx_ring->desc, 0, rx_ring->size);
1941
1942         rx_ring->next_to_clean = 0;
1943         rx_ring->next_to_use = 0;
1944
1945         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
1946         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
1947 }
1948
1949 /**
1950  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
1951  * @adapter: board private structure
1952  **/
1953
1954 static void
1955 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
1956 {
1957         int i;
1958
1959         for (i = 0; i < adapter->num_rx_queues; i++)
1960                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1961 }
1962
1963 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
1964  * and memory write and invalidate disabled for certain operations
1965  */
1966 static void
1967 e1000_enter_82542_rst(struct e1000_adapter *adapter)
1968 {
1969         struct net_device *netdev = adapter->netdev;
1970         uint32_t rctl;
1971
1972         e1000_pci_clear_mwi(&adapter->hw);
1973
1974         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1975         rctl |= E1000_RCTL_RST;
1976         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1977         E1000_WRITE_FLUSH(&adapter->hw);
1978         mdelay(5);
1979
1980         if (netif_running(netdev))
1981                 e1000_clean_all_rx_rings(adapter);
1982 }
1983
1984 static void
1985 e1000_leave_82542_rst(struct e1000_adapter *adapter)
1986 {
1987         struct net_device *netdev = adapter->netdev;
1988         uint32_t rctl;
1989
1990         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1991         rctl &= ~E1000_RCTL_RST;
1992         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1993         E1000_WRITE_FLUSH(&adapter->hw);
1994         mdelay(5);
1995
1996         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
1997                 e1000_pci_set_mwi(&adapter->hw);
1998
1999         if (netif_running(netdev)) {
2000                 /* No need to loop, because 82542 supports only 1 queue */
2001                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2002                 e1000_configure_rx(adapter);
2003                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2004         }
2005 }
2006
2007 /**
2008  * e1000_set_mac - Change the Ethernet Address of the NIC
2009  * @netdev: network interface device structure
2010  * @p: pointer to an address structure
2011  *
2012  * Returns 0 on success, negative on failure
2013  **/
2014
2015 static int
2016 e1000_set_mac(struct net_device *netdev, void *p)
2017 {
2018         struct e1000_adapter *adapter = netdev_priv(netdev);
2019         struct sockaddr *addr = p;
2020
2021         if (!is_valid_ether_addr(addr->sa_data))
2022                 return -EADDRNOTAVAIL;
2023
2024         /* 82542 2.0 needs to be in reset to write receive address registers */
2025
2026         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2027                 e1000_enter_82542_rst(adapter);
2028
2029         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2030         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2031
2032         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2033
2034         /* With 82571 controllers, LAA may be overwritten (with the default)
2035          * due to controller reset from the other port. */
2036         if (adapter->hw.mac_type == e1000_82571) {
2037                 /* activate the work around */
2038                 adapter->hw.laa_is_present = 1;
2039
2040                 /* Hold a copy of the LAA in RAR[14] This is done so that
2041                  * between the time RAR[0] gets clobbered  and the time it
2042                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2043                  * of the RARs and no incoming packets directed to this port
2044                  * are dropped. Eventaully the LAA will be in RAR[0] and
2045                  * RAR[14] */
2046                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2047                                         E1000_RAR_ENTRIES - 1);
2048         }
2049
2050         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2051                 e1000_leave_82542_rst(adapter);
2052
2053         return 0;
2054 }
2055
2056 /**
2057  * e1000_set_multi - Multicast and Promiscuous mode set
2058  * @netdev: network interface device structure
2059  *
2060  * The set_multi entry point is called whenever the multicast address
2061  * list or the network interface flags are updated.  This routine is
2062  * responsible for configuring the hardware for proper multicast,
2063  * promiscuous mode, and all-multi behavior.
2064  **/
2065
2066 static void
2067 e1000_set_multi(struct net_device *netdev)
2068 {
2069         struct e1000_adapter *adapter = netdev_priv(netdev);
2070         struct e1000_hw *hw = &adapter->hw;
2071         struct dev_mc_list *mc_ptr;
2072         uint32_t rctl;
2073         uint32_t hash_value;
2074         int i, rar_entries = E1000_RAR_ENTRIES;
2075
2076         /* reserve RAR[14] for LAA over-write work-around */
2077         if (adapter->hw.mac_type == e1000_82571)
2078                 rar_entries--;
2079
2080         /* Check for Promiscuous and All Multicast modes */
2081
2082         rctl = E1000_READ_REG(hw, RCTL);
2083
2084         if (netdev->flags & IFF_PROMISC) {
2085                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2086         } else if (netdev->flags & IFF_ALLMULTI) {
2087                 rctl |= E1000_RCTL_MPE;
2088                 rctl &= ~E1000_RCTL_UPE;
2089         } else {
2090                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2091         }
2092
2093         E1000_WRITE_REG(hw, RCTL, rctl);
2094
2095         /* 82542 2.0 needs to be in reset to write receive address registers */
2096
2097         if (hw->mac_type == e1000_82542_rev2_0)
2098                 e1000_enter_82542_rst(adapter);
2099
2100         /* load the first 14 multicast address into the exact filters 1-14
2101          * RAR 0 is used for the station MAC adddress
2102          * if there are not 14 addresses, go ahead and clear the filters
2103          * -- with 82571 controllers only 0-13 entries are filled here
2104          */
2105         mc_ptr = netdev->mc_list;
2106
2107         for (i = 1; i < rar_entries; i++) {
2108                 if (mc_ptr) {
2109                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2110                         mc_ptr = mc_ptr->next;
2111                 } else {
2112                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2113                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2114                 }
2115         }
2116
2117         /* clear the old settings from the multicast hash table */
2118
2119         for (i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
2120                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2121
2122         /* load any remaining addresses into the hash table */
2123
2124         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2125                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2126                 e1000_mta_set(hw, hash_value);
2127         }
2128
2129         if (hw->mac_type == e1000_82542_rev2_0)
2130                 e1000_leave_82542_rst(adapter);
2131 }
2132
2133 /* Need to wait a few seconds after link up to get diagnostic information from
2134  * the phy */
2135
2136 static void
2137 e1000_update_phy_info(unsigned long data)
2138 {
2139         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2140         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2141 }
2142
2143 /**
2144  * e1000_82547_tx_fifo_stall - Timer Call-back
2145  * @data: pointer to adapter cast into an unsigned long
2146  **/
2147
2148 static void
2149 e1000_82547_tx_fifo_stall(unsigned long data)
2150 {
2151         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2152         struct net_device *netdev = adapter->netdev;
2153         uint32_t tctl;
2154
2155         if (atomic_read(&adapter->tx_fifo_stall)) {
2156                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2157                     E1000_READ_REG(&adapter->hw, TDH)) &&
2158                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2159                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2160                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2161                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2162                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2163                         E1000_WRITE_REG(&adapter->hw, TCTL,
2164                                         tctl & ~E1000_TCTL_EN);
2165                         E1000_WRITE_REG(&adapter->hw, TDFT,
2166                                         adapter->tx_head_addr);
2167                         E1000_WRITE_REG(&adapter->hw, TDFH,
2168                                         adapter->tx_head_addr);
2169                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2170                                         adapter->tx_head_addr);
2171                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2172                                         adapter->tx_head_addr);
2173                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2174                         E1000_WRITE_FLUSH(&adapter->hw);
2175
2176                         adapter->tx_fifo_head = 0;
2177                         atomic_set(&adapter->tx_fifo_stall, 0);
2178                         netif_wake_queue(netdev);
2179                 } else {
2180                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2181                 }
2182         }
2183 }
2184
2185 /**
2186  * e1000_watchdog - Timer Call-back
2187  * @data: pointer to adapter cast into an unsigned long
2188  **/
2189 static void
2190 e1000_watchdog(unsigned long data)
2191 {
2192         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2193
2194         /* Do the rest outside of interrupt context */
2195         schedule_work(&adapter->watchdog_task);
2196 }
2197
2198 static void
2199 e1000_watchdog_task(struct e1000_adapter *adapter)
2200 {
2201         struct net_device *netdev = adapter->netdev;
2202         struct e1000_tx_ring *txdr = adapter->tx_ring;
2203         uint32_t link, tctl;
2204
2205         e1000_check_for_link(&adapter->hw);
2206         if (adapter->hw.mac_type == e1000_82573) {
2207                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2208                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2209                         e1000_update_mng_vlan(adapter);
2210         }
2211
2212         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2213            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2214                 link = !adapter->hw.serdes_link_down;
2215         else
2216                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2217
2218         if (link) {
2219                 if (!netif_carrier_ok(netdev)) {
2220                         boolean_t txb2b = 1;
2221                         e1000_get_speed_and_duplex(&adapter->hw,
2222                                                    &adapter->link_speed,
2223                                                    &adapter->link_duplex);
2224
2225                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2226                                adapter->link_speed,
2227                                adapter->link_duplex == FULL_DUPLEX ?
2228                                "Full Duplex" : "Half Duplex");
2229
2230                         /* tweak tx_queue_len according to speed/duplex
2231                          * and adjust the timeout factor */
2232                         netdev->tx_queue_len = adapter->tx_queue_len;
2233                         adapter->tx_timeout_factor = 1;
2234                         switch (adapter->link_speed) {
2235                         case SPEED_10:
2236                                 txb2b = 0;
2237                                 netdev->tx_queue_len = 10;
2238                                 adapter->tx_timeout_factor = 8;
2239                                 break;
2240                         case SPEED_100:
2241                                 txb2b = 0;
2242                                 netdev->tx_queue_len = 100;
2243                                 /* maybe add some timeout factor ? */
2244                                 break;
2245                         }
2246
2247                         if ((adapter->hw.mac_type == e1000_82571 ||
2248                              adapter->hw.mac_type == e1000_82572) &&
2249                             txb2b == 0) {
2250 #define SPEED_MODE_BIT (1 << 21)
2251                                 uint32_t tarc0;
2252                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2253                                 tarc0 &= ~SPEED_MODE_BIT;
2254                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2255                         }
2256                                 
2257 #ifdef NETIF_F_TSO
2258                         /* disable TSO for pcie and 10/100 speeds, to avoid
2259                          * some hardware issues */
2260                         if (!adapter->tso_force &&
2261                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2262                                 switch (adapter->link_speed) {
2263                                 case SPEED_10:
2264                                 case SPEED_100:
2265                                         DPRINTK(PROBE,INFO,
2266                                         "10/100 speed: disabling TSO\n");
2267                                         netdev->features &= ~NETIF_F_TSO;
2268                                         break;
2269                                 case SPEED_1000:
2270                                         netdev->features |= NETIF_F_TSO;
2271                                         break;
2272                                 default:
2273                                         /* oops */
2274                                         break;
2275                                 }
2276                         }
2277 #endif
2278
2279                         /* enable transmits in the hardware, need to do this
2280                          * after setting TARC0 */
2281                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2282                         tctl |= E1000_TCTL_EN;
2283                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2284
2285                         netif_carrier_on(netdev);
2286                         netif_wake_queue(netdev);
2287                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2288                         adapter->smartspeed = 0;
2289                 }
2290         } else {
2291                 if (netif_carrier_ok(netdev)) {
2292                         adapter->link_speed = 0;
2293                         adapter->link_duplex = 0;
2294                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2295                         netif_carrier_off(netdev);
2296                         netif_stop_queue(netdev);
2297                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2298
2299                         /* 80003ES2LAN workaround--
2300                          * For packet buffer work-around on link down event;
2301                          * disable receives in the ISR and
2302                          * reset device here in the watchdog
2303                          */
2304                         if (adapter->hw.mac_type == e1000_80003es2lan) {
2305                                 /* reset device */
2306                                 schedule_work(&adapter->reset_task);
2307                         }
2308                 }
2309
2310                 e1000_smartspeed(adapter);
2311         }
2312
2313         e1000_update_stats(adapter);
2314
2315         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2316         adapter->tpt_old = adapter->stats.tpt;
2317         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2318         adapter->colc_old = adapter->stats.colc;
2319
2320         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2321         adapter->gorcl_old = adapter->stats.gorcl;
2322         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2323         adapter->gotcl_old = adapter->stats.gotcl;
2324
2325         e1000_update_adaptive(&adapter->hw);
2326
2327         if (!netif_carrier_ok(netdev)) {
2328                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2329                         /* We've lost link, so the controller stops DMA,
2330                          * but we've got queued Tx work that's never going
2331                          * to get done, so reset controller to flush Tx.
2332                          * (Do the reset outside of interrupt context). */
2333                         adapter->tx_timeout_count++;
2334                         schedule_work(&adapter->reset_task);
2335                 }
2336         }
2337
2338         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2339         if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2340                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2341                  * asymmetrical Tx or Rx gets ITR=8000; everyone
2342                  * else is between 2000-8000. */
2343                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2344                 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2345                         adapter->gotcl - adapter->gorcl :
2346                         adapter->gorcl - adapter->gotcl) / 10000;
2347                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2348                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2349         }
2350
2351         /* Cause software interrupt to ensure rx ring is cleaned */
2352         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2353
2354         /* Force detection of hung controller every watchdog period */
2355         adapter->detect_tx_hung = TRUE;
2356
2357         /* With 82571 controllers, LAA may be overwritten due to controller
2358          * reset from the other port. Set the appropriate LAA in RAR[0] */
2359         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2360                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2361
2362         /* Reset the timer */
2363         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2364 }
2365
2366 #define E1000_TX_FLAGS_CSUM             0x00000001
2367 #define E1000_TX_FLAGS_VLAN             0x00000002
2368 #define E1000_TX_FLAGS_TSO              0x00000004
2369 #define E1000_TX_FLAGS_IPV4             0x00000008
2370 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2371 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2372
2373 static int
2374 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2375           struct sk_buff *skb)
2376 {
2377 #ifdef NETIF_F_TSO
2378         struct e1000_context_desc *context_desc;
2379         struct e1000_buffer *buffer_info;
2380         unsigned int i;
2381         uint32_t cmd_length = 0;
2382         uint16_t ipcse = 0, tucse, mss;
2383         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2384         int err;
2385
2386         if (skb_shinfo(skb)->tso_size) {
2387                 if (skb_header_cloned(skb)) {
2388                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2389                         if (err)
2390                                 return err;
2391                 }
2392
2393                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2394                 mss = skb_shinfo(skb)->tso_size;
2395                 if (skb->protocol == ntohs(ETH_P_IP)) {
2396                         skb->nh.iph->tot_len = 0;
2397                         skb->nh.iph->check = 0;
2398                         skb->h.th->check =
2399                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2400                                                    skb->nh.iph->daddr,
2401                                                    0,
2402                                                    IPPROTO_TCP,
2403                                                    0);
2404                         cmd_length = E1000_TXD_CMD_IP;
2405                         ipcse = skb->h.raw - skb->data - 1;
2406 #ifdef NETIF_F_TSO_IPV6
2407                 } else if (skb->protocol == ntohs(ETH_P_IPV6)) {
2408                         skb->nh.ipv6h->payload_len = 0;
2409                         skb->h.th->check =
2410                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2411                                                  &skb->nh.ipv6h->daddr,
2412                                                  0,
2413                                                  IPPROTO_TCP,
2414                                                  0);
2415                         ipcse = 0;
2416 #endif
2417                 }
2418                 ipcss = skb->nh.raw - skb->data;
2419                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2420                 tucss = skb->h.raw - skb->data;
2421                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2422                 tucse = 0;
2423
2424                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2425                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2426
2427                 i = tx_ring->next_to_use;
2428                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2429                 buffer_info = &tx_ring->buffer_info[i];
2430
2431                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2432                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2433                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2434                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2435                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2436                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2437                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2438                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2439                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2440
2441                 buffer_info->time_stamp = jiffies;
2442
2443                 if (++i == tx_ring->count) i = 0;
2444                 tx_ring->next_to_use = i;
2445
2446                 return TRUE;
2447         }
2448 #endif
2449
2450         return FALSE;
2451 }
2452
2453 static boolean_t
2454 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2455               struct sk_buff *skb)
2456 {
2457         struct e1000_context_desc *context_desc;
2458         struct e1000_buffer *buffer_info;
2459         unsigned int i;
2460         uint8_t css;
2461
2462         if (likely(skb->ip_summed == CHECKSUM_HW)) {
2463                 css = skb->h.raw - skb->data;
2464
2465                 i = tx_ring->next_to_use;
2466                 buffer_info = &tx_ring->buffer_info[i];
2467                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2468
2469                 context_desc->upper_setup.tcp_fields.tucss = css;
2470                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2471                 context_desc->upper_setup.tcp_fields.tucse = 0;
2472                 context_desc->tcp_seg_setup.data = 0;
2473                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2474
2475                 buffer_info->time_stamp = jiffies;
2476
2477                 if (unlikely(++i == tx_ring->count)) i = 0;
2478                 tx_ring->next_to_use = i;
2479
2480                 return TRUE;
2481         }
2482
2483         return FALSE;
2484 }
2485
2486 #define E1000_MAX_TXD_PWR       12
2487 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2488
2489 static int
2490 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2491              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2492              unsigned int nr_frags, unsigned int mss)
2493 {
2494         struct e1000_buffer *buffer_info;
2495         unsigned int len = skb->len;
2496         unsigned int offset = 0, size, count = 0, i;
2497         unsigned int f;
2498         len -= skb->data_len;
2499
2500         i = tx_ring->next_to_use;
2501
2502         while (len) {
2503                 buffer_info = &tx_ring->buffer_info[i];
2504                 size = min(len, max_per_txd);
2505 #ifdef NETIF_F_TSO
2506                 /* Workaround for Controller erratum --
2507                  * descriptor for non-tso packet in a linear SKB that follows a
2508                  * tso gets written back prematurely before the data is fully
2509                  * DMA'd to the controller */
2510                 if (!skb->data_len && tx_ring->last_tx_tso &&
2511                     !skb_shinfo(skb)->tso_size) {
2512                         tx_ring->last_tx_tso = 0;
2513                         size -= 4;
2514                 }
2515
2516                 /* Workaround for premature desc write-backs
2517                  * in TSO mode.  Append 4-byte sentinel desc */
2518                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2519                         size -= 4;
2520 #endif
2521                 /* work-around for errata 10 and it applies
2522                  * to all controllers in PCI-X mode
2523                  * The fix is to make sure that the first descriptor of a
2524                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2525                  */
2526                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2527                                 (size > 2015) && count == 0))
2528                         size = 2015;
2529
2530                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2531                  * terminating buffers within evenly-aligned dwords. */
2532                 if (unlikely(adapter->pcix_82544 &&
2533                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2534                    size > 4))
2535                         size -= 4;
2536
2537                 buffer_info->length = size;
2538                 buffer_info->dma =
2539                         pci_map_single(adapter->pdev,
2540                                 skb->data + offset,
2541                                 size,
2542                                 PCI_DMA_TODEVICE);
2543                 buffer_info->time_stamp = jiffies;
2544
2545                 len -= size;
2546                 offset += size;
2547                 count++;
2548                 if (unlikely(++i == tx_ring->count)) i = 0;
2549         }
2550
2551         for (f = 0; f < nr_frags; f++) {
2552                 struct skb_frag_struct *frag;
2553
2554                 frag = &skb_shinfo(skb)->frags[f];
2555                 len = frag->size;
2556                 offset = frag->page_offset;
2557
2558                 while (len) {
2559                         buffer_info = &tx_ring->buffer_info[i];
2560                         size = min(len, max_per_txd);
2561 #ifdef NETIF_F_TSO
2562                         /* Workaround for premature desc write-backs
2563                          * in TSO mode.  Append 4-byte sentinel desc */
2564                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2565                                 size -= 4;
2566 #endif
2567                         /* Workaround for potential 82544 hang in PCI-X.
2568                          * Avoid terminating buffers within evenly-aligned
2569                          * dwords. */
2570                         if (unlikely(adapter->pcix_82544 &&
2571                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2572                            size > 4))
2573                                 size -= 4;
2574
2575                         buffer_info->length = size;
2576                         buffer_info->dma =
2577                                 pci_map_page(adapter->pdev,
2578                                         frag->page,
2579                                         offset,
2580                                         size,
2581                                         PCI_DMA_TODEVICE);
2582                         buffer_info->time_stamp = jiffies;
2583
2584                         len -= size;
2585                         offset += size;
2586                         count++;
2587                         if (unlikely(++i == tx_ring->count)) i = 0;
2588                 }
2589         }
2590
2591         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2592         tx_ring->buffer_info[i].skb = skb;
2593         tx_ring->buffer_info[first].next_to_watch = i;
2594
2595         return count;
2596 }
2597
2598 static void
2599 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2600                int tx_flags, int count)
2601 {
2602         struct e1000_tx_desc *tx_desc = NULL;
2603         struct e1000_buffer *buffer_info;
2604         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2605         unsigned int i;
2606
2607         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2608                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2609                              E1000_TXD_CMD_TSE;
2610                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2611
2612                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2613                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2614         }
2615
2616         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2617                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2618                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2619         }
2620
2621         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2622                 txd_lower |= E1000_TXD_CMD_VLE;
2623                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2624         }
2625
2626         i = tx_ring->next_to_use;
2627
2628         while (count--) {
2629                 buffer_info = &tx_ring->buffer_info[i];
2630                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2631                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2632                 tx_desc->lower.data =
2633                         cpu_to_le32(txd_lower | buffer_info->length);
2634                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2635                 if (unlikely(++i == tx_ring->count)) i = 0;
2636         }
2637
2638         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2639
2640         /* Force memory writes to complete before letting h/w
2641          * know there are new descriptors to fetch.  (Only
2642          * applicable for weak-ordered memory model archs,
2643          * such as IA-64). */
2644         wmb();
2645
2646         tx_ring->next_to_use = i;
2647         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2648 }
2649
2650 /**
2651  * 82547 workaround to avoid controller hang in half-duplex environment.
2652  * The workaround is to avoid queuing a large packet that would span
2653  * the internal Tx FIFO ring boundary by notifying the stack to resend
2654  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2655  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2656  * to the beginning of the Tx FIFO.
2657  **/
2658
2659 #define E1000_FIFO_HDR                  0x10
2660 #define E1000_82547_PAD_LEN             0x3E0
2661
2662 static int
2663 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2664 {
2665         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2666         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2667
2668         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2669
2670         if (adapter->link_duplex != HALF_DUPLEX)
2671                 goto no_fifo_stall_required;
2672
2673         if (atomic_read(&adapter->tx_fifo_stall))
2674                 return 1;
2675
2676         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2677                 atomic_set(&adapter->tx_fifo_stall, 1);
2678                 return 1;
2679         }
2680
2681 no_fifo_stall_required:
2682         adapter->tx_fifo_head += skb_fifo_len;
2683         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2684                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2685         return 0;
2686 }
2687
2688 #define MINIMUM_DHCP_PACKET_SIZE 282
2689 static int
2690 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2691 {
2692         struct e1000_hw *hw =  &adapter->hw;
2693         uint16_t length, offset;
2694         if (vlan_tx_tag_present(skb)) {
2695                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2696                         ( adapter->hw.mng_cookie.status &
2697                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2698                         return 0;
2699         }
2700         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2701                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2702                 if ((htons(ETH_P_IP) == eth->h_proto)) {
2703                         const struct iphdr *ip =
2704                                 (struct iphdr *)((uint8_t *)skb->data+14);
2705                         if (IPPROTO_UDP == ip->protocol) {
2706                                 struct udphdr *udp =
2707                                         (struct udphdr *)((uint8_t *)ip +
2708                                                 (ip->ihl << 2));
2709                                 if (ntohs(udp->dest) == 67) {
2710                                         offset = (uint8_t *)udp + 8 - skb->data;
2711                                         length = skb->len - offset;
2712
2713                                         return e1000_mng_write_dhcp_info(hw,
2714                                                         (uint8_t *)udp + 8,
2715                                                         length);
2716                                 }
2717                         }
2718                 }
2719         }
2720         return 0;
2721 }
2722
2723 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2724 static int
2725 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2726 {
2727         struct e1000_adapter *adapter = netdev_priv(netdev);
2728         struct e1000_tx_ring *tx_ring;
2729         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2730         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2731         unsigned int tx_flags = 0;
2732         unsigned int len = skb->len;
2733         unsigned long flags;
2734         unsigned int nr_frags = 0;
2735         unsigned int mss = 0;
2736         int count = 0;
2737         int tso;
2738         unsigned int f;
2739         len -= skb->data_len;
2740
2741         tx_ring = adapter->tx_ring;
2742
2743         if (unlikely(skb->len <= 0)) {
2744                 dev_kfree_skb_any(skb);
2745                 return NETDEV_TX_OK;
2746         }
2747
2748 #ifdef NETIF_F_TSO
2749         mss = skb_shinfo(skb)->tso_size;
2750         /* The controller does a simple calculation to
2751          * make sure there is enough room in the FIFO before
2752          * initiating the DMA for each buffer.  The calc is:
2753          * 4 = ceil(buffer len/mss).  To make sure we don't
2754          * overrun the FIFO, adjust the max buffer len if mss
2755          * drops. */
2756         if (mss) {
2757                 uint8_t hdr_len;
2758                 max_per_txd = min(mss << 2, max_per_txd);
2759                 max_txd_pwr = fls(max_per_txd) - 1;
2760
2761         /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
2762          * points to just header, pull a few bytes of payload from
2763          * frags into skb->data */
2764                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2765                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
2766                         switch (adapter->hw.mac_type) {
2767                                 unsigned int pull_size;
2768                         case e1000_82571:
2769                         case e1000_82572:
2770                         case e1000_82573:
2771                                 pull_size = min((unsigned int)4, skb->data_len);
2772                                 if (!__pskb_pull_tail(skb, pull_size)) {
2773                                         printk(KERN_ERR
2774                                                 "__pskb_pull_tail failed.\n");
2775                                         dev_kfree_skb_any(skb);
2776                                         return NETDEV_TX_OK;
2777                                 }
2778                                 len = skb->len - skb->data_len;
2779                                 break;
2780                         default:
2781                                 /* do nothing */
2782                                 break;
2783                         }
2784                 }
2785         }
2786
2787         /* reserve a descriptor for the offload context */
2788         if ((mss) || (skb->ip_summed == CHECKSUM_HW))
2789                 count++;
2790         count++;
2791 #else
2792         if (skb->ip_summed == CHECKSUM_HW)
2793                 count++;
2794 #endif
2795
2796 #ifdef NETIF_F_TSO
2797         /* Controller Erratum workaround */
2798         if (!skb->data_len && tx_ring->last_tx_tso &&
2799             !skb_shinfo(skb)->tso_size)
2800                 count++;
2801 #endif
2802
2803         count += TXD_USE_COUNT(len, max_txd_pwr);
2804
2805         if (adapter->pcix_82544)
2806                 count++;
2807
2808         /* work-around for errata 10 and it applies to all controllers
2809          * in PCI-X mode, so add one more descriptor to the count
2810          */
2811         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2812                         (len > 2015)))
2813                 count++;
2814
2815         nr_frags = skb_shinfo(skb)->nr_frags;
2816         for (f = 0; f < nr_frags; f++)
2817                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2818                                        max_txd_pwr);
2819         if (adapter->pcix_82544)
2820                 count += nr_frags;
2821
2822
2823         if (adapter->hw.tx_pkt_filtering &&
2824             (adapter->hw.mac_type == e1000_82573))
2825                 e1000_transfer_dhcp_info(adapter, skb);
2826
2827         local_irq_save(flags);
2828         if (!spin_trylock(&tx_ring->tx_lock)) {
2829                 /* Collision - tell upper layer to requeue */
2830                 local_irq_restore(flags);
2831                 return NETDEV_TX_LOCKED;
2832         }
2833
2834         /* need: count + 2 desc gap to keep tail from touching
2835          * head, otherwise try next time */
2836         if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
2837                 netif_stop_queue(netdev);
2838                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2839                 return NETDEV_TX_BUSY;
2840         }
2841
2842         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
2843                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2844                         netif_stop_queue(netdev);
2845                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2846                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2847                         return NETDEV_TX_BUSY;
2848                 }
2849         }
2850
2851         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2852                 tx_flags |= E1000_TX_FLAGS_VLAN;
2853                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2854         }
2855
2856         first = tx_ring->next_to_use;
2857
2858         tso = e1000_tso(adapter, tx_ring, skb);
2859         if (tso < 0) {
2860                 dev_kfree_skb_any(skb);
2861                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2862                 return NETDEV_TX_OK;
2863         }
2864
2865         if (likely(tso)) {
2866                 tx_ring->last_tx_tso = 1;
2867                 tx_flags |= E1000_TX_FLAGS_TSO;
2868         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
2869                 tx_flags |= E1000_TX_FLAGS_CSUM;
2870
2871         /* Old method was to assume IPv4 packet by default if TSO was enabled.
2872          * 82571 hardware supports TSO capabilities for IPv6 as well...
2873          * no longer assume, we must. */
2874         if (likely(skb->protocol == ntohs(ETH_P_IP)))
2875                 tx_flags |= E1000_TX_FLAGS_IPV4;
2876
2877         e1000_tx_queue(adapter, tx_ring, tx_flags,
2878                        e1000_tx_map(adapter, tx_ring, skb, first,
2879                                     max_per_txd, nr_frags, mss));
2880
2881         netdev->trans_start = jiffies;
2882
2883         /* Make sure there is space in the ring for the next send. */
2884         if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
2885                 netif_stop_queue(netdev);
2886
2887         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2888         return NETDEV_TX_OK;
2889 }
2890
2891 /**
2892  * e1000_tx_timeout - Respond to a Tx Hang
2893  * @netdev: network interface device structure
2894  **/
2895
2896 static void
2897 e1000_tx_timeout(struct net_device *netdev)
2898 {
2899         struct e1000_adapter *adapter = netdev_priv(netdev);
2900
2901         /* Do the reset outside of interrupt context */
2902         adapter->tx_timeout_count++;
2903         schedule_work(&adapter->reset_task);
2904 }
2905
2906 static void
2907 e1000_reset_task(struct net_device *netdev)
2908 {
2909         struct e1000_adapter *adapter = netdev_priv(netdev);
2910
2911         e1000_down(adapter);
2912         e1000_up(adapter);
2913 }
2914
2915 /**
2916  * e1000_get_stats - Get System Network Statistics
2917  * @netdev: network interface device structure
2918  *
2919  * Returns the address of the device statistics structure.
2920  * The statistics are actually updated from the timer callback.
2921  **/
2922
2923 static struct net_device_stats *
2924 e1000_get_stats(struct net_device *netdev)
2925 {
2926         struct e1000_adapter *adapter = netdev_priv(netdev);
2927
2928         /* only return the current stats */
2929         return &adapter->net_stats;
2930 }
2931
2932 /**
2933  * e1000_change_mtu - Change the Maximum Transfer Unit
2934  * @netdev: network interface device structure
2935  * @new_mtu: new value for maximum frame size
2936  *
2937  * Returns 0 on success, negative on failure
2938  **/
2939
2940 static int
2941 e1000_change_mtu(struct net_device *netdev, int new_mtu)
2942 {
2943         struct e1000_adapter *adapter = netdev_priv(netdev);
2944         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
2945         uint16_t eeprom_data = 0;
2946
2947         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
2948             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2949                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
2950                 return -EINVAL;
2951         }
2952
2953         /* Adapter-specific max frame size limits. */
2954         switch (adapter->hw.mac_type) {
2955         case e1000_undefined ... e1000_82542_rev2_1:
2956                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2957                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
2958                         return -EINVAL;
2959                 }
2960                 break;
2961         case e1000_82573:
2962                 /* only enable jumbo frames if ASPM is disabled completely
2963                  * this means both bits must be zero in 0x1A bits 3:2 */
2964                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
2965                                   &eeprom_data);
2966                 if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
2967                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2968                                 DPRINTK(PROBE, ERR,
2969                                         "Jumbo Frames not supported.\n");
2970                                 return -EINVAL;
2971                         }
2972                         break;
2973                 }
2974                 /* fall through to get support */
2975         case e1000_82571:
2976         case e1000_82572:
2977         case e1000_80003es2lan:
2978 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2979                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2980                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
2981                         return -EINVAL;
2982                 }
2983                 break;
2984         default:
2985                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
2986                 break;
2987         }
2988
2989         /* NOTE: dev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2990          * means we reserve 2 more, this pushes us to allocate from the next
2991          * larger slab size
2992          * i.e. RXBUFFER_2048 --> size-4096 slab */
2993
2994         if (max_frame <= E1000_RXBUFFER_256)
2995                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
2996         else if (max_frame <= E1000_RXBUFFER_512)
2997                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
2998         else if (max_frame <= E1000_RXBUFFER_1024)
2999                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3000         else if (max_frame <= E1000_RXBUFFER_2048)
3001                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3002         else if (max_frame <= E1000_RXBUFFER_4096)
3003                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3004         else if (max_frame <= E1000_RXBUFFER_8192)
3005                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3006         else if (max_frame <= E1000_RXBUFFER_16384)
3007                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3008
3009         /* adjust allocation if LPE protects us, and we aren't using SBP */
3010 #define MAXIMUM_ETHERNET_VLAN_SIZE 1522
3011         if (!adapter->hw.tbi_compatibility_on &&
3012             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3013              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3014                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3015
3016         netdev->mtu = new_mtu;
3017
3018         if (netif_running(netdev)) {
3019                 e1000_down(adapter);
3020                 e1000_up(adapter);
3021         }
3022
3023         adapter->hw.max_frame_size = max_frame;
3024
3025         return 0;
3026 }
3027
3028 /**
3029  * e1000_update_stats - Update the board statistics counters
3030  * @adapter: board private structure
3031  **/
3032
3033 void
3034 e1000_update_stats(struct e1000_adapter *adapter)
3035 {
3036         struct e1000_hw *hw = &adapter->hw;
3037         unsigned long flags;
3038         uint16_t phy_tmp;
3039
3040 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3041
3042         spin_lock_irqsave(&adapter->stats_lock, flags);
3043
3044         /* these counters are modified from e1000_adjust_tbi_stats,
3045          * called from the interrupt context, so they must only
3046          * be written while holding adapter->stats_lock
3047          */
3048
3049         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3050         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3051         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3052         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3053         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3054         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3055         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3056         adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3057         adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3058         adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3059         adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3060         adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3061         adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3062
3063         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3064         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3065         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3066         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3067         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3068         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3069         adapter->stats.dc += E1000_READ_REG(hw, DC);
3070         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3071         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3072         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3073         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3074         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3075         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3076         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3077         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3078         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3079         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3080         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3081         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3082         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3083         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3084         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3085         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3086         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3087         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3088         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3089         adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3090         adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3091         adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3092         adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3093         adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3094         adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3095         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3096         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3097
3098         /* used for adaptive IFS */
3099
3100         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3101         adapter->stats.tpt += hw->tx_packet_delta;
3102         hw->collision_delta = E1000_READ_REG(hw, COLC);
3103         adapter->stats.colc += hw->collision_delta;
3104
3105         if (hw->mac_type >= e1000_82543) {
3106                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3107                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3108                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3109                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3110                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3111                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3112         }
3113         if (hw->mac_type > e1000_82547_rev_2) {
3114                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3115                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3116                 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3117                 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3118                 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3119                 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3120                 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3121                 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3122                 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3123         }
3124
3125         /* Fill out the OS statistics structure */
3126
3127         adapter->net_stats.rx_packets = adapter->stats.gprc;
3128         adapter->net_stats.tx_packets = adapter->stats.gptc;
3129         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3130         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3131         adapter->net_stats.multicast = adapter->stats.mprc;
3132         adapter->net_stats.collisions = adapter->stats.colc;
3133
3134         /* Rx Errors */
3135
3136         /* RLEC on some newer hardware can be incorrect so build
3137         * our own version based on RUC and ROC */
3138         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3139                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3140                 adapter->stats.ruc + adapter->stats.roc +
3141                 adapter->stats.cexterr;
3142         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3143                                               adapter->stats.roc;
3144         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3145         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3146         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3147
3148         /* Tx Errors */
3149
3150         adapter->net_stats.tx_errors = adapter->stats.ecol +
3151                                        adapter->stats.latecol;
3152         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3153         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3154         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3155
3156         /* Tx Dropped needs to be maintained elsewhere */
3157
3158         /* Phy Stats */
3159
3160         if (hw->media_type == e1000_media_type_copper) {
3161                 if ((adapter->link_speed == SPEED_1000) &&
3162                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3163                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3164                         adapter->phy_stats.idle_errors += phy_tmp;
3165                 }
3166
3167                 if ((hw->mac_type <= e1000_82546) &&
3168                    (hw->phy_type == e1000_phy_m88) &&
3169                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3170                         adapter->phy_stats.receive_errors += phy_tmp;
3171         }
3172
3173         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3174 }
3175
3176 /**
3177  * e1000_intr - Interrupt Handler
3178  * @irq: interrupt number
3179  * @data: pointer to a network interface device structure
3180  * @pt_regs: CPU registers structure
3181  **/
3182
3183 static irqreturn_t
3184 e1000_intr(int irq, void *data, struct pt_regs *regs)
3185 {
3186         struct net_device *netdev = data;
3187         struct e1000_adapter *adapter = netdev_priv(netdev);
3188         struct e1000_hw *hw = &adapter->hw;
3189         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3190 #ifndef CONFIG_E1000_NAPI
3191         int i;
3192 #else
3193         /* Interrupt Auto-Mask...upon reading ICR,
3194          * interrupts are masked.  No need for the
3195          * IMC write, but it does mean we should
3196          * account for it ASAP. */
3197         if (likely(hw->mac_type >= e1000_82571))
3198                 atomic_inc(&adapter->irq_sem);
3199 #endif
3200
3201         if (unlikely(!icr)) {
3202 #ifdef CONFIG_E1000_NAPI
3203                 if (hw->mac_type >= e1000_82571)
3204                         e1000_irq_enable(adapter);
3205 #endif
3206                 return IRQ_NONE;  /* Not our interrupt */
3207         }
3208
3209         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3210                 hw->get_link_status = 1;
3211                 /* 80003ES2LAN workaround--
3212                  * For packet buffer work-around on link down event;
3213                  * disable receives here in the ISR and
3214                  * reset adapter in watchdog
3215                  */
3216                 if (netif_carrier_ok(netdev) &&
3217                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3218                         /* disable receives */
3219                         rctl = E1000_READ_REG(hw, RCTL);
3220                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3221                 }
3222                 mod_timer(&adapter->watchdog_timer, jiffies);
3223         }
3224
3225 #ifdef CONFIG_E1000_NAPI
3226         if (unlikely(hw->mac_type < e1000_82571)) {
3227                 atomic_inc(&adapter->irq_sem);
3228                 E1000_WRITE_REG(hw, IMC, ~0);
3229                 E1000_WRITE_FLUSH(hw);
3230         }
3231         if (likely(netif_rx_schedule_prep(&adapter->polling_netdev[0])))
3232                 __netif_rx_schedule(&adapter->polling_netdev[0]);
3233         else
3234                 e1000_irq_enable(adapter);
3235 #else
3236         /* Writing IMC and IMS is needed for 82547.
3237          * Due to Hub Link bus being occupied, an interrupt
3238          * de-assertion message is not able to be sent.
3239          * When an interrupt assertion message is generated later,
3240          * two messages are re-ordered and sent out.
3241          * That causes APIC to think 82547 is in de-assertion
3242          * state, while 82547 is in assertion state, resulting
3243          * in dead lock. Writing IMC forces 82547 into
3244          * de-assertion state.
3245          */
3246         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3247                 atomic_inc(&adapter->irq_sem);
3248                 E1000_WRITE_REG(hw, IMC, ~0);
3249         }
3250
3251         for (i = 0; i < E1000_MAX_INTR; i++)
3252                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3253                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3254                         break;
3255
3256         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3257                 e1000_irq_enable(adapter);
3258
3259 #endif
3260
3261         return IRQ_HANDLED;
3262 }
3263
3264 #ifdef CONFIG_E1000_NAPI
3265 /**
3266  * e1000_clean - NAPI Rx polling callback
3267  * @adapter: board private structure
3268  **/
3269
3270 static int
3271 e1000_clean(struct net_device *poll_dev, int *budget)
3272 {
3273         struct e1000_adapter *adapter;
3274         int work_to_do = min(*budget, poll_dev->quota);
3275         int tx_cleaned = 0, i = 0, work_done = 0;
3276
3277         /* Must NOT use netdev_priv macro here. */
3278         adapter = poll_dev->priv;
3279
3280         /* Keep link state information with original netdev */
3281         if (!netif_carrier_ok(adapter->netdev))
3282                 goto quit_polling;
3283
3284         while (poll_dev != &adapter->polling_netdev[i]) {
3285                 i++;
3286                 BUG_ON(i == adapter->num_rx_queues);
3287         }
3288
3289         if (likely(adapter->num_tx_queues == 1)) {
3290                 /* e1000_clean is called per-cpu.  This lock protects
3291                  * tx_ring[0] from being cleaned by multiple cpus
3292                  * simultaneously.  A failure obtaining the lock means
3293                  * tx_ring[0] is currently being cleaned anyway. */
3294                 if (spin_trylock(&adapter->tx_queue_lock)) {
3295                         tx_cleaned = e1000_clean_tx_irq(adapter,
3296                                                         &adapter->tx_ring[0]);
3297                         spin_unlock(&adapter->tx_queue_lock);
3298                 }
3299         } else
3300                 tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]);
3301
3302         adapter->clean_rx(adapter, &adapter->rx_ring[i],
3303                           &work_done, work_to_do);
3304
3305         *budget -= work_done;
3306         poll_dev->quota -= work_done;
3307
3308         /* If no Tx and not enough Rx work done, exit the polling mode */
3309         if ((!tx_cleaned && (work_done == 0)) ||
3310            !netif_running(adapter->netdev)) {
3311 quit_polling:
3312                 netif_rx_complete(poll_dev);
3313                 e1000_irq_enable(adapter);
3314                 return 0;
3315         }
3316
3317         return 1;
3318 }
3319
3320 #endif
3321 /**
3322  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3323  * @adapter: board private structure
3324  **/
3325
3326 static boolean_t
3327 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3328                    struct e1000_tx_ring *tx_ring)
3329 {
3330         struct net_device *netdev = adapter->netdev;
3331         struct e1000_tx_desc *tx_desc, *eop_desc;
3332         struct e1000_buffer *buffer_info;
3333         unsigned int i, eop;
3334 #ifdef CONFIG_E1000_NAPI
3335         unsigned int count = 0;
3336 #endif
3337         boolean_t cleaned = FALSE;
3338
3339         i = tx_ring->next_to_clean;
3340         eop = tx_ring->buffer_info[i].next_to_watch;
3341         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3342
3343         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3344                 for (cleaned = FALSE; !cleaned; ) {
3345                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3346                         buffer_info = &tx_ring->buffer_info[i];
3347                         cleaned = (i == eop);
3348
3349                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3350                         memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3351
3352                         if (unlikely(++i == tx_ring->count)) i = 0;
3353                 }
3354
3355
3356                 eop = tx_ring->buffer_info[i].next_to_watch;
3357                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3358 #ifdef CONFIG_E1000_NAPI
3359 #define E1000_TX_WEIGHT 64
3360                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3361                 if (count++ == E1000_TX_WEIGHT) break;
3362 #endif
3363         }
3364
3365         tx_ring->next_to_clean = i;
3366
3367 #define TX_WAKE_THRESHOLD 32
3368         if (unlikely(cleaned && netif_queue_stopped(netdev) &&
3369                      netif_carrier_ok(netdev))) {
3370                 spin_lock(&tx_ring->tx_lock);
3371                 if (netif_queue_stopped(netdev) &&
3372                     (E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))
3373                         netif_wake_queue(netdev);
3374                 spin_unlock(&tx_ring->tx_lock);
3375         }
3376
3377         if (adapter->detect_tx_hung) {
3378                 /* Detect a transmit hang in hardware, this serializes the
3379                  * check with the clearing of time_stamp and movement of i */
3380                 adapter->detect_tx_hung = FALSE;
3381                 if (tx_ring->buffer_info[eop].dma &&
3382                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3383                                (adapter->tx_timeout_factor * HZ))
3384                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3385                          E1000_STATUS_TXOFF)) {
3386
3387                         /* detected Tx unit hang */
3388                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3389                                         "  Tx Queue             <%lu>\n"
3390                                         "  TDH                  <%x>\n"
3391                                         "  TDT                  <%x>\n"
3392                                         "  next_to_use          <%x>\n"
3393                                         "  next_to_clean        <%x>\n"
3394                                         "buffer_info[next_to_clean]\n"
3395                                         "  time_stamp           <%lx>\n"
3396                                         "  next_to_watch        <%x>\n"
3397                                         "  jiffies              <%lx>\n"
3398                                         "  next_to_watch.status <%x>\n",
3399                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3400                                         sizeof(struct e1000_tx_ring)),
3401                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3402                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3403                                 tx_ring->next_to_use,
3404                                 tx_ring->next_to_clean,
3405                                 tx_ring->buffer_info[eop].time_stamp,
3406                                 eop,
3407                                 jiffies,
3408                                 eop_desc->upper.fields.status);
3409                         netif_stop_queue(netdev);
3410                 }
3411         }
3412         return cleaned;
3413 }
3414
3415 /**
3416  * e1000_rx_checksum - Receive Checksum Offload for 82543
3417  * @adapter:     board private structure
3418  * @status_err:  receive descriptor status and error fields
3419  * @csum:        receive descriptor csum field
3420  * @sk_buff:     socket buffer with received data
3421  **/
3422
3423 static void
3424 e1000_rx_checksum(struct e1000_adapter *adapter,
3425                   uint32_t status_err, uint32_t csum,
3426                   struct sk_buff *skb)
3427 {
3428         uint16_t status = (uint16_t)status_err;
3429         uint8_t errors = (uint8_t)(status_err >> 24);
3430         skb->ip_summed = CHECKSUM_NONE;
3431
3432         /* 82543 or newer only */
3433         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3434         /* Ignore Checksum bit is set */
3435         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3436         /* TCP/UDP checksum error bit is set */
3437         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3438                 /* let the stack verify checksum errors */
3439                 adapter->hw_csum_err++;
3440                 return;
3441         }
3442         /* TCP/UDP Checksum has not been calculated */
3443         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3444                 if (!(status & E1000_RXD_STAT_TCPCS))
3445                         return;
3446         } else {
3447                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3448                         return;
3449         }
3450         /* It must be a TCP or UDP packet with a valid checksum */
3451         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3452                 /* TCP checksum is good */
3453                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3454         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3455                 /* IP fragment with UDP payload */
3456                 /* Hardware complements the payload checksum, so we undo it
3457                  * and then put the value in host order for further stack use.
3458                  */
3459                 csum = ntohl(csum ^ 0xFFFF);
3460                 skb->csum = csum;
3461                 skb->ip_summed = CHECKSUM_HW;
3462         }
3463         adapter->hw_csum_good++;
3464 }
3465
3466 /**
3467  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3468  * @adapter: board private structure
3469  **/
3470
3471 static boolean_t
3472 #ifdef CONFIG_E1000_NAPI
3473 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3474                    struct e1000_rx_ring *rx_ring,
3475                    int *work_done, int work_to_do)
3476 #else
3477 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3478                    struct e1000_rx_ring *rx_ring)
3479 #endif
3480 {
3481         struct net_device *netdev = adapter->netdev;
3482         struct pci_dev *pdev = adapter->pdev;
3483         struct e1000_rx_desc *rx_desc, *next_rxd;
3484         struct e1000_buffer *buffer_info, *next_buffer;
3485         unsigned long flags;
3486         uint32_t length;
3487         uint8_t last_byte;
3488         unsigned int i;
3489         int cleaned_count = 0;
3490         boolean_t cleaned = FALSE;
3491
3492         i = rx_ring->next_to_clean;
3493         rx_desc = E1000_RX_DESC(*rx_ring, i);
3494         buffer_info = &rx_ring->buffer_info[i];
3495
3496         while (rx_desc->status & E1000_RXD_STAT_DD) {
3497                 struct sk_buff *skb, *next_skb;
3498                 u8 status;
3499 #ifdef CONFIG_E1000_NAPI
3500                 if (*work_done >= work_to_do)
3501                         break;
3502                 (*work_done)++;
3503 #endif
3504                 status = rx_desc->status;
3505                 skb = buffer_info->skb;
3506                 buffer_info->skb = NULL;
3507
3508                 prefetch(skb->data - NET_IP_ALIGN);
3509
3510                 if (++i == rx_ring->count) i = 0;
3511                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3512                 prefetch(next_rxd);
3513
3514                 next_buffer = &rx_ring->buffer_info[i];
3515                 next_skb = next_buffer->skb;
3516                 prefetch(next_skb->data - NET_IP_ALIGN);
3517
3518                 cleaned = TRUE;
3519                 cleaned_count++;
3520                 pci_unmap_single(pdev,
3521                                  buffer_info->dma,
3522                                  buffer_info->length,
3523                                  PCI_DMA_FROMDEVICE);
3524
3525                 length = le16_to_cpu(rx_desc->length);
3526
3527                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3528                         /* All receives must fit into a single buffer */
3529                         E1000_DBG("%s: Receive packet consumed multiple"
3530                                   " buffers\n", netdev->name);
3531                         dev_kfree_skb_irq(skb);
3532                         goto next_desc;
3533                 }
3534
3535                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3536                         last_byte = *(skb->data + length - 1);
3537                         if (TBI_ACCEPT(&adapter->hw, status,
3538                                       rx_desc->errors, length, last_byte)) {
3539                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3540                                 e1000_tbi_adjust_stats(&adapter->hw,
3541                                                        &adapter->stats,
3542                                                        length, skb->data);
3543                                 spin_unlock_irqrestore(&adapter->stats_lock,
3544                                                        flags);
3545                                 length--;
3546                         } else {
3547                                 /* recycle */
3548                                 buffer_info->skb = skb;
3549                                 goto next_desc;
3550                         }
3551                 }
3552
3553                 /* code added for copybreak, this should improve
3554                  * performance for small packets with large amounts
3555                  * of reassembly being done in the stack */
3556 #define E1000_CB_LENGTH 256
3557                 if (length < E1000_CB_LENGTH) {
3558                         struct sk_buff *new_skb =
3559                             dev_alloc_skb(length + NET_IP_ALIGN);
3560                         if (new_skb) {
3561                                 skb_reserve(new_skb, NET_IP_ALIGN);
3562                                 new_skb->dev = netdev;
3563                                 memcpy(new_skb->data - NET_IP_ALIGN,
3564                                        skb->data - NET_IP_ALIGN,
3565                                        length + NET_IP_ALIGN);
3566                                 /* save the skb in buffer_info as good */
3567                                 buffer_info->skb = skb;
3568                                 skb = new_skb;
3569                                 skb_put(skb, length);
3570                         }
3571                 } else
3572                         skb_put(skb, length);
3573
3574                 /* end copybreak code */
3575
3576                 /* Receive Checksum Offload */
3577                 e1000_rx_checksum(adapter,
3578                                   (uint32_t)(status) |
3579                                   ((uint32_t)(rx_desc->errors) << 24),
3580                                   le16_to_cpu(rx_desc->csum), skb);
3581
3582                 skb->protocol = eth_type_trans(skb, netdev);
3583 #ifdef CONFIG_E1000_NAPI
3584                 if (unlikely(adapter->vlgrp &&
3585                             (status & E1000_RXD_STAT_VP))) {
3586                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3587                                                  le16_to_cpu(rx_desc->special) &
3588                                                  E1000_RXD_SPC_VLAN_MASK);
3589                 } else {
3590                         netif_receive_skb(skb);
3591                 }
3592 #else /* CONFIG_E1000_NAPI */
3593                 if (unlikely(adapter->vlgrp &&
3594                             (status & E1000_RXD_STAT_VP))) {
3595                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3596                                         le16_to_cpu(rx_desc->special) &
3597                                         E1000_RXD_SPC_VLAN_MASK);
3598                 } else {
3599                         netif_rx(skb);
3600                 }
3601 #endif /* CONFIG_E1000_NAPI */
3602                 netdev->last_rx = jiffies;
3603
3604 next_desc:
3605                 rx_desc->status = 0;
3606
3607                 /* return some buffers to hardware, one at a time is too slow */
3608                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3609                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3610                         cleaned_count = 0;
3611                 }
3612
3613                 /* use prefetched values */
3614                 rx_desc = next_rxd;
3615                 buffer_info = next_buffer;
3616         }
3617         rx_ring->next_to_clean = i;
3618
3619         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3620         if (cleaned_count)
3621                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3622
3623         return cleaned;
3624 }
3625
3626 /**
3627  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3628  * @adapter: board private structure
3629  **/
3630
3631 static boolean_t
3632 #ifdef CONFIG_E1000_NAPI
3633 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3634                       struct e1000_rx_ring *rx_ring,
3635                       int *work_done, int work_to_do)
3636 #else
3637 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3638                       struct e1000_rx_ring *rx_ring)
3639 #endif
3640 {
3641         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3642         struct net_device *netdev = adapter->netdev;
3643         struct pci_dev *pdev = adapter->pdev;
3644         struct e1000_buffer *buffer_info, *next_buffer;
3645         struct e1000_ps_page *ps_page;
3646         struct e1000_ps_page_dma *ps_page_dma;
3647         struct sk_buff *skb, *next_skb;
3648         unsigned int i, j;
3649         uint32_t length, staterr;
3650         int cleaned_count = 0;
3651         boolean_t cleaned = FALSE;
3652
3653         i = rx_ring->next_to_clean;
3654         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3655         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3656         buffer_info = &rx_ring->buffer_info[i];
3657
3658         while (staterr & E1000_RXD_STAT_DD) {
3659                 buffer_info = &rx_ring->buffer_info[i];
3660                 ps_page = &rx_ring->ps_page[i];
3661                 ps_page_dma = &rx_ring->ps_page_dma[i];
3662 #ifdef CONFIG_E1000_NAPI
3663                 if (unlikely(*work_done >= work_to_do))
3664                         break;
3665                 (*work_done)++;
3666 #endif
3667                 skb = buffer_info->skb;
3668
3669                 /* in the packet split case this is header only */
3670                 prefetch(skb->data - NET_IP_ALIGN);
3671
3672                 if (++i == rx_ring->count) i = 0;
3673                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3674                 prefetch(next_rxd);
3675
3676                 next_buffer = &rx_ring->buffer_info[i];
3677                 next_skb = next_buffer->skb;
3678                 prefetch(next_skb->data - NET_IP_ALIGN);
3679
3680                 cleaned = TRUE;
3681                 cleaned_count++;
3682                 pci_unmap_single(pdev, buffer_info->dma,
3683                                  buffer_info->length,
3684                                  PCI_DMA_FROMDEVICE);
3685
3686                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3687                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3688                                   " the full packet\n", netdev->name);
3689                         dev_kfree_skb_irq(skb);
3690                         goto next_desc;
3691                 }
3692
3693                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3694                         dev_kfree_skb_irq(skb);
3695                         goto next_desc;
3696                 }
3697
3698                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3699
3700                 if (unlikely(!length)) {
3701                         E1000_DBG("%s: Last part of the packet spanning"
3702                                   " multiple descriptors\n", netdev->name);
3703                         dev_kfree_skb_irq(skb);
3704                         goto next_desc;
3705                 }
3706
3707                 /* Good Receive */
3708                 skb_put(skb, length);
3709
3710                 {
3711                 /* this looks ugly, but it seems compiler issues make it
3712                    more efficient than reusing j */
3713                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3714
3715                 /* page alloc/put takes too long and effects small packet
3716                  * throughput, so unsplit small packets and save the alloc/put*/
3717                 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3718                         u8 *vaddr;
3719                         /* there is no documentation about how to call
3720                          * kmap_atomic, so we can't hold the mapping
3721                          * very long */
3722                         pci_dma_sync_single_for_cpu(pdev,
3723                                 ps_page_dma->ps_page_dma[0],
3724                                 PAGE_SIZE,
3725                                 PCI_DMA_FROMDEVICE);
3726                         vaddr = kmap_atomic(ps_page->ps_page[0],
3727                                             KM_SKB_DATA_SOFTIRQ);
3728                         memcpy(skb->tail, vaddr, l1);
3729                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
3730                         pci_dma_sync_single_for_device(pdev,
3731                                 ps_page_dma->ps_page_dma[0],
3732                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3733                         skb_put(skb, l1);
3734                         length += l1;
3735                         goto copydone;
3736                 } /* if */
3737                 }
3738                 
3739                 for (j = 0; j < adapter->rx_ps_pages; j++) {
3740                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
3741                                 break;
3742                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3743                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
3744                         ps_page_dma->ps_page_dma[j] = 0;
3745                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
3746                                            length);
3747                         ps_page->ps_page[j] = NULL;
3748                         skb->len += length;
3749                         skb->data_len += length;
3750                         skb->truesize += length;
3751                 }
3752
3753 copydone:
3754                 e1000_rx_checksum(adapter, staterr,
3755                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
3756                 skb->protocol = eth_type_trans(skb, netdev);
3757
3758                 if (likely(rx_desc->wb.upper.header_status &
3759                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
3760                         adapter->rx_hdr_split++;
3761 #ifdef CONFIG_E1000_NAPI
3762                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3763                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3764                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3765                                 E1000_RXD_SPC_VLAN_MASK);
3766                 } else {
3767                         netif_receive_skb(skb);
3768                 }
3769 #else /* CONFIG_E1000_NAPI */
3770                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3771                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3772                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3773                                 E1000_RXD_SPC_VLAN_MASK);
3774                 } else {
3775                         netif_rx(skb);
3776                 }
3777 #endif /* CONFIG_E1000_NAPI */
3778                 netdev->last_rx = jiffies;
3779
3780 next_desc:
3781                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
3782                 buffer_info->skb = NULL;
3783
3784                 /* return some buffers to hardware, one at a time is too slow */
3785                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3786                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3787                         cleaned_count = 0;
3788                 }
3789
3790                 /* use prefetched values */
3791                 rx_desc = next_rxd;
3792                 buffer_info = next_buffer;
3793
3794                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3795         }
3796         rx_ring->next_to_clean = i;
3797
3798         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3799         if (cleaned_count)
3800                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3801
3802         return cleaned;
3803 }
3804
3805 /**
3806  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3807  * @adapter: address of board private structure
3808  **/
3809
3810 static void
3811 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
3812                        struct e1000_rx_ring *rx_ring,
3813                        int cleaned_count)
3814 {
3815         struct net_device *netdev = adapter->netdev;
3816         struct pci_dev *pdev = adapter->pdev;
3817         struct e1000_rx_desc *rx_desc;
3818         struct e1000_buffer *buffer_info;
3819         struct sk_buff *skb;
3820         unsigned int i;
3821         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3822
3823         i = rx_ring->next_to_use;
3824         buffer_info = &rx_ring->buffer_info[i];
3825
3826         while (cleaned_count--) {
3827                 if (!(skb = buffer_info->skb))
3828                         skb = dev_alloc_skb(bufsz);
3829                 else {
3830                         skb_trim(skb, 0);
3831                         goto map_skb;
3832                 }
3833
3834                 if (unlikely(!skb)) {
3835                         /* Better luck next round */
3836                         adapter->alloc_rx_buff_failed++;
3837                         break;
3838                 }
3839
3840                 /* Fix for errata 23, can't cross 64kB boundary */
3841                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3842                         struct sk_buff *oldskb = skb;
3843                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
3844                                              "at %p\n", bufsz, skb->data);
3845                         /* Try again, without freeing the previous */
3846                         skb = dev_alloc_skb(bufsz);
3847                         /* Failed allocation, critical failure */
3848                         if (!skb) {
3849                                 dev_kfree_skb(oldskb);
3850                                 break;
3851                         }
3852
3853                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3854                                 /* give up */
3855                                 dev_kfree_skb(skb);
3856                                 dev_kfree_skb(oldskb);
3857                                 break; /* while !buffer_info->skb */
3858                         } else {
3859                                 /* Use new allocation */
3860                                 dev_kfree_skb(oldskb);
3861                         }
3862                 }
3863                 /* Make buffer alignment 2 beyond a 16 byte boundary
3864                  * this will result in a 16 byte aligned IP header after
3865                  * the 14 byte MAC header is removed
3866                  */
3867                 skb_reserve(skb, NET_IP_ALIGN);
3868
3869                 skb->dev = netdev;
3870
3871                 buffer_info->skb = skb;
3872                 buffer_info->length = adapter->rx_buffer_len;
3873 map_skb:
3874                 buffer_info->dma = pci_map_single(pdev,
3875                                                   skb->data,
3876                                                   adapter->rx_buffer_len,
3877                                                   PCI_DMA_FROMDEVICE);
3878
3879                 /* Fix for errata 23, can't cross 64kB boundary */
3880                 if (!e1000_check_64k_bound(adapter,
3881                                         (void *)(unsigned long)buffer_info->dma,
3882                                         adapter->rx_buffer_len)) {
3883                         DPRINTK(RX_ERR, ERR,
3884                                 "dma align check failed: %u bytes at %p\n",
3885                                 adapter->rx_buffer_len,
3886                                 (void *)(unsigned long)buffer_info->dma);
3887                         dev_kfree_skb(skb);
3888                         buffer_info->skb = NULL;
3889
3890                         pci_unmap_single(pdev, buffer_info->dma,
3891                                          adapter->rx_buffer_len,
3892                                          PCI_DMA_FROMDEVICE);
3893
3894                         break; /* while !buffer_info->skb */
3895                 }
3896                 rx_desc = E1000_RX_DESC(*rx_ring, i);
3897                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3898
3899                 if (unlikely(++i == rx_ring->count))
3900                         i = 0;
3901                 buffer_info = &rx_ring->buffer_info[i];
3902         }
3903
3904         if (likely(rx_ring->next_to_use != i)) {
3905                 rx_ring->next_to_use = i;
3906                 if (unlikely(i-- == 0))
3907                         i = (rx_ring->count - 1);
3908
3909                 /* Force memory writes to complete before letting h/w
3910                  * know there are new descriptors to fetch.  (Only
3911                  * applicable for weak-ordered memory model archs,
3912                  * such as IA-64). */
3913                 wmb();
3914                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
3915         }
3916 }
3917
3918 /**
3919  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
3920  * @adapter: address of board private structure
3921  **/
3922
3923 static void
3924 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
3925                           struct e1000_rx_ring *rx_ring,
3926                           int cleaned_count)
3927 {
3928         struct net_device *netdev = adapter->netdev;
3929         struct pci_dev *pdev = adapter->pdev;
3930         union e1000_rx_desc_packet_split *rx_desc;
3931         struct e1000_buffer *buffer_info;
3932         struct e1000_ps_page *ps_page;
3933         struct e1000_ps_page_dma *ps_page_dma;
3934         struct sk_buff *skb;
3935         unsigned int i, j;
3936
3937         i = rx_ring->next_to_use;
3938         buffer_info = &rx_ring->buffer_info[i];
3939         ps_page = &rx_ring->ps_page[i];
3940         ps_page_dma = &rx_ring->ps_page_dma[i];
3941
3942         while (cleaned_count--) {
3943                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3944
3945                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
3946                         if (j < adapter->rx_ps_pages) {
3947                                 if (likely(!ps_page->ps_page[j])) {
3948                                         ps_page->ps_page[j] =
3949                                                 alloc_page(GFP_ATOMIC);
3950                                         if (unlikely(!ps_page->ps_page[j])) {
3951                                                 adapter->alloc_rx_buff_failed++;
3952                                                 goto no_buffers;
3953                                         }
3954                                         ps_page_dma->ps_page_dma[j] =
3955                                                 pci_map_page(pdev,
3956                                                             ps_page->ps_page[j],
3957                                                             0, PAGE_SIZE,
3958                                                             PCI_DMA_FROMDEVICE);
3959                                 }
3960                                 /* Refresh the desc even if buffer_addrs didn't
3961                                  * change because each write-back erases
3962                                  * this info.
3963                                  */
3964                                 rx_desc->read.buffer_addr[j+1] =
3965                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
3966                         } else
3967                                 rx_desc->read.buffer_addr[j+1] = ~0;
3968                 }
3969
3970                 skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
3971
3972                 if (unlikely(!skb)) {
3973                         adapter->alloc_rx_buff_failed++;
3974                         break;
3975                 }
3976
3977                 /* Make buffer alignment 2 beyond a 16 byte boundary
3978                  * this will result in a 16 byte aligned IP header after
3979                  * the 14 byte MAC header is removed
3980                  */
3981                 skb_reserve(skb, NET_IP_ALIGN);
3982
3983                 skb->dev = netdev;
3984
3985                 buffer_info->skb = skb;
3986                 buffer_info->length = adapter->rx_ps_bsize0;
3987                 buffer_info->dma = pci_map_single(pdev, skb->data,
3988                                                   adapter->rx_ps_bsize0,
3989                                                   PCI_DMA_FROMDEVICE);
3990
3991                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
3992
3993                 if (unlikely(++i == rx_ring->count)) i = 0;
3994                 buffer_info = &rx_ring->buffer_info[i];
3995                 ps_page = &rx_ring->ps_page[i];
3996                 ps_page_dma = &rx_ring->ps_page_dma[i];
3997         }
3998
3999 no_buffers:
4000         if (likely(rx_ring->next_to_use != i)) {
4001                 rx_ring->next_to_use = i;
4002                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4003
4004                 /* Force memory writes to complete before letting h/w
4005                  * know there are new descriptors to fetch.  (Only
4006                  * applicable for weak-ordered memory model archs,
4007                  * such as IA-64). */
4008                 wmb();
4009                 /* Hardware increments by 16 bytes, but packet split
4010                  * descriptors are 32 bytes...so we increment tail
4011                  * twice as much.
4012                  */
4013                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4014         }
4015 }
4016
4017 /**
4018  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4019  * @adapter:
4020  **/
4021
4022 static void
4023 e1000_smartspeed(struct e1000_adapter *adapter)
4024 {
4025         uint16_t phy_status;
4026         uint16_t phy_ctrl;
4027
4028         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4029            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4030                 return;
4031
4032         if (adapter->smartspeed == 0) {
4033                 /* If Master/Slave config fault is asserted twice,
4034                  * we assume back-to-back */
4035                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4036                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4037                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4038                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4039                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4040                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4041                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4042                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4043                                             phy_ctrl);
4044                         adapter->smartspeed++;
4045                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4046                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4047                                                &phy_ctrl)) {
4048                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4049                                              MII_CR_RESTART_AUTO_NEG);
4050                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4051                                                     phy_ctrl);
4052                         }
4053                 }
4054                 return;
4055         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4056                 /* If still no link, perhaps using 2/3 pair cable */
4057                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4058                 phy_ctrl |= CR_1000T_MS_ENABLE;
4059                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4060                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4061                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4062                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4063                                      MII_CR_RESTART_AUTO_NEG);
4064                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4065                 }
4066         }
4067         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4068         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4069                 adapter->smartspeed = 0;
4070 }
4071
4072 /**
4073  * e1000_ioctl -
4074  * @netdev:
4075  * @ifreq:
4076  * @cmd:
4077  **/
4078
4079 static int
4080 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4081 {
4082         switch (cmd) {
4083         case SIOCGMIIPHY:
4084         case SIOCGMIIREG:
4085         case SIOCSMIIREG:
4086                 return e1000_mii_ioctl(netdev, ifr, cmd);
4087         default:
4088                 return -EOPNOTSUPP;
4089         }
4090 }
4091
4092 /**
4093  * e1000_mii_ioctl -
4094  * @netdev:
4095  * @ifreq:
4096  * @cmd:
4097  **/
4098
4099 static int
4100 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4101 {
4102         struct e1000_adapter *adapter = netdev_priv(netdev);
4103         struct mii_ioctl_data *data = if_mii(ifr);
4104         int retval;
4105         uint16_t mii_reg;
4106         uint16_t spddplx;
4107         unsigned long flags;
4108
4109         if (adapter->hw.media_type != e1000_media_type_copper)
4110                 return -EOPNOTSUPP;
4111
4112         switch (cmd) {
4113         case SIOCGMIIPHY:
4114                 data->phy_id = adapter->hw.phy_addr;
4115                 break;
4116         case SIOCGMIIREG:
4117                 if (!capable(CAP_NET_ADMIN))
4118                         return -EPERM;
4119                 spin_lock_irqsave(&adapter->stats_lock, flags);
4120                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4121                                    &data->val_out)) {
4122                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4123                         return -EIO;
4124                 }
4125                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4126                 break;
4127         case SIOCSMIIREG:
4128                 if (!capable(CAP_NET_ADMIN))
4129                         return -EPERM;
4130                 if (data->reg_num & ~(0x1F))
4131                         return -EFAULT;
4132                 mii_reg = data->val_in;
4133                 spin_lock_irqsave(&adapter->stats_lock, flags);
4134                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4135                                         mii_reg)) {
4136                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4137                         return -EIO;
4138                 }
4139                 if (adapter->hw.media_type == e1000_media_type_copper) {
4140                         switch (data->reg_num) {
4141                         case PHY_CTRL:
4142                                 if (mii_reg & MII_CR_POWER_DOWN)
4143                                         break;
4144                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4145                                         adapter->hw.autoneg = 1;
4146                                         adapter->hw.autoneg_advertised = 0x2F;
4147                                 } else {
4148                                         if (mii_reg & 0x40)
4149                                                 spddplx = SPEED_1000;
4150                                         else if (mii_reg & 0x2000)
4151                                                 spddplx = SPEED_100;
4152                                         else
4153                                                 spddplx = SPEED_10;
4154                                         spddplx += (mii_reg & 0x100)
4155                                                    ? DUPLEX_FULL :
4156                                                    DUPLEX_HALF;
4157                                         retval = e1000_set_spd_dplx(adapter,
4158                                                                     spddplx);
4159                                         if (retval) {
4160                                                 spin_unlock_irqrestore(
4161                                                         &adapter->stats_lock,
4162                                                         flags);
4163                                                 return retval;
4164                                         }
4165                                 }
4166                                 if (netif_running(adapter->netdev)) {
4167                                         e1000_down(adapter);
4168                                         e1000_up(adapter);
4169                                 } else
4170                                         e1000_reset(adapter);
4171                                 break;
4172                         case M88E1000_PHY_SPEC_CTRL:
4173                         case M88E1000_EXT_PHY_SPEC_CTRL:
4174                                 if (e1000_phy_reset(&adapter->hw)) {
4175                                         spin_unlock_irqrestore(
4176                                                 &adapter->stats_lock, flags);
4177                                         return -EIO;
4178                                 }
4179                                 break;
4180                         }
4181                 } else {
4182                         switch (data->reg_num) {
4183                         case PHY_CTRL:
4184                                 if (mii_reg & MII_CR_POWER_DOWN)
4185                                         break;
4186                                 if (netif_running(adapter->netdev)) {
4187                                         e1000_down(adapter);
4188                                         e1000_up(adapter);
4189                                 } else
4190                                         e1000_reset(adapter);
4191                                 break;
4192                         }
4193                 }
4194                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4195                 break;
4196         default:
4197                 return -EOPNOTSUPP;
4198         }
4199         return E1000_SUCCESS;
4200 }
4201
4202 void
4203 e1000_pci_set_mwi(struct e1000_hw *hw)
4204 {
4205         struct e1000_adapter *adapter = hw->back;
4206         int ret_val = pci_set_mwi(adapter->pdev);
4207
4208         if (ret_val)
4209                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4210 }
4211
4212 void
4213 e1000_pci_clear_mwi(struct e1000_hw *hw)
4214 {
4215         struct e1000_adapter *adapter = hw->back;
4216
4217         pci_clear_mwi(adapter->pdev);
4218 }
4219
4220 void
4221 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4222 {
4223         struct e1000_adapter *adapter = hw->back;
4224
4225         pci_read_config_word(adapter->pdev, reg, value);
4226 }
4227
4228 void
4229 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4230 {
4231         struct e1000_adapter *adapter = hw->back;
4232
4233         pci_write_config_word(adapter->pdev, reg, *value);
4234 }
4235
4236 uint32_t
4237 e1000_io_read(struct e1000_hw *hw, unsigned long port)
4238 {
4239         return inl(port);
4240 }
4241
4242 void
4243 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4244 {
4245         outl(value, port);
4246 }
4247
4248 static void
4249 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4250 {
4251         struct e1000_adapter *adapter = netdev_priv(netdev);
4252         uint32_t ctrl, rctl;
4253
4254         e1000_irq_disable(adapter);
4255         adapter->vlgrp = grp;
4256
4257         if (grp) {
4258                 /* enable VLAN tag insert/strip */
4259                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4260                 ctrl |= E1000_CTRL_VME;
4261                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4262
4263                 /* enable VLAN receive filtering */
4264                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4265                 rctl |= E1000_RCTL_VFE;
4266                 rctl &= ~E1000_RCTL_CFIEN;
4267                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4268                 e1000_update_mng_vlan(adapter);
4269         } else {
4270                 /* disable VLAN tag insert/strip */
4271                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4272                 ctrl &= ~E1000_CTRL_VME;
4273                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4274
4275                 /* disable VLAN filtering */
4276                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4277                 rctl &= ~E1000_RCTL_VFE;
4278                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4279                 if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4280                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4281                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4282                 }
4283         }
4284
4285         e1000_irq_enable(adapter);
4286 }
4287
4288 static void
4289 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4290 {
4291         struct e1000_adapter *adapter = netdev_priv(netdev);
4292         uint32_t vfta, index;
4293
4294         if ((adapter->hw.mng_cookie.status &
4295              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4296             (vid == adapter->mng_vlan_id))
4297                 return;
4298         /* add VID to filter table */
4299         index = (vid >> 5) & 0x7F;
4300         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4301         vfta |= (1 << (vid & 0x1F));
4302         e1000_write_vfta(&adapter->hw, index, vfta);
4303 }
4304
4305 static void
4306 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4307 {
4308         struct e1000_adapter *adapter = netdev_priv(netdev);
4309         uint32_t vfta, index;
4310
4311         e1000_irq_disable(adapter);
4312
4313         if (adapter->vlgrp)
4314                 adapter->vlgrp->vlan_devices[vid] = NULL;
4315
4316         e1000_irq_enable(adapter);
4317
4318         if ((adapter->hw.mng_cookie.status &
4319              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4320             (vid == adapter->mng_vlan_id)) {
4321                 /* release control to f/w */
4322                 e1000_release_hw_control(adapter);
4323                 return;
4324         }
4325
4326         /* remove VID from filter table */
4327         index = (vid >> 5) & 0x7F;
4328         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4329         vfta &= ~(1 << (vid & 0x1F));
4330         e1000_write_vfta(&adapter->hw, index, vfta);
4331 }
4332
4333 static void
4334 e1000_restore_vlan(struct e1000_adapter *adapter)
4335 {
4336         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4337
4338         if (adapter->vlgrp) {
4339                 uint16_t vid;
4340                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4341                         if (!adapter->vlgrp->vlan_devices[vid])
4342                                 continue;
4343                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4344                 }
4345         }
4346 }
4347
4348 int
4349 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4350 {
4351         adapter->hw.autoneg = 0;
4352
4353         /* Fiber NICs only allow 1000 gbps Full duplex */
4354         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4355                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4356                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4357                 return -EINVAL;
4358         }
4359
4360         switch (spddplx) {
4361         case SPEED_10 + DUPLEX_HALF:
4362                 adapter->hw.forced_speed_duplex = e1000_10_half;
4363                 break;
4364         case SPEED_10 + DUPLEX_FULL:
4365                 adapter->hw.forced_speed_duplex = e1000_10_full;
4366                 break;
4367         case SPEED_100 + DUPLEX_HALF:
4368                 adapter->hw.forced_speed_duplex = e1000_100_half;
4369                 break;
4370         case SPEED_100 + DUPLEX_FULL:
4371                 adapter->hw.forced_speed_duplex = e1000_100_full;
4372                 break;
4373         case SPEED_1000 + DUPLEX_FULL:
4374                 adapter->hw.autoneg = 1;
4375                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4376                 break;
4377         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4378         default:
4379                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4380                 return -EINVAL;
4381         }
4382         return 0;
4383 }
4384
4385 #ifdef CONFIG_PM
4386 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4387  * bus we're on (PCI(X) vs. PCI-E)
4388  */
4389 #define PCIE_CONFIG_SPACE_LEN 256
4390 #define PCI_CONFIG_SPACE_LEN 64
4391 static int
4392 e1000_pci_save_state(struct e1000_adapter *adapter)
4393 {
4394         struct pci_dev *dev = adapter->pdev;
4395         int size;
4396         int i;
4397
4398         if (adapter->hw.mac_type >= e1000_82571)
4399                 size = PCIE_CONFIG_SPACE_LEN;
4400         else
4401                 size = PCI_CONFIG_SPACE_LEN;
4402
4403         WARN_ON(adapter->config_space != NULL);
4404
4405         adapter->config_space = kmalloc(size, GFP_KERNEL);
4406         if (!adapter->config_space) {
4407                 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4408                 return -ENOMEM;
4409         }
4410         for (i = 0; i < (size / 4); i++)
4411                 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4412         return 0;
4413 }
4414
4415 static void
4416 e1000_pci_restore_state(struct e1000_adapter *adapter)
4417 {
4418         struct pci_dev *dev = adapter->pdev;
4419         int size;
4420         int i;
4421
4422         if (adapter->config_space == NULL)
4423                 return;
4424
4425         if (adapter->hw.mac_type >= e1000_82571)
4426                 size = PCIE_CONFIG_SPACE_LEN;
4427         else
4428                 size = PCI_CONFIG_SPACE_LEN;
4429         for (i = 0; i < (size / 4); i++)
4430                 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4431         kfree(adapter->config_space);
4432         adapter->config_space = NULL;
4433         return;
4434 }
4435 #endif /* CONFIG_PM */
4436
4437 static int
4438 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4439 {
4440         struct net_device *netdev = pci_get_drvdata(pdev);
4441         struct e1000_adapter *adapter = netdev_priv(netdev);
4442         uint32_t ctrl, ctrl_ext, rctl, manc, status;
4443         uint32_t wufc = adapter->wol;
4444         int retval = 0;
4445
4446         netif_device_detach(netdev);
4447
4448         if (netif_running(netdev))
4449                 e1000_down(adapter);
4450
4451 #ifdef CONFIG_PM
4452         /* Implement our own version of pci_save_state(pdev) because pci-
4453          * express adapters have 256-byte config spaces. */
4454         retval = e1000_pci_save_state(adapter);
4455         if (retval)
4456                 return retval;
4457 #endif
4458
4459         status = E1000_READ_REG(&adapter->hw, STATUS);
4460         if (status & E1000_STATUS_LU)
4461                 wufc &= ~E1000_WUFC_LNKC;
4462
4463         if (wufc) {
4464                 e1000_setup_rctl(adapter);
4465                 e1000_set_multi(netdev);
4466
4467                 /* turn on all-multi mode if wake on multicast is enabled */
4468                 if (adapter->wol & E1000_WUFC_MC) {
4469                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4470                         rctl |= E1000_RCTL_MPE;
4471                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4472                 }
4473
4474                 if (adapter->hw.mac_type >= e1000_82540) {
4475                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4476                         /* advertise wake from D3Cold */
4477                         #define E1000_CTRL_ADVD3WUC 0x00100000
4478                         /* phy power management enable */
4479                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4480                         ctrl |= E1000_CTRL_ADVD3WUC |
4481                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4482                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4483                 }
4484
4485                 if (adapter->hw.media_type == e1000_media_type_fiber ||
4486                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
4487                         /* keep the laser running in D3 */
4488                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4489                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4490                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4491                 }
4492
4493                 /* Allow time for pending master requests to run */
4494                 e1000_disable_pciex_master(&adapter->hw);
4495
4496                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4497                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4498                 pci_enable_wake(pdev, PCI_D3hot, 1);
4499                 pci_enable_wake(pdev, PCI_D3cold, 1);
4500         } else {
4501                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4502                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4503                 pci_enable_wake(pdev, PCI_D3hot, 0);
4504                 pci_enable_wake(pdev, PCI_D3cold, 0);
4505         }
4506
4507         if (adapter->hw.mac_type >= e1000_82540 &&
4508            adapter->hw.media_type == e1000_media_type_copper) {
4509                 manc = E1000_READ_REG(&adapter->hw, MANC);
4510                 if (manc & E1000_MANC_SMBUS_EN) {
4511                         manc |= E1000_MANC_ARP_EN;
4512                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
4513                         pci_enable_wake(pdev, PCI_D3hot, 1);
4514                         pci_enable_wake(pdev, PCI_D3cold, 1);
4515                 }
4516         }
4517
4518         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4519          * would have already happened in close and is redundant. */
4520         e1000_release_hw_control(adapter);
4521
4522         pci_disable_device(pdev);
4523
4524         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4525
4526         return 0;
4527 }
4528
4529 #ifdef CONFIG_PM
4530 static int
4531 e1000_resume(struct pci_dev *pdev)
4532 {
4533         struct net_device *netdev = pci_get_drvdata(pdev);
4534         struct e1000_adapter *adapter = netdev_priv(netdev);
4535         uint32_t manc, ret_val;
4536
4537         pci_set_power_state(pdev, PCI_D0);
4538         e1000_pci_restore_state(adapter);
4539         ret_val = pci_enable_device(pdev);
4540         pci_set_master(pdev);
4541
4542         pci_enable_wake(pdev, PCI_D3hot, 0);
4543         pci_enable_wake(pdev, PCI_D3cold, 0);
4544
4545         e1000_reset(adapter);
4546         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4547
4548         if (netif_running(netdev))
4549                 e1000_up(adapter);
4550
4551         netif_device_attach(netdev);
4552
4553         if (adapter->hw.mac_type >= e1000_82540 &&
4554            adapter->hw.media_type == e1000_media_type_copper) {
4555                 manc = E1000_READ_REG(&adapter->hw, MANC);
4556                 manc &= ~(E1000_MANC_ARP_EN);
4557                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4558         }
4559
4560         /* If the controller is 82573 and f/w is AMT, do not set
4561          * DRV_LOAD until the interface is up.  For all other cases,
4562          * let the f/w know that the h/w is now under the control
4563          * of the driver. */
4564         if (adapter->hw.mac_type != e1000_82573 ||
4565             !e1000_check_mng_mode(&adapter->hw))
4566                 e1000_get_hw_control(adapter);
4567
4568         return 0;
4569 }
4570 #endif
4571
4572 static void e1000_shutdown(struct pci_dev *pdev)
4573 {
4574         e1000_suspend(pdev, PMSG_SUSPEND);
4575 }
4576
4577 #ifdef CONFIG_NET_POLL_CONTROLLER
4578 /*
4579  * Polling 'interrupt' - used by things like netconsole to send skbs
4580  * without having to re-enable interrupts. It's not called while
4581  * the interrupt routine is executing.
4582  */
4583 static void
4584 e1000_netpoll(struct net_device *netdev)
4585 {
4586         struct e1000_adapter *adapter = netdev_priv(netdev);
4587         disable_irq(adapter->pdev->irq);
4588         e1000_intr(adapter->pdev->irq, netdev, NULL);
4589         e1000_clean_tx_irq(adapter, adapter->tx_ring);
4590 #ifndef CONFIG_E1000_NAPI
4591         adapter->clean_rx(adapter, adapter->rx_ring);
4592 #endif
4593         enable_irq(adapter->pdev->irq);
4594 }
4595 #endif
4596
4597 /* e1000_main.c */