]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/net/e1000/e1000_main.c
e1000: Removing the unused macro PAGE_USE_COUNT()
[net-next-2.6.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k3-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
37
38 /* e1000_pci_tbl - PCI Device ID Table
39  *
40  * Last entry must be all 0s
41  *
42  * Macro expands to...
43  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
44  */
45 static struct pci_device_id e1000_pci_tbl[] = {
46         INTEL_E1000_ETHERNET_DEVICE(0x1000),
47         INTEL_E1000_ETHERNET_DEVICE(0x1001),
48         INTEL_E1000_ETHERNET_DEVICE(0x1004),
49         INTEL_E1000_ETHERNET_DEVICE(0x1008),
50         INTEL_E1000_ETHERNET_DEVICE(0x1009),
51         INTEL_E1000_ETHERNET_DEVICE(0x100C),
52         INTEL_E1000_ETHERNET_DEVICE(0x100D),
53         INTEL_E1000_ETHERNET_DEVICE(0x100E),
54         INTEL_E1000_ETHERNET_DEVICE(0x100F),
55         INTEL_E1000_ETHERNET_DEVICE(0x1010),
56         INTEL_E1000_ETHERNET_DEVICE(0x1011),
57         INTEL_E1000_ETHERNET_DEVICE(0x1012),
58         INTEL_E1000_ETHERNET_DEVICE(0x1013),
59         INTEL_E1000_ETHERNET_DEVICE(0x1014),
60         INTEL_E1000_ETHERNET_DEVICE(0x1015),
61         INTEL_E1000_ETHERNET_DEVICE(0x1016),
62         INTEL_E1000_ETHERNET_DEVICE(0x1017),
63         INTEL_E1000_ETHERNET_DEVICE(0x1018),
64         INTEL_E1000_ETHERNET_DEVICE(0x1019),
65         INTEL_E1000_ETHERNET_DEVICE(0x101A),
66         INTEL_E1000_ETHERNET_DEVICE(0x101D),
67         INTEL_E1000_ETHERNET_DEVICE(0x101E),
68         INTEL_E1000_ETHERNET_DEVICE(0x1026),
69         INTEL_E1000_ETHERNET_DEVICE(0x1027),
70         INTEL_E1000_ETHERNET_DEVICE(0x1028),
71         INTEL_E1000_ETHERNET_DEVICE(0x1075),
72         INTEL_E1000_ETHERNET_DEVICE(0x1076),
73         INTEL_E1000_ETHERNET_DEVICE(0x1077),
74         INTEL_E1000_ETHERNET_DEVICE(0x1078),
75         INTEL_E1000_ETHERNET_DEVICE(0x1079),
76         INTEL_E1000_ETHERNET_DEVICE(0x107A),
77         INTEL_E1000_ETHERNET_DEVICE(0x107B),
78         INTEL_E1000_ETHERNET_DEVICE(0x107C),
79         INTEL_E1000_ETHERNET_DEVICE(0x108A),
80         INTEL_E1000_ETHERNET_DEVICE(0x1099),
81         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82         /* required last entry */
83         {0,}
84 };
85
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
87
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98                              struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100                              struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
106
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121                                 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123                                 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_watchdog(unsigned long data);
127 static void e1000_82547_tx_fifo_stall(unsigned long data);
128 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
129 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
130 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
131 static int e1000_set_mac(struct net_device *netdev, void *p);
132 static irqreturn_t e1000_intr(int irq, void *data);
133 static irqreturn_t e1000_intr_msi(int irq, void *data);
134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
135                                struct e1000_tx_ring *tx_ring);
136 static int e1000_clean(struct napi_struct *napi, int budget);
137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
138                                struct e1000_rx_ring *rx_ring,
139                                int *work_done, int work_to_do);
140 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
141                                    struct e1000_rx_ring *rx_ring,
142                                    int cleaned_count);
143 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
144 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
145                            int cmd);
146 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
147 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
148 static void e1000_tx_timeout(struct net_device *dev);
149 static void e1000_reset_task(struct work_struct *work);
150 static void e1000_smartspeed(struct e1000_adapter *adapter);
151 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
152                                        struct sk_buff *skb);
153
154 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
155 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
156 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
157 static void e1000_restore_vlan(struct e1000_adapter *adapter);
158
159 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
160 #ifdef CONFIG_PM
161 static int e1000_resume(struct pci_dev *pdev);
162 #endif
163 static void e1000_shutdown(struct pci_dev *pdev);
164
165 #ifdef CONFIG_NET_POLL_CONTROLLER
166 /* for netdump / net console */
167 static void e1000_netpoll (struct net_device *netdev);
168 #endif
169
170 #define COPYBREAK_DEFAULT 256
171 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
172 module_param(copybreak, uint, 0644);
173 MODULE_PARM_DESC(copybreak,
174         "Maximum size of packet that is copied to a new buffer on receive");
175
176 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
177                      pci_channel_state_t state);
178 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
179 static void e1000_io_resume(struct pci_dev *pdev);
180
181 static struct pci_error_handlers e1000_err_handler = {
182         .error_detected = e1000_io_error_detected,
183         .slot_reset = e1000_io_slot_reset,
184         .resume = e1000_io_resume,
185 };
186
187 static struct pci_driver e1000_driver = {
188         .name     = e1000_driver_name,
189         .id_table = e1000_pci_tbl,
190         .probe    = e1000_probe,
191         .remove   = __devexit_p(e1000_remove),
192 #ifdef CONFIG_PM
193         /* Power Managment Hooks */
194         .suspend  = e1000_suspend,
195         .resume   = e1000_resume,
196 #endif
197         .shutdown = e1000_shutdown,
198         .err_handler = &e1000_err_handler
199 };
200
201 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
202 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
203 MODULE_LICENSE("GPL");
204 MODULE_VERSION(DRV_VERSION);
205
206 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
207 module_param(debug, int, 0);
208 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
209
210 /**
211  * e1000_init_module - Driver Registration Routine
212  *
213  * e1000_init_module is the first routine called when the driver is
214  * loaded. All it does is register with the PCI subsystem.
215  **/
216
217 static int __init e1000_init_module(void)
218 {
219         int ret;
220         printk(KERN_INFO "%s - version %s\n",
221                e1000_driver_string, e1000_driver_version);
222
223         printk(KERN_INFO "%s\n", e1000_copyright);
224
225         ret = pci_register_driver(&e1000_driver);
226         if (copybreak != COPYBREAK_DEFAULT) {
227                 if (copybreak == 0)
228                         printk(KERN_INFO "e1000: copybreak disabled\n");
229                 else
230                         printk(KERN_INFO "e1000: copybreak enabled for "
231                                "packets <= %u bytes\n", copybreak);
232         }
233         return ret;
234 }
235
236 module_init(e1000_init_module);
237
238 /**
239  * e1000_exit_module - Driver Exit Cleanup Routine
240  *
241  * e1000_exit_module is called just before the driver is removed
242  * from memory.
243  **/
244
245 static void __exit e1000_exit_module(void)
246 {
247         pci_unregister_driver(&e1000_driver);
248 }
249
250 module_exit(e1000_exit_module);
251
252 static int e1000_request_irq(struct e1000_adapter *adapter)
253 {
254         struct e1000_hw *hw = &adapter->hw;
255         struct net_device *netdev = adapter->netdev;
256         irq_handler_t handler = e1000_intr;
257         int irq_flags = IRQF_SHARED;
258         int err;
259
260         if (hw->mac_type >= e1000_82571) {
261                 adapter->have_msi = !pci_enable_msi(adapter->pdev);
262                 if (adapter->have_msi) {
263                         handler = e1000_intr_msi;
264                         irq_flags = 0;
265                 }
266         }
267
268         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
269                           netdev);
270         if (err) {
271                 if (adapter->have_msi)
272                         pci_disable_msi(adapter->pdev);
273                 DPRINTK(PROBE, ERR,
274                         "Unable to allocate interrupt Error: %d\n", err);
275         }
276
277         return err;
278 }
279
280 static void e1000_free_irq(struct e1000_adapter *adapter)
281 {
282         struct net_device *netdev = adapter->netdev;
283
284         free_irq(adapter->pdev->irq, netdev);
285
286         if (adapter->have_msi)
287                 pci_disable_msi(adapter->pdev);
288 }
289
290 /**
291  * e1000_irq_disable - Mask off interrupt generation on the NIC
292  * @adapter: board private structure
293  **/
294
295 static void e1000_irq_disable(struct e1000_adapter *adapter)
296 {
297         struct e1000_hw *hw = &adapter->hw;
298
299         ew32(IMC, ~0);
300         E1000_WRITE_FLUSH();
301         synchronize_irq(adapter->pdev->irq);
302 }
303
304 /**
305  * e1000_irq_enable - Enable default interrupt generation settings
306  * @adapter: board private structure
307  **/
308
309 static void e1000_irq_enable(struct e1000_adapter *adapter)
310 {
311         struct e1000_hw *hw = &adapter->hw;
312
313         ew32(IMS, IMS_ENABLE_MASK);
314         E1000_WRITE_FLUSH();
315 }
316
317 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
318 {
319         struct e1000_hw *hw = &adapter->hw;
320         struct net_device *netdev = adapter->netdev;
321         u16 vid = hw->mng_cookie.vlan_id;
322         u16 old_vid = adapter->mng_vlan_id;
323         if (adapter->vlgrp) {
324                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
325                         if (hw->mng_cookie.status &
326                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
327                                 e1000_vlan_rx_add_vid(netdev, vid);
328                                 adapter->mng_vlan_id = vid;
329                         } else
330                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
331
332                         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
333                                         (vid != old_vid) &&
334                             !vlan_group_get_device(adapter->vlgrp, old_vid))
335                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
336                 } else
337                         adapter->mng_vlan_id = vid;
338         }
339 }
340
341 /**
342  * e1000_release_hw_control - release control of the h/w to f/w
343  * @adapter: address of board private structure
344  *
345  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
346  * For ASF and Pass Through versions of f/w this means that the
347  * driver is no longer loaded. For AMT version (only with 82573) i
348  * of the f/w this means that the network i/f is closed.
349  *
350  **/
351
352 static void e1000_release_hw_control(struct e1000_adapter *adapter)
353 {
354         u32 ctrl_ext;
355         u32 swsm;
356         struct e1000_hw *hw = &adapter->hw;
357
358         /* Let firmware taken over control of h/w */
359         switch (hw->mac_type) {
360         case e1000_82573:
361                 swsm = er32(SWSM);
362                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
363                 break;
364         case e1000_82571:
365         case e1000_82572:
366         case e1000_80003es2lan:
367         case e1000_ich8lan:
368                 ctrl_ext = er32(CTRL_EXT);
369                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
370                 break;
371         default:
372                 break;
373         }
374 }
375
376 /**
377  * e1000_get_hw_control - get control of the h/w from f/w
378  * @adapter: address of board private structure
379  *
380  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
381  * For ASF and Pass Through versions of f/w this means that
382  * the driver is loaded. For AMT version (only with 82573)
383  * of the f/w this means that the network i/f is open.
384  *
385  **/
386
387 static void e1000_get_hw_control(struct e1000_adapter *adapter)
388 {
389         u32 ctrl_ext;
390         u32 swsm;
391         struct e1000_hw *hw = &adapter->hw;
392
393         /* Let firmware know the driver has taken over */
394         switch (hw->mac_type) {
395         case e1000_82573:
396                 swsm = er32(SWSM);
397                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
398                 break;
399         case e1000_82571:
400         case e1000_82572:
401         case e1000_80003es2lan:
402         case e1000_ich8lan:
403                 ctrl_ext = er32(CTRL_EXT);
404                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
405                 break;
406         default:
407                 break;
408         }
409 }
410
411 static void e1000_init_manageability(struct e1000_adapter *adapter)
412 {
413         struct e1000_hw *hw = &adapter->hw;
414
415         if (adapter->en_mng_pt) {
416                 u32 manc = er32(MANC);
417
418                 /* disable hardware interception of ARP */
419                 manc &= ~(E1000_MANC_ARP_EN);
420
421                 /* enable receiving management packets to the host */
422                 /* this will probably generate destination unreachable messages
423                  * from the host OS, but the packets will be handled on SMBUS */
424                 if (hw->has_manc2h) {
425                         u32 manc2h = er32(MANC2H);
426
427                         manc |= E1000_MANC_EN_MNG2HOST;
428 #define E1000_MNG2HOST_PORT_623 (1 << 5)
429 #define E1000_MNG2HOST_PORT_664 (1 << 6)
430                         manc2h |= E1000_MNG2HOST_PORT_623;
431                         manc2h |= E1000_MNG2HOST_PORT_664;
432                         ew32(MANC2H, manc2h);
433                 }
434
435                 ew32(MANC, manc);
436         }
437 }
438
439 static void e1000_release_manageability(struct e1000_adapter *adapter)
440 {
441         struct e1000_hw *hw = &adapter->hw;
442
443         if (adapter->en_mng_pt) {
444                 u32 manc = er32(MANC);
445
446                 /* re-enable hardware interception of ARP */
447                 manc |= E1000_MANC_ARP_EN;
448
449                 if (hw->has_manc2h)
450                         manc &= ~E1000_MANC_EN_MNG2HOST;
451
452                 /* don't explicitly have to mess with MANC2H since
453                  * MANC has an enable disable that gates MANC2H */
454
455                 ew32(MANC, manc);
456         }
457 }
458
459 /**
460  * e1000_configure - configure the hardware for RX and TX
461  * @adapter = private board structure
462  **/
463 static void e1000_configure(struct e1000_adapter *adapter)
464 {
465         struct net_device *netdev = adapter->netdev;
466         int i;
467
468         e1000_set_rx_mode(netdev);
469
470         e1000_restore_vlan(adapter);
471         e1000_init_manageability(adapter);
472
473         e1000_configure_tx(adapter);
474         e1000_setup_rctl(adapter);
475         e1000_configure_rx(adapter);
476         /* call E1000_DESC_UNUSED which always leaves
477          * at least 1 descriptor unused to make sure
478          * next_to_use != next_to_clean */
479         for (i = 0; i < adapter->num_rx_queues; i++) {
480                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
481                 adapter->alloc_rx_buf(adapter, ring,
482                                       E1000_DESC_UNUSED(ring));
483         }
484
485         adapter->tx_queue_len = netdev->tx_queue_len;
486 }
487
488 int e1000_up(struct e1000_adapter *adapter)
489 {
490         struct e1000_hw *hw = &adapter->hw;
491
492         /* hardware has been reset, we need to reload some things */
493         e1000_configure(adapter);
494
495         clear_bit(__E1000_DOWN, &adapter->flags);
496
497         napi_enable(&adapter->napi);
498
499         e1000_irq_enable(adapter);
500
501         /* fire a link change interrupt to start the watchdog */
502         ew32(ICS, E1000_ICS_LSC);
503         return 0;
504 }
505
506 /**
507  * e1000_power_up_phy - restore link in case the phy was powered down
508  * @adapter: address of board private structure
509  *
510  * The phy may be powered down to save power and turn off link when the
511  * driver is unloaded and wake on lan is not enabled (among others)
512  * *** this routine MUST be followed by a call to e1000_reset ***
513  *
514  **/
515
516 void e1000_power_up_phy(struct e1000_adapter *adapter)
517 {
518         struct e1000_hw *hw = &adapter->hw;
519         u16 mii_reg = 0;
520
521         /* Just clear the power down bit to wake the phy back up */
522         if (hw->media_type == e1000_media_type_copper) {
523                 /* according to the manual, the phy will retain its
524                  * settings across a power-down/up cycle */
525                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
526                 mii_reg &= ~MII_CR_POWER_DOWN;
527                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
528         }
529 }
530
531 static void e1000_power_down_phy(struct e1000_adapter *adapter)
532 {
533         struct e1000_hw *hw = &adapter->hw;
534
535         /* Power down the PHY so no link is implied when interface is down *
536          * The PHY cannot be powered down if any of the following is true *
537          * (a) WoL is enabled
538          * (b) AMT is active
539          * (c) SoL/IDER session is active */
540         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
541            hw->media_type == e1000_media_type_copper) {
542                 u16 mii_reg = 0;
543
544                 switch (hw->mac_type) {
545                 case e1000_82540:
546                 case e1000_82545:
547                 case e1000_82545_rev_3:
548                 case e1000_82546:
549                 case e1000_82546_rev_3:
550                 case e1000_82541:
551                 case e1000_82541_rev_2:
552                 case e1000_82547:
553                 case e1000_82547_rev_2:
554                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
555                                 goto out;
556                         break;
557                 case e1000_82571:
558                 case e1000_82572:
559                 case e1000_82573:
560                 case e1000_80003es2lan:
561                 case e1000_ich8lan:
562                         if (e1000_check_mng_mode(hw) ||
563                             e1000_check_phy_reset_block(hw))
564                                 goto out;
565                         break;
566                 default:
567                         goto out;
568                 }
569                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
570                 mii_reg |= MII_CR_POWER_DOWN;
571                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
572                 mdelay(1);
573         }
574 out:
575         return;
576 }
577
578 void e1000_down(struct e1000_adapter *adapter)
579 {
580         struct net_device *netdev = adapter->netdev;
581
582         /* signal that we're down so the interrupt handler does not
583          * reschedule our watchdog timer */
584         set_bit(__E1000_DOWN, &adapter->flags);
585
586         napi_disable(&adapter->napi);
587
588         e1000_irq_disable(adapter);
589
590         del_timer_sync(&adapter->tx_fifo_stall_timer);
591         del_timer_sync(&adapter->watchdog_timer);
592         del_timer_sync(&adapter->phy_info_timer);
593
594         netdev->tx_queue_len = adapter->tx_queue_len;
595         adapter->link_speed = 0;
596         adapter->link_duplex = 0;
597         netif_carrier_off(netdev);
598         netif_stop_queue(netdev);
599
600         e1000_reset(adapter);
601         e1000_clean_all_tx_rings(adapter);
602         e1000_clean_all_rx_rings(adapter);
603 }
604
605 void e1000_reinit_locked(struct e1000_adapter *adapter)
606 {
607         WARN_ON(in_interrupt());
608         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
609                 msleep(1);
610         e1000_down(adapter);
611         e1000_up(adapter);
612         clear_bit(__E1000_RESETTING, &adapter->flags);
613 }
614
615 void e1000_reset(struct e1000_adapter *adapter)
616 {
617         struct e1000_hw *hw = &adapter->hw;
618         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
619         u16 fc_high_water_mark = E1000_FC_HIGH_DIFF;
620         bool legacy_pba_adjust = false;
621
622         /* Repartition Pba for greater than 9k mtu
623          * To take effect CTRL.RST is required.
624          */
625
626         switch (hw->mac_type) {
627         case e1000_82542_rev2_0:
628         case e1000_82542_rev2_1:
629         case e1000_82543:
630         case e1000_82544:
631         case e1000_82540:
632         case e1000_82541:
633         case e1000_82541_rev_2:
634                 legacy_pba_adjust = true;
635                 pba = E1000_PBA_48K;
636                 break;
637         case e1000_82545:
638         case e1000_82545_rev_3:
639         case e1000_82546:
640         case e1000_82546_rev_3:
641                 pba = E1000_PBA_48K;
642                 break;
643         case e1000_82547:
644         case e1000_82547_rev_2:
645                 legacy_pba_adjust = true;
646                 pba = E1000_PBA_30K;
647                 break;
648         case e1000_82571:
649         case e1000_82572:
650         case e1000_80003es2lan:
651                 pba = E1000_PBA_38K;
652                 break;
653         case e1000_82573:
654                 pba = E1000_PBA_20K;
655                 break;
656         case e1000_ich8lan:
657                 pba = E1000_PBA_8K;
658         case e1000_undefined:
659         case e1000_num_macs:
660                 break;
661         }
662
663         if (legacy_pba_adjust) {
664                 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
665                         pba -= 8; /* allocate more FIFO for Tx */
666
667                 if (hw->mac_type == e1000_82547) {
668                         adapter->tx_fifo_head = 0;
669                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
670                         adapter->tx_fifo_size =
671                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
672                         atomic_set(&adapter->tx_fifo_stall, 0);
673                 }
674         } else if (hw->max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
675                 /* adjust PBA for jumbo frames */
676                 ew32(PBA, pba);
677
678                 /* To maintain wire speed transmits, the Tx FIFO should be
679                  * large enough to accomodate two full transmit packets,
680                  * rounded up to the next 1KB and expressed in KB.  Likewise,
681                  * the Rx FIFO should be large enough to accomodate at least
682                  * one full receive packet and is similarly rounded up and
683                  * expressed in KB. */
684                 pba = er32(PBA);
685                 /* upper 16 bits has Tx packet buffer allocation size in KB */
686                 tx_space = pba >> 16;
687                 /* lower 16 bits has Rx packet buffer allocation size in KB */
688                 pba &= 0xffff;
689                 /* don't include ethernet FCS because hardware appends/strips */
690                 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
691                                VLAN_TAG_SIZE;
692                 min_tx_space = min_rx_space;
693                 min_tx_space *= 2;
694                 min_tx_space = ALIGN(min_tx_space, 1024);
695                 min_tx_space >>= 10;
696                 min_rx_space = ALIGN(min_rx_space, 1024);
697                 min_rx_space >>= 10;
698
699                 /* If current Tx allocation is less than the min Tx FIFO size,
700                  * and the min Tx FIFO size is less than the current Rx FIFO
701                  * allocation, take space away from current Rx allocation */
702                 if (tx_space < min_tx_space &&
703                     ((min_tx_space - tx_space) < pba)) {
704                         pba = pba - (min_tx_space - tx_space);
705
706                         /* PCI/PCIx hardware has PBA alignment constraints */
707                         switch (hw->mac_type) {
708                         case e1000_82545 ... e1000_82546_rev_3:
709                                 pba &= ~(E1000_PBA_8K - 1);
710                                 break;
711                         default:
712                                 break;
713                         }
714
715                         /* if short on rx space, rx wins and must trump tx
716                          * adjustment or use Early Receive if available */
717                         if (pba < min_rx_space) {
718                                 switch (hw->mac_type) {
719                                 case e1000_82573:
720                                         /* ERT enabled in e1000_configure_rx */
721                                         break;
722                                 default:
723                                         pba = min_rx_space;
724                                         break;
725                                 }
726                         }
727                 }
728         }
729
730         ew32(PBA, pba);
731
732         /* flow control settings */
733         /* Set the FC high water mark to 90% of the FIFO size.
734          * Required to clear last 3 LSB */
735         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
736         /* We can't use 90% on small FIFOs because the remainder
737          * would be less than 1 full frame.  In this case, we size
738          * it to allow at least a full frame above the high water
739          *  mark. */
740         if (pba < E1000_PBA_16K)
741                 fc_high_water_mark = (pba * 1024) - 1600;
742
743         hw->fc_high_water = fc_high_water_mark;
744         hw->fc_low_water = fc_high_water_mark - 8;
745         if (hw->mac_type == e1000_80003es2lan)
746                 hw->fc_pause_time = 0xFFFF;
747         else
748                 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
749         hw->fc_send_xon = 1;
750         hw->fc = hw->original_fc;
751
752         /* Allow time for pending master requests to run */
753         e1000_reset_hw(hw);
754         if (hw->mac_type >= e1000_82544)
755                 ew32(WUC, 0);
756
757         if (e1000_init_hw(hw))
758                 DPRINTK(PROBE, ERR, "Hardware Error\n");
759         e1000_update_mng_vlan(adapter);
760
761         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
762         if (hw->mac_type >= e1000_82544 &&
763             hw->mac_type <= e1000_82547_rev_2 &&
764             hw->autoneg == 1 &&
765             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
766                 u32 ctrl = er32(CTRL);
767                 /* clear phy power management bit if we are in gig only mode,
768                  * which if enabled will attempt negotiation to 100Mb, which
769                  * can cause a loss of link at power off or driver unload */
770                 ctrl &= ~E1000_CTRL_SWDPIN3;
771                 ew32(CTRL, ctrl);
772         }
773
774         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
775         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
776
777         e1000_reset_adaptive(hw);
778         e1000_phy_get_info(hw, &adapter->phy_info);
779
780         if (!adapter->smart_power_down &&
781             (hw->mac_type == e1000_82571 ||
782              hw->mac_type == e1000_82572)) {
783                 u16 phy_data = 0;
784                 /* speed up time to link by disabling smart power down, ignore
785                  * the return value of this function because there is nothing
786                  * different we would do if it failed */
787                 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
788                                    &phy_data);
789                 phy_data &= ~IGP02E1000_PM_SPD;
790                 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
791                                     phy_data);
792         }
793
794         e1000_release_manageability(adapter);
795 }
796
797 /**
798  *  Dump the eeprom for users having checksum issues
799  **/
800 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
801 {
802         struct net_device *netdev = adapter->netdev;
803         struct ethtool_eeprom eeprom;
804         const struct ethtool_ops *ops = netdev->ethtool_ops;
805         u8 *data;
806         int i;
807         u16 csum_old, csum_new = 0;
808
809         eeprom.len = ops->get_eeprom_len(netdev);
810         eeprom.offset = 0;
811
812         data = kmalloc(eeprom.len, GFP_KERNEL);
813         if (!data) {
814                 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
815                        " data\n");
816                 return;
817         }
818
819         ops->get_eeprom(netdev, &eeprom, data);
820
821         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
822                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
823         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
824                 csum_new += data[i] + (data[i + 1] << 8);
825         csum_new = EEPROM_SUM - csum_new;
826
827         printk(KERN_ERR "/*********************/\n");
828         printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
829         printk(KERN_ERR "Calculated              : 0x%04x\n", csum_new);
830
831         printk(KERN_ERR "Offset    Values\n");
832         printk(KERN_ERR "========  ======\n");
833         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
834
835         printk(KERN_ERR "Include this output when contacting your support "
836                "provider.\n");
837         printk(KERN_ERR "This is not a software error! Something bad "
838                "happened to your hardware or\n");
839         printk(KERN_ERR "EEPROM image. Ignoring this "
840                "problem could result in further problems,\n");
841         printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
842         printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
843                "which is invalid\n");
844         printk(KERN_ERR "and requires you to set the proper MAC "
845                "address manually before continuing\n");
846         printk(KERN_ERR "to enable this network device.\n");
847         printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
848                "to your hardware vendor\n");
849         printk(KERN_ERR "or Intel Customer Support.\n");
850         printk(KERN_ERR "/*********************/\n");
851
852         kfree(data);
853 }
854
855 /**
856  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
857  * @pdev: PCI device information struct
858  *
859  * Return true if an adapter needs ioport resources
860  **/
861 static int e1000_is_need_ioport(struct pci_dev *pdev)
862 {
863         switch (pdev->device) {
864         case E1000_DEV_ID_82540EM:
865         case E1000_DEV_ID_82540EM_LOM:
866         case E1000_DEV_ID_82540EP:
867         case E1000_DEV_ID_82540EP_LOM:
868         case E1000_DEV_ID_82540EP_LP:
869         case E1000_DEV_ID_82541EI:
870         case E1000_DEV_ID_82541EI_MOBILE:
871         case E1000_DEV_ID_82541ER:
872         case E1000_DEV_ID_82541ER_LOM:
873         case E1000_DEV_ID_82541GI:
874         case E1000_DEV_ID_82541GI_LF:
875         case E1000_DEV_ID_82541GI_MOBILE:
876         case E1000_DEV_ID_82544EI_COPPER:
877         case E1000_DEV_ID_82544EI_FIBER:
878         case E1000_DEV_ID_82544GC_COPPER:
879         case E1000_DEV_ID_82544GC_LOM:
880         case E1000_DEV_ID_82545EM_COPPER:
881         case E1000_DEV_ID_82545EM_FIBER:
882         case E1000_DEV_ID_82546EB_COPPER:
883         case E1000_DEV_ID_82546EB_FIBER:
884         case E1000_DEV_ID_82546EB_QUAD_COPPER:
885                 return true;
886         default:
887                 return false;
888         }
889 }
890
891 static const struct net_device_ops e1000_netdev_ops = {
892         .ndo_open               = e1000_open,
893         .ndo_stop               = e1000_close,
894         .ndo_start_xmit         = e1000_xmit_frame,
895         .ndo_get_stats          = e1000_get_stats,
896         .ndo_set_rx_mode        = e1000_set_rx_mode,
897         .ndo_set_mac_address    = e1000_set_mac,
898         .ndo_tx_timeout         = e1000_tx_timeout,
899         .ndo_change_mtu         = e1000_change_mtu,
900         .ndo_do_ioctl           = e1000_ioctl,
901         .ndo_validate_addr      = eth_validate_addr,
902
903         .ndo_vlan_rx_register   = e1000_vlan_rx_register,
904         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
905         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
906 #ifdef CONFIG_NET_POLL_CONTROLLER
907         .ndo_poll_controller    = e1000_netpoll,
908 #endif
909 };
910
911 /**
912  * e1000_probe - Device Initialization Routine
913  * @pdev: PCI device information struct
914  * @ent: entry in e1000_pci_tbl
915  *
916  * Returns 0 on success, negative on failure
917  *
918  * e1000_probe initializes an adapter identified by a pci_dev structure.
919  * The OS initialization, configuring of the adapter private structure,
920  * and a hardware reset occur.
921  **/
922 static int __devinit e1000_probe(struct pci_dev *pdev,
923                                  const struct pci_device_id *ent)
924 {
925         struct net_device *netdev;
926         struct e1000_adapter *adapter;
927         struct e1000_hw *hw;
928
929         static int cards_found = 0;
930         static int global_quad_port_a = 0; /* global ksp3 port a indication */
931         int i, err, pci_using_dac;
932         u16 eeprom_data = 0;
933         u16 eeprom_apme_mask = E1000_EEPROM_APME;
934         int bars, need_ioport;
935
936         /* do not allocate ioport bars when not needed */
937         need_ioport = e1000_is_need_ioport(pdev);
938         if (need_ioport) {
939                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
940                 err = pci_enable_device(pdev);
941         } else {
942                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
943                 err = pci_enable_device_mem(pdev);
944         }
945         if (err)
946                 return err;
947
948         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK) &&
949             !pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK)) {
950                 pci_using_dac = 1;
951         } else {
952                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
953                 if (err) {
954                         err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
955                         if (err) {
956                                 E1000_ERR("No usable DMA configuration, "
957                                           "aborting\n");
958                                 goto err_dma;
959                         }
960                 }
961                 pci_using_dac = 0;
962         }
963
964         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
965         if (err)
966                 goto err_pci_reg;
967
968         pci_set_master(pdev);
969
970         err = -ENOMEM;
971         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
972         if (!netdev)
973                 goto err_alloc_etherdev;
974
975         SET_NETDEV_DEV(netdev, &pdev->dev);
976
977         pci_set_drvdata(pdev, netdev);
978         adapter = netdev_priv(netdev);
979         adapter->netdev = netdev;
980         adapter->pdev = pdev;
981         adapter->msg_enable = (1 << debug) - 1;
982         adapter->bars = bars;
983         adapter->need_ioport = need_ioport;
984
985         hw = &adapter->hw;
986         hw->back = adapter;
987
988         err = -EIO;
989         hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
990         if (!hw->hw_addr)
991                 goto err_ioremap;
992
993         if (adapter->need_ioport) {
994                 for (i = BAR_1; i <= BAR_5; i++) {
995                         if (pci_resource_len(pdev, i) == 0)
996                                 continue;
997                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
998                                 hw->io_base = pci_resource_start(pdev, i);
999                                 break;
1000                         }
1001                 }
1002         }
1003
1004         netdev->netdev_ops = &e1000_netdev_ops;
1005         e1000_set_ethtool_ops(netdev);
1006         netdev->watchdog_timeo = 5 * HZ;
1007         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1008
1009         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1010
1011         adapter->bd_number = cards_found;
1012
1013         /* setup the private structure */
1014
1015         err = e1000_sw_init(adapter);
1016         if (err)
1017                 goto err_sw_init;
1018
1019         err = -EIO;
1020         /* Flash BAR mapping must happen after e1000_sw_init
1021          * because it depends on mac_type */
1022         if ((hw->mac_type == e1000_ich8lan) &&
1023            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
1024                 hw->flash_address = pci_ioremap_bar(pdev, 1);
1025                 if (!hw->flash_address)
1026                         goto err_flashmap;
1027         }
1028
1029         if (e1000_check_phy_reset_block(hw))
1030                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
1031
1032         if (hw->mac_type >= e1000_82543) {
1033                 netdev->features = NETIF_F_SG |
1034                                    NETIF_F_HW_CSUM |
1035                                    NETIF_F_HW_VLAN_TX |
1036                                    NETIF_F_HW_VLAN_RX |
1037                                    NETIF_F_HW_VLAN_FILTER;
1038                 if (hw->mac_type == e1000_ich8lan)
1039                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
1040         }
1041
1042         if ((hw->mac_type >= e1000_82544) &&
1043            (hw->mac_type != e1000_82547))
1044                 netdev->features |= NETIF_F_TSO;
1045
1046         if (hw->mac_type > e1000_82547_rev_2)
1047                 netdev->features |= NETIF_F_TSO6;
1048         if (pci_using_dac)
1049                 netdev->features |= NETIF_F_HIGHDMA;
1050
1051         netdev->vlan_features |= NETIF_F_TSO;
1052         netdev->vlan_features |= NETIF_F_TSO6;
1053         netdev->vlan_features |= NETIF_F_HW_CSUM;
1054         netdev->vlan_features |= NETIF_F_SG;
1055
1056         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1057
1058         /* initialize eeprom parameters */
1059         if (e1000_init_eeprom_params(hw)) {
1060                 E1000_ERR("EEPROM initialization failed\n");
1061                 goto err_eeprom;
1062         }
1063
1064         /* before reading the EEPROM, reset the controller to
1065          * put the device in a known good starting state */
1066
1067         e1000_reset_hw(hw);
1068
1069         /* make sure the EEPROM is good */
1070         if (e1000_validate_eeprom_checksum(hw) < 0) {
1071                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1072                 e1000_dump_eeprom(adapter);
1073                 /*
1074                  * set MAC address to all zeroes to invalidate and temporary
1075                  * disable this device for the user. This blocks regular
1076                  * traffic while still permitting ethtool ioctls from reaching
1077                  * the hardware as well as allowing the user to run the
1078                  * interface after manually setting a hw addr using
1079                  * `ip set address`
1080                  */
1081                 memset(hw->mac_addr, 0, netdev->addr_len);
1082         } else {
1083                 /* copy the MAC address out of the EEPROM */
1084                 if (e1000_read_mac_addr(hw))
1085                         DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1086         }
1087         /* don't block initalization here due to bad MAC address */
1088         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1089         memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1090
1091         if (!is_valid_ether_addr(netdev->perm_addr))
1092                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1093
1094         e1000_get_bus_info(hw);
1095
1096         init_timer(&adapter->tx_fifo_stall_timer);
1097         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1098         adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1099
1100         init_timer(&adapter->watchdog_timer);
1101         adapter->watchdog_timer.function = &e1000_watchdog;
1102         adapter->watchdog_timer.data = (unsigned long) adapter;
1103
1104         init_timer(&adapter->phy_info_timer);
1105         adapter->phy_info_timer.function = &e1000_update_phy_info;
1106         adapter->phy_info_timer.data = (unsigned long)adapter;
1107
1108         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1109
1110         e1000_check_options(adapter);
1111
1112         /* Initial Wake on LAN setting
1113          * If APM wake is enabled in the EEPROM,
1114          * enable the ACPI Magic Packet filter
1115          */
1116
1117         switch (hw->mac_type) {
1118         case e1000_82542_rev2_0:
1119         case e1000_82542_rev2_1:
1120         case e1000_82543:
1121                 break;
1122         case e1000_82544:
1123                 e1000_read_eeprom(hw,
1124                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1125                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1126                 break;
1127         case e1000_ich8lan:
1128                 e1000_read_eeprom(hw,
1129                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1130                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1131                 break;
1132         case e1000_82546:
1133         case e1000_82546_rev_3:
1134         case e1000_82571:
1135         case e1000_80003es2lan:
1136                 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1137                         e1000_read_eeprom(hw,
1138                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1139                         break;
1140                 }
1141                 /* Fall Through */
1142         default:
1143                 e1000_read_eeprom(hw,
1144                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1145                 break;
1146         }
1147         if (eeprom_data & eeprom_apme_mask)
1148                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1149
1150         /* now that we have the eeprom settings, apply the special cases
1151          * where the eeprom may be wrong or the board simply won't support
1152          * wake on lan on a particular port */
1153         switch (pdev->device) {
1154         case E1000_DEV_ID_82546GB_PCIE:
1155                 adapter->eeprom_wol = 0;
1156                 break;
1157         case E1000_DEV_ID_82546EB_FIBER:
1158         case E1000_DEV_ID_82546GB_FIBER:
1159         case E1000_DEV_ID_82571EB_FIBER:
1160                 /* Wake events only supported on port A for dual fiber
1161                  * regardless of eeprom setting */
1162                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1163                         adapter->eeprom_wol = 0;
1164                 break;
1165         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1166         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1167         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1168         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1169         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1170                 /* if quad port adapter, disable WoL on all but port A */
1171                 if (global_quad_port_a != 0)
1172                         adapter->eeprom_wol = 0;
1173                 else
1174                         adapter->quad_port_a = 1;
1175                 /* Reset for multiple quad port adapters */
1176                 if (++global_quad_port_a == 4)
1177                         global_quad_port_a = 0;
1178                 break;
1179         }
1180
1181         /* initialize the wol settings based on the eeprom settings */
1182         adapter->wol = adapter->eeprom_wol;
1183         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1184
1185         /* print bus type/speed/width info */
1186         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1187                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1188                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1189                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1190                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1191                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1192                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1193                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1194                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1195                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1196                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1197                  "32-bit"));
1198
1199         printk("%pM\n", netdev->dev_addr);
1200
1201         if (hw->bus_type == e1000_bus_type_pci_express) {
1202                 DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
1203                         "longer be supported by this driver in the future.\n",
1204                         pdev->vendor, pdev->device);
1205                 DPRINTK(PROBE, WARNING, "please use the \"e1000e\" "
1206                         "driver instead.\n");
1207         }
1208
1209         /* reset the hardware with the new settings */
1210         e1000_reset(adapter);
1211
1212         /* If the controller is 82573 and f/w is AMT, do not set
1213          * DRV_LOAD until the interface is up.  For all other cases,
1214          * let the f/w know that the h/w is now under the control
1215          * of the driver. */
1216         if (hw->mac_type != e1000_82573 ||
1217             !e1000_check_mng_mode(hw))
1218                 e1000_get_hw_control(adapter);
1219
1220         /* tell the stack to leave us alone until e1000_open() is called */
1221         netif_carrier_off(netdev);
1222         netif_stop_queue(netdev);
1223
1224         strcpy(netdev->name, "eth%d");
1225         err = register_netdev(netdev);
1226         if (err)
1227                 goto err_register;
1228
1229         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1230
1231         cards_found++;
1232         return 0;
1233
1234 err_register:
1235         e1000_release_hw_control(adapter);
1236 err_eeprom:
1237         if (!e1000_check_phy_reset_block(hw))
1238                 e1000_phy_hw_reset(hw);
1239
1240         if (hw->flash_address)
1241                 iounmap(hw->flash_address);
1242 err_flashmap:
1243         kfree(adapter->tx_ring);
1244         kfree(adapter->rx_ring);
1245 err_sw_init:
1246         iounmap(hw->hw_addr);
1247 err_ioremap:
1248         free_netdev(netdev);
1249 err_alloc_etherdev:
1250         pci_release_selected_regions(pdev, bars);
1251 err_pci_reg:
1252 err_dma:
1253         pci_disable_device(pdev);
1254         return err;
1255 }
1256
1257 /**
1258  * e1000_remove - Device Removal Routine
1259  * @pdev: PCI device information struct
1260  *
1261  * e1000_remove is called by the PCI subsystem to alert the driver
1262  * that it should release a PCI device.  The could be caused by a
1263  * Hot-Plug event, or because the driver is going to be removed from
1264  * memory.
1265  **/
1266
1267 static void __devexit e1000_remove(struct pci_dev *pdev)
1268 {
1269         struct net_device *netdev = pci_get_drvdata(pdev);
1270         struct e1000_adapter *adapter = netdev_priv(netdev);
1271         struct e1000_hw *hw = &adapter->hw;
1272
1273         cancel_work_sync(&adapter->reset_task);
1274
1275         e1000_release_manageability(adapter);
1276
1277         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1278          * would have already happened in close and is redundant. */
1279         e1000_release_hw_control(adapter);
1280
1281         unregister_netdev(netdev);
1282
1283         if (!e1000_check_phy_reset_block(hw))
1284                 e1000_phy_hw_reset(hw);
1285
1286         kfree(adapter->tx_ring);
1287         kfree(adapter->rx_ring);
1288
1289         iounmap(hw->hw_addr);
1290         if (hw->flash_address)
1291                 iounmap(hw->flash_address);
1292         pci_release_selected_regions(pdev, adapter->bars);
1293
1294         free_netdev(netdev);
1295
1296         pci_disable_device(pdev);
1297 }
1298
1299 /**
1300  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1301  * @adapter: board private structure to initialize
1302  *
1303  * e1000_sw_init initializes the Adapter private data structure.
1304  * Fields are initialized based on PCI device information and
1305  * OS network device settings (MTU size).
1306  **/
1307
1308 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1309 {
1310         struct e1000_hw *hw = &adapter->hw;
1311         struct net_device *netdev = adapter->netdev;
1312         struct pci_dev *pdev = adapter->pdev;
1313
1314         /* PCI config space info */
1315
1316         hw->vendor_id = pdev->vendor;
1317         hw->device_id = pdev->device;
1318         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1319         hw->subsystem_id = pdev->subsystem_device;
1320         hw->revision_id = pdev->revision;
1321
1322         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1323
1324         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1325         hw->max_frame_size = netdev->mtu +
1326                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1327         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1328
1329         /* identify the MAC */
1330
1331         if (e1000_set_mac_type(hw)) {
1332                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1333                 return -EIO;
1334         }
1335
1336         switch (hw->mac_type) {
1337         default:
1338                 break;
1339         case e1000_82541:
1340         case e1000_82547:
1341         case e1000_82541_rev_2:
1342         case e1000_82547_rev_2:
1343                 hw->phy_init_script = 1;
1344                 break;
1345         }
1346
1347         e1000_set_media_type(hw);
1348
1349         hw->wait_autoneg_complete = false;
1350         hw->tbi_compatibility_en = true;
1351         hw->adaptive_ifs = true;
1352
1353         /* Copper options */
1354
1355         if (hw->media_type == e1000_media_type_copper) {
1356                 hw->mdix = AUTO_ALL_MODES;
1357                 hw->disable_polarity_correction = false;
1358                 hw->master_slave = E1000_MASTER_SLAVE;
1359         }
1360
1361         adapter->num_tx_queues = 1;
1362         adapter->num_rx_queues = 1;
1363
1364         if (e1000_alloc_queues(adapter)) {
1365                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1366                 return -ENOMEM;
1367         }
1368
1369         /* Explicitly disable IRQ since the NIC can be in any state. */
1370         e1000_irq_disable(adapter);
1371
1372         spin_lock_init(&adapter->stats_lock);
1373
1374         set_bit(__E1000_DOWN, &adapter->flags);
1375
1376         return 0;
1377 }
1378
1379 /**
1380  * e1000_alloc_queues - Allocate memory for all rings
1381  * @adapter: board private structure to initialize
1382  *
1383  * We allocate one ring per queue at run-time since we don't know the
1384  * number of queues at compile-time.
1385  **/
1386
1387 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1388 {
1389         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1390                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1391         if (!adapter->tx_ring)
1392                 return -ENOMEM;
1393
1394         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1395                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1396         if (!adapter->rx_ring) {
1397                 kfree(adapter->tx_ring);
1398                 return -ENOMEM;
1399         }
1400
1401         return E1000_SUCCESS;
1402 }
1403
1404 /**
1405  * e1000_open - Called when a network interface is made active
1406  * @netdev: network interface device structure
1407  *
1408  * Returns 0 on success, negative value on failure
1409  *
1410  * The open entry point is called when a network interface is made
1411  * active by the system (IFF_UP).  At this point all resources needed
1412  * for transmit and receive operations are allocated, the interrupt
1413  * handler is registered with the OS, the watchdog timer is started,
1414  * and the stack is notified that the interface is ready.
1415  **/
1416
1417 static int e1000_open(struct net_device *netdev)
1418 {
1419         struct e1000_adapter *adapter = netdev_priv(netdev);
1420         struct e1000_hw *hw = &adapter->hw;
1421         int err;
1422
1423         /* disallow open during test */
1424         if (test_bit(__E1000_TESTING, &adapter->flags))
1425                 return -EBUSY;
1426
1427         /* allocate transmit descriptors */
1428         err = e1000_setup_all_tx_resources(adapter);
1429         if (err)
1430                 goto err_setup_tx;
1431
1432         /* allocate receive descriptors */
1433         err = e1000_setup_all_rx_resources(adapter);
1434         if (err)
1435                 goto err_setup_rx;
1436
1437         e1000_power_up_phy(adapter);
1438
1439         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1440         if ((hw->mng_cookie.status &
1441                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1442                 e1000_update_mng_vlan(adapter);
1443         }
1444
1445         /* If AMT is enabled, let the firmware know that the network
1446          * interface is now open */
1447         if (hw->mac_type == e1000_82573 &&
1448             e1000_check_mng_mode(hw))
1449                 e1000_get_hw_control(adapter);
1450
1451         /* before we allocate an interrupt, we must be ready to handle it.
1452          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1453          * as soon as we call pci_request_irq, so we have to setup our
1454          * clean_rx handler before we do so.  */
1455         e1000_configure(adapter);
1456
1457         err = e1000_request_irq(adapter);
1458         if (err)
1459                 goto err_req_irq;
1460
1461         /* From here on the code is the same as e1000_up() */
1462         clear_bit(__E1000_DOWN, &adapter->flags);
1463
1464         napi_enable(&adapter->napi);
1465
1466         e1000_irq_enable(adapter);
1467
1468         netif_start_queue(netdev);
1469
1470         /* fire a link status change interrupt to start the watchdog */
1471         ew32(ICS, E1000_ICS_LSC);
1472
1473         return E1000_SUCCESS;
1474
1475 err_req_irq:
1476         e1000_release_hw_control(adapter);
1477         e1000_power_down_phy(adapter);
1478         e1000_free_all_rx_resources(adapter);
1479 err_setup_rx:
1480         e1000_free_all_tx_resources(adapter);
1481 err_setup_tx:
1482         e1000_reset(adapter);
1483
1484         return err;
1485 }
1486
1487 /**
1488  * e1000_close - Disables a network interface
1489  * @netdev: network interface device structure
1490  *
1491  * Returns 0, this is not allowed to fail
1492  *
1493  * The close entry point is called when an interface is de-activated
1494  * by the OS.  The hardware is still under the drivers control, but
1495  * needs to be disabled.  A global MAC reset is issued to stop the
1496  * hardware, and all transmit and receive resources are freed.
1497  **/
1498
1499 static int e1000_close(struct net_device *netdev)
1500 {
1501         struct e1000_adapter *adapter = netdev_priv(netdev);
1502         struct e1000_hw *hw = &adapter->hw;
1503
1504         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1505         e1000_down(adapter);
1506         e1000_power_down_phy(adapter);
1507         e1000_free_irq(adapter);
1508
1509         e1000_free_all_tx_resources(adapter);
1510         e1000_free_all_rx_resources(adapter);
1511
1512         /* kill manageability vlan ID if supported, but not if a vlan with
1513          * the same ID is registered on the host OS (let 8021q kill it) */
1514         if ((hw->mng_cookie.status &
1515                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1516              !(adapter->vlgrp &&
1517                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1518                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1519         }
1520
1521         /* If AMT is enabled, let the firmware know that the network
1522          * interface is now closed */
1523         if (hw->mac_type == e1000_82573 &&
1524             e1000_check_mng_mode(hw))
1525                 e1000_release_hw_control(adapter);
1526
1527         return 0;
1528 }
1529
1530 /**
1531  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1532  * @adapter: address of board private structure
1533  * @start: address of beginning of memory
1534  * @len: length of memory
1535  **/
1536 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1537                                   unsigned long len)
1538 {
1539         struct e1000_hw *hw = &adapter->hw;
1540         unsigned long begin = (unsigned long)start;
1541         unsigned long end = begin + len;
1542
1543         /* First rev 82545 and 82546 need to not allow any memory
1544          * write location to cross 64k boundary due to errata 23 */
1545         if (hw->mac_type == e1000_82545 ||
1546             hw->mac_type == e1000_82546) {
1547                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1548         }
1549
1550         return true;
1551 }
1552
1553 /**
1554  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1555  * @adapter: board private structure
1556  * @txdr:    tx descriptor ring (for a specific queue) to setup
1557  *
1558  * Return 0 on success, negative on failure
1559  **/
1560
1561 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1562                                     struct e1000_tx_ring *txdr)
1563 {
1564         struct pci_dev *pdev = adapter->pdev;
1565         int size;
1566
1567         size = sizeof(struct e1000_buffer) * txdr->count;
1568         txdr->buffer_info = vmalloc(size);
1569         if (!txdr->buffer_info) {
1570                 DPRINTK(PROBE, ERR,
1571                 "Unable to allocate memory for the transmit descriptor ring\n");
1572                 return -ENOMEM;
1573         }
1574         memset(txdr->buffer_info, 0, size);
1575
1576         /* round up to nearest 4K */
1577
1578         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1579         txdr->size = ALIGN(txdr->size, 4096);
1580
1581         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1582         if (!txdr->desc) {
1583 setup_tx_desc_die:
1584                 vfree(txdr->buffer_info);
1585                 DPRINTK(PROBE, ERR,
1586                 "Unable to allocate memory for the transmit descriptor ring\n");
1587                 return -ENOMEM;
1588         }
1589
1590         /* Fix for errata 23, can't cross 64kB boundary */
1591         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1592                 void *olddesc = txdr->desc;
1593                 dma_addr_t olddma = txdr->dma;
1594                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1595                                      "at %p\n", txdr->size, txdr->desc);
1596                 /* Try again, without freeing the previous */
1597                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1598                 /* Failed allocation, critical failure */
1599                 if (!txdr->desc) {
1600                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1601                         goto setup_tx_desc_die;
1602                 }
1603
1604                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1605                         /* give up */
1606                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1607                                             txdr->dma);
1608                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1609                         DPRINTK(PROBE, ERR,
1610                                 "Unable to allocate aligned memory "
1611                                 "for the transmit descriptor ring\n");
1612                         vfree(txdr->buffer_info);
1613                         return -ENOMEM;
1614                 } else {
1615                         /* Free old allocation, new allocation was successful */
1616                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1617                 }
1618         }
1619         memset(txdr->desc, 0, txdr->size);
1620
1621         txdr->next_to_use = 0;
1622         txdr->next_to_clean = 0;
1623
1624         return 0;
1625 }
1626
1627 /**
1628  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1629  *                                (Descriptors) for all queues
1630  * @adapter: board private structure
1631  *
1632  * Return 0 on success, negative on failure
1633  **/
1634
1635 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1636 {
1637         int i, err = 0;
1638
1639         for (i = 0; i < adapter->num_tx_queues; i++) {
1640                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1641                 if (err) {
1642                         DPRINTK(PROBE, ERR,
1643                                 "Allocation for Tx Queue %u failed\n", i);
1644                         for (i-- ; i >= 0; i--)
1645                                 e1000_free_tx_resources(adapter,
1646                                                         &adapter->tx_ring[i]);
1647                         break;
1648                 }
1649         }
1650
1651         return err;
1652 }
1653
1654 /**
1655  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1656  * @adapter: board private structure
1657  *
1658  * Configure the Tx unit of the MAC after a reset.
1659  **/
1660
1661 static void e1000_configure_tx(struct e1000_adapter *adapter)
1662 {
1663         u64 tdba;
1664         struct e1000_hw *hw = &adapter->hw;
1665         u32 tdlen, tctl, tipg, tarc;
1666         u32 ipgr1, ipgr2;
1667
1668         /* Setup the HW Tx Head and Tail descriptor pointers */
1669
1670         switch (adapter->num_tx_queues) {
1671         case 1:
1672         default:
1673                 tdba = adapter->tx_ring[0].dma;
1674                 tdlen = adapter->tx_ring[0].count *
1675                         sizeof(struct e1000_tx_desc);
1676                 ew32(TDLEN, tdlen);
1677                 ew32(TDBAH, (tdba >> 32));
1678                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1679                 ew32(TDT, 0);
1680                 ew32(TDH, 0);
1681                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1682                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1683                 break;
1684         }
1685
1686         /* Set the default values for the Tx Inter Packet Gap timer */
1687         if (hw->mac_type <= e1000_82547_rev_2 &&
1688             (hw->media_type == e1000_media_type_fiber ||
1689              hw->media_type == e1000_media_type_internal_serdes))
1690                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1691         else
1692                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1693
1694         switch (hw->mac_type) {
1695         case e1000_82542_rev2_0:
1696         case e1000_82542_rev2_1:
1697                 tipg = DEFAULT_82542_TIPG_IPGT;
1698                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1699                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1700                 break;
1701         case e1000_80003es2lan:
1702                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1703                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1704                 break;
1705         default:
1706                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1707                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1708                 break;
1709         }
1710         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1711         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1712         ew32(TIPG, tipg);
1713
1714         /* Set the Tx Interrupt Delay register */
1715
1716         ew32(TIDV, adapter->tx_int_delay);
1717         if (hw->mac_type >= e1000_82540)
1718                 ew32(TADV, adapter->tx_abs_int_delay);
1719
1720         /* Program the Transmit Control Register */
1721
1722         tctl = er32(TCTL);
1723         tctl &= ~E1000_TCTL_CT;
1724         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1725                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1726
1727         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1728                 tarc = er32(TARC0);
1729                 /* set the speed mode bit, we'll clear it if we're not at
1730                  * gigabit link later */
1731                 tarc |= (1 << 21);
1732                 ew32(TARC0, tarc);
1733         } else if (hw->mac_type == e1000_80003es2lan) {
1734                 tarc = er32(TARC0);
1735                 tarc |= 1;
1736                 ew32(TARC0, tarc);
1737                 tarc = er32(TARC1);
1738                 tarc |= 1;
1739                 ew32(TARC1, tarc);
1740         }
1741
1742         e1000_config_collision_dist(hw);
1743
1744         /* Setup Transmit Descriptor Settings for eop descriptor */
1745         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1746
1747         /* only set IDE if we are delaying interrupts using the timers */
1748         if (adapter->tx_int_delay)
1749                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1750
1751         if (hw->mac_type < e1000_82543)
1752                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1753         else
1754                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1755
1756         /* Cache if we're 82544 running in PCI-X because we'll
1757          * need this to apply a workaround later in the send path. */
1758         if (hw->mac_type == e1000_82544 &&
1759             hw->bus_type == e1000_bus_type_pcix)
1760                 adapter->pcix_82544 = 1;
1761
1762         ew32(TCTL, tctl);
1763
1764 }
1765
1766 /**
1767  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1768  * @adapter: board private structure
1769  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1770  *
1771  * Returns 0 on success, negative on failure
1772  **/
1773
1774 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1775                                     struct e1000_rx_ring *rxdr)
1776 {
1777         struct e1000_hw *hw = &adapter->hw;
1778         struct pci_dev *pdev = adapter->pdev;
1779         int size, desc_len;
1780
1781         size = sizeof(struct e1000_buffer) * rxdr->count;
1782         rxdr->buffer_info = vmalloc(size);
1783         if (!rxdr->buffer_info) {
1784                 DPRINTK(PROBE, ERR,
1785                 "Unable to allocate memory for the receive descriptor ring\n");
1786                 return -ENOMEM;
1787         }
1788         memset(rxdr->buffer_info, 0, size);
1789
1790         if (hw->mac_type <= e1000_82547_rev_2)
1791                 desc_len = sizeof(struct e1000_rx_desc);
1792         else
1793                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1794
1795         /* Round up to nearest 4K */
1796
1797         rxdr->size = rxdr->count * desc_len;
1798         rxdr->size = ALIGN(rxdr->size, 4096);
1799
1800         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1801
1802         if (!rxdr->desc) {
1803                 DPRINTK(PROBE, ERR,
1804                 "Unable to allocate memory for the receive descriptor ring\n");
1805 setup_rx_desc_die:
1806                 vfree(rxdr->buffer_info);
1807                 return -ENOMEM;
1808         }
1809
1810         /* Fix for errata 23, can't cross 64kB boundary */
1811         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1812                 void *olddesc = rxdr->desc;
1813                 dma_addr_t olddma = rxdr->dma;
1814                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1815                                      "at %p\n", rxdr->size, rxdr->desc);
1816                 /* Try again, without freeing the previous */
1817                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1818                 /* Failed allocation, critical failure */
1819                 if (!rxdr->desc) {
1820                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1821                         DPRINTK(PROBE, ERR,
1822                                 "Unable to allocate memory "
1823                                 "for the receive descriptor ring\n");
1824                         goto setup_rx_desc_die;
1825                 }
1826
1827                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1828                         /* give up */
1829                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1830                                             rxdr->dma);
1831                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1832                         DPRINTK(PROBE, ERR,
1833                                 "Unable to allocate aligned memory "
1834                                 "for the receive descriptor ring\n");
1835                         goto setup_rx_desc_die;
1836                 } else {
1837                         /* Free old allocation, new allocation was successful */
1838                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1839                 }
1840         }
1841         memset(rxdr->desc, 0, rxdr->size);
1842
1843         rxdr->next_to_clean = 0;
1844         rxdr->next_to_use = 0;
1845
1846         return 0;
1847 }
1848
1849 /**
1850  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1851  *                                (Descriptors) for all queues
1852  * @adapter: board private structure
1853  *
1854  * Return 0 on success, negative on failure
1855  **/
1856
1857 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1858 {
1859         int i, err = 0;
1860
1861         for (i = 0; i < adapter->num_rx_queues; i++) {
1862                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1863                 if (err) {
1864                         DPRINTK(PROBE, ERR,
1865                                 "Allocation for Rx Queue %u failed\n", i);
1866                         for (i-- ; i >= 0; i--)
1867                                 e1000_free_rx_resources(adapter,
1868                                                         &adapter->rx_ring[i]);
1869                         break;
1870                 }
1871         }
1872
1873         return err;
1874 }
1875
1876 /**
1877  * e1000_setup_rctl - configure the receive control registers
1878  * @adapter: Board private structure
1879  **/
1880 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1881 {
1882         struct e1000_hw *hw = &adapter->hw;
1883         u32 rctl;
1884
1885         rctl = er32(RCTL);
1886
1887         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1888
1889         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1890                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1891                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1892
1893         if (hw->tbi_compatibility_on == 1)
1894                 rctl |= E1000_RCTL_SBP;
1895         else
1896                 rctl &= ~E1000_RCTL_SBP;
1897
1898         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1899                 rctl &= ~E1000_RCTL_LPE;
1900         else
1901                 rctl |= E1000_RCTL_LPE;
1902
1903         /* Setup buffer sizes */
1904         rctl &= ~E1000_RCTL_SZ_4096;
1905         rctl |= E1000_RCTL_BSEX;
1906         switch (adapter->rx_buffer_len) {
1907                 case E1000_RXBUFFER_256:
1908                         rctl |= E1000_RCTL_SZ_256;
1909                         rctl &= ~E1000_RCTL_BSEX;
1910                         break;
1911                 case E1000_RXBUFFER_512:
1912                         rctl |= E1000_RCTL_SZ_512;
1913                         rctl &= ~E1000_RCTL_BSEX;
1914                         break;
1915                 case E1000_RXBUFFER_1024:
1916                         rctl |= E1000_RCTL_SZ_1024;
1917                         rctl &= ~E1000_RCTL_BSEX;
1918                         break;
1919                 case E1000_RXBUFFER_2048:
1920                 default:
1921                         rctl |= E1000_RCTL_SZ_2048;
1922                         rctl &= ~E1000_RCTL_BSEX;
1923                         break;
1924                 case E1000_RXBUFFER_4096:
1925                         rctl |= E1000_RCTL_SZ_4096;
1926                         break;
1927                 case E1000_RXBUFFER_8192:
1928                         rctl |= E1000_RCTL_SZ_8192;
1929                         break;
1930                 case E1000_RXBUFFER_16384:
1931                         rctl |= E1000_RCTL_SZ_16384;
1932                         break;
1933         }
1934
1935         ew32(RCTL, rctl);
1936 }
1937
1938 /**
1939  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1940  * @adapter: board private structure
1941  *
1942  * Configure the Rx unit of the MAC after a reset.
1943  **/
1944
1945 static void e1000_configure_rx(struct e1000_adapter *adapter)
1946 {
1947         u64 rdba;
1948         struct e1000_hw *hw = &adapter->hw;
1949         u32 rdlen, rctl, rxcsum, ctrl_ext;
1950
1951         rdlen = adapter->rx_ring[0].count *
1952                 sizeof(struct e1000_rx_desc);
1953         adapter->clean_rx = e1000_clean_rx_irq;
1954         adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1955
1956         /* disable receives while setting up the descriptors */
1957         rctl = er32(RCTL);
1958         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1959
1960         /* set the Receive Delay Timer Register */
1961         ew32(RDTR, adapter->rx_int_delay);
1962
1963         if (hw->mac_type >= e1000_82540) {
1964                 ew32(RADV, adapter->rx_abs_int_delay);
1965                 if (adapter->itr_setting != 0)
1966                         ew32(ITR, 1000000000 / (adapter->itr * 256));
1967         }
1968
1969         if (hw->mac_type >= e1000_82571) {
1970                 ctrl_ext = er32(CTRL_EXT);
1971                 /* Reset delay timers after every interrupt */
1972                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1973                 /* Auto-Mask interrupts upon ICR access */
1974                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1975                 ew32(IAM, 0xffffffff);
1976                 ew32(CTRL_EXT, ctrl_ext);
1977                 E1000_WRITE_FLUSH();
1978         }
1979
1980         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1981          * the Base and Length of the Rx Descriptor Ring */
1982         switch (adapter->num_rx_queues) {
1983         case 1:
1984         default:
1985                 rdba = adapter->rx_ring[0].dma;
1986                 ew32(RDLEN, rdlen);
1987                 ew32(RDBAH, (rdba >> 32));
1988                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1989                 ew32(RDT, 0);
1990                 ew32(RDH, 0);
1991                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1992                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1993                 break;
1994         }
1995
1996         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1997         if (hw->mac_type >= e1000_82543) {
1998                 rxcsum = er32(RXCSUM);
1999                 if (adapter->rx_csum)
2000                         rxcsum |= E1000_RXCSUM_TUOFL;
2001                 else
2002                         /* don't need to clear IPPCSE as it defaults to 0 */
2003                         rxcsum &= ~E1000_RXCSUM_TUOFL;
2004                 ew32(RXCSUM, rxcsum);
2005         }
2006
2007         /* Enable Receives */
2008         ew32(RCTL, rctl);
2009 }
2010
2011 /**
2012  * e1000_free_tx_resources - Free Tx Resources per Queue
2013  * @adapter: board private structure
2014  * @tx_ring: Tx descriptor ring for a specific queue
2015  *
2016  * Free all transmit software resources
2017  **/
2018
2019 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
2020                                     struct e1000_tx_ring *tx_ring)
2021 {
2022         struct pci_dev *pdev = adapter->pdev;
2023
2024         e1000_clean_tx_ring(adapter, tx_ring);
2025
2026         vfree(tx_ring->buffer_info);
2027         tx_ring->buffer_info = NULL;
2028
2029         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2030
2031         tx_ring->desc = NULL;
2032 }
2033
2034 /**
2035  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2036  * @adapter: board private structure
2037  *
2038  * Free all transmit software resources
2039  **/
2040
2041 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2042 {
2043         int i;
2044
2045         for (i = 0; i < adapter->num_tx_queues; i++)
2046                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2047 }
2048
2049 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2050                                              struct e1000_buffer *buffer_info)
2051 {
2052         if (buffer_info->dma) {
2053                 pci_unmap_page(adapter->pdev,
2054                                 buffer_info->dma,
2055                                 buffer_info->length,
2056                                 PCI_DMA_TODEVICE);
2057                 buffer_info->dma = 0;
2058         }
2059         if (buffer_info->skb) {
2060                 dev_kfree_skb_any(buffer_info->skb);
2061                 buffer_info->skb = NULL;
2062         }
2063         /* buffer_info must be completely set up in the transmit path */
2064 }
2065
2066 /**
2067  * e1000_clean_tx_ring - Free Tx Buffers
2068  * @adapter: board private structure
2069  * @tx_ring: ring to be cleaned
2070  **/
2071
2072 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2073                                 struct e1000_tx_ring *tx_ring)
2074 {
2075         struct e1000_hw *hw = &adapter->hw;
2076         struct e1000_buffer *buffer_info;
2077         unsigned long size;
2078         unsigned int i;
2079
2080         /* Free all the Tx ring sk_buffs */
2081
2082         for (i = 0; i < tx_ring->count; i++) {
2083                 buffer_info = &tx_ring->buffer_info[i];
2084                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2085         }
2086
2087         size = sizeof(struct e1000_buffer) * tx_ring->count;
2088         memset(tx_ring->buffer_info, 0, size);
2089
2090         /* Zero out the descriptor ring */
2091
2092         memset(tx_ring->desc, 0, tx_ring->size);
2093
2094         tx_ring->next_to_use = 0;
2095         tx_ring->next_to_clean = 0;
2096         tx_ring->last_tx_tso = 0;
2097
2098         writel(0, hw->hw_addr + tx_ring->tdh);
2099         writel(0, hw->hw_addr + tx_ring->tdt);
2100 }
2101
2102 /**
2103  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2104  * @adapter: board private structure
2105  **/
2106
2107 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2108 {
2109         int i;
2110
2111         for (i = 0; i < adapter->num_tx_queues; i++)
2112                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2113 }
2114
2115 /**
2116  * e1000_free_rx_resources - Free Rx Resources
2117  * @adapter: board private structure
2118  * @rx_ring: ring to clean the resources from
2119  *
2120  * Free all receive software resources
2121  **/
2122
2123 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2124                                     struct e1000_rx_ring *rx_ring)
2125 {
2126         struct pci_dev *pdev = adapter->pdev;
2127
2128         e1000_clean_rx_ring(adapter, rx_ring);
2129
2130         vfree(rx_ring->buffer_info);
2131         rx_ring->buffer_info = NULL;
2132
2133         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2134
2135         rx_ring->desc = NULL;
2136 }
2137
2138 /**
2139  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2140  * @adapter: board private structure
2141  *
2142  * Free all receive software resources
2143  **/
2144
2145 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2146 {
2147         int i;
2148
2149         for (i = 0; i < adapter->num_rx_queues; i++)
2150                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2151 }
2152
2153 /**
2154  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2155  * @adapter: board private structure
2156  * @rx_ring: ring to free buffers from
2157  **/
2158
2159 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2160                                 struct e1000_rx_ring *rx_ring)
2161 {
2162         struct e1000_hw *hw = &adapter->hw;
2163         struct e1000_buffer *buffer_info;
2164         struct pci_dev *pdev = adapter->pdev;
2165         unsigned long size;
2166         unsigned int i;
2167
2168         /* Free all the Rx ring sk_buffs */
2169         for (i = 0; i < rx_ring->count; i++) {
2170                 buffer_info = &rx_ring->buffer_info[i];
2171                 if (buffer_info->skb) {
2172                         pci_unmap_single(pdev,
2173                                          buffer_info->dma,
2174                                          buffer_info->length,
2175                                          PCI_DMA_FROMDEVICE);
2176
2177                         dev_kfree_skb(buffer_info->skb);
2178                         buffer_info->skb = NULL;
2179                 }
2180         }
2181
2182         size = sizeof(struct e1000_buffer) * rx_ring->count;
2183         memset(rx_ring->buffer_info, 0, size);
2184
2185         /* Zero out the descriptor ring */
2186
2187         memset(rx_ring->desc, 0, rx_ring->size);
2188
2189         rx_ring->next_to_clean = 0;
2190         rx_ring->next_to_use = 0;
2191
2192         writel(0, hw->hw_addr + rx_ring->rdh);
2193         writel(0, hw->hw_addr + rx_ring->rdt);
2194 }
2195
2196 /**
2197  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2198  * @adapter: board private structure
2199  **/
2200
2201 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2202 {
2203         int i;
2204
2205         for (i = 0; i < adapter->num_rx_queues; i++)
2206                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2207 }
2208
2209 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2210  * and memory write and invalidate disabled for certain operations
2211  */
2212 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2213 {
2214         struct e1000_hw *hw = &adapter->hw;
2215         struct net_device *netdev = adapter->netdev;
2216         u32 rctl;
2217
2218         e1000_pci_clear_mwi(hw);
2219
2220         rctl = er32(RCTL);
2221         rctl |= E1000_RCTL_RST;
2222         ew32(RCTL, rctl);
2223         E1000_WRITE_FLUSH();
2224         mdelay(5);
2225
2226         if (netif_running(netdev))
2227                 e1000_clean_all_rx_rings(adapter);
2228 }
2229
2230 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2231 {
2232         struct e1000_hw *hw = &adapter->hw;
2233         struct net_device *netdev = adapter->netdev;
2234         u32 rctl;
2235
2236         rctl = er32(RCTL);
2237         rctl &= ~E1000_RCTL_RST;
2238         ew32(RCTL, rctl);
2239         E1000_WRITE_FLUSH();
2240         mdelay(5);
2241
2242         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2243                 e1000_pci_set_mwi(hw);
2244
2245         if (netif_running(netdev)) {
2246                 /* No need to loop, because 82542 supports only 1 queue */
2247                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2248                 e1000_configure_rx(adapter);
2249                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2250         }
2251 }
2252
2253 /**
2254  * e1000_set_mac - Change the Ethernet Address of the NIC
2255  * @netdev: network interface device structure
2256  * @p: pointer to an address structure
2257  *
2258  * Returns 0 on success, negative on failure
2259  **/
2260
2261 static int e1000_set_mac(struct net_device *netdev, void *p)
2262 {
2263         struct e1000_adapter *adapter = netdev_priv(netdev);
2264         struct e1000_hw *hw = &adapter->hw;
2265         struct sockaddr *addr = p;
2266
2267         if (!is_valid_ether_addr(addr->sa_data))
2268                 return -EADDRNOTAVAIL;
2269
2270         /* 82542 2.0 needs to be in reset to write receive address registers */
2271
2272         if (hw->mac_type == e1000_82542_rev2_0)
2273                 e1000_enter_82542_rst(adapter);
2274
2275         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2276         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2277
2278         e1000_rar_set(hw, hw->mac_addr, 0);
2279
2280         /* With 82571 controllers, LAA may be overwritten (with the default)
2281          * due to controller reset from the other port. */
2282         if (hw->mac_type == e1000_82571) {
2283                 /* activate the work around */
2284                 hw->laa_is_present = 1;
2285
2286                 /* Hold a copy of the LAA in RAR[14] This is done so that
2287                  * between the time RAR[0] gets clobbered  and the time it
2288                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2289                  * of the RARs and no incoming packets directed to this port
2290                  * are dropped. Eventaully the LAA will be in RAR[0] and
2291                  * RAR[14] */
2292                 e1000_rar_set(hw, hw->mac_addr,
2293                                         E1000_RAR_ENTRIES - 1);
2294         }
2295
2296         if (hw->mac_type == e1000_82542_rev2_0)
2297                 e1000_leave_82542_rst(adapter);
2298
2299         return 0;
2300 }
2301
2302 /**
2303  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2304  * @netdev: network interface device structure
2305  *
2306  * The set_rx_mode entry point is called whenever the unicast or multicast
2307  * address lists or the network interface flags are updated. This routine is
2308  * responsible for configuring the hardware for proper unicast, multicast,
2309  * promiscuous mode, and all-multi behavior.
2310  **/
2311
2312 static void e1000_set_rx_mode(struct net_device *netdev)
2313 {
2314         struct e1000_adapter *adapter = netdev_priv(netdev);
2315         struct e1000_hw *hw = &adapter->hw;
2316         struct dev_addr_list *uc_ptr;
2317         struct dev_addr_list *mc_ptr;
2318         u32 rctl;
2319         u32 hash_value;
2320         int i, rar_entries = E1000_RAR_ENTRIES;
2321         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2322                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2323                                 E1000_NUM_MTA_REGISTERS;
2324
2325         if (hw->mac_type == e1000_ich8lan)
2326                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2327
2328         /* reserve RAR[14] for LAA over-write work-around */
2329         if (hw->mac_type == e1000_82571)
2330                 rar_entries--;
2331
2332         /* Check for Promiscuous and All Multicast modes */
2333
2334         rctl = er32(RCTL);
2335
2336         if (netdev->flags & IFF_PROMISC) {
2337                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2338                 rctl &= ~E1000_RCTL_VFE;
2339         } else {
2340                 if (netdev->flags & IFF_ALLMULTI) {
2341                         rctl |= E1000_RCTL_MPE;
2342                 } else {
2343                         rctl &= ~E1000_RCTL_MPE;
2344                 }
2345                 if (adapter->hw.mac_type != e1000_ich8lan)
2346                         rctl |= E1000_RCTL_VFE;
2347         }
2348
2349         uc_ptr = NULL;
2350         if (netdev->uc_count > rar_entries - 1) {
2351                 rctl |= E1000_RCTL_UPE;
2352         } else if (!(netdev->flags & IFF_PROMISC)) {
2353                 rctl &= ~E1000_RCTL_UPE;
2354                 uc_ptr = netdev->uc_list;
2355         }
2356
2357         ew32(RCTL, rctl);
2358
2359         /* 82542 2.0 needs to be in reset to write receive address registers */
2360
2361         if (hw->mac_type == e1000_82542_rev2_0)
2362                 e1000_enter_82542_rst(adapter);
2363
2364         /* load the first 14 addresses into the exact filters 1-14. Unicast
2365          * addresses take precedence to avoid disabling unicast filtering
2366          * when possible.
2367          *
2368          * RAR 0 is used for the station MAC adddress
2369          * if there are not 14 addresses, go ahead and clear the filters
2370          * -- with 82571 controllers only 0-13 entries are filled here
2371          */
2372         mc_ptr = netdev->mc_list;
2373
2374         for (i = 1; i < rar_entries; i++) {
2375                 if (uc_ptr) {
2376                         e1000_rar_set(hw, uc_ptr->da_addr, i);
2377                         uc_ptr = uc_ptr->next;
2378                 } else if (mc_ptr) {
2379                         e1000_rar_set(hw, mc_ptr->da_addr, i);
2380                         mc_ptr = mc_ptr->next;
2381                 } else {
2382                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2383                         E1000_WRITE_FLUSH();
2384                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2385                         E1000_WRITE_FLUSH();
2386                 }
2387         }
2388         WARN_ON(uc_ptr != NULL);
2389
2390         /* clear the old settings from the multicast hash table */
2391
2392         for (i = 0; i < mta_reg_count; i++) {
2393                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2394                 E1000_WRITE_FLUSH();
2395         }
2396
2397         /* load any remaining addresses into the hash table */
2398
2399         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2400                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2401                 e1000_mta_set(hw, hash_value);
2402         }
2403
2404         if (hw->mac_type == e1000_82542_rev2_0)
2405                 e1000_leave_82542_rst(adapter);
2406 }
2407
2408 /* Need to wait a few seconds after link up to get diagnostic information from
2409  * the phy */
2410
2411 static void e1000_update_phy_info(unsigned long data)
2412 {
2413         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2414         struct e1000_hw *hw = &adapter->hw;
2415         e1000_phy_get_info(hw, &adapter->phy_info);
2416 }
2417
2418 /**
2419  * e1000_82547_tx_fifo_stall - Timer Call-back
2420  * @data: pointer to adapter cast into an unsigned long
2421  **/
2422
2423 static void e1000_82547_tx_fifo_stall(unsigned long data)
2424 {
2425         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2426         struct e1000_hw *hw = &adapter->hw;
2427         struct net_device *netdev = adapter->netdev;
2428         u32 tctl;
2429
2430         if (atomic_read(&adapter->tx_fifo_stall)) {
2431                 if ((er32(TDT) == er32(TDH)) &&
2432                    (er32(TDFT) == er32(TDFH)) &&
2433                    (er32(TDFTS) == er32(TDFHS))) {
2434                         tctl = er32(TCTL);
2435                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2436                         ew32(TDFT, adapter->tx_head_addr);
2437                         ew32(TDFH, adapter->tx_head_addr);
2438                         ew32(TDFTS, adapter->tx_head_addr);
2439                         ew32(TDFHS, adapter->tx_head_addr);
2440                         ew32(TCTL, tctl);
2441                         E1000_WRITE_FLUSH();
2442
2443                         adapter->tx_fifo_head = 0;
2444                         atomic_set(&adapter->tx_fifo_stall, 0);
2445                         netif_wake_queue(netdev);
2446                 } else {
2447                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2448                 }
2449         }
2450 }
2451
2452 /**
2453  * e1000_watchdog - Timer Call-back
2454  * @data: pointer to adapter cast into an unsigned long
2455  **/
2456 static void e1000_watchdog(unsigned long data)
2457 {
2458         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2459         struct e1000_hw *hw = &adapter->hw;
2460         struct net_device *netdev = adapter->netdev;
2461         struct e1000_tx_ring *txdr = adapter->tx_ring;
2462         u32 link, tctl;
2463         s32 ret_val;
2464
2465         ret_val = e1000_check_for_link(hw);
2466         if ((ret_val == E1000_ERR_PHY) &&
2467             (hw->phy_type == e1000_phy_igp_3) &&
2468             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2469                 /* See e1000_kumeran_lock_loss_workaround() */
2470                 DPRINTK(LINK, INFO,
2471                         "Gigabit has been disabled, downgrading speed\n");
2472         }
2473
2474         if (hw->mac_type == e1000_82573) {
2475                 e1000_enable_tx_pkt_filtering(hw);
2476                 if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id)
2477                         e1000_update_mng_vlan(adapter);
2478         }
2479
2480         if ((hw->media_type == e1000_media_type_internal_serdes) &&
2481            !(er32(TXCW) & E1000_TXCW_ANE))
2482                 link = !hw->serdes_link_down;
2483         else
2484                 link = er32(STATUS) & E1000_STATUS_LU;
2485
2486         if (link) {
2487                 if (!netif_carrier_ok(netdev)) {
2488                         u32 ctrl;
2489                         bool txb2b = true;
2490                         e1000_get_speed_and_duplex(hw,
2491                                                    &adapter->link_speed,
2492                                                    &adapter->link_duplex);
2493
2494                         ctrl = er32(CTRL);
2495                         printk(KERN_INFO "e1000: %s NIC Link is Up %d Mbps %s, "
2496                                "Flow Control: %s\n",
2497                                netdev->name,
2498                                adapter->link_speed,
2499                                adapter->link_duplex == FULL_DUPLEX ?
2500                                 "Full Duplex" : "Half Duplex",
2501                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2502                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2503                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2504                                 E1000_CTRL_TFCE) ? "TX" : "None" )));
2505
2506                         /* tweak tx_queue_len according to speed/duplex
2507                          * and adjust the timeout factor */
2508                         netdev->tx_queue_len = adapter->tx_queue_len;
2509                         adapter->tx_timeout_factor = 1;
2510                         switch (adapter->link_speed) {
2511                         case SPEED_10:
2512                                 txb2b = false;
2513                                 netdev->tx_queue_len = 10;
2514                                 adapter->tx_timeout_factor = 8;
2515                                 break;
2516                         case SPEED_100:
2517                                 txb2b = false;
2518                                 netdev->tx_queue_len = 100;
2519                                 /* maybe add some timeout factor ? */
2520                                 break;
2521                         }
2522
2523                         if ((hw->mac_type == e1000_82571 ||
2524                              hw->mac_type == e1000_82572) &&
2525                             !txb2b) {
2526                                 u32 tarc0;
2527                                 tarc0 = er32(TARC0);
2528                                 tarc0 &= ~(1 << 21);
2529                                 ew32(TARC0, tarc0);
2530                         }
2531
2532                         /* disable TSO for pcie and 10/100 speeds, to avoid
2533                          * some hardware issues */
2534                         if (!adapter->tso_force &&
2535                             hw->bus_type == e1000_bus_type_pci_express){
2536                                 switch (adapter->link_speed) {
2537                                 case SPEED_10:
2538                                 case SPEED_100:
2539                                         DPRINTK(PROBE,INFO,
2540                                         "10/100 speed: disabling TSO\n");
2541                                         netdev->features &= ~NETIF_F_TSO;
2542                                         netdev->features &= ~NETIF_F_TSO6;
2543                                         break;
2544                                 case SPEED_1000:
2545                                         netdev->features |= NETIF_F_TSO;
2546                                         netdev->features |= NETIF_F_TSO6;
2547                                         break;
2548                                 default:
2549                                         /* oops */
2550                                         break;
2551                                 }
2552                         }
2553
2554                         /* enable transmits in the hardware, need to do this
2555                          * after setting TARC0 */
2556                         tctl = er32(TCTL);
2557                         tctl |= E1000_TCTL_EN;
2558                         ew32(TCTL, tctl);
2559
2560                         netif_carrier_on(netdev);
2561                         netif_wake_queue(netdev);
2562                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2563                         adapter->smartspeed = 0;
2564                 } else {
2565                         /* make sure the receive unit is started */
2566                         if (hw->rx_needs_kicking) {
2567                                 u32 rctl = er32(RCTL);
2568                                 ew32(RCTL, rctl | E1000_RCTL_EN);
2569                         }
2570                 }
2571         } else {
2572                 if (netif_carrier_ok(netdev)) {
2573                         adapter->link_speed = 0;
2574                         adapter->link_duplex = 0;
2575                         printk(KERN_INFO "e1000: %s NIC Link is Down\n",
2576                                netdev->name);
2577                         netif_carrier_off(netdev);
2578                         netif_stop_queue(netdev);
2579                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2580
2581                         /* 80003ES2LAN workaround--
2582                          * For packet buffer work-around on link down event;
2583                          * disable receives in the ISR and
2584                          * reset device here in the watchdog
2585                          */
2586                         if (hw->mac_type == e1000_80003es2lan)
2587                                 /* reset device */
2588                                 schedule_work(&adapter->reset_task);
2589                 }
2590
2591                 e1000_smartspeed(adapter);
2592         }
2593
2594         e1000_update_stats(adapter);
2595
2596         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2597         adapter->tpt_old = adapter->stats.tpt;
2598         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2599         adapter->colc_old = adapter->stats.colc;
2600
2601         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2602         adapter->gorcl_old = adapter->stats.gorcl;
2603         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2604         adapter->gotcl_old = adapter->stats.gotcl;
2605
2606         e1000_update_adaptive(hw);
2607
2608         if (!netif_carrier_ok(netdev)) {
2609                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2610                         /* We've lost link, so the controller stops DMA,
2611                          * but we've got queued Tx work that's never going
2612                          * to get done, so reset controller to flush Tx.
2613                          * (Do the reset outside of interrupt context). */
2614                         adapter->tx_timeout_count++;
2615                         schedule_work(&adapter->reset_task);
2616                 }
2617         }
2618
2619         /* Cause software interrupt to ensure rx ring is cleaned */
2620         ew32(ICS, E1000_ICS_RXDMT0);
2621
2622         /* Force detection of hung controller every watchdog period */
2623         adapter->detect_tx_hung = true;
2624
2625         /* With 82571 controllers, LAA may be overwritten due to controller
2626          * reset from the other port. Set the appropriate LAA in RAR[0] */
2627         if (hw->mac_type == e1000_82571 && hw->laa_is_present)
2628                 e1000_rar_set(hw, hw->mac_addr, 0);
2629
2630         /* Reset the timer */
2631         mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2632 }
2633
2634 enum latency_range {
2635         lowest_latency = 0,
2636         low_latency = 1,
2637         bulk_latency = 2,
2638         latency_invalid = 255
2639 };
2640
2641 /**
2642  * e1000_update_itr - update the dynamic ITR value based on statistics
2643  *      Stores a new ITR value based on packets and byte
2644  *      counts during the last interrupt.  The advantage of per interrupt
2645  *      computation is faster updates and more accurate ITR for the current
2646  *      traffic pattern.  Constants in this function were computed
2647  *      based on theoretical maximum wire speed and thresholds were set based
2648  *      on testing data as well as attempting to minimize response time
2649  *      while increasing bulk throughput.
2650  *      this functionality is controlled by the InterruptThrottleRate module
2651  *      parameter (see e1000_param.c)
2652  * @adapter: pointer to adapter
2653  * @itr_setting: current adapter->itr
2654  * @packets: the number of packets during this measurement interval
2655  * @bytes: the number of bytes during this measurement interval
2656  **/
2657 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2658                                      u16 itr_setting, int packets, int bytes)
2659 {
2660         unsigned int retval = itr_setting;
2661         struct e1000_hw *hw = &adapter->hw;
2662
2663         if (unlikely(hw->mac_type < e1000_82540))
2664                 goto update_itr_done;
2665
2666         if (packets == 0)
2667                 goto update_itr_done;
2668
2669         switch (itr_setting) {
2670         case lowest_latency:
2671                 /* jumbo frames get bulk treatment*/
2672                 if (bytes/packets > 8000)
2673                         retval = bulk_latency;
2674                 else if ((packets < 5) && (bytes > 512))
2675                         retval = low_latency;
2676                 break;
2677         case low_latency:  /* 50 usec aka 20000 ints/s */
2678                 if (bytes > 10000) {
2679                         /* jumbo frames need bulk latency setting */
2680                         if (bytes/packets > 8000)
2681                                 retval = bulk_latency;
2682                         else if ((packets < 10) || ((bytes/packets) > 1200))
2683                                 retval = bulk_latency;
2684                         else if ((packets > 35))
2685                                 retval = lowest_latency;
2686                 } else if (bytes/packets > 2000)
2687                         retval = bulk_latency;
2688                 else if (packets <= 2 && bytes < 512)
2689                         retval = lowest_latency;
2690                 break;
2691         case bulk_latency: /* 250 usec aka 4000 ints/s */
2692                 if (bytes > 25000) {
2693                         if (packets > 35)
2694                                 retval = low_latency;
2695                 } else if (bytes < 6000) {
2696                         retval = low_latency;
2697                 }
2698                 break;
2699         }
2700
2701 update_itr_done:
2702         return retval;
2703 }
2704
2705 static void e1000_set_itr(struct e1000_adapter *adapter)
2706 {
2707         struct e1000_hw *hw = &adapter->hw;
2708         u16 current_itr;
2709         u32 new_itr = adapter->itr;
2710
2711         if (unlikely(hw->mac_type < e1000_82540))
2712                 return;
2713
2714         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2715         if (unlikely(adapter->link_speed != SPEED_1000)) {
2716                 current_itr = 0;
2717                 new_itr = 4000;
2718                 goto set_itr_now;
2719         }
2720
2721         adapter->tx_itr = e1000_update_itr(adapter,
2722                                     adapter->tx_itr,
2723                                     adapter->total_tx_packets,
2724                                     adapter->total_tx_bytes);
2725         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2726         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2727                 adapter->tx_itr = low_latency;
2728
2729         adapter->rx_itr = e1000_update_itr(adapter,
2730                                     adapter->rx_itr,
2731                                     adapter->total_rx_packets,
2732                                     adapter->total_rx_bytes);
2733         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2734         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2735                 adapter->rx_itr = low_latency;
2736
2737         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2738
2739         switch (current_itr) {
2740         /* counts and packets in update_itr are dependent on these numbers */
2741         case lowest_latency:
2742                 new_itr = 70000;
2743                 break;
2744         case low_latency:
2745                 new_itr = 20000; /* aka hwitr = ~200 */
2746                 break;
2747         case bulk_latency:
2748                 new_itr = 4000;
2749                 break;
2750         default:
2751                 break;
2752         }
2753
2754 set_itr_now:
2755         if (new_itr != adapter->itr) {
2756                 /* this attempts to bias the interrupt rate towards Bulk
2757                  * by adding intermediate steps when interrupt rate is
2758                  * increasing */
2759                 new_itr = new_itr > adapter->itr ?
2760                              min(adapter->itr + (new_itr >> 2), new_itr) :
2761                              new_itr;
2762                 adapter->itr = new_itr;
2763                 ew32(ITR, 1000000000 / (new_itr * 256));
2764         }
2765
2766         return;
2767 }
2768
2769 #define E1000_TX_FLAGS_CSUM             0x00000001
2770 #define E1000_TX_FLAGS_VLAN             0x00000002
2771 #define E1000_TX_FLAGS_TSO              0x00000004
2772 #define E1000_TX_FLAGS_IPV4             0x00000008
2773 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2774 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2775
2776 static int e1000_tso(struct e1000_adapter *adapter,
2777                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2778 {
2779         struct e1000_context_desc *context_desc;
2780         struct e1000_buffer *buffer_info;
2781         unsigned int i;
2782         u32 cmd_length = 0;
2783         u16 ipcse = 0, tucse, mss;
2784         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2785         int err;
2786
2787         if (skb_is_gso(skb)) {
2788                 if (skb_header_cloned(skb)) {
2789                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2790                         if (err)
2791                                 return err;
2792                 }
2793
2794                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2795                 mss = skb_shinfo(skb)->gso_size;
2796                 if (skb->protocol == htons(ETH_P_IP)) {
2797                         struct iphdr *iph = ip_hdr(skb);
2798                         iph->tot_len = 0;
2799                         iph->check = 0;
2800                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2801                                                                  iph->daddr, 0,
2802                                                                  IPPROTO_TCP,
2803                                                                  0);
2804                         cmd_length = E1000_TXD_CMD_IP;
2805                         ipcse = skb_transport_offset(skb) - 1;
2806                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2807                         ipv6_hdr(skb)->payload_len = 0;
2808                         tcp_hdr(skb)->check =
2809                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2810                                                  &ipv6_hdr(skb)->daddr,
2811                                                  0, IPPROTO_TCP, 0);
2812                         ipcse = 0;
2813                 }
2814                 ipcss = skb_network_offset(skb);
2815                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2816                 tucss = skb_transport_offset(skb);
2817                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2818                 tucse = 0;
2819
2820                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2821                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2822
2823                 i = tx_ring->next_to_use;
2824                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2825                 buffer_info = &tx_ring->buffer_info[i];
2826
2827                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2828                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2829                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2830                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2831                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2832                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2833                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2834                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2835                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2836
2837                 buffer_info->time_stamp = jiffies;
2838                 buffer_info->next_to_watch = i;
2839
2840                 if (++i == tx_ring->count) i = 0;
2841                 tx_ring->next_to_use = i;
2842
2843                 return true;
2844         }
2845         return false;
2846 }
2847
2848 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2849                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2850 {
2851         struct e1000_context_desc *context_desc;
2852         struct e1000_buffer *buffer_info;
2853         unsigned int i;
2854         u8 css;
2855         u32 cmd_len = E1000_TXD_CMD_DEXT;
2856
2857         if (skb->ip_summed != CHECKSUM_PARTIAL)
2858                 return false;
2859
2860         switch (skb->protocol) {
2861         case cpu_to_be16(ETH_P_IP):
2862                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2863                         cmd_len |= E1000_TXD_CMD_TCP;
2864                 break;
2865         case cpu_to_be16(ETH_P_IPV6):
2866                 /* XXX not handling all IPV6 headers */
2867                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2868                         cmd_len |= E1000_TXD_CMD_TCP;
2869                 break;
2870         default:
2871                 if (unlikely(net_ratelimit()))
2872                         DPRINTK(DRV, WARNING,
2873                                 "checksum_partial proto=%x!\n", skb->protocol);
2874                 break;
2875         }
2876
2877         css = skb_transport_offset(skb);
2878
2879         i = tx_ring->next_to_use;
2880         buffer_info = &tx_ring->buffer_info[i];
2881         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2882
2883         context_desc->lower_setup.ip_config = 0;
2884         context_desc->upper_setup.tcp_fields.tucss = css;
2885         context_desc->upper_setup.tcp_fields.tucso =
2886                 css + skb->csum_offset;
2887         context_desc->upper_setup.tcp_fields.tucse = 0;
2888         context_desc->tcp_seg_setup.data = 0;
2889         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2890
2891         buffer_info->time_stamp = jiffies;
2892         buffer_info->next_to_watch = i;
2893
2894         if (unlikely(++i == tx_ring->count)) i = 0;
2895         tx_ring->next_to_use = i;
2896
2897         return true;
2898 }
2899
2900 #define E1000_MAX_TXD_PWR       12
2901 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2902
2903 static int e1000_tx_map(struct e1000_adapter *adapter,
2904                         struct e1000_tx_ring *tx_ring,
2905                         struct sk_buff *skb, unsigned int first,
2906                         unsigned int max_per_txd, unsigned int nr_frags,
2907                         unsigned int mss)
2908 {
2909         struct e1000_hw *hw = &adapter->hw;
2910         struct e1000_buffer *buffer_info;
2911         unsigned int len = skb->len;
2912         unsigned int offset = 0, size, count = 0, i;
2913         unsigned int f;
2914         len -= skb->data_len;
2915
2916         i = tx_ring->next_to_use;
2917
2918         while (len) {
2919                 buffer_info = &tx_ring->buffer_info[i];
2920                 size = min(len, max_per_txd);
2921                 /* Workaround for Controller erratum --
2922                  * descriptor for non-tso packet in a linear SKB that follows a
2923                  * tso gets written back prematurely before the data is fully
2924                  * DMA'd to the controller */
2925                 if (!skb->data_len && tx_ring->last_tx_tso &&
2926                     !skb_is_gso(skb)) {
2927                         tx_ring->last_tx_tso = 0;
2928                         size -= 4;
2929                 }
2930
2931                 /* Workaround for premature desc write-backs
2932                  * in TSO mode.  Append 4-byte sentinel desc */
2933                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2934                         size -= 4;
2935                 /* work-around for errata 10 and it applies
2936                  * to all controllers in PCI-X mode
2937                  * The fix is to make sure that the first descriptor of a
2938                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2939                  */
2940                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2941                                 (size > 2015) && count == 0))
2942                         size = 2015;
2943
2944                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2945                  * terminating buffers within evenly-aligned dwords. */
2946                 if (unlikely(adapter->pcix_82544 &&
2947                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2948                    size > 4))
2949                         size -= 4;
2950
2951                 buffer_info->length = size;
2952                 buffer_info->dma =
2953                         pci_map_single(adapter->pdev,
2954                                 skb->data + offset,
2955                                 size,
2956                                 PCI_DMA_TODEVICE);
2957                 buffer_info->time_stamp = jiffies;
2958                 buffer_info->next_to_watch = i;
2959
2960                 len -= size;
2961                 offset += size;
2962                 count++;
2963                 if (unlikely(++i == tx_ring->count)) i = 0;
2964         }
2965
2966         for (f = 0; f < nr_frags; f++) {
2967                 struct skb_frag_struct *frag;
2968
2969                 frag = &skb_shinfo(skb)->frags[f];
2970                 len = frag->size;
2971                 offset = frag->page_offset;
2972
2973                 while (len) {
2974                         buffer_info = &tx_ring->buffer_info[i];
2975                         size = min(len, max_per_txd);
2976                         /* Workaround for premature desc write-backs
2977                          * in TSO mode.  Append 4-byte sentinel desc */
2978                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2979                                 size -= 4;
2980                         /* Workaround for potential 82544 hang in PCI-X.
2981                          * Avoid terminating buffers within evenly-aligned
2982                          * dwords. */
2983                         if (unlikely(adapter->pcix_82544 &&
2984                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2985                            size > 4))
2986                                 size -= 4;
2987
2988                         buffer_info->length = size;
2989                         buffer_info->dma =
2990                                 pci_map_page(adapter->pdev,
2991                                         frag->page,
2992                                         offset,
2993                                         size,
2994                                         PCI_DMA_TODEVICE);
2995                         buffer_info->time_stamp = jiffies;
2996                         buffer_info->next_to_watch = i;
2997
2998                         len -= size;
2999                         offset += size;
3000                         count++;
3001                         if (unlikely(++i == tx_ring->count)) i = 0;
3002                 }
3003         }
3004
3005         i = (i == 0) ? tx_ring->count - 1 : i - 1;
3006         tx_ring->buffer_info[i].skb = skb;
3007         tx_ring->buffer_info[first].next_to_watch = i;
3008
3009         return count;
3010 }
3011
3012 static void e1000_tx_queue(struct e1000_adapter *adapter,
3013                            struct e1000_tx_ring *tx_ring, int tx_flags,
3014                            int count)
3015 {
3016         struct e1000_hw *hw = &adapter->hw;
3017         struct e1000_tx_desc *tx_desc = NULL;
3018         struct e1000_buffer *buffer_info;
3019         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3020         unsigned int i;
3021
3022         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3023                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3024                              E1000_TXD_CMD_TSE;
3025                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3026
3027                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3028                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3029         }
3030
3031         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3032                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3033                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3034         }
3035
3036         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3037                 txd_lower |= E1000_TXD_CMD_VLE;
3038                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3039         }
3040
3041         i = tx_ring->next_to_use;
3042
3043         while (count--) {
3044                 buffer_info = &tx_ring->buffer_info[i];
3045                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3046                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3047                 tx_desc->lower.data =
3048                         cpu_to_le32(txd_lower | buffer_info->length);
3049                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3050                 if (unlikely(++i == tx_ring->count)) i = 0;
3051         }
3052
3053         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3054
3055         /* Force memory writes to complete before letting h/w
3056          * know there are new descriptors to fetch.  (Only
3057          * applicable for weak-ordered memory model archs,
3058          * such as IA-64). */
3059         wmb();
3060
3061         tx_ring->next_to_use = i;
3062         writel(i, hw->hw_addr + tx_ring->tdt);
3063         /* we need this if more than one processor can write to our tail
3064          * at a time, it syncronizes IO on IA64/Altix systems */
3065         mmiowb();
3066 }
3067
3068 /**
3069  * 82547 workaround to avoid controller hang in half-duplex environment.
3070  * The workaround is to avoid queuing a large packet that would span
3071  * the internal Tx FIFO ring boundary by notifying the stack to resend
3072  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3073  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3074  * to the beginning of the Tx FIFO.
3075  **/
3076
3077 #define E1000_FIFO_HDR                  0x10
3078 #define E1000_82547_PAD_LEN             0x3E0
3079
3080 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3081                                        struct sk_buff *skb)
3082 {
3083         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3084         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3085
3086         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3087
3088         if (adapter->link_duplex != HALF_DUPLEX)
3089                 goto no_fifo_stall_required;
3090
3091         if (atomic_read(&adapter->tx_fifo_stall))
3092                 return 1;
3093
3094         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3095                 atomic_set(&adapter->tx_fifo_stall, 1);
3096                 return 1;
3097         }
3098
3099 no_fifo_stall_required:
3100         adapter->tx_fifo_head += skb_fifo_len;
3101         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3102                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3103         return 0;
3104 }
3105
3106 #define MINIMUM_DHCP_PACKET_SIZE 282
3107 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3108                                     struct sk_buff *skb)
3109 {
3110         struct e1000_hw *hw =  &adapter->hw;
3111         u16 length, offset;
3112         if (vlan_tx_tag_present(skb)) {
3113                 if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) &&
3114                         ( hw->mng_cookie.status &
3115                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3116                         return 0;
3117         }
3118         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3119                 struct ethhdr *eth = (struct ethhdr *)skb->data;
3120                 if ((htons(ETH_P_IP) == eth->h_proto)) {
3121                         const struct iphdr *ip =
3122                                 (struct iphdr *)((u8 *)skb->data+14);
3123                         if (IPPROTO_UDP == ip->protocol) {
3124                                 struct udphdr *udp =
3125                                         (struct udphdr *)((u8 *)ip +
3126                                                 (ip->ihl << 2));
3127                                 if (ntohs(udp->dest) == 67) {
3128                                         offset = (u8 *)udp + 8 - skb->data;
3129                                         length = skb->len - offset;
3130
3131                                         return e1000_mng_write_dhcp_info(hw,
3132                                                         (u8 *)udp + 8,
3133                                                         length);
3134                                 }
3135                         }
3136                 }
3137         }
3138         return 0;
3139 }
3140
3141 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3142 {
3143         struct e1000_adapter *adapter = netdev_priv(netdev);
3144         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3145
3146         netif_stop_queue(netdev);
3147         /* Herbert's original patch had:
3148          *  smp_mb__after_netif_stop_queue();
3149          * but since that doesn't exist yet, just open code it. */
3150         smp_mb();
3151
3152         /* We need to check again in a case another CPU has just
3153          * made room available. */
3154         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3155                 return -EBUSY;
3156
3157         /* A reprieve! */
3158         netif_start_queue(netdev);
3159         ++adapter->restart_queue;
3160         return 0;
3161 }
3162
3163 static int e1000_maybe_stop_tx(struct net_device *netdev,
3164                                struct e1000_tx_ring *tx_ring, int size)
3165 {
3166         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3167                 return 0;
3168         return __e1000_maybe_stop_tx(netdev, size);
3169 }
3170
3171 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3172 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3173 {
3174         struct e1000_adapter *adapter = netdev_priv(netdev);
3175         struct e1000_hw *hw = &adapter->hw;
3176         struct e1000_tx_ring *tx_ring;
3177         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3178         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3179         unsigned int tx_flags = 0;
3180         unsigned int len = skb->len - skb->data_len;
3181         unsigned int nr_frags;
3182         unsigned int mss;
3183         int count = 0;
3184         int tso;
3185         unsigned int f;
3186
3187         /* This goes back to the question of how to logically map a tx queue
3188          * to a flow.  Right now, performance is impacted slightly negatively
3189          * if using multiple tx queues.  If the stack breaks away from a
3190          * single qdisc implementation, we can look at this again. */
3191         tx_ring = adapter->tx_ring;
3192
3193         if (unlikely(skb->len <= 0)) {
3194                 dev_kfree_skb_any(skb);
3195                 return NETDEV_TX_OK;
3196         }
3197
3198         /* 82571 and newer doesn't need the workaround that limited descriptor
3199          * length to 4kB */
3200         if (hw->mac_type >= e1000_82571)
3201                 max_per_txd = 8192;
3202
3203         mss = skb_shinfo(skb)->gso_size;
3204         /* The controller does a simple calculation to
3205          * make sure there is enough room in the FIFO before
3206          * initiating the DMA for each buffer.  The calc is:
3207          * 4 = ceil(buffer len/mss).  To make sure we don't
3208          * overrun the FIFO, adjust the max buffer len if mss
3209          * drops. */
3210         if (mss) {
3211                 u8 hdr_len;
3212                 max_per_txd = min(mss << 2, max_per_txd);
3213                 max_txd_pwr = fls(max_per_txd) - 1;
3214
3215                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3216                 * points to just header, pull a few bytes of payload from
3217                 * frags into skb->data */
3218                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3219                 if (skb->data_len && hdr_len == len) {
3220                         switch (hw->mac_type) {
3221                                 unsigned int pull_size;
3222                         case e1000_82544:
3223                                 /* Make sure we have room to chop off 4 bytes,
3224                                  * and that the end alignment will work out to
3225                                  * this hardware's requirements
3226                                  * NOTE: this is a TSO only workaround
3227                                  * if end byte alignment not correct move us
3228                                  * into the next dword */
3229                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3230                                         break;
3231                                 /* fall through */
3232                         case e1000_82571:
3233                         case e1000_82572:
3234                         case e1000_82573:
3235                         case e1000_ich8lan:
3236                                 pull_size = min((unsigned int)4, skb->data_len);
3237                                 if (!__pskb_pull_tail(skb, pull_size)) {
3238                                         DPRINTK(DRV, ERR,
3239                                                 "__pskb_pull_tail failed.\n");
3240                                         dev_kfree_skb_any(skb);
3241                                         return NETDEV_TX_OK;
3242                                 }
3243                                 len = skb->len - skb->data_len;
3244                                 break;
3245                         default:
3246                                 /* do nothing */
3247                                 break;
3248                         }
3249                 }
3250         }
3251
3252         /* reserve a descriptor for the offload context */
3253         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3254                 count++;
3255         count++;
3256
3257         /* Controller Erratum workaround */
3258         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3259                 count++;
3260
3261         count += TXD_USE_COUNT(len, max_txd_pwr);
3262
3263         if (adapter->pcix_82544)
3264                 count++;
3265
3266         /* work-around for errata 10 and it applies to all controllers
3267          * in PCI-X mode, so add one more descriptor to the count
3268          */
3269         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3270                         (len > 2015)))
3271                 count++;
3272
3273         nr_frags = skb_shinfo(skb)->nr_frags;
3274         for (f = 0; f < nr_frags; f++)
3275                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3276                                        max_txd_pwr);
3277         if (adapter->pcix_82544)
3278                 count += nr_frags;
3279
3280
3281         if (hw->tx_pkt_filtering &&
3282             (hw->mac_type == e1000_82573))
3283                 e1000_transfer_dhcp_info(adapter, skb);
3284
3285         /* need: count + 2 desc gap to keep tail from touching
3286          * head, otherwise try next time */
3287         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3288                 return NETDEV_TX_BUSY;
3289
3290         if (unlikely(hw->mac_type == e1000_82547)) {
3291                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3292                         netif_stop_queue(netdev);
3293                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3294                         return NETDEV_TX_BUSY;
3295                 }
3296         }
3297
3298         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3299                 tx_flags |= E1000_TX_FLAGS_VLAN;
3300                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3301         }
3302
3303         first = tx_ring->next_to_use;
3304
3305         tso = e1000_tso(adapter, tx_ring, skb);
3306         if (tso < 0) {
3307                 dev_kfree_skb_any(skb);
3308                 return NETDEV_TX_OK;
3309         }
3310
3311         if (likely(tso)) {
3312                 tx_ring->last_tx_tso = 1;
3313                 tx_flags |= E1000_TX_FLAGS_TSO;
3314         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3315                 tx_flags |= E1000_TX_FLAGS_CSUM;
3316
3317         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3318          * 82571 hardware supports TSO capabilities for IPv6 as well...
3319          * no longer assume, we must. */
3320         if (likely(skb->protocol == htons(ETH_P_IP)))
3321                 tx_flags |= E1000_TX_FLAGS_IPV4;
3322
3323         e1000_tx_queue(adapter, tx_ring, tx_flags,
3324                        e1000_tx_map(adapter, tx_ring, skb, first,
3325                                     max_per_txd, nr_frags, mss));
3326
3327         netdev->trans_start = jiffies;
3328
3329         /* Make sure there is space in the ring for the next send. */
3330         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3331
3332         return NETDEV_TX_OK;
3333 }
3334
3335 /**
3336  * e1000_tx_timeout - Respond to a Tx Hang
3337  * @netdev: network interface device structure
3338  **/
3339
3340 static void e1000_tx_timeout(struct net_device *netdev)
3341 {
3342         struct e1000_adapter *adapter = netdev_priv(netdev);
3343
3344         /* Do the reset outside of interrupt context */
3345         adapter->tx_timeout_count++;
3346         schedule_work(&adapter->reset_task);
3347 }
3348
3349 static void e1000_reset_task(struct work_struct *work)
3350 {
3351         struct e1000_adapter *adapter =
3352                 container_of(work, struct e1000_adapter, reset_task);
3353
3354         e1000_reinit_locked(adapter);
3355 }
3356
3357 /**
3358  * e1000_get_stats - Get System Network Statistics
3359  * @netdev: network interface device structure
3360  *
3361  * Returns the address of the device statistics structure.
3362  * The statistics are actually updated from the timer callback.
3363  **/
3364
3365 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3366 {
3367         struct e1000_adapter *adapter = netdev_priv(netdev);
3368
3369         /* only return the current stats */
3370         return &adapter->net_stats;
3371 }
3372
3373 /**
3374  * e1000_change_mtu - Change the Maximum Transfer Unit
3375  * @netdev: network interface device structure
3376  * @new_mtu: new value for maximum frame size
3377  *
3378  * Returns 0 on success, negative on failure
3379  **/
3380
3381 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3382 {
3383         struct e1000_adapter *adapter = netdev_priv(netdev);
3384         struct e1000_hw *hw = &adapter->hw;
3385         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3386         u16 eeprom_data = 0;
3387
3388         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3389             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3390                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3391                 return -EINVAL;
3392         }
3393
3394         /* Adapter-specific max frame size limits. */
3395         switch (hw->mac_type) {
3396         case e1000_undefined ... e1000_82542_rev2_1:
3397         case e1000_ich8lan:
3398                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3399                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3400                         return -EINVAL;
3401                 }
3402                 break;
3403         case e1000_82573:
3404                 /* Jumbo Frames not supported if:
3405                  * - this is not an 82573L device
3406                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3407                 e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1,
3408                                   &eeprom_data);
3409                 if ((hw->device_id != E1000_DEV_ID_82573L) ||
3410                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3411                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3412                                 DPRINTK(PROBE, ERR,
3413                                         "Jumbo Frames not supported.\n");
3414                                 return -EINVAL;
3415                         }
3416                         break;
3417                 }
3418                 /* ERT will be enabled later to enable wire speed receives */
3419
3420                 /* fall through to get support */
3421         case e1000_82571:
3422         case e1000_82572:
3423         case e1000_80003es2lan:
3424 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3425                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3426                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3427                         return -EINVAL;
3428                 }
3429                 break;
3430         default:
3431                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3432                 break;
3433         }
3434
3435         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3436          * means we reserve 2 more, this pushes us to allocate from the next
3437          * larger slab size
3438          * i.e. RXBUFFER_2048 --> size-4096 slab */
3439
3440         if (max_frame <= E1000_RXBUFFER_256)
3441                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3442         else if (max_frame <= E1000_RXBUFFER_512)
3443                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3444         else if (max_frame <= E1000_RXBUFFER_1024)
3445                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3446         else if (max_frame <= E1000_RXBUFFER_2048)
3447                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3448         else if (max_frame <= E1000_RXBUFFER_4096)
3449                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3450         else if (max_frame <= E1000_RXBUFFER_8192)
3451                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3452         else if (max_frame <= E1000_RXBUFFER_16384)
3453                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3454
3455         /* adjust allocation if LPE protects us, and we aren't using SBP */
3456         if (!hw->tbi_compatibility_on &&
3457             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3458              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3459                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3460
3461         netdev->mtu = new_mtu;
3462         hw->max_frame_size = max_frame;
3463
3464         if (netif_running(netdev))
3465                 e1000_reinit_locked(adapter);
3466
3467         return 0;
3468 }
3469
3470 /**
3471  * e1000_update_stats - Update the board statistics counters
3472  * @adapter: board private structure
3473  **/
3474
3475 void e1000_update_stats(struct e1000_adapter *adapter)
3476 {
3477         struct e1000_hw *hw = &adapter->hw;
3478         struct pci_dev *pdev = adapter->pdev;
3479         unsigned long flags;
3480         u16 phy_tmp;
3481
3482 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3483
3484         /*
3485          * Prevent stats update while adapter is being reset, or if the pci
3486          * connection is down.
3487          */
3488         if (adapter->link_speed == 0)
3489                 return;
3490         if (pci_channel_offline(pdev))
3491                 return;
3492
3493         spin_lock_irqsave(&adapter->stats_lock, flags);
3494
3495         /* these counters are modified from e1000_tbi_adjust_stats,
3496          * called from the interrupt context, so they must only
3497          * be written while holding adapter->stats_lock
3498          */
3499
3500         adapter->stats.crcerrs += er32(CRCERRS);
3501         adapter->stats.gprc += er32(GPRC);
3502         adapter->stats.gorcl += er32(GORCL);
3503         adapter->stats.gorch += er32(GORCH);
3504         adapter->stats.bprc += er32(BPRC);
3505         adapter->stats.mprc += er32(MPRC);
3506         adapter->stats.roc += er32(ROC);
3507
3508         if (hw->mac_type != e1000_ich8lan) {
3509                 adapter->stats.prc64 += er32(PRC64);
3510                 adapter->stats.prc127 += er32(PRC127);
3511                 adapter->stats.prc255 += er32(PRC255);
3512                 adapter->stats.prc511 += er32(PRC511);
3513                 adapter->stats.prc1023 += er32(PRC1023);
3514                 adapter->stats.prc1522 += er32(PRC1522);
3515         }
3516
3517         adapter->stats.symerrs += er32(SYMERRS);
3518         adapter->stats.mpc += er32(MPC);
3519         adapter->stats.scc += er32(SCC);
3520         adapter->stats.ecol += er32(ECOL);
3521         adapter->stats.mcc += er32(MCC);
3522         adapter->stats.latecol += er32(LATECOL);
3523         adapter->stats.dc += er32(DC);
3524         adapter->stats.sec += er32(SEC);
3525         adapter->stats.rlec += er32(RLEC);
3526         adapter->stats.xonrxc += er32(XONRXC);
3527         adapter->stats.xontxc += er32(XONTXC);
3528         adapter->stats.xoffrxc += er32(XOFFRXC);
3529         adapter->stats.xofftxc += er32(XOFFTXC);
3530         adapter->stats.fcruc += er32(FCRUC);
3531         adapter->stats.gptc += er32(GPTC);
3532         adapter->stats.gotcl += er32(GOTCL);
3533         adapter->stats.gotch += er32(GOTCH);
3534         adapter->stats.rnbc += er32(RNBC);
3535         adapter->stats.ruc += er32(RUC);
3536         adapter->stats.rfc += er32(RFC);
3537         adapter->stats.rjc += er32(RJC);
3538         adapter->stats.torl += er32(TORL);
3539         adapter->stats.torh += er32(TORH);
3540         adapter->stats.totl += er32(TOTL);
3541         adapter->stats.toth += er32(TOTH);
3542         adapter->stats.tpr += er32(TPR);
3543
3544         if (hw->mac_type != e1000_ich8lan) {
3545                 adapter->stats.ptc64 += er32(PTC64);
3546                 adapter->stats.ptc127 += er32(PTC127);
3547                 adapter->stats.ptc255 += er32(PTC255);
3548                 adapter->stats.ptc511 += er32(PTC511);
3549                 adapter->stats.ptc1023 += er32(PTC1023);
3550                 adapter->stats.ptc1522 += er32(PTC1522);
3551         }
3552
3553         adapter->stats.mptc += er32(MPTC);
3554         adapter->stats.bptc += er32(BPTC);
3555
3556         /* used for adaptive IFS */
3557
3558         hw->tx_packet_delta = er32(TPT);
3559         adapter->stats.tpt += hw->tx_packet_delta;
3560         hw->collision_delta = er32(COLC);
3561         adapter->stats.colc += hw->collision_delta;
3562
3563         if (hw->mac_type >= e1000_82543) {
3564                 adapter->stats.algnerrc += er32(ALGNERRC);
3565                 adapter->stats.rxerrc += er32(RXERRC);
3566                 adapter->stats.tncrs += er32(TNCRS);
3567                 adapter->stats.cexterr += er32(CEXTERR);
3568                 adapter->stats.tsctc += er32(TSCTC);
3569                 adapter->stats.tsctfc += er32(TSCTFC);
3570         }
3571         if (hw->mac_type > e1000_82547_rev_2) {
3572                 adapter->stats.iac += er32(IAC);
3573                 adapter->stats.icrxoc += er32(ICRXOC);
3574
3575                 if (hw->mac_type != e1000_ich8lan) {
3576                         adapter->stats.icrxptc += er32(ICRXPTC);
3577                         adapter->stats.icrxatc += er32(ICRXATC);
3578                         adapter->stats.ictxptc += er32(ICTXPTC);
3579                         adapter->stats.ictxatc += er32(ICTXATC);
3580                         adapter->stats.ictxqec += er32(ICTXQEC);
3581                         adapter->stats.ictxqmtc += er32(ICTXQMTC);
3582                         adapter->stats.icrxdmtc += er32(ICRXDMTC);
3583                 }
3584         }
3585
3586         /* Fill out the OS statistics structure */
3587         adapter->net_stats.multicast = adapter->stats.mprc;
3588         adapter->net_stats.collisions = adapter->stats.colc;
3589
3590         /* Rx Errors */
3591
3592         /* RLEC on some newer hardware can be incorrect so build
3593         * our own version based on RUC and ROC */
3594         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3595                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3596                 adapter->stats.ruc + adapter->stats.roc +
3597                 adapter->stats.cexterr;
3598         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3599         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3600         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3601         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3602         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3603
3604         /* Tx Errors */
3605         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3606         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3607         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3608         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3609         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3610         if (hw->bad_tx_carr_stats_fd &&
3611             adapter->link_duplex == FULL_DUPLEX) {
3612                 adapter->net_stats.tx_carrier_errors = 0;
3613                 adapter->stats.tncrs = 0;
3614         }
3615
3616         /* Tx Dropped needs to be maintained elsewhere */
3617
3618         /* Phy Stats */
3619         if (hw->media_type == e1000_media_type_copper) {
3620                 if ((adapter->link_speed == SPEED_1000) &&
3621                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3622                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3623                         adapter->phy_stats.idle_errors += phy_tmp;
3624                 }
3625
3626                 if ((hw->mac_type <= e1000_82546) &&
3627                    (hw->phy_type == e1000_phy_m88) &&
3628                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3629                         adapter->phy_stats.receive_errors += phy_tmp;
3630         }
3631
3632         /* Management Stats */
3633         if (hw->has_smbus) {
3634                 adapter->stats.mgptc += er32(MGTPTC);
3635                 adapter->stats.mgprc += er32(MGTPRC);
3636                 adapter->stats.mgpdc += er32(MGTPDC);
3637         }
3638
3639         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3640 }
3641
3642 /**
3643  * e1000_intr_msi - Interrupt Handler
3644  * @irq: interrupt number
3645  * @data: pointer to a network interface device structure
3646  **/
3647
3648 static irqreturn_t e1000_intr_msi(int irq, void *data)
3649 {
3650         struct net_device *netdev = data;
3651         struct e1000_adapter *adapter = netdev_priv(netdev);
3652         struct e1000_hw *hw = &adapter->hw;
3653         u32 icr = er32(ICR);
3654
3655         /* in NAPI mode read ICR disables interrupts using IAM */
3656
3657         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3658                 hw->get_link_status = 1;
3659                 /* 80003ES2LAN workaround-- For packet buffer work-around on
3660                  * link down event; disable receives here in the ISR and reset
3661                  * adapter in watchdog */
3662                 if (netif_carrier_ok(netdev) &&
3663                     (hw->mac_type == e1000_80003es2lan)) {
3664                         /* disable receives */
3665                         u32 rctl = er32(RCTL);
3666                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3667                 }
3668                 /* guard against interrupt when we're going down */
3669                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3670                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3671         }
3672
3673         if (likely(napi_schedule_prep(&adapter->napi))) {
3674                 adapter->total_tx_bytes = 0;
3675                 adapter->total_tx_packets = 0;
3676                 adapter->total_rx_bytes = 0;
3677                 adapter->total_rx_packets = 0;
3678                 __napi_schedule(&adapter->napi);
3679         } else
3680                 e1000_irq_enable(adapter);
3681
3682         return IRQ_HANDLED;
3683 }
3684
3685 /**
3686  * e1000_intr - Interrupt Handler
3687  * @irq: interrupt number
3688  * @data: pointer to a network interface device structure
3689  **/
3690
3691 static irqreturn_t e1000_intr(int irq, void *data)
3692 {
3693         struct net_device *netdev = data;
3694         struct e1000_adapter *adapter = netdev_priv(netdev);
3695         struct e1000_hw *hw = &adapter->hw;
3696         u32 rctl, icr = er32(ICR);
3697
3698         if (unlikely((!icr) || test_bit(__E1000_RESETTING, &adapter->flags)))
3699                 return IRQ_NONE;  /* Not our interrupt */
3700
3701         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3702          * not set, then the adapter didn't send an interrupt */
3703         if (unlikely(hw->mac_type >= e1000_82571 &&
3704                      !(icr & E1000_ICR_INT_ASSERTED)))
3705                 return IRQ_NONE;
3706
3707         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3708          * need for the IMC write */
3709
3710         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3711                 hw->get_link_status = 1;
3712                 /* 80003ES2LAN workaround--
3713                  * For packet buffer work-around on link down event;
3714                  * disable receives here in the ISR and
3715                  * reset adapter in watchdog
3716                  */
3717                 if (netif_carrier_ok(netdev) &&
3718                     (hw->mac_type == e1000_80003es2lan)) {
3719                         /* disable receives */
3720                         rctl = er32(RCTL);
3721                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3722                 }
3723                 /* guard against interrupt when we're going down */
3724                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3725                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3726         }
3727
3728         if (unlikely(hw->mac_type < e1000_82571)) {
3729                 /* disable interrupts, without the synchronize_irq bit */
3730                 ew32(IMC, ~0);
3731                 E1000_WRITE_FLUSH();
3732         }
3733         if (likely(napi_schedule_prep(&adapter->napi))) {
3734                 adapter->total_tx_bytes = 0;
3735                 adapter->total_tx_packets = 0;
3736                 adapter->total_rx_bytes = 0;
3737                 adapter->total_rx_packets = 0;
3738                 __napi_schedule(&adapter->napi);
3739         } else
3740                 /* this really should not happen! if it does it is basically a
3741                  * bug, but not a hard error, so enable ints and continue */
3742                 e1000_irq_enable(adapter);
3743
3744         return IRQ_HANDLED;
3745 }
3746
3747 /**
3748  * e1000_clean - NAPI Rx polling callback
3749  * @adapter: board private structure
3750  **/
3751 static int e1000_clean(struct napi_struct *napi, int budget)
3752 {
3753         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3754         struct net_device *poll_dev = adapter->netdev;
3755         int tx_cleaned = 0, work_done = 0;
3756
3757         adapter = netdev_priv(poll_dev);
3758
3759         tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3760
3761         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3762                           &work_done, budget);
3763
3764         if (tx_cleaned)
3765                 work_done = budget;
3766
3767         /* If budget not fully consumed, exit the polling mode */
3768         if (work_done < budget) {
3769                 if (likely(adapter->itr_setting & 3))
3770                         e1000_set_itr(adapter);
3771                 napi_complete(napi);
3772                 e1000_irq_enable(adapter);
3773         }
3774
3775         return work_done;
3776 }
3777
3778 /**
3779  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3780  * @adapter: board private structure
3781  **/
3782 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3783                                struct e1000_tx_ring *tx_ring)
3784 {
3785         struct e1000_hw *hw = &adapter->hw;
3786         struct net_device *netdev = adapter->netdev;
3787         struct e1000_tx_desc *tx_desc, *eop_desc;
3788         struct e1000_buffer *buffer_info;
3789         unsigned int i, eop;
3790         unsigned int count = 0;
3791         bool cleaned = false;
3792         unsigned int total_tx_bytes=0, total_tx_packets=0;
3793
3794         i = tx_ring->next_to_clean;
3795         eop = tx_ring->buffer_info[i].next_to_watch;
3796         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3797
3798         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3799                 for (cleaned = false; !cleaned; ) {
3800                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3801                         buffer_info = &tx_ring->buffer_info[i];
3802                         cleaned = (i == eop);
3803
3804                         if (cleaned) {
3805                                 struct sk_buff *skb = buffer_info->skb;
3806                                 unsigned int segs, bytecount;
3807                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3808                                 /* multiply data chunks by size of headers */
3809                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3810                                             skb->len;
3811                                 total_tx_packets += segs;
3812                                 total_tx_bytes += bytecount;
3813                         }
3814                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3815                         tx_desc->upper.data = 0;
3816
3817                         if (unlikely(++i == tx_ring->count)) i = 0;
3818                 }
3819
3820                 eop = tx_ring->buffer_info[i].next_to_watch;
3821                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3822 #define E1000_TX_WEIGHT 64
3823                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3824                 if (count++ == E1000_TX_WEIGHT)
3825                         break;
3826         }
3827
3828         tx_ring->next_to_clean = i;
3829
3830 #define TX_WAKE_THRESHOLD 32
3831         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3832                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3833                 /* Make sure that anybody stopping the queue after this
3834                  * sees the new next_to_clean.
3835                  */
3836                 smp_mb();
3837                 if (netif_queue_stopped(netdev)) {
3838                         netif_wake_queue(netdev);
3839                         ++adapter->restart_queue;
3840                 }
3841         }
3842
3843         if (adapter->detect_tx_hung) {
3844                 /* Detect a transmit hang in hardware, this serializes the
3845                  * check with the clearing of time_stamp and movement of i */
3846                 adapter->detect_tx_hung = false;
3847                 if (tx_ring->buffer_info[eop].dma &&
3848                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3849                                (adapter->tx_timeout_factor * HZ))
3850                     && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3851
3852                         /* detected Tx unit hang */
3853                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3854                                         "  Tx Queue             <%lu>\n"
3855                                         "  TDH                  <%x>\n"
3856                                         "  TDT                  <%x>\n"
3857                                         "  next_to_use          <%x>\n"
3858                                         "  next_to_clean        <%x>\n"
3859                                         "buffer_info[next_to_clean]\n"
3860                                         "  time_stamp           <%lx>\n"
3861                                         "  next_to_watch        <%x>\n"
3862                                         "  jiffies              <%lx>\n"
3863                                         "  next_to_watch.status <%x>\n",
3864                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3865                                         sizeof(struct e1000_tx_ring)),
3866                                 readl(hw->hw_addr + tx_ring->tdh),
3867                                 readl(hw->hw_addr + tx_ring->tdt),
3868                                 tx_ring->next_to_use,
3869                                 tx_ring->next_to_clean,
3870                                 tx_ring->buffer_info[eop].time_stamp,
3871                                 eop,
3872                                 jiffies,
3873                                 eop_desc->upper.fields.status);
3874                         netif_stop_queue(netdev);
3875                 }
3876         }
3877         adapter->total_tx_bytes += total_tx_bytes;
3878         adapter->total_tx_packets += total_tx_packets;
3879         adapter->net_stats.tx_bytes += total_tx_bytes;
3880         adapter->net_stats.tx_packets += total_tx_packets;
3881         return cleaned;
3882 }
3883
3884 /**
3885  * e1000_rx_checksum - Receive Checksum Offload for 82543
3886  * @adapter:     board private structure
3887  * @status_err:  receive descriptor status and error fields
3888  * @csum:        receive descriptor csum field
3889  * @sk_buff:     socket buffer with received data
3890  **/
3891
3892 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3893                               u32 csum, struct sk_buff *skb)
3894 {
3895         struct e1000_hw *hw = &adapter->hw;
3896         u16 status = (u16)status_err;
3897         u8 errors = (u8)(status_err >> 24);
3898         skb->ip_summed = CHECKSUM_NONE;
3899
3900         /* 82543 or newer only */
3901         if (unlikely(hw->mac_type < e1000_82543)) return;
3902         /* Ignore Checksum bit is set */
3903         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3904         /* TCP/UDP checksum error bit is set */
3905         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3906                 /* let the stack verify checksum errors */
3907                 adapter->hw_csum_err++;
3908                 return;
3909         }
3910         /* TCP/UDP Checksum has not been calculated */
3911         if (hw->mac_type <= e1000_82547_rev_2) {
3912                 if (!(status & E1000_RXD_STAT_TCPCS))
3913                         return;
3914         } else {
3915                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3916                         return;
3917         }
3918         /* It must be a TCP or UDP packet with a valid checksum */
3919         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3920                 /* TCP checksum is good */
3921                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3922         } else if (hw->mac_type > e1000_82547_rev_2) {
3923                 /* IP fragment with UDP payload */
3924                 /* Hardware complements the payload checksum, so we undo it
3925                  * and then put the value in host order for further stack use.
3926                  */
3927                 __sum16 sum = (__force __sum16)htons(csum);
3928                 skb->csum = csum_unfold(~sum);
3929                 skb->ip_summed = CHECKSUM_COMPLETE;
3930         }
3931         adapter->hw_csum_good++;
3932 }
3933
3934 /**
3935  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3936  * @adapter: board private structure
3937  **/
3938 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3939                                struct e1000_rx_ring *rx_ring,
3940                                int *work_done, int work_to_do)
3941 {
3942         struct e1000_hw *hw = &adapter->hw;
3943         struct net_device *netdev = adapter->netdev;
3944         struct pci_dev *pdev = adapter->pdev;
3945         struct e1000_rx_desc *rx_desc, *next_rxd;
3946         struct e1000_buffer *buffer_info, *next_buffer;
3947         unsigned long flags;
3948         u32 length;
3949         u8 last_byte;
3950         unsigned int i;
3951         int cleaned_count = 0;
3952         bool cleaned = false;
3953         unsigned int total_rx_bytes=0, total_rx_packets=0;
3954
3955         i = rx_ring->next_to_clean;
3956         rx_desc = E1000_RX_DESC(*rx_ring, i);
3957         buffer_info = &rx_ring->buffer_info[i];
3958
3959         while (rx_desc->status & E1000_RXD_STAT_DD) {
3960                 struct sk_buff *skb;
3961                 u8 status;
3962
3963                 if (*work_done >= work_to_do)
3964                         break;
3965                 (*work_done)++;
3966
3967                 status = rx_desc->status;
3968                 skb = buffer_info->skb;
3969                 buffer_info->skb = NULL;
3970
3971                 prefetch(skb->data - NET_IP_ALIGN);
3972
3973                 if (++i == rx_ring->count) i = 0;
3974                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3975                 prefetch(next_rxd);
3976
3977                 next_buffer = &rx_ring->buffer_info[i];
3978
3979                 cleaned = true;
3980                 cleaned_count++;
3981                 pci_unmap_single(pdev,
3982                                  buffer_info->dma,
3983                                  buffer_info->length,
3984                                  PCI_DMA_FROMDEVICE);
3985
3986                 length = le16_to_cpu(rx_desc->length);
3987
3988                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3989                         /* All receives must fit into a single buffer */
3990                         E1000_DBG("%s: Receive packet consumed multiple"
3991                                   " buffers\n", netdev->name);
3992                         /* recycle */
3993                         buffer_info->skb = skb;
3994                         goto next_desc;
3995                 }
3996
3997                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3998                         last_byte = *(skb->data + length - 1);
3999                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4000                                        last_byte)) {
4001                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4002                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
4003                                                        length, skb->data);
4004                                 spin_unlock_irqrestore(&adapter->stats_lock,
4005                                                        flags);
4006                                 length--;
4007                         } else {
4008                                 /* recycle */
4009                                 buffer_info->skb = skb;
4010                                 goto next_desc;
4011                         }
4012                 }
4013
4014                 /* adjust length to remove Ethernet CRC, this must be
4015                  * done after the TBI_ACCEPT workaround above */
4016                 length -= 4;
4017
4018                 /* probably a little skewed due to removing CRC */
4019                 total_rx_bytes += length;
4020                 total_rx_packets++;
4021
4022                 /* code added for copybreak, this should improve
4023                  * performance for small packets with large amounts
4024                  * of reassembly being done in the stack */
4025                 if (length < copybreak) {
4026                         struct sk_buff *new_skb =
4027                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4028                         if (new_skb) {
4029                                 skb_reserve(new_skb, NET_IP_ALIGN);
4030                                 skb_copy_to_linear_data_offset(new_skb,
4031                                                                -NET_IP_ALIGN,
4032                                                                (skb->data -
4033                                                                 NET_IP_ALIGN),
4034                                                                (length +
4035                                                                 NET_IP_ALIGN));
4036                                 /* save the skb in buffer_info as good */
4037                                 buffer_info->skb = skb;
4038                                 skb = new_skb;
4039                         }
4040                         /* else just continue with the old one */
4041                 }
4042                 /* end copybreak code */
4043                 skb_put(skb, length);
4044
4045                 /* Receive Checksum Offload */
4046                 e1000_rx_checksum(adapter,
4047                                   (u32)(status) |
4048                                   ((u32)(rx_desc->errors) << 24),
4049                                   le16_to_cpu(rx_desc->csum), skb);
4050
4051                 skb->protocol = eth_type_trans(skb, netdev);
4052
4053                 if (unlikely(adapter->vlgrp &&
4054                             (status & E1000_RXD_STAT_VP))) {
4055                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4056                                                  le16_to_cpu(rx_desc->special));
4057                 } else {
4058                         netif_receive_skb(skb);
4059                 }
4060
4061 next_desc:
4062                 rx_desc->status = 0;
4063
4064                 /* return some buffers to hardware, one at a time is too slow */
4065                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4066                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4067                         cleaned_count = 0;
4068                 }
4069
4070                 /* use prefetched values */
4071                 rx_desc = next_rxd;
4072                 buffer_info = next_buffer;
4073         }
4074         rx_ring->next_to_clean = i;
4075
4076         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4077         if (cleaned_count)
4078                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4079
4080         adapter->total_rx_packets += total_rx_packets;
4081         adapter->total_rx_bytes += total_rx_bytes;
4082         adapter->net_stats.rx_bytes += total_rx_bytes;
4083         adapter->net_stats.rx_packets += total_rx_packets;
4084         return cleaned;
4085 }
4086
4087 /**
4088  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4089  * @adapter: address of board private structure
4090  **/
4091
4092 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4093                                    struct e1000_rx_ring *rx_ring,
4094                                    int cleaned_count)
4095 {
4096         struct e1000_hw *hw = &adapter->hw;
4097         struct net_device *netdev = adapter->netdev;
4098         struct pci_dev *pdev = adapter->pdev;
4099         struct e1000_rx_desc *rx_desc;
4100         struct e1000_buffer *buffer_info;
4101         struct sk_buff *skb;
4102         unsigned int i;
4103         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4104
4105         i = rx_ring->next_to_use;
4106         buffer_info = &rx_ring->buffer_info[i];
4107
4108         while (cleaned_count--) {
4109                 skb = buffer_info->skb;
4110                 if (skb) {
4111                         skb_trim(skb, 0);
4112                         goto map_skb;
4113                 }
4114
4115                 skb = netdev_alloc_skb(netdev, bufsz);
4116                 if (unlikely(!skb)) {
4117                         /* Better luck next round */
4118                         adapter->alloc_rx_buff_failed++;
4119                         break;
4120                 }
4121
4122                 /* Fix for errata 23, can't cross 64kB boundary */
4123                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4124                         struct sk_buff *oldskb = skb;
4125                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4126                                              "at %p\n", bufsz, skb->data);
4127                         /* Try again, without freeing the previous */
4128                         skb = netdev_alloc_skb(netdev, bufsz);
4129                         /* Failed allocation, critical failure */
4130                         if (!skb) {
4131                                 dev_kfree_skb(oldskb);
4132                                 break;
4133                         }
4134
4135                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4136                                 /* give up */
4137                                 dev_kfree_skb(skb);
4138                                 dev_kfree_skb(oldskb);
4139                                 break; /* while !buffer_info->skb */
4140                         }
4141
4142                         /* Use new allocation */
4143                         dev_kfree_skb(oldskb);
4144                 }
4145                 /* Make buffer alignment 2 beyond a 16 byte boundary
4146                  * this will result in a 16 byte aligned IP header after
4147                  * the 14 byte MAC header is removed
4148                  */
4149                 skb_reserve(skb, NET_IP_ALIGN);
4150
4151                 buffer_info->skb = skb;
4152                 buffer_info->length = adapter->rx_buffer_len;
4153 map_skb:
4154                 buffer_info->dma = pci_map_single(pdev,
4155                                                   skb->data,
4156                                                   adapter->rx_buffer_len,
4157                                                   PCI_DMA_FROMDEVICE);
4158
4159                 /* Fix for errata 23, can't cross 64kB boundary */
4160                 if (!e1000_check_64k_bound(adapter,
4161                                         (void *)(unsigned long)buffer_info->dma,
4162                                         adapter->rx_buffer_len)) {
4163                         DPRINTK(RX_ERR, ERR,
4164                                 "dma align check failed: %u bytes at %p\n",
4165                                 adapter->rx_buffer_len,
4166                                 (void *)(unsigned long)buffer_info->dma);
4167                         dev_kfree_skb(skb);
4168                         buffer_info->skb = NULL;
4169
4170                         pci_unmap_single(pdev, buffer_info->dma,
4171                                          adapter->rx_buffer_len,
4172                                          PCI_DMA_FROMDEVICE);
4173
4174                         break; /* while !buffer_info->skb */
4175                 }
4176                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4177                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4178
4179                 if (unlikely(++i == rx_ring->count))
4180                         i = 0;
4181                 buffer_info = &rx_ring->buffer_info[i];
4182         }
4183
4184         if (likely(rx_ring->next_to_use != i)) {
4185                 rx_ring->next_to_use = i;
4186                 if (unlikely(i-- == 0))
4187                         i = (rx_ring->count - 1);
4188
4189                 /* Force memory writes to complete before letting h/w
4190                  * know there are new descriptors to fetch.  (Only
4191                  * applicable for weak-ordered memory model archs,
4192                  * such as IA-64). */
4193                 wmb();
4194                 writel(i, hw->hw_addr + rx_ring->rdt);
4195         }
4196 }
4197
4198 /**
4199  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4200  * @adapter:
4201  **/
4202
4203 static void e1000_smartspeed(struct e1000_adapter *adapter)
4204 {
4205         struct e1000_hw *hw = &adapter->hw;
4206         u16 phy_status;
4207         u16 phy_ctrl;
4208
4209         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4210            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4211                 return;
4212
4213         if (adapter->smartspeed == 0) {
4214                 /* If Master/Slave config fault is asserted twice,
4215                  * we assume back-to-back */
4216                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4217                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4218                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4219                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4220                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4221                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4222                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4223                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4224                                             phy_ctrl);
4225                         adapter->smartspeed++;
4226                         if (!e1000_phy_setup_autoneg(hw) &&
4227                            !e1000_read_phy_reg(hw, PHY_CTRL,
4228                                                &phy_ctrl)) {
4229                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4230                                              MII_CR_RESTART_AUTO_NEG);
4231                                 e1000_write_phy_reg(hw, PHY_CTRL,
4232                                                     phy_ctrl);
4233                         }
4234                 }
4235                 return;
4236         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4237                 /* If still no link, perhaps using 2/3 pair cable */
4238                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4239                 phy_ctrl |= CR_1000T_MS_ENABLE;
4240                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4241                 if (!e1000_phy_setup_autoneg(hw) &&
4242                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4243                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4244                                      MII_CR_RESTART_AUTO_NEG);
4245                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4246                 }
4247         }
4248         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4249         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4250                 adapter->smartspeed = 0;
4251 }
4252
4253 /**
4254  * e1000_ioctl -
4255  * @netdev:
4256  * @ifreq:
4257  * @cmd:
4258  **/
4259
4260 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4261 {
4262         switch (cmd) {
4263         case SIOCGMIIPHY:
4264         case SIOCGMIIREG:
4265         case SIOCSMIIREG:
4266                 return e1000_mii_ioctl(netdev, ifr, cmd);
4267         default:
4268                 return -EOPNOTSUPP;
4269         }
4270 }
4271
4272 /**
4273  * e1000_mii_ioctl -
4274  * @netdev:
4275  * @ifreq:
4276  * @cmd:
4277  **/
4278
4279 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4280                            int cmd)
4281 {
4282         struct e1000_adapter *adapter = netdev_priv(netdev);
4283         struct e1000_hw *hw = &adapter->hw;
4284         struct mii_ioctl_data *data = if_mii(ifr);
4285         int retval;
4286         u16 mii_reg;
4287         u16 spddplx;
4288         unsigned long flags;
4289
4290         if (hw->media_type != e1000_media_type_copper)
4291                 return -EOPNOTSUPP;
4292
4293         switch (cmd) {
4294         case SIOCGMIIPHY:
4295                 data->phy_id = hw->phy_addr;
4296                 break;
4297         case SIOCGMIIREG:
4298                 if (!capable(CAP_NET_ADMIN))
4299                         return -EPERM;
4300                 spin_lock_irqsave(&adapter->stats_lock, flags);
4301                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4302                                    &data->val_out)) {
4303                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4304                         return -EIO;
4305                 }
4306                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4307                 break;
4308         case SIOCSMIIREG:
4309                 if (!capable(CAP_NET_ADMIN))
4310                         return -EPERM;
4311                 if (data->reg_num & ~(0x1F))
4312                         return -EFAULT;
4313                 mii_reg = data->val_in;
4314                 spin_lock_irqsave(&adapter->stats_lock, flags);
4315                 if (e1000_write_phy_reg(hw, data->reg_num,
4316                                         mii_reg)) {
4317                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4318                         return -EIO;
4319                 }
4320                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4321                 if (hw->media_type == e1000_media_type_copper) {
4322                         switch (data->reg_num) {
4323                         case PHY_CTRL:
4324                                 if (mii_reg & MII_CR_POWER_DOWN)
4325                                         break;
4326                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4327                                         hw->autoneg = 1;
4328                                         hw->autoneg_advertised = 0x2F;
4329                                 } else {
4330                                         if (mii_reg & 0x40)
4331                                                 spddplx = SPEED_1000;
4332                                         else if (mii_reg & 0x2000)
4333                                                 spddplx = SPEED_100;
4334                                         else
4335                                                 spddplx = SPEED_10;
4336                                         spddplx += (mii_reg & 0x100)
4337                                                    ? DUPLEX_FULL :
4338                                                    DUPLEX_HALF;
4339                                         retval = e1000_set_spd_dplx(adapter,
4340                                                                     spddplx);
4341                                         if (retval)
4342                                                 return retval;
4343                                 }
4344                                 if (netif_running(adapter->netdev))
4345                                         e1000_reinit_locked(adapter);
4346                                 else
4347                                         e1000_reset(adapter);
4348                                 break;
4349                         case M88E1000_PHY_SPEC_CTRL:
4350                         case M88E1000_EXT_PHY_SPEC_CTRL:
4351                                 if (e1000_phy_reset(hw))
4352                                         return -EIO;
4353                                 break;
4354                         }
4355                 } else {
4356                         switch (data->reg_num) {
4357                         case PHY_CTRL:
4358                                 if (mii_reg & MII_CR_POWER_DOWN)
4359                                         break;
4360                                 if (netif_running(adapter->netdev))
4361                                         e1000_reinit_locked(adapter);
4362                                 else
4363                                         e1000_reset(adapter);
4364                                 break;
4365                         }
4366                 }
4367                 break;
4368         default:
4369                 return -EOPNOTSUPP;
4370         }
4371         return E1000_SUCCESS;
4372 }
4373
4374 void e1000_pci_set_mwi(struct e1000_hw *hw)
4375 {
4376         struct e1000_adapter *adapter = hw->back;
4377         int ret_val = pci_set_mwi(adapter->pdev);
4378
4379         if (ret_val)
4380                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4381 }
4382
4383 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4384 {
4385         struct e1000_adapter *adapter = hw->back;
4386
4387         pci_clear_mwi(adapter->pdev);
4388 }
4389
4390 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4391 {
4392         struct e1000_adapter *adapter = hw->back;
4393         return pcix_get_mmrbc(adapter->pdev);
4394 }
4395
4396 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4397 {
4398         struct e1000_adapter *adapter = hw->back;
4399         pcix_set_mmrbc(adapter->pdev, mmrbc);
4400 }
4401
4402 s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
4403 {
4404     struct e1000_adapter *adapter = hw->back;
4405     u16 cap_offset;
4406
4407     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4408     if (!cap_offset)
4409         return -E1000_ERR_CONFIG;
4410
4411     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4412
4413     return E1000_SUCCESS;
4414 }
4415
4416 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4417 {
4418         outl(value, port);
4419 }
4420
4421 static void e1000_vlan_rx_register(struct net_device *netdev,
4422                                    struct vlan_group *grp)
4423 {
4424         struct e1000_adapter *adapter = netdev_priv(netdev);
4425         struct e1000_hw *hw = &adapter->hw;
4426         u32 ctrl, rctl;
4427
4428         if (!test_bit(__E1000_DOWN, &adapter->flags))
4429                 e1000_irq_disable(adapter);
4430         adapter->vlgrp = grp;
4431
4432         if (grp) {
4433                 /* enable VLAN tag insert/strip */
4434                 ctrl = er32(CTRL);
4435                 ctrl |= E1000_CTRL_VME;
4436                 ew32(CTRL, ctrl);
4437
4438                 if (adapter->hw.mac_type != e1000_ich8lan) {
4439                         /* enable VLAN receive filtering */
4440                         rctl = er32(RCTL);
4441                         rctl &= ~E1000_RCTL_CFIEN;
4442                         ew32(RCTL, rctl);
4443                         e1000_update_mng_vlan(adapter);
4444                 }
4445         } else {
4446                 /* disable VLAN tag insert/strip */
4447                 ctrl = er32(CTRL);
4448                 ctrl &= ~E1000_CTRL_VME;
4449                 ew32(CTRL, ctrl);
4450
4451                 if (adapter->hw.mac_type != e1000_ich8lan) {
4452                         if (adapter->mng_vlan_id !=
4453                             (u16)E1000_MNG_VLAN_NONE) {
4454                                 e1000_vlan_rx_kill_vid(netdev,
4455                                                        adapter->mng_vlan_id);
4456                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4457                         }
4458                 }
4459         }
4460
4461         if (!test_bit(__E1000_DOWN, &adapter->flags))
4462                 e1000_irq_enable(adapter);
4463 }
4464
4465 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4466 {
4467         struct e1000_adapter *adapter = netdev_priv(netdev);
4468         struct e1000_hw *hw = &adapter->hw;
4469         u32 vfta, index;
4470
4471         if ((hw->mng_cookie.status &
4472              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4473             (vid == adapter->mng_vlan_id))
4474                 return;
4475         /* add VID to filter table */
4476         index = (vid >> 5) & 0x7F;
4477         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4478         vfta |= (1 << (vid & 0x1F));
4479         e1000_write_vfta(hw, index, vfta);
4480 }
4481
4482 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4483 {
4484         struct e1000_adapter *adapter = netdev_priv(netdev);
4485         struct e1000_hw *hw = &adapter->hw;
4486         u32 vfta, index;
4487
4488         if (!test_bit(__E1000_DOWN, &adapter->flags))
4489                 e1000_irq_disable(adapter);
4490         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4491         if (!test_bit(__E1000_DOWN, &adapter->flags))
4492                 e1000_irq_enable(adapter);
4493
4494         if ((hw->mng_cookie.status &
4495              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4496             (vid == adapter->mng_vlan_id)) {
4497                 /* release control to f/w */
4498                 e1000_release_hw_control(adapter);
4499                 return;
4500         }
4501
4502         /* remove VID from filter table */
4503         index = (vid >> 5) & 0x7F;
4504         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4505         vfta &= ~(1 << (vid & 0x1F));
4506         e1000_write_vfta(hw, index, vfta);
4507 }
4508
4509 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4510 {
4511         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4512
4513         if (adapter->vlgrp) {
4514                 u16 vid;
4515                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4516                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4517                                 continue;
4518                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4519                 }
4520         }
4521 }
4522
4523 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4524 {
4525         struct e1000_hw *hw = &adapter->hw;
4526
4527         hw->autoneg = 0;
4528
4529         /* Fiber NICs only allow 1000 gbps Full duplex */
4530         if ((hw->media_type == e1000_media_type_fiber) &&
4531                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4532                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4533                 return -EINVAL;
4534         }
4535
4536         switch (spddplx) {
4537         case SPEED_10 + DUPLEX_HALF:
4538                 hw->forced_speed_duplex = e1000_10_half;
4539                 break;
4540         case SPEED_10 + DUPLEX_FULL:
4541                 hw->forced_speed_duplex = e1000_10_full;
4542                 break;
4543         case SPEED_100 + DUPLEX_HALF:
4544                 hw->forced_speed_duplex = e1000_100_half;
4545                 break;
4546         case SPEED_100 + DUPLEX_FULL:
4547                 hw->forced_speed_duplex = e1000_100_full;
4548                 break;
4549         case SPEED_1000 + DUPLEX_FULL:
4550                 hw->autoneg = 1;
4551                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4552                 break;
4553         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4554         default:
4555                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4556                 return -EINVAL;
4557         }
4558         return 0;
4559 }
4560
4561 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4562 {
4563         struct net_device *netdev = pci_get_drvdata(pdev);
4564         struct e1000_adapter *adapter = netdev_priv(netdev);
4565         struct e1000_hw *hw = &adapter->hw;
4566         u32 ctrl, ctrl_ext, rctl, status;
4567         u32 wufc = adapter->wol;
4568 #ifdef CONFIG_PM
4569         int retval = 0;
4570 #endif
4571
4572         netif_device_detach(netdev);
4573
4574         if (netif_running(netdev)) {
4575                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4576                 e1000_down(adapter);
4577         }
4578
4579 #ifdef CONFIG_PM
4580         retval = pci_save_state(pdev);
4581         if (retval)
4582                 return retval;
4583 #endif
4584
4585         status = er32(STATUS);
4586         if (status & E1000_STATUS_LU)
4587                 wufc &= ~E1000_WUFC_LNKC;
4588
4589         if (wufc) {
4590                 e1000_setup_rctl(adapter);
4591                 e1000_set_rx_mode(netdev);
4592
4593                 /* turn on all-multi mode if wake on multicast is enabled */
4594                 if (wufc & E1000_WUFC_MC) {
4595                         rctl = er32(RCTL);
4596                         rctl |= E1000_RCTL_MPE;
4597                         ew32(RCTL, rctl);
4598                 }
4599
4600                 if (hw->mac_type >= e1000_82540) {
4601                         ctrl = er32(CTRL);
4602                         /* advertise wake from D3Cold */
4603                         #define E1000_CTRL_ADVD3WUC 0x00100000
4604                         /* phy power management enable */
4605                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4606                         ctrl |= E1000_CTRL_ADVD3WUC |
4607                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4608                         ew32(CTRL, ctrl);
4609                 }
4610
4611                 if (hw->media_type == e1000_media_type_fiber ||
4612                    hw->media_type == e1000_media_type_internal_serdes) {
4613                         /* keep the laser running in D3 */
4614                         ctrl_ext = er32(CTRL_EXT);
4615                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4616                         ew32(CTRL_EXT, ctrl_ext);
4617                 }
4618
4619                 /* Allow time for pending master requests to run */
4620                 e1000_disable_pciex_master(hw);
4621
4622                 ew32(WUC, E1000_WUC_PME_EN);
4623                 ew32(WUFC, wufc);
4624                 pci_enable_wake(pdev, PCI_D3hot, 1);
4625                 pci_enable_wake(pdev, PCI_D3cold, 1);
4626         } else {
4627                 ew32(WUC, 0);
4628                 ew32(WUFC, 0);
4629                 pci_enable_wake(pdev, PCI_D3hot, 0);
4630                 pci_enable_wake(pdev, PCI_D3cold, 0);
4631         }
4632
4633         e1000_release_manageability(adapter);
4634
4635         /* make sure adapter isn't asleep if manageability is enabled */
4636         if (adapter->en_mng_pt) {
4637                 pci_enable_wake(pdev, PCI_D3hot, 1);
4638                 pci_enable_wake(pdev, PCI_D3cold, 1);
4639         }
4640
4641         if (hw->phy_type == e1000_phy_igp_3)
4642                 e1000_phy_powerdown_workaround(hw);
4643
4644         if (netif_running(netdev))
4645                 e1000_free_irq(adapter);
4646
4647         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4648          * would have already happened in close and is redundant. */
4649         e1000_release_hw_control(adapter);
4650
4651         pci_disable_device(pdev);
4652
4653         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4654
4655         return 0;
4656 }
4657
4658 #ifdef CONFIG_PM
4659 static int e1000_resume(struct pci_dev *pdev)
4660 {
4661         struct net_device *netdev = pci_get_drvdata(pdev);
4662         struct e1000_adapter *adapter = netdev_priv(netdev);
4663         struct e1000_hw *hw = &adapter->hw;
4664         u32 err;
4665
4666         pci_set_power_state(pdev, PCI_D0);
4667         pci_restore_state(pdev);
4668
4669         if (adapter->need_ioport)
4670                 err = pci_enable_device(pdev);
4671         else
4672                 err = pci_enable_device_mem(pdev);
4673         if (err) {
4674                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4675                 return err;
4676         }
4677         pci_set_master(pdev);
4678
4679         pci_enable_wake(pdev, PCI_D3hot, 0);
4680         pci_enable_wake(pdev, PCI_D3cold, 0);
4681
4682         if (netif_running(netdev)) {
4683                 err = e1000_request_irq(adapter);
4684                 if (err)
4685                         return err;
4686         }
4687
4688         e1000_power_up_phy(adapter);
4689         e1000_reset(adapter);
4690         ew32(WUS, ~0);
4691
4692         e1000_init_manageability(adapter);
4693
4694         if (netif_running(netdev))
4695                 e1000_up(adapter);
4696
4697         netif_device_attach(netdev);
4698
4699         /* If the controller is 82573 and f/w is AMT, do not set
4700          * DRV_LOAD until the interface is up.  For all other cases,
4701          * let the f/w know that the h/w is now under the control
4702          * of the driver. */
4703         if (hw->mac_type != e1000_82573 ||
4704             !e1000_check_mng_mode(hw))
4705                 e1000_get_hw_control(adapter);
4706
4707         return 0;
4708 }
4709 #endif
4710
4711 static void e1000_shutdown(struct pci_dev *pdev)
4712 {
4713         e1000_suspend(pdev, PMSG_SUSPEND);
4714 }
4715
4716 #ifdef CONFIG_NET_POLL_CONTROLLER
4717 /*
4718  * Polling 'interrupt' - used by things like netconsole to send skbs
4719  * without having to re-enable interrupts. It's not called while
4720  * the interrupt routine is executing.
4721  */
4722 static void e1000_netpoll(struct net_device *netdev)
4723 {
4724         struct e1000_adapter *adapter = netdev_priv(netdev);
4725
4726         disable_irq(adapter->pdev->irq);
4727         e1000_intr(adapter->pdev->irq, netdev);
4728         enable_irq(adapter->pdev->irq);
4729 }
4730 #endif
4731
4732 /**
4733  * e1000_io_error_detected - called when PCI error is detected
4734  * @pdev: Pointer to PCI device
4735  * @state: The current pci conneection state
4736  *
4737  * This function is called after a PCI bus error affecting
4738  * this device has been detected.
4739  */
4740 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4741                                                 pci_channel_state_t state)
4742 {
4743         struct net_device *netdev = pci_get_drvdata(pdev);
4744         struct e1000_adapter *adapter = netdev_priv(netdev);
4745
4746         netif_device_detach(netdev);
4747
4748         if (netif_running(netdev))
4749                 e1000_down(adapter);
4750         pci_disable_device(pdev);
4751
4752         /* Request a slot slot reset. */
4753         return PCI_ERS_RESULT_NEED_RESET;
4754 }
4755
4756 /**
4757  * e1000_io_slot_reset - called after the pci bus has been reset.
4758  * @pdev: Pointer to PCI device
4759  *
4760  * Restart the card from scratch, as if from a cold-boot. Implementation
4761  * resembles the first-half of the e1000_resume routine.
4762  */
4763 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4764 {
4765         struct net_device *netdev = pci_get_drvdata(pdev);
4766         struct e1000_adapter *adapter = netdev_priv(netdev);
4767         struct e1000_hw *hw = &adapter->hw;
4768         int err;
4769
4770         if (adapter->need_ioport)
4771                 err = pci_enable_device(pdev);
4772         else
4773                 err = pci_enable_device_mem(pdev);
4774         if (err) {
4775                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4776                 return PCI_ERS_RESULT_DISCONNECT;
4777         }
4778         pci_set_master(pdev);
4779
4780         pci_enable_wake(pdev, PCI_D3hot, 0);
4781         pci_enable_wake(pdev, PCI_D3cold, 0);
4782
4783         e1000_reset(adapter);
4784         ew32(WUS, ~0);
4785
4786         return PCI_ERS_RESULT_RECOVERED;
4787 }
4788
4789 /**
4790  * e1000_io_resume - called when traffic can start flowing again.
4791  * @pdev: Pointer to PCI device
4792  *
4793  * This callback is called when the error recovery driver tells us that
4794  * its OK to resume normal operation. Implementation resembles the
4795  * second-half of the e1000_resume routine.
4796  */
4797 static void e1000_io_resume(struct pci_dev *pdev)
4798 {
4799         struct net_device *netdev = pci_get_drvdata(pdev);
4800         struct e1000_adapter *adapter = netdev_priv(netdev);
4801         struct e1000_hw *hw = &adapter->hw;
4802
4803         e1000_init_manageability(adapter);
4804
4805         if (netif_running(netdev)) {
4806                 if (e1000_up(adapter)) {
4807                         printk("e1000: can't bring device back up after reset\n");
4808                         return;
4809                 }
4810         }
4811
4812         netif_device_attach(netdev);
4813
4814         /* If the controller is 82573 and f/w is AMT, do not set
4815          * DRV_LOAD until the interface is up.  For all other cases,
4816          * let the f/w know that the h/w is now under the control
4817          * of the driver. */
4818         if (hw->mac_type != e1000_82573 ||
4819             !e1000_check_mng_mode(hw))
4820                 e1000_get_hw_control(adapter);
4821
4822 }
4823
4824 /* e1000_main.c */