]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/net/cxgb3/cxgb3_main.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/geert/linux...
[net-next-2.6.git] / drivers / net / cxgb3 / cxgb3_main.c
1 /*
2  * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/init.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/if_vlan.h>
40 #include <linux/mdio.h>
41 #include <linux/sockios.h>
42 #include <linux/workqueue.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rtnetlink.h>
45 #include <linux/firmware.h>
46 #include <linux/log2.h>
47 #include <linux/stringify.h>
48 #include <linux/sched.h>
49 #include <linux/slab.h>
50 #include <asm/uaccess.h>
51
52 #include "common.h"
53 #include "cxgb3_ioctl.h"
54 #include "regs.h"
55 #include "cxgb3_offload.h"
56 #include "version.h"
57
58 #include "cxgb3_ctl_defs.h"
59 #include "t3_cpl.h"
60 #include "firmware_exports.h"
61
62 enum {
63         MAX_TXQ_ENTRIES = 16384,
64         MAX_CTRL_TXQ_ENTRIES = 1024,
65         MAX_RSPQ_ENTRIES = 16384,
66         MAX_RX_BUFFERS = 16384,
67         MAX_RX_JUMBO_BUFFERS = 16384,
68         MIN_TXQ_ENTRIES = 4,
69         MIN_CTRL_TXQ_ENTRIES = 4,
70         MIN_RSPQ_ENTRIES = 32,
71         MIN_FL_ENTRIES = 32
72 };
73
74 #define PORT_MASK ((1 << MAX_NPORTS) - 1)
75
76 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
77                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
78                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
79
80 #define EEPROM_MAGIC 0x38E2F10C
81
82 #define CH_DEVICE(devid, idx) \
83         { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
84
85 static DEFINE_PCI_DEVICE_TABLE(cxgb3_pci_tbl) = {
86         CH_DEVICE(0x20, 0),     /* PE9000 */
87         CH_DEVICE(0x21, 1),     /* T302E */
88         CH_DEVICE(0x22, 2),     /* T310E */
89         CH_DEVICE(0x23, 3),     /* T320X */
90         CH_DEVICE(0x24, 1),     /* T302X */
91         CH_DEVICE(0x25, 3),     /* T320E */
92         CH_DEVICE(0x26, 2),     /* T310X */
93         CH_DEVICE(0x30, 2),     /* T3B10 */
94         CH_DEVICE(0x31, 3),     /* T3B20 */
95         CH_DEVICE(0x32, 1),     /* T3B02 */
96         CH_DEVICE(0x35, 6),     /* T3C20-derived T3C10 */
97         CH_DEVICE(0x36, 3),     /* S320E-CR */
98         CH_DEVICE(0x37, 7),     /* N320E-G2 */
99         {0,}
100 };
101
102 MODULE_DESCRIPTION(DRV_DESC);
103 MODULE_AUTHOR("Chelsio Communications");
104 MODULE_LICENSE("Dual BSD/GPL");
105 MODULE_VERSION(DRV_VERSION);
106 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl);
107
108 static int dflt_msg_enable = DFLT_MSG_ENABLE;
109
110 module_param(dflt_msg_enable, int, 0644);
111 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap");
112
113 /*
114  * The driver uses the best interrupt scheme available on a platform in the
115  * order MSI-X, MSI, legacy pin interrupts.  This parameter determines which
116  * of these schemes the driver may consider as follows:
117  *
118  * msi = 2: choose from among all three options
119  * msi = 1: only consider MSI and pin interrupts
120  * msi = 0: force pin interrupts
121  */
122 static int msi = 2;
123
124 module_param(msi, int, 0644);
125 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X");
126
127 /*
128  * The driver enables offload as a default.
129  * To disable it, use ofld_disable = 1.
130  */
131
132 static int ofld_disable = 0;
133
134 module_param(ofld_disable, int, 0644);
135 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not");
136
137 /*
138  * We have work elements that we need to cancel when an interface is taken
139  * down.  Normally the work elements would be executed by keventd but that
140  * can deadlock because of linkwatch.  If our close method takes the rtnl
141  * lock and linkwatch is ahead of our work elements in keventd, linkwatch
142  * will block keventd as it needs the rtnl lock, and we'll deadlock waiting
143  * for our work to complete.  Get our own work queue to solve this.
144  */
145 struct workqueue_struct *cxgb3_wq;
146
147 /**
148  *      link_report - show link status and link speed/duplex
149  *      @p: the port whose settings are to be reported
150  *
151  *      Shows the link status, speed, and duplex of a port.
152  */
153 static void link_report(struct net_device *dev)
154 {
155         if (!netif_carrier_ok(dev))
156                 printk(KERN_INFO "%s: link down\n", dev->name);
157         else {
158                 const char *s = "10Mbps";
159                 const struct port_info *p = netdev_priv(dev);
160
161                 switch (p->link_config.speed) {
162                 case SPEED_10000:
163                         s = "10Gbps";
164                         break;
165                 case SPEED_1000:
166                         s = "1000Mbps";
167                         break;
168                 case SPEED_100:
169                         s = "100Mbps";
170                         break;
171                 }
172
173                 printk(KERN_INFO "%s: link up, %s, %s-duplex\n", dev->name, s,
174                        p->link_config.duplex == DUPLEX_FULL ? "full" : "half");
175         }
176 }
177
178 static void enable_tx_fifo_drain(struct adapter *adapter,
179                                  struct port_info *pi)
180 {
181         t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0,
182                          F_ENDROPPKT);
183         t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0);
184         t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN);
185         t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN);
186 }
187
188 static void disable_tx_fifo_drain(struct adapter *adapter,
189                                   struct port_info *pi)
190 {
191         t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset,
192                          F_ENDROPPKT, 0);
193 }
194
195 void t3_os_link_fault(struct adapter *adap, int port_id, int state)
196 {
197         struct net_device *dev = adap->port[port_id];
198         struct port_info *pi = netdev_priv(dev);
199
200         if (state == netif_carrier_ok(dev))
201                 return;
202
203         if (state) {
204                 struct cmac *mac = &pi->mac;
205
206                 netif_carrier_on(dev);
207
208                 disable_tx_fifo_drain(adap, pi);
209
210                 /* Clear local faults */
211                 t3_xgm_intr_disable(adap, pi->port_id);
212                 t3_read_reg(adap, A_XGM_INT_STATUS +
213                                     pi->mac.offset);
214                 t3_write_reg(adap,
215                              A_XGM_INT_CAUSE + pi->mac.offset,
216                              F_XGM_INT);
217
218                 t3_set_reg_field(adap,
219                                  A_XGM_INT_ENABLE +
220                                  pi->mac.offset,
221                                  F_XGM_INT, F_XGM_INT);
222                 t3_xgm_intr_enable(adap, pi->port_id);
223
224                 t3_mac_enable(mac, MAC_DIRECTION_TX);
225         } else {
226                 netif_carrier_off(dev);
227
228                 /* Flush TX FIFO */
229                 enable_tx_fifo_drain(adap, pi);
230         }
231         link_report(dev);
232 }
233
234 /**
235  *      t3_os_link_changed - handle link status changes
236  *      @adapter: the adapter associated with the link change
237  *      @port_id: the port index whose limk status has changed
238  *      @link_stat: the new status of the link
239  *      @speed: the new speed setting
240  *      @duplex: the new duplex setting
241  *      @pause: the new flow-control setting
242  *
243  *      This is the OS-dependent handler for link status changes.  The OS
244  *      neutral handler takes care of most of the processing for these events,
245  *      then calls this handler for any OS-specific processing.
246  */
247 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat,
248                         int speed, int duplex, int pause)
249 {
250         struct net_device *dev = adapter->port[port_id];
251         struct port_info *pi = netdev_priv(dev);
252         struct cmac *mac = &pi->mac;
253
254         /* Skip changes from disabled ports. */
255         if (!netif_running(dev))
256                 return;
257
258         if (link_stat != netif_carrier_ok(dev)) {
259                 if (link_stat) {
260                         disable_tx_fifo_drain(adapter, pi);
261
262                         t3_mac_enable(mac, MAC_DIRECTION_RX);
263
264                         /* Clear local faults */
265                         t3_xgm_intr_disable(adapter, pi->port_id);
266                         t3_read_reg(adapter, A_XGM_INT_STATUS +
267                                     pi->mac.offset);
268                         t3_write_reg(adapter,
269                                      A_XGM_INT_CAUSE + pi->mac.offset,
270                                      F_XGM_INT);
271
272                         t3_set_reg_field(adapter,
273                                          A_XGM_INT_ENABLE + pi->mac.offset,
274                                          F_XGM_INT, F_XGM_INT);
275                         t3_xgm_intr_enable(adapter, pi->port_id);
276
277                         netif_carrier_on(dev);
278                 } else {
279                         netif_carrier_off(dev);
280
281                         t3_xgm_intr_disable(adapter, pi->port_id);
282                         t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
283                         t3_set_reg_field(adapter,
284                                          A_XGM_INT_ENABLE + pi->mac.offset,
285                                          F_XGM_INT, 0);
286
287                         if (is_10G(adapter))
288                                 pi->phy.ops->power_down(&pi->phy, 1);
289
290                         t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
291                         t3_mac_disable(mac, MAC_DIRECTION_RX);
292                         t3_link_start(&pi->phy, mac, &pi->link_config);
293
294                         /* Flush TX FIFO */
295                         enable_tx_fifo_drain(adapter, pi);
296                 }
297
298                 link_report(dev);
299         }
300 }
301
302 /**
303  *      t3_os_phymod_changed - handle PHY module changes
304  *      @phy: the PHY reporting the module change
305  *      @mod_type: new module type
306  *
307  *      This is the OS-dependent handler for PHY module changes.  It is
308  *      invoked when a PHY module is removed or inserted for any OS-specific
309  *      processing.
310  */
311 void t3_os_phymod_changed(struct adapter *adap, int port_id)
312 {
313         static const char *mod_str[] = {
314                 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown"
315         };
316
317         const struct net_device *dev = adap->port[port_id];
318         const struct port_info *pi = netdev_priv(dev);
319
320         if (pi->phy.modtype == phy_modtype_none)
321                 printk(KERN_INFO "%s: PHY module unplugged\n", dev->name);
322         else
323                 printk(KERN_INFO "%s: %s PHY module inserted\n", dev->name,
324                        mod_str[pi->phy.modtype]);
325 }
326
327 static void cxgb_set_rxmode(struct net_device *dev)
328 {
329         struct port_info *pi = netdev_priv(dev);
330
331         t3_mac_set_rx_mode(&pi->mac, dev);
332 }
333
334 /**
335  *      link_start - enable a port
336  *      @dev: the device to enable
337  *
338  *      Performs the MAC and PHY actions needed to enable a port.
339  */
340 static void link_start(struct net_device *dev)
341 {
342         struct port_info *pi = netdev_priv(dev);
343         struct cmac *mac = &pi->mac;
344
345         t3_mac_reset(mac);
346         t3_mac_set_num_ucast(mac, MAX_MAC_IDX);
347         t3_mac_set_mtu(mac, dev->mtu);
348         t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
349         t3_mac_set_address(mac, SAN_MAC_IDX, pi->iscsic.mac_addr);
350         t3_mac_set_rx_mode(mac, dev);
351         t3_link_start(&pi->phy, mac, &pi->link_config);
352         t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
353 }
354
355 static inline void cxgb_disable_msi(struct adapter *adapter)
356 {
357         if (adapter->flags & USING_MSIX) {
358                 pci_disable_msix(adapter->pdev);
359                 adapter->flags &= ~USING_MSIX;
360         } else if (adapter->flags & USING_MSI) {
361                 pci_disable_msi(adapter->pdev);
362                 adapter->flags &= ~USING_MSI;
363         }
364 }
365
366 /*
367  * Interrupt handler for asynchronous events used with MSI-X.
368  */
369 static irqreturn_t t3_async_intr_handler(int irq, void *cookie)
370 {
371         t3_slow_intr_handler(cookie);
372         return IRQ_HANDLED;
373 }
374
375 /*
376  * Name the MSI-X interrupts.
377  */
378 static void name_msix_vecs(struct adapter *adap)
379 {
380         int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1;
381
382         snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
383         adap->msix_info[0].desc[n] = 0;
384
385         for_each_port(adap, j) {
386                 struct net_device *d = adap->port[j];
387                 const struct port_info *pi = netdev_priv(d);
388
389                 for (i = 0; i < pi->nqsets; i++, msi_idx++) {
390                         snprintf(adap->msix_info[msi_idx].desc, n,
391                                  "%s-%d", d->name, pi->first_qset + i);
392                         adap->msix_info[msi_idx].desc[n] = 0;
393                 }
394         }
395 }
396
397 static int request_msix_data_irqs(struct adapter *adap)
398 {
399         int i, j, err, qidx = 0;
400
401         for_each_port(adap, i) {
402                 int nqsets = adap2pinfo(adap, i)->nqsets;
403
404                 for (j = 0; j < nqsets; ++j) {
405                         err = request_irq(adap->msix_info[qidx + 1].vec,
406                                           t3_intr_handler(adap,
407                                                           adap->sge.qs[qidx].
408                                                           rspq.polling), 0,
409                                           adap->msix_info[qidx + 1].desc,
410                                           &adap->sge.qs[qidx]);
411                         if (err) {
412                                 while (--qidx >= 0)
413                                         free_irq(adap->msix_info[qidx + 1].vec,
414                                                  &adap->sge.qs[qidx]);
415                                 return err;
416                         }
417                         qidx++;
418                 }
419         }
420         return 0;
421 }
422
423 static void free_irq_resources(struct adapter *adapter)
424 {
425         if (adapter->flags & USING_MSIX) {
426                 int i, n = 0;
427
428                 free_irq(adapter->msix_info[0].vec, adapter);
429                 for_each_port(adapter, i)
430                         n += adap2pinfo(adapter, i)->nqsets;
431
432                 for (i = 0; i < n; ++i)
433                         free_irq(adapter->msix_info[i + 1].vec,
434                                  &adapter->sge.qs[i]);
435         } else
436                 free_irq(adapter->pdev->irq, adapter);
437 }
438
439 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt,
440                               unsigned long n)
441 {
442         int attempts = 10;
443
444         while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) {
445                 if (!--attempts)
446                         return -ETIMEDOUT;
447                 msleep(10);
448         }
449         return 0;
450 }
451
452 static int init_tp_parity(struct adapter *adap)
453 {
454         int i;
455         struct sk_buff *skb;
456         struct cpl_set_tcb_field *greq;
457         unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts;
458
459         t3_tp_set_offload_mode(adap, 1);
460
461         for (i = 0; i < 16; i++) {
462                 struct cpl_smt_write_req *req;
463
464                 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
465                 if (!skb)
466                         skb = adap->nofail_skb;
467                 if (!skb)
468                         goto alloc_skb_fail;
469
470                 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
471                 memset(req, 0, sizeof(*req));
472                 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
473                 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i));
474                 req->mtu_idx = NMTUS - 1;
475                 req->iff = i;
476                 t3_mgmt_tx(adap, skb);
477                 if (skb == adap->nofail_skb) {
478                         await_mgmt_replies(adap, cnt, i + 1);
479                         adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
480                         if (!adap->nofail_skb)
481                                 goto alloc_skb_fail;
482                 }
483         }
484
485         for (i = 0; i < 2048; i++) {
486                 struct cpl_l2t_write_req *req;
487
488                 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
489                 if (!skb)
490                         skb = adap->nofail_skb;
491                 if (!skb)
492                         goto alloc_skb_fail;
493
494                 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
495                 memset(req, 0, sizeof(*req));
496                 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
497                 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i));
498                 req->params = htonl(V_L2T_W_IDX(i));
499                 t3_mgmt_tx(adap, skb);
500                 if (skb == adap->nofail_skb) {
501                         await_mgmt_replies(adap, cnt, 16 + i + 1);
502                         adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
503                         if (!adap->nofail_skb)
504                                 goto alloc_skb_fail;
505                 }
506         }
507
508         for (i = 0; i < 2048; i++) {
509                 struct cpl_rte_write_req *req;
510
511                 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
512                 if (!skb)
513                         skb = adap->nofail_skb;
514                 if (!skb)
515                         goto alloc_skb_fail;
516
517                 req = (struct cpl_rte_write_req *)__skb_put(skb, sizeof(*req));
518                 memset(req, 0, sizeof(*req));
519                 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
520                 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i));
521                 req->l2t_idx = htonl(V_L2T_W_IDX(i));
522                 t3_mgmt_tx(adap, skb);
523                 if (skb == adap->nofail_skb) {
524                         await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1);
525                         adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
526                         if (!adap->nofail_skb)
527                                 goto alloc_skb_fail;
528                 }
529         }
530
531         skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
532         if (!skb)
533                 skb = adap->nofail_skb;
534         if (!skb)
535                 goto alloc_skb_fail;
536
537         greq = (struct cpl_set_tcb_field *)__skb_put(skb, sizeof(*greq));
538         memset(greq, 0, sizeof(*greq));
539         greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
540         OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0));
541         greq->mask = cpu_to_be64(1);
542         t3_mgmt_tx(adap, skb);
543
544         i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
545         if (skb == adap->nofail_skb) {
546                 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
547                 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
548         }
549
550         t3_tp_set_offload_mode(adap, 0);
551         return i;
552
553 alloc_skb_fail:
554         t3_tp_set_offload_mode(adap, 0);
555         return -ENOMEM;
556 }
557
558 /**
559  *      setup_rss - configure RSS
560  *      @adap: the adapter
561  *
562  *      Sets up RSS to distribute packets to multiple receive queues.  We
563  *      configure the RSS CPU lookup table to distribute to the number of HW
564  *      receive queues, and the response queue lookup table to narrow that
565  *      down to the response queues actually configured for each port.
566  *      We always configure the RSS mapping for two ports since the mapping
567  *      table has plenty of entries.
568  */
569 static void setup_rss(struct adapter *adap)
570 {
571         int i;
572         unsigned int nq0 = adap2pinfo(adap, 0)->nqsets;
573         unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1;
574         u8 cpus[SGE_QSETS + 1];
575         u16 rspq_map[RSS_TABLE_SIZE];
576
577         for (i = 0; i < SGE_QSETS; ++i)
578                 cpus[i] = i;
579         cpus[SGE_QSETS] = 0xff; /* terminator */
580
581         for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) {
582                 rspq_map[i] = i % nq0;
583                 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0;
584         }
585
586         t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN |
587                       F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN |
588                       V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map);
589 }
590
591 static void ring_dbs(struct adapter *adap)
592 {
593         int i, j;
594
595         for (i = 0; i < SGE_QSETS; i++) {
596                 struct sge_qset *qs = &adap->sge.qs[i];
597
598                 if (qs->adap)
599                         for (j = 0; j < SGE_TXQ_PER_SET; j++)
600                                 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(qs->txq[j].cntxt_id));
601         }
602 }
603
604 static void init_napi(struct adapter *adap)
605 {
606         int i;
607
608         for (i = 0; i < SGE_QSETS; i++) {
609                 struct sge_qset *qs = &adap->sge.qs[i];
610
611                 if (qs->adap)
612                         netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll,
613                                        64);
614         }
615
616         /*
617          * netif_napi_add() can be called only once per napi_struct because it
618          * adds each new napi_struct to a list.  Be careful not to call it a
619          * second time, e.g., during EEH recovery, by making a note of it.
620          */
621         adap->flags |= NAPI_INIT;
622 }
623
624 /*
625  * Wait until all NAPI handlers are descheduled.  This includes the handlers of
626  * both netdevices representing interfaces and the dummy ones for the extra
627  * queues.
628  */
629 static void quiesce_rx(struct adapter *adap)
630 {
631         int i;
632
633         for (i = 0; i < SGE_QSETS; i++)
634                 if (adap->sge.qs[i].adap)
635                         napi_disable(&adap->sge.qs[i].napi);
636 }
637
638 static void enable_all_napi(struct adapter *adap)
639 {
640         int i;
641         for (i = 0; i < SGE_QSETS; i++)
642                 if (adap->sge.qs[i].adap)
643                         napi_enable(&adap->sge.qs[i].napi);
644 }
645
646 /**
647  *      set_qset_lro - Turn a queue set's LRO capability on and off
648  *      @dev: the device the qset is attached to
649  *      @qset_idx: the queue set index
650  *      @val: the LRO switch
651  *
652  *      Sets LRO on or off for a particular queue set.
653  *      the device's features flag is updated to reflect the LRO
654  *      capability when all queues belonging to the device are
655  *      in the same state.
656  */
657 static void set_qset_lro(struct net_device *dev, int qset_idx, int val)
658 {
659         struct port_info *pi = netdev_priv(dev);
660         struct adapter *adapter = pi->adapter;
661
662         adapter->params.sge.qset[qset_idx].lro = !!val;
663         adapter->sge.qs[qset_idx].lro_enabled = !!val;
664 }
665
666 /**
667  *      setup_sge_qsets - configure SGE Tx/Rx/response queues
668  *      @adap: the adapter
669  *
670  *      Determines how many sets of SGE queues to use and initializes them.
671  *      We support multiple queue sets per port if we have MSI-X, otherwise
672  *      just one queue set per port.
673  */
674 static int setup_sge_qsets(struct adapter *adap)
675 {
676         int i, j, err, irq_idx = 0, qset_idx = 0;
677         unsigned int ntxq = SGE_TXQ_PER_SET;
678
679         if (adap->params.rev > 0 && !(adap->flags & USING_MSI))
680                 irq_idx = -1;
681
682         for_each_port(adap, i) {
683                 struct net_device *dev = adap->port[i];
684                 struct port_info *pi = netdev_priv(dev);
685
686                 pi->qs = &adap->sge.qs[pi->first_qset];
687                 for (j = 0; j < pi->nqsets; ++j, ++qset_idx) {
688                         set_qset_lro(dev, qset_idx, pi->rx_offload & T3_LRO);
689                         err = t3_sge_alloc_qset(adap, qset_idx, 1,
690                                 (adap->flags & USING_MSIX) ? qset_idx + 1 :
691                                                              irq_idx,
692                                 &adap->params.sge.qset[qset_idx], ntxq, dev,
693                                 netdev_get_tx_queue(dev, j));
694                         if (err) {
695                                 t3_free_sge_resources(adap);
696                                 return err;
697                         }
698                 }
699         }
700
701         return 0;
702 }
703
704 static ssize_t attr_show(struct device *d, char *buf,
705                          ssize_t(*format) (struct net_device *, char *))
706 {
707         ssize_t len;
708
709         /* Synchronize with ioctls that may shut down the device */
710         rtnl_lock();
711         len = (*format) (to_net_dev(d), buf);
712         rtnl_unlock();
713         return len;
714 }
715
716 static ssize_t attr_store(struct device *d,
717                           const char *buf, size_t len,
718                           ssize_t(*set) (struct net_device *, unsigned int),
719                           unsigned int min_val, unsigned int max_val)
720 {
721         char *endp;
722         ssize_t ret;
723         unsigned int val;
724
725         if (!capable(CAP_NET_ADMIN))
726                 return -EPERM;
727
728         val = simple_strtoul(buf, &endp, 0);
729         if (endp == buf || val < min_val || val > max_val)
730                 return -EINVAL;
731
732         rtnl_lock();
733         ret = (*set) (to_net_dev(d), val);
734         if (!ret)
735                 ret = len;
736         rtnl_unlock();
737         return ret;
738 }
739
740 #define CXGB3_SHOW(name, val_expr) \
741 static ssize_t format_##name(struct net_device *dev, char *buf) \
742 { \
743         struct port_info *pi = netdev_priv(dev); \
744         struct adapter *adap = pi->adapter; \
745         return sprintf(buf, "%u\n", val_expr); \
746 } \
747 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
748                            char *buf) \
749 { \
750         return attr_show(d, buf, format_##name); \
751 }
752
753 static ssize_t set_nfilters(struct net_device *dev, unsigned int val)
754 {
755         struct port_info *pi = netdev_priv(dev);
756         struct adapter *adap = pi->adapter;
757         int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0;
758
759         if (adap->flags & FULL_INIT_DONE)
760                 return -EBUSY;
761         if (val && adap->params.rev == 0)
762                 return -EINVAL;
763         if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
764             min_tids)
765                 return -EINVAL;
766         adap->params.mc5.nfilters = val;
767         return 0;
768 }
769
770 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr,
771                               const char *buf, size_t len)
772 {
773         return attr_store(d, buf, len, set_nfilters, 0, ~0);
774 }
775
776 static ssize_t set_nservers(struct net_device *dev, unsigned int val)
777 {
778         struct port_info *pi = netdev_priv(dev);
779         struct adapter *adap = pi->adapter;
780
781         if (adap->flags & FULL_INIT_DONE)
782                 return -EBUSY;
783         if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters -
784             MC5_MIN_TIDS)
785                 return -EINVAL;
786         adap->params.mc5.nservers = val;
787         return 0;
788 }
789
790 static ssize_t store_nservers(struct device *d, struct device_attribute *attr,
791                               const char *buf, size_t len)
792 {
793         return attr_store(d, buf, len, set_nservers, 0, ~0);
794 }
795
796 #define CXGB3_ATTR_R(name, val_expr) \
797 CXGB3_SHOW(name, val_expr) \
798 static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL)
799
800 #define CXGB3_ATTR_RW(name, val_expr, store_method) \
801 CXGB3_SHOW(name, val_expr) \
802 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_method)
803
804 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5));
805 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters);
806 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers);
807
808 static struct attribute *cxgb3_attrs[] = {
809         &dev_attr_cam_size.attr,
810         &dev_attr_nfilters.attr,
811         &dev_attr_nservers.attr,
812         NULL
813 };
814
815 static struct attribute_group cxgb3_attr_group = {.attrs = cxgb3_attrs };
816
817 static ssize_t tm_attr_show(struct device *d,
818                             char *buf, int sched)
819 {
820         struct port_info *pi = netdev_priv(to_net_dev(d));
821         struct adapter *adap = pi->adapter;
822         unsigned int v, addr, bpt, cpt;
823         ssize_t len;
824
825         addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
826         rtnl_lock();
827         t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
828         v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
829         if (sched & 1)
830                 v >>= 16;
831         bpt = (v >> 8) & 0xff;
832         cpt = v & 0xff;
833         if (!cpt)
834                 len = sprintf(buf, "disabled\n");
835         else {
836                 v = (adap->params.vpd.cclk * 1000) / cpt;
837                 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125);
838         }
839         rtnl_unlock();
840         return len;
841 }
842
843 static ssize_t tm_attr_store(struct device *d,
844                              const char *buf, size_t len, int sched)
845 {
846         struct port_info *pi = netdev_priv(to_net_dev(d));
847         struct adapter *adap = pi->adapter;
848         unsigned int val;
849         char *endp;
850         ssize_t ret;
851
852         if (!capable(CAP_NET_ADMIN))
853                 return -EPERM;
854
855         val = simple_strtoul(buf, &endp, 0);
856         if (endp == buf || val > 10000000)
857                 return -EINVAL;
858
859         rtnl_lock();
860         ret = t3_config_sched(adap, val, sched);
861         if (!ret)
862                 ret = len;
863         rtnl_unlock();
864         return ret;
865 }
866
867 #define TM_ATTR(name, sched) \
868 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
869                            char *buf) \
870 { \
871         return tm_attr_show(d, buf, sched); \
872 } \
873 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \
874                             const char *buf, size_t len) \
875 { \
876         return tm_attr_store(d, buf, len, sched); \
877 } \
878 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_##name)
879
880 TM_ATTR(sched0, 0);
881 TM_ATTR(sched1, 1);
882 TM_ATTR(sched2, 2);
883 TM_ATTR(sched3, 3);
884 TM_ATTR(sched4, 4);
885 TM_ATTR(sched5, 5);
886 TM_ATTR(sched6, 6);
887 TM_ATTR(sched7, 7);
888
889 static struct attribute *offload_attrs[] = {
890         &dev_attr_sched0.attr,
891         &dev_attr_sched1.attr,
892         &dev_attr_sched2.attr,
893         &dev_attr_sched3.attr,
894         &dev_attr_sched4.attr,
895         &dev_attr_sched5.attr,
896         &dev_attr_sched6.attr,
897         &dev_attr_sched7.attr,
898         NULL
899 };
900
901 static struct attribute_group offload_attr_group = {.attrs = offload_attrs };
902
903 /*
904  * Sends an sk_buff to an offload queue driver
905  * after dealing with any active network taps.
906  */
907 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
908 {
909         int ret;
910
911         local_bh_disable();
912         ret = t3_offload_tx(tdev, skb);
913         local_bh_enable();
914         return ret;
915 }
916
917 static int write_smt_entry(struct adapter *adapter, int idx)
918 {
919         struct cpl_smt_write_req *req;
920         struct port_info *pi = netdev_priv(adapter->port[idx]);
921         struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL);
922
923         if (!skb)
924                 return -ENOMEM;
925
926         req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
927         req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
928         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx));
929         req->mtu_idx = NMTUS - 1;       /* should be 0 but there's a T3 bug */
930         req->iff = idx;
931         memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN);
932         memcpy(req->src_mac1, pi->iscsic.mac_addr, ETH_ALEN);
933         skb->priority = 1;
934         offload_tx(&adapter->tdev, skb);
935         return 0;
936 }
937
938 static int init_smt(struct adapter *adapter)
939 {
940         int i;
941
942         for_each_port(adapter, i)
943             write_smt_entry(adapter, i);
944         return 0;
945 }
946
947 static void init_port_mtus(struct adapter *adapter)
948 {
949         unsigned int mtus = adapter->port[0]->mtu;
950
951         if (adapter->port[1])
952                 mtus |= adapter->port[1]->mtu << 16;
953         t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus);
954 }
955
956 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo,
957                               int hi, int port)
958 {
959         struct sk_buff *skb;
960         struct mngt_pktsched_wr *req;
961         int ret;
962
963         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
964         if (!skb)
965                 skb = adap->nofail_skb;
966         if (!skb)
967                 return -ENOMEM;
968
969         req = (struct mngt_pktsched_wr *)skb_put(skb, sizeof(*req));
970         req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT));
971         req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET;
972         req->sched = sched;
973         req->idx = qidx;
974         req->min = lo;
975         req->max = hi;
976         req->binding = port;
977         ret = t3_mgmt_tx(adap, skb);
978         if (skb == adap->nofail_skb) {
979                 adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field),
980                                              GFP_KERNEL);
981                 if (!adap->nofail_skb)
982                         ret = -ENOMEM;
983         }
984
985         return ret;
986 }
987
988 static int bind_qsets(struct adapter *adap)
989 {
990         int i, j, err = 0;
991
992         for_each_port(adap, i) {
993                 const struct port_info *pi = adap2pinfo(adap, i);
994
995                 for (j = 0; j < pi->nqsets; ++j) {
996                         int ret = send_pktsched_cmd(adap, 1,
997                                                     pi->first_qset + j, -1,
998                                                     -1, i);
999                         if (ret)
1000                                 err = ret;
1001                 }
1002         }
1003
1004         return err;
1005 }
1006
1007 #define FW_VERSION __stringify(FW_VERSION_MAJOR) "."                    \
1008         __stringify(FW_VERSION_MINOR) "." __stringify(FW_VERSION_MICRO)
1009 #define FW_FNAME "cxgb3/t3fw-" FW_VERSION ".bin"
1010 #define TPSRAM_VERSION __stringify(TP_VERSION_MAJOR) "."                \
1011         __stringify(TP_VERSION_MINOR) "." __stringify(TP_VERSION_MICRO)
1012 #define TPSRAM_NAME "cxgb3/t3%c_psram-" TPSRAM_VERSION ".bin"
1013 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin"
1014 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin"
1015 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin"
1016 MODULE_FIRMWARE(FW_FNAME);
1017 MODULE_FIRMWARE("cxgb3/t3b_psram-" TPSRAM_VERSION ".bin");
1018 MODULE_FIRMWARE("cxgb3/t3c_psram-" TPSRAM_VERSION ".bin");
1019 MODULE_FIRMWARE(AEL2005_OPT_EDC_NAME);
1020 MODULE_FIRMWARE(AEL2005_TWX_EDC_NAME);
1021 MODULE_FIRMWARE(AEL2020_TWX_EDC_NAME);
1022
1023 static inline const char *get_edc_fw_name(int edc_idx)
1024 {
1025         const char *fw_name = NULL;
1026
1027         switch (edc_idx) {
1028         case EDC_OPT_AEL2005:
1029                 fw_name = AEL2005_OPT_EDC_NAME;
1030                 break;
1031         case EDC_TWX_AEL2005:
1032                 fw_name = AEL2005_TWX_EDC_NAME;
1033                 break;
1034         case EDC_TWX_AEL2020:
1035                 fw_name = AEL2020_TWX_EDC_NAME;
1036                 break;
1037         }
1038         return fw_name;
1039 }
1040
1041 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size)
1042 {
1043         struct adapter *adapter = phy->adapter;
1044         const struct firmware *fw;
1045         char buf[64];
1046         u32 csum;
1047         const __be32 *p;
1048         u16 *cache = phy->phy_cache;
1049         int i, ret;
1050
1051         snprintf(buf, sizeof(buf), get_edc_fw_name(edc_idx));
1052
1053         ret = request_firmware(&fw, buf, &adapter->pdev->dev);
1054         if (ret < 0) {
1055                 dev_err(&adapter->pdev->dev,
1056                         "could not upgrade firmware: unable to load %s\n",
1057                         buf);
1058                 return ret;
1059         }
1060
1061         /* check size, take checksum in account */
1062         if (fw->size > size + 4) {
1063                 CH_ERR(adapter, "firmware image too large %u, expected %d\n",
1064                        (unsigned int)fw->size, size + 4);
1065                 ret = -EINVAL;
1066         }
1067
1068         /* compute checksum */
1069         p = (const __be32 *)fw->data;
1070         for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++)
1071                 csum += ntohl(p[i]);
1072
1073         if (csum != 0xffffffff) {
1074                 CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1075                        csum);
1076                 ret = -EINVAL;
1077         }
1078
1079         for (i = 0; i < size / 4 ; i++) {
1080                 *cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16;
1081                 *cache++ = be32_to_cpu(p[i]) & 0xffff;
1082         }
1083
1084         release_firmware(fw);
1085
1086         return ret;
1087 }
1088
1089 static int upgrade_fw(struct adapter *adap)
1090 {
1091         int ret;
1092         const struct firmware *fw;
1093         struct device *dev = &adap->pdev->dev;
1094
1095         ret = request_firmware(&fw, FW_FNAME, dev);
1096         if (ret < 0) {
1097                 dev_err(dev, "could not upgrade firmware: unable to load %s\n",
1098                         FW_FNAME);
1099                 return ret;
1100         }
1101         ret = t3_load_fw(adap, fw->data, fw->size);
1102         release_firmware(fw);
1103
1104         if (ret == 0)
1105                 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n",
1106                          FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1107         else
1108                 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n",
1109                         FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1110
1111         return ret;
1112 }
1113
1114 static inline char t3rev2char(struct adapter *adapter)
1115 {
1116         char rev = 0;
1117
1118         switch(adapter->params.rev) {
1119         case T3_REV_B:
1120         case T3_REV_B2:
1121                 rev = 'b';
1122                 break;
1123         case T3_REV_C:
1124                 rev = 'c';
1125                 break;
1126         }
1127         return rev;
1128 }
1129
1130 static int update_tpsram(struct adapter *adap)
1131 {
1132         const struct firmware *tpsram;
1133         char buf[64];
1134         struct device *dev = &adap->pdev->dev;
1135         int ret;
1136         char rev;
1137
1138         rev = t3rev2char(adap);
1139         if (!rev)
1140                 return 0;
1141
1142         snprintf(buf, sizeof(buf), TPSRAM_NAME, rev);
1143
1144         ret = request_firmware(&tpsram, buf, dev);
1145         if (ret < 0) {
1146                 dev_err(dev, "could not load TP SRAM: unable to load %s\n",
1147                         buf);
1148                 return ret;
1149         }
1150
1151         ret = t3_check_tpsram(adap, tpsram->data, tpsram->size);
1152         if (ret)
1153                 goto release_tpsram;
1154
1155         ret = t3_set_proto_sram(adap, tpsram->data);
1156         if (ret == 0)
1157                 dev_info(dev,
1158                          "successful update of protocol engine "
1159                          "to %d.%d.%d\n",
1160                          TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1161         else
1162                 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n",
1163                         TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1164         if (ret)
1165                 dev_err(dev, "loading protocol SRAM failed\n");
1166
1167 release_tpsram:
1168         release_firmware(tpsram);
1169
1170         return ret;
1171 }
1172
1173 /**
1174  *      cxgb_up - enable the adapter
1175  *      @adapter: adapter being enabled
1176  *
1177  *      Called when the first port is enabled, this function performs the
1178  *      actions necessary to make an adapter operational, such as completing
1179  *      the initialization of HW modules, and enabling interrupts.
1180  *
1181  *      Must be called with the rtnl lock held.
1182  */
1183 static int cxgb_up(struct adapter *adap)
1184 {
1185         int err;
1186
1187         if (!(adap->flags & FULL_INIT_DONE)) {
1188                 err = t3_check_fw_version(adap);
1189                 if (err == -EINVAL) {
1190                         err = upgrade_fw(adap);
1191                         CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n",
1192                                 FW_VERSION_MAJOR, FW_VERSION_MINOR,
1193                                 FW_VERSION_MICRO, err ? "failed" : "succeeded");
1194                 }
1195
1196                 err = t3_check_tpsram_version(adap);
1197                 if (err == -EINVAL) {
1198                         err = update_tpsram(adap);
1199                         CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n",
1200                                 TP_VERSION_MAJOR, TP_VERSION_MINOR,
1201                                 TP_VERSION_MICRO, err ? "failed" : "succeeded");
1202                 }
1203
1204                 /*
1205                  * Clear interrupts now to catch errors if t3_init_hw fails.
1206                  * We clear them again later as initialization may trigger
1207                  * conditions that can interrupt.
1208                  */
1209                 t3_intr_clear(adap);
1210
1211                 err = t3_init_hw(adap, 0);
1212                 if (err)
1213                         goto out;
1214
1215                 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT);
1216                 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
1217
1218                 err = setup_sge_qsets(adap);
1219                 if (err)
1220                         goto out;
1221
1222                 setup_rss(adap);
1223                 if (!(adap->flags & NAPI_INIT))
1224                         init_napi(adap);
1225
1226                 t3_start_sge_timers(adap);
1227                 adap->flags |= FULL_INIT_DONE;
1228         }
1229
1230         t3_intr_clear(adap);
1231
1232         if (adap->flags & USING_MSIX) {
1233                 name_msix_vecs(adap);
1234                 err = request_irq(adap->msix_info[0].vec,
1235                                   t3_async_intr_handler, 0,
1236                                   adap->msix_info[0].desc, adap);
1237                 if (err)
1238                         goto irq_err;
1239
1240                 err = request_msix_data_irqs(adap);
1241                 if (err) {
1242                         free_irq(adap->msix_info[0].vec, adap);
1243                         goto irq_err;
1244                 }
1245         } else if ((err = request_irq(adap->pdev->irq,
1246                                       t3_intr_handler(adap,
1247                                                       adap->sge.qs[0].rspq.
1248                                                       polling),
1249                                       (adap->flags & USING_MSI) ?
1250                                        0 : IRQF_SHARED,
1251                                       adap->name, adap)))
1252                 goto irq_err;
1253
1254         enable_all_napi(adap);
1255         t3_sge_start(adap);
1256         t3_intr_enable(adap);
1257
1258         if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) &&
1259             is_offload(adap) && init_tp_parity(adap) == 0)
1260                 adap->flags |= TP_PARITY_INIT;
1261
1262         if (adap->flags & TP_PARITY_INIT) {
1263                 t3_write_reg(adap, A_TP_INT_CAUSE,
1264                              F_CMCACHEPERR | F_ARPLUTPERR);
1265                 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff);
1266         }
1267
1268         if (!(adap->flags & QUEUES_BOUND)) {
1269                 err = bind_qsets(adap);
1270                 if (err) {
1271                         CH_ERR(adap, "failed to bind qsets, err %d\n", err);
1272                         t3_intr_disable(adap);
1273                         free_irq_resources(adap);
1274                         goto out;
1275                 }
1276                 adap->flags |= QUEUES_BOUND;
1277         }
1278
1279 out:
1280         return err;
1281 irq_err:
1282         CH_ERR(adap, "request_irq failed, err %d\n", err);
1283         goto out;
1284 }
1285
1286 /*
1287  * Release resources when all the ports and offloading have been stopped.
1288  */
1289 static void cxgb_down(struct adapter *adapter)
1290 {
1291         t3_sge_stop(adapter);
1292         spin_lock_irq(&adapter->work_lock);     /* sync with PHY intr task */
1293         t3_intr_disable(adapter);
1294         spin_unlock_irq(&adapter->work_lock);
1295
1296         free_irq_resources(adapter);
1297         quiesce_rx(adapter);
1298         t3_sge_stop(adapter);
1299         flush_workqueue(cxgb3_wq);      /* wait for external IRQ handler */
1300 }
1301
1302 static void schedule_chk_task(struct adapter *adap)
1303 {
1304         unsigned int timeo;
1305
1306         timeo = adap->params.linkpoll_period ?
1307             (HZ * adap->params.linkpoll_period) / 10 :
1308             adap->params.stats_update_period * HZ;
1309         if (timeo)
1310                 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo);
1311 }
1312
1313 static int offload_open(struct net_device *dev)
1314 {
1315         struct port_info *pi = netdev_priv(dev);
1316         struct adapter *adapter = pi->adapter;
1317         struct t3cdev *tdev = dev2t3cdev(dev);
1318         int adap_up = adapter->open_device_map & PORT_MASK;
1319         int err;
1320
1321         if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1322                 return 0;
1323
1324         if (!adap_up && (err = cxgb_up(adapter)) < 0)
1325                 goto out;
1326
1327         t3_tp_set_offload_mode(adapter, 1);
1328         tdev->lldev = adapter->port[0];
1329         err = cxgb3_offload_activate(adapter);
1330         if (err)
1331                 goto out;
1332
1333         init_port_mtus(adapter);
1334         t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd,
1335                      adapter->params.b_wnd,
1336                      adapter->params.rev == 0 ?
1337                      adapter->port[0]->mtu : 0xffff);
1338         init_smt(adapter);
1339
1340         if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group))
1341                 dev_dbg(&dev->dev, "cannot create sysfs group\n");
1342
1343         /* Call back all registered clients */
1344         cxgb3_add_clients(tdev);
1345
1346 out:
1347         /* restore them in case the offload module has changed them */
1348         if (err) {
1349                 t3_tp_set_offload_mode(adapter, 0);
1350                 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1351                 cxgb3_set_dummy_ops(tdev);
1352         }
1353         return err;
1354 }
1355
1356 static int offload_close(struct t3cdev *tdev)
1357 {
1358         struct adapter *adapter = tdev2adap(tdev);
1359
1360         if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1361                 return 0;
1362
1363         /* Call back all registered clients */
1364         cxgb3_remove_clients(tdev);
1365
1366         sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group);
1367
1368         /* Flush work scheduled while releasing TIDs */
1369         flush_scheduled_work();
1370
1371         tdev->lldev = NULL;
1372         cxgb3_set_dummy_ops(tdev);
1373         t3_tp_set_offload_mode(adapter, 0);
1374         clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1375
1376         if (!adapter->open_device_map)
1377                 cxgb_down(adapter);
1378
1379         cxgb3_offload_deactivate(adapter);
1380         return 0;
1381 }
1382
1383 static int cxgb_open(struct net_device *dev)
1384 {
1385         struct port_info *pi = netdev_priv(dev);
1386         struct adapter *adapter = pi->adapter;
1387         int other_ports = adapter->open_device_map & PORT_MASK;
1388         int err;
1389
1390         if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
1391                 return err;
1392
1393         set_bit(pi->port_id, &adapter->open_device_map);
1394         if (is_offload(adapter) && !ofld_disable) {
1395                 err = offload_open(dev);
1396                 if (err)
1397                         printk(KERN_WARNING
1398                                "Could not initialize offload capabilities\n");
1399         }
1400
1401         dev->real_num_tx_queues = pi->nqsets;
1402         link_start(dev);
1403         t3_port_intr_enable(adapter, pi->port_id);
1404         netif_tx_start_all_queues(dev);
1405         if (!other_ports)
1406                 schedule_chk_task(adapter);
1407
1408         cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id);
1409         return 0;
1410 }
1411
1412 static int cxgb_close(struct net_device *dev)
1413 {
1414         struct port_info *pi = netdev_priv(dev);
1415         struct adapter *adapter = pi->adapter;
1416
1417         
1418         if (!adapter->open_device_map)
1419                 return 0;
1420
1421         /* Stop link fault interrupts */
1422         t3_xgm_intr_disable(adapter, pi->port_id);
1423         t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
1424
1425         t3_port_intr_disable(adapter, pi->port_id);
1426         netif_tx_stop_all_queues(dev);
1427         pi->phy.ops->power_down(&pi->phy, 1);
1428         netif_carrier_off(dev);
1429         t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
1430
1431         spin_lock_irq(&adapter->work_lock);     /* sync with update task */
1432         clear_bit(pi->port_id, &adapter->open_device_map);
1433         spin_unlock_irq(&adapter->work_lock);
1434
1435         if (!(adapter->open_device_map & PORT_MASK))
1436                 cancel_delayed_work_sync(&adapter->adap_check_task);
1437
1438         if (!adapter->open_device_map)
1439                 cxgb_down(adapter);
1440
1441         cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id);
1442         return 0;
1443 }
1444
1445 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
1446 {
1447         struct port_info *pi = netdev_priv(dev);
1448         struct adapter *adapter = pi->adapter;
1449         struct net_device_stats *ns = &pi->netstats;
1450         const struct mac_stats *pstats;
1451
1452         spin_lock(&adapter->stats_lock);
1453         pstats = t3_mac_update_stats(&pi->mac);
1454         spin_unlock(&adapter->stats_lock);
1455
1456         ns->tx_bytes = pstats->tx_octets;
1457         ns->tx_packets = pstats->tx_frames;
1458         ns->rx_bytes = pstats->rx_octets;
1459         ns->rx_packets = pstats->rx_frames;
1460         ns->multicast = pstats->rx_mcast_frames;
1461
1462         ns->tx_errors = pstats->tx_underrun;
1463         ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs +
1464             pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short +
1465             pstats->rx_fifo_ovfl;
1466
1467         /* detailed rx_errors */
1468         ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long;
1469         ns->rx_over_errors = 0;
1470         ns->rx_crc_errors = pstats->rx_fcs_errs;
1471         ns->rx_frame_errors = pstats->rx_symbol_errs;
1472         ns->rx_fifo_errors = pstats->rx_fifo_ovfl;
1473         ns->rx_missed_errors = pstats->rx_cong_drops;
1474
1475         /* detailed tx_errors */
1476         ns->tx_aborted_errors = 0;
1477         ns->tx_carrier_errors = 0;
1478         ns->tx_fifo_errors = pstats->tx_underrun;
1479         ns->tx_heartbeat_errors = 0;
1480         ns->tx_window_errors = 0;
1481         return ns;
1482 }
1483
1484 static u32 get_msglevel(struct net_device *dev)
1485 {
1486         struct port_info *pi = netdev_priv(dev);
1487         struct adapter *adapter = pi->adapter;
1488
1489         return adapter->msg_enable;
1490 }
1491
1492 static void set_msglevel(struct net_device *dev, u32 val)
1493 {
1494         struct port_info *pi = netdev_priv(dev);
1495         struct adapter *adapter = pi->adapter;
1496
1497         adapter->msg_enable = val;
1498 }
1499
1500 static char stats_strings[][ETH_GSTRING_LEN] = {
1501         "TxOctetsOK         ",
1502         "TxFramesOK         ",
1503         "TxMulticastFramesOK",
1504         "TxBroadcastFramesOK",
1505         "TxPauseFrames      ",
1506         "TxUnderrun         ",
1507         "TxExtUnderrun      ",
1508
1509         "TxFrames64         ",
1510         "TxFrames65To127    ",
1511         "TxFrames128To255   ",
1512         "TxFrames256To511   ",
1513         "TxFrames512To1023  ",
1514         "TxFrames1024To1518 ",
1515         "TxFrames1519ToMax  ",
1516
1517         "RxOctetsOK         ",
1518         "RxFramesOK         ",
1519         "RxMulticastFramesOK",
1520         "RxBroadcastFramesOK",
1521         "RxPauseFrames      ",
1522         "RxFCSErrors        ",
1523         "RxSymbolErrors     ",
1524         "RxShortErrors      ",
1525         "RxJabberErrors     ",
1526         "RxLengthErrors     ",
1527         "RxFIFOoverflow     ",
1528
1529         "RxFrames64         ",
1530         "RxFrames65To127    ",
1531         "RxFrames128To255   ",
1532         "RxFrames256To511   ",
1533         "RxFrames512To1023  ",
1534         "RxFrames1024To1518 ",
1535         "RxFrames1519ToMax  ",
1536
1537         "PhyFIFOErrors      ",
1538         "TSO                ",
1539         "VLANextractions    ",
1540         "VLANinsertions     ",
1541         "TxCsumOffload      ",
1542         "RxCsumGood         ",
1543         "LroAggregated      ",
1544         "LroFlushed         ",
1545         "LroNoDesc          ",
1546         "RxDrops            ",
1547
1548         "CheckTXEnToggled   ",
1549         "CheckResets        ",
1550
1551         "LinkFaults         ",
1552 };
1553
1554 static int get_sset_count(struct net_device *dev, int sset)
1555 {
1556         switch (sset) {
1557         case ETH_SS_STATS:
1558                 return ARRAY_SIZE(stats_strings);
1559         default:
1560                 return -EOPNOTSUPP;
1561         }
1562 }
1563
1564 #define T3_REGMAP_SIZE (3 * 1024)
1565
1566 static int get_regs_len(struct net_device *dev)
1567 {
1568         return T3_REGMAP_SIZE;
1569 }
1570
1571 static int get_eeprom_len(struct net_device *dev)
1572 {
1573         return EEPROMSIZE;
1574 }
1575
1576 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1577 {
1578         struct port_info *pi = netdev_priv(dev);
1579         struct adapter *adapter = pi->adapter;
1580         u32 fw_vers = 0;
1581         u32 tp_vers = 0;
1582
1583         spin_lock(&adapter->stats_lock);
1584         t3_get_fw_version(adapter, &fw_vers);
1585         t3_get_tp_version(adapter, &tp_vers);
1586         spin_unlock(&adapter->stats_lock);
1587
1588         strcpy(info->driver, DRV_NAME);
1589         strcpy(info->version, DRV_VERSION);
1590         strcpy(info->bus_info, pci_name(adapter->pdev));
1591         if (!fw_vers)
1592                 strcpy(info->fw_version, "N/A");
1593         else {
1594                 snprintf(info->fw_version, sizeof(info->fw_version),
1595                          "%s %u.%u.%u TP %u.%u.%u",
1596                          G_FW_VERSION_TYPE(fw_vers) ? "T" : "N",
1597                          G_FW_VERSION_MAJOR(fw_vers),
1598                          G_FW_VERSION_MINOR(fw_vers),
1599                          G_FW_VERSION_MICRO(fw_vers),
1600                          G_TP_VERSION_MAJOR(tp_vers),
1601                          G_TP_VERSION_MINOR(tp_vers),
1602                          G_TP_VERSION_MICRO(tp_vers));
1603         }
1604 }
1605
1606 static void get_strings(struct net_device *dev, u32 stringset, u8 * data)
1607 {
1608         if (stringset == ETH_SS_STATS)
1609                 memcpy(data, stats_strings, sizeof(stats_strings));
1610 }
1611
1612 static unsigned long collect_sge_port_stats(struct adapter *adapter,
1613                                             struct port_info *p, int idx)
1614 {
1615         int i;
1616         unsigned long tot = 0;
1617
1618         for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i)
1619                 tot += adapter->sge.qs[i].port_stats[idx];
1620         return tot;
1621 }
1622
1623 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1624                       u64 *data)
1625 {
1626         struct port_info *pi = netdev_priv(dev);
1627         struct adapter *adapter = pi->adapter;
1628         const struct mac_stats *s;
1629
1630         spin_lock(&adapter->stats_lock);
1631         s = t3_mac_update_stats(&pi->mac);
1632         spin_unlock(&adapter->stats_lock);
1633
1634         *data++ = s->tx_octets;
1635         *data++ = s->tx_frames;
1636         *data++ = s->tx_mcast_frames;
1637         *data++ = s->tx_bcast_frames;
1638         *data++ = s->tx_pause;
1639         *data++ = s->tx_underrun;
1640         *data++ = s->tx_fifo_urun;
1641
1642         *data++ = s->tx_frames_64;
1643         *data++ = s->tx_frames_65_127;
1644         *data++ = s->tx_frames_128_255;
1645         *data++ = s->tx_frames_256_511;
1646         *data++ = s->tx_frames_512_1023;
1647         *data++ = s->tx_frames_1024_1518;
1648         *data++ = s->tx_frames_1519_max;
1649
1650         *data++ = s->rx_octets;
1651         *data++ = s->rx_frames;
1652         *data++ = s->rx_mcast_frames;
1653         *data++ = s->rx_bcast_frames;
1654         *data++ = s->rx_pause;
1655         *data++ = s->rx_fcs_errs;
1656         *data++ = s->rx_symbol_errs;
1657         *data++ = s->rx_short;
1658         *data++ = s->rx_jabber;
1659         *data++ = s->rx_too_long;
1660         *data++ = s->rx_fifo_ovfl;
1661
1662         *data++ = s->rx_frames_64;
1663         *data++ = s->rx_frames_65_127;
1664         *data++ = s->rx_frames_128_255;
1665         *data++ = s->rx_frames_256_511;
1666         *data++ = s->rx_frames_512_1023;
1667         *data++ = s->rx_frames_1024_1518;
1668         *data++ = s->rx_frames_1519_max;
1669
1670         *data++ = pi->phy.fifo_errors;
1671
1672         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO);
1673         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX);
1674         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS);
1675         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM);
1676         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD);
1677         *data++ = 0;
1678         *data++ = 0;
1679         *data++ = 0;
1680         *data++ = s->rx_cong_drops;
1681
1682         *data++ = s->num_toggled;
1683         *data++ = s->num_resets;
1684
1685         *data++ = s->link_faults;
1686 }
1687
1688 static inline void reg_block_dump(struct adapter *ap, void *buf,
1689                                   unsigned int start, unsigned int end)
1690 {
1691         u32 *p = buf + start;
1692
1693         for (; start <= end; start += sizeof(u32))
1694                 *p++ = t3_read_reg(ap, start);
1695 }
1696
1697 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1698                      void *buf)
1699 {
1700         struct port_info *pi = netdev_priv(dev);
1701         struct adapter *ap = pi->adapter;
1702
1703         /*
1704          * Version scheme:
1705          * bits 0..9: chip version
1706          * bits 10..15: chip revision
1707          * bit 31: set for PCIe cards
1708          */
1709         regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31);
1710
1711         /*
1712          * We skip the MAC statistics registers because they are clear-on-read.
1713          * Also reading multi-register stats would need to synchronize with the
1714          * periodic mac stats accumulation.  Hard to justify the complexity.
1715          */
1716         memset(buf, 0, T3_REGMAP_SIZE);
1717         reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN);
1718         reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT);
1719         reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE);
1720         reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA);
1721         reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3);
1722         reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0,
1723                        XGM_REG(A_XGM_SERDES_STAT3, 1));
1724         reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1),
1725                        XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1));
1726 }
1727
1728 static int restart_autoneg(struct net_device *dev)
1729 {
1730         struct port_info *p = netdev_priv(dev);
1731
1732         if (!netif_running(dev))
1733                 return -EAGAIN;
1734         if (p->link_config.autoneg != AUTONEG_ENABLE)
1735                 return -EINVAL;
1736         p->phy.ops->autoneg_restart(&p->phy);
1737         return 0;
1738 }
1739
1740 static int cxgb3_phys_id(struct net_device *dev, u32 data)
1741 {
1742         struct port_info *pi = netdev_priv(dev);
1743         struct adapter *adapter = pi->adapter;
1744         int i;
1745
1746         if (data == 0)
1747                 data = 2;
1748
1749         for (i = 0; i < data * 2; i++) {
1750                 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1751                                  (i & 1) ? F_GPIO0_OUT_VAL : 0);
1752                 if (msleep_interruptible(500))
1753                         break;
1754         }
1755         t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1756                          F_GPIO0_OUT_VAL);
1757         return 0;
1758 }
1759
1760 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1761 {
1762         struct port_info *p = netdev_priv(dev);
1763
1764         cmd->supported = p->link_config.supported;
1765         cmd->advertising = p->link_config.advertising;
1766
1767         if (netif_carrier_ok(dev)) {
1768                 cmd->speed = p->link_config.speed;
1769                 cmd->duplex = p->link_config.duplex;
1770         } else {
1771                 cmd->speed = -1;
1772                 cmd->duplex = -1;
1773         }
1774
1775         cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1776         cmd->phy_address = p->phy.mdio.prtad;
1777         cmd->transceiver = XCVR_EXTERNAL;
1778         cmd->autoneg = p->link_config.autoneg;
1779         cmd->maxtxpkt = 0;
1780         cmd->maxrxpkt = 0;
1781         return 0;
1782 }
1783
1784 static int speed_duplex_to_caps(int speed, int duplex)
1785 {
1786         int cap = 0;
1787
1788         switch (speed) {
1789         case SPEED_10:
1790                 if (duplex == DUPLEX_FULL)
1791                         cap = SUPPORTED_10baseT_Full;
1792                 else
1793                         cap = SUPPORTED_10baseT_Half;
1794                 break;
1795         case SPEED_100:
1796                 if (duplex == DUPLEX_FULL)
1797                         cap = SUPPORTED_100baseT_Full;
1798                 else
1799                         cap = SUPPORTED_100baseT_Half;
1800                 break;
1801         case SPEED_1000:
1802                 if (duplex == DUPLEX_FULL)
1803                         cap = SUPPORTED_1000baseT_Full;
1804                 else
1805                         cap = SUPPORTED_1000baseT_Half;
1806                 break;
1807         case SPEED_10000:
1808                 if (duplex == DUPLEX_FULL)
1809                         cap = SUPPORTED_10000baseT_Full;
1810         }
1811         return cap;
1812 }
1813
1814 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1815                       ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1816                       ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
1817                       ADVERTISED_10000baseT_Full)
1818
1819 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1820 {
1821         struct port_info *p = netdev_priv(dev);
1822         struct link_config *lc = &p->link_config;
1823
1824         if (!(lc->supported & SUPPORTED_Autoneg)) {
1825                 /*
1826                  * PHY offers a single speed/duplex.  See if that's what's
1827                  * being requested.
1828                  */
1829                 if (cmd->autoneg == AUTONEG_DISABLE) {
1830                         int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
1831                         if (lc->supported & cap)
1832                                 return 0;
1833                 }
1834                 return -EINVAL;
1835         }
1836
1837         if (cmd->autoneg == AUTONEG_DISABLE) {
1838                 int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
1839
1840                 if (!(lc->supported & cap) || cmd->speed == SPEED_1000)
1841                         return -EINVAL;
1842                 lc->requested_speed = cmd->speed;
1843                 lc->requested_duplex = cmd->duplex;
1844                 lc->advertising = 0;
1845         } else {
1846                 cmd->advertising &= ADVERTISED_MASK;
1847                 cmd->advertising &= lc->supported;
1848                 if (!cmd->advertising)
1849                         return -EINVAL;
1850                 lc->requested_speed = SPEED_INVALID;
1851                 lc->requested_duplex = DUPLEX_INVALID;
1852                 lc->advertising = cmd->advertising | ADVERTISED_Autoneg;
1853         }
1854         lc->autoneg = cmd->autoneg;
1855         if (netif_running(dev))
1856                 t3_link_start(&p->phy, &p->mac, lc);
1857         return 0;
1858 }
1859
1860 static void get_pauseparam(struct net_device *dev,
1861                            struct ethtool_pauseparam *epause)
1862 {
1863         struct port_info *p = netdev_priv(dev);
1864
1865         epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
1866         epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
1867         epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
1868 }
1869
1870 static int set_pauseparam(struct net_device *dev,
1871                           struct ethtool_pauseparam *epause)
1872 {
1873         struct port_info *p = netdev_priv(dev);
1874         struct link_config *lc = &p->link_config;
1875
1876         if (epause->autoneg == AUTONEG_DISABLE)
1877                 lc->requested_fc = 0;
1878         else if (lc->supported & SUPPORTED_Autoneg)
1879                 lc->requested_fc = PAUSE_AUTONEG;
1880         else
1881                 return -EINVAL;
1882
1883         if (epause->rx_pause)
1884                 lc->requested_fc |= PAUSE_RX;
1885         if (epause->tx_pause)
1886                 lc->requested_fc |= PAUSE_TX;
1887         if (lc->autoneg == AUTONEG_ENABLE) {
1888                 if (netif_running(dev))
1889                         t3_link_start(&p->phy, &p->mac, lc);
1890         } else {
1891                 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1892                 if (netif_running(dev))
1893                         t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc);
1894         }
1895         return 0;
1896 }
1897
1898 static u32 get_rx_csum(struct net_device *dev)
1899 {
1900         struct port_info *p = netdev_priv(dev);
1901
1902         return p->rx_offload & T3_RX_CSUM;
1903 }
1904
1905 static int set_rx_csum(struct net_device *dev, u32 data)
1906 {
1907         struct port_info *p = netdev_priv(dev);
1908
1909         if (data) {
1910                 p->rx_offload |= T3_RX_CSUM;
1911         } else {
1912                 int i;
1913
1914                 p->rx_offload &= ~(T3_RX_CSUM | T3_LRO);
1915                 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++)
1916                         set_qset_lro(dev, i, 0);
1917         }
1918         return 0;
1919 }
1920
1921 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1922 {
1923         struct port_info *pi = netdev_priv(dev);
1924         struct adapter *adapter = pi->adapter;
1925         const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset];
1926
1927         e->rx_max_pending = MAX_RX_BUFFERS;
1928         e->rx_mini_max_pending = 0;
1929         e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
1930         e->tx_max_pending = MAX_TXQ_ENTRIES;
1931
1932         e->rx_pending = q->fl_size;
1933         e->rx_mini_pending = q->rspq_size;
1934         e->rx_jumbo_pending = q->jumbo_size;
1935         e->tx_pending = q->txq_size[0];
1936 }
1937
1938 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1939 {
1940         struct port_info *pi = netdev_priv(dev);
1941         struct adapter *adapter = pi->adapter;
1942         struct qset_params *q;
1943         int i;
1944
1945         if (e->rx_pending > MAX_RX_BUFFERS ||
1946             e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
1947             e->tx_pending > MAX_TXQ_ENTRIES ||
1948             e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1949             e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1950             e->rx_pending < MIN_FL_ENTRIES ||
1951             e->rx_jumbo_pending < MIN_FL_ENTRIES ||
1952             e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES)
1953                 return -EINVAL;
1954
1955         if (adapter->flags & FULL_INIT_DONE)
1956                 return -EBUSY;
1957
1958         q = &adapter->params.sge.qset[pi->first_qset];
1959         for (i = 0; i < pi->nqsets; ++i, ++q) {
1960                 q->rspq_size = e->rx_mini_pending;
1961                 q->fl_size = e->rx_pending;
1962                 q->jumbo_size = e->rx_jumbo_pending;
1963                 q->txq_size[0] = e->tx_pending;
1964                 q->txq_size[1] = e->tx_pending;
1965                 q->txq_size[2] = e->tx_pending;
1966         }
1967         return 0;
1968 }
1969
1970 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1971 {
1972         struct port_info *pi = netdev_priv(dev);
1973         struct adapter *adapter = pi->adapter;
1974         struct qset_params *qsp = &adapter->params.sge.qset[0];
1975         struct sge_qset *qs = &adapter->sge.qs[0];
1976
1977         if (c->rx_coalesce_usecs * 10 > M_NEWTIMER)
1978                 return -EINVAL;
1979
1980         qsp->coalesce_usecs = c->rx_coalesce_usecs;
1981         t3_update_qset_coalesce(qs, qsp);
1982         return 0;
1983 }
1984
1985 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1986 {
1987         struct port_info *pi = netdev_priv(dev);
1988         struct adapter *adapter = pi->adapter;
1989         struct qset_params *q = adapter->params.sge.qset;
1990
1991         c->rx_coalesce_usecs = q->coalesce_usecs;
1992         return 0;
1993 }
1994
1995 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
1996                       u8 * data)
1997 {
1998         struct port_info *pi = netdev_priv(dev);
1999         struct adapter *adapter = pi->adapter;
2000         int i, err = 0;
2001
2002         u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2003         if (!buf)
2004                 return -ENOMEM;
2005
2006         e->magic = EEPROM_MAGIC;
2007         for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2008                 err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]);
2009
2010         if (!err)
2011                 memcpy(data, buf + e->offset, e->len);
2012         kfree(buf);
2013         return err;
2014 }
2015
2016 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2017                       u8 * data)
2018 {
2019         struct port_info *pi = netdev_priv(dev);
2020         struct adapter *adapter = pi->adapter;
2021         u32 aligned_offset, aligned_len;
2022         __le32 *p;
2023         u8 *buf;
2024         int err;
2025
2026         if (eeprom->magic != EEPROM_MAGIC)
2027                 return -EINVAL;
2028
2029         aligned_offset = eeprom->offset & ~3;
2030         aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2031
2032         if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2033                 buf = kmalloc(aligned_len, GFP_KERNEL);
2034                 if (!buf)
2035                         return -ENOMEM;
2036                 err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf);
2037                 if (!err && aligned_len > 4)
2038                         err = t3_seeprom_read(adapter,
2039                                               aligned_offset + aligned_len - 4,
2040                                               (__le32 *) & buf[aligned_len - 4]);
2041                 if (err)
2042                         goto out;
2043                 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2044         } else
2045                 buf = data;
2046
2047         err = t3_seeprom_wp(adapter, 0);
2048         if (err)
2049                 goto out;
2050
2051         for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) {
2052                 err = t3_seeprom_write(adapter, aligned_offset, *p);
2053                 aligned_offset += 4;
2054         }
2055
2056         if (!err)
2057                 err = t3_seeprom_wp(adapter, 1);
2058 out:
2059         if (buf != data)
2060                 kfree(buf);
2061         return err;
2062 }
2063
2064 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2065 {
2066         wol->supported = 0;
2067         wol->wolopts = 0;
2068         memset(&wol->sopass, 0, sizeof(wol->sopass));
2069 }
2070
2071 static const struct ethtool_ops cxgb_ethtool_ops = {
2072         .get_settings = get_settings,
2073         .set_settings = set_settings,
2074         .get_drvinfo = get_drvinfo,
2075         .get_msglevel = get_msglevel,
2076         .set_msglevel = set_msglevel,
2077         .get_ringparam = get_sge_param,
2078         .set_ringparam = set_sge_param,
2079         .get_coalesce = get_coalesce,
2080         .set_coalesce = set_coalesce,
2081         .get_eeprom_len = get_eeprom_len,
2082         .get_eeprom = get_eeprom,
2083         .set_eeprom = set_eeprom,
2084         .get_pauseparam = get_pauseparam,
2085         .set_pauseparam = set_pauseparam,
2086         .get_rx_csum = get_rx_csum,
2087         .set_rx_csum = set_rx_csum,
2088         .set_tx_csum = ethtool_op_set_tx_csum,
2089         .set_sg = ethtool_op_set_sg,
2090         .get_link = ethtool_op_get_link,
2091         .get_strings = get_strings,
2092         .phys_id = cxgb3_phys_id,
2093         .nway_reset = restart_autoneg,
2094         .get_sset_count = get_sset_count,
2095         .get_ethtool_stats = get_stats,
2096         .get_regs_len = get_regs_len,
2097         .get_regs = get_regs,
2098         .get_wol = get_wol,
2099         .set_tso = ethtool_op_set_tso,
2100 };
2101
2102 static int in_range(int val, int lo, int hi)
2103 {
2104         return val < 0 || (val <= hi && val >= lo);
2105 }
2106
2107 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr)
2108 {
2109         struct port_info *pi = netdev_priv(dev);
2110         struct adapter *adapter = pi->adapter;
2111         u32 cmd;
2112         int ret;
2113
2114         if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
2115                 return -EFAULT;
2116
2117         switch (cmd) {
2118         case CHELSIO_SET_QSET_PARAMS:{
2119                 int i;
2120                 struct qset_params *q;
2121                 struct ch_qset_params t;
2122                 int q1 = pi->first_qset;
2123                 int nqsets = pi->nqsets;
2124
2125                 if (!capable(CAP_NET_ADMIN))
2126                         return -EPERM;
2127                 if (copy_from_user(&t, useraddr, sizeof(t)))
2128                         return -EFAULT;
2129                 if (t.qset_idx >= SGE_QSETS)
2130                         return -EINVAL;
2131                 if (!in_range(t.intr_lat, 0, M_NEWTIMER) ||
2132                     !in_range(t.cong_thres, 0, 255) ||
2133                     !in_range(t.txq_size[0], MIN_TXQ_ENTRIES,
2134                               MAX_TXQ_ENTRIES) ||
2135                     !in_range(t.txq_size[1], MIN_TXQ_ENTRIES,
2136                               MAX_TXQ_ENTRIES) ||
2137                     !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES,
2138                               MAX_CTRL_TXQ_ENTRIES) ||
2139                     !in_range(t.fl_size[0], MIN_FL_ENTRIES,
2140                               MAX_RX_BUFFERS) ||
2141                     !in_range(t.fl_size[1], MIN_FL_ENTRIES,
2142                               MAX_RX_JUMBO_BUFFERS) ||
2143                     !in_range(t.rspq_size, MIN_RSPQ_ENTRIES,
2144                               MAX_RSPQ_ENTRIES))
2145                         return -EINVAL;
2146
2147                 if ((adapter->flags & FULL_INIT_DONE) && t.lro > 0)
2148                         for_each_port(adapter, i) {
2149                                 pi = adap2pinfo(adapter, i);
2150                                 if (t.qset_idx >= pi->first_qset &&
2151                                     t.qset_idx < pi->first_qset + pi->nqsets &&
2152                                     !(pi->rx_offload & T3_RX_CSUM))
2153                                         return -EINVAL;
2154                         }
2155
2156                 if ((adapter->flags & FULL_INIT_DONE) &&
2157                         (t.rspq_size >= 0 || t.fl_size[0] >= 0 ||
2158                         t.fl_size[1] >= 0 || t.txq_size[0] >= 0 ||
2159                         t.txq_size[1] >= 0 || t.txq_size[2] >= 0 ||
2160                         t.polling >= 0 || t.cong_thres >= 0))
2161                         return -EBUSY;
2162
2163                 /* Allow setting of any available qset when offload enabled */
2164                 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2165                         q1 = 0;
2166                         for_each_port(adapter, i) {
2167                                 pi = adap2pinfo(adapter, i);
2168                                 nqsets += pi->first_qset + pi->nqsets;
2169                         }
2170                 }
2171
2172                 if (t.qset_idx < q1)
2173                         return -EINVAL;
2174                 if (t.qset_idx > q1 + nqsets - 1)
2175                         return -EINVAL;
2176
2177                 q = &adapter->params.sge.qset[t.qset_idx];
2178
2179                 if (t.rspq_size >= 0)
2180                         q->rspq_size = t.rspq_size;
2181                 if (t.fl_size[0] >= 0)
2182                         q->fl_size = t.fl_size[0];
2183                 if (t.fl_size[1] >= 0)
2184                         q->jumbo_size = t.fl_size[1];
2185                 if (t.txq_size[0] >= 0)
2186                         q->txq_size[0] = t.txq_size[0];
2187                 if (t.txq_size[1] >= 0)
2188                         q->txq_size[1] = t.txq_size[1];
2189                 if (t.txq_size[2] >= 0)
2190                         q->txq_size[2] = t.txq_size[2];
2191                 if (t.cong_thres >= 0)
2192                         q->cong_thres = t.cong_thres;
2193                 if (t.intr_lat >= 0) {
2194                         struct sge_qset *qs =
2195                                 &adapter->sge.qs[t.qset_idx];
2196
2197                         q->coalesce_usecs = t.intr_lat;
2198                         t3_update_qset_coalesce(qs, q);
2199                 }
2200                 if (t.polling >= 0) {
2201                         if (adapter->flags & USING_MSIX)
2202                                 q->polling = t.polling;
2203                         else {
2204                                 /* No polling with INTx for T3A */
2205                                 if (adapter->params.rev == 0 &&
2206                                         !(adapter->flags & USING_MSI))
2207                                         t.polling = 0;
2208
2209                                 for (i = 0; i < SGE_QSETS; i++) {
2210                                         q = &adapter->params.sge.
2211                                                 qset[i];
2212                                         q->polling = t.polling;
2213                                 }
2214                         }
2215                 }
2216                 if (t.lro >= 0)
2217                         set_qset_lro(dev, t.qset_idx, t.lro);
2218
2219                 break;
2220         }
2221         case CHELSIO_GET_QSET_PARAMS:{
2222                 struct qset_params *q;
2223                 struct ch_qset_params t;
2224                 int q1 = pi->first_qset;
2225                 int nqsets = pi->nqsets;
2226                 int i;
2227
2228                 if (copy_from_user(&t, useraddr, sizeof(t)))
2229                         return -EFAULT;
2230
2231                 /* Display qsets for all ports when offload enabled */
2232                 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2233                         q1 = 0;
2234                         for_each_port(adapter, i) {
2235                                 pi = adap2pinfo(adapter, i);
2236                                 nqsets = pi->first_qset + pi->nqsets;
2237                         }
2238                 }
2239
2240                 if (t.qset_idx >= nqsets)
2241                         return -EINVAL;
2242
2243                 q = &adapter->params.sge.qset[q1 + t.qset_idx];
2244                 t.rspq_size = q->rspq_size;
2245                 t.txq_size[0] = q->txq_size[0];
2246                 t.txq_size[1] = q->txq_size[1];
2247                 t.txq_size[2] = q->txq_size[2];
2248                 t.fl_size[0] = q->fl_size;
2249                 t.fl_size[1] = q->jumbo_size;
2250                 t.polling = q->polling;
2251                 t.lro = q->lro;
2252                 t.intr_lat = q->coalesce_usecs;
2253                 t.cong_thres = q->cong_thres;
2254                 t.qnum = q1;
2255
2256                 if (adapter->flags & USING_MSIX)
2257                         t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec;
2258                 else
2259                         t.vector = adapter->pdev->irq;
2260
2261                 if (copy_to_user(useraddr, &t, sizeof(t)))
2262                         return -EFAULT;
2263                 break;
2264         }
2265         case CHELSIO_SET_QSET_NUM:{
2266                 struct ch_reg edata;
2267                 unsigned int i, first_qset = 0, other_qsets = 0;
2268
2269                 if (!capable(CAP_NET_ADMIN))
2270                         return -EPERM;
2271                 if (adapter->flags & FULL_INIT_DONE)
2272                         return -EBUSY;
2273                 if (copy_from_user(&edata, useraddr, sizeof(edata)))
2274                         return -EFAULT;
2275                 if (edata.val < 1 ||
2276                         (edata.val > 1 && !(adapter->flags & USING_MSIX)))
2277                         return -EINVAL;
2278
2279                 for_each_port(adapter, i)
2280                         if (adapter->port[i] && adapter->port[i] != dev)
2281                                 other_qsets += adap2pinfo(adapter, i)->nqsets;
2282
2283                 if (edata.val + other_qsets > SGE_QSETS)
2284                         return -EINVAL;
2285
2286                 pi->nqsets = edata.val;
2287
2288                 for_each_port(adapter, i)
2289                         if (adapter->port[i]) {
2290                                 pi = adap2pinfo(adapter, i);
2291                                 pi->first_qset = first_qset;
2292                                 first_qset += pi->nqsets;
2293                         }
2294                 break;
2295         }
2296         case CHELSIO_GET_QSET_NUM:{
2297                 struct ch_reg edata;
2298
2299                 edata.cmd = CHELSIO_GET_QSET_NUM;
2300                 edata.val = pi->nqsets;
2301                 if (copy_to_user(useraddr, &edata, sizeof(edata)))
2302                         return -EFAULT;
2303                 break;
2304         }
2305         case CHELSIO_LOAD_FW:{
2306                 u8 *fw_data;
2307                 struct ch_mem_range t;
2308
2309                 if (!capable(CAP_SYS_RAWIO))
2310                         return -EPERM;
2311                 if (copy_from_user(&t, useraddr, sizeof(t)))
2312                         return -EFAULT;
2313                 /* Check t.len sanity ? */
2314                 fw_data = memdup_user(useraddr + sizeof(t), t.len);
2315                 if (IS_ERR(fw_data))
2316                         return PTR_ERR(fw_data);
2317
2318                 ret = t3_load_fw(adapter, fw_data, t.len);
2319                 kfree(fw_data);
2320                 if (ret)
2321                         return ret;
2322                 break;
2323         }
2324         case CHELSIO_SETMTUTAB:{
2325                 struct ch_mtus m;
2326                 int i;
2327
2328                 if (!is_offload(adapter))
2329                         return -EOPNOTSUPP;
2330                 if (!capable(CAP_NET_ADMIN))
2331                         return -EPERM;
2332                 if (offload_running(adapter))
2333                         return -EBUSY;
2334                 if (copy_from_user(&m, useraddr, sizeof(m)))
2335                         return -EFAULT;
2336                 if (m.nmtus != NMTUS)
2337                         return -EINVAL;
2338                 if (m.mtus[0] < 81)     /* accommodate SACK */
2339                         return -EINVAL;
2340
2341                 /* MTUs must be in ascending order */
2342                 for (i = 1; i < NMTUS; ++i)
2343                         if (m.mtus[i] < m.mtus[i - 1])
2344                                 return -EINVAL;
2345
2346                 memcpy(adapter->params.mtus, m.mtus,
2347                         sizeof(adapter->params.mtus));
2348                 break;
2349         }
2350         case CHELSIO_GET_PM:{
2351                 struct tp_params *p = &adapter->params.tp;
2352                 struct ch_pm m = {.cmd = CHELSIO_GET_PM };
2353
2354                 if (!is_offload(adapter))
2355                         return -EOPNOTSUPP;
2356                 m.tx_pg_sz = p->tx_pg_size;
2357                 m.tx_num_pg = p->tx_num_pgs;
2358                 m.rx_pg_sz = p->rx_pg_size;
2359                 m.rx_num_pg = p->rx_num_pgs;
2360                 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan;
2361                 if (copy_to_user(useraddr, &m, sizeof(m)))
2362                         return -EFAULT;
2363                 break;
2364         }
2365         case CHELSIO_SET_PM:{
2366                 struct ch_pm m;
2367                 struct tp_params *p = &adapter->params.tp;
2368
2369                 if (!is_offload(adapter))
2370                         return -EOPNOTSUPP;
2371                 if (!capable(CAP_NET_ADMIN))
2372                         return -EPERM;
2373                 if (adapter->flags & FULL_INIT_DONE)
2374                         return -EBUSY;
2375                 if (copy_from_user(&m, useraddr, sizeof(m)))
2376                         return -EFAULT;
2377                 if (!is_power_of_2(m.rx_pg_sz) ||
2378                         !is_power_of_2(m.tx_pg_sz))
2379                         return -EINVAL; /* not power of 2 */
2380                 if (!(m.rx_pg_sz & 0x14000))
2381                         return -EINVAL; /* not 16KB or 64KB */
2382                 if (!(m.tx_pg_sz & 0x1554000))
2383                         return -EINVAL;
2384                 if (m.tx_num_pg == -1)
2385                         m.tx_num_pg = p->tx_num_pgs;
2386                 if (m.rx_num_pg == -1)
2387                         m.rx_num_pg = p->rx_num_pgs;
2388                 if (m.tx_num_pg % 24 || m.rx_num_pg % 24)
2389                         return -EINVAL;
2390                 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size ||
2391                         m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size)
2392                         return -EINVAL;
2393                 p->rx_pg_size = m.rx_pg_sz;
2394                 p->tx_pg_size = m.tx_pg_sz;
2395                 p->rx_num_pgs = m.rx_num_pg;
2396                 p->tx_num_pgs = m.tx_num_pg;
2397                 break;
2398         }
2399         case CHELSIO_GET_MEM:{
2400                 struct ch_mem_range t;
2401                 struct mc7 *mem;
2402                 u64 buf[32];
2403
2404                 if (!is_offload(adapter))
2405                         return -EOPNOTSUPP;
2406                 if (!(adapter->flags & FULL_INIT_DONE))
2407                         return -EIO;    /* need the memory controllers */
2408                 if (copy_from_user(&t, useraddr, sizeof(t)))
2409                         return -EFAULT;
2410                 if ((t.addr & 7) || (t.len & 7))
2411                         return -EINVAL;
2412                 if (t.mem_id == MEM_CM)
2413                         mem = &adapter->cm;
2414                 else if (t.mem_id == MEM_PMRX)
2415                         mem = &adapter->pmrx;
2416                 else if (t.mem_id == MEM_PMTX)
2417                         mem = &adapter->pmtx;
2418                 else
2419                         return -EINVAL;
2420
2421                 /*
2422                  * Version scheme:
2423                  * bits 0..9: chip version
2424                  * bits 10..15: chip revision
2425                  */
2426                 t.version = 3 | (adapter->params.rev << 10);
2427                 if (copy_to_user(useraddr, &t, sizeof(t)))
2428                         return -EFAULT;
2429
2430                 /*
2431                  * Read 256 bytes at a time as len can be large and we don't
2432                  * want to use huge intermediate buffers.
2433                  */
2434                 useraddr += sizeof(t);  /* advance to start of buffer */
2435                 while (t.len) {
2436                         unsigned int chunk =
2437                                 min_t(unsigned int, t.len, sizeof(buf));
2438
2439                         ret =
2440                                 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8,
2441                                                 buf);
2442                         if (ret)
2443                                 return ret;
2444                         if (copy_to_user(useraddr, buf, chunk))
2445                                 return -EFAULT;
2446                         useraddr += chunk;
2447                         t.addr += chunk;
2448                         t.len -= chunk;
2449                 }
2450                 break;
2451         }
2452         case CHELSIO_SET_TRACE_FILTER:{
2453                 struct ch_trace t;
2454                 const struct trace_params *tp;
2455
2456                 if (!capable(CAP_NET_ADMIN))
2457                         return -EPERM;
2458                 if (!offload_running(adapter))
2459                         return -EAGAIN;
2460                 if (copy_from_user(&t, useraddr, sizeof(t)))
2461                         return -EFAULT;
2462
2463                 tp = (const struct trace_params *)&t.sip;
2464                 if (t.config_tx)
2465                         t3_config_trace_filter(adapter, tp, 0,
2466                                                 t.invert_match,
2467                                                 t.trace_tx);
2468                 if (t.config_rx)
2469                         t3_config_trace_filter(adapter, tp, 1,
2470                                                 t.invert_match,
2471                                                 t.trace_rx);
2472                 break;
2473         }
2474         default:
2475                 return -EOPNOTSUPP;
2476         }
2477         return 0;
2478 }
2479
2480 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2481 {
2482         struct mii_ioctl_data *data = if_mii(req);
2483         struct port_info *pi = netdev_priv(dev);
2484         struct adapter *adapter = pi->adapter;
2485
2486         switch (cmd) {
2487         case SIOCGMIIREG:
2488         case SIOCSMIIREG:
2489                 /* Convert phy_id from older PRTAD/DEVAD format */
2490                 if (is_10G(adapter) &&
2491                     !mdio_phy_id_is_c45(data->phy_id) &&
2492                     (data->phy_id & 0x1f00) &&
2493                     !(data->phy_id & 0xe0e0))
2494                         data->phy_id = mdio_phy_id_c45(data->phy_id >> 8,
2495                                                        data->phy_id & 0x1f);
2496                 /* FALLTHRU */
2497         case SIOCGMIIPHY:
2498                 return mdio_mii_ioctl(&pi->phy.mdio, data, cmd);
2499         case SIOCCHIOCTL:
2500                 return cxgb_extension_ioctl(dev, req->ifr_data);
2501         default:
2502                 return -EOPNOTSUPP;
2503         }
2504 }
2505
2506 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2507 {
2508         struct port_info *pi = netdev_priv(dev);
2509         struct adapter *adapter = pi->adapter;
2510         int ret;
2511
2512         if (new_mtu < 81)       /* accommodate SACK */
2513                 return -EINVAL;
2514         if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu)))
2515                 return ret;
2516         dev->mtu = new_mtu;
2517         init_port_mtus(adapter);
2518         if (adapter->params.rev == 0 && offload_running(adapter))
2519                 t3_load_mtus(adapter, adapter->params.mtus,
2520                              adapter->params.a_wnd, adapter->params.b_wnd,
2521                              adapter->port[0]->mtu);
2522         return 0;
2523 }
2524
2525 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2526 {
2527         struct port_info *pi = netdev_priv(dev);
2528         struct adapter *adapter = pi->adapter;
2529         struct sockaddr *addr = p;
2530
2531         if (!is_valid_ether_addr(addr->sa_data))
2532                 return -EINVAL;
2533
2534         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2535         t3_mac_set_address(&pi->mac, LAN_MAC_IDX, dev->dev_addr);
2536         if (offload_running(adapter))
2537                 write_smt_entry(adapter, pi->port_id);
2538         return 0;
2539 }
2540
2541 /**
2542  * t3_synchronize_rx - wait for current Rx processing on a port to complete
2543  * @adap: the adapter
2544  * @p: the port
2545  *
2546  * Ensures that current Rx processing on any of the queues associated with
2547  * the given port completes before returning.  We do this by acquiring and
2548  * releasing the locks of the response queues associated with the port.
2549  */
2550 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p)
2551 {
2552         int i;
2553
2554         for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
2555                 struct sge_rspq *q = &adap->sge.qs[i].rspq;
2556
2557                 spin_lock_irq(&q->lock);
2558                 spin_unlock_irq(&q->lock);
2559         }
2560 }
2561
2562 static void vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2563 {
2564         struct port_info *pi = netdev_priv(dev);
2565         struct adapter *adapter = pi->adapter;
2566
2567         pi->vlan_grp = grp;
2568         if (adapter->params.rev > 0)
2569                 t3_set_vlan_accel(adapter, 1 << pi->port_id, grp != NULL);
2570         else {
2571                 /* single control for all ports */
2572                 unsigned int i, have_vlans = 0;
2573                 for_each_port(adapter, i)
2574                     have_vlans |= adap2pinfo(adapter, i)->vlan_grp != NULL;
2575
2576                 t3_set_vlan_accel(adapter, 1, have_vlans);
2577         }
2578         t3_synchronize_rx(adapter, pi);
2579 }
2580
2581 #ifdef CONFIG_NET_POLL_CONTROLLER
2582 static void cxgb_netpoll(struct net_device *dev)
2583 {
2584         struct port_info *pi = netdev_priv(dev);
2585         struct adapter *adapter = pi->adapter;
2586         int qidx;
2587
2588         for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) {
2589                 struct sge_qset *qs = &adapter->sge.qs[qidx];
2590                 void *source;
2591
2592                 if (adapter->flags & USING_MSIX)
2593                         source = qs;
2594                 else
2595                         source = adapter;
2596
2597                 t3_intr_handler(adapter, qs->rspq.polling) (0, source);
2598         }
2599 }
2600 #endif
2601
2602 /*
2603  * Periodic accumulation of MAC statistics.
2604  */
2605 static void mac_stats_update(struct adapter *adapter)
2606 {
2607         int i;
2608
2609         for_each_port(adapter, i) {
2610                 struct net_device *dev = adapter->port[i];
2611                 struct port_info *p = netdev_priv(dev);
2612
2613                 if (netif_running(dev)) {
2614                         spin_lock(&adapter->stats_lock);
2615                         t3_mac_update_stats(&p->mac);
2616                         spin_unlock(&adapter->stats_lock);
2617                 }
2618         }
2619 }
2620
2621 static void check_link_status(struct adapter *adapter)
2622 {
2623         int i;
2624
2625         for_each_port(adapter, i) {
2626                 struct net_device *dev = adapter->port[i];
2627                 struct port_info *p = netdev_priv(dev);
2628                 int link_fault;
2629
2630                 spin_lock_irq(&adapter->work_lock);
2631                 link_fault = p->link_fault;
2632                 spin_unlock_irq(&adapter->work_lock);
2633
2634                 if (link_fault) {
2635                         t3_link_fault(adapter, i);
2636                         continue;
2637                 }
2638
2639                 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) {
2640                         t3_xgm_intr_disable(adapter, i);
2641                         t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2642
2643                         t3_link_changed(adapter, i);
2644                         t3_xgm_intr_enable(adapter, i);
2645                 }
2646         }
2647 }
2648
2649 static void check_t3b2_mac(struct adapter *adapter)
2650 {
2651         int i;
2652
2653         if (!rtnl_trylock())    /* synchronize with ifdown */
2654                 return;
2655
2656         for_each_port(adapter, i) {
2657                 struct net_device *dev = adapter->port[i];
2658                 struct port_info *p = netdev_priv(dev);
2659                 int status;
2660
2661                 if (!netif_running(dev))
2662                         continue;
2663
2664                 status = 0;
2665                 if (netif_running(dev) && netif_carrier_ok(dev))
2666                         status = t3b2_mac_watchdog_task(&p->mac);
2667                 if (status == 1)
2668                         p->mac.stats.num_toggled++;
2669                 else if (status == 2) {
2670                         struct cmac *mac = &p->mac;
2671
2672                         t3_mac_set_mtu(mac, dev->mtu);
2673                         t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
2674                         cxgb_set_rxmode(dev);
2675                         t3_link_start(&p->phy, mac, &p->link_config);
2676                         t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
2677                         t3_port_intr_enable(adapter, p->port_id);
2678                         p->mac.stats.num_resets++;
2679                 }
2680         }
2681         rtnl_unlock();
2682 }
2683
2684
2685 static void t3_adap_check_task(struct work_struct *work)
2686 {
2687         struct adapter *adapter = container_of(work, struct adapter,
2688                                                adap_check_task.work);
2689         const struct adapter_params *p = &adapter->params;
2690         int port;
2691         unsigned int v, status, reset;
2692
2693         adapter->check_task_cnt++;
2694
2695         check_link_status(adapter);
2696
2697         /* Accumulate MAC stats if needed */
2698         if (!p->linkpoll_period ||
2699             (adapter->check_task_cnt * p->linkpoll_period) / 10 >=
2700             p->stats_update_period) {
2701                 mac_stats_update(adapter);
2702                 adapter->check_task_cnt = 0;
2703         }
2704
2705         if (p->rev == T3_REV_B2)
2706                 check_t3b2_mac(adapter);
2707
2708         /*
2709          * Scan the XGMAC's to check for various conditions which we want to
2710          * monitor in a periodic polling manner rather than via an interrupt
2711          * condition.  This is used for conditions which would otherwise flood
2712          * the system with interrupts and we only really need to know that the
2713          * conditions are "happening" ...  For each condition we count the
2714          * detection of the condition and reset it for the next polling loop.
2715          */
2716         for_each_port(adapter, port) {
2717                 struct cmac *mac =  &adap2pinfo(adapter, port)->mac;
2718                 u32 cause;
2719
2720                 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset);
2721                 reset = 0;
2722                 if (cause & F_RXFIFO_OVERFLOW) {
2723                         mac->stats.rx_fifo_ovfl++;
2724                         reset |= F_RXFIFO_OVERFLOW;
2725                 }
2726
2727                 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset);
2728         }
2729
2730         /*
2731          * We do the same as above for FL_EMPTY interrupts.
2732          */
2733         status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2734         reset = 0;
2735
2736         if (status & F_FLEMPTY) {
2737                 struct sge_qset *qs = &adapter->sge.qs[0];
2738                 int i = 0;
2739
2740                 reset |= F_FLEMPTY;
2741
2742                 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) &
2743                     0xffff;
2744
2745                 while (v) {
2746                         qs->fl[i].empty += (v & 1);
2747                         if (i)
2748                                 qs++;
2749                         i ^= 1;
2750                         v >>= 1;
2751                 }
2752         }
2753
2754         t3_write_reg(adapter, A_SG_INT_CAUSE, reset);
2755
2756         /* Schedule the next check update if any port is active. */
2757         spin_lock_irq(&adapter->work_lock);
2758         if (adapter->open_device_map & PORT_MASK)
2759                 schedule_chk_task(adapter);
2760         spin_unlock_irq(&adapter->work_lock);
2761 }
2762
2763 static void db_full_task(struct work_struct *work)
2764 {
2765         struct adapter *adapter = container_of(work, struct adapter,
2766                                                db_full_task);
2767
2768         cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_FULL, 0);
2769 }
2770
2771 static void db_empty_task(struct work_struct *work)
2772 {
2773         struct adapter *adapter = container_of(work, struct adapter,
2774                                                db_empty_task);
2775
2776         cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_EMPTY, 0);
2777 }
2778
2779 static void db_drop_task(struct work_struct *work)
2780 {
2781         struct adapter *adapter = container_of(work, struct adapter,
2782                                                db_drop_task);
2783         unsigned long delay = 1000;
2784         unsigned short r;
2785
2786         cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_DROP, 0);
2787
2788         /*
2789          * Sleep a while before ringing the driver qset dbs.
2790          * The delay is between 1000-2023 usecs.
2791          */
2792         get_random_bytes(&r, 2);
2793         delay += r & 1023;
2794         set_current_state(TASK_UNINTERRUPTIBLE);
2795         schedule_timeout(usecs_to_jiffies(delay));
2796         ring_dbs(adapter);
2797 }
2798
2799 /*
2800  * Processes external (PHY) interrupts in process context.
2801  */
2802 static void ext_intr_task(struct work_struct *work)
2803 {
2804         struct adapter *adapter = container_of(work, struct adapter,
2805                                                ext_intr_handler_task);
2806         int i;
2807
2808         /* Disable link fault interrupts */
2809         for_each_port(adapter, i) {
2810                 struct net_device *dev = adapter->port[i];
2811                 struct port_info *p = netdev_priv(dev);
2812
2813                 t3_xgm_intr_disable(adapter, i);
2814                 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2815         }
2816
2817         /* Re-enable link fault interrupts */
2818         t3_phy_intr_handler(adapter);
2819
2820         for_each_port(adapter, i)
2821                 t3_xgm_intr_enable(adapter, i);
2822
2823         /* Now reenable external interrupts */
2824         spin_lock_irq(&adapter->work_lock);
2825         if (adapter->slow_intr_mask) {
2826                 adapter->slow_intr_mask |= F_T3DBG;
2827                 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG);
2828                 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2829                              adapter->slow_intr_mask);
2830         }
2831         spin_unlock_irq(&adapter->work_lock);
2832 }
2833
2834 /*
2835  * Interrupt-context handler for external (PHY) interrupts.
2836  */
2837 void t3_os_ext_intr_handler(struct adapter *adapter)
2838 {
2839         /*
2840          * Schedule a task to handle external interrupts as they may be slow
2841          * and we use a mutex to protect MDIO registers.  We disable PHY
2842          * interrupts in the meantime and let the task reenable them when
2843          * it's done.
2844          */
2845         spin_lock(&adapter->work_lock);
2846         if (adapter->slow_intr_mask) {
2847                 adapter->slow_intr_mask &= ~F_T3DBG;
2848                 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2849                              adapter->slow_intr_mask);
2850                 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task);
2851         }
2852         spin_unlock(&adapter->work_lock);
2853 }
2854
2855 void t3_os_link_fault_handler(struct adapter *adapter, int port_id)
2856 {
2857         struct net_device *netdev = adapter->port[port_id];
2858         struct port_info *pi = netdev_priv(netdev);
2859
2860         spin_lock(&adapter->work_lock);
2861         pi->link_fault = 1;
2862         spin_unlock(&adapter->work_lock);
2863 }
2864
2865 static int t3_adapter_error(struct adapter *adapter, int reset)
2866 {
2867         int i, ret = 0;
2868
2869         if (is_offload(adapter) &&
2870             test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2871                 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0);
2872                 offload_close(&adapter->tdev);
2873         }
2874
2875         /* Stop all ports */
2876         for_each_port(adapter, i) {
2877                 struct net_device *netdev = adapter->port[i];
2878
2879                 if (netif_running(netdev))
2880                         cxgb_close(netdev);
2881         }
2882
2883         /* Stop SGE timers */
2884         t3_stop_sge_timers(adapter);
2885
2886         adapter->flags &= ~FULL_INIT_DONE;
2887
2888         if (reset)
2889                 ret = t3_reset_adapter(adapter);
2890
2891         pci_disable_device(adapter->pdev);
2892
2893         return ret;
2894 }
2895
2896 static int t3_reenable_adapter(struct adapter *adapter)
2897 {
2898         if (pci_enable_device(adapter->pdev)) {
2899                 dev_err(&adapter->pdev->dev,
2900                         "Cannot re-enable PCI device after reset.\n");
2901                 goto err;
2902         }
2903         pci_set_master(adapter->pdev);
2904         pci_restore_state(adapter->pdev);
2905         pci_save_state(adapter->pdev);
2906
2907         /* Free sge resources */
2908         t3_free_sge_resources(adapter);
2909
2910         if (t3_replay_prep_adapter(adapter))
2911                 goto err;
2912
2913         return 0;
2914 err:
2915         return -1;
2916 }
2917
2918 static void t3_resume_ports(struct adapter *adapter)
2919 {
2920         int i;
2921
2922         /* Restart the ports */
2923         for_each_port(adapter, i) {
2924                 struct net_device *netdev = adapter->port[i];
2925
2926                 if (netif_running(netdev)) {
2927                         if (cxgb_open(netdev)) {
2928                                 dev_err(&adapter->pdev->dev,
2929                                         "can't bring device back up"
2930                                         " after reset\n");
2931                                 continue;
2932                         }
2933                 }
2934         }
2935
2936         if (is_offload(adapter) && !ofld_disable)
2937                 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0);
2938 }
2939
2940 /*
2941  * processes a fatal error.
2942  * Bring the ports down, reset the chip, bring the ports back up.
2943  */
2944 static void fatal_error_task(struct work_struct *work)
2945 {
2946         struct adapter *adapter = container_of(work, struct adapter,
2947                                                fatal_error_handler_task);
2948         int err = 0;
2949
2950         rtnl_lock();
2951         err = t3_adapter_error(adapter, 1);
2952         if (!err)
2953                 err = t3_reenable_adapter(adapter);
2954         if (!err)
2955                 t3_resume_ports(adapter);
2956
2957         CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded");
2958         rtnl_unlock();
2959 }
2960
2961 void t3_fatal_err(struct adapter *adapter)
2962 {
2963         unsigned int fw_status[4];
2964
2965         if (adapter->flags & FULL_INIT_DONE) {
2966                 t3_sge_stop(adapter);
2967                 t3_write_reg(adapter, A_XGM_TX_CTRL, 0);
2968                 t3_write_reg(adapter, A_XGM_RX_CTRL, 0);
2969                 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0);
2970                 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0);
2971
2972                 spin_lock(&adapter->work_lock);
2973                 t3_intr_disable(adapter);
2974                 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task);
2975                 spin_unlock(&adapter->work_lock);
2976         }
2977         CH_ALERT(adapter, "encountered fatal error, operation suspended\n");
2978         if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status))
2979                 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n",
2980                          fw_status[0], fw_status[1],
2981                          fw_status[2], fw_status[3]);
2982 }
2983
2984 /**
2985  * t3_io_error_detected - called when PCI error is detected
2986  * @pdev: Pointer to PCI device
2987  * @state: The current pci connection state
2988  *
2989  * This function is called after a PCI bus error affecting
2990  * this device has been detected.
2991  */
2992 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev,
2993                                              pci_channel_state_t state)
2994 {
2995         struct adapter *adapter = pci_get_drvdata(pdev);
2996         int ret;
2997
2998         if (state == pci_channel_io_perm_failure)
2999                 return PCI_ERS_RESULT_DISCONNECT;
3000
3001         ret = t3_adapter_error(adapter, 0);
3002
3003         /* Request a slot reset. */
3004         return PCI_ERS_RESULT_NEED_RESET;
3005 }
3006
3007 /**
3008  * t3_io_slot_reset - called after the pci bus has been reset.
3009  * @pdev: Pointer to PCI device
3010  *
3011  * Restart the card from scratch, as if from a cold-boot.
3012  */
3013 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev)
3014 {
3015         struct adapter *adapter = pci_get_drvdata(pdev);
3016
3017         if (!t3_reenable_adapter(adapter))
3018                 return PCI_ERS_RESULT_RECOVERED;
3019
3020         return PCI_ERS_RESULT_DISCONNECT;
3021 }
3022
3023 /**
3024  * t3_io_resume - called when traffic can start flowing again.
3025  * @pdev: Pointer to PCI device
3026  *
3027  * This callback is called when the error recovery driver tells us that
3028  * its OK to resume normal operation.
3029  */
3030 static void t3_io_resume(struct pci_dev *pdev)
3031 {
3032         struct adapter *adapter = pci_get_drvdata(pdev);
3033
3034         CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n",
3035                  t3_read_reg(adapter, A_PCIE_PEX_ERR));
3036
3037         t3_resume_ports(adapter);
3038 }
3039
3040 static struct pci_error_handlers t3_err_handler = {
3041         .error_detected = t3_io_error_detected,
3042         .slot_reset = t3_io_slot_reset,
3043         .resume = t3_io_resume,
3044 };
3045
3046 /*
3047  * Set the number of qsets based on the number of CPUs and the number of ports,
3048  * not to exceed the number of available qsets, assuming there are enough qsets
3049  * per port in HW.
3050  */
3051 static void set_nqsets(struct adapter *adap)
3052 {
3053         int i, j = 0;
3054         int num_cpus = num_online_cpus();
3055         int hwports = adap->params.nports;
3056         int nqsets = adap->msix_nvectors - 1;
3057
3058         if (adap->params.rev > 0 && adap->flags & USING_MSIX) {
3059                 if (hwports == 2 &&
3060                     (hwports * nqsets > SGE_QSETS ||
3061                      num_cpus >= nqsets / hwports))
3062                         nqsets /= hwports;
3063                 if (nqsets > num_cpus)
3064                         nqsets = num_cpus;
3065                 if (nqsets < 1 || hwports == 4)
3066                         nqsets = 1;
3067         } else
3068                 nqsets = 1;
3069
3070         for_each_port(adap, i) {
3071                 struct port_info *pi = adap2pinfo(adap, i);
3072
3073                 pi->first_qset = j;
3074                 pi->nqsets = nqsets;
3075                 j = pi->first_qset + nqsets;
3076
3077                 dev_info(&adap->pdev->dev,
3078                          "Port %d using %d queue sets.\n", i, nqsets);
3079         }
3080 }
3081
3082 static int __devinit cxgb_enable_msix(struct adapter *adap)
3083 {
3084         struct msix_entry entries[SGE_QSETS + 1];
3085         int vectors;
3086         int i, err;
3087
3088         vectors = ARRAY_SIZE(entries);
3089         for (i = 0; i < vectors; ++i)
3090                 entries[i].entry = i;
3091
3092         while ((err = pci_enable_msix(adap->pdev, entries, vectors)) > 0)
3093                 vectors = err;
3094
3095         if (err < 0)
3096                 pci_disable_msix(adap->pdev);
3097
3098         if (!err && vectors < (adap->params.nports + 1)) {
3099                 pci_disable_msix(adap->pdev);
3100                 err = -1;
3101         }
3102
3103         if (!err) {
3104                 for (i = 0; i < vectors; ++i)
3105                         adap->msix_info[i].vec = entries[i].vector;
3106                 adap->msix_nvectors = vectors;
3107         }
3108
3109         return err;
3110 }
3111
3112 static void __devinit print_port_info(struct adapter *adap,
3113                                       const struct adapter_info *ai)
3114 {
3115         static const char *pci_variant[] = {
3116                 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express"
3117         };
3118
3119         int i;
3120         char buf[80];
3121
3122         if (is_pcie(adap))
3123                 snprintf(buf, sizeof(buf), "%s x%d",
3124                          pci_variant[adap->params.pci.variant],
3125                          adap->params.pci.width);
3126         else
3127                 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit",
3128                          pci_variant[adap->params.pci.variant],
3129                          adap->params.pci.speed, adap->params.pci.width);
3130
3131         for_each_port(adap, i) {
3132                 struct net_device *dev = adap->port[i];
3133                 const struct port_info *pi = netdev_priv(dev);
3134
3135                 if (!test_bit(i, &adap->registered_device_map))
3136                         continue;
3137                 printk(KERN_INFO "%s: %s %s %sNIC (rev %d) %s%s\n",
3138                        dev->name, ai->desc, pi->phy.desc,
3139                        is_offload(adap) ? "R" : "", adap->params.rev, buf,
3140                        (adap->flags & USING_MSIX) ? " MSI-X" :
3141                        (adap->flags & USING_MSI) ? " MSI" : "");
3142                 if (adap->name == dev->name && adap->params.vpd.mclk)
3143                         printk(KERN_INFO
3144                                "%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n",
3145                                adap->name, t3_mc7_size(&adap->cm) >> 20,
3146                                t3_mc7_size(&adap->pmtx) >> 20,
3147                                t3_mc7_size(&adap->pmrx) >> 20,
3148                                adap->params.vpd.sn);
3149         }
3150 }
3151
3152 static const struct net_device_ops cxgb_netdev_ops = {
3153         .ndo_open               = cxgb_open,
3154         .ndo_stop               = cxgb_close,
3155         .ndo_start_xmit         = t3_eth_xmit,
3156         .ndo_get_stats          = cxgb_get_stats,
3157         .ndo_validate_addr      = eth_validate_addr,
3158         .ndo_set_multicast_list = cxgb_set_rxmode,
3159         .ndo_do_ioctl           = cxgb_ioctl,
3160         .ndo_change_mtu         = cxgb_change_mtu,
3161         .ndo_set_mac_address    = cxgb_set_mac_addr,
3162         .ndo_vlan_rx_register   = vlan_rx_register,
3163 #ifdef CONFIG_NET_POLL_CONTROLLER
3164         .ndo_poll_controller    = cxgb_netpoll,
3165 #endif
3166 };
3167
3168 static void __devinit cxgb3_init_iscsi_mac(struct net_device *dev)
3169 {
3170         struct port_info *pi = netdev_priv(dev);
3171
3172         memcpy(pi->iscsic.mac_addr, dev->dev_addr, ETH_ALEN);
3173         pi->iscsic.mac_addr[3] |= 0x80;
3174 }
3175
3176 static int __devinit init_one(struct pci_dev *pdev,
3177                               const struct pci_device_id *ent)
3178 {
3179         static int version_printed;
3180
3181         int i, err, pci_using_dac = 0;
3182         resource_size_t mmio_start, mmio_len;
3183         const struct adapter_info *ai;
3184         struct adapter *adapter = NULL;
3185         struct port_info *pi;
3186
3187         if (!version_printed) {
3188                 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
3189                 ++version_printed;
3190         }
3191
3192         if (!cxgb3_wq) {
3193                 cxgb3_wq = create_singlethread_workqueue(DRV_NAME);
3194                 if (!cxgb3_wq) {
3195                         printk(KERN_ERR DRV_NAME
3196                                ": cannot initialize work queue\n");
3197                         return -ENOMEM;
3198                 }
3199         }
3200
3201         err = pci_enable_device(pdev);
3202         if (err) {
3203                 dev_err(&pdev->dev, "cannot enable PCI device\n");
3204                 goto out;
3205         }
3206
3207         err = pci_request_regions(pdev, DRV_NAME);
3208         if (err) {
3209                 /* Just info, some other driver may have claimed the device. */
3210                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3211                 goto out_disable_device;
3212         }
3213
3214         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3215                 pci_using_dac = 1;
3216                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3217                 if (err) {
3218                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3219                                "coherent allocations\n");
3220                         goto out_release_regions;
3221                 }
3222         } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
3223                 dev_err(&pdev->dev, "no usable DMA configuration\n");
3224                 goto out_release_regions;
3225         }
3226
3227         pci_set_master(pdev);
3228         pci_save_state(pdev);
3229
3230         mmio_start = pci_resource_start(pdev, 0);
3231         mmio_len = pci_resource_len(pdev, 0);
3232         ai = t3_get_adapter_info(ent->driver_data);
3233
3234         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3235         if (!adapter) {
3236                 err = -ENOMEM;
3237                 goto out_release_regions;
3238         }
3239
3240         adapter->nofail_skb =
3241                 alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL);
3242         if (!adapter->nofail_skb) {
3243                 dev_err(&pdev->dev, "cannot allocate nofail buffer\n");
3244                 err = -ENOMEM;
3245                 goto out_free_adapter;
3246         }
3247
3248         adapter->regs = ioremap_nocache(mmio_start, mmio_len);
3249         if (!adapter->regs) {
3250                 dev_err(&pdev->dev, "cannot map device registers\n");
3251                 err = -ENOMEM;
3252                 goto out_free_adapter;
3253         }
3254
3255         adapter->pdev = pdev;
3256         adapter->name = pci_name(pdev);
3257         adapter->msg_enable = dflt_msg_enable;
3258         adapter->mmio_len = mmio_len;
3259
3260         mutex_init(&adapter->mdio_lock);
3261         spin_lock_init(&adapter->work_lock);
3262         spin_lock_init(&adapter->stats_lock);
3263
3264         INIT_LIST_HEAD(&adapter->adapter_list);
3265         INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task);
3266         INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task);
3267
3268         INIT_WORK(&adapter->db_full_task, db_full_task);
3269         INIT_WORK(&adapter->db_empty_task, db_empty_task);
3270         INIT_WORK(&adapter->db_drop_task, db_drop_task);
3271
3272         INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task);
3273
3274         for (i = 0; i < ai->nports0 + ai->nports1; ++i) {
3275                 struct net_device *netdev;
3276
3277                 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS);
3278                 if (!netdev) {
3279                         err = -ENOMEM;
3280                         goto out_free_dev;
3281                 }
3282
3283                 SET_NETDEV_DEV(netdev, &pdev->dev);
3284
3285                 adapter->port[i] = netdev;
3286                 pi = netdev_priv(netdev);
3287                 pi->adapter = adapter;
3288                 pi->rx_offload = T3_RX_CSUM | T3_LRO;
3289                 pi->port_id = i;
3290                 netif_carrier_off(netdev);
3291                 netif_tx_stop_all_queues(netdev);
3292                 netdev->irq = pdev->irq;
3293                 netdev->mem_start = mmio_start;
3294                 netdev->mem_end = mmio_start + mmio_len - 1;
3295                 netdev->features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
3296                 netdev->features |= NETIF_F_GRO;
3297                 if (pci_using_dac)
3298                         netdev->features |= NETIF_F_HIGHDMA;
3299
3300                 netdev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
3301                 netdev->netdev_ops = &cxgb_netdev_ops;
3302                 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
3303         }
3304
3305         pci_set_drvdata(pdev, adapter);
3306         if (t3_prep_adapter(adapter, ai, 1) < 0) {
3307                 err = -ENODEV;
3308                 goto out_free_dev;
3309         }
3310
3311         /*
3312          * The card is now ready to go.  If any errors occur during device
3313          * registration we do not fail the whole card but rather proceed only
3314          * with the ports we manage to register successfully.  However we must
3315          * register at least one net device.
3316          */
3317         for_each_port(adapter, i) {
3318                 err = register_netdev(adapter->port[i]);
3319                 if (err)
3320                         dev_warn(&pdev->dev,
3321                                  "cannot register net device %s, skipping\n",
3322                                  adapter->port[i]->name);
3323                 else {
3324                         /*
3325                          * Change the name we use for messages to the name of
3326                          * the first successfully registered interface.
3327                          */
3328                         if (!adapter->registered_device_map)
3329                                 adapter->name = adapter->port[i]->name;
3330
3331                         __set_bit(i, &adapter->registered_device_map);
3332                 }
3333         }
3334         if (!adapter->registered_device_map) {
3335                 dev_err(&pdev->dev, "could not register any net devices\n");
3336                 goto out_free_dev;
3337         }
3338
3339         for_each_port(adapter, i)
3340                 cxgb3_init_iscsi_mac(adapter->port[i]);
3341
3342         /* Driver's ready. Reflect it on LEDs */
3343         t3_led_ready(adapter);
3344
3345         if (is_offload(adapter)) {
3346                 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map);
3347                 cxgb3_adapter_ofld(adapter);
3348         }
3349
3350         /* See what interrupts we'll be using */
3351         if (msi > 1 && cxgb_enable_msix(adapter) == 0)
3352                 adapter->flags |= USING_MSIX;
3353         else if (msi > 0 && pci_enable_msi(pdev) == 0)
3354                 adapter->flags |= USING_MSI;
3355
3356         set_nqsets(adapter);
3357
3358         err = sysfs_create_group(&adapter->port[0]->dev.kobj,
3359                                  &cxgb3_attr_group);
3360
3361         print_port_info(adapter, ai);
3362         return 0;
3363
3364 out_free_dev:
3365         iounmap(adapter->regs);
3366         for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i)
3367                 if (adapter->port[i])
3368                         free_netdev(adapter->port[i]);
3369
3370 out_free_adapter:
3371         kfree(adapter);
3372
3373 out_release_regions:
3374         pci_release_regions(pdev);
3375 out_disable_device:
3376         pci_disable_device(pdev);
3377         pci_set_drvdata(pdev, NULL);
3378 out:
3379         return err;
3380 }
3381
3382 static void __devexit remove_one(struct pci_dev *pdev)
3383 {
3384         struct adapter *adapter = pci_get_drvdata(pdev);
3385
3386         if (adapter) {
3387                 int i;
3388
3389                 t3_sge_stop(adapter);
3390                 sysfs_remove_group(&adapter->port[0]->dev.kobj,
3391                                    &cxgb3_attr_group);
3392
3393                 if (is_offload(adapter)) {
3394                         cxgb3_adapter_unofld(adapter);
3395                         if (test_bit(OFFLOAD_DEVMAP_BIT,
3396                                      &adapter->open_device_map))
3397                                 offload_close(&adapter->tdev);
3398                 }
3399
3400                 for_each_port(adapter, i)
3401                     if (test_bit(i, &adapter->registered_device_map))
3402                         unregister_netdev(adapter->port[i]);
3403
3404                 t3_stop_sge_timers(adapter);
3405                 t3_free_sge_resources(adapter);
3406                 cxgb_disable_msi(adapter);
3407
3408                 for_each_port(adapter, i)
3409                         if (adapter->port[i])
3410                                 free_netdev(adapter->port[i]);
3411
3412                 iounmap(adapter->regs);
3413                 if (adapter->nofail_skb)
3414                         kfree_skb(adapter->nofail_skb);
3415                 kfree(adapter);
3416                 pci_release_regions(pdev);
3417                 pci_disable_device(pdev);
3418                 pci_set_drvdata(pdev, NULL);
3419         }
3420 }
3421
3422 static struct pci_driver driver = {
3423         .name = DRV_NAME,
3424         .id_table = cxgb3_pci_tbl,
3425         .probe = init_one,
3426         .remove = __devexit_p(remove_one),
3427         .err_handler = &t3_err_handler,
3428 };
3429
3430 static int __init cxgb3_init_module(void)
3431 {
3432         int ret;
3433
3434         cxgb3_offload_init();
3435
3436         ret = pci_register_driver(&driver);
3437         return ret;
3438 }
3439
3440 static void __exit cxgb3_cleanup_module(void)
3441 {
3442         pci_unregister_driver(&driver);
3443         if (cxgb3_wq)
3444                 destroy_workqueue(cxgb3_wq);
3445 }
3446
3447 module_init(cxgb3_init_module);
3448 module_exit(cxgb3_cleanup_module);