]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/media/dvb/frontends/mb86a16.c
d05f7500e0c514fb966fdc12b2db8824e017ab70
[net-next-2.6.git] / drivers / media / dvb / frontends / mb86a16.c
1 /*
2         Fujitsu MB86A16 DVB-S/DSS DC Receiver driver
3
4         Copyright (C) Manu Abraham (abraham.manu@gmail.com)
5
6         This program is free software; you can redistribute it and/or modify
7         it under the terms of the GNU General Public License as published by
8         the Free Software Foundation; either version 2 of the License, or
9         (at your option) any later version.
10
11         This program is distributed in the hope that it will be useful,
12         but WITHOUT ANY WARRANTY; without even the implied warranty of
13         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14         GNU General Public License for more details.
15
16         You should have received a copy of the GNU General Public License
17         along with this program; if not, write to the Free Software
18         Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25
26 #include "dvb_frontend.h"
27 #include "mb86a16.h"
28 #include "mb86a16_priv.h"
29
30 unsigned int verbose = 5;
31 module_param(verbose, int, 0644);
32
33 #define ABS(x)          ((x) < 0 ? (-x) : (x))
34
35 struct mb86a16_state {
36         struct i2c_adapter              *i2c_adap;
37         const struct mb86a16_config     *config;
38         struct dvb_frontend             frontend;
39
40         /* tuning parameters */
41         int                             frequency;
42         int                             srate;
43
44         /* Internal stuff */
45         int                             master_clk;
46         int                             deci;
47         int                             csel;
48         int                             rsel;
49 };
50
51 #define MB86A16_ERROR           0
52 #define MB86A16_NOTICE          1
53 #define MB86A16_INFO            2
54 #define MB86A16_DEBUG           3
55
56 #define dprintk(x, y, z, format, arg...) do {                                           \
57         if (z) {                                                                        \
58                 if      ((x > MB86A16_ERROR) && (x > y))                                \
59                         printk(KERN_ERR "%s: " format "\n", __func__, ##arg);           \
60                 else if ((x > MB86A16_NOTICE) && (x > y))                               \
61                         printk(KERN_NOTICE "%s: " format "\n", __func__, ##arg);        \
62                 else if ((x > MB86A16_INFO) && (x > y))                                 \
63                         printk(KERN_INFO "%s: " format "\n", __func__, ##arg);          \
64                 else if ((x > MB86A16_DEBUG) && (x > y))                                \
65                         printk(KERN_DEBUG "%s: " format "\n", __func__, ##arg);         \
66         } else {                                                                        \
67                 if (x > y)                                                              \
68                         printk(format, ##arg);                                          \
69         }                                                                               \
70 } while (0)
71
72 #define TRACE_IN        dprintk(verbose, MB86A16_DEBUG, 1, "-->()")
73 #define TRACE_OUT       dprintk(verbose, MB86A16_DEBUG, 1, "()-->")
74
75 static int mb86a16_write(struct mb86a16_state *state, u8 reg, u8 val)
76 {
77         int ret;
78         u8 buf[] = { reg, val };
79
80         struct i2c_msg msg = {
81                 .addr = state->config->demod_address,
82                 .flags = 0,
83                 .buf = buf,
84                 .len = 2
85         };
86
87         dprintk(verbose, MB86A16_DEBUG, 1,
88                 "writing to [0x%02x],Reg[0x%02x],Data[0x%02x]",
89                 state->config->demod_address, buf[0], buf[1]);
90
91         ret = i2c_transfer(state->i2c_adap, &msg, 1);
92
93         return (ret != 1) ? -EREMOTEIO : 0;
94 }
95
96 static int mb86a16_read(struct mb86a16_state *state, u8 reg, u8 *val)
97 {
98         int ret;
99         u8 b0[] = { reg };
100         u8 b1[] = { 0 };
101
102         struct i2c_msg msg[] = {
103                 {
104                         .addr = state->config->demod_address,
105                         .flags = 0,
106                         .buf = b0,
107                         .len = 1
108                 }, {
109                         .addr = state->config->demod_address,
110                         .flags = I2C_M_RD,
111                         .buf = b1,
112                         .len = 1
113                 }
114         };
115         ret = i2c_transfer(state->i2c_adap, msg, 2);
116         if (ret != 2) {
117                 dprintk(verbose, MB86A16_ERROR, 1, "read error(reg=0x%02x, ret=0x%i)",
118                         reg, ret);
119
120                 return -EREMOTEIO;
121         }
122         *val = b1[0];
123
124         return ret;
125 }
126
127 static int CNTM_set(struct mb86a16_state *state,
128                     unsigned char timint1,
129                     unsigned char timint2,
130                     unsigned char cnext)
131 {
132         unsigned char val;
133
134         val = (timint1 << 4) | (timint2 << 2) | cnext;
135         if (mb86a16_write(state, MB86A16_CNTMR, val) < 0)
136                 goto err;
137
138         return 0;
139
140 err:
141         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
142         return -EREMOTEIO;
143 }
144
145 static int smrt_set(struct mb86a16_state *state, int rate)
146 {
147         int tmp ;
148         int m ;
149         unsigned char STOFS0, STOFS1;
150
151         m = 1 << state->deci;
152         tmp = (8192 * state->master_clk - 2 * m * rate * 8192 + state->master_clk / 2) / state->master_clk;
153
154         STOFS0 = tmp & 0x0ff;
155         STOFS1 = (tmp & 0xf00) >> 8;
156
157         if (mb86a16_write(state, MB86A16_SRATE1, (state->deci << 2) |
158                                        (state->csel << 1) |
159                                         state->rsel) < 0)
160                 goto err;
161         if (mb86a16_write(state, MB86A16_SRATE2, STOFS0) < 0)
162                 goto err;
163         if (mb86a16_write(state, MB86A16_SRATE3, STOFS1) < 0)
164                 goto err;
165
166         return 0;
167 err:
168         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
169         return -1;
170 }
171
172 static int srst(struct mb86a16_state *state)
173 {
174         if (mb86a16_write(state, MB86A16_RESET, 0x04) < 0)
175                 goto err;
176
177         return 0;
178 err:
179         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
180         return -EREMOTEIO;
181
182 }
183
184 static int afcex_data_set(struct mb86a16_state *state,
185                           unsigned char AFCEX_L,
186                           unsigned char AFCEX_H)
187 {
188         if (mb86a16_write(state, MB86A16_AFCEXL, AFCEX_L) < 0)
189                 goto err;
190         if (mb86a16_write(state, MB86A16_AFCEXH, AFCEX_H) < 0)
191                 goto err;
192
193         return 0;
194 err:
195         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
196
197         return -1;
198 }
199
200 static int afcofs_data_set(struct mb86a16_state *state,
201                            unsigned char AFCEX_L,
202                            unsigned char AFCEX_H)
203 {
204         if (mb86a16_write(state, 0x58, AFCEX_L) < 0)
205                 goto err;
206         if (mb86a16_write(state, 0x59, AFCEX_H) < 0)
207                 goto err;
208
209         return 0;
210 err:
211         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
212         return -EREMOTEIO;
213 }
214
215 static int stlp_set(struct mb86a16_state *state,
216                     unsigned char STRAS,
217                     unsigned char STRBS)
218 {
219         if (mb86a16_write(state, MB86A16_STRFILTCOEF1, (STRBS << 3) | (STRAS)) < 0)
220                 goto err;
221
222         return 0;
223 err:
224         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
225         return -EREMOTEIO;
226 }
227
228 static int Vi_set(struct mb86a16_state *state, unsigned char ETH, unsigned char VIA)
229 {
230         if (mb86a16_write(state, MB86A16_VISET2, 0x04) < 0)
231                 goto err;
232         if (mb86a16_write(state, MB86A16_VISET3, 0xf5) < 0)
233                 goto err;
234
235         return 0;
236 err:
237         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
238         return -EREMOTEIO;
239 }
240
241 static int initial_set(struct mb86a16_state *state)
242 {
243         if (stlp_set(state, 5, 7))
244                 goto err;
245
246         udelay(100);
247         if (afcex_data_set(state, 0, 0))
248                 goto err;
249
250         udelay(100);
251         if (afcofs_data_set(state, 0, 0))
252                 goto err;
253
254         udelay(100);
255         if (mb86a16_write(state, MB86A16_CRLFILTCOEF1, 0x16) < 0)
256                 goto err;
257         if (mb86a16_write(state, 0x2f, 0x21) < 0)
258                 goto err;
259         if (mb86a16_write(state, MB86A16_VIMAG, 0x38) < 0)
260                 goto err;
261         if (mb86a16_write(state, MB86A16_FAGCS1, 0x00) < 0)
262                 goto err;
263         if (mb86a16_write(state, MB86A16_FAGCS2, 0x1c) < 0)
264                 goto err;
265         if (mb86a16_write(state, MB86A16_FAGCS3, 0x20) < 0)
266                 goto err;
267         if (mb86a16_write(state, MB86A16_FAGCS4, 0x1e) < 0)
268                 goto err;
269         if (mb86a16_write(state, MB86A16_FAGCS5, 0x23) < 0)
270                 goto err;
271         if (mb86a16_write(state, 0x54, 0xff) < 0)
272                 goto err;
273         if (mb86a16_write(state, MB86A16_TSOUT, 0x00) < 0)
274                 goto err;
275
276         return 0;
277
278 err:
279         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
280         return -EREMOTEIO;
281 }
282
283 static int S01T_set(struct mb86a16_state *state,
284                     unsigned char s1t,
285                     unsigned s0t)
286 {
287         if (mb86a16_write(state, 0x33, (s1t << 3) | s0t) < 0)
288                 goto err;
289
290         return 0;
291 err:
292         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
293         return -EREMOTEIO;
294 }
295
296
297 static int EN_set(struct mb86a16_state *state,
298                   int cren,
299                   int afcen)
300 {
301         unsigned char val;
302
303         val = 0x7a | (cren << 7) | (afcen << 2);
304         if (mb86a16_write(state, 0x49, val) < 0)
305                 goto err;
306
307         return 0;
308 err:
309         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
310         return -EREMOTEIO;
311 }
312
313 static int AFCEXEN_set(struct mb86a16_state *state,
314                        int afcexen,
315                        int smrt)
316 {
317         unsigned char AFCA ;
318
319         if (smrt > 18875)
320                 AFCA = 4;
321         else if (smrt > 9375)
322                 AFCA = 3;
323         else if (smrt > 2250)
324                 AFCA = 2;
325         else
326                 AFCA = 1;
327
328         if (mb86a16_write(state, 0x2a, 0x02 | (afcexen << 5) | (AFCA << 2)) < 0)
329                 goto err;
330
331         return 0;
332
333 err:
334         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
335         return -EREMOTEIO;
336 }
337
338 static int DAGC_data_set(struct mb86a16_state *state,
339                          unsigned char DAGCA,
340                          unsigned char DAGCW)
341 {
342         if (mb86a16_write(state, 0x2d, (DAGCA << 3) | DAGCW) < 0)
343                 goto err;
344
345         return 0;
346
347 err:
348         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
349         return -EREMOTEIO;
350 }
351
352 static void smrt_info_get(struct mb86a16_state *state, int rate)
353 {
354         if (rate >= 37501) {
355                 state->deci = 0; state->csel = 0; state->rsel = 0;
356         } else if (rate >= 30001) {
357                 state->deci = 0; state->csel = 0; state->rsel = 1;
358         } else if (rate >= 26251) {
359                 state->deci = 0; state->csel = 1; state->rsel = 0;
360         } else if (rate >= 22501) {
361                 state->deci = 0; state->csel = 1; state->rsel = 1;
362         } else if (rate >= 18751) {
363                 state->deci = 1; state->csel = 0; state->rsel = 0;
364         } else if (rate >= 15001) {
365                 state->deci = 1; state->csel = 0; state->rsel = 1;
366         } else if (rate >= 13126) {
367                 state->deci = 1; state->csel = 1; state->rsel = 0;
368         } else if (rate >= 11251) {
369                 state->deci = 1; state->csel = 1; state->rsel = 1;
370         } else if (rate >= 9376) {
371                 state->deci = 2; state->csel = 0; state->rsel = 0;
372         } else if (rate >= 7501) {
373                 state->deci = 2; state->csel = 0; state->rsel = 1;
374         } else if (rate >= 6563) {
375                 state->deci = 2; state->csel = 1; state->rsel = 0;
376         } else if (rate >= 5626) {
377                 state->deci = 2; state->csel = 1; state->rsel = 1;
378         } else if (rate >= 4688) {
379                 state->deci = 3; state->csel = 0; state->rsel = 0;
380         } else if (rate >= 3751) {
381                 state->deci = 3; state->csel = 0; state->rsel = 1;
382         } else if (rate >= 3282) {
383                 state->deci = 3; state->csel = 1; state->rsel = 0;
384         } else if (rate >= 2814) {
385                 state->deci = 3; state->csel = 1; state->rsel = 1;
386         } else if (rate >= 2344) {
387                 state->deci = 4; state->csel = 0; state->rsel = 0;
388         } else if (rate >= 1876) {
389                 state->deci = 4; state->csel = 0; state->rsel = 1;
390         } else if (rate >= 1641) {
391                 state->deci = 4; state->csel = 1; state->rsel = 0;
392         } else if (rate >= 1407) {
393                 state->deci = 4; state->csel = 1; state->rsel = 1;
394         } else if (rate >= 1172) {
395                 state->deci = 5; state->csel = 0; state->rsel = 0;
396         } else if (rate >=  939) {
397                 state->deci = 5; state->csel = 0; state->rsel = 1;
398         } else if (rate >=  821) {
399                 state->deci = 5; state->csel = 1; state->rsel = 0;
400         } else {
401                 state->deci = 5; state->csel = 1; state->rsel = 1;
402         }
403
404         if (state->csel == 0)
405                 state->master_clk = 92000;
406         else
407                 state->master_clk = 61333;
408
409 }
410
411 static int signal_det(struct mb86a16_state *state,
412                       int smrt,
413                       unsigned char *SIG)
414 {
415
416         int ret ;
417         int smrtd ;
418         int wait_sym ;
419
420         u32 wait_t;
421         unsigned char S[3] ;
422         int i ;
423
424         if (*SIG > 45) {
425                 if (CNTM_set(state, 2, 1, 2) < 0) {
426                         dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
427                         return -1;
428                 }
429                 wait_sym = 40000;
430         } else {
431                 if (CNTM_set(state, 3, 1, 2) < 0) {
432                         dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
433                         return -1;
434                 }
435                 wait_sym = 80000;
436         }
437         for (i = 0; i < 3; i++) {
438                 if (i == 0)
439                         smrtd = smrt * 98 / 100;
440                 else if (i == 1)
441                         smrtd = smrt;
442                 else
443                         smrtd = smrt * 102 / 100;
444                 smrt_info_get(state, smrtd);
445                 smrt_set(state, smrtd);
446                 srst(state);
447                 wait_t = (wait_sym + 99 * smrtd / 100) / smrtd;
448                 if (wait_t == 0)
449                         wait_t = 1;
450                 msleep_interruptible(10);
451                 if (mb86a16_read(state, 0x37, &(S[i])) != 2) {
452                         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
453                         return -EREMOTEIO;
454                 }
455         }
456         if ((S[1] > S[0] * 112 / 100) &&
457             (S[1] > S[2] * 112 / 100)) {
458
459                 ret = 1;
460         } else {
461                 ret = 0;
462         }
463         *SIG = S[1];
464
465         if (CNTM_set(state, 0, 1, 2) < 0) {
466                 dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
467                 return -1;
468         }
469
470         return ret;
471 }
472
473 static int rf_val_set(struct mb86a16_state *state,
474                       int f,
475                       int smrt,
476                       unsigned char R)
477 {
478         unsigned char C, F, B;
479         int M;
480         unsigned char rf_val[5];
481         int ack = -1;
482
483         if (smrt > 37750)
484                 C = 1;
485         else if (smrt > 18875)
486                 C = 2;
487         else if (smrt > 5500)
488                 C = 3;
489         else
490                 C = 4;
491
492         if (smrt > 30500)
493                 F = 3;
494         else if (smrt > 9375)
495                 F = 1;
496         else if (smrt > 4625)
497                 F = 0;
498         else
499                 F = 2;
500
501         if (f < 1060)
502                 B = 0;
503         else if (f < 1175)
504                 B = 1;
505         else if (f < 1305)
506                 B = 2;
507         else if (f < 1435)
508                 B = 3;
509         else if (f < 1570)
510                 B = 4;
511         else if (f < 1715)
512                 B = 5;
513         else if (f < 1845)
514                 B = 6;
515         else if (f < 1980)
516                 B = 7;
517         else if (f < 2080)
518                 B = 8;
519         else
520                 B = 9;
521
522         M = f * (1 << R) / 2;
523
524         rf_val[0] = 0x01 | (C << 3) | (F << 1);
525         rf_val[1] = (R << 5) | ((M & 0x1f000) >> 12);
526         rf_val[2] = (M & 0x00ff0) >> 4;
527         rf_val[3] = ((M & 0x0000f) << 4) | B;
528
529         /* Frequency Set */
530         if (mb86a16_write(state, 0x21, rf_val[0]) < 0)
531                 ack = 0;
532         if (mb86a16_write(state, 0x22, rf_val[1]) < 0)
533                 ack = 0;
534         if (mb86a16_write(state, 0x23, rf_val[2]) < 0)
535                 ack = 0;
536         if (mb86a16_write(state, 0x24, rf_val[3]) < 0)
537                 ack = 0;
538         if (mb86a16_write(state, 0x25, 0x01) < 0)
539                 ack = 0;
540         if (ack == 0) {
541                 dprintk(verbose, MB86A16_ERROR, 1, "RF Setup - I2C transfer error");
542                 return -EREMOTEIO;
543         }
544
545         return 0;
546 }
547
548 static int afcerr_chk(struct mb86a16_state *state)
549 {
550         unsigned char AFCM_L, AFCM_H ;
551         int AFCM ;
552         int afcm, afcerr ;
553
554         if (mb86a16_read(state, 0x0e, &AFCM_L) != 2)
555                 goto err;
556         if (mb86a16_read(state, 0x0f, &AFCM_H) != 2)
557                 goto err;
558
559         AFCM = (AFCM_H << 8) + AFCM_L;
560
561         if (AFCM > 2048)
562                 afcm = AFCM - 4096;
563         else
564                 afcm = AFCM;
565         afcerr = afcm * state->master_clk / 8192;
566
567         return afcerr;
568
569 err:
570         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
571         return -EREMOTEIO;
572 }
573
574 static int dagcm_val_get(struct mb86a16_state *state)
575 {
576         int DAGCM;
577         unsigned char DAGCM_H, DAGCM_L;
578
579         if (mb86a16_read(state, 0x45, &DAGCM_L) != 2)
580                 goto err;
581         if (mb86a16_read(state, 0x46, &DAGCM_H) != 2)
582                 goto err;
583
584         DAGCM = (DAGCM_H << 8) + DAGCM_L;
585
586         return DAGCM;
587
588 err:
589         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
590         return -EREMOTEIO;
591 }
592
593 static int mb86a16_read_status(struct dvb_frontend *fe, fe_status_t *status)
594 {
595         u8 stat, stat2;
596         struct mb86a16_state *state = fe->demodulator_priv;
597
598         *status = 0;
599
600         if (mb86a16_read(state, MB86A16_SIG1, &stat) != 2)
601                 goto err;
602         if (mb86a16_read(state, MB86A16_SIG2, &stat2) != 2)
603                 goto err;
604         if ((stat > 25) && (stat2 > 25))
605                 *status |= FE_HAS_SIGNAL;
606         if ((stat > 45) && (stat2 > 45))
607                 *status |= FE_HAS_CARRIER;
608
609         if (mb86a16_read(state, MB86A16_STATUS, &stat) != 2)
610                 goto err;
611
612         if (stat & 0x01)
613                 *status |= FE_HAS_SYNC;
614         if (stat & 0x01)
615                 *status |= FE_HAS_VITERBI;
616
617         if (mb86a16_read(state, MB86A16_FRAMESYNC, &stat) != 2)
618                 goto err;
619
620         if ((stat & 0x0f) && (*status & FE_HAS_VITERBI))
621                 *status |= FE_HAS_LOCK;
622
623         return 0;
624
625 err:
626         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
627         return -EREMOTEIO;
628 }
629
630 static int sync_chk(struct mb86a16_state *state,
631                     unsigned char *VIRM)
632 {
633         unsigned char val;
634         int sync;
635
636         if (mb86a16_read(state, 0x0d, &val) != 2)
637                 goto err;
638
639         dprintk(verbose, MB86A16_INFO, 1, "Status = %02x,", val);
640         sync = val & 0x01;
641         *VIRM = (val & 0x1c) >> 2;
642
643         return sync;
644 err:
645         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
646         return -EREMOTEIO;
647
648 }
649
650 static int freqerr_chk(struct mb86a16_state *state,
651                        int fTP,
652                        int smrt,
653                        int unit)
654 {
655         unsigned char CRM, AFCML, AFCMH;
656         unsigned char temp1, temp2, temp3;
657         int crm, afcm, AFCM;
658         int crrerr, afcerr;             /* kHz */
659         int frqerr;                     /* MHz */
660         int afcen, afcexen = 0;
661         int R, M, fOSC, fOSC_OFS;
662
663         if (mb86a16_read(state, 0x43, &CRM) != 2)
664                 goto err;
665
666         if (CRM > 127)
667                 crm = CRM - 256;
668         else
669                 crm = CRM;
670
671         crrerr = smrt * crm / 256;
672         if (mb86a16_read(state, 0x49, &temp1) != 2)
673                 goto err;
674
675         afcen = (temp1 & 0x04) >> 2;
676         if (afcen == 0) {
677                 if (mb86a16_read(state, 0x2a, &temp1) != 2)
678                         goto err;
679                 afcexen = (temp1 & 0x20) >> 5;
680         }
681
682         if (afcen == 1) {
683                 if (mb86a16_read(state, 0x0e, &AFCML) != 2)
684                         goto err;
685                 if (mb86a16_read(state, 0x0f, &AFCMH) != 2)
686                         goto err;
687         } else if (afcexen == 1) {
688                 if (mb86a16_read(state, 0x2b, &AFCML) != 2)
689                         goto err;
690                 if (mb86a16_read(state, 0x2c, &AFCMH) != 2)
691                         goto err;
692         }
693         if ((afcen == 1) || (afcexen == 1)) {
694                 smrt_info_get(state, smrt);
695                 AFCM = ((AFCMH & 0x01) << 8) + AFCML;
696                 if (AFCM > 255)
697                         afcm = AFCM - 512;
698                 else
699                         afcm = AFCM;
700
701                 afcerr = afcm * state->master_clk / 8192;
702         } else
703                 afcerr = 0;
704
705         if (mb86a16_read(state, 0x22, &temp1) != 2)
706                 goto err;
707         if (mb86a16_read(state, 0x23, &temp2) != 2)
708                 goto err;
709         if (mb86a16_read(state, 0x24, &temp3) != 2)
710                 goto err;
711
712         R = (temp1 & 0xe0) >> 5;
713         M = ((temp1 & 0x1f) << 12) + (temp2 << 4) + (temp3 >> 4);
714         if (R == 0)
715                 fOSC = 2 * M;
716         else
717                 fOSC = M;
718
719         fOSC_OFS = fOSC - fTP;
720
721         if (unit == 0) {        /* MHz */
722                 if (crrerr + afcerr + fOSC_OFS * 1000 >= 0)
723                         frqerr = (crrerr + afcerr + fOSC_OFS * 1000 + 500) / 1000;
724                 else
725                         frqerr = (crrerr + afcerr + fOSC_OFS * 1000 - 500) / 1000;
726         } else {        /* kHz */
727                 frqerr = crrerr + afcerr + fOSC_OFS * 1000;
728         }
729
730         return frqerr;
731 err:
732         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
733         return -EREMOTEIO;
734 }
735
736 static unsigned char vco_dev_get(struct mb86a16_state *state, int smrt)
737 {
738         unsigned char R;
739
740         if (smrt > 9375)
741                 R = 0;
742         else
743                 R = 1;
744
745         return R;
746 }
747
748 static void swp_info_get(struct mb86a16_state *state,
749                          int fOSC_start,
750                          int smrt,
751                          int v, int R,
752                          int swp_ofs,
753                          int *fOSC,
754                          int *afcex_freq,
755                          unsigned char *AFCEX_L,
756                          unsigned char *AFCEX_H)
757 {
758         int AFCEX ;
759         int crnt_swp_freq ;
760
761         crnt_swp_freq = fOSC_start * 1000 + v * swp_ofs;
762
763         if (R == 0)
764                 *fOSC = (crnt_swp_freq + 1000) / 2000 * 2;
765         else
766                 *fOSC = (crnt_swp_freq + 500) / 1000;
767
768         if (*fOSC >= crnt_swp_freq)
769                 *afcex_freq = *fOSC * 1000 - crnt_swp_freq;
770         else
771                 *afcex_freq = crnt_swp_freq - *fOSC * 1000;
772
773         AFCEX = *afcex_freq * 8192 / state->master_clk;
774         *AFCEX_L =  AFCEX & 0x00ff;
775         *AFCEX_H = (AFCEX & 0x0f00) >> 8;
776 }
777
778
779 static int swp_freq_calcuation(struct mb86a16_state *state, int i, int v, int *V,  int vmax, int vmin,
780                                int SIGMIN, int fOSC, int afcex_freq, int swp_ofs, unsigned char *SIG1)
781 {
782         int swp_freq ;
783
784         if ((i % 2 == 1) && (v <= vmax)) {
785                 /* positive v (case 1) */
786                 if ((v - 1 == vmin)                             &&
787                     (*(V + 30 + v) >= 0)                        &&
788                     (*(V + 30 + v - 1) >= 0)                    &&
789                     (*(V + 30 + v - 1) > *(V + 30 + v))         &&
790                     (*(V + 30 + v - 1) > SIGMIN)) {
791
792                         swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
793                         *SIG1 = *(V + 30 + v - 1);
794                 } else if ((v == vmax)                          &&
795                            (*(V + 30 + v) >= 0)                 &&
796                            (*(V + 30 + v - 1) >= 0)             &&
797                            (*(V + 30 + v) > *(V + 30 + v - 1))  &&
798                            (*(V + 30 + v) > SIGMIN)) {
799                         /* (case 2) */
800                         swp_freq = fOSC * 1000 + afcex_freq;
801                         *SIG1 = *(V + 30 + v);
802                 } else if ((*(V + 30 + v) > 0)                  &&
803                            (*(V + 30 + v - 1) > 0)              &&
804                            (*(V + 30 + v - 2) > 0)              &&
805                            (*(V + 30 + v - 3) > 0)              &&
806                            (*(V + 30 + v - 1) > *(V + 30 + v))  &&
807                            (*(V + 30 + v - 2) > *(V + 30 + v - 3)) &&
808                            ((*(V + 30 + v - 1) > SIGMIN)        ||
809                            (*(V + 30 + v - 2) > SIGMIN))) {
810                         /* (case 3) */
811                         if (*(V + 30 + v - 1) >= *(V + 30 + v - 2)) {
812                                 swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
813                                 *SIG1 = *(V + 30 + v - 1);
814                         } else {
815                                 swp_freq = fOSC * 1000 + afcex_freq - swp_ofs * 2;
816                                 *SIG1 = *(V + 30 + v - 2);
817                         }
818                 } else if ((v == vmax)                          &&
819                            (*(V + 30 + v) >= 0)                 &&
820                            (*(V + 30 + v - 1) >= 0)             &&
821                            (*(V + 30 + v - 2) >= 0)             &&
822                            (*(V + 30 + v) > *(V + 30 + v - 2))  &&
823                            (*(V + 30 + v - 1) > *(V + 30 + v - 2)) &&
824                            ((*(V + 30 + v) > SIGMIN)            ||
825                            (*(V + 30 + v - 1) > SIGMIN))) {
826                         /* (case 4) */
827                         if (*(V + 30 + v) >= *(V + 30 + v - 1)) {
828                                 swp_freq = fOSC * 1000 + afcex_freq;
829                                 *SIG1 = *(V + 30 + v);
830                         } else {
831                                 swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
832                                 *SIG1 = *(V + 30 + v - 1);
833                         }
834                 } else  {
835                         swp_freq = -1 ;
836                 }
837         } else if ((i % 2 == 0) && (v >= vmin)) {
838                 /* Negative v (case 1) */
839                 if ((*(V + 30 + v) > 0)                         &&
840                     (*(V + 30 + v + 1) > 0)                     &&
841                     (*(V + 30 + v + 2) > 0)                     &&
842                     (*(V + 30 + v + 1) > *(V + 30 + v))         &&
843                     (*(V + 30 + v + 1) > *(V + 30 + v + 2))     &&
844                     (*(V + 30 + v + 1) > SIGMIN)) {
845
846                         swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
847                         *SIG1 = *(V + 30 + v + 1);
848                 } else if ((v + 1 == vmax)                      &&
849                            (*(V + 30 + v) >= 0)                 &&
850                            (*(V + 30 + v + 1) >= 0)             &&
851                            (*(V + 30 + v + 1) > *(V + 30 + v))  &&
852                            (*(V + 30 + v + 1) > SIGMIN)) {
853                         /* (case 2) */
854                         swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
855                         *SIG1 = *(V + 30 + v);
856                 } else if ((v == vmin)                          &&
857                            (*(V + 30 + v) > 0)                  &&
858                            (*(V + 30 + v + 1) > 0)              &&
859                            (*(V + 30 + v + 2) > 0)              &&
860                            (*(V + 30 + v) > *(V + 30 + v + 1))  &&
861                            (*(V + 30 + v) > *(V + 30 + v + 2))  &&
862                            (*(V + 30 + v) > SIGMIN)) {
863                         /* (case 3) */
864                         swp_freq = fOSC * 1000 + afcex_freq;
865                         *SIG1 = *(V + 30 + v);
866                 } else if ((*(V + 30 + v) >= 0)                 &&
867                            (*(V + 30 + v + 1) >= 0)             &&
868                            (*(V + 30 + v + 2) >= 0)             &&
869                            (*(V + 30 + v + 3) >= 0)             &&
870                            (*(V + 30 + v + 1) > *(V + 30 + v))  &&
871                            (*(V + 30 + v + 2) > *(V + 30 + v + 3)) &&
872                            ((*(V + 30 + v + 1) > SIGMIN)        ||
873                             (*(V + 30 + v + 2) > SIGMIN))) {
874                         /* (case 4) */
875                         if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
876                                 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
877                                 *SIG1 = *(V + 30 + v + 1);
878                         } else {
879                                 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
880                                 *SIG1 = *(V + 30 + v + 2);
881                         }
882                 } else if ((*(V + 30 + v) >= 0)                 &&
883                            (*(V + 30 + v + 1) >= 0)             &&
884                            (*(V + 30 + v + 2) >= 0)             &&
885                            (*(V + 30 + v + 3) >= 0)             &&
886                            (*(V + 30 + v) > *(V + 30 + v + 2))  &&
887                            (*(V + 30 + v + 1) > *(V + 30 + v + 2)) &&
888                            (*(V + 30 + v) > *(V + 30 + v + 3))  &&
889                            (*(V + 30 + v + 1) > *(V + 30 + v + 3)) &&
890                            ((*(V + 30 + v) > SIGMIN)            ||
891                             (*(V + 30 + v + 1) > SIGMIN))) {
892                         /* (case 5) */
893                         if (*(V + 30 + v) >= *(V + 30 + v + 1)) {
894                                 swp_freq = fOSC * 1000 + afcex_freq;
895                                 *SIG1 = *(V + 30 + v);
896                         } else {
897                                 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
898                                 *SIG1 = *(V + 30 + v + 1);
899                         }
900                 } else if ((v + 2 == vmin)                      &&
901                            (*(V + 30 + v) >= 0)                 &&
902                            (*(V + 30 + v + 1) >= 0)             &&
903                            (*(V + 30 + v + 2) >= 0)             &&
904                            (*(V + 30 + v + 1) > *(V + 30 + v))  &&
905                            (*(V + 30 + v + 2) > *(V + 30 + v))  &&
906                            ((*(V + 30 + v + 1) > SIGMIN)        ||
907                             (*(V + 30 + v + 2) > SIGMIN))) {
908                         /* (case 6) */
909                         if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
910                                 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
911                                 *SIG1 = *(V + 30 + v + 1);
912                         } else {
913                                 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
914                                 *SIG1 = *(V + 30 + v + 2);
915                         }
916                 } else if ((vmax == 0) && (vmin == 0) && (*(V + 30 + v) > SIGMIN)) {
917                         swp_freq = fOSC * 1000;
918                         *SIG1 = *(V + 30 + v);
919                 } else
920                         swp_freq = -1;
921         } else
922                 swp_freq = -1;
923
924         return swp_freq;
925 }
926
927 static void swp_info_get2(struct mb86a16_state *state,
928                           int smrt,
929                           int R,
930                           int swp_freq,
931                           int *afcex_freq,
932                           int *fOSC,
933                           unsigned char *AFCEX_L,
934                           unsigned char *AFCEX_H)
935 {
936         int AFCEX ;
937
938         if (R == 0)
939                 *fOSC = (swp_freq + 1000) / 2000 * 2;
940         else
941                 *fOSC = (swp_freq + 500) / 1000;
942
943         if (*fOSC >= swp_freq)
944                 *afcex_freq = *fOSC * 1000 - swp_freq;
945         else
946                 *afcex_freq = swp_freq - *fOSC * 1000;
947
948         AFCEX = *afcex_freq * 8192 / state->master_clk;
949         *AFCEX_L =  AFCEX & 0x00ff;
950         *AFCEX_H = (AFCEX & 0x0f00) >> 8;
951 }
952
953 static void afcex_info_get(struct mb86a16_state *state,
954                            int afcex_freq,
955                            unsigned char *AFCEX_L,
956                            unsigned char *AFCEX_H)
957 {
958         int AFCEX ;
959
960         AFCEX = afcex_freq * 8192 / state->master_clk;
961         *AFCEX_L =  AFCEX & 0x00ff;
962         *AFCEX_H = (AFCEX & 0x0f00) >> 8;
963 }
964
965 static int SEQ_set(struct mb86a16_state *state, unsigned char loop)
966 {
967         /* SLOCK0 = 0 */
968         if (mb86a16_write(state, 0x32, 0x02 | (loop << 2)) < 0) {
969                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
970                 return -EREMOTEIO;
971         }
972
973         return 0;
974 }
975
976 static int iq_vt_set(struct mb86a16_state *state, unsigned char IQINV)
977 {
978         /* Viterbi Rate, IQ Settings */
979         if (mb86a16_write(state, 0x06, 0xdf | (IQINV << 5)) < 0) {
980                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
981                 return -EREMOTEIO;
982         }
983
984         return 0;
985 }
986
987 static int FEC_srst(struct mb86a16_state *state)
988 {
989         if (mb86a16_write(state, MB86A16_RESET, 0x02) < 0) {
990                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
991                 return -EREMOTEIO;
992         }
993
994         return 0;
995 }
996
997 static int S2T_set(struct mb86a16_state *state, unsigned char S2T)
998 {
999         if (mb86a16_write(state, 0x34, 0x70 | S2T) < 0) {
1000                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1001                 return -EREMOTEIO;
1002         }
1003
1004         return 0;
1005 }
1006
1007 static int S45T_set(struct mb86a16_state *state, unsigned char S4T, unsigned char S5T)
1008 {
1009         if (mb86a16_write(state, 0x35, 0x00 | (S5T << 4) | S4T) < 0) {
1010                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1011                 return -EREMOTEIO;
1012         }
1013
1014         return 0;
1015 }
1016
1017
1018 static int mb86a16_set_fe(struct mb86a16_state *state)
1019 {
1020         u8 agcval, cnmval;
1021
1022         int i, j;
1023         int fOSC = 0;
1024         int fOSC_start = 0;
1025         int wait_t;
1026         int fcp;
1027         int swp_ofs;
1028         int V[60];
1029         u8 SIG1MIN;
1030
1031         unsigned char CREN, AFCEN, AFCEXEN;
1032         unsigned char SIG1;
1033         unsigned char TIMINT1, TIMINT2, TIMEXT;
1034         unsigned char S0T, S1T;
1035         unsigned char S2T;
1036 /*      unsigned char S2T, S3T; */
1037         unsigned char S4T, S5T;
1038         unsigned char AFCEX_L, AFCEX_H;
1039         unsigned char R;
1040         unsigned char VIRM;
1041         unsigned char ETH, VIA;
1042         unsigned char junk;
1043
1044         int loop;
1045         int ftemp;
1046         int v, vmax, vmin;
1047         int vmax_his, vmin_his;
1048         int swp_freq, prev_swp_freq[20];
1049         int prev_freq_num;
1050         int signal_dupl;
1051         int afcex_freq;
1052         int signal;
1053         int afcerr;
1054         int temp_freq, delta_freq;
1055         int dagcm[4];
1056         int smrt_d;
1057 /*      int freq_err; */
1058         int n;
1059         int ret = -1;
1060         int sync;
1061
1062         dprintk(verbose, MB86A16_INFO, 1, "freq=%d Mhz, symbrt=%d Ksps", state->frequency, state->srate);
1063
1064         fcp = 3000;
1065         swp_ofs = state->srate / 4;
1066
1067         for (i = 0; i < 60; i++)
1068                 V[i] = -1;
1069
1070         for (i = 0; i < 20; i++)
1071                 prev_swp_freq[i] = 0;
1072
1073         SIG1MIN = 25;
1074
1075         for (n = 0; ((n < 3) && (ret == -1)); n++) {
1076                 SEQ_set(state, 0);
1077                 iq_vt_set(state, 0);
1078
1079                 CREN = 0;
1080                 AFCEN = 0;
1081                 AFCEXEN = 1;
1082                 TIMINT1 = 0;
1083                 TIMINT2 = 1;
1084                 TIMEXT = 2;
1085                 S1T = 0;
1086                 S0T = 0;
1087
1088                 if (initial_set(state) < 0) {
1089                         dprintk(verbose, MB86A16_ERROR, 1, "initial set failed");
1090                         return -1;
1091                 }
1092                 if (DAGC_data_set(state, 3, 2) < 0) {
1093                         dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1094                         return -1;
1095                 }
1096                 if (EN_set(state, CREN, AFCEN) < 0) {
1097                         dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1098                         return -1; /* (0, 0) */
1099                 }
1100                 if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1101                         dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1102                         return -1; /* (1, smrt) = (1, symbolrate) */
1103                 }
1104                 if (CNTM_set(state, TIMINT1, TIMINT2, TIMEXT) < 0) {
1105                         dprintk(verbose, MB86A16_ERROR, 1, "CNTM set error");
1106                         return -1; /* (0, 1, 2) */
1107                 }
1108                 if (S01T_set(state, S1T, S0T) < 0) {
1109                         dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1110                         return -1; /* (0, 0) */
1111                 }
1112                 smrt_info_get(state, state->srate);
1113                 if (smrt_set(state, state->srate) < 0) {
1114                         dprintk(verbose, MB86A16_ERROR, 1, "smrt info get error");
1115                         return -1;
1116                 }
1117
1118                 R = vco_dev_get(state, state->srate);
1119                 if (R == 1)
1120                         fOSC_start = state->frequency;
1121
1122                 else if (R == 0) {
1123                         if (state->frequency % 2 == 0) {
1124                                 fOSC_start = state->frequency;
1125                         } else {
1126                                 fOSC_start = state->frequency + 1;
1127                                 if (fOSC_start > 2150)
1128                                         fOSC_start = state->frequency - 1;
1129                         }
1130                 }
1131                 loop = 1;
1132                 ftemp = fOSC_start * 1000;
1133                 vmax = 0 ;
1134                 while (loop == 1) {
1135                         ftemp = ftemp + swp_ofs;
1136                         vmax++;
1137
1138                         /* Upper bound */
1139                         if (ftemp > 2150000) {
1140                                 loop = 0;
1141                                 vmax--;
1142                         } else {
1143                                 if ((ftemp == 2150000) ||
1144                                     (ftemp - state->frequency * 1000 >= fcp + state->srate / 4))
1145                                         loop = 0;
1146                         }
1147                 }
1148
1149                 loop = 1;
1150                 ftemp = fOSC_start * 1000;
1151                 vmin = 0 ;
1152                 while (loop == 1) {
1153                         ftemp = ftemp - swp_ofs;
1154                         vmin--;
1155
1156                         /* Lower bound */
1157                         if (ftemp < 950000) {
1158                                 loop = 0;
1159                                 vmin++;
1160                         } else {
1161                                 if ((ftemp == 950000) ||
1162                                     (state->frequency * 1000 - ftemp >= fcp + state->srate / 4))
1163                                         loop = 0;
1164                         }
1165                 }
1166
1167                 wait_t = (8000 + state->srate / 2) / state->srate;
1168                 if (wait_t == 0)
1169                         wait_t = 1;
1170
1171                 i = 0;
1172                 j = 0;
1173                 prev_freq_num = 0;
1174                 loop = 1;
1175                 signal = 0;
1176                 vmax_his = 0;
1177                 vmin_his = 0;
1178                 v = 0;
1179
1180                 while (loop == 1) {
1181                         swp_info_get(state, fOSC_start, state->srate,
1182                                      v, R, swp_ofs, &fOSC,
1183                                      &afcex_freq, &AFCEX_L, &AFCEX_H);
1184
1185                         udelay(100);
1186                         if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1187                                 dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1188                                 return -1;
1189                         }
1190                         udelay(100);
1191                         if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1192                                 dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1193                                 return -1;
1194                         }
1195                         if (srst(state) < 0) {
1196                                 dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1197                                 return -1;
1198                         }
1199                         msleep_interruptible(wait_t);
1200
1201                         if (mb86a16_read(state, 0x37, &SIG1) != 2) {
1202                                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1203                                 return -1;
1204                         }
1205                         V[30 + v] = SIG1 ;
1206                         swp_freq = swp_freq_calcuation(state, i, v, V, vmax, vmin,
1207                                                       SIG1MIN, fOSC, afcex_freq,
1208                                                       swp_ofs, &SIG1);  /* changed */
1209
1210                         signal_dupl = 0;
1211                         for (j = 0; j < prev_freq_num; j++) {
1212                                 if ((ABS(prev_swp_freq[j] - swp_freq)) < (swp_ofs * 3 / 2)) {
1213                                         signal_dupl = 1;
1214                                         dprintk(verbose, MB86A16_INFO, 1, "Probably Duplicate Signal, j = %d", j);
1215                                 }
1216                         }
1217                         if ((signal_dupl == 0) && (swp_freq > 0) && (ABS(swp_freq - state->frequency * 1000) < fcp + state->srate / 6)) {
1218                                 dprintk(verbose, MB86A16_DEBUG, 1, "------ Signal detect ------ [swp_freq=[%07d, srate=%05d]]", swp_freq, state->srate);
1219                                 prev_swp_freq[prev_freq_num] = swp_freq;
1220                                 prev_freq_num++;
1221                                 swp_info_get2(state, state->srate, R, swp_freq,
1222                                               &afcex_freq, &fOSC,
1223                                               &AFCEX_L, &AFCEX_H);
1224
1225                                 if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1226                                         dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1227                                         return -1;
1228                                 }
1229                                 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1230                                         dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1231                                         return -1;
1232                                 }
1233                                 signal = signal_det(state, state->srate, &SIG1);
1234                                 if (signal == 1) {
1235                                         dprintk(verbose, MB86A16_ERROR, 1, "***** Signal Found *****");
1236                                         loop = 0;
1237                                 } else {
1238                                         dprintk(verbose, MB86A16_ERROR, 1, "!!!!! No signal !!!!!, try again...");
1239                                         smrt_info_get(state, state->srate);
1240                                         if (smrt_set(state, state->srate) < 0) {
1241                                                 dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1242                                                 return -1;
1243                                         }
1244                                 }
1245                         }
1246                         if (v > vmax)
1247                                 vmax_his = 1 ;
1248                         if (v < vmin)
1249                                 vmin_his = 1 ;
1250                         i++;
1251
1252                         if ((i % 2 == 1) && (vmax_his == 1))
1253                                 i++;
1254                         if ((i % 2 == 0) && (vmin_his == 1))
1255                                 i++;
1256
1257                         if (i % 2 == 1)
1258                                 v = (i + 1) / 2;
1259                         else
1260                                 v = -i / 2;
1261
1262                         if ((vmax_his == 1) && (vmin_his == 1))
1263                                 loop = 0 ;
1264                 }
1265
1266                 if (signal == 1) {
1267                         dprintk(verbose, MB86A16_INFO, 1, " Start Freq Error Check");
1268                         S1T = 7 ;
1269                         S0T = 1 ;
1270                         CREN = 0 ;
1271                         AFCEN = 1 ;
1272                         AFCEXEN = 0 ;
1273
1274                         if (S01T_set(state, S1T, S0T) < 0) {
1275                                 dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1276                                 return -1;
1277                         }
1278                         smrt_info_get(state, state->srate);
1279                         if (smrt_set(state, state->srate) < 0) {
1280                                 dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1281                                 return -1;
1282                         }
1283                         if (EN_set(state, CREN, AFCEN) < 0) {
1284                                 dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1285                                 return -1;
1286                         }
1287                         if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1288                                 dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1289                                 return -1;
1290                         }
1291                         afcex_info_get(state, afcex_freq, &AFCEX_L, &AFCEX_H);
1292                         if (afcofs_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1293                                 dprintk(verbose, MB86A16_ERROR, 1, "AFCOFS data set error");
1294                                 return -1;
1295                         }
1296                         if (srst(state) < 0) {
1297                                 dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1298                                 return -1;
1299                         }
1300                         /* delay 4~200 */
1301                         wait_t = 200000 / state->master_clk + 200000 / state->srate;
1302                         msleep(wait_t);
1303                         afcerr = afcerr_chk(state);
1304                         if (afcerr == -1)
1305                                 return -1;
1306
1307                         swp_freq = fOSC * 1000 + afcerr ;
1308                         AFCEXEN = 1 ;
1309                         if (state->srate >= 1500)
1310                                 smrt_d = state->srate / 3;
1311                         else
1312                                 smrt_d = state->srate / 2;
1313                         smrt_info_get(state, smrt_d);
1314                         if (smrt_set(state, smrt_d) < 0) {
1315                                 dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1316                                 return -1;
1317                         }
1318                         if (AFCEXEN_set(state, AFCEXEN, smrt_d) < 0) {
1319                                 dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1320                                 return -1;
1321                         }
1322                         R = vco_dev_get(state, smrt_d);
1323                         if (DAGC_data_set(state, 2, 0) < 0) {
1324                                 dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1325                                 return -1;
1326                         }
1327                         for (i = 0; i < 3; i++) {
1328                                 temp_freq = swp_freq + (i - 1) * state->srate / 8;
1329                                 swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1330                                 if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1331                                         dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1332                                         return -1;
1333                                 }
1334                                 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1335                                         dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1336                                         return -1;
1337                                 }
1338                                 wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1339                                 msleep(wait_t);
1340                                 dagcm[i] = dagcm_val_get(state);
1341                         }
1342                         if ((dagcm[0] > dagcm[1]) &&
1343                             (dagcm[0] > dagcm[2]) &&
1344                             (dagcm[0] - dagcm[1] > 2 * (dagcm[2] - dagcm[1]))) {
1345
1346                                 temp_freq = swp_freq - 2 * state->srate / 8;
1347                                 swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1348                                 if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1349                                         dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1350                                         return -1;
1351                                 }
1352                                 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1353                                         dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
1354                                         return -1;
1355                                 }
1356                                 wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1357                                 msleep(wait_t);
1358                                 dagcm[3] = dagcm_val_get(state);
1359                                 if (dagcm[3] > dagcm[1])
1360                                         delta_freq = (dagcm[2] - dagcm[0] + dagcm[1] - dagcm[3]) * state->srate / 300;
1361                                 else
1362                                         delta_freq = 0;
1363                         } else if ((dagcm[2] > dagcm[1]) &&
1364                                    (dagcm[2] > dagcm[0]) &&
1365                                    (dagcm[2] - dagcm[1] > 2 * (dagcm[0] - dagcm[1]))) {
1366
1367                                 temp_freq = swp_freq + 2 * state->srate / 8;
1368                                 swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1369                                 if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1370                                         dprintk(verbose, MB86A16_ERROR, 1, "rf val set");
1371                                         return -1;
1372                                 }
1373                                 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1374                                         dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
1375                                         return -1;
1376                                 }
1377                                 wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1378                                 msleep(wait_t);
1379                                 dagcm[3] = dagcm_val_get(state);
1380                                 if (dagcm[3] > dagcm[1])
1381                                         delta_freq = (dagcm[2] - dagcm[0] + dagcm[3] - dagcm[1]) * state->srate / 300;
1382                                 else
1383                                         delta_freq = 0 ;
1384
1385                         } else {
1386                                 delta_freq = 0 ;
1387                         }
1388                         dprintk(verbose, MB86A16_INFO, 1, "SWEEP Frequency = %d", swp_freq);
1389                         swp_freq += delta_freq;
1390                         dprintk(verbose, MB86A16_INFO, 1, "Adjusting .., DELTA Freq = %d, SWEEP Freq=%d", delta_freq, swp_freq);
1391                         if (ABS(state->frequency * 1000 - swp_freq) > 3800) {
1392                                 dprintk(verbose, MB86A16_INFO, 1, "NO  --  SIGNAL !");
1393                         } else {
1394
1395                                 S1T = 0;
1396                                 S0T = 3;
1397                                 CREN = 1;
1398                                 AFCEN = 0;
1399                                 AFCEXEN = 1;
1400
1401                                 if (S01T_set(state, S1T, S0T) < 0) {
1402                                         dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1403                                         return -1;
1404                                 }
1405                                 if (DAGC_data_set(state, 0, 0) < 0) {
1406                                         dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1407                                         return -1;
1408                                 }
1409                                 R = vco_dev_get(state, state->srate);
1410                                 smrt_info_get(state, state->srate);
1411                                 if (smrt_set(state, state->srate) < 0) {
1412                                         dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1413                                         return -1;
1414                                 }
1415                                 if (EN_set(state, CREN, AFCEN) < 0) {
1416                                         dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1417                                         return -1;
1418                                 }
1419                                 if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1420                                         dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1421                                         return -1;
1422                                 }
1423                                 swp_info_get2(state, state->srate, R, swp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1424                                 if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1425                                         dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1426                                         return -1;
1427                                 }
1428                                 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1429                                         dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1430                                         return -1;
1431                                 }
1432                                 if (srst(state) < 0) {
1433                                         dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1434                                         return -1;
1435                                 }
1436                                 wait_t = 7 + (10000 + state->srate / 2) / state->srate;
1437                                 if (wait_t == 0)
1438                                         wait_t = 1;
1439                                 msleep_interruptible(wait_t);
1440                                 if (mb86a16_read(state, 0x37, &SIG1) != 2) {
1441                                         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1442                                         return -EREMOTEIO;
1443                                 }
1444
1445                                 if (SIG1 > 110) {
1446                                         S2T = 4; S4T = 1; S5T = 6; ETH = 4; VIA = 6;
1447                                         wait_t = 7 + (917504 + state->srate / 2) / state->srate;
1448                                 } else if (SIG1 > 105) {
1449                                         S2T = 4; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1450                                         wait_t = 7 + (1048576 + state->srate / 2) / state->srate;
1451                                 } else if (SIG1 > 85) {
1452                                         S2T = 5; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1453                                         wait_t = 7 + (1310720 + state->srate / 2) / state->srate;
1454                                 } else if (SIG1 > 65) {
1455                                         S2T = 6; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1456                                         wait_t = 7 + (1572864 + state->srate / 2) / state->srate;
1457                                 } else {
1458                                         S2T = 7; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1459                                         wait_t = 7 + (2097152 + state->srate / 2) / state->srate;
1460                                 }
1461                                 wait_t *= 2; /* FOS */
1462                                 S2T_set(state, S2T);
1463                                 S45T_set(state, S4T, S5T);
1464                                 Vi_set(state, ETH, VIA);
1465                                 srst(state);
1466                                 msleep_interruptible(wait_t);
1467                                 sync = sync_chk(state, &VIRM);
1468                                 dprintk(verbose, MB86A16_INFO, 1, "-------- Viterbi=[%d] SYNC=[%d] ---------", VIRM, sync);
1469                                 if (VIRM) {
1470                                         if (VIRM == 4) {
1471                                                 /* 5/6 */
1472                                                 if (SIG1 > 110)
1473                                                         wait_t = (786432 + state->srate / 2) / state->srate;
1474                                                 else
1475                                                         wait_t = (1572864 + state->srate / 2) / state->srate;
1476                                                 if (state->srate < 5000)
1477                                                         /* FIXME ! , should be a long wait ! */
1478                                                         msleep_interruptible(wait_t);
1479                                                 else
1480                                                         msleep_interruptible(wait_t);
1481
1482                                                 if (sync_chk(state, &junk) == 0) {
1483                                                         iq_vt_set(state, 1);
1484                                                         FEC_srst(state);
1485                                                 }
1486                                         }
1487                                         /* 1/2, 2/3, 3/4, 7/8 */
1488                                         if (SIG1 > 110)
1489                                                 wait_t = (786432 + state->srate / 2) / state->srate;
1490                                         else
1491                                                 wait_t = (1572864 + state->srate / 2) / state->srate;
1492                                         msleep_interruptible(wait_t);
1493                                         SEQ_set(state, 1);
1494                                 } else {
1495                                         dprintk(verbose, MB86A16_INFO, 1, "NO  -- SYNC");
1496                                         SEQ_set(state, 1);
1497                                         ret = -1;
1498                                 }
1499                         }
1500                 } else {
1501                         dprintk(verbose, MB86A16_INFO, 1, "NO  -- SIGNAL");
1502                         ret = -1;
1503                 }
1504
1505                 sync = sync_chk(state, &junk);
1506                 if (sync) {
1507                         dprintk(verbose, MB86A16_INFO, 1, "******* SYNC *******");
1508                         freqerr_chk(state, state->frequency, state->srate, 1);
1509                         ret = 0;
1510                         break;
1511                 }
1512         }
1513
1514         mb86a16_read(state, 0x15, &agcval);
1515         mb86a16_read(state, 0x26, &cnmval);
1516         dprintk(verbose, MB86A16_INFO, 1, "AGC = %02x CNM = %02x", agcval, cnmval);
1517
1518         return ret;
1519 }
1520
1521 static int mb86a16_send_diseqc_msg(struct dvb_frontend *fe,
1522                                    struct dvb_diseqc_master_cmd *cmd)
1523 {
1524         struct mb86a16_state *state = fe->demodulator_priv;
1525         int i;
1526         u8 regs;
1527
1528         if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
1529                 goto err;
1530         if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
1531                 goto err;
1532         if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
1533                 goto err;
1534
1535         regs = 0x18;
1536
1537         if (cmd->msg_len > 5 || cmd->msg_len < 4)
1538                 return -EINVAL;
1539
1540         for (i = 0; i < cmd->msg_len; i++) {
1541                 if (mb86a16_write(state, regs, cmd->msg[i]) < 0)
1542                         goto err;
1543
1544                 regs++;
1545         }
1546         i += 0x90;
1547
1548         msleep_interruptible(10);
1549
1550         if (mb86a16_write(state, MB86A16_DCC1, i) < 0)
1551                 goto err;
1552         if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1553                 goto err;
1554
1555         return 0;
1556
1557 err:
1558         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1559         return -EREMOTEIO;
1560 }
1561
1562 static int mb86a16_send_diseqc_burst(struct dvb_frontend *fe, fe_sec_mini_cmd_t burst)
1563 {
1564         struct mb86a16_state *state = fe->demodulator_priv;
1565
1566         switch (burst) {
1567         case SEC_MINI_A:
1568                 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1569                                                        MB86A16_DCC1_TBEN  |
1570                                                        MB86A16_DCC1_TBO) < 0)
1571                         goto err;
1572                 if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1573                         goto err;
1574                 break;
1575         case SEC_MINI_B:
1576                 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1577                                                        MB86A16_DCC1_TBEN) < 0)
1578                         goto err;
1579                 if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1580                         goto err;
1581                 break;
1582         }
1583
1584         return 0;
1585 err:
1586         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1587         return -EREMOTEIO;
1588 }
1589
1590 static int mb86a16_set_tone(struct dvb_frontend *fe, fe_sec_tone_mode_t tone)
1591 {
1592         struct mb86a16_state *state = fe->demodulator_priv;
1593
1594         switch (tone) {
1595         case SEC_TONE_ON:
1596                 if (mb86a16_write(state, MB86A16_TONEOUT2, 0x00) < 0)
1597                         goto err;
1598                 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1599                                                        MB86A16_DCC1_CTOE) < 0)
1600
1601                         goto err;
1602                 if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1603                         goto err;
1604                 break;
1605         case SEC_TONE_OFF:
1606                 if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
1607                         goto err;
1608                 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
1609                         goto err;
1610                 if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
1611                         goto err;
1612                 break;
1613         default:
1614                 return -EINVAL;
1615         }
1616         return 0;
1617
1618 err:
1619         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1620         return -EREMOTEIO;
1621 }
1622
1623 static enum dvbfe_search mb86a16_search(struct dvb_frontend *fe,
1624                                         struct dvb_frontend_parameters *p)
1625 {
1626         struct mb86a16_state *state = fe->demodulator_priv;
1627
1628         state->frequency = p->frequency / 1000;
1629         state->srate = p->u.qpsk.symbol_rate / 1000;
1630
1631         if (!mb86a16_set_fe(state)) {
1632                 dprintk(verbose, MB86A16_ERROR, 1, "Succesfully acquired LOCK");
1633                 return DVBFE_ALGO_SEARCH_SUCCESS;
1634         }
1635
1636         dprintk(verbose, MB86A16_ERROR, 1, "Lock acquisition failed!");
1637         return DVBFE_ALGO_SEARCH_FAILED;
1638 }
1639
1640 static void mb86a16_release(struct dvb_frontend *fe)
1641 {
1642         struct mb86a16_state *state = fe->demodulator_priv;
1643         kfree(state);
1644 }
1645
1646 static int mb86a16_init(struct dvb_frontend *fe)
1647 {
1648         return 0;
1649 }
1650
1651 static int mb86a16_sleep(struct dvb_frontend *fe)
1652 {
1653         return 0;
1654 }
1655
1656 static int mb86a16_read_ber(struct dvb_frontend *fe, u32 *ber)
1657 {
1658         u8 ber_mon, ber_tab, ber_lsb, ber_mid, ber_msb, ber_tim, ber_rst;
1659         u32 timer;
1660
1661         struct mb86a16_state *state = fe->demodulator_priv;
1662
1663         *ber = 0;
1664         if (mb86a16_read(state, MB86A16_BERMON, &ber_mon) != 2)
1665                 goto err;
1666         if (mb86a16_read(state, MB86A16_BERTAB, &ber_tab) != 2)
1667                 goto err;
1668         if (mb86a16_read(state, MB86A16_BERLSB, &ber_lsb) != 2)
1669                 goto err;
1670         if (mb86a16_read(state, MB86A16_BERMID, &ber_mid) != 2)
1671                 goto err;
1672         if (mb86a16_read(state, MB86A16_BERMSB, &ber_msb) != 2)
1673                 goto err;
1674         /* BER monitor invalid when BER_EN = 0  */
1675         if (ber_mon & 0x04) {
1676                 /* coarse, fast calculation     */
1677                 *ber = ber_tab & 0x1f;
1678                 dprintk(verbose, MB86A16_DEBUG, 1, "BER coarse=[0x%02x]", *ber);
1679                 if (ber_mon & 0x01) {
1680                         /*
1681                          * BER_SEL = 1, The monitored BER is the estimated
1682                          * value with a Reed-Solomon decoder error amount at
1683                          * the deinterleaver output.
1684                          * monitored BER is expressed as a 20 bit output in total
1685                          */
1686                         ber_rst = ber_mon >> 3;
1687                         *ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb;
1688                         if (ber_rst == 0)
1689                                 timer =  12500000;
1690                         if (ber_rst == 1)
1691                                 timer =  25000000;
1692                         if (ber_rst == 2)
1693                                 timer =  50000000;
1694                         if (ber_rst == 3)
1695                                 timer = 100000000;
1696
1697                         *ber /= timer;
1698                         dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber);
1699                 } else {
1700                         /*
1701                          * BER_SEL = 0, The monitored BER is the estimated
1702                          * value with a Viterbi decoder error amount at the
1703                          * QPSK demodulator output.
1704                          * monitored BER is expressed as a 24 bit output in total
1705                          */
1706                         ber_tim = ber_mon >> 1;
1707                         *ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb;
1708                         if (ber_tim == 0)
1709                                 timer = 16;
1710                         if (ber_tim == 1)
1711                                 timer = 24;
1712
1713                         *ber /= 2 ^ timer;
1714                         dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber);
1715                 }
1716         }
1717         return 0;
1718 err:
1719         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1720         return -EREMOTEIO;
1721 }
1722
1723 static int mb86a16_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
1724 {
1725         u8 agcm = 0;
1726         struct mb86a16_state *state = fe->demodulator_priv;
1727
1728         *strength = 0;
1729         if (mb86a16_read(state, MB86A16_AGCM, &agcm) != 2) {
1730                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1731                 return -EREMOTEIO;
1732         }
1733
1734         *strength = ((0xff - agcm) * 100) / 256;
1735         dprintk(verbose, MB86A16_DEBUG, 1, "Signal strength=[%d %%]", (u8) *strength);
1736         *strength = (0xffff - 0xff) + agcm;
1737
1738         return 0;
1739 }
1740
1741 struct cnr {
1742         u8 cn_reg;
1743         u8 cn_val;
1744 };
1745
1746 static const struct cnr cnr_tab[] = {
1747         {  35,  2 },
1748         {  40,  3 },
1749         {  50,  4 },
1750         {  60,  5 },
1751         {  70,  6 },
1752         {  80,  7 },
1753         {  92,  8 },
1754         { 103,  9 },
1755         { 115, 10 },
1756         { 138, 12 },
1757         { 162, 15 },
1758         { 180, 18 },
1759         { 185, 19 },
1760         { 189, 20 },
1761         { 195, 22 },
1762         { 199, 24 },
1763         { 201, 25 },
1764         { 202, 26 },
1765         { 203, 27 },
1766         { 205, 28 },
1767         { 208, 30 }
1768 };
1769
1770 static int mb86a16_read_snr(struct dvb_frontend *fe, u16 *snr)
1771 {
1772         struct mb86a16_state *state = fe->demodulator_priv;
1773         int i = 0;
1774         int low_tide = 2, high_tide = 30, q_level;
1775         u8  cn;
1776
1777         *snr = 0;
1778         if (mb86a16_read(state, 0x26, &cn) != 2) {
1779                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1780                 return -EREMOTEIO;
1781         }
1782
1783         for (i = 0; i < ARRAY_SIZE(cnr_tab); i++) {
1784                 if (cn < cnr_tab[i].cn_reg) {
1785                         *snr = cnr_tab[i].cn_val;
1786                         break;
1787                 }
1788         }
1789         q_level = (*snr * 100) / (high_tide - low_tide);
1790         dprintk(verbose, MB86A16_ERROR, 1, "SNR (Quality) = [%d dB], Level=%d %%", *snr, q_level);
1791         *snr = (0xffff - 0xff) + *snr;
1792
1793         return 0;
1794 }
1795
1796 static int mb86a16_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
1797 {
1798         u8 dist;
1799         struct mb86a16_state *state = fe->demodulator_priv;
1800
1801         if (mb86a16_read(state, MB86A16_DISTMON, &dist) != 2) {
1802                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1803                 return -EREMOTEIO;
1804         }
1805         *ucblocks = dist;
1806
1807         return 0;
1808 }
1809
1810 static enum dvbfe_algo mb86a16_frontend_algo(struct dvb_frontend *fe)
1811 {
1812         return DVBFE_ALGO_CUSTOM;
1813 }
1814
1815 static struct dvb_frontend_ops mb86a16_ops = {
1816         .info = {
1817                 .name                   = "Fujitsu MB86A16 DVB-S",
1818                 .type                   = FE_QPSK,
1819                 .frequency_min          = 950000,
1820                 .frequency_max          = 2150000,
1821                 .frequency_stepsize     = 3000,
1822                 .frequency_tolerance    = 0,
1823                 .symbol_rate_min        = 1000000,
1824                 .symbol_rate_max        = 45000000,
1825                 .symbol_rate_tolerance  = 500,
1826                 .caps                   = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
1827                                           FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 |
1828                                           FE_CAN_FEC_7_8 | FE_CAN_QPSK    |
1829                                           FE_CAN_FEC_AUTO
1830         },
1831         .release                        = mb86a16_release,
1832
1833         .get_frontend_algo              = mb86a16_frontend_algo,
1834         .search                         = mb86a16_search,
1835         .read_status                    = mb86a16_read_status,
1836         .init                           = mb86a16_init,
1837         .sleep                          = mb86a16_sleep,
1838         .read_status                    = mb86a16_read_status,
1839
1840         .read_ber                       = mb86a16_read_ber,
1841         .read_signal_strength           = mb86a16_read_signal_strength,
1842         .read_snr                       = mb86a16_read_snr,
1843         .read_ucblocks                  = mb86a16_read_ucblocks,
1844
1845         .diseqc_send_master_cmd         = mb86a16_send_diseqc_msg,
1846         .diseqc_send_burst              = mb86a16_send_diseqc_burst,
1847         .set_tone                       = mb86a16_set_tone,
1848 };
1849
1850 struct dvb_frontend *mb86a16_attach(const struct mb86a16_config *config,
1851                                     struct i2c_adapter *i2c_adap)
1852 {
1853         u8 dev_id = 0;
1854         struct mb86a16_state *state = NULL;
1855
1856         state = kmalloc(sizeof(struct mb86a16_state), GFP_KERNEL);
1857         if (state == NULL)
1858                 goto error;
1859
1860         state->config = config;
1861         state->i2c_adap = i2c_adap;
1862
1863         mb86a16_read(state, 0x7f, &dev_id);
1864         if (dev_id != 0xfe)
1865                 goto error;
1866
1867         memcpy(&state->frontend.ops, &mb86a16_ops, sizeof(struct dvb_frontend_ops));
1868         state->frontend.demodulator_priv = state;
1869         state->frontend.ops.set_voltage = state->config->set_voltage;
1870
1871         return &state->frontend;
1872 error:
1873         kfree(state);
1874         return NULL;
1875 }
1876 EXPORT_SYMBOL(mb86a16_attach);
1877 MODULE_LICENSE("GPL");
1878 MODULE_AUTHOR("Manu Abraham");