]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/md/raid0.c
md: move lots of #include lines out of .h files and into .c
[net-next-2.6.git] / drivers / md / raid0.c
1 /*
2    raid0.c : Multiple Devices driver for Linux
3              Copyright (C) 1994-96 Marc ZYNGIER
4              <zyngier@ufr-info-p7.ibp.fr> or
5              <maz@gloups.fdn.fr>
6              Copyright (C) 1999, 2000 Ingo Molnar, Red Hat
7
8
9    RAID-0 management functions.
10
11    This program is free software; you can redistribute it and/or modify
12    it under the terms of the GNU General Public License as published by
13    the Free Software Foundation; either version 2, or (at your option)
14    any later version.
15    
16    You should have received a copy of the GNU General Public License
17    (for example /usr/src/linux/COPYING); if not, write to the Free
18    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  
19 */
20
21 #include <linux/blkdev.h>
22 #include <linux/raid/md_k.h>
23 #include <linux/seq_file.h>
24 #include "raid0.h"
25
26 static void raid0_unplug(struct request_queue *q)
27 {
28         mddev_t *mddev = q->queuedata;
29         raid0_conf_t *conf = mddev_to_conf(mddev);
30         mdk_rdev_t **devlist = conf->strip_zone[0].dev;
31         int i;
32
33         for (i=0; i<mddev->raid_disks; i++) {
34                 struct request_queue *r_queue = bdev_get_queue(devlist[i]->bdev);
35
36                 blk_unplug(r_queue);
37         }
38 }
39
40 static int raid0_congested(void *data, int bits)
41 {
42         mddev_t *mddev = data;
43         raid0_conf_t *conf = mddev_to_conf(mddev);
44         mdk_rdev_t **devlist = conf->strip_zone[0].dev;
45         int i, ret = 0;
46
47         for (i = 0; i < mddev->raid_disks && !ret ; i++) {
48                 struct request_queue *q = bdev_get_queue(devlist[i]->bdev);
49
50                 ret |= bdi_congested(&q->backing_dev_info, bits);
51         }
52         return ret;
53 }
54
55
56 static int create_strip_zones (mddev_t *mddev)
57 {
58         int i, c, j;
59         sector_t current_start, curr_zone_start;
60         sector_t min_spacing;
61         raid0_conf_t *conf = mddev_to_conf(mddev);
62         mdk_rdev_t *smallest, *rdev1, *rdev2, *rdev;
63         struct strip_zone *zone;
64         int cnt;
65         char b[BDEVNAME_SIZE];
66  
67         /*
68          * The number of 'same size groups'
69          */
70         conf->nr_strip_zones = 0;
71  
72         list_for_each_entry(rdev1, &mddev->disks, same_set) {
73                 printk(KERN_INFO "raid0: looking at %s\n",
74                         bdevname(rdev1->bdev,b));
75                 c = 0;
76                 list_for_each_entry(rdev2, &mddev->disks, same_set) {
77                         printk(KERN_INFO "raid0:   comparing %s(%llu)",
78                                bdevname(rdev1->bdev,b),
79                                (unsigned long long)rdev1->size);
80                         printk(KERN_INFO " with %s(%llu)\n",
81                                bdevname(rdev2->bdev,b),
82                                (unsigned long long)rdev2->size);
83                         if (rdev2 == rdev1) {
84                                 printk(KERN_INFO "raid0:   END\n");
85                                 break;
86                         }
87                         if (rdev2->size == rdev1->size)
88                         {
89                                 /*
90                                  * Not unique, don't count it as a new
91                                  * group
92                                  */
93                                 printk(KERN_INFO "raid0:   EQUAL\n");
94                                 c = 1;
95                                 break;
96                         }
97                         printk(KERN_INFO "raid0:   NOT EQUAL\n");
98                 }
99                 if (!c) {
100                         printk(KERN_INFO "raid0:   ==> UNIQUE\n");
101                         conf->nr_strip_zones++;
102                         printk(KERN_INFO "raid0: %d zones\n",
103                                 conf->nr_strip_zones);
104                 }
105         }
106         printk(KERN_INFO "raid0: FINAL %d zones\n", conf->nr_strip_zones);
107
108         conf->strip_zone = kzalloc(sizeof(struct strip_zone)*
109                                 conf->nr_strip_zones, GFP_KERNEL);
110         if (!conf->strip_zone)
111                 return 1;
112         conf->devlist = kzalloc(sizeof(mdk_rdev_t*)*
113                                 conf->nr_strip_zones*mddev->raid_disks,
114                                 GFP_KERNEL);
115         if (!conf->devlist)
116                 return 1;
117
118         /* The first zone must contain all devices, so here we check that
119          * there is a proper alignment of slots to devices and find them all
120          */
121         zone = &conf->strip_zone[0];
122         cnt = 0;
123         smallest = NULL;
124         zone->dev = conf->devlist;
125         list_for_each_entry(rdev1, &mddev->disks, same_set) {
126                 int j = rdev1->raid_disk;
127
128                 if (j < 0 || j >= mddev->raid_disks) {
129                         printk(KERN_ERR "raid0: bad disk number %d - "
130                                 "aborting!\n", j);
131                         goto abort;
132                 }
133                 if (zone->dev[j]) {
134                         printk(KERN_ERR "raid0: multiple devices for %d - "
135                                 "aborting!\n", j);
136                         goto abort;
137                 }
138                 zone->dev[j] = rdev1;
139
140                 blk_queue_stack_limits(mddev->queue,
141                                        rdev1->bdev->bd_disk->queue);
142                 /* as we don't honour merge_bvec_fn, we must never risk
143                  * violating it, so limit ->max_sector to one PAGE, as
144                  * a one page request is never in violation.
145                  */
146
147                 if (rdev1->bdev->bd_disk->queue->merge_bvec_fn &&
148                     mddev->queue->max_sectors > (PAGE_SIZE>>9))
149                         blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
150
151                 if (!smallest || (rdev1->size <smallest->size))
152                         smallest = rdev1;
153                 cnt++;
154         }
155         if (cnt != mddev->raid_disks) {
156                 printk(KERN_ERR "raid0: too few disks (%d of %d) - "
157                         "aborting!\n", cnt, mddev->raid_disks);
158                 goto abort;
159         }
160         zone->nb_dev = cnt;
161         zone->sectors = smallest->size * cnt * 2;
162         zone->zone_start = 0;
163
164         current_start = smallest->size * 2;
165         curr_zone_start = zone->sectors;
166
167         /* now do the other zones */
168         for (i = 1; i < conf->nr_strip_zones; i++)
169         {
170                 zone = conf->strip_zone + i;
171                 zone->dev = conf->strip_zone[i-1].dev + mddev->raid_disks;
172
173                 printk(KERN_INFO "raid0: zone %d\n", i);
174                 zone->dev_start = current_start;
175                 smallest = NULL;
176                 c = 0;
177
178                 for (j=0; j<cnt; j++) {
179                         char b[BDEVNAME_SIZE];
180                         rdev = conf->strip_zone[0].dev[j];
181                         printk(KERN_INFO "raid0: checking %s ...",
182                                 bdevname(rdev->bdev, b));
183                         if (rdev->size > current_start / 2) {
184                                 printk(KERN_INFO " contained as device %d\n",
185                                         c);
186                                 zone->dev[c] = rdev;
187                                 c++;
188                                 if (!smallest || (rdev->size <smallest->size)) {
189                                         smallest = rdev;
190                                         printk(KERN_INFO "  (%llu) is smallest!.\n",
191                                                 (unsigned long long)rdev->size);
192                                 }
193                         } else
194                                 printk(KERN_INFO " nope.\n");
195                 }
196
197                 zone->nb_dev = c;
198                 zone->sectors = (smallest->size * 2 - current_start) * c;
199                 printk(KERN_INFO "raid0: zone->nb_dev: %d, sectors: %llu\n",
200                         zone->nb_dev, (unsigned long long)zone->sectors);
201
202                 zone->zone_start = curr_zone_start;
203                 curr_zone_start += zone->sectors;
204
205                 current_start = smallest->size * 2;
206                 printk(KERN_INFO "raid0: current zone start: %llu\n",
207                         (unsigned long long)current_start);
208         }
209
210         /* Now find appropriate hash spacing.
211          * We want a number which causes most hash entries to cover
212          * at most two strips, but the hash table must be at most
213          * 1 PAGE.  We choose the smallest strip, or contiguous collection
214          * of strips, that has big enough size.  We never consider the last
215          * strip though as it's size has no bearing on the efficacy of the hash
216          * table.
217          */
218         conf->spacing = curr_zone_start;
219         min_spacing = curr_zone_start;
220         sector_div(min_spacing, PAGE_SIZE/sizeof(struct strip_zone*));
221         for (i=0; i < conf->nr_strip_zones-1; i++) {
222                 sector_t s = 0;
223                 for (j = i; j < conf->nr_strip_zones - 1 &&
224                                 s < min_spacing; j++)
225                         s += conf->strip_zone[j].sectors;
226                 if (s >= min_spacing && s < conf->spacing)
227                         conf->spacing = s;
228         }
229
230         mddev->queue->unplug_fn = raid0_unplug;
231
232         mddev->queue->backing_dev_info.congested_fn = raid0_congested;
233         mddev->queue->backing_dev_info.congested_data = mddev;
234
235         printk(KERN_INFO "raid0: done.\n");
236         return 0;
237  abort:
238         return 1;
239 }
240
241 /**
242  *      raid0_mergeable_bvec -- tell bio layer if a two requests can be merged
243  *      @q: request queue
244  *      @bvm: properties of new bio
245  *      @biovec: the request that could be merged to it.
246  *
247  *      Return amount of bytes we can accept at this offset
248  */
249 static int raid0_mergeable_bvec(struct request_queue *q,
250                                 struct bvec_merge_data *bvm,
251                                 struct bio_vec *biovec)
252 {
253         mddev_t *mddev = q->queuedata;
254         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
255         int max;
256         unsigned int chunk_sectors = mddev->chunk_size >> 9;
257         unsigned int bio_sectors = bvm->bi_size >> 9;
258
259         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
260         if (max < 0) max = 0; /* bio_add cannot handle a negative return */
261         if (max <= biovec->bv_len && bio_sectors == 0)
262                 return biovec->bv_len;
263         else 
264                 return max;
265 }
266
267 static int raid0_run (mddev_t *mddev)
268 {
269         unsigned  cur=0, i=0, nb_zone;
270         s64 sectors;
271         raid0_conf_t *conf;
272         mdk_rdev_t *rdev;
273
274         if (mddev->chunk_size == 0) {
275                 printk(KERN_ERR "md/raid0: non-zero chunk size required.\n");
276                 return -EINVAL;
277         }
278         printk(KERN_INFO "%s: setting max_sectors to %d, segment boundary to %d\n",
279                mdname(mddev),
280                mddev->chunk_size >> 9,
281                (mddev->chunk_size>>1)-1);
282         blk_queue_max_sectors(mddev->queue, mddev->chunk_size >> 9);
283         blk_queue_segment_boundary(mddev->queue, (mddev->chunk_size>>1) - 1);
284         mddev->queue->queue_lock = &mddev->queue->__queue_lock;
285
286         conf = kmalloc(sizeof (raid0_conf_t), GFP_KERNEL);
287         if (!conf)
288                 goto out;
289         mddev->private = (void *)conf;
290  
291         conf->strip_zone = NULL;
292         conf->devlist = NULL;
293         if (create_strip_zones (mddev)) 
294                 goto out_free_conf;
295
296         /* calculate array device size */
297         mddev->array_sectors = 0;
298         list_for_each_entry(rdev, &mddev->disks, same_set)
299                 mddev->array_sectors += rdev->size * 2;
300
301         printk(KERN_INFO "raid0 : md_size is %llu sectors.\n",
302                 (unsigned long long)mddev->array_sectors);
303         printk(KERN_INFO "raid0 : conf->spacing is %llu sectors.\n",
304                 (unsigned long long)conf->spacing);
305         {
306                 sector_t s = mddev->array_sectors;
307                 sector_t space = conf->spacing;
308                 int round;
309                 conf->sector_shift = 0;
310                 if (sizeof(sector_t) > sizeof(u32)) {
311                         /*shift down space and s so that sector_div will work */
312                         while (space > (sector_t) (~(u32)0)) {
313                                 s >>= 1;
314                                 space >>= 1;
315                                 s += 1; /* force round-up */
316                                 conf->sector_shift++;
317                         }
318                 }
319                 round = sector_div(s, (u32)space) ? 1 : 0;
320                 nb_zone = s + round;
321         }
322         printk(KERN_INFO "raid0 : nb_zone is %d.\n", nb_zone);
323
324         printk(KERN_INFO "raid0 : Allocating %zu bytes for hash.\n",
325                                 nb_zone*sizeof(struct strip_zone*));
326         conf->hash_table = kmalloc (sizeof (struct strip_zone *)*nb_zone, GFP_KERNEL);
327         if (!conf->hash_table)
328                 goto out_free_conf;
329         sectors = conf->strip_zone[cur].sectors;
330
331         conf->hash_table[0] = conf->strip_zone + cur;
332         for (i=1; i< nb_zone; i++) {
333                 while (sectors <= conf->spacing) {
334                         cur++;
335                         sectors += conf->strip_zone[cur].sectors;
336                 }
337                 sectors -= conf->spacing;
338                 conf->hash_table[i] = conf->strip_zone + cur;
339         }
340         if (conf->sector_shift) {
341                 conf->spacing >>= conf->sector_shift;
342                 /* round spacing up so when we divide by it, we
343                  * err on the side of too-low, which is safest
344                  */
345                 conf->spacing++;
346         }
347
348         /* calculate the max read-ahead size.
349          * For read-ahead of large files to be effective, we need to
350          * readahead at least twice a whole stripe. i.e. number of devices
351          * multiplied by chunk size times 2.
352          * If an individual device has an ra_pages greater than the
353          * chunk size, then we will not drive that device as hard as it
354          * wants.  We consider this a configuration error: a larger
355          * chunksize should be used in that case.
356          */
357         {
358                 int stripe = mddev->raid_disks * mddev->chunk_size / PAGE_SIZE;
359                 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
360                         mddev->queue->backing_dev_info.ra_pages = 2* stripe;
361         }
362
363
364         blk_queue_merge_bvec(mddev->queue, raid0_mergeable_bvec);
365         return 0;
366
367 out_free_conf:
368         kfree(conf->strip_zone);
369         kfree(conf->devlist);
370         kfree(conf);
371         mddev->private = NULL;
372 out:
373         return -ENOMEM;
374 }
375
376 static int raid0_stop (mddev_t *mddev)
377 {
378         raid0_conf_t *conf = mddev_to_conf(mddev);
379
380         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
381         kfree(conf->hash_table);
382         conf->hash_table = NULL;
383         kfree(conf->strip_zone);
384         conf->strip_zone = NULL;
385         kfree(conf);
386         mddev->private = NULL;
387
388         return 0;
389 }
390
391 static int raid0_make_request (struct request_queue *q, struct bio *bio)
392 {
393         mddev_t *mddev = q->queuedata;
394         unsigned int sect_in_chunk, chunksect_bits, chunk_sects;
395         raid0_conf_t *conf = mddev_to_conf(mddev);
396         struct strip_zone *zone;
397         mdk_rdev_t *tmp_dev;
398         sector_t chunk;
399         sector_t sector, rsect;
400         const int rw = bio_data_dir(bio);
401         int cpu;
402
403         if (unlikely(bio_barrier(bio))) {
404                 bio_endio(bio, -EOPNOTSUPP);
405                 return 0;
406         }
407
408         cpu = part_stat_lock();
409         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
410         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
411                       bio_sectors(bio));
412         part_stat_unlock();
413
414         chunk_sects = mddev->chunk_size >> 9;
415         chunksect_bits = ffz(~chunk_sects);
416         sector = bio->bi_sector;
417
418         if (unlikely(chunk_sects < (bio->bi_sector & (chunk_sects - 1)) + (bio->bi_size >> 9))) {
419                 struct bio_pair *bp;
420                 /* Sanity check -- queue functions should prevent this happening */
421                 if (bio->bi_vcnt != 1 ||
422                     bio->bi_idx != 0)
423                         goto bad_map;
424                 /* This is a one page bio that upper layers
425                  * refuse to split for us, so we need to split it.
426                  */
427                 bp = bio_split(bio, chunk_sects - (bio->bi_sector & (chunk_sects - 1)));
428                 if (raid0_make_request(q, &bp->bio1))
429                         generic_make_request(&bp->bio1);
430                 if (raid0_make_request(q, &bp->bio2))
431                         generic_make_request(&bp->bio2);
432
433                 bio_pair_release(bp);
434                 return 0;
435         }
436  
437
438         {
439                 sector_t x = sector >> conf->sector_shift;
440                 sector_div(x, (u32)conf->spacing);
441                 zone = conf->hash_table[x];
442         }
443
444         while (sector >= zone->zone_start + zone->sectors)
445                 zone++;
446
447         sect_in_chunk = bio->bi_sector & (chunk_sects - 1);
448
449
450         {
451                 sector_t x = (sector - zone->zone_start) >> chunksect_bits;
452
453                 sector_div(x, zone->nb_dev);
454                 chunk = x;
455
456                 x = sector >> chunksect_bits;
457                 tmp_dev = zone->dev[sector_div(x, zone->nb_dev)];
458         }
459         rsect = (chunk << chunksect_bits) + zone->dev_start + sect_in_chunk;
460  
461         bio->bi_bdev = tmp_dev->bdev;
462         bio->bi_sector = rsect + tmp_dev->data_offset;
463
464         /*
465          * Let the main block layer submit the IO and resolve recursion:
466          */
467         return 1;
468
469 bad_map:
470         printk("raid0_make_request bug: can't convert block across chunks"
471                 " or bigger than %dk %llu %d\n", chunk_sects / 2,
472                 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
473
474         bio_io_error(bio);
475         return 0;
476 }
477
478 static void raid0_status (struct seq_file *seq, mddev_t *mddev)
479 {
480 #undef MD_DEBUG
481 #ifdef MD_DEBUG
482         int j, k, h;
483         char b[BDEVNAME_SIZE];
484         raid0_conf_t *conf = mddev_to_conf(mddev);
485
486         h = 0;
487         for (j = 0; j < conf->nr_strip_zones; j++) {
488                 seq_printf(seq, "      z%d", j);
489                 if (conf->hash_table[h] == conf->strip_zone+j)
490                         seq_printf(seq, "(h%d)", h++);
491                 seq_printf(seq, "=[");
492                 for (k = 0; k < conf->strip_zone[j].nb_dev; k++)
493                         seq_printf(seq, "%s/", bdevname(
494                                 conf->strip_zone[j].dev[k]->bdev,b));
495
496                 seq_printf(seq, "] zs=%d ds=%d s=%d\n",
497                                 conf->strip_zone[j].zone_start,
498                                 conf->strip_zone[j].dev_start,
499                                 conf->strip_zone[j].sectors);
500         }
501 #endif
502         seq_printf(seq, " %dk chunks", mddev->chunk_size/1024);
503         return;
504 }
505
506 static struct mdk_personality raid0_personality=
507 {
508         .name           = "raid0",
509         .level          = 0,
510         .owner          = THIS_MODULE,
511         .make_request   = raid0_make_request,
512         .run            = raid0_run,
513         .stop           = raid0_stop,
514         .status         = raid0_status,
515 };
516
517 static int __init raid0_init (void)
518 {
519         return register_md_personality (&raid0_personality);
520 }
521
522 static void raid0_exit (void)
523 {
524         unregister_md_personality (&raid0_personality);
525 }
526
527 module_init(raid0_init);
528 module_exit(raid0_exit);
529 MODULE_LICENSE("GPL");
530 MODULE_ALIAS("md-personality-2"); /* RAID0 */
531 MODULE_ALIAS("md-raid0");
532 MODULE_ALIAS("md-level-0");