]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/ide/ide-io.c
remove asm/bitops.h includes
[net-next-2.6.git] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58                              int uptodate, unsigned int nr_bytes)
59 {
60         int ret = 1;
61
62         /*
63          * if failfast is set on a request, override number of sectors and
64          * complete the whole request right now
65          */
66         if (blk_noretry_request(rq) && end_io_error(uptodate))
67                 nr_bytes = rq->hard_nr_sectors << 9;
68
69         if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70                 rq->errors = -EIO;
71
72         /*
73          * decide whether to reenable DMA -- 3 is a random magic for now,
74          * if we DMA timeout more than 3 times, just stay in PIO
75          */
76         if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77                 drive->state = 0;
78                 HWGROUP(drive)->hwif->ide_dma_on(drive);
79         }
80
81         if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
82                 add_disk_randomness(rq->rq_disk);
83                 if (!list_empty(&rq->queuelist))
84                         blkdev_dequeue_request(rq);
85                 HWGROUP(drive)->rq = NULL;
86                 end_that_request_last(rq, uptodate);
87                 ret = 0;
88         }
89
90         return ret;
91 }
92
93 /**
94  *      ide_end_request         -       complete an IDE I/O
95  *      @drive: IDE device for the I/O
96  *      @uptodate:
97  *      @nr_sectors: number of sectors completed
98  *
99  *      This is our end_request wrapper function. We complete the I/O
100  *      update random number input and dequeue the request, which if
101  *      it was tagged may be out of order.
102  */
103
104 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
105 {
106         unsigned int nr_bytes = nr_sectors << 9;
107         struct request *rq;
108         unsigned long flags;
109         int ret = 1;
110
111         /*
112          * room for locking improvements here, the calls below don't
113          * need the queue lock held at all
114          */
115         spin_lock_irqsave(&ide_lock, flags);
116         rq = HWGROUP(drive)->rq;
117
118         if (!nr_bytes) {
119                 if (blk_pc_request(rq))
120                         nr_bytes = rq->data_len;
121                 else
122                         nr_bytes = rq->hard_cur_sectors << 9;
123         }
124
125         ret = __ide_end_request(drive, rq, uptodate, nr_bytes);
126
127         spin_unlock_irqrestore(&ide_lock, flags);
128         return ret;
129 }
130 EXPORT_SYMBOL(ide_end_request);
131
132 /*
133  * Power Management state machine. This one is rather trivial for now,
134  * we should probably add more, like switching back to PIO on suspend
135  * to help some BIOSes, re-do the door locking on resume, etc...
136  */
137
138 enum {
139         ide_pm_flush_cache      = ide_pm_state_start_suspend,
140         idedisk_pm_standby,
141
142         idedisk_pm_restore_pio  = ide_pm_state_start_resume,
143         idedisk_pm_idle,
144         ide_pm_restore_dma,
145 };
146
147 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
148 {
149         struct request_pm_state *pm = rq->data;
150
151         if (drive->media != ide_disk)
152                 return;
153
154         switch (pm->pm_step) {
155         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) complete */
156                 if (pm->pm_state == PM_EVENT_FREEZE)
157                         pm->pm_step = ide_pm_state_completed;
158                 else
159                         pm->pm_step = idedisk_pm_standby;
160                 break;
161         case idedisk_pm_standby:        /* Suspend step 2 (standby) complete */
162                 pm->pm_step = ide_pm_state_completed;
163                 break;
164         case idedisk_pm_restore_pio:    /* Resume step 1 complete */
165                 pm->pm_step = idedisk_pm_idle;
166                 break;
167         case idedisk_pm_idle:           /* Resume step 2 (idle) complete */
168                 pm->pm_step = ide_pm_restore_dma;
169                 break;
170         }
171 }
172
173 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
174 {
175         struct request_pm_state *pm = rq->data;
176         ide_task_t *args = rq->special;
177
178         memset(args, 0, sizeof(*args));
179
180         switch (pm->pm_step) {
181         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) */
182                 if (drive->media != ide_disk)
183                         break;
184                 /* Not supported? Switch to next step now. */
185                 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
186                         ide_complete_power_step(drive, rq, 0, 0);
187                         return ide_stopped;
188                 }
189                 if (ide_id_has_flush_cache_ext(drive->id))
190                         args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT;
191                 else
192                         args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE;
193                 args->command_type = IDE_DRIVE_TASK_NO_DATA;
194                 args->handler      = &task_no_data_intr;
195                 return do_rw_taskfile(drive, args);
196
197         case idedisk_pm_standby:        /* Suspend step 2 (standby) */
198                 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1;
199                 args->command_type = IDE_DRIVE_TASK_NO_DATA;
200                 args->handler      = &task_no_data_intr;
201                 return do_rw_taskfile(drive, args);
202
203         case idedisk_pm_restore_pio:    /* Resume step 1 (restore PIO) */
204                 ide_set_max_pio(drive);
205                 /*
206                  * skip idedisk_pm_idle for ATAPI devices
207                  */
208                 if (drive->media != ide_disk)
209                         pm->pm_step = ide_pm_restore_dma;
210                 else
211                         ide_complete_power_step(drive, rq, 0, 0);
212                 return ide_stopped;
213
214         case idedisk_pm_idle:           /* Resume step 2 (idle) */
215                 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE;
216                 args->command_type = IDE_DRIVE_TASK_NO_DATA;
217                 args->handler = task_no_data_intr;
218                 return do_rw_taskfile(drive, args);
219
220         case ide_pm_restore_dma:        /* Resume step 3 (restore DMA) */
221                 /*
222                  * Right now, all we do is call ide_set_dma(drive),
223                  * we could be smarter and check for current xfer_speed
224                  * in struct drive etc...
225                  */
226                 if (drive->hwif->ide_dma_on == NULL)
227                         break;
228                 drive->hwif->dma_off_quietly(drive);
229                 /*
230                  * TODO: respect ->using_dma setting
231                  */
232                 ide_set_dma(drive);
233                 break;
234         }
235         pm->pm_step = ide_pm_state_completed;
236         return ide_stopped;
237 }
238
239 /**
240  *      ide_end_dequeued_request        -       complete an IDE I/O
241  *      @drive: IDE device for the I/O
242  *      @uptodate:
243  *      @nr_sectors: number of sectors completed
244  *
245  *      Complete an I/O that is no longer on the request queue. This
246  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
247  *      We must still finish the old request but we must not tamper with the
248  *      queue in the meantime.
249  *
250  *      NOTE: This path does not handle barrier, but barrier is not supported
251  *      on ide-cd anyway.
252  */
253
254 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
255                              int uptodate, int nr_sectors)
256 {
257         unsigned long flags;
258         int ret = 1;
259
260         spin_lock_irqsave(&ide_lock, flags);
261
262         BUG_ON(!blk_rq_started(rq));
263
264         /*
265          * if failfast is set on a request, override number of sectors and
266          * complete the whole request right now
267          */
268         if (blk_noretry_request(rq) && end_io_error(uptodate))
269                 nr_sectors = rq->hard_nr_sectors;
270
271         if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
272                 rq->errors = -EIO;
273
274         /*
275          * decide whether to reenable DMA -- 3 is a random magic for now,
276          * if we DMA timeout more than 3 times, just stay in PIO
277          */
278         if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
279                 drive->state = 0;
280                 HWGROUP(drive)->hwif->ide_dma_on(drive);
281         }
282
283         if (!end_that_request_first(rq, uptodate, nr_sectors)) {
284                 add_disk_randomness(rq->rq_disk);
285                 if (blk_rq_tagged(rq))
286                         blk_queue_end_tag(drive->queue, rq);
287                 end_that_request_last(rq, uptodate);
288                 ret = 0;
289         }
290         spin_unlock_irqrestore(&ide_lock, flags);
291         return ret;
292 }
293 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
294
295
296 /**
297  *      ide_complete_pm_request - end the current Power Management request
298  *      @drive: target drive
299  *      @rq: request
300  *
301  *      This function cleans up the current PM request and stops the queue
302  *      if necessary.
303  */
304 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
305 {
306         unsigned long flags;
307
308 #ifdef DEBUG_PM
309         printk("%s: completing PM request, %s\n", drive->name,
310                blk_pm_suspend_request(rq) ? "suspend" : "resume");
311 #endif
312         spin_lock_irqsave(&ide_lock, flags);
313         if (blk_pm_suspend_request(rq)) {
314                 blk_stop_queue(drive->queue);
315         } else {
316                 drive->blocked = 0;
317                 blk_start_queue(drive->queue);
318         }
319         blkdev_dequeue_request(rq);
320         HWGROUP(drive)->rq = NULL;
321         end_that_request_last(rq, 1);
322         spin_unlock_irqrestore(&ide_lock, flags);
323 }
324
325 /**
326  *      ide_end_drive_cmd       -       end an explicit drive command
327  *      @drive: command 
328  *      @stat: status bits
329  *      @err: error bits
330  *
331  *      Clean up after success/failure of an explicit drive command.
332  *      These get thrown onto the queue so they are synchronized with
333  *      real I/O operations on the drive.
334  *
335  *      In LBA48 mode we have to read the register set twice to get
336  *      all the extra information out.
337  */
338  
339 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
340 {
341         ide_hwif_t *hwif = HWIF(drive);
342         unsigned long flags;
343         struct request *rq;
344
345         spin_lock_irqsave(&ide_lock, flags);
346         rq = HWGROUP(drive)->rq;
347         spin_unlock_irqrestore(&ide_lock, flags);
348
349         if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
350                 u8 *args = (u8 *) rq->buffer;
351                 if (rq->errors == 0)
352                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
353
354                 if (args) {
355                         args[0] = stat;
356                         args[1] = err;
357                         args[2] = hwif->INB(IDE_NSECTOR_REG);
358                 }
359         } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
360                 u8 *args = (u8 *) rq->buffer;
361                 if (rq->errors == 0)
362                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
363
364                 if (args) {
365                         args[0] = stat;
366                         args[1] = err;
367                         args[2] = hwif->INB(IDE_NSECTOR_REG);
368                         args[3] = hwif->INB(IDE_SECTOR_REG);
369                         args[4] = hwif->INB(IDE_LCYL_REG);
370                         args[5] = hwif->INB(IDE_HCYL_REG);
371                         args[6] = hwif->INB(IDE_SELECT_REG);
372                 }
373         } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
374                 ide_task_t *args = (ide_task_t *) rq->special;
375                 if (rq->errors == 0)
376                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
377                         
378                 if (args) {
379                         if (args->tf_in_flags.b.data) {
380                                 u16 data                                = hwif->INW(IDE_DATA_REG);
381                                 args->tfRegister[IDE_DATA_OFFSET]       = (data) & 0xFF;
382                                 args->hobRegister[IDE_DATA_OFFSET]      = (data >> 8) & 0xFF;
383                         }
384                         args->tfRegister[IDE_ERROR_OFFSET]   = err;
385                         /* be sure we're looking at the low order bits */
386                         hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
387                         args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
388                         args->tfRegister[IDE_SECTOR_OFFSET]  = hwif->INB(IDE_SECTOR_REG);
389                         args->tfRegister[IDE_LCYL_OFFSET]    = hwif->INB(IDE_LCYL_REG);
390                         args->tfRegister[IDE_HCYL_OFFSET]    = hwif->INB(IDE_HCYL_REG);
391                         args->tfRegister[IDE_SELECT_OFFSET]  = hwif->INB(IDE_SELECT_REG);
392                         args->tfRegister[IDE_STATUS_OFFSET]  = stat;
393
394                         if (drive->addressing == 1) {
395                                 hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
396                                 args->hobRegister[IDE_FEATURE_OFFSET]   = hwif->INB(IDE_FEATURE_REG);
397                                 args->hobRegister[IDE_NSECTOR_OFFSET]   = hwif->INB(IDE_NSECTOR_REG);
398                                 args->hobRegister[IDE_SECTOR_OFFSET]    = hwif->INB(IDE_SECTOR_REG);
399                                 args->hobRegister[IDE_LCYL_OFFSET]      = hwif->INB(IDE_LCYL_REG);
400                                 args->hobRegister[IDE_HCYL_OFFSET]      = hwif->INB(IDE_HCYL_REG);
401                         }
402                 }
403         } else if (blk_pm_request(rq)) {
404                 struct request_pm_state *pm = rq->data;
405 #ifdef DEBUG_PM
406                 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
407                         drive->name, rq->pm->pm_step, stat, err);
408 #endif
409                 ide_complete_power_step(drive, rq, stat, err);
410                 if (pm->pm_step == ide_pm_state_completed)
411                         ide_complete_pm_request(drive, rq);
412                 return;
413         }
414
415         spin_lock_irqsave(&ide_lock, flags);
416         blkdev_dequeue_request(rq);
417         HWGROUP(drive)->rq = NULL;
418         rq->errors = err;
419         end_that_request_last(rq, !rq->errors);
420         spin_unlock_irqrestore(&ide_lock, flags);
421 }
422
423 EXPORT_SYMBOL(ide_end_drive_cmd);
424
425 /**
426  *      try_to_flush_leftover_data      -       flush junk
427  *      @drive: drive to flush
428  *
429  *      try_to_flush_leftover_data() is invoked in response to a drive
430  *      unexpectedly having its DRQ_STAT bit set.  As an alternative to
431  *      resetting the drive, this routine tries to clear the condition
432  *      by read a sector's worth of data from the drive.  Of course,
433  *      this may not help if the drive is *waiting* for data from *us*.
434  */
435 static void try_to_flush_leftover_data (ide_drive_t *drive)
436 {
437         int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
438
439         if (drive->media != ide_disk)
440                 return;
441         while (i > 0) {
442                 u32 buffer[16];
443                 u32 wcount = (i > 16) ? 16 : i;
444
445                 i -= wcount;
446                 HWIF(drive)->ata_input_data(drive, buffer, wcount);
447         }
448 }
449
450 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
451 {
452         if (rq->rq_disk) {
453                 ide_driver_t *drv;
454
455                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
456                 drv->end_request(drive, 0, 0);
457         } else
458                 ide_end_request(drive, 0, 0);
459 }
460
461 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
462 {
463         ide_hwif_t *hwif = drive->hwif;
464
465         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
466                 /* other bits are useless when BUSY */
467                 rq->errors |= ERROR_RESET;
468         } else if (stat & ERR_STAT) {
469                 /* err has different meaning on cdrom and tape */
470                 if (err == ABRT_ERR) {
471                         if (drive->select.b.lba &&
472                             /* some newer drives don't support WIN_SPECIFY */
473                             hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
474                                 return ide_stopped;
475                 } else if ((err & BAD_CRC) == BAD_CRC) {
476                         /* UDMA crc error, just retry the operation */
477                         drive->crc_count++;
478                 } else if (err & (BBD_ERR | ECC_ERR)) {
479                         /* retries won't help these */
480                         rq->errors = ERROR_MAX;
481                 } else if (err & TRK0_ERR) {
482                         /* help it find track zero */
483                         rq->errors |= ERROR_RECAL;
484                 }
485         }
486
487         if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
488             (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
489                 try_to_flush_leftover_data(drive);
490
491         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
492                 ide_kill_rq(drive, rq);
493                 return ide_stopped;
494         }
495
496         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
497                 rq->errors |= ERROR_RESET;
498
499         if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
500                 ++rq->errors;
501                 return ide_do_reset(drive);
502         }
503
504         if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
505                 drive->special.b.recalibrate = 1;
506
507         ++rq->errors;
508
509         return ide_stopped;
510 }
511
512 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
513 {
514         ide_hwif_t *hwif = drive->hwif;
515
516         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
517                 /* other bits are useless when BUSY */
518                 rq->errors |= ERROR_RESET;
519         } else {
520                 /* add decoding error stuff */
521         }
522
523         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
524                 /* force an abort */
525                 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
526
527         if (rq->errors >= ERROR_MAX) {
528                 ide_kill_rq(drive, rq);
529         } else {
530                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
531                         ++rq->errors;
532                         return ide_do_reset(drive);
533                 }
534                 ++rq->errors;
535         }
536
537         return ide_stopped;
538 }
539
540 ide_startstop_t
541 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
542 {
543         if (drive->media == ide_disk)
544                 return ide_ata_error(drive, rq, stat, err);
545         return ide_atapi_error(drive, rq, stat, err);
546 }
547
548 EXPORT_SYMBOL_GPL(__ide_error);
549
550 /**
551  *      ide_error       -       handle an error on the IDE
552  *      @drive: drive the error occurred on
553  *      @msg: message to report
554  *      @stat: status bits
555  *
556  *      ide_error() takes action based on the error returned by the drive.
557  *      For normal I/O that may well include retries. We deal with
558  *      both new-style (taskfile) and old style command handling here.
559  *      In the case of taskfile command handling there is work left to
560  *      do
561  */
562  
563 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
564 {
565         struct request *rq;
566         u8 err;
567
568         err = ide_dump_status(drive, msg, stat);
569
570         if ((rq = HWGROUP(drive)->rq) == NULL)
571                 return ide_stopped;
572
573         /* retry only "normal" I/O: */
574         if (!blk_fs_request(rq)) {
575                 rq->errors = 1;
576                 ide_end_drive_cmd(drive, stat, err);
577                 return ide_stopped;
578         }
579
580         if (rq->rq_disk) {
581                 ide_driver_t *drv;
582
583                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
584                 return drv->error(drive, rq, stat, err);
585         } else
586                 return __ide_error(drive, rq, stat, err);
587 }
588
589 EXPORT_SYMBOL_GPL(ide_error);
590
591 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
592 {
593         if (drive->media != ide_disk)
594                 rq->errors |= ERROR_RESET;
595
596         ide_kill_rq(drive, rq);
597
598         return ide_stopped;
599 }
600
601 EXPORT_SYMBOL_GPL(__ide_abort);
602
603 /**
604  *      ide_abort       -       abort pending IDE operations
605  *      @drive: drive the error occurred on
606  *      @msg: message to report
607  *
608  *      ide_abort kills and cleans up when we are about to do a 
609  *      host initiated reset on active commands. Longer term we
610  *      want handlers to have sensible abort handling themselves
611  *
612  *      This differs fundamentally from ide_error because in 
613  *      this case the command is doing just fine when we
614  *      blow it away.
615  */
616  
617 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
618 {
619         struct request *rq;
620
621         if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
622                 return ide_stopped;
623
624         /* retry only "normal" I/O: */
625         if (!blk_fs_request(rq)) {
626                 rq->errors = 1;
627                 ide_end_drive_cmd(drive, BUSY_STAT, 0);
628                 return ide_stopped;
629         }
630
631         if (rq->rq_disk) {
632                 ide_driver_t *drv;
633
634                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
635                 return drv->abort(drive, rq);
636         } else
637                 return __ide_abort(drive, rq);
638 }
639
640 /**
641  *      ide_cmd         -       issue a simple drive command
642  *      @drive: drive the command is for
643  *      @cmd: command byte
644  *      @nsect: sector byte
645  *      @handler: handler for the command completion
646  *
647  *      Issue a simple drive command with interrupts.
648  *      The drive must be selected beforehand.
649  */
650
651 static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect,
652                 ide_handler_t *handler)
653 {
654         ide_hwif_t *hwif = HWIF(drive);
655         if (IDE_CONTROL_REG)
656                 hwif->OUTB(drive->ctl,IDE_CONTROL_REG); /* clear nIEN */
657         SELECT_MASK(drive,0);
658         hwif->OUTB(nsect,IDE_NSECTOR_REG);
659         ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
660 }
661
662 /**
663  *      drive_cmd_intr          -       drive command completion interrupt
664  *      @drive: drive the completion interrupt occurred on
665  *
666  *      drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
667  *      We do any necessary data reading and then wait for the drive to
668  *      go non busy. At that point we may read the error data and complete
669  *      the request
670  */
671  
672 static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
673 {
674         struct request *rq = HWGROUP(drive)->rq;
675         ide_hwif_t *hwif = HWIF(drive);
676         u8 *args = (u8 *) rq->buffer;
677         u8 stat = hwif->INB(IDE_STATUS_REG);
678         int retries = 10;
679
680         local_irq_enable_in_hardirq();
681         if ((stat & DRQ_STAT) && args && args[3]) {
682                 u8 io_32bit = drive->io_32bit;
683                 drive->io_32bit = 0;
684                 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
685                 drive->io_32bit = io_32bit;
686                 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
687                         udelay(100);
688         }
689
690         if (!OK_STAT(stat, READY_STAT, BAD_STAT))
691                 return ide_error(drive, "drive_cmd", stat);
692                 /* calls ide_end_drive_cmd */
693         ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
694         return ide_stopped;
695 }
696
697 static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
698 {
699         task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
700         task->tfRegister[IDE_SECTOR_OFFSET]  = drive->sect;
701         task->tfRegister[IDE_LCYL_OFFSET]    = drive->cyl;
702         task->tfRegister[IDE_HCYL_OFFSET]    = drive->cyl>>8;
703         task->tfRegister[IDE_SELECT_OFFSET]  = ((drive->head-1)|drive->select.all)&0xBF;
704         task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY;
705
706         task->handler = &set_geometry_intr;
707 }
708
709 static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
710 {
711         task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
712         task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE;
713
714         task->handler = &recal_intr;
715 }
716
717 static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
718 {
719         task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req;
720         task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT;
721
722         task->handler = &set_multmode_intr;
723 }
724
725 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
726 {
727         special_t *s = &drive->special;
728         ide_task_t args;
729
730         memset(&args, 0, sizeof(ide_task_t));
731         args.command_type = IDE_DRIVE_TASK_NO_DATA;
732
733         if (s->b.set_geometry) {
734                 s->b.set_geometry = 0;
735                 ide_init_specify_cmd(drive, &args);
736         } else if (s->b.recalibrate) {
737                 s->b.recalibrate = 0;
738                 ide_init_restore_cmd(drive, &args);
739         } else if (s->b.set_multmode) {
740                 s->b.set_multmode = 0;
741                 if (drive->mult_req > drive->id->max_multsect)
742                         drive->mult_req = drive->id->max_multsect;
743                 ide_init_setmult_cmd(drive, &args);
744         } else if (s->all) {
745                 int special = s->all;
746                 s->all = 0;
747                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
748                 return ide_stopped;
749         }
750
751         do_rw_taskfile(drive, &args);
752
753         return ide_started;
754 }
755
756 /*
757  * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
758  */
759 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
760 {
761         switch (req_pio) {
762         case 202:
763         case 201:
764         case 200:
765         case 102:
766         case 101:
767         case 100:
768                 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
769         case 9:
770         case 8:
771                 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
772         case 7:
773         case 6:
774                 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
775         default:
776                 return 0;
777         }
778 }
779
780 /**
781  *      do_special              -       issue some special commands
782  *      @drive: drive the command is for
783  *
784  *      do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
785  *      commands to a drive.  It used to do much more, but has been scaled
786  *      back.
787  */
788
789 static ide_startstop_t do_special (ide_drive_t *drive)
790 {
791         special_t *s = &drive->special;
792
793 #ifdef DEBUG
794         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
795 #endif
796         if (s->b.set_tune) {
797                 ide_hwif_t *hwif = drive->hwif;
798                 u8 req_pio = drive->tune_req;
799
800                 s->b.set_tune = 0;
801
802                 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
803                         if (hwif->set_pio_mode)
804                                 hwif->set_pio_mode(drive, req_pio);
805                 } else {
806                         int keep_dma = drive->using_dma;
807
808                         ide_set_pio(drive, req_pio);
809
810                         if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
811                                 if (keep_dma)
812                                         hwif->ide_dma_on(drive);
813                         }
814                 }
815
816                 return ide_stopped;
817         } else {
818                 if (drive->media == ide_disk)
819                         return ide_disk_special(drive);
820
821                 s->all = 0;
822                 drive->mult_req = 0;
823                 return ide_stopped;
824         }
825 }
826
827 void ide_map_sg(ide_drive_t *drive, struct request *rq)
828 {
829         ide_hwif_t *hwif = drive->hwif;
830         struct scatterlist *sg = hwif->sg_table;
831
832         if (hwif->sg_mapped)    /* needed by ide-scsi */
833                 return;
834
835         if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
836                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
837         } else {
838                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
839                 hwif->sg_nents = 1;
840         }
841 }
842
843 EXPORT_SYMBOL_GPL(ide_map_sg);
844
845 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
846 {
847         ide_hwif_t *hwif = drive->hwif;
848
849         hwif->nsect = hwif->nleft = rq->nr_sectors;
850         hwif->cursg_ofs = 0;
851         hwif->cursg = NULL;
852 }
853
854 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
855
856 /**
857  *      execute_drive_command   -       issue special drive command
858  *      @drive: the drive to issue the command on
859  *      @rq: the request structure holding the command
860  *
861  *      execute_drive_cmd() issues a special drive command,  usually 
862  *      initiated by ioctl() from the external hdparm program. The
863  *      command can be a drive command, drive task or taskfile 
864  *      operation. Weirdly you can call it with NULL to wait for
865  *      all commands to finish. Don't do this as that is due to change
866  */
867
868 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
869                 struct request *rq)
870 {
871         ide_hwif_t *hwif = HWIF(drive);
872         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
873                 ide_task_t *args = rq->special;
874  
875                 if (!args)
876                         goto done;
877
878                 hwif->data_phase = args->data_phase;
879
880                 switch (hwif->data_phase) {
881                 case TASKFILE_MULTI_OUT:
882                 case TASKFILE_OUT:
883                 case TASKFILE_MULTI_IN:
884                 case TASKFILE_IN:
885                         ide_init_sg_cmd(drive, rq);
886                         ide_map_sg(drive, rq);
887                 default:
888                         break;
889                 }
890
891                 if (args->tf_out_flags.all != 0) 
892                         return flagged_taskfile(drive, args);
893                 return do_rw_taskfile(drive, args);
894         } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
895                 u8 *args = rq->buffer;
896                 u8 sel;
897  
898                 if (!args)
899                         goto done;
900 #ifdef DEBUG
901                 printk("%s: DRIVE_TASK_CMD ", drive->name);
902                 printk("cmd=0x%02x ", args[0]);
903                 printk("fr=0x%02x ", args[1]);
904                 printk("ns=0x%02x ", args[2]);
905                 printk("sc=0x%02x ", args[3]);
906                 printk("lcyl=0x%02x ", args[4]);
907                 printk("hcyl=0x%02x ", args[5]);
908                 printk("sel=0x%02x\n", args[6]);
909 #endif
910                 hwif->OUTB(args[1], IDE_FEATURE_REG);
911                 hwif->OUTB(args[3], IDE_SECTOR_REG);
912                 hwif->OUTB(args[4], IDE_LCYL_REG);
913                 hwif->OUTB(args[5], IDE_HCYL_REG);
914                 sel = (args[6] & ~0x10);
915                 if (drive->select.b.unit)
916                         sel |= 0x10;
917                 hwif->OUTB(sel, IDE_SELECT_REG);
918                 ide_cmd(drive, args[0], args[2], &drive_cmd_intr);
919                 return ide_started;
920         } else if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
921                 u8 *args = rq->buffer;
922
923                 if (!args)
924                         goto done;
925 #ifdef DEBUG
926                 printk("%s: DRIVE_CMD ", drive->name);
927                 printk("cmd=0x%02x ", args[0]);
928                 printk("sc=0x%02x ", args[1]);
929                 printk("fr=0x%02x ", args[2]);
930                 printk("xx=0x%02x\n", args[3]);
931 #endif
932                 if (args[0] == WIN_SMART) {
933                         hwif->OUTB(0x4f, IDE_LCYL_REG);
934                         hwif->OUTB(0xc2, IDE_HCYL_REG);
935                         hwif->OUTB(args[2],IDE_FEATURE_REG);
936                         hwif->OUTB(args[1],IDE_SECTOR_REG);
937                         ide_cmd(drive, args[0], args[3], &drive_cmd_intr);
938                         return ide_started;
939                 }
940                 hwif->OUTB(args[2],IDE_FEATURE_REG);
941                 ide_cmd(drive, args[0], args[1], &drive_cmd_intr);
942                 return ide_started;
943         }
944
945 done:
946         /*
947          * NULL is actually a valid way of waiting for
948          * all current requests to be flushed from the queue.
949          */
950 #ifdef DEBUG
951         printk("%s: DRIVE_CMD (null)\n", drive->name);
952 #endif
953         ide_end_drive_cmd(drive,
954                         hwif->INB(IDE_STATUS_REG),
955                         hwif->INB(IDE_ERROR_REG));
956         return ide_stopped;
957 }
958
959 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
960 {
961         struct request_pm_state *pm = rq->data;
962
963         if (blk_pm_suspend_request(rq) &&
964             pm->pm_step == ide_pm_state_start_suspend)
965                 /* Mark drive blocked when starting the suspend sequence. */
966                 drive->blocked = 1;
967         else if (blk_pm_resume_request(rq) &&
968                  pm->pm_step == ide_pm_state_start_resume) {
969                 /* 
970                  * The first thing we do on wakeup is to wait for BSY bit to
971                  * go away (with a looong timeout) as a drive on this hwif may
972                  * just be POSTing itself.
973                  * We do that before even selecting as the "other" device on
974                  * the bus may be broken enough to walk on our toes at this
975                  * point.
976                  */
977                 int rc;
978 #ifdef DEBUG_PM
979                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
980 #endif
981                 rc = ide_wait_not_busy(HWIF(drive), 35000);
982                 if (rc)
983                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
984                 SELECT_DRIVE(drive);
985                 HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]);
986                 rc = ide_wait_not_busy(HWIF(drive), 100000);
987                 if (rc)
988                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
989         }
990 }
991
992 /**
993  *      start_request   -       start of I/O and command issuing for IDE
994  *
995  *      start_request() initiates handling of a new I/O request. It
996  *      accepts commands and I/O (read/write) requests. It also does
997  *      the final remapping for weird stuff like EZDrive. Once 
998  *      device mapper can work sector level the EZDrive stuff can go away
999  *
1000  *      FIXME: this function needs a rename
1001  */
1002  
1003 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
1004 {
1005         ide_startstop_t startstop;
1006         sector_t block;
1007
1008         BUG_ON(!blk_rq_started(rq));
1009
1010 #ifdef DEBUG
1011         printk("%s: start_request: current=0x%08lx\n",
1012                 HWIF(drive)->name, (unsigned long) rq);
1013 #endif
1014
1015         /* bail early if we've exceeded max_failures */
1016         if (drive->max_failures && (drive->failures > drive->max_failures)) {
1017                 goto kill_rq;
1018         }
1019
1020         block    = rq->sector;
1021         if (blk_fs_request(rq) &&
1022             (drive->media == ide_disk || drive->media == ide_floppy)) {
1023                 block += drive->sect0;
1024         }
1025         /* Yecch - this will shift the entire interval,
1026            possibly killing some innocent following sector */
1027         if (block == 0 && drive->remap_0_to_1 == 1)
1028                 block = 1;  /* redirect MBR access to EZ-Drive partn table */
1029
1030         if (blk_pm_request(rq))
1031                 ide_check_pm_state(drive, rq);
1032
1033         SELECT_DRIVE(drive);
1034         if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
1035                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
1036                 return startstop;
1037         }
1038         if (!drive->special.all) {
1039                 ide_driver_t *drv;
1040
1041                 /*
1042                  * We reset the drive so we need to issue a SETFEATURES.
1043                  * Do it _after_ do_special() restored device parameters.
1044                  */
1045                 if (drive->current_speed == 0xff)
1046                         ide_config_drive_speed(drive, drive->desired_speed);
1047
1048                 if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1049                     rq->cmd_type == REQ_TYPE_ATA_TASK ||
1050                     rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1051                         return execute_drive_cmd(drive, rq);
1052                 else if (blk_pm_request(rq)) {
1053                         struct request_pm_state *pm = rq->data;
1054 #ifdef DEBUG_PM
1055                         printk("%s: start_power_step(step: %d)\n",
1056                                 drive->name, rq->pm->pm_step);
1057 #endif
1058                         startstop = ide_start_power_step(drive, rq);
1059                         if (startstop == ide_stopped &&
1060                             pm->pm_step == ide_pm_state_completed)
1061                                 ide_complete_pm_request(drive, rq);
1062                         return startstop;
1063                 }
1064
1065                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
1066                 return drv->do_request(drive, rq, block);
1067         }
1068         return do_special(drive);
1069 kill_rq:
1070         ide_kill_rq(drive, rq);
1071         return ide_stopped;
1072 }
1073
1074 /**
1075  *      ide_stall_queue         -       pause an IDE device
1076  *      @drive: drive to stall
1077  *      @timeout: time to stall for (jiffies)
1078  *
1079  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
1080  *      to the hwgroup by sleeping for timeout jiffies.
1081  */
1082  
1083 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1084 {
1085         if (timeout > WAIT_WORSTCASE)
1086                 timeout = WAIT_WORSTCASE;
1087         drive->sleep = timeout + jiffies;
1088         drive->sleeping = 1;
1089 }
1090
1091 EXPORT_SYMBOL(ide_stall_queue);
1092
1093 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
1094
1095 /**
1096  *      choose_drive            -       select a drive to service
1097  *      @hwgroup: hardware group to select on
1098  *
1099  *      choose_drive() selects the next drive which will be serviced.
1100  *      This is necessary because the IDE layer can't issue commands
1101  *      to both drives on the same cable, unlike SCSI.
1102  */
1103  
1104 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1105 {
1106         ide_drive_t *drive, *best;
1107
1108 repeat: 
1109         best = NULL;
1110         drive = hwgroup->drive;
1111
1112         /*
1113          * drive is doing pre-flush, ordered write, post-flush sequence. even
1114          * though that is 3 requests, it must be seen as a single transaction.
1115          * we must not preempt this drive until that is complete
1116          */
1117         if (blk_queue_flushing(drive->queue)) {
1118                 /*
1119                  * small race where queue could get replugged during
1120                  * the 3-request flush cycle, just yank the plug since
1121                  * we want it to finish asap
1122                  */
1123                 blk_remove_plug(drive->queue);
1124                 return drive;
1125         }
1126
1127         do {
1128                 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1129                     && !elv_queue_empty(drive->queue)) {
1130                         if (!best
1131                          || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1132                          || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1133                         {
1134                                 if (!blk_queue_plugged(drive->queue))
1135                                         best = drive;
1136                         }
1137                 }
1138         } while ((drive = drive->next) != hwgroup->drive);
1139         if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1140                 long t = (signed long)(WAKEUP(best) - jiffies);
1141                 if (t >= WAIT_MIN_SLEEP) {
1142                 /*
1143                  * We *may* have some time to spare, but first let's see if
1144                  * someone can potentially benefit from our nice mood today..
1145                  */
1146                         drive = best->next;
1147                         do {
1148                                 if (!drive->sleeping
1149                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
1150                                  && time_before(WAKEUP(drive), jiffies + t))
1151                                 {
1152                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1153                                         goto repeat;
1154                                 }
1155                         } while ((drive = drive->next) != best);
1156                 }
1157         }
1158         return best;
1159 }
1160
1161 /*
1162  * Issue a new request to a drive from hwgroup
1163  * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1164  *
1165  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1166  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1167  * may have both interfaces in a single hwgroup to "serialize" access.
1168  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1169  * together into one hwgroup for serialized access.
1170  *
1171  * Note also that several hwgroups can end up sharing a single IRQ,
1172  * possibly along with many other devices.  This is especially common in
1173  * PCI-based systems with off-board IDE controller cards.
1174  *
1175  * The IDE driver uses the single global ide_lock spinlock to protect
1176  * access to the request queues, and to protect the hwgroup->busy flag.
1177  *
1178  * The first thread into the driver for a particular hwgroup sets the
1179  * hwgroup->busy flag to indicate that this hwgroup is now active,
1180  * and then initiates processing of the top request from the request queue.
1181  *
1182  * Other threads attempting entry notice the busy setting, and will simply
1183  * queue their new requests and exit immediately.  Note that hwgroup->busy
1184  * remains set even when the driver is merely awaiting the next interrupt.
1185  * Thus, the meaning is "this hwgroup is busy processing a request".
1186  *
1187  * When processing of a request completes, the completing thread or IRQ-handler
1188  * will start the next request from the queue.  If no more work remains,
1189  * the driver will clear the hwgroup->busy flag and exit.
1190  *
1191  * The ide_lock (spinlock) is used to protect all access to the
1192  * hwgroup->busy flag, but is otherwise not needed for most processing in
1193  * the driver.  This makes the driver much more friendlier to shared IRQs
1194  * than previous designs, while remaining 100% (?) SMP safe and capable.
1195  */
1196 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1197 {
1198         ide_drive_t     *drive;
1199         ide_hwif_t      *hwif;
1200         struct request  *rq;
1201         ide_startstop_t startstop;
1202         int             loops = 0;
1203
1204         /* for atari only: POSSIBLY BROKEN HERE(?) */
1205         ide_get_lock(ide_intr, hwgroup);
1206
1207         /* caller must own ide_lock */
1208         BUG_ON(!irqs_disabled());
1209
1210         while (!hwgroup->busy) {
1211                 hwgroup->busy = 1;
1212                 drive = choose_drive(hwgroup);
1213                 if (drive == NULL) {
1214                         int sleeping = 0;
1215                         unsigned long sleep = 0; /* shut up, gcc */
1216                         hwgroup->rq = NULL;
1217                         drive = hwgroup->drive;
1218                         do {
1219                                 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1220                                         sleeping = 1;
1221                                         sleep = drive->sleep;
1222                                 }
1223                         } while ((drive = drive->next) != hwgroup->drive);
1224                         if (sleeping) {
1225                 /*
1226                  * Take a short snooze, and then wake up this hwgroup again.
1227                  * This gives other hwgroups on the same a chance to
1228                  * play fairly with us, just in case there are big differences
1229                  * in relative throughputs.. don't want to hog the cpu too much.
1230                  */
1231                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1232                                         sleep = jiffies + WAIT_MIN_SLEEP;
1233 #if 1
1234                                 if (timer_pending(&hwgroup->timer))
1235                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
1236 #endif
1237                                 /* so that ide_timer_expiry knows what to do */
1238                                 hwgroup->sleeping = 1;
1239                                 hwgroup->req_gen_timer = hwgroup->req_gen;
1240                                 mod_timer(&hwgroup->timer, sleep);
1241                                 /* we purposely leave hwgroup->busy==1
1242                                  * while sleeping */
1243                         } else {
1244                                 /* Ugly, but how can we sleep for the lock
1245                                  * otherwise? perhaps from tq_disk?
1246                                  */
1247
1248                                 /* for atari only */
1249                                 ide_release_lock();
1250                                 hwgroup->busy = 0;
1251                         }
1252
1253                         /* no more work for this hwgroup (for now) */
1254                         return;
1255                 }
1256         again:
1257                 hwif = HWIF(drive);
1258                 if (hwgroup->hwif->sharing_irq &&
1259                     hwif != hwgroup->hwif &&
1260                     hwif->io_ports[IDE_CONTROL_OFFSET]) {
1261                         /* set nIEN for previous hwif */
1262                         SELECT_INTERRUPT(drive);
1263                 }
1264                 hwgroup->hwif = hwif;
1265                 hwgroup->drive = drive;
1266                 drive->sleeping = 0;
1267                 drive->service_start = jiffies;
1268
1269                 if (blk_queue_plugged(drive->queue)) {
1270                         printk(KERN_ERR "ide: huh? queue was plugged!\n");
1271                         break;
1272                 }
1273
1274                 /*
1275                  * we know that the queue isn't empty, but this can happen
1276                  * if the q->prep_rq_fn() decides to kill a request
1277                  */
1278                 rq = elv_next_request(drive->queue);
1279                 if (!rq) {
1280                         hwgroup->busy = 0;
1281                         break;
1282                 }
1283
1284                 /*
1285                  * Sanity: don't accept a request that isn't a PM request
1286                  * if we are currently power managed. This is very important as
1287                  * blk_stop_queue() doesn't prevent the elv_next_request()
1288                  * above to return us whatever is in the queue. Since we call
1289                  * ide_do_request() ourselves, we end up taking requests while
1290                  * the queue is blocked...
1291                  * 
1292                  * We let requests forced at head of queue with ide-preempt
1293                  * though. I hope that doesn't happen too much, hopefully not
1294                  * unless the subdriver triggers such a thing in its own PM
1295                  * state machine.
1296                  *
1297                  * We count how many times we loop here to make sure we service
1298                  * all drives in the hwgroup without looping for ever
1299                  */
1300                 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1301                         drive = drive->next ? drive->next : hwgroup->drive;
1302                         if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1303                                 goto again;
1304                         /* We clear busy, there should be no pending ATA command at this point. */
1305                         hwgroup->busy = 0;
1306                         break;
1307                 }
1308
1309                 hwgroup->rq = rq;
1310
1311                 /*
1312                  * Some systems have trouble with IDE IRQs arriving while
1313                  * the driver is still setting things up.  So, here we disable
1314                  * the IRQ used by this interface while the request is being started.
1315                  * This may look bad at first, but pretty much the same thing
1316                  * happens anyway when any interrupt comes in, IDE or otherwise
1317                  *  -- the kernel masks the IRQ while it is being handled.
1318                  */
1319                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1320                         disable_irq_nosync(hwif->irq);
1321                 spin_unlock(&ide_lock);
1322                 local_irq_enable_in_hardirq();
1323                         /* allow other IRQs while we start this request */
1324                 startstop = start_request(drive, rq);
1325                 spin_lock_irq(&ide_lock);
1326                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1327                         enable_irq(hwif->irq);
1328                 if (startstop == ide_stopped)
1329                         hwgroup->busy = 0;
1330         }
1331 }
1332
1333 /*
1334  * Passes the stuff to ide_do_request
1335  */
1336 void do_ide_request(struct request_queue *q)
1337 {
1338         ide_drive_t *drive = q->queuedata;
1339
1340         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1341 }
1342
1343 /*
1344  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1345  * retry the current request in pio mode instead of risking tossing it
1346  * all away
1347  */
1348 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1349 {
1350         ide_hwif_t *hwif = HWIF(drive);
1351         struct request *rq;
1352         ide_startstop_t ret = ide_stopped;
1353
1354         /*
1355          * end current dma transaction
1356          */
1357
1358         if (error < 0) {
1359                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1360                 (void)HWIF(drive)->ide_dma_end(drive);
1361                 ret = ide_error(drive, "dma timeout error",
1362                                                 hwif->INB(IDE_STATUS_REG));
1363         } else {
1364                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1365                 hwif->dma_timeout(drive);
1366         }
1367
1368         /*
1369          * disable dma for now, but remember that we did so because of
1370          * a timeout -- we'll reenable after we finish this next request
1371          * (or rather the first chunk of it) in pio.
1372          */
1373         drive->retry_pio++;
1374         drive->state = DMA_PIO_RETRY;
1375         hwif->dma_off_quietly(drive);
1376
1377         /*
1378          * un-busy drive etc (hwgroup->busy is cleared on return) and
1379          * make sure request is sane
1380          */
1381         rq = HWGROUP(drive)->rq;
1382
1383         if (!rq)
1384                 goto out;
1385
1386         HWGROUP(drive)->rq = NULL;
1387
1388         rq->errors = 0;
1389
1390         if (!rq->bio)
1391                 goto out;
1392
1393         rq->sector = rq->bio->bi_sector;
1394         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1395         rq->hard_cur_sectors = rq->current_nr_sectors;
1396         rq->buffer = bio_data(rq->bio);
1397 out:
1398         return ret;
1399 }
1400
1401 /**
1402  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1403  *      @data: timer callback magic (hwgroup)
1404  *
1405  *      An IDE command has timed out before the expected drive return
1406  *      occurred. At this point we attempt to clean up the current
1407  *      mess. If the current handler includes an expiry handler then
1408  *      we invoke the expiry handler, and providing it is happy the
1409  *      work is done. If that fails we apply generic recovery rules
1410  *      invoking the handler and checking the drive DMA status. We
1411  *      have an excessively incestuous relationship with the DMA
1412  *      logic that wants cleaning up.
1413  */
1414  
1415 void ide_timer_expiry (unsigned long data)
1416 {
1417         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1418         ide_handler_t   *handler;
1419         ide_expiry_t    *expiry;
1420         unsigned long   flags;
1421         unsigned long   wait = -1;
1422
1423         spin_lock_irqsave(&ide_lock, flags);
1424
1425         if (((handler = hwgroup->handler) == NULL) ||
1426             (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1427                 /*
1428                  * Either a marginal timeout occurred
1429                  * (got the interrupt just as timer expired),
1430                  * or we were "sleeping" to give other devices a chance.
1431                  * Either way, we don't really want to complain about anything.
1432                  */
1433                 if (hwgroup->sleeping) {
1434                         hwgroup->sleeping = 0;
1435                         hwgroup->busy = 0;
1436                 }
1437         } else {
1438                 ide_drive_t *drive = hwgroup->drive;
1439                 if (!drive) {
1440                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1441                         hwgroup->handler = NULL;
1442                 } else {
1443                         ide_hwif_t *hwif;
1444                         ide_startstop_t startstop = ide_stopped;
1445                         if (!hwgroup->busy) {
1446                                 hwgroup->busy = 1;      /* paranoia */
1447                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1448                         }
1449                         if ((expiry = hwgroup->expiry) != NULL) {
1450                                 /* continue */
1451                                 if ((wait = expiry(drive)) > 0) {
1452                                         /* reset timer */
1453                                         hwgroup->timer.expires  = jiffies + wait;
1454                                         hwgroup->req_gen_timer = hwgroup->req_gen;
1455                                         add_timer(&hwgroup->timer);
1456                                         spin_unlock_irqrestore(&ide_lock, flags);
1457                                         return;
1458                                 }
1459                         }
1460                         hwgroup->handler = NULL;
1461                         /*
1462                          * We need to simulate a real interrupt when invoking
1463                          * the handler() function, which means we need to
1464                          * globally mask the specific IRQ:
1465                          */
1466                         spin_unlock(&ide_lock);
1467                         hwif  = HWIF(drive);
1468 #if DISABLE_IRQ_NOSYNC
1469                         disable_irq_nosync(hwif->irq);
1470 #else
1471                         /* disable_irq_nosync ?? */
1472                         disable_irq(hwif->irq);
1473 #endif /* DISABLE_IRQ_NOSYNC */
1474                         /* local CPU only,
1475                          * as if we were handling an interrupt */
1476                         local_irq_disable();
1477                         if (hwgroup->polling) {
1478                                 startstop = handler(drive);
1479                         } else if (drive_is_ready(drive)) {
1480                                 if (drive->waiting_for_dma)
1481                                         hwgroup->hwif->dma_lost_irq(drive);
1482                                 (void)ide_ack_intr(hwif);
1483                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1484                                 startstop = handler(drive);
1485                         } else {
1486                                 if (drive->waiting_for_dma) {
1487                                         startstop = ide_dma_timeout_retry(drive, wait);
1488                                 } else
1489                                         startstop =
1490                                         ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1491                         }
1492                         drive->service_time = jiffies - drive->service_start;
1493                         spin_lock_irq(&ide_lock);
1494                         enable_irq(hwif->irq);
1495                         if (startstop == ide_stopped)
1496                                 hwgroup->busy = 0;
1497                 }
1498         }
1499         ide_do_request(hwgroup, IDE_NO_IRQ);
1500         spin_unlock_irqrestore(&ide_lock, flags);
1501 }
1502
1503 /**
1504  *      unexpected_intr         -       handle an unexpected IDE interrupt
1505  *      @irq: interrupt line
1506  *      @hwgroup: hwgroup being processed
1507  *
1508  *      There's nothing really useful we can do with an unexpected interrupt,
1509  *      other than reading the status register (to clear it), and logging it.
1510  *      There should be no way that an irq can happen before we're ready for it,
1511  *      so we needn't worry much about losing an "important" interrupt here.
1512  *
1513  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1514  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1515  *      looks "good", we just ignore the interrupt completely.
1516  *
1517  *      This routine assumes __cli() is in effect when called.
1518  *
1519  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1520  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1521  *      we could screw up by interfering with a new request being set up for 
1522  *      irq15.
1523  *
1524  *      In reality, this is a non-issue.  The new command is not sent unless 
1525  *      the drive is ready to accept one, in which case we know the drive is
1526  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1527  *      before completing the issuance of any new drive command, so we will not
1528  *      be accidentally invoked as a result of any valid command completion
1529  *      interrupt.
1530  *
1531  *      Note that we must walk the entire hwgroup here. We know which hwif
1532  *      is doing the current command, but we don't know which hwif burped
1533  *      mysteriously.
1534  */
1535  
1536 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1537 {
1538         u8 stat;
1539         ide_hwif_t *hwif = hwgroup->hwif;
1540
1541         /*
1542          * handle the unexpected interrupt
1543          */
1544         do {
1545                 if (hwif->irq == irq) {
1546                         stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1547                         if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1548                                 /* Try to not flood the console with msgs */
1549                                 static unsigned long last_msgtime, count;
1550                                 ++count;
1551                                 if (time_after(jiffies, last_msgtime + HZ)) {
1552                                         last_msgtime = jiffies;
1553                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1554                                                 "status=0x%02x, count=%ld\n",
1555                                                 hwif->name,
1556                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1557                                 }
1558                         }
1559                 }
1560         } while ((hwif = hwif->next) != hwgroup->hwif);
1561 }
1562
1563 /**
1564  *      ide_intr        -       default IDE interrupt handler
1565  *      @irq: interrupt number
1566  *      @dev_id: hwif group
1567  *      @regs: unused weirdness from the kernel irq layer
1568  *
1569  *      This is the default IRQ handler for the IDE layer. You should
1570  *      not need to override it. If you do be aware it is subtle in
1571  *      places
1572  *
1573  *      hwgroup->hwif is the interface in the group currently performing
1574  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1575  *      the IRQ handler to call. As we issue a command the handlers
1576  *      step through multiple states, reassigning the handler to the
1577  *      next step in the process. Unlike a smart SCSI controller IDE
1578  *      expects the main processor to sequence the various transfer
1579  *      stages. We also manage a poll timer to catch up with most
1580  *      timeout situations. There are still a few where the handlers
1581  *      don't ever decide to give up.
1582  *
1583  *      The handler eventually returns ide_stopped to indicate the
1584  *      request completed. At this point we issue the next request
1585  *      on the hwgroup and the process begins again.
1586  */
1587  
1588 irqreturn_t ide_intr (int irq, void *dev_id)
1589 {
1590         unsigned long flags;
1591         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1592         ide_hwif_t *hwif;
1593         ide_drive_t *drive;
1594         ide_handler_t *handler;
1595         ide_startstop_t startstop;
1596
1597         spin_lock_irqsave(&ide_lock, flags);
1598         hwif = hwgroup->hwif;
1599
1600         if (!ide_ack_intr(hwif)) {
1601                 spin_unlock_irqrestore(&ide_lock, flags);
1602                 return IRQ_NONE;
1603         }
1604
1605         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1606                 /*
1607                  * Not expecting an interrupt from this drive.
1608                  * That means this could be:
1609                  *      (1) an interrupt from another PCI device
1610                  *      sharing the same PCI INT# as us.
1611                  * or   (2) a drive just entered sleep or standby mode,
1612                  *      and is interrupting to let us know.
1613                  * or   (3) a spurious interrupt of unknown origin.
1614                  *
1615                  * For PCI, we cannot tell the difference,
1616                  * so in that case we just ignore it and hope it goes away.
1617                  *
1618                  * FIXME: unexpected_intr should be hwif-> then we can
1619                  * remove all the ifdef PCI crap
1620                  */
1621 #ifdef CONFIG_BLK_DEV_IDEPCI
1622                 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1623 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1624                 {
1625                         /*
1626                          * Probably not a shared PCI interrupt,
1627                          * so we can safely try to do something about it:
1628                          */
1629                         unexpected_intr(irq, hwgroup);
1630 #ifdef CONFIG_BLK_DEV_IDEPCI
1631                 } else {
1632                         /*
1633                          * Whack the status register, just in case
1634                          * we have a leftover pending IRQ.
1635                          */
1636                         (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1637 #endif /* CONFIG_BLK_DEV_IDEPCI */
1638                 }
1639                 spin_unlock_irqrestore(&ide_lock, flags);
1640                 return IRQ_NONE;
1641         }
1642         drive = hwgroup->drive;
1643         if (!drive) {
1644                 /*
1645                  * This should NEVER happen, and there isn't much
1646                  * we could do about it here.
1647                  *
1648                  * [Note - this can occur if the drive is hot unplugged]
1649                  */
1650                 spin_unlock_irqrestore(&ide_lock, flags);
1651                 return IRQ_HANDLED;
1652         }
1653         if (!drive_is_ready(drive)) {
1654                 /*
1655                  * This happens regularly when we share a PCI IRQ with
1656                  * another device.  Unfortunately, it can also happen
1657                  * with some buggy drives that trigger the IRQ before
1658                  * their status register is up to date.  Hopefully we have
1659                  * enough advance overhead that the latter isn't a problem.
1660                  */
1661                 spin_unlock_irqrestore(&ide_lock, flags);
1662                 return IRQ_NONE;
1663         }
1664         if (!hwgroup->busy) {
1665                 hwgroup->busy = 1;      /* paranoia */
1666                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1667         }
1668         hwgroup->handler = NULL;
1669         hwgroup->req_gen++;
1670         del_timer(&hwgroup->timer);
1671         spin_unlock(&ide_lock);
1672
1673         /* Some controllers might set DMA INTR no matter DMA or PIO;
1674          * bmdma status might need to be cleared even for
1675          * PIO interrupts to prevent spurious/lost irq.
1676          */
1677         if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1678                 /* ide_dma_end() needs bmdma status for error checking.
1679                  * So, skip clearing bmdma status here and leave it
1680                  * to ide_dma_end() if this is dma interrupt.
1681                  */
1682                 hwif->ide_dma_clear_irq(drive);
1683
1684         if (drive->unmask)
1685                 local_irq_enable_in_hardirq();
1686         /* service this interrupt, may set handler for next interrupt */
1687         startstop = handler(drive);
1688         spin_lock_irq(&ide_lock);
1689
1690         /*
1691          * Note that handler() may have set things up for another
1692          * interrupt to occur soon, but it cannot happen until
1693          * we exit from this routine, because it will be the
1694          * same irq as is currently being serviced here, and Linux
1695          * won't allow another of the same (on any CPU) until we return.
1696          */
1697         drive->service_time = jiffies - drive->service_start;
1698         if (startstop == ide_stopped) {
1699                 if (hwgroup->handler == NULL) { /* paranoia */
1700                         hwgroup->busy = 0;
1701                         ide_do_request(hwgroup, hwif->irq);
1702                 } else {
1703                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1704                                 "on exit\n", drive->name);
1705                 }
1706         }
1707         spin_unlock_irqrestore(&ide_lock, flags);
1708         return IRQ_HANDLED;
1709 }
1710
1711 /**
1712  *      ide_init_drive_cmd      -       initialize a drive command request
1713  *      @rq: request object
1714  *
1715  *      Initialize a request before we fill it in and send it down to
1716  *      ide_do_drive_cmd. Commands must be set up by this function. Right
1717  *      now it doesn't do a lot, but if that changes abusers will have a
1718  *      nasty surprise.
1719  */
1720
1721 void ide_init_drive_cmd (struct request *rq)
1722 {
1723         memset(rq, 0, sizeof(*rq));
1724         rq->cmd_type = REQ_TYPE_ATA_CMD;
1725         rq->ref_count = 1;
1726 }
1727
1728 EXPORT_SYMBOL(ide_init_drive_cmd);
1729
1730 /**
1731  *      ide_do_drive_cmd        -       issue IDE special command
1732  *      @drive: device to issue command
1733  *      @rq: request to issue
1734  *      @action: action for processing
1735  *
1736  *      This function issues a special IDE device request
1737  *      onto the request queue.
1738  *
1739  *      If action is ide_wait, then the rq is queued at the end of the
1740  *      request queue, and the function sleeps until it has been processed.
1741  *      This is for use when invoked from an ioctl handler.
1742  *
1743  *      If action is ide_preempt, then the rq is queued at the head of
1744  *      the request queue, displacing the currently-being-processed
1745  *      request and this function returns immediately without waiting
1746  *      for the new rq to be completed.  This is VERY DANGEROUS, and is
1747  *      intended for careful use by the ATAPI tape/cdrom driver code.
1748  *
1749  *      If action is ide_end, then the rq is queued at the end of the
1750  *      request queue, and the function returns immediately without waiting
1751  *      for the new rq to be completed. This is again intended for careful
1752  *      use by the ATAPI tape/cdrom driver code.
1753  */
1754  
1755 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1756 {
1757         unsigned long flags;
1758         ide_hwgroup_t *hwgroup = HWGROUP(drive);
1759         DECLARE_COMPLETION_ONSTACK(wait);
1760         int where = ELEVATOR_INSERT_BACK, err;
1761         int must_wait = (action == ide_wait || action == ide_head_wait);
1762
1763         rq->errors = 0;
1764
1765         /*
1766          * we need to hold an extra reference to request for safe inspection
1767          * after completion
1768          */
1769         if (must_wait) {
1770                 rq->ref_count++;
1771                 rq->end_io_data = &wait;
1772                 rq->end_io = blk_end_sync_rq;
1773         }
1774
1775         spin_lock_irqsave(&ide_lock, flags);
1776         if (action == ide_preempt)
1777                 hwgroup->rq = NULL;
1778         if (action == ide_preempt || action == ide_head_wait) {
1779                 where = ELEVATOR_INSERT_FRONT;
1780                 rq->cmd_flags |= REQ_PREEMPT;
1781         }
1782         __elv_add_request(drive->queue, rq, where, 0);
1783         ide_do_request(hwgroup, IDE_NO_IRQ);
1784         spin_unlock_irqrestore(&ide_lock, flags);
1785
1786         err = 0;
1787         if (must_wait) {
1788                 wait_for_completion(&wait);
1789                 if (rq->errors)
1790                         err = -EIO;
1791
1792                 blk_put_request(rq);
1793         }
1794
1795         return err;
1796 }
1797
1798 EXPORT_SYMBOL(ide_do_drive_cmd);