]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/gpu/drm/ttm/ttm_bo.c
drm/ttm: Export symbols needed for vmwgfx suspend / resume operations.
[net-next-2.6.git] / drivers / gpu / drm / ttm / ttm_bo.c
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30 /* Notes:
31  *
32  * We store bo pointer in drm_mm_node struct so we know which bo own a
33  * specific node. There is no protection on the pointer, thus to make
34  * sure things don't go berserk you have to access this pointer while
35  * holding the global lru lock and make sure anytime you free a node you
36  * reset the pointer to NULL.
37  */
38
39 #include "ttm/ttm_module.h"
40 #include "ttm/ttm_bo_driver.h"
41 #include "ttm/ttm_placement.h"
42 #include <linux/jiffies.h>
43 #include <linux/slab.h>
44 #include <linux/sched.h>
45 #include <linux/mm.h>
46 #include <linux/file.h>
47 #include <linux/module.h>
48
49 #define TTM_ASSERT_LOCKED(param)
50 #define TTM_DEBUG(fmt, arg...)
51 #define TTM_BO_HASH_ORDER 13
52
53 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
54 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
55 static void ttm_bo_global_kobj_release(struct kobject *kobj);
56
57 static struct attribute ttm_bo_count = {
58         .name = "bo_count",
59         .mode = S_IRUGO
60 };
61
62 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
63 {
64         int i;
65
66         for (i = 0; i <= TTM_PL_PRIV5; i++)
67                 if (flags & (1 << i)) {
68                         *mem_type = i;
69                         return 0;
70                 }
71         return -EINVAL;
72 }
73
74 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
75 {
76         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
77
78         printk(KERN_ERR TTM_PFX "    has_type: %d\n", man->has_type);
79         printk(KERN_ERR TTM_PFX "    use_type: %d\n", man->use_type);
80         printk(KERN_ERR TTM_PFX "    flags: 0x%08X\n", man->flags);
81         printk(KERN_ERR TTM_PFX "    gpu_offset: 0x%08lX\n", man->gpu_offset);
82         printk(KERN_ERR TTM_PFX "    io_offset: 0x%08lX\n", man->io_offset);
83         printk(KERN_ERR TTM_PFX "    io_size: %ld\n", man->io_size);
84         printk(KERN_ERR TTM_PFX "    size: %llu\n", man->size);
85         printk(KERN_ERR TTM_PFX "    available_caching: 0x%08X\n",
86                 man->available_caching);
87         printk(KERN_ERR TTM_PFX "    default_caching: 0x%08X\n",
88                 man->default_caching);
89         if (mem_type != TTM_PL_SYSTEM) {
90                 spin_lock(&bdev->glob->lru_lock);
91                 drm_mm_debug_table(&man->manager, TTM_PFX);
92                 spin_unlock(&bdev->glob->lru_lock);
93         }
94 }
95
96 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
97                                         struct ttm_placement *placement)
98 {
99         int i, ret, mem_type;
100
101         printk(KERN_ERR TTM_PFX "No space for %p (%lu pages, %luK, %luM)\n",
102                 bo, bo->mem.num_pages, bo->mem.size >> 10,
103                 bo->mem.size >> 20);
104         for (i = 0; i < placement->num_placement; i++) {
105                 ret = ttm_mem_type_from_flags(placement->placement[i],
106                                                 &mem_type);
107                 if (ret)
108                         return;
109                 printk(KERN_ERR TTM_PFX "  placement[%d]=0x%08X (%d)\n",
110                         i, placement->placement[i], mem_type);
111                 ttm_mem_type_debug(bo->bdev, mem_type);
112         }
113 }
114
115 static ssize_t ttm_bo_global_show(struct kobject *kobj,
116                                   struct attribute *attr,
117                                   char *buffer)
118 {
119         struct ttm_bo_global *glob =
120                 container_of(kobj, struct ttm_bo_global, kobj);
121
122         return snprintf(buffer, PAGE_SIZE, "%lu\n",
123                         (unsigned long) atomic_read(&glob->bo_count));
124 }
125
126 static struct attribute *ttm_bo_global_attrs[] = {
127         &ttm_bo_count,
128         NULL
129 };
130
131 static struct sysfs_ops ttm_bo_global_ops = {
132         .show = &ttm_bo_global_show
133 };
134
135 static struct kobj_type ttm_bo_glob_kobj_type  = {
136         .release = &ttm_bo_global_kobj_release,
137         .sysfs_ops = &ttm_bo_global_ops,
138         .default_attrs = ttm_bo_global_attrs
139 };
140
141
142 static inline uint32_t ttm_bo_type_flags(unsigned type)
143 {
144         return 1 << (type);
145 }
146
147 static void ttm_bo_release_list(struct kref *list_kref)
148 {
149         struct ttm_buffer_object *bo =
150             container_of(list_kref, struct ttm_buffer_object, list_kref);
151         struct ttm_bo_device *bdev = bo->bdev;
152
153         BUG_ON(atomic_read(&bo->list_kref.refcount));
154         BUG_ON(atomic_read(&bo->kref.refcount));
155         BUG_ON(atomic_read(&bo->cpu_writers));
156         BUG_ON(bo->sync_obj != NULL);
157         BUG_ON(bo->mem.mm_node != NULL);
158         BUG_ON(!list_empty(&bo->lru));
159         BUG_ON(!list_empty(&bo->ddestroy));
160
161         if (bo->ttm)
162                 ttm_tt_destroy(bo->ttm);
163         atomic_dec(&bo->glob->bo_count);
164         if (bo->destroy)
165                 bo->destroy(bo);
166         else {
167                 ttm_mem_global_free(bdev->glob->mem_glob, bo->acc_size);
168                 kfree(bo);
169         }
170 }
171
172 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
173 {
174
175         if (interruptible) {
176                 int ret = 0;
177
178                 ret = wait_event_interruptible(bo->event_queue,
179                                                atomic_read(&bo->reserved) == 0);
180                 if (unlikely(ret != 0))
181                         return ret;
182         } else {
183                 wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
184         }
185         return 0;
186 }
187 EXPORT_SYMBOL(ttm_bo_wait_unreserved);
188
189 static void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
190 {
191         struct ttm_bo_device *bdev = bo->bdev;
192         struct ttm_mem_type_manager *man;
193
194         BUG_ON(!atomic_read(&bo->reserved));
195
196         if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
197
198                 BUG_ON(!list_empty(&bo->lru));
199
200                 man = &bdev->man[bo->mem.mem_type];
201                 list_add_tail(&bo->lru, &man->lru);
202                 kref_get(&bo->list_kref);
203
204                 if (bo->ttm != NULL) {
205                         list_add_tail(&bo->swap, &bo->glob->swap_lru);
206                         kref_get(&bo->list_kref);
207                 }
208         }
209 }
210
211 /**
212  * Call with the lru_lock held.
213  */
214
215 static int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
216 {
217         int put_count = 0;
218
219         if (!list_empty(&bo->swap)) {
220                 list_del_init(&bo->swap);
221                 ++put_count;
222         }
223         if (!list_empty(&bo->lru)) {
224                 list_del_init(&bo->lru);
225                 ++put_count;
226         }
227
228         /*
229          * TODO: Add a driver hook to delete from
230          * driver-specific LRU's here.
231          */
232
233         return put_count;
234 }
235
236 int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
237                           bool interruptible,
238                           bool no_wait, bool use_sequence, uint32_t sequence)
239 {
240         struct ttm_bo_global *glob = bo->glob;
241         int ret;
242
243         while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
244                 if (use_sequence && bo->seq_valid &&
245                         (sequence - bo->val_seq < (1 << 31))) {
246                         return -EAGAIN;
247                 }
248
249                 if (no_wait)
250                         return -EBUSY;
251
252                 spin_unlock(&glob->lru_lock);
253                 ret = ttm_bo_wait_unreserved(bo, interruptible);
254                 spin_lock(&glob->lru_lock);
255
256                 if (unlikely(ret))
257                         return ret;
258         }
259
260         if (use_sequence) {
261                 bo->val_seq = sequence;
262                 bo->seq_valid = true;
263         } else {
264                 bo->seq_valid = false;
265         }
266
267         return 0;
268 }
269 EXPORT_SYMBOL(ttm_bo_reserve);
270
271 static void ttm_bo_ref_bug(struct kref *list_kref)
272 {
273         BUG();
274 }
275
276 int ttm_bo_reserve(struct ttm_buffer_object *bo,
277                    bool interruptible,
278                    bool no_wait, bool use_sequence, uint32_t sequence)
279 {
280         struct ttm_bo_global *glob = bo->glob;
281         int put_count = 0;
282         int ret;
283
284         spin_lock(&glob->lru_lock);
285         ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
286                                     sequence);
287         if (likely(ret == 0))
288                 put_count = ttm_bo_del_from_lru(bo);
289         spin_unlock(&glob->lru_lock);
290
291         while (put_count--)
292                 kref_put(&bo->list_kref, ttm_bo_ref_bug);
293
294         return ret;
295 }
296
297 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
298 {
299         struct ttm_bo_global *glob = bo->glob;
300
301         spin_lock(&glob->lru_lock);
302         ttm_bo_add_to_lru(bo);
303         atomic_set(&bo->reserved, 0);
304         wake_up_all(&bo->event_queue);
305         spin_unlock(&glob->lru_lock);
306 }
307 EXPORT_SYMBOL(ttm_bo_unreserve);
308
309 /*
310  * Call bo->mutex locked.
311  */
312 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
313 {
314         struct ttm_bo_device *bdev = bo->bdev;
315         struct ttm_bo_global *glob = bo->glob;
316         int ret = 0;
317         uint32_t page_flags = 0;
318
319         TTM_ASSERT_LOCKED(&bo->mutex);
320         bo->ttm = NULL;
321
322         if (bdev->need_dma32)
323                 page_flags |= TTM_PAGE_FLAG_DMA32;
324
325         switch (bo->type) {
326         case ttm_bo_type_device:
327                 if (zero_alloc)
328                         page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
329         case ttm_bo_type_kernel:
330                 bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
331                                         page_flags, glob->dummy_read_page);
332                 if (unlikely(bo->ttm == NULL))
333                         ret = -ENOMEM;
334                 break;
335         case ttm_bo_type_user:
336                 bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
337                                         page_flags | TTM_PAGE_FLAG_USER,
338                                         glob->dummy_read_page);
339                 if (unlikely(bo->ttm == NULL)) {
340                         ret = -ENOMEM;
341                         break;
342                 }
343
344                 ret = ttm_tt_set_user(bo->ttm, current,
345                                       bo->buffer_start, bo->num_pages);
346                 if (unlikely(ret != 0))
347                         ttm_tt_destroy(bo->ttm);
348                 break;
349         default:
350                 printk(KERN_ERR TTM_PFX "Illegal buffer object type\n");
351                 ret = -EINVAL;
352                 break;
353         }
354
355         return ret;
356 }
357
358 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
359                                   struct ttm_mem_reg *mem,
360                                   bool evict, bool interruptible, bool no_wait)
361 {
362         struct ttm_bo_device *bdev = bo->bdev;
363         bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
364         bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
365         struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
366         struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
367         int ret = 0;
368
369         if (old_is_pci || new_is_pci ||
370             ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0))
371                 ttm_bo_unmap_virtual(bo);
372
373         /*
374          * Create and bind a ttm if required.
375          */
376
377         if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && (bo->ttm == NULL)) {
378                 ret = ttm_bo_add_ttm(bo, false);
379                 if (ret)
380                         goto out_err;
381
382                 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
383                 if (ret)
384                         goto out_err;
385
386                 if (mem->mem_type != TTM_PL_SYSTEM) {
387                         ret = ttm_tt_bind(bo->ttm, mem);
388                         if (ret)
389                                 goto out_err;
390                 }
391
392                 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
393                         bo->mem = *mem;
394                         mem->mm_node = NULL;
395                         goto moved;
396                 }
397
398         }
399
400         if (bdev->driver->move_notify)
401                 bdev->driver->move_notify(bo, mem);
402
403         if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
404             !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
405                 ret = ttm_bo_move_ttm(bo, evict, no_wait, mem);
406         else if (bdev->driver->move)
407                 ret = bdev->driver->move(bo, evict, interruptible,
408                                          no_wait, mem);
409         else
410                 ret = ttm_bo_move_memcpy(bo, evict, no_wait, mem);
411
412         if (ret)
413                 goto out_err;
414
415 moved:
416         if (bo->evicted) {
417                 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
418                 if (ret)
419                         printk(KERN_ERR TTM_PFX "Can not flush read caches\n");
420                 bo->evicted = false;
421         }
422
423         if (bo->mem.mm_node) {
424                 spin_lock(&bo->lock);
425                 bo->offset = (bo->mem.mm_node->start << PAGE_SHIFT) +
426                     bdev->man[bo->mem.mem_type].gpu_offset;
427                 bo->cur_placement = bo->mem.placement;
428                 spin_unlock(&bo->lock);
429         }
430
431         return 0;
432
433 out_err:
434         new_man = &bdev->man[bo->mem.mem_type];
435         if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
436                 ttm_tt_unbind(bo->ttm);
437                 ttm_tt_destroy(bo->ttm);
438                 bo->ttm = NULL;
439         }
440
441         return ret;
442 }
443
444 /**
445  * If bo idle, remove from delayed- and lru lists, and unref.
446  * If not idle, and already on delayed list, do nothing.
447  * If not idle, and not on delayed list, put on delayed list,
448  *   up the list_kref and schedule a delayed list check.
449  */
450
451 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo, bool remove_all)
452 {
453         struct ttm_bo_device *bdev = bo->bdev;
454         struct ttm_bo_global *glob = bo->glob;
455         struct ttm_bo_driver *driver = bdev->driver;
456         int ret;
457
458         spin_lock(&bo->lock);
459         (void) ttm_bo_wait(bo, false, false, !remove_all);
460
461         if (!bo->sync_obj) {
462                 int put_count;
463
464                 spin_unlock(&bo->lock);
465
466                 spin_lock(&glob->lru_lock);
467                 put_count = ttm_bo_del_from_lru(bo);
468
469                 ret = ttm_bo_reserve_locked(bo, false, false, false, 0);
470                 BUG_ON(ret);
471                 if (bo->ttm)
472                         ttm_tt_unbind(bo->ttm);
473
474                 if (!list_empty(&bo->ddestroy)) {
475                         list_del_init(&bo->ddestroy);
476                         ++put_count;
477                 }
478                 if (bo->mem.mm_node) {
479                         bo->mem.mm_node->private = NULL;
480                         drm_mm_put_block(bo->mem.mm_node);
481                         bo->mem.mm_node = NULL;
482                 }
483                 spin_unlock(&glob->lru_lock);
484
485                 atomic_set(&bo->reserved, 0);
486
487                 while (put_count--)
488                         kref_put(&bo->list_kref, ttm_bo_ref_bug);
489
490                 return 0;
491         }
492
493         spin_lock(&glob->lru_lock);
494         if (list_empty(&bo->ddestroy)) {
495                 void *sync_obj = bo->sync_obj;
496                 void *sync_obj_arg = bo->sync_obj_arg;
497
498                 kref_get(&bo->list_kref);
499                 list_add_tail(&bo->ddestroy, &bdev->ddestroy);
500                 spin_unlock(&glob->lru_lock);
501                 spin_unlock(&bo->lock);
502
503                 if (sync_obj)
504                         driver->sync_obj_flush(sync_obj, sync_obj_arg);
505                 schedule_delayed_work(&bdev->wq,
506                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
507                 ret = 0;
508
509         } else {
510                 spin_unlock(&glob->lru_lock);
511                 spin_unlock(&bo->lock);
512                 ret = -EBUSY;
513         }
514
515         return ret;
516 }
517
518 /**
519  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
520  * encountered buffers.
521  */
522
523 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
524 {
525         struct ttm_bo_global *glob = bdev->glob;
526         struct ttm_buffer_object *entry, *nentry;
527         struct list_head *list, *next;
528         int ret;
529
530         spin_lock(&glob->lru_lock);
531         list_for_each_safe(list, next, &bdev->ddestroy) {
532                 entry = list_entry(list, struct ttm_buffer_object, ddestroy);
533                 nentry = NULL;
534
535                 /*
536                  * Protect the next list entry from destruction while we
537                  * unlock the lru_lock.
538                  */
539
540                 if (next != &bdev->ddestroy) {
541                         nentry = list_entry(next, struct ttm_buffer_object,
542                                             ddestroy);
543                         kref_get(&nentry->list_kref);
544                 }
545                 kref_get(&entry->list_kref);
546
547                 spin_unlock(&glob->lru_lock);
548                 ret = ttm_bo_cleanup_refs(entry, remove_all);
549                 kref_put(&entry->list_kref, ttm_bo_release_list);
550
551                 spin_lock(&glob->lru_lock);
552                 if (nentry) {
553                         bool next_onlist = !list_empty(next);
554                         spin_unlock(&glob->lru_lock);
555                         kref_put(&nentry->list_kref, ttm_bo_release_list);
556                         spin_lock(&glob->lru_lock);
557                         /*
558                          * Someone might have raced us and removed the
559                          * next entry from the list. We don't bother restarting
560                          * list traversal.
561                          */
562
563                         if (!next_onlist)
564                                 break;
565                 }
566                 if (ret)
567                         break;
568         }
569         ret = !list_empty(&bdev->ddestroy);
570         spin_unlock(&glob->lru_lock);
571
572         return ret;
573 }
574
575 static void ttm_bo_delayed_workqueue(struct work_struct *work)
576 {
577         struct ttm_bo_device *bdev =
578             container_of(work, struct ttm_bo_device, wq.work);
579
580         if (ttm_bo_delayed_delete(bdev, false)) {
581                 schedule_delayed_work(&bdev->wq,
582                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
583         }
584 }
585
586 static void ttm_bo_release(struct kref *kref)
587 {
588         struct ttm_buffer_object *bo =
589             container_of(kref, struct ttm_buffer_object, kref);
590         struct ttm_bo_device *bdev = bo->bdev;
591
592         if (likely(bo->vm_node != NULL)) {
593                 rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
594                 drm_mm_put_block(bo->vm_node);
595                 bo->vm_node = NULL;
596         }
597         write_unlock(&bdev->vm_lock);
598         ttm_bo_cleanup_refs(bo, false);
599         kref_put(&bo->list_kref, ttm_bo_release_list);
600         write_lock(&bdev->vm_lock);
601 }
602
603 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
604 {
605         struct ttm_buffer_object *bo = *p_bo;
606         struct ttm_bo_device *bdev = bo->bdev;
607
608         *p_bo = NULL;
609         write_lock(&bdev->vm_lock);
610         kref_put(&bo->kref, ttm_bo_release);
611         write_unlock(&bdev->vm_lock);
612 }
613 EXPORT_SYMBOL(ttm_bo_unref);
614
615 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
616                         bool no_wait)
617 {
618         struct ttm_bo_device *bdev = bo->bdev;
619         struct ttm_bo_global *glob = bo->glob;
620         struct ttm_mem_reg evict_mem;
621         struct ttm_placement placement;
622         int ret = 0;
623
624         spin_lock(&bo->lock);
625         ret = ttm_bo_wait(bo, false, interruptible, no_wait);
626         spin_unlock(&bo->lock);
627
628         if (unlikely(ret != 0)) {
629                 if (ret != -ERESTARTSYS) {
630                         printk(KERN_ERR TTM_PFX
631                                "Failed to expire sync object before "
632                                "buffer eviction.\n");
633                 }
634                 goto out;
635         }
636
637         BUG_ON(!atomic_read(&bo->reserved));
638
639         evict_mem = bo->mem;
640         evict_mem.mm_node = NULL;
641
642         placement.fpfn = 0;
643         placement.lpfn = 0;
644         placement.num_placement = 0;
645         placement.num_busy_placement = 0;
646         bdev->driver->evict_flags(bo, &placement);
647         ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
648                                 no_wait);
649         if (ret) {
650                 if (ret != -ERESTARTSYS) {
651                         printk(KERN_ERR TTM_PFX
652                                "Failed to find memory space for "
653                                "buffer 0x%p eviction.\n", bo);
654                         ttm_bo_mem_space_debug(bo, &placement);
655                 }
656                 goto out;
657         }
658
659         ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
660                                      no_wait);
661         if (ret) {
662                 if (ret != -ERESTARTSYS)
663                         printk(KERN_ERR TTM_PFX "Buffer eviction failed\n");
664                 spin_lock(&glob->lru_lock);
665                 if (evict_mem.mm_node) {
666                         evict_mem.mm_node->private = NULL;
667                         drm_mm_put_block(evict_mem.mm_node);
668                         evict_mem.mm_node = NULL;
669                 }
670                 spin_unlock(&glob->lru_lock);
671                 goto out;
672         }
673         bo->evicted = true;
674 out:
675         return ret;
676 }
677
678 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
679                                 uint32_t mem_type,
680                                 bool interruptible, bool no_wait)
681 {
682         struct ttm_bo_global *glob = bdev->glob;
683         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
684         struct ttm_buffer_object *bo;
685         int ret, put_count = 0;
686
687 retry:
688         spin_lock(&glob->lru_lock);
689         if (list_empty(&man->lru)) {
690                 spin_unlock(&glob->lru_lock);
691                 return -EBUSY;
692         }
693
694         bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
695         kref_get(&bo->list_kref);
696
697         ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
698
699         if (unlikely(ret == -EBUSY)) {
700                 spin_unlock(&glob->lru_lock);
701                 if (likely(!no_wait))
702                         ret = ttm_bo_wait_unreserved(bo, interruptible);
703
704                 kref_put(&bo->list_kref, ttm_bo_release_list);
705
706                 /**
707                  * We *need* to retry after releasing the lru lock.
708                  */
709
710                 if (unlikely(ret != 0))
711                         return ret;
712                 goto retry;
713         }
714
715         put_count = ttm_bo_del_from_lru(bo);
716         spin_unlock(&glob->lru_lock);
717
718         BUG_ON(ret != 0);
719
720         while (put_count--)
721                 kref_put(&bo->list_kref, ttm_bo_ref_bug);
722
723         ret = ttm_bo_evict(bo, interruptible, no_wait);
724         ttm_bo_unreserve(bo);
725
726         kref_put(&bo->list_kref, ttm_bo_release_list);
727         return ret;
728 }
729
730 static int ttm_bo_man_get_node(struct ttm_buffer_object *bo,
731                                 struct ttm_mem_type_manager *man,
732                                 struct ttm_placement *placement,
733                                 struct ttm_mem_reg *mem,
734                                 struct drm_mm_node **node)
735 {
736         struct ttm_bo_global *glob = bo->glob;
737         unsigned long lpfn;
738         int ret;
739
740         lpfn = placement->lpfn;
741         if (!lpfn)
742                 lpfn = man->size;
743         *node = NULL;
744         do {
745                 ret = drm_mm_pre_get(&man->manager);
746                 if (unlikely(ret))
747                         return ret;
748
749                 spin_lock(&glob->lru_lock);
750                 *node = drm_mm_search_free_in_range(&man->manager,
751                                         mem->num_pages, mem->page_alignment,
752                                         placement->fpfn, lpfn, 1);
753                 if (unlikely(*node == NULL)) {
754                         spin_unlock(&glob->lru_lock);
755                         return 0;
756                 }
757                 *node = drm_mm_get_block_atomic_range(*node, mem->num_pages,
758                                                         mem->page_alignment,
759                                                         placement->fpfn,
760                                                         lpfn);
761                 spin_unlock(&glob->lru_lock);
762         } while (*node == NULL);
763         return 0;
764 }
765
766 /**
767  * Repeatedly evict memory from the LRU for @mem_type until we create enough
768  * space, or we've evicted everything and there isn't enough space.
769  */
770 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
771                                         uint32_t mem_type,
772                                         struct ttm_placement *placement,
773                                         struct ttm_mem_reg *mem,
774                                         bool interruptible, bool no_wait)
775 {
776         struct ttm_bo_device *bdev = bo->bdev;
777         struct ttm_bo_global *glob = bdev->glob;
778         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
779         struct drm_mm_node *node;
780         int ret;
781
782         do {
783                 ret = ttm_bo_man_get_node(bo, man, placement, mem, &node);
784                 if (unlikely(ret != 0))
785                         return ret;
786                 if (node)
787                         break;
788                 spin_lock(&glob->lru_lock);
789                 if (list_empty(&man->lru)) {
790                         spin_unlock(&glob->lru_lock);
791                         break;
792                 }
793                 spin_unlock(&glob->lru_lock);
794                 ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
795                                                 no_wait);
796                 if (unlikely(ret != 0))
797                         return ret;
798         } while (1);
799         if (node == NULL)
800                 return -ENOMEM;
801         mem->mm_node = node;
802         mem->mem_type = mem_type;
803         return 0;
804 }
805
806 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
807                                       uint32_t cur_placement,
808                                       uint32_t proposed_placement)
809 {
810         uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
811         uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
812
813         /**
814          * Keep current caching if possible.
815          */
816
817         if ((cur_placement & caching) != 0)
818                 result |= (cur_placement & caching);
819         else if ((man->default_caching & caching) != 0)
820                 result |= man->default_caching;
821         else if ((TTM_PL_FLAG_CACHED & caching) != 0)
822                 result |= TTM_PL_FLAG_CACHED;
823         else if ((TTM_PL_FLAG_WC & caching) != 0)
824                 result |= TTM_PL_FLAG_WC;
825         else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
826                 result |= TTM_PL_FLAG_UNCACHED;
827
828         return result;
829 }
830
831 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
832                                  bool disallow_fixed,
833                                  uint32_t mem_type,
834                                  uint32_t proposed_placement,
835                                  uint32_t *masked_placement)
836 {
837         uint32_t cur_flags = ttm_bo_type_flags(mem_type);
838
839         if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && disallow_fixed)
840                 return false;
841
842         if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
843                 return false;
844
845         if ((proposed_placement & man->available_caching) == 0)
846                 return false;
847
848         cur_flags |= (proposed_placement & man->available_caching);
849
850         *masked_placement = cur_flags;
851         return true;
852 }
853
854 /**
855  * Creates space for memory region @mem according to its type.
856  *
857  * This function first searches for free space in compatible memory types in
858  * the priority order defined by the driver.  If free space isn't found, then
859  * ttm_bo_mem_force_space is attempted in priority order to evict and find
860  * space.
861  */
862 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
863                         struct ttm_placement *placement,
864                         struct ttm_mem_reg *mem,
865                         bool interruptible, bool no_wait)
866 {
867         struct ttm_bo_device *bdev = bo->bdev;
868         struct ttm_mem_type_manager *man;
869         uint32_t mem_type = TTM_PL_SYSTEM;
870         uint32_t cur_flags = 0;
871         bool type_found = false;
872         bool type_ok = false;
873         bool has_erestartsys = false;
874         struct drm_mm_node *node = NULL;
875         int i, ret;
876
877         mem->mm_node = NULL;
878         for (i = 0; i < placement->num_placement; ++i) {
879                 ret = ttm_mem_type_from_flags(placement->placement[i],
880                                                 &mem_type);
881                 if (ret)
882                         return ret;
883                 man = &bdev->man[mem_type];
884
885                 type_ok = ttm_bo_mt_compatible(man,
886                                                 bo->type == ttm_bo_type_user,
887                                                 mem_type,
888                                                 placement->placement[i],
889                                                 &cur_flags);
890
891                 if (!type_ok)
892                         continue;
893
894                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
895                                                   cur_flags);
896                 /*
897                  * Use the access and other non-mapping-related flag bits from
898                  * the memory placement flags to the current flags
899                  */
900                 ttm_flag_masked(&cur_flags, placement->placement[i],
901                                 ~TTM_PL_MASK_MEMTYPE);
902
903                 if (mem_type == TTM_PL_SYSTEM)
904                         break;
905
906                 if (man->has_type && man->use_type) {
907                         type_found = true;
908                         ret = ttm_bo_man_get_node(bo, man, placement, mem,
909                                                         &node);
910                         if (unlikely(ret))
911                                 return ret;
912                 }
913                 if (node)
914                         break;
915         }
916
917         if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || node) {
918                 mem->mm_node = node;
919                 mem->mem_type = mem_type;
920                 mem->placement = cur_flags;
921                 if (node)
922                         node->private = bo;
923                 return 0;
924         }
925
926         if (!type_found)
927                 return -EINVAL;
928
929         for (i = 0; i < placement->num_busy_placement; ++i) {
930                 ret = ttm_mem_type_from_flags(placement->busy_placement[i],
931                                                 &mem_type);
932                 if (ret)
933                         return ret;
934                 man = &bdev->man[mem_type];
935                 if (!man->has_type)
936                         continue;
937                 if (!ttm_bo_mt_compatible(man,
938                                                 bo->type == ttm_bo_type_user,
939                                                 mem_type,
940                                                 placement->busy_placement[i],
941                                                 &cur_flags))
942                         continue;
943
944                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
945                                                   cur_flags);
946                 /*
947                  * Use the access and other non-mapping-related flag bits from
948                  * the memory placement flags to the current flags
949                  */
950                 ttm_flag_masked(&cur_flags, placement->busy_placement[i],
951                                 ~TTM_PL_MASK_MEMTYPE);
952
953                 ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
954                                                 interruptible, no_wait);
955                 if (ret == 0 && mem->mm_node) {
956                         mem->placement = cur_flags;
957                         mem->mm_node->private = bo;
958                         return 0;
959                 }
960                 if (ret == -ERESTARTSYS)
961                         has_erestartsys = true;
962         }
963         ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
964         return ret;
965 }
966 EXPORT_SYMBOL(ttm_bo_mem_space);
967
968 int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
969 {
970         if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
971                 return -EBUSY;
972
973         return wait_event_interruptible(bo->event_queue,
974                                         atomic_read(&bo->cpu_writers) == 0);
975 }
976 EXPORT_SYMBOL(ttm_bo_wait_cpu);
977
978 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
979                         struct ttm_placement *placement,
980                         bool interruptible, bool no_wait)
981 {
982         struct ttm_bo_global *glob = bo->glob;
983         int ret = 0;
984         struct ttm_mem_reg mem;
985
986         BUG_ON(!atomic_read(&bo->reserved));
987
988         /*
989          * FIXME: It's possible to pipeline buffer moves.
990          * Have the driver move function wait for idle when necessary,
991          * instead of doing it here.
992          */
993         spin_lock(&bo->lock);
994         ret = ttm_bo_wait(bo, false, interruptible, no_wait);
995         spin_unlock(&bo->lock);
996         if (ret)
997                 return ret;
998         mem.num_pages = bo->num_pages;
999         mem.size = mem.num_pages << PAGE_SHIFT;
1000         mem.page_alignment = bo->mem.page_alignment;
1001         /*
1002          * Determine where to move the buffer.
1003          */
1004         ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait);
1005         if (ret)
1006                 goto out_unlock;
1007         ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait);
1008 out_unlock:
1009         if (ret && mem.mm_node) {
1010                 spin_lock(&glob->lru_lock);
1011                 mem.mm_node->private = NULL;
1012                 drm_mm_put_block(mem.mm_node);
1013                 spin_unlock(&glob->lru_lock);
1014         }
1015         return ret;
1016 }
1017
1018 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1019                              struct ttm_mem_reg *mem)
1020 {
1021         int i;
1022
1023         for (i = 0; i < placement->num_placement; i++) {
1024                 if ((placement->placement[i] & mem->placement &
1025                         TTM_PL_MASK_CACHING) &&
1026                         (placement->placement[i] & mem->placement &
1027                         TTM_PL_MASK_MEM))
1028                         return i;
1029         }
1030         return -1;
1031 }
1032
1033 int ttm_bo_validate(struct ttm_buffer_object *bo,
1034                         struct ttm_placement *placement,
1035                         bool interruptible, bool no_wait)
1036 {
1037         int ret;
1038
1039         BUG_ON(!atomic_read(&bo->reserved));
1040         /* Check that range is valid */
1041         if (placement->lpfn || placement->fpfn)
1042                 if (placement->fpfn > placement->lpfn ||
1043                         (placement->lpfn - placement->fpfn) < bo->num_pages)
1044                         return -EINVAL;
1045         /*
1046          * Check whether we need to move buffer.
1047          */
1048         ret = ttm_bo_mem_compat(placement, &bo->mem);
1049         if (ret < 0) {
1050                 ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait);
1051                 if (ret)
1052                         return ret;
1053         } else {
1054                 /*
1055                  * Use the access and other non-mapping-related flag bits from
1056                  * the compatible memory placement flags to the active flags
1057                  */
1058                 ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1059                                 ~TTM_PL_MASK_MEMTYPE);
1060         }
1061         /*
1062          * We might need to add a TTM.
1063          */
1064         if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1065                 ret = ttm_bo_add_ttm(bo, true);
1066                 if (ret)
1067                         return ret;
1068         }
1069         return 0;
1070 }
1071 EXPORT_SYMBOL(ttm_bo_validate);
1072
1073 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1074                                 struct ttm_placement *placement)
1075 {
1076         int i;
1077
1078         if (placement->fpfn || placement->lpfn) {
1079                 if (bo->mem.num_pages > (placement->lpfn - placement->fpfn)) {
1080                         printk(KERN_ERR TTM_PFX "Page number range to small "
1081                                 "Need %lu pages, range is [%u, %u]\n",
1082                                 bo->mem.num_pages, placement->fpfn,
1083                                 placement->lpfn);
1084                         return -EINVAL;
1085                 }
1086         }
1087         for (i = 0; i < placement->num_placement; i++) {
1088                 if (!capable(CAP_SYS_ADMIN)) {
1089                         if (placement->placement[i] & TTM_PL_FLAG_NO_EVICT) {
1090                                 printk(KERN_ERR TTM_PFX "Need to be root to "
1091                                         "modify NO_EVICT status.\n");
1092                                 return -EINVAL;
1093                         }
1094                 }
1095         }
1096         for (i = 0; i < placement->num_busy_placement; i++) {
1097                 if (!capable(CAP_SYS_ADMIN)) {
1098                         if (placement->busy_placement[i] & TTM_PL_FLAG_NO_EVICT) {
1099                                 printk(KERN_ERR TTM_PFX "Need to be root to "
1100                                         "modify NO_EVICT status.\n");
1101                                 return -EINVAL;
1102                         }
1103                 }
1104         }
1105         return 0;
1106 }
1107
1108 int ttm_bo_init(struct ttm_bo_device *bdev,
1109                 struct ttm_buffer_object *bo,
1110                 unsigned long size,
1111                 enum ttm_bo_type type,
1112                 struct ttm_placement *placement,
1113                 uint32_t page_alignment,
1114                 unsigned long buffer_start,
1115                 bool interruptible,
1116                 struct file *persistant_swap_storage,
1117                 size_t acc_size,
1118                 void (*destroy) (struct ttm_buffer_object *))
1119 {
1120         int ret = 0;
1121         unsigned long num_pages;
1122
1123         size += buffer_start & ~PAGE_MASK;
1124         num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1125         if (num_pages == 0) {
1126                 printk(KERN_ERR TTM_PFX "Illegal buffer object size.\n");
1127                 return -EINVAL;
1128         }
1129         bo->destroy = destroy;
1130
1131         spin_lock_init(&bo->lock);
1132         kref_init(&bo->kref);
1133         kref_init(&bo->list_kref);
1134         atomic_set(&bo->cpu_writers, 0);
1135         atomic_set(&bo->reserved, 1);
1136         init_waitqueue_head(&bo->event_queue);
1137         INIT_LIST_HEAD(&bo->lru);
1138         INIT_LIST_HEAD(&bo->ddestroy);
1139         INIT_LIST_HEAD(&bo->swap);
1140         bo->bdev = bdev;
1141         bo->glob = bdev->glob;
1142         bo->type = type;
1143         bo->num_pages = num_pages;
1144         bo->mem.size = num_pages << PAGE_SHIFT;
1145         bo->mem.mem_type = TTM_PL_SYSTEM;
1146         bo->mem.num_pages = bo->num_pages;
1147         bo->mem.mm_node = NULL;
1148         bo->mem.page_alignment = page_alignment;
1149         bo->buffer_start = buffer_start & PAGE_MASK;
1150         bo->priv_flags = 0;
1151         bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1152         bo->seq_valid = false;
1153         bo->persistant_swap_storage = persistant_swap_storage;
1154         bo->acc_size = acc_size;
1155         atomic_inc(&bo->glob->bo_count);
1156
1157         ret = ttm_bo_check_placement(bo, placement);
1158         if (unlikely(ret != 0))
1159                 goto out_err;
1160
1161         /*
1162          * For ttm_bo_type_device buffers, allocate
1163          * address space from the device.
1164          */
1165         if (bo->type == ttm_bo_type_device) {
1166                 ret = ttm_bo_setup_vm(bo);
1167                 if (ret)
1168                         goto out_err;
1169         }
1170
1171         ret = ttm_bo_validate(bo, placement, interruptible, false);
1172         if (ret)
1173                 goto out_err;
1174
1175         ttm_bo_unreserve(bo);
1176         return 0;
1177
1178 out_err:
1179         ttm_bo_unreserve(bo);
1180         ttm_bo_unref(&bo);
1181
1182         return ret;
1183 }
1184 EXPORT_SYMBOL(ttm_bo_init);
1185
1186 static inline size_t ttm_bo_size(struct ttm_bo_global *glob,
1187                                  unsigned long num_pages)
1188 {
1189         size_t page_array_size = (num_pages * sizeof(void *) + PAGE_SIZE - 1) &
1190             PAGE_MASK;
1191
1192         return glob->ttm_bo_size + 2 * page_array_size;
1193 }
1194
1195 int ttm_bo_create(struct ttm_bo_device *bdev,
1196                         unsigned long size,
1197                         enum ttm_bo_type type,
1198                         struct ttm_placement *placement,
1199                         uint32_t page_alignment,
1200                         unsigned long buffer_start,
1201                         bool interruptible,
1202                         struct file *persistant_swap_storage,
1203                         struct ttm_buffer_object **p_bo)
1204 {
1205         struct ttm_buffer_object *bo;
1206         struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1207         int ret;
1208
1209         size_t acc_size =
1210             ttm_bo_size(bdev->glob, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1211         ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1212         if (unlikely(ret != 0))
1213                 return ret;
1214
1215         bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1216
1217         if (unlikely(bo == NULL)) {
1218                 ttm_mem_global_free(mem_glob, acc_size);
1219                 return -ENOMEM;
1220         }
1221
1222         ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1223                                 buffer_start, interruptible,
1224                                 persistant_swap_storage, acc_size, NULL);
1225         if (likely(ret == 0))
1226                 *p_bo = bo;
1227
1228         return ret;
1229 }
1230
1231 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1232                                         unsigned mem_type, bool allow_errors)
1233 {
1234         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1235         struct ttm_bo_global *glob = bdev->glob;
1236         int ret;
1237
1238         /*
1239          * Can't use standard list traversal since we're unlocking.
1240          */
1241
1242         spin_lock(&glob->lru_lock);
1243         while (!list_empty(&man->lru)) {
1244                 spin_unlock(&glob->lru_lock);
1245                 ret = ttm_mem_evict_first(bdev, mem_type, false, false);
1246                 if (ret) {
1247                         if (allow_errors) {
1248                                 return ret;
1249                         } else {
1250                                 printk(KERN_ERR TTM_PFX
1251                                         "Cleanup eviction failed\n");
1252                         }
1253                 }
1254                 spin_lock(&glob->lru_lock);
1255         }
1256         spin_unlock(&glob->lru_lock);
1257         return 0;
1258 }
1259
1260 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1261 {
1262         struct ttm_bo_global *glob = bdev->glob;
1263         struct ttm_mem_type_manager *man;
1264         int ret = -EINVAL;
1265
1266         if (mem_type >= TTM_NUM_MEM_TYPES) {
1267                 printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", mem_type);
1268                 return ret;
1269         }
1270         man = &bdev->man[mem_type];
1271
1272         if (!man->has_type) {
1273                 printk(KERN_ERR TTM_PFX "Trying to take down uninitialized "
1274                        "memory manager type %u\n", mem_type);
1275                 return ret;
1276         }
1277
1278         man->use_type = false;
1279         man->has_type = false;
1280
1281         ret = 0;
1282         if (mem_type > 0) {
1283                 ttm_bo_force_list_clean(bdev, mem_type, false);
1284
1285                 spin_lock(&glob->lru_lock);
1286                 if (drm_mm_clean(&man->manager))
1287                         drm_mm_takedown(&man->manager);
1288                 else
1289                         ret = -EBUSY;
1290
1291                 spin_unlock(&glob->lru_lock);
1292         }
1293
1294         return ret;
1295 }
1296 EXPORT_SYMBOL(ttm_bo_clean_mm);
1297
1298 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1299 {
1300         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1301
1302         if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1303                 printk(KERN_ERR TTM_PFX
1304                        "Illegal memory manager memory type %u.\n",
1305                        mem_type);
1306                 return -EINVAL;
1307         }
1308
1309         if (!man->has_type) {
1310                 printk(KERN_ERR TTM_PFX
1311                        "Memory type %u has not been initialized.\n",
1312                        mem_type);
1313                 return 0;
1314         }
1315
1316         return ttm_bo_force_list_clean(bdev, mem_type, true);
1317 }
1318 EXPORT_SYMBOL(ttm_bo_evict_mm);
1319
1320 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1321                         unsigned long p_size)
1322 {
1323         int ret = -EINVAL;
1324         struct ttm_mem_type_manager *man;
1325
1326         if (type >= TTM_NUM_MEM_TYPES) {
1327                 printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", type);
1328                 return ret;
1329         }
1330
1331         man = &bdev->man[type];
1332         if (man->has_type) {
1333                 printk(KERN_ERR TTM_PFX
1334                        "Memory manager already initialized for type %d\n",
1335                        type);
1336                 return ret;
1337         }
1338
1339         ret = bdev->driver->init_mem_type(bdev, type, man);
1340         if (ret)
1341                 return ret;
1342
1343         ret = 0;
1344         if (type != TTM_PL_SYSTEM) {
1345                 if (!p_size) {
1346                         printk(KERN_ERR TTM_PFX
1347                                "Zero size memory manager type %d\n",
1348                                type);
1349                         return ret;
1350                 }
1351                 ret = drm_mm_init(&man->manager, 0, p_size);
1352                 if (ret)
1353                         return ret;
1354         }
1355         man->has_type = true;
1356         man->use_type = true;
1357         man->size = p_size;
1358
1359         INIT_LIST_HEAD(&man->lru);
1360
1361         return 0;
1362 }
1363 EXPORT_SYMBOL(ttm_bo_init_mm);
1364
1365 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1366 {
1367         struct ttm_bo_global *glob =
1368                 container_of(kobj, struct ttm_bo_global, kobj);
1369
1370         ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1371         __free_page(glob->dummy_read_page);
1372         kfree(glob);
1373 }
1374
1375 void ttm_bo_global_release(struct ttm_global_reference *ref)
1376 {
1377         struct ttm_bo_global *glob = ref->object;
1378
1379         kobject_del(&glob->kobj);
1380         kobject_put(&glob->kobj);
1381 }
1382 EXPORT_SYMBOL(ttm_bo_global_release);
1383
1384 int ttm_bo_global_init(struct ttm_global_reference *ref)
1385 {
1386         struct ttm_bo_global_ref *bo_ref =
1387                 container_of(ref, struct ttm_bo_global_ref, ref);
1388         struct ttm_bo_global *glob = ref->object;
1389         int ret;
1390
1391         mutex_init(&glob->device_list_mutex);
1392         spin_lock_init(&glob->lru_lock);
1393         glob->mem_glob = bo_ref->mem_glob;
1394         glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1395
1396         if (unlikely(glob->dummy_read_page == NULL)) {
1397                 ret = -ENOMEM;
1398                 goto out_no_drp;
1399         }
1400
1401         INIT_LIST_HEAD(&glob->swap_lru);
1402         INIT_LIST_HEAD(&glob->device_list);
1403
1404         ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1405         ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1406         if (unlikely(ret != 0)) {
1407                 printk(KERN_ERR TTM_PFX
1408                        "Could not register buffer object swapout.\n");
1409                 goto out_no_shrink;
1410         }
1411
1412         glob->ttm_bo_extra_size =
1413                 ttm_round_pot(sizeof(struct ttm_tt)) +
1414                 ttm_round_pot(sizeof(struct ttm_backend));
1415
1416         glob->ttm_bo_size = glob->ttm_bo_extra_size +
1417                 ttm_round_pot(sizeof(struct ttm_buffer_object));
1418
1419         atomic_set(&glob->bo_count, 0);
1420
1421         kobject_init(&glob->kobj, &ttm_bo_glob_kobj_type);
1422         ret = kobject_add(&glob->kobj, ttm_get_kobj(), "buffer_objects");
1423         if (unlikely(ret != 0))
1424                 kobject_put(&glob->kobj);
1425         return ret;
1426 out_no_shrink:
1427         __free_page(glob->dummy_read_page);
1428 out_no_drp:
1429         kfree(glob);
1430         return ret;
1431 }
1432 EXPORT_SYMBOL(ttm_bo_global_init);
1433
1434
1435 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1436 {
1437         int ret = 0;
1438         unsigned i = TTM_NUM_MEM_TYPES;
1439         struct ttm_mem_type_manager *man;
1440         struct ttm_bo_global *glob = bdev->glob;
1441
1442         while (i--) {
1443                 man = &bdev->man[i];
1444                 if (man->has_type) {
1445                         man->use_type = false;
1446                         if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1447                                 ret = -EBUSY;
1448                                 printk(KERN_ERR TTM_PFX
1449                                        "DRM memory manager type %d "
1450                                        "is not clean.\n", i);
1451                         }
1452                         man->has_type = false;
1453                 }
1454         }
1455
1456         mutex_lock(&glob->device_list_mutex);
1457         list_del(&bdev->device_list);
1458         mutex_unlock(&glob->device_list_mutex);
1459
1460         if (!cancel_delayed_work(&bdev->wq))
1461                 flush_scheduled_work();
1462
1463         while (ttm_bo_delayed_delete(bdev, true))
1464                 ;
1465
1466         spin_lock(&glob->lru_lock);
1467         if (list_empty(&bdev->ddestroy))
1468                 TTM_DEBUG("Delayed destroy list was clean\n");
1469
1470         if (list_empty(&bdev->man[0].lru))
1471                 TTM_DEBUG("Swap list was clean\n");
1472         spin_unlock(&glob->lru_lock);
1473
1474         BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1475         write_lock(&bdev->vm_lock);
1476         drm_mm_takedown(&bdev->addr_space_mm);
1477         write_unlock(&bdev->vm_lock);
1478
1479         return ret;
1480 }
1481 EXPORT_SYMBOL(ttm_bo_device_release);
1482
1483 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1484                        struct ttm_bo_global *glob,
1485                        struct ttm_bo_driver *driver,
1486                        uint64_t file_page_offset,
1487                        bool need_dma32)
1488 {
1489         int ret = -EINVAL;
1490
1491         rwlock_init(&bdev->vm_lock);
1492         bdev->driver = driver;
1493
1494         memset(bdev->man, 0, sizeof(bdev->man));
1495
1496         /*
1497          * Initialize the system memory buffer type.
1498          * Other types need to be driver / IOCTL initialized.
1499          */
1500         ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1501         if (unlikely(ret != 0))
1502                 goto out_no_sys;
1503
1504         bdev->addr_space_rb = RB_ROOT;
1505         ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1506         if (unlikely(ret != 0))
1507                 goto out_no_addr_mm;
1508
1509         INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1510         bdev->nice_mode = true;
1511         INIT_LIST_HEAD(&bdev->ddestroy);
1512         bdev->dev_mapping = NULL;
1513         bdev->glob = glob;
1514         bdev->need_dma32 = need_dma32;
1515
1516         mutex_lock(&glob->device_list_mutex);
1517         list_add_tail(&bdev->device_list, &glob->device_list);
1518         mutex_unlock(&glob->device_list_mutex);
1519
1520         return 0;
1521 out_no_addr_mm:
1522         ttm_bo_clean_mm(bdev, 0);
1523 out_no_sys:
1524         return ret;
1525 }
1526 EXPORT_SYMBOL(ttm_bo_device_init);
1527
1528 /*
1529  * buffer object vm functions.
1530  */
1531
1532 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1533 {
1534         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1535
1536         if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1537                 if (mem->mem_type == TTM_PL_SYSTEM)
1538                         return false;
1539
1540                 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1541                         return false;
1542
1543                 if (mem->placement & TTM_PL_FLAG_CACHED)
1544                         return false;
1545         }
1546         return true;
1547 }
1548
1549 int ttm_bo_pci_offset(struct ttm_bo_device *bdev,
1550                       struct ttm_mem_reg *mem,
1551                       unsigned long *bus_base,
1552                       unsigned long *bus_offset, unsigned long *bus_size)
1553 {
1554         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1555
1556         *bus_size = 0;
1557         if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
1558                 return -EINVAL;
1559
1560         if (ttm_mem_reg_is_pci(bdev, mem)) {
1561                 *bus_offset = mem->mm_node->start << PAGE_SHIFT;
1562                 *bus_size = mem->num_pages << PAGE_SHIFT;
1563                 *bus_base = man->io_offset;
1564         }
1565
1566         return 0;
1567 }
1568
1569 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1570 {
1571         struct ttm_bo_device *bdev = bo->bdev;
1572         loff_t offset = (loff_t) bo->addr_space_offset;
1573         loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1574
1575         if (!bdev->dev_mapping)
1576                 return;
1577
1578         unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1579 }
1580 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1581
1582 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1583 {
1584         struct ttm_bo_device *bdev = bo->bdev;
1585         struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1586         struct rb_node *parent = NULL;
1587         struct ttm_buffer_object *cur_bo;
1588         unsigned long offset = bo->vm_node->start;
1589         unsigned long cur_offset;
1590
1591         while (*cur) {
1592                 parent = *cur;
1593                 cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1594                 cur_offset = cur_bo->vm_node->start;
1595                 if (offset < cur_offset)
1596                         cur = &parent->rb_left;
1597                 else if (offset > cur_offset)
1598                         cur = &parent->rb_right;
1599                 else
1600                         BUG();
1601         }
1602
1603         rb_link_node(&bo->vm_rb, parent, cur);
1604         rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1605 }
1606
1607 /**
1608  * ttm_bo_setup_vm:
1609  *
1610  * @bo: the buffer to allocate address space for
1611  *
1612  * Allocate address space in the drm device so that applications
1613  * can mmap the buffer and access the contents. This only
1614  * applies to ttm_bo_type_device objects as others are not
1615  * placed in the drm device address space.
1616  */
1617
1618 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1619 {
1620         struct ttm_bo_device *bdev = bo->bdev;
1621         int ret;
1622
1623 retry_pre_get:
1624         ret = drm_mm_pre_get(&bdev->addr_space_mm);
1625         if (unlikely(ret != 0))
1626                 return ret;
1627
1628         write_lock(&bdev->vm_lock);
1629         bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1630                                          bo->mem.num_pages, 0, 0);
1631
1632         if (unlikely(bo->vm_node == NULL)) {
1633                 ret = -ENOMEM;
1634                 goto out_unlock;
1635         }
1636
1637         bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1638                                               bo->mem.num_pages, 0);
1639
1640         if (unlikely(bo->vm_node == NULL)) {
1641                 write_unlock(&bdev->vm_lock);
1642                 goto retry_pre_get;
1643         }
1644
1645         ttm_bo_vm_insert_rb(bo);
1646         write_unlock(&bdev->vm_lock);
1647         bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1648
1649         return 0;
1650 out_unlock:
1651         write_unlock(&bdev->vm_lock);
1652         return ret;
1653 }
1654
1655 int ttm_bo_wait(struct ttm_buffer_object *bo,
1656                 bool lazy, bool interruptible, bool no_wait)
1657 {
1658         struct ttm_bo_driver *driver = bo->bdev->driver;
1659         void *sync_obj;
1660         void *sync_obj_arg;
1661         int ret = 0;
1662
1663         if (likely(bo->sync_obj == NULL))
1664                 return 0;
1665
1666         while (bo->sync_obj) {
1667
1668                 if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
1669                         void *tmp_obj = bo->sync_obj;
1670                         bo->sync_obj = NULL;
1671                         clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1672                         spin_unlock(&bo->lock);
1673                         driver->sync_obj_unref(&tmp_obj);
1674                         spin_lock(&bo->lock);
1675                         continue;
1676                 }
1677
1678                 if (no_wait)
1679                         return -EBUSY;
1680
1681                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
1682                 sync_obj_arg = bo->sync_obj_arg;
1683                 spin_unlock(&bo->lock);
1684                 ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
1685                                             lazy, interruptible);
1686                 if (unlikely(ret != 0)) {
1687                         driver->sync_obj_unref(&sync_obj);
1688                         spin_lock(&bo->lock);
1689                         return ret;
1690                 }
1691                 spin_lock(&bo->lock);
1692                 if (likely(bo->sync_obj == sync_obj &&
1693                            bo->sync_obj_arg == sync_obj_arg)) {
1694                         void *tmp_obj = bo->sync_obj;
1695                         bo->sync_obj = NULL;
1696                         clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1697                                   &bo->priv_flags);
1698                         spin_unlock(&bo->lock);
1699                         driver->sync_obj_unref(&sync_obj);
1700                         driver->sync_obj_unref(&tmp_obj);
1701                         spin_lock(&bo->lock);
1702                 } else {
1703                         spin_unlock(&bo->lock);
1704                         driver->sync_obj_unref(&sync_obj);
1705                         spin_lock(&bo->lock);
1706                 }
1707         }
1708         return 0;
1709 }
1710 EXPORT_SYMBOL(ttm_bo_wait);
1711
1712 void ttm_bo_unblock_reservation(struct ttm_buffer_object *bo)
1713 {
1714         atomic_set(&bo->reserved, 0);
1715         wake_up_all(&bo->event_queue);
1716 }
1717
1718 int ttm_bo_block_reservation(struct ttm_buffer_object *bo, bool interruptible,
1719                              bool no_wait)
1720 {
1721         int ret;
1722
1723         while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
1724                 if (no_wait)
1725                         return -EBUSY;
1726                 else if (interruptible) {
1727                         ret = wait_event_interruptible
1728                             (bo->event_queue, atomic_read(&bo->reserved) == 0);
1729                         if (unlikely(ret != 0))
1730                                 return ret;
1731                 } else {
1732                         wait_event(bo->event_queue,
1733                                    atomic_read(&bo->reserved) == 0);
1734                 }
1735         }
1736         return 0;
1737 }
1738
1739 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1740 {
1741         int ret = 0;
1742
1743         /*
1744          * Using ttm_bo_reserve instead of ttm_bo_block_reservation
1745          * makes sure the lru lists are updated.
1746          */
1747
1748         ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1749         if (unlikely(ret != 0))
1750                 return ret;
1751         spin_lock(&bo->lock);
1752         ret = ttm_bo_wait(bo, false, true, no_wait);
1753         spin_unlock(&bo->lock);
1754         if (likely(ret == 0))
1755                 atomic_inc(&bo->cpu_writers);
1756         ttm_bo_unreserve(bo);
1757         return ret;
1758 }
1759 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1760
1761 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1762 {
1763         if (atomic_dec_and_test(&bo->cpu_writers))
1764                 wake_up_all(&bo->event_queue);
1765 }
1766 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1767
1768 /**
1769  * A buffer object shrink method that tries to swap out the first
1770  * buffer object on the bo_global::swap_lru list.
1771  */
1772
1773 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1774 {
1775         struct ttm_bo_global *glob =
1776             container_of(shrink, struct ttm_bo_global, shrink);
1777         struct ttm_buffer_object *bo;
1778         int ret = -EBUSY;
1779         int put_count;
1780         uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1781
1782         spin_lock(&glob->lru_lock);
1783         while (ret == -EBUSY) {
1784                 if (unlikely(list_empty(&glob->swap_lru))) {
1785                         spin_unlock(&glob->lru_lock);
1786                         return -EBUSY;
1787                 }
1788
1789                 bo = list_first_entry(&glob->swap_lru,
1790                                       struct ttm_buffer_object, swap);
1791                 kref_get(&bo->list_kref);
1792
1793                 /**
1794                  * Reserve buffer. Since we unlock while sleeping, we need
1795                  * to re-check that nobody removed us from the swap-list while
1796                  * we slept.
1797                  */
1798
1799                 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1800                 if (unlikely(ret == -EBUSY)) {
1801                         spin_unlock(&glob->lru_lock);
1802                         ttm_bo_wait_unreserved(bo, false);
1803                         kref_put(&bo->list_kref, ttm_bo_release_list);
1804                         spin_lock(&glob->lru_lock);
1805                 }
1806         }
1807
1808         BUG_ON(ret != 0);
1809         put_count = ttm_bo_del_from_lru(bo);
1810         spin_unlock(&glob->lru_lock);
1811
1812         while (put_count--)
1813                 kref_put(&bo->list_kref, ttm_bo_ref_bug);
1814
1815         /**
1816          * Wait for GPU, then move to system cached.
1817          */
1818
1819         spin_lock(&bo->lock);
1820         ret = ttm_bo_wait(bo, false, false, false);
1821         spin_unlock(&bo->lock);
1822
1823         if (unlikely(ret != 0))
1824                 goto out;
1825
1826         if ((bo->mem.placement & swap_placement) != swap_placement) {
1827                 struct ttm_mem_reg evict_mem;
1828
1829                 evict_mem = bo->mem;
1830                 evict_mem.mm_node = NULL;
1831                 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1832                 evict_mem.mem_type = TTM_PL_SYSTEM;
1833
1834                 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1835                                              false, false);
1836                 if (unlikely(ret != 0))
1837                         goto out;
1838         }
1839
1840         ttm_bo_unmap_virtual(bo);
1841
1842         /**
1843          * Swap out. Buffer will be swapped in again as soon as
1844          * anyone tries to access a ttm page.
1845          */
1846
1847         if (bo->bdev->driver->swap_notify)
1848                 bo->bdev->driver->swap_notify(bo);
1849
1850         ret = ttm_tt_swapout(bo->ttm, bo->persistant_swap_storage);
1851 out:
1852
1853         /**
1854          *
1855          * Unreserve without putting on LRU to avoid swapping out an
1856          * already swapped buffer.
1857          */
1858
1859         atomic_set(&bo->reserved, 0);
1860         wake_up_all(&bo->event_queue);
1861         kref_put(&bo->list_kref, ttm_bo_release_list);
1862         return ret;
1863 }
1864
1865 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1866 {
1867         while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1868                 ;
1869 }
1870 EXPORT_SYMBOL(ttm_bo_swapout_all);