]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/gpu/drm/i915/intel_display.c
rcu: rcu_read_lock_bh_held(): disabling irqs also disables bh
[net-next-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/vgaarb.h>
33 #include "drmP.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "drm_dp_helper.h"
39
40 #include "drm_crtc_helper.h"
41
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
43
44 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
45 static void intel_update_watermarks(struct drm_device *dev);
46 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
47 static void intel_crtc_update_cursor(struct drm_crtc *crtc);
48
49 typedef struct {
50     /* given values */
51     int n;
52     int m1, m2;
53     int p1, p2;
54     /* derived values */
55     int dot;
56     int vco;
57     int m;
58     int p;
59 } intel_clock_t;
60
61 typedef struct {
62     int min, max;
63 } intel_range_t;
64
65 typedef struct {
66     int dot_limit;
67     int p2_slow, p2_fast;
68 } intel_p2_t;
69
70 #define INTEL_P2_NUM                  2
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
74     intel_p2_t      p2;
75     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
76                       int, int, intel_clock_t *);
77 };
78
79 #define I8XX_DOT_MIN              25000
80 #define I8XX_DOT_MAX             350000
81 #define I8XX_VCO_MIN             930000
82 #define I8XX_VCO_MAX            1400000
83 #define I8XX_N_MIN                    3
84 #define I8XX_N_MAX                   16
85 #define I8XX_M_MIN                   96
86 #define I8XX_M_MAX                  140
87 #define I8XX_M1_MIN                  18
88 #define I8XX_M1_MAX                  26
89 #define I8XX_M2_MIN                   6
90 #define I8XX_M2_MAX                  16
91 #define I8XX_P_MIN                    4
92 #define I8XX_P_MAX                  128
93 #define I8XX_P1_MIN                   2
94 #define I8XX_P1_MAX                  33
95 #define I8XX_P1_LVDS_MIN              1
96 #define I8XX_P1_LVDS_MAX              6
97 #define I8XX_P2_SLOW                  4
98 #define I8XX_P2_FAST                  2
99 #define I8XX_P2_LVDS_SLOW             14
100 #define I8XX_P2_LVDS_FAST             7
101 #define I8XX_P2_SLOW_LIMIT       165000
102
103 #define I9XX_DOT_MIN              20000
104 #define I9XX_DOT_MAX             400000
105 #define I9XX_VCO_MIN            1400000
106 #define I9XX_VCO_MAX            2800000
107 #define PINEVIEW_VCO_MIN                1700000
108 #define PINEVIEW_VCO_MAX                3500000
109 #define I9XX_N_MIN                    1
110 #define I9XX_N_MAX                    6
111 /* Pineview's Ncounter is a ring counter */
112 #define PINEVIEW_N_MIN                3
113 #define PINEVIEW_N_MAX                6
114 #define I9XX_M_MIN                   70
115 #define I9XX_M_MAX                  120
116 #define PINEVIEW_M_MIN                2
117 #define PINEVIEW_M_MAX              256
118 #define I9XX_M1_MIN                  10
119 #define I9XX_M1_MAX                  22
120 #define I9XX_M2_MIN                   5
121 #define I9XX_M2_MAX                   9
122 /* Pineview M1 is reserved, and must be 0 */
123 #define PINEVIEW_M1_MIN               0
124 #define PINEVIEW_M1_MAX               0
125 #define PINEVIEW_M2_MIN               0
126 #define PINEVIEW_M2_MAX               254
127 #define I9XX_P_SDVO_DAC_MIN           5
128 #define I9XX_P_SDVO_DAC_MAX          80
129 #define I9XX_P_LVDS_MIN               7
130 #define I9XX_P_LVDS_MAX              98
131 #define PINEVIEW_P_LVDS_MIN                   7
132 #define PINEVIEW_P_LVDS_MAX                  112
133 #define I9XX_P1_MIN                   1
134 #define I9XX_P1_MAX                   8
135 #define I9XX_P2_SDVO_DAC_SLOW                10
136 #define I9XX_P2_SDVO_DAC_FAST                 5
137 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
138 #define I9XX_P2_LVDS_SLOW                    14
139 #define I9XX_P2_LVDS_FAST                     7
140 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
141
142 /*The parameter is for SDVO on G4x platform*/
143 #define G4X_DOT_SDVO_MIN           25000
144 #define G4X_DOT_SDVO_MAX           270000
145 #define G4X_VCO_MIN                1750000
146 #define G4X_VCO_MAX                3500000
147 #define G4X_N_SDVO_MIN             1
148 #define G4X_N_SDVO_MAX             4
149 #define G4X_M_SDVO_MIN             104
150 #define G4X_M_SDVO_MAX             138
151 #define G4X_M1_SDVO_MIN            17
152 #define G4X_M1_SDVO_MAX            23
153 #define G4X_M2_SDVO_MIN            5
154 #define G4X_M2_SDVO_MAX            11
155 #define G4X_P_SDVO_MIN             10
156 #define G4X_P_SDVO_MAX             30
157 #define G4X_P1_SDVO_MIN            1
158 #define G4X_P1_SDVO_MAX            3
159 #define G4X_P2_SDVO_SLOW           10
160 #define G4X_P2_SDVO_FAST           10
161 #define G4X_P2_SDVO_LIMIT          270000
162
163 /*The parameter is for HDMI_DAC on G4x platform*/
164 #define G4X_DOT_HDMI_DAC_MIN           22000
165 #define G4X_DOT_HDMI_DAC_MAX           400000
166 #define G4X_N_HDMI_DAC_MIN             1
167 #define G4X_N_HDMI_DAC_MAX             4
168 #define G4X_M_HDMI_DAC_MIN             104
169 #define G4X_M_HDMI_DAC_MAX             138
170 #define G4X_M1_HDMI_DAC_MIN            16
171 #define G4X_M1_HDMI_DAC_MAX            23
172 #define G4X_M2_HDMI_DAC_MIN            5
173 #define G4X_M2_HDMI_DAC_MAX            11
174 #define G4X_P_HDMI_DAC_MIN             5
175 #define G4X_P_HDMI_DAC_MAX             80
176 #define G4X_P1_HDMI_DAC_MIN            1
177 #define G4X_P1_HDMI_DAC_MAX            8
178 #define G4X_P2_HDMI_DAC_SLOW           10
179 #define G4X_P2_HDMI_DAC_FAST           5
180 #define G4X_P2_HDMI_DAC_LIMIT          165000
181
182 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
184 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
186 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
188 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
190 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
192 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
194 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
196 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
199 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
200
201 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
203 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
204 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
205 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
206 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
207 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
209 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
211 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
212 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
213 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
215 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
216 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
218 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
219
220 /*The parameter is for DISPLAY PORT on G4x platform*/
221 #define G4X_DOT_DISPLAY_PORT_MIN           161670
222 #define G4X_DOT_DISPLAY_PORT_MAX           227000
223 #define G4X_N_DISPLAY_PORT_MIN             1
224 #define G4X_N_DISPLAY_PORT_MAX             2
225 #define G4X_M_DISPLAY_PORT_MIN             97
226 #define G4X_M_DISPLAY_PORT_MAX             108
227 #define G4X_M1_DISPLAY_PORT_MIN            0x10
228 #define G4X_M1_DISPLAY_PORT_MAX            0x12
229 #define G4X_M2_DISPLAY_PORT_MIN            0x05
230 #define G4X_M2_DISPLAY_PORT_MAX            0x06
231 #define G4X_P_DISPLAY_PORT_MIN             10
232 #define G4X_P_DISPLAY_PORT_MAX             20
233 #define G4X_P1_DISPLAY_PORT_MIN            1
234 #define G4X_P1_DISPLAY_PORT_MAX            2
235 #define G4X_P2_DISPLAY_PORT_SLOW           10
236 #define G4X_P2_DISPLAY_PORT_FAST           10
237 #define G4X_P2_DISPLAY_PORT_LIMIT          0
238
239 /* Ironlake / Sandybridge */
240 /* as we calculate clock using (register_value + 2) for
241    N/M1/M2, so here the range value for them is (actual_value-2).
242  */
243 #define IRONLAKE_DOT_MIN         25000
244 #define IRONLAKE_DOT_MAX         350000
245 #define IRONLAKE_VCO_MIN         1760000
246 #define IRONLAKE_VCO_MAX         3510000
247 #define IRONLAKE_M1_MIN          12
248 #define IRONLAKE_M1_MAX          22
249 #define IRONLAKE_M2_MIN          5
250 #define IRONLAKE_M2_MAX          9
251 #define IRONLAKE_P2_DOT_LIMIT    225000 /* 225Mhz */
252
253 /* We have parameter ranges for different type of outputs. */
254
255 /* DAC & HDMI Refclk 120Mhz */
256 #define IRONLAKE_DAC_N_MIN      1
257 #define IRONLAKE_DAC_N_MAX      5
258 #define IRONLAKE_DAC_M_MIN      79
259 #define IRONLAKE_DAC_M_MAX      127
260 #define IRONLAKE_DAC_P_MIN      5
261 #define IRONLAKE_DAC_P_MAX      80
262 #define IRONLAKE_DAC_P1_MIN     1
263 #define IRONLAKE_DAC_P1_MAX     8
264 #define IRONLAKE_DAC_P2_SLOW    10
265 #define IRONLAKE_DAC_P2_FAST    5
266
267 /* LVDS single-channel 120Mhz refclk */
268 #define IRONLAKE_LVDS_S_N_MIN   1
269 #define IRONLAKE_LVDS_S_N_MAX   3
270 #define IRONLAKE_LVDS_S_M_MIN   79
271 #define IRONLAKE_LVDS_S_M_MAX   118
272 #define IRONLAKE_LVDS_S_P_MIN   28
273 #define IRONLAKE_LVDS_S_P_MAX   112
274 #define IRONLAKE_LVDS_S_P1_MIN  2
275 #define IRONLAKE_LVDS_S_P1_MAX  8
276 #define IRONLAKE_LVDS_S_P2_SLOW 14
277 #define IRONLAKE_LVDS_S_P2_FAST 14
278
279 /* LVDS dual-channel 120Mhz refclk */
280 #define IRONLAKE_LVDS_D_N_MIN   1
281 #define IRONLAKE_LVDS_D_N_MAX   3
282 #define IRONLAKE_LVDS_D_M_MIN   79
283 #define IRONLAKE_LVDS_D_M_MAX   127
284 #define IRONLAKE_LVDS_D_P_MIN   14
285 #define IRONLAKE_LVDS_D_P_MAX   56
286 #define IRONLAKE_LVDS_D_P1_MIN  2
287 #define IRONLAKE_LVDS_D_P1_MAX  8
288 #define IRONLAKE_LVDS_D_P2_SLOW 7
289 #define IRONLAKE_LVDS_D_P2_FAST 7
290
291 /* LVDS single-channel 100Mhz refclk */
292 #define IRONLAKE_LVDS_S_SSC_N_MIN       1
293 #define IRONLAKE_LVDS_S_SSC_N_MAX       2
294 #define IRONLAKE_LVDS_S_SSC_M_MIN       79
295 #define IRONLAKE_LVDS_S_SSC_M_MAX       126
296 #define IRONLAKE_LVDS_S_SSC_P_MIN       28
297 #define IRONLAKE_LVDS_S_SSC_P_MAX       112
298 #define IRONLAKE_LVDS_S_SSC_P1_MIN      2
299 #define IRONLAKE_LVDS_S_SSC_P1_MAX      8
300 #define IRONLAKE_LVDS_S_SSC_P2_SLOW     14
301 #define IRONLAKE_LVDS_S_SSC_P2_FAST     14
302
303 /* LVDS dual-channel 100Mhz refclk */
304 #define IRONLAKE_LVDS_D_SSC_N_MIN       1
305 #define IRONLAKE_LVDS_D_SSC_N_MAX       3
306 #define IRONLAKE_LVDS_D_SSC_M_MIN       79
307 #define IRONLAKE_LVDS_D_SSC_M_MAX       126
308 #define IRONLAKE_LVDS_D_SSC_P_MIN       14
309 #define IRONLAKE_LVDS_D_SSC_P_MAX       42
310 #define IRONLAKE_LVDS_D_SSC_P1_MIN      2
311 #define IRONLAKE_LVDS_D_SSC_P1_MAX      6
312 #define IRONLAKE_LVDS_D_SSC_P2_SLOW     7
313 #define IRONLAKE_LVDS_D_SSC_P2_FAST     7
314
315 /* DisplayPort */
316 #define IRONLAKE_DP_N_MIN               1
317 #define IRONLAKE_DP_N_MAX               2
318 #define IRONLAKE_DP_M_MIN               81
319 #define IRONLAKE_DP_M_MAX               90
320 #define IRONLAKE_DP_P_MIN               10
321 #define IRONLAKE_DP_P_MAX               20
322 #define IRONLAKE_DP_P2_FAST             10
323 #define IRONLAKE_DP_P2_SLOW             10
324 #define IRONLAKE_DP_P2_LIMIT            0
325 #define IRONLAKE_DP_P1_MIN              1
326 #define IRONLAKE_DP_P1_MAX              2
327
328 /* FDI */
329 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
330
331 static bool
332 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
333                     int target, int refclk, intel_clock_t *best_clock);
334 static bool
335 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
336                         int target, int refclk, intel_clock_t *best_clock);
337
338 static bool
339 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
340                       int target, int refclk, intel_clock_t *best_clock);
341 static bool
342 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
343                            int target, int refclk, intel_clock_t *best_clock);
344
345 static const intel_limit_t intel_limits_i8xx_dvo = {
346         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
347         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
348         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
349         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
350         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
351         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
352         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
353         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
354         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
355                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
356         .find_pll = intel_find_best_PLL,
357 };
358
359 static const intel_limit_t intel_limits_i8xx_lvds = {
360         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
361         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
362         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
363         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
364         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
365         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
366         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
367         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
368         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
369                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
370         .find_pll = intel_find_best_PLL,
371 };
372         
373 static const intel_limit_t intel_limits_i9xx_sdvo = {
374         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
375         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
376         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
377         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
378         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
379         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
380         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
381         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
382         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
383                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
384         .find_pll = intel_find_best_PLL,
385 };
386
387 static const intel_limit_t intel_limits_i9xx_lvds = {
388         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
389         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
390         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
391         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
392         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
393         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
394         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
395         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
396         /* The single-channel range is 25-112Mhz, and dual-channel
397          * is 80-224Mhz.  Prefer single channel as much as possible.
398          */
399         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
400                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
401         .find_pll = intel_find_best_PLL,
402 };
403
404     /* below parameter and function is for G4X Chipset Family*/
405 static const intel_limit_t intel_limits_g4x_sdvo = {
406         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
407         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
408         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
409         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
410         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
411         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
412         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
413         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
414         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
415                  .p2_slow = G4X_P2_SDVO_SLOW,
416                  .p2_fast = G4X_P2_SDVO_FAST
417         },
418         .find_pll = intel_g4x_find_best_PLL,
419 };
420
421 static const intel_limit_t intel_limits_g4x_hdmi = {
422         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
423         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
424         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
425         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
426         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
427         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
428         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
429         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
430         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
431                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
432                  .p2_fast = G4X_P2_HDMI_DAC_FAST
433         },
434         .find_pll = intel_g4x_find_best_PLL,
435 };
436
437 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
438         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
439                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
440         .vco = { .min = G4X_VCO_MIN,
441                  .max = G4X_VCO_MAX },
442         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
443                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
444         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
445                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
446         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
447                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
448         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
449                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
450         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
451                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
452         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
453                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
454         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
455                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
456                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
457         },
458         .find_pll = intel_g4x_find_best_PLL,
459 };
460
461 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
462         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
463                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
464         .vco = { .min = G4X_VCO_MIN,
465                  .max = G4X_VCO_MAX },
466         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
467                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
468         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
469                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
470         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
471                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
472         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
473                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
474         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
475                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
476         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
477                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
478         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
479                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
480                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
481         },
482         .find_pll = intel_g4x_find_best_PLL,
483 };
484
485 static const intel_limit_t intel_limits_g4x_display_port = {
486         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
487                  .max = G4X_DOT_DISPLAY_PORT_MAX },
488         .vco = { .min = G4X_VCO_MIN,
489                  .max = G4X_VCO_MAX},
490         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
491                  .max = G4X_N_DISPLAY_PORT_MAX },
492         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
493                  .max = G4X_M_DISPLAY_PORT_MAX },
494         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
495                  .max = G4X_M1_DISPLAY_PORT_MAX },
496         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
497                  .max = G4X_M2_DISPLAY_PORT_MAX },
498         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
499                  .max = G4X_P_DISPLAY_PORT_MAX },
500         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
501                  .max = G4X_P1_DISPLAY_PORT_MAX},
502         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
503                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
504                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
505         .find_pll = intel_find_pll_g4x_dp,
506 };
507
508 static const intel_limit_t intel_limits_pineview_sdvo = {
509         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
510         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
511         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
512         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
513         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
514         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
515         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
516         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
517         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
518                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
519         .find_pll = intel_find_best_PLL,
520 };
521
522 static const intel_limit_t intel_limits_pineview_lvds = {
523         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
524         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
525         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
526         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
527         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
528         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
529         .p   = { .min = PINEVIEW_P_LVDS_MIN,    .max = PINEVIEW_P_LVDS_MAX },
530         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
531         /* Pineview only supports single-channel mode. */
532         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
533                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
534         .find_pll = intel_find_best_PLL,
535 };
536
537 static const intel_limit_t intel_limits_ironlake_dac = {
538         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
539         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
540         .n   = { .min = IRONLAKE_DAC_N_MIN,        .max = IRONLAKE_DAC_N_MAX },
541         .m   = { .min = IRONLAKE_DAC_M_MIN,        .max = IRONLAKE_DAC_M_MAX },
542         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
543         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
544         .p   = { .min = IRONLAKE_DAC_P_MIN,        .max = IRONLAKE_DAC_P_MAX },
545         .p1  = { .min = IRONLAKE_DAC_P1_MIN,       .max = IRONLAKE_DAC_P1_MAX },
546         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
547                  .p2_slow = IRONLAKE_DAC_P2_SLOW,
548                  .p2_fast = IRONLAKE_DAC_P2_FAST },
549         .find_pll = intel_g4x_find_best_PLL,
550 };
551
552 static const intel_limit_t intel_limits_ironlake_single_lvds = {
553         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
554         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
555         .n   = { .min = IRONLAKE_LVDS_S_N_MIN,     .max = IRONLAKE_LVDS_S_N_MAX },
556         .m   = { .min = IRONLAKE_LVDS_S_M_MIN,     .max = IRONLAKE_LVDS_S_M_MAX },
557         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
558         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
559         .p   = { .min = IRONLAKE_LVDS_S_P_MIN,     .max = IRONLAKE_LVDS_S_P_MAX },
560         .p1  = { .min = IRONLAKE_LVDS_S_P1_MIN,    .max = IRONLAKE_LVDS_S_P1_MAX },
561         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
562                  .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
563                  .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
564         .find_pll = intel_g4x_find_best_PLL,
565 };
566
567 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
568         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
569         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
570         .n   = { .min = IRONLAKE_LVDS_D_N_MIN,     .max = IRONLAKE_LVDS_D_N_MAX },
571         .m   = { .min = IRONLAKE_LVDS_D_M_MIN,     .max = IRONLAKE_LVDS_D_M_MAX },
572         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
573         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
574         .p   = { .min = IRONLAKE_LVDS_D_P_MIN,     .max = IRONLAKE_LVDS_D_P_MAX },
575         .p1  = { .min = IRONLAKE_LVDS_D_P1_MIN,    .max = IRONLAKE_LVDS_D_P1_MAX },
576         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
577                  .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
578                  .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
579         .find_pll = intel_g4x_find_best_PLL,
580 };
581
582 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
583         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
584         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
585         .n   = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
586         .m   = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
587         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
588         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
589         .p   = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
590         .p1  = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
591         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
592                  .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
593                  .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
594         .find_pll = intel_g4x_find_best_PLL,
595 };
596
597 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
598         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
599         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
600         .n   = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
601         .m   = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
602         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
603         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
604         .p   = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
605         .p1  = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
606         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
607                  .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
608                  .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
609         .find_pll = intel_g4x_find_best_PLL,
610 };
611
612 static const intel_limit_t intel_limits_ironlake_display_port = {
613         .dot = { .min = IRONLAKE_DOT_MIN,
614                  .max = IRONLAKE_DOT_MAX },
615         .vco = { .min = IRONLAKE_VCO_MIN,
616                  .max = IRONLAKE_VCO_MAX},
617         .n   = { .min = IRONLAKE_DP_N_MIN,
618                  .max = IRONLAKE_DP_N_MAX },
619         .m   = { .min = IRONLAKE_DP_M_MIN,
620                  .max = IRONLAKE_DP_M_MAX },
621         .m1  = { .min = IRONLAKE_M1_MIN,
622                  .max = IRONLAKE_M1_MAX },
623         .m2  = { .min = IRONLAKE_M2_MIN,
624                  .max = IRONLAKE_M2_MAX },
625         .p   = { .min = IRONLAKE_DP_P_MIN,
626                  .max = IRONLAKE_DP_P_MAX },
627         .p1  = { .min = IRONLAKE_DP_P1_MIN,
628                  .max = IRONLAKE_DP_P1_MAX},
629         .p2  = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
630                  .p2_slow = IRONLAKE_DP_P2_SLOW,
631                  .p2_fast = IRONLAKE_DP_P2_FAST },
632         .find_pll = intel_find_pll_ironlake_dp,
633 };
634
635 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
636 {
637         struct drm_device *dev = crtc->dev;
638         struct drm_i915_private *dev_priv = dev->dev_private;
639         const intel_limit_t *limit;
640         int refclk = 120;
641
642         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
643                 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
644                         refclk = 100;
645
646                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
647                     LVDS_CLKB_POWER_UP) {
648                         /* LVDS dual channel */
649                         if (refclk == 100)
650                                 limit = &intel_limits_ironlake_dual_lvds_100m;
651                         else
652                                 limit = &intel_limits_ironlake_dual_lvds;
653                 } else {
654                         if (refclk == 100)
655                                 limit = &intel_limits_ironlake_single_lvds_100m;
656                         else
657                                 limit = &intel_limits_ironlake_single_lvds;
658                 }
659         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
660                         HAS_eDP)
661                 limit = &intel_limits_ironlake_display_port;
662         else
663                 limit = &intel_limits_ironlake_dac;
664
665         return limit;
666 }
667
668 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
669 {
670         struct drm_device *dev = crtc->dev;
671         struct drm_i915_private *dev_priv = dev->dev_private;
672         const intel_limit_t *limit;
673
674         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
675                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
676                     LVDS_CLKB_POWER_UP)
677                         /* LVDS with dual channel */
678                         limit = &intel_limits_g4x_dual_channel_lvds;
679                 else
680                         /* LVDS with dual channel */
681                         limit = &intel_limits_g4x_single_channel_lvds;
682         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
683                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
684                 limit = &intel_limits_g4x_hdmi;
685         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
686                 limit = &intel_limits_g4x_sdvo;
687         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
688                 limit = &intel_limits_g4x_display_port;
689         } else /* The option is for other outputs */
690                 limit = &intel_limits_i9xx_sdvo;
691
692         return limit;
693 }
694
695 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
696 {
697         struct drm_device *dev = crtc->dev;
698         const intel_limit_t *limit;
699
700         if (HAS_PCH_SPLIT(dev))
701                 limit = intel_ironlake_limit(crtc);
702         else if (IS_G4X(dev)) {
703                 limit = intel_g4x_limit(crtc);
704         } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
705                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
706                         limit = &intel_limits_i9xx_lvds;
707                 else
708                         limit = &intel_limits_i9xx_sdvo;
709         } else if (IS_PINEVIEW(dev)) {
710                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
711                         limit = &intel_limits_pineview_lvds;
712                 else
713                         limit = &intel_limits_pineview_sdvo;
714         } else {
715                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
716                         limit = &intel_limits_i8xx_lvds;
717                 else
718                         limit = &intel_limits_i8xx_dvo;
719         }
720         return limit;
721 }
722
723 /* m1 is reserved as 0 in Pineview, n is a ring counter */
724 static void pineview_clock(int refclk, intel_clock_t *clock)
725 {
726         clock->m = clock->m2 + 2;
727         clock->p = clock->p1 * clock->p2;
728         clock->vco = refclk * clock->m / clock->n;
729         clock->dot = clock->vco / clock->p;
730 }
731
732 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
733 {
734         if (IS_PINEVIEW(dev)) {
735                 pineview_clock(refclk, clock);
736                 return;
737         }
738         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
739         clock->p = clock->p1 * clock->p2;
740         clock->vco = refclk * clock->m / (clock->n + 2);
741         clock->dot = clock->vco / clock->p;
742 }
743
744 /**
745  * Returns whether any output on the specified pipe is of the specified type
746  */
747 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
748 {
749     struct drm_device *dev = crtc->dev;
750     struct drm_mode_config *mode_config = &dev->mode_config;
751     struct drm_encoder *l_entry;
752
753     list_for_each_entry(l_entry, &mode_config->encoder_list, head) {
754             if (l_entry && l_entry->crtc == crtc) {
755                     struct intel_encoder *intel_encoder = enc_to_intel_encoder(l_entry);
756                     if (intel_encoder->type == type)
757                             return true;
758             }
759     }
760     return false;
761 }
762
763 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
764 /**
765  * Returns whether the given set of divisors are valid for a given refclk with
766  * the given connectors.
767  */
768
769 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
770 {
771         const intel_limit_t *limit = intel_limit (crtc);
772         struct drm_device *dev = crtc->dev;
773
774         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
775                 INTELPllInvalid ("p1 out of range\n");
776         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
777                 INTELPllInvalid ("p out of range\n");
778         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
779                 INTELPllInvalid ("m2 out of range\n");
780         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
781                 INTELPllInvalid ("m1 out of range\n");
782         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
783                 INTELPllInvalid ("m1 <= m2\n");
784         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
785                 INTELPllInvalid ("m out of range\n");
786         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
787                 INTELPllInvalid ("n out of range\n");
788         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
789                 INTELPllInvalid ("vco out of range\n");
790         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
791          * connector, etc., rather than just a single range.
792          */
793         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
794                 INTELPllInvalid ("dot out of range\n");
795
796         return true;
797 }
798
799 static bool
800 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
801                     int target, int refclk, intel_clock_t *best_clock)
802
803 {
804         struct drm_device *dev = crtc->dev;
805         struct drm_i915_private *dev_priv = dev->dev_private;
806         intel_clock_t clock;
807         int err = target;
808
809         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
810             (I915_READ(LVDS)) != 0) {
811                 /*
812                  * For LVDS, if the panel is on, just rely on its current
813                  * settings for dual-channel.  We haven't figured out how to
814                  * reliably set up different single/dual channel state, if we
815                  * even can.
816                  */
817                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
818                     LVDS_CLKB_POWER_UP)
819                         clock.p2 = limit->p2.p2_fast;
820                 else
821                         clock.p2 = limit->p2.p2_slow;
822         } else {
823                 if (target < limit->p2.dot_limit)
824                         clock.p2 = limit->p2.p2_slow;
825                 else
826                         clock.p2 = limit->p2.p2_fast;
827         }
828
829         memset (best_clock, 0, sizeof (*best_clock));
830
831         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
832              clock.m1++) {
833                 for (clock.m2 = limit->m2.min;
834                      clock.m2 <= limit->m2.max; clock.m2++) {
835                         /* m1 is always 0 in Pineview */
836                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
837                                 break;
838                         for (clock.n = limit->n.min;
839                              clock.n <= limit->n.max; clock.n++) {
840                                 for (clock.p1 = limit->p1.min;
841                                         clock.p1 <= limit->p1.max; clock.p1++) {
842                                         int this_err;
843
844                                         intel_clock(dev, refclk, &clock);
845
846                                         if (!intel_PLL_is_valid(crtc, &clock))
847                                                 continue;
848
849                                         this_err = abs(clock.dot - target);
850                                         if (this_err < err) {
851                                                 *best_clock = clock;
852                                                 err = this_err;
853                                         }
854                                 }
855                         }
856                 }
857         }
858
859         return (err != target);
860 }
861
862 static bool
863 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
864                         int target, int refclk, intel_clock_t *best_clock)
865 {
866         struct drm_device *dev = crtc->dev;
867         struct drm_i915_private *dev_priv = dev->dev_private;
868         intel_clock_t clock;
869         int max_n;
870         bool found;
871         /* approximately equals target * 0.00585 */
872         int err_most = (target >> 8) + (target >> 9);
873         found = false;
874
875         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
876                 int lvds_reg;
877
878                 if (HAS_PCH_SPLIT(dev))
879                         lvds_reg = PCH_LVDS;
880                 else
881                         lvds_reg = LVDS;
882                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
883                     LVDS_CLKB_POWER_UP)
884                         clock.p2 = limit->p2.p2_fast;
885                 else
886                         clock.p2 = limit->p2.p2_slow;
887         } else {
888                 if (target < limit->p2.dot_limit)
889                         clock.p2 = limit->p2.p2_slow;
890                 else
891                         clock.p2 = limit->p2.p2_fast;
892         }
893
894         memset(best_clock, 0, sizeof(*best_clock));
895         max_n = limit->n.max;
896         /* based on hardware requirement, prefer smaller n to precision */
897         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
898                 /* based on hardware requirement, prefere larger m1,m2 */
899                 for (clock.m1 = limit->m1.max;
900                      clock.m1 >= limit->m1.min; clock.m1--) {
901                         for (clock.m2 = limit->m2.max;
902                              clock.m2 >= limit->m2.min; clock.m2--) {
903                                 for (clock.p1 = limit->p1.max;
904                                      clock.p1 >= limit->p1.min; clock.p1--) {
905                                         int this_err;
906
907                                         intel_clock(dev, refclk, &clock);
908                                         if (!intel_PLL_is_valid(crtc, &clock))
909                                                 continue;
910                                         this_err = abs(clock.dot - target) ;
911                                         if (this_err < err_most) {
912                                                 *best_clock = clock;
913                                                 err_most = this_err;
914                                                 max_n = clock.n;
915                                                 found = true;
916                                         }
917                                 }
918                         }
919                 }
920         }
921         return found;
922 }
923
924 static bool
925 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
926                            int target, int refclk, intel_clock_t *best_clock)
927 {
928         struct drm_device *dev = crtc->dev;
929         intel_clock_t clock;
930
931         /* return directly when it is eDP */
932         if (HAS_eDP)
933                 return true;
934
935         if (target < 200000) {
936                 clock.n = 1;
937                 clock.p1 = 2;
938                 clock.p2 = 10;
939                 clock.m1 = 12;
940                 clock.m2 = 9;
941         } else {
942                 clock.n = 2;
943                 clock.p1 = 1;
944                 clock.p2 = 10;
945                 clock.m1 = 14;
946                 clock.m2 = 8;
947         }
948         intel_clock(dev, refclk, &clock);
949         memcpy(best_clock, &clock, sizeof(intel_clock_t));
950         return true;
951 }
952
953 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
954 static bool
955 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
956                       int target, int refclk, intel_clock_t *best_clock)
957 {
958     intel_clock_t clock;
959     if (target < 200000) {
960         clock.p1 = 2;
961         clock.p2 = 10;
962         clock.n = 2;
963         clock.m1 = 23;
964         clock.m2 = 8;
965     } else {
966         clock.p1 = 1;
967         clock.p2 = 10;
968         clock.n = 1;
969         clock.m1 = 14;
970         clock.m2 = 2;
971     }
972     clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
973     clock.p = (clock.p1 * clock.p2);
974     clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
975     clock.vco = 0;
976     memcpy(best_clock, &clock, sizeof(intel_clock_t));
977     return true;
978 }
979
980 /**
981  * intel_wait_for_vblank - wait for vblank on a given pipe
982  * @dev: drm device
983  * @pipe: pipe to wait for
984  *
985  * Wait for vblank to occur on a given pipe.  Needed for various bits of
986  * mode setting code.
987  */
988 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
989 {
990         struct drm_i915_private *dev_priv = dev->dev_private;
991         int pipestat_reg = (pipe == 0 ? PIPEASTAT : PIPEBSTAT);
992
993         /* Clear existing vblank status. Note this will clear any other
994          * sticky status fields as well.
995          *
996          * This races with i915_driver_irq_handler() with the result
997          * that either function could miss a vblank event.  Here it is not
998          * fatal, as we will either wait upon the next vblank interrupt or
999          * timeout.  Generally speaking intel_wait_for_vblank() is only
1000          * called during modeset at which time the GPU should be idle and
1001          * should *not* be performing page flips and thus not waiting on
1002          * vblanks...
1003          * Currently, the result of us stealing a vblank from the irq
1004          * handler is that a single frame will be skipped during swapbuffers.
1005          */
1006         I915_WRITE(pipestat_reg,
1007                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
1008
1009         /* Wait for vblank interrupt bit to set */
1010         if (wait_for((I915_READ(pipestat_reg) &
1011                       PIPE_VBLANK_INTERRUPT_STATUS),
1012                      50, 0))
1013                 DRM_DEBUG_KMS("vblank wait timed out\n");
1014 }
1015
1016 /**
1017  * intel_wait_for_vblank_off - wait for vblank after disabling a pipe
1018  * @dev: drm device
1019  * @pipe: pipe to wait for
1020  *
1021  * After disabling a pipe, we can't wait for vblank in the usual way,
1022  * spinning on the vblank interrupt status bit, since we won't actually
1023  * see an interrupt when the pipe is disabled.
1024  *
1025  * So this function waits for the display line value to settle (it
1026  * usually ends up stopping at the start of the next frame).
1027  */
1028 void intel_wait_for_vblank_off(struct drm_device *dev, int pipe)
1029 {
1030         struct drm_i915_private *dev_priv = dev->dev_private;
1031         int pipedsl_reg = (pipe == 0 ? PIPEADSL : PIPEBDSL);
1032         unsigned long timeout = jiffies + msecs_to_jiffies(100);
1033         u32 last_line;
1034
1035         /* Wait for the display line to settle */
1036         do {
1037                 last_line = I915_READ(pipedsl_reg) & DSL_LINEMASK;
1038                 mdelay(5);
1039         } while (((I915_READ(pipedsl_reg) & DSL_LINEMASK) != last_line) &&
1040                  time_after(timeout, jiffies));
1041
1042         if (time_after(jiffies, timeout))
1043                 DRM_DEBUG_KMS("vblank wait timed out\n");
1044 }
1045
1046 /* Parameters have changed, update FBC info */
1047 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1048 {
1049         struct drm_device *dev = crtc->dev;
1050         struct drm_i915_private *dev_priv = dev->dev_private;
1051         struct drm_framebuffer *fb = crtc->fb;
1052         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1053         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1054         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1055         int plane, i;
1056         u32 fbc_ctl, fbc_ctl2;
1057
1058         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1059
1060         if (fb->pitch < dev_priv->cfb_pitch)
1061                 dev_priv->cfb_pitch = fb->pitch;
1062
1063         /* FBC_CTL wants 64B units */
1064         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1065         dev_priv->cfb_fence = obj_priv->fence_reg;
1066         dev_priv->cfb_plane = intel_crtc->plane;
1067         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1068
1069         /* Clear old tags */
1070         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1071                 I915_WRITE(FBC_TAG + (i * 4), 0);
1072
1073         /* Set it up... */
1074         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1075         if (obj_priv->tiling_mode != I915_TILING_NONE)
1076                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1077         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1078         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1079
1080         /* enable it... */
1081         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1082         if (IS_I945GM(dev))
1083                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1084         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1085         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1086         if (obj_priv->tiling_mode != I915_TILING_NONE)
1087                 fbc_ctl |= dev_priv->cfb_fence;
1088         I915_WRITE(FBC_CONTROL, fbc_ctl);
1089
1090         DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1091                   dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1092 }
1093
1094 void i8xx_disable_fbc(struct drm_device *dev)
1095 {
1096         struct drm_i915_private *dev_priv = dev->dev_private;
1097         u32 fbc_ctl;
1098
1099         if (!I915_HAS_FBC(dev))
1100                 return;
1101
1102         if (!(I915_READ(FBC_CONTROL) & FBC_CTL_EN))
1103                 return; /* Already off, just return */
1104
1105         /* Disable compression */
1106         fbc_ctl = I915_READ(FBC_CONTROL);
1107         fbc_ctl &= ~FBC_CTL_EN;
1108         I915_WRITE(FBC_CONTROL, fbc_ctl);
1109
1110         /* Wait for compressing bit to clear */
1111         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10, 0)) {
1112                 DRM_DEBUG_KMS("FBC idle timed out\n");
1113                 return;
1114         }
1115
1116         DRM_DEBUG_KMS("disabled FBC\n");
1117 }
1118
1119 static bool i8xx_fbc_enabled(struct drm_device *dev)
1120 {
1121         struct drm_i915_private *dev_priv = dev->dev_private;
1122
1123         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1124 }
1125
1126 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1127 {
1128         struct drm_device *dev = crtc->dev;
1129         struct drm_i915_private *dev_priv = dev->dev_private;
1130         struct drm_framebuffer *fb = crtc->fb;
1131         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1132         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1133         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1134         int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1135                      DPFC_CTL_PLANEB);
1136         unsigned long stall_watermark = 200;
1137         u32 dpfc_ctl;
1138
1139         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1140         dev_priv->cfb_fence = obj_priv->fence_reg;
1141         dev_priv->cfb_plane = intel_crtc->plane;
1142
1143         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1144         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1145                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1146                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1147         } else {
1148                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1149         }
1150
1151         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1152         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1153                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1154                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1155         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1156
1157         /* enable it... */
1158         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1159
1160         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1161 }
1162
1163 void g4x_disable_fbc(struct drm_device *dev)
1164 {
1165         struct drm_i915_private *dev_priv = dev->dev_private;
1166         u32 dpfc_ctl;
1167
1168         /* Disable compression */
1169         dpfc_ctl = I915_READ(DPFC_CONTROL);
1170         dpfc_ctl &= ~DPFC_CTL_EN;
1171         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1172
1173         DRM_DEBUG_KMS("disabled FBC\n");
1174 }
1175
1176 static bool g4x_fbc_enabled(struct drm_device *dev)
1177 {
1178         struct drm_i915_private *dev_priv = dev->dev_private;
1179
1180         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1181 }
1182
1183 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1184 {
1185         struct drm_device *dev = crtc->dev;
1186         struct drm_i915_private *dev_priv = dev->dev_private;
1187         struct drm_framebuffer *fb = crtc->fb;
1188         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1189         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1190         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1191         int plane = (intel_crtc->plane == 0) ? DPFC_CTL_PLANEA :
1192                                                DPFC_CTL_PLANEB;
1193         unsigned long stall_watermark = 200;
1194         u32 dpfc_ctl;
1195
1196         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1197         dev_priv->cfb_fence = obj_priv->fence_reg;
1198         dev_priv->cfb_plane = intel_crtc->plane;
1199
1200         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1201         dpfc_ctl &= DPFC_RESERVED;
1202         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1203         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1204                 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1205                 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1206         } else {
1207                 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1208         }
1209
1210         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1211         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1212                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1213                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1214         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1215         I915_WRITE(ILK_FBC_RT_BASE, obj_priv->gtt_offset | ILK_FBC_RT_VALID);
1216         /* enable it... */
1217         I915_WRITE(ILK_DPFC_CONTROL, I915_READ(ILK_DPFC_CONTROL) |
1218                    DPFC_CTL_EN);
1219
1220         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1221 }
1222
1223 void ironlake_disable_fbc(struct drm_device *dev)
1224 {
1225         struct drm_i915_private *dev_priv = dev->dev_private;
1226         u32 dpfc_ctl;
1227
1228         /* Disable compression */
1229         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1230         dpfc_ctl &= ~DPFC_CTL_EN;
1231         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1232
1233         DRM_DEBUG_KMS("disabled FBC\n");
1234 }
1235
1236 static bool ironlake_fbc_enabled(struct drm_device *dev)
1237 {
1238         struct drm_i915_private *dev_priv = dev->dev_private;
1239
1240         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1241 }
1242
1243 bool intel_fbc_enabled(struct drm_device *dev)
1244 {
1245         struct drm_i915_private *dev_priv = dev->dev_private;
1246
1247         if (!dev_priv->display.fbc_enabled)
1248                 return false;
1249
1250         return dev_priv->display.fbc_enabled(dev);
1251 }
1252
1253 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1254 {
1255         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1256
1257         if (!dev_priv->display.enable_fbc)
1258                 return;
1259
1260         dev_priv->display.enable_fbc(crtc, interval);
1261 }
1262
1263 void intel_disable_fbc(struct drm_device *dev)
1264 {
1265         struct drm_i915_private *dev_priv = dev->dev_private;
1266
1267         if (!dev_priv->display.disable_fbc)
1268                 return;
1269
1270         dev_priv->display.disable_fbc(dev);
1271 }
1272
1273 /**
1274  * intel_update_fbc - enable/disable FBC as needed
1275  * @crtc: CRTC to point the compressor at
1276  * @mode: mode in use
1277  *
1278  * Set up the framebuffer compression hardware at mode set time.  We
1279  * enable it if possible:
1280  *   - plane A only (on pre-965)
1281  *   - no pixel mulitply/line duplication
1282  *   - no alpha buffer discard
1283  *   - no dual wide
1284  *   - framebuffer <= 2048 in width, 1536 in height
1285  *
1286  * We can't assume that any compression will take place (worst case),
1287  * so the compressed buffer has to be the same size as the uncompressed
1288  * one.  It also must reside (along with the line length buffer) in
1289  * stolen memory.
1290  *
1291  * We need to enable/disable FBC on a global basis.
1292  */
1293 static void intel_update_fbc(struct drm_crtc *crtc,
1294                              struct drm_display_mode *mode)
1295 {
1296         struct drm_device *dev = crtc->dev;
1297         struct drm_i915_private *dev_priv = dev->dev_private;
1298         struct drm_framebuffer *fb = crtc->fb;
1299         struct intel_framebuffer *intel_fb;
1300         struct drm_i915_gem_object *obj_priv;
1301         struct drm_crtc *tmp_crtc;
1302         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1303         int plane = intel_crtc->plane;
1304         int crtcs_enabled = 0;
1305
1306         DRM_DEBUG_KMS("\n");
1307
1308         if (!i915_powersave)
1309                 return;
1310
1311         if (!I915_HAS_FBC(dev))
1312                 return;
1313
1314         if (!crtc->fb)
1315                 return;
1316
1317         intel_fb = to_intel_framebuffer(fb);
1318         obj_priv = to_intel_bo(intel_fb->obj);
1319
1320         /*
1321          * If FBC is already on, we just have to verify that we can
1322          * keep it that way...
1323          * Need to disable if:
1324          *   - more than one pipe is active
1325          *   - changing FBC params (stride, fence, mode)
1326          *   - new fb is too large to fit in compressed buffer
1327          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1328          */
1329         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1330                 if (tmp_crtc->enabled)
1331                         crtcs_enabled++;
1332         }
1333         DRM_DEBUG_KMS("%d pipes active\n", crtcs_enabled);
1334         if (crtcs_enabled > 1) {
1335                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1336                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1337                 goto out_disable;
1338         }
1339         if (intel_fb->obj->size > dev_priv->cfb_size) {
1340                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1341                                 "compression\n");
1342                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1343                 goto out_disable;
1344         }
1345         if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1346             (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1347                 DRM_DEBUG_KMS("mode incompatible with compression, "
1348                                 "disabling\n");
1349                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1350                 goto out_disable;
1351         }
1352         if ((mode->hdisplay > 2048) ||
1353             (mode->vdisplay > 1536)) {
1354                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1355                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1356                 goto out_disable;
1357         }
1358         if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1359                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1360                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1361                 goto out_disable;
1362         }
1363         if (obj_priv->tiling_mode != I915_TILING_X) {
1364                 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1365                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1366                 goto out_disable;
1367         }
1368
1369         /* If the kernel debugger is active, always disable compression */
1370         if (in_dbg_master())
1371                 goto out_disable;
1372
1373         if (intel_fbc_enabled(dev)) {
1374                 /* We can re-enable it in this case, but need to update pitch */
1375                 if ((fb->pitch > dev_priv->cfb_pitch) ||
1376                     (obj_priv->fence_reg != dev_priv->cfb_fence) ||
1377                     (plane != dev_priv->cfb_plane))
1378                         intel_disable_fbc(dev);
1379         }
1380
1381         /* Now try to turn it back on if possible */
1382         if (!intel_fbc_enabled(dev))
1383                 intel_enable_fbc(crtc, 500);
1384
1385         return;
1386
1387 out_disable:
1388         /* Multiple disables should be harmless */
1389         if (intel_fbc_enabled(dev)) {
1390                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1391                 intel_disable_fbc(dev);
1392         }
1393 }
1394
1395 int
1396 intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
1397 {
1398         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1399         u32 alignment;
1400         int ret;
1401
1402         switch (obj_priv->tiling_mode) {
1403         case I915_TILING_NONE:
1404                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1405                         alignment = 128 * 1024;
1406                 else if (IS_I965G(dev))
1407                         alignment = 4 * 1024;
1408                 else
1409                         alignment = 64 * 1024;
1410                 break;
1411         case I915_TILING_X:
1412                 /* pin() will align the object as required by fence */
1413                 alignment = 0;
1414                 break;
1415         case I915_TILING_Y:
1416                 /* FIXME: Is this true? */
1417                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1418                 return -EINVAL;
1419         default:
1420                 BUG();
1421         }
1422
1423         ret = i915_gem_object_pin(obj, alignment);
1424         if (ret != 0)
1425                 return ret;
1426
1427         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1428          * fence, whereas 965+ only requires a fence if using
1429          * framebuffer compression.  For simplicity, we always install
1430          * a fence as the cost is not that onerous.
1431          */
1432         if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1433             obj_priv->tiling_mode != I915_TILING_NONE) {
1434                 ret = i915_gem_object_get_fence_reg(obj);
1435                 if (ret != 0) {
1436                         i915_gem_object_unpin(obj);
1437                         return ret;
1438                 }
1439         }
1440
1441         return 0;
1442 }
1443
1444 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1445 static int
1446 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1447                            int x, int y)
1448 {
1449         struct drm_device *dev = crtc->dev;
1450         struct drm_i915_private *dev_priv = dev->dev_private;
1451         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1452         struct intel_framebuffer *intel_fb;
1453         struct drm_i915_gem_object *obj_priv;
1454         struct drm_gem_object *obj;
1455         int plane = intel_crtc->plane;
1456         unsigned long Start, Offset;
1457         int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1458         int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1459         int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1460         int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1461         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1462         u32 dspcntr;
1463
1464         switch (plane) {
1465         case 0:
1466         case 1:
1467                 break;
1468         default:
1469                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1470                 return -EINVAL;
1471         }
1472
1473         intel_fb = to_intel_framebuffer(fb);
1474         obj = intel_fb->obj;
1475         obj_priv = to_intel_bo(obj);
1476
1477         dspcntr = I915_READ(dspcntr_reg);
1478         /* Mask out pixel format bits in case we change it */
1479         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1480         switch (fb->bits_per_pixel) {
1481         case 8:
1482                 dspcntr |= DISPPLANE_8BPP;
1483                 break;
1484         case 16:
1485                 if (fb->depth == 15)
1486                         dspcntr |= DISPPLANE_15_16BPP;
1487                 else
1488                         dspcntr |= DISPPLANE_16BPP;
1489                 break;
1490         case 24:
1491         case 32:
1492                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1493                 break;
1494         default:
1495                 DRM_ERROR("Unknown color depth\n");
1496                 return -EINVAL;
1497         }
1498         if (IS_I965G(dev)) {
1499                 if (obj_priv->tiling_mode != I915_TILING_NONE)
1500                         dspcntr |= DISPPLANE_TILED;
1501                 else
1502                         dspcntr &= ~DISPPLANE_TILED;
1503         }
1504
1505         if (HAS_PCH_SPLIT(dev))
1506                 /* must disable */
1507                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1508
1509         I915_WRITE(dspcntr_reg, dspcntr);
1510
1511         Start = obj_priv->gtt_offset;
1512         Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1513
1514         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1515                       Start, Offset, x, y, fb->pitch);
1516         I915_WRITE(dspstride, fb->pitch);
1517         if (IS_I965G(dev)) {
1518                 I915_WRITE(dspsurf, Start);
1519                 I915_WRITE(dsptileoff, (y << 16) | x);
1520                 I915_WRITE(dspbase, Offset);
1521         } else {
1522                 I915_WRITE(dspbase, Start + Offset);
1523         }
1524         POSTING_READ(dspbase);
1525
1526         if (IS_I965G(dev) || plane == 0)
1527                 intel_update_fbc(crtc, &crtc->mode);
1528
1529         intel_wait_for_vblank(dev, intel_crtc->pipe);
1530         intel_increase_pllclock(crtc, true);
1531
1532         return 0;
1533 }
1534
1535 static int
1536 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1537                     struct drm_framebuffer *old_fb)
1538 {
1539         struct drm_device *dev = crtc->dev;
1540         struct drm_i915_master_private *master_priv;
1541         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1542         struct intel_framebuffer *intel_fb;
1543         struct drm_i915_gem_object *obj_priv;
1544         struct drm_gem_object *obj;
1545         int pipe = intel_crtc->pipe;
1546         int plane = intel_crtc->plane;
1547         int ret;
1548
1549         /* no fb bound */
1550         if (!crtc->fb) {
1551                 DRM_DEBUG_KMS("No FB bound\n");
1552                 return 0;
1553         }
1554
1555         switch (plane) {
1556         case 0:
1557         case 1:
1558                 break;
1559         default:
1560                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1561                 return -EINVAL;
1562         }
1563
1564         intel_fb = to_intel_framebuffer(crtc->fb);
1565         obj = intel_fb->obj;
1566         obj_priv = to_intel_bo(obj);
1567
1568         mutex_lock(&dev->struct_mutex);
1569         ret = intel_pin_and_fence_fb_obj(dev, obj);
1570         if (ret != 0) {
1571                 mutex_unlock(&dev->struct_mutex);
1572                 return ret;
1573         }
1574
1575         ret = i915_gem_object_set_to_display_plane(obj);
1576         if (ret != 0) {
1577                 i915_gem_object_unpin(obj);
1578                 mutex_unlock(&dev->struct_mutex);
1579                 return ret;
1580         }
1581
1582         ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y);
1583         if (ret) {
1584                 i915_gem_object_unpin(obj);
1585                 mutex_unlock(&dev->struct_mutex);
1586                 return ret;
1587         }
1588
1589         if (old_fb) {
1590                 intel_fb = to_intel_framebuffer(old_fb);
1591                 obj_priv = to_intel_bo(intel_fb->obj);
1592                 i915_gem_object_unpin(intel_fb->obj);
1593         }
1594
1595         mutex_unlock(&dev->struct_mutex);
1596
1597         if (!dev->primary->master)
1598                 return 0;
1599
1600         master_priv = dev->primary->master->driver_priv;
1601         if (!master_priv->sarea_priv)
1602                 return 0;
1603
1604         if (pipe) {
1605                 master_priv->sarea_priv->pipeB_x = x;
1606                 master_priv->sarea_priv->pipeB_y = y;
1607         } else {
1608                 master_priv->sarea_priv->pipeA_x = x;
1609                 master_priv->sarea_priv->pipeA_y = y;
1610         }
1611
1612         return 0;
1613 }
1614
1615 static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
1616 {
1617         struct drm_device *dev = crtc->dev;
1618         struct drm_i915_private *dev_priv = dev->dev_private;
1619         u32 dpa_ctl;
1620
1621         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1622         dpa_ctl = I915_READ(DP_A);
1623         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1624
1625         if (clock < 200000) {
1626                 u32 temp;
1627                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1628                 /* workaround for 160Mhz:
1629                    1) program 0x4600c bits 15:0 = 0x8124
1630                    2) program 0x46010 bit 0 = 1
1631                    3) program 0x46034 bit 24 = 1
1632                    4) program 0x64000 bit 14 = 1
1633                    */
1634                 temp = I915_READ(0x4600c);
1635                 temp &= 0xffff0000;
1636                 I915_WRITE(0x4600c, temp | 0x8124);
1637
1638                 temp = I915_READ(0x46010);
1639                 I915_WRITE(0x46010, temp | 1);
1640
1641                 temp = I915_READ(0x46034);
1642                 I915_WRITE(0x46034, temp | (1 << 24));
1643         } else {
1644                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1645         }
1646         I915_WRITE(DP_A, dpa_ctl);
1647
1648         udelay(500);
1649 }
1650
1651 /* The FDI link training functions for ILK/Ibexpeak. */
1652 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1653 {
1654         struct drm_device *dev = crtc->dev;
1655         struct drm_i915_private *dev_priv = dev->dev_private;
1656         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1657         int pipe = intel_crtc->pipe;
1658         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1659         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1660         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1661         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1662         u32 temp, tries = 0;
1663
1664         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1665            for train result */
1666         temp = I915_READ(fdi_rx_imr_reg);
1667         temp &= ~FDI_RX_SYMBOL_LOCK;
1668         temp &= ~FDI_RX_BIT_LOCK;
1669         I915_WRITE(fdi_rx_imr_reg, temp);
1670         I915_READ(fdi_rx_imr_reg);
1671         udelay(150);
1672
1673         /* enable CPU FDI TX and PCH FDI RX */
1674         temp = I915_READ(fdi_tx_reg);
1675         temp |= FDI_TX_ENABLE;
1676         temp &= ~(7 << 19);
1677         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1678         temp &= ~FDI_LINK_TRAIN_NONE;
1679         temp |= FDI_LINK_TRAIN_PATTERN_1;
1680         I915_WRITE(fdi_tx_reg, temp);
1681         I915_READ(fdi_tx_reg);
1682
1683         temp = I915_READ(fdi_rx_reg);
1684         temp &= ~FDI_LINK_TRAIN_NONE;
1685         temp |= FDI_LINK_TRAIN_PATTERN_1;
1686         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1687         I915_READ(fdi_rx_reg);
1688         udelay(150);
1689
1690         for (tries = 0; tries < 5; tries++) {
1691                 temp = I915_READ(fdi_rx_iir_reg);
1692                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1693
1694                 if ((temp & FDI_RX_BIT_LOCK)) {
1695                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1696                         I915_WRITE(fdi_rx_iir_reg,
1697                                    temp | FDI_RX_BIT_LOCK);
1698                         break;
1699                 }
1700         }
1701         if (tries == 5)
1702                 DRM_DEBUG_KMS("FDI train 1 fail!\n");
1703
1704         /* Train 2 */
1705         temp = I915_READ(fdi_tx_reg);
1706         temp &= ~FDI_LINK_TRAIN_NONE;
1707         temp |= FDI_LINK_TRAIN_PATTERN_2;
1708         I915_WRITE(fdi_tx_reg, temp);
1709
1710         temp = I915_READ(fdi_rx_reg);
1711         temp &= ~FDI_LINK_TRAIN_NONE;
1712         temp |= FDI_LINK_TRAIN_PATTERN_2;
1713         I915_WRITE(fdi_rx_reg, temp);
1714         udelay(150);
1715
1716         tries = 0;
1717
1718         for (tries = 0; tries < 5; tries++) {
1719                 temp = I915_READ(fdi_rx_iir_reg);
1720                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1721
1722                 if (temp & FDI_RX_SYMBOL_LOCK) {
1723                         I915_WRITE(fdi_rx_iir_reg,
1724                                    temp | FDI_RX_SYMBOL_LOCK);
1725                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1726                         break;
1727                 }
1728         }
1729         if (tries == 5)
1730                 DRM_DEBUG_KMS("FDI train 2 fail!\n");
1731
1732         DRM_DEBUG_KMS("FDI train done\n");
1733 }
1734
1735 static int snb_b_fdi_train_param [] = {
1736         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1737         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1738         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1739         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1740 };
1741
1742 /* The FDI link training functions for SNB/Cougarpoint. */
1743 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1744 {
1745         struct drm_device *dev = crtc->dev;
1746         struct drm_i915_private *dev_priv = dev->dev_private;
1747         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1748         int pipe = intel_crtc->pipe;
1749         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1750         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1751         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1752         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1753         u32 temp, i;
1754
1755         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1756            for train result */
1757         temp = I915_READ(fdi_rx_imr_reg);
1758         temp &= ~FDI_RX_SYMBOL_LOCK;
1759         temp &= ~FDI_RX_BIT_LOCK;
1760         I915_WRITE(fdi_rx_imr_reg, temp);
1761         I915_READ(fdi_rx_imr_reg);
1762         udelay(150);
1763
1764         /* enable CPU FDI TX and PCH FDI RX */
1765         temp = I915_READ(fdi_tx_reg);
1766         temp |= FDI_TX_ENABLE;
1767         temp &= ~(7 << 19);
1768         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1769         temp &= ~FDI_LINK_TRAIN_NONE;
1770         temp |= FDI_LINK_TRAIN_PATTERN_1;
1771         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1772         /* SNB-B */
1773         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1774         I915_WRITE(fdi_tx_reg, temp);
1775         I915_READ(fdi_tx_reg);
1776
1777         temp = I915_READ(fdi_rx_reg);
1778         if (HAS_PCH_CPT(dev)) {
1779                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1780                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1781         } else {
1782                 temp &= ~FDI_LINK_TRAIN_NONE;
1783                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1784         }
1785         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1786         I915_READ(fdi_rx_reg);
1787         udelay(150);
1788
1789         for (i = 0; i < 4; i++ ) {
1790                 temp = I915_READ(fdi_tx_reg);
1791                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1792                 temp |= snb_b_fdi_train_param[i];
1793                 I915_WRITE(fdi_tx_reg, temp);
1794                 udelay(500);
1795
1796                 temp = I915_READ(fdi_rx_iir_reg);
1797                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1798
1799                 if (temp & FDI_RX_BIT_LOCK) {
1800                         I915_WRITE(fdi_rx_iir_reg,
1801                                    temp | FDI_RX_BIT_LOCK);
1802                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1803                         break;
1804                 }
1805         }
1806         if (i == 4)
1807                 DRM_DEBUG_KMS("FDI train 1 fail!\n");
1808
1809         /* Train 2 */
1810         temp = I915_READ(fdi_tx_reg);
1811         temp &= ~FDI_LINK_TRAIN_NONE;
1812         temp |= FDI_LINK_TRAIN_PATTERN_2;
1813         if (IS_GEN6(dev)) {
1814                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1815                 /* SNB-B */
1816                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1817         }
1818         I915_WRITE(fdi_tx_reg, temp);
1819
1820         temp = I915_READ(fdi_rx_reg);
1821         if (HAS_PCH_CPT(dev)) {
1822                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1823                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1824         } else {
1825                 temp &= ~FDI_LINK_TRAIN_NONE;
1826                 temp |= FDI_LINK_TRAIN_PATTERN_2;
1827         }
1828         I915_WRITE(fdi_rx_reg, temp);
1829         udelay(150);
1830
1831         for (i = 0; i < 4; i++ ) {
1832                 temp = I915_READ(fdi_tx_reg);
1833                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1834                 temp |= snb_b_fdi_train_param[i];
1835                 I915_WRITE(fdi_tx_reg, temp);
1836                 udelay(500);
1837
1838                 temp = I915_READ(fdi_rx_iir_reg);
1839                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1840
1841                 if (temp & FDI_RX_SYMBOL_LOCK) {
1842                         I915_WRITE(fdi_rx_iir_reg,
1843                                    temp | FDI_RX_SYMBOL_LOCK);
1844                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1845                         break;
1846                 }
1847         }
1848         if (i == 4)
1849                 DRM_DEBUG_KMS("FDI train 2 fail!\n");
1850
1851         DRM_DEBUG_KMS("FDI train done.\n");
1852 }
1853
1854 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
1855 {
1856         struct drm_device *dev = crtc->dev;
1857         struct drm_i915_private *dev_priv = dev->dev_private;
1858         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1859         int pipe = intel_crtc->pipe;
1860         int plane = intel_crtc->plane;
1861         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1862         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1863         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1864         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1865         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1866         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1867         int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1868         int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1869         int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1870         int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1871         int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1872         int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1873         int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1874         int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1875         int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1876         int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1877         int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1878         int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1879         int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1880         int trans_dpll_sel = (pipe == 0) ? 0 : 1;
1881         u32 temp;
1882         u32 pipe_bpc;
1883
1884         temp = I915_READ(pipeconf_reg);
1885         pipe_bpc = temp & PIPE_BPC_MASK;
1886
1887         /* XXX: When our outputs are all unaware of DPMS modes other than off
1888          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1889          */
1890         switch (mode) {
1891         case DRM_MODE_DPMS_ON:
1892         case DRM_MODE_DPMS_STANDBY:
1893         case DRM_MODE_DPMS_SUSPEND:
1894                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
1895
1896                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1897                         temp = I915_READ(PCH_LVDS);
1898                         if ((temp & LVDS_PORT_EN) == 0) {
1899                                 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
1900                                 POSTING_READ(PCH_LVDS);
1901                         }
1902                 }
1903
1904                 if (!HAS_eDP) {
1905
1906                         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1907                         temp = I915_READ(fdi_rx_reg);
1908                         /*
1909                          * make the BPC in FDI Rx be consistent with that in
1910                          * pipeconf reg.
1911                          */
1912                         temp &= ~(0x7 << 16);
1913                         temp |= (pipe_bpc << 11);
1914                         temp &= ~(7 << 19);
1915                         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1916                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
1917                         I915_READ(fdi_rx_reg);
1918                         udelay(200);
1919
1920                         /* Switch from Rawclk to PCDclk */
1921                         temp = I915_READ(fdi_rx_reg);
1922                         I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
1923                         I915_READ(fdi_rx_reg);
1924                         udelay(200);
1925
1926                         /* Enable CPU FDI TX PLL, always on for Ironlake */
1927                         temp = I915_READ(fdi_tx_reg);
1928                         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1929                                 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1930                                 I915_READ(fdi_tx_reg);
1931                                 udelay(100);
1932                         }
1933                 }
1934
1935                 /* Enable panel fitting for LVDS */
1936                 if (dev_priv->pch_pf_size &&
1937                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)
1938                     || HAS_eDP || intel_pch_has_edp(crtc))) {
1939                         /* Force use of hard-coded filter coefficients
1940                          * as some pre-programmed values are broken,
1941                          * e.g. x201.
1942                          */
1943                         I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1,
1944                                    PF_ENABLE | PF_FILTER_MED_3x3);
1945                         I915_WRITE(pipe ? PFB_WIN_POS : PFA_WIN_POS,
1946                                    dev_priv->pch_pf_pos);
1947                         I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ,
1948                                    dev_priv->pch_pf_size);
1949                 }
1950
1951                 /* Enable CPU pipe */
1952                 temp = I915_READ(pipeconf_reg);
1953                 if ((temp & PIPEACONF_ENABLE) == 0) {
1954                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1955                         I915_READ(pipeconf_reg);
1956                         udelay(100);
1957                 }
1958
1959                 /* configure and enable CPU plane */
1960                 temp = I915_READ(dspcntr_reg);
1961                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1962                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1963                         /* Flush the plane changes */
1964                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1965                 }
1966
1967                 if (!HAS_eDP) {
1968                         /* For PCH output, training FDI link */
1969                         if (IS_GEN6(dev))
1970                                 gen6_fdi_link_train(crtc);
1971                         else
1972                                 ironlake_fdi_link_train(crtc);
1973
1974                         /* enable PCH DPLL */
1975                         temp = I915_READ(pch_dpll_reg);
1976                         if ((temp & DPLL_VCO_ENABLE) == 0) {
1977                                 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1978                                 I915_READ(pch_dpll_reg);
1979                         }
1980                         udelay(200);
1981
1982                         if (HAS_PCH_CPT(dev)) {
1983                                 /* Be sure PCH DPLL SEL is set */
1984                                 temp = I915_READ(PCH_DPLL_SEL);
1985                                 if (trans_dpll_sel == 0 &&
1986                                                 (temp & TRANSA_DPLL_ENABLE) == 0)
1987                                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
1988                                 else if (trans_dpll_sel == 1 &&
1989                                                 (temp & TRANSB_DPLL_ENABLE) == 0)
1990                                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
1991                                 I915_WRITE(PCH_DPLL_SEL, temp);
1992                                 I915_READ(PCH_DPLL_SEL);
1993                         }
1994
1995                         /* set transcoder timing */
1996                         I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1997                         I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1998                         I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1999
2000                         I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
2001                         I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
2002                         I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
2003
2004                         /* enable normal train */
2005                         temp = I915_READ(fdi_tx_reg);
2006                         temp &= ~FDI_LINK_TRAIN_NONE;
2007                         I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
2008                                         FDI_TX_ENHANCE_FRAME_ENABLE);
2009                         I915_READ(fdi_tx_reg);
2010
2011                         temp = I915_READ(fdi_rx_reg);
2012                         if (HAS_PCH_CPT(dev)) {
2013                                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2014                                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2015                         } else {
2016                                 temp &= ~FDI_LINK_TRAIN_NONE;
2017                                 temp |= FDI_LINK_TRAIN_NONE;
2018                         }
2019                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2020                         I915_READ(fdi_rx_reg);
2021
2022                         /* wait one idle pattern time */
2023                         udelay(100);
2024
2025                         /* For PCH DP, enable TRANS_DP_CTL */
2026                         if (HAS_PCH_CPT(dev) &&
2027                             intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2028                                 int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
2029                                 int reg;
2030
2031                                 reg = I915_READ(trans_dp_ctl);
2032                                 reg &= ~(TRANS_DP_PORT_SEL_MASK |
2033                                          TRANS_DP_SYNC_MASK);
2034                                 reg |= (TRANS_DP_OUTPUT_ENABLE |
2035                                         TRANS_DP_ENH_FRAMING);
2036
2037                                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2038                                       reg |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2039                                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2040                                       reg |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2041
2042                                 switch (intel_trans_dp_port_sel(crtc)) {
2043                                 case PCH_DP_B:
2044                                         reg |= TRANS_DP_PORT_SEL_B;
2045                                         break;
2046                                 case PCH_DP_C:
2047                                         reg |= TRANS_DP_PORT_SEL_C;
2048                                         break;
2049                                 case PCH_DP_D:
2050                                         reg |= TRANS_DP_PORT_SEL_D;
2051                                         break;
2052                                 default:
2053                                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2054                                         reg |= TRANS_DP_PORT_SEL_B;
2055                                         break;
2056                                 }
2057
2058                                 I915_WRITE(trans_dp_ctl, reg);
2059                                 POSTING_READ(trans_dp_ctl);
2060                         }
2061
2062                         /* enable PCH transcoder */
2063                         temp = I915_READ(transconf_reg);
2064                         /*
2065                          * make the BPC in transcoder be consistent with
2066                          * that in pipeconf reg.
2067                          */
2068                         temp &= ~PIPE_BPC_MASK;
2069                         temp |= pipe_bpc;
2070                         I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
2071                         I915_READ(transconf_reg);
2072
2073                         if (wait_for(I915_READ(transconf_reg) & TRANS_STATE_ENABLE, 100, 1))
2074                                 DRM_ERROR("failed to enable transcoder\n");
2075                 }
2076
2077                 intel_crtc_load_lut(crtc);
2078
2079                 intel_update_fbc(crtc, &crtc->mode);
2080                 break;
2081
2082         case DRM_MODE_DPMS_OFF:
2083                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2084
2085                 drm_vblank_off(dev, pipe);
2086                 /* Disable display plane */
2087                 temp = I915_READ(dspcntr_reg);
2088                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
2089                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
2090                         /* Flush the plane changes */
2091                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2092                         I915_READ(dspbase_reg);
2093                 }
2094
2095                 if (dev_priv->cfb_plane == plane &&
2096                     dev_priv->display.disable_fbc)
2097                         dev_priv->display.disable_fbc(dev);
2098
2099                 /* disable cpu pipe, disable after all planes disabled */
2100                 temp = I915_READ(pipeconf_reg);
2101                 if ((temp & PIPEACONF_ENABLE) != 0) {
2102                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
2103
2104                         /* wait for cpu pipe off, pipe state */
2105                         if (wait_for((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) == 0, 50, 1))
2106                                 DRM_ERROR("failed to turn off cpu pipe\n");
2107                 } else
2108                         DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
2109
2110                 udelay(100);
2111
2112                 /* Disable PF */
2113                 I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1, 0);
2114                 I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ, 0);
2115
2116                 /* disable CPU FDI tx and PCH FDI rx */
2117                 temp = I915_READ(fdi_tx_reg);
2118                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
2119                 I915_READ(fdi_tx_reg);
2120
2121                 temp = I915_READ(fdi_rx_reg);
2122                 /* BPC in FDI rx is consistent with that in pipeconf */
2123                 temp &= ~(0x07 << 16);
2124                 temp |= (pipe_bpc << 11);
2125                 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
2126                 I915_READ(fdi_rx_reg);
2127
2128                 udelay(100);
2129
2130                 /* still set train pattern 1 */
2131                 temp = I915_READ(fdi_tx_reg);
2132                 temp &= ~FDI_LINK_TRAIN_NONE;
2133                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2134                 I915_WRITE(fdi_tx_reg, temp);
2135                 POSTING_READ(fdi_tx_reg);
2136
2137                 temp = I915_READ(fdi_rx_reg);
2138                 if (HAS_PCH_CPT(dev)) {
2139                         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2140                         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2141                 } else {
2142                         temp &= ~FDI_LINK_TRAIN_NONE;
2143                         temp |= FDI_LINK_TRAIN_PATTERN_1;
2144                 }
2145                 I915_WRITE(fdi_rx_reg, temp);
2146                 POSTING_READ(fdi_rx_reg);
2147
2148                 udelay(100);
2149
2150                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2151                         temp = I915_READ(PCH_LVDS);
2152                         I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2153                         I915_READ(PCH_LVDS);
2154                         udelay(100);
2155                 }
2156
2157                 /* disable PCH transcoder */
2158                 temp = I915_READ(transconf_reg);
2159                 if ((temp & TRANS_ENABLE) != 0) {
2160                         I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
2161
2162                         /* wait for PCH transcoder off, transcoder state */
2163                         if (wait_for((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0, 50, 1))
2164                                 DRM_ERROR("failed to disable transcoder\n");
2165                 }
2166
2167                 temp = I915_READ(transconf_reg);
2168                 /* BPC in transcoder is consistent with that in pipeconf */
2169                 temp &= ~PIPE_BPC_MASK;
2170                 temp |= pipe_bpc;
2171                 I915_WRITE(transconf_reg, temp);
2172                 I915_READ(transconf_reg);
2173                 udelay(100);
2174
2175                 if (HAS_PCH_CPT(dev)) {
2176                         /* disable TRANS_DP_CTL */
2177                         int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
2178                         int reg;
2179
2180                         reg = I915_READ(trans_dp_ctl);
2181                         reg &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2182                         I915_WRITE(trans_dp_ctl, reg);
2183                         POSTING_READ(trans_dp_ctl);
2184
2185                         /* disable DPLL_SEL */
2186                         temp = I915_READ(PCH_DPLL_SEL);
2187                         if (trans_dpll_sel == 0)
2188                                 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2189                         else
2190                                 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2191                         I915_WRITE(PCH_DPLL_SEL, temp);
2192                         I915_READ(PCH_DPLL_SEL);
2193
2194                 }
2195
2196                 /* disable PCH DPLL */
2197                 temp = I915_READ(pch_dpll_reg);
2198                 I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
2199                 I915_READ(pch_dpll_reg);
2200
2201                 /* Switch from PCDclk to Rawclk */
2202                 temp = I915_READ(fdi_rx_reg);
2203                 temp &= ~FDI_SEL_PCDCLK;
2204                 I915_WRITE(fdi_rx_reg, temp);
2205                 I915_READ(fdi_rx_reg);
2206
2207                 /* Disable CPU FDI TX PLL */
2208                 temp = I915_READ(fdi_tx_reg);
2209                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
2210                 I915_READ(fdi_tx_reg);
2211                 udelay(100);
2212
2213                 temp = I915_READ(fdi_rx_reg);
2214                 temp &= ~FDI_RX_PLL_ENABLE;
2215                 I915_WRITE(fdi_rx_reg, temp);
2216                 I915_READ(fdi_rx_reg);
2217
2218                 /* Wait for the clocks to turn off. */
2219                 udelay(100);
2220                 break;
2221         }
2222 }
2223
2224 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2225 {
2226         struct intel_overlay *overlay;
2227         int ret;
2228
2229         if (!enable && intel_crtc->overlay) {
2230                 overlay = intel_crtc->overlay;
2231                 mutex_lock(&overlay->dev->struct_mutex);
2232                 for (;;) {
2233                         ret = intel_overlay_switch_off(overlay);
2234                         if (ret == 0)
2235                                 break;
2236
2237                         ret = intel_overlay_recover_from_interrupt(overlay, 0);
2238                         if (ret != 0) {
2239                                 /* overlay doesn't react anymore. Usually
2240                                  * results in a black screen and an unkillable
2241                                  * X server. */
2242                                 BUG();
2243                                 overlay->hw_wedged = HW_WEDGED;
2244                                 break;
2245                         }
2246                 }
2247                 mutex_unlock(&overlay->dev->struct_mutex);
2248         }
2249         /* Let userspace switch the overlay on again. In most cases userspace
2250          * has to recompute where to put it anyway. */
2251
2252         return;
2253 }
2254
2255 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2256 {
2257         struct drm_device *dev = crtc->dev;
2258         struct drm_i915_private *dev_priv = dev->dev_private;
2259         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2260         int pipe = intel_crtc->pipe;
2261         int plane = intel_crtc->plane;
2262         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2263         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2264         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
2265         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2266         u32 temp;
2267
2268         /* XXX: When our outputs are all unaware of DPMS modes other than off
2269          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2270          */
2271         switch (mode) {
2272         case DRM_MODE_DPMS_ON:
2273         case DRM_MODE_DPMS_STANDBY:
2274         case DRM_MODE_DPMS_SUSPEND:
2275                 /* Enable the DPLL */
2276                 temp = I915_READ(dpll_reg);
2277                 if ((temp & DPLL_VCO_ENABLE) == 0) {
2278                         I915_WRITE(dpll_reg, temp);
2279                         I915_READ(dpll_reg);
2280                         /* Wait for the clocks to stabilize. */
2281                         udelay(150);
2282                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2283                         I915_READ(dpll_reg);
2284                         /* Wait for the clocks to stabilize. */
2285                         udelay(150);
2286                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2287                         I915_READ(dpll_reg);
2288                         /* Wait for the clocks to stabilize. */
2289                         udelay(150);
2290                 }
2291
2292                 /* Enable the pipe */
2293                 temp = I915_READ(pipeconf_reg);
2294                 if ((temp & PIPEACONF_ENABLE) == 0)
2295                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
2296
2297                 /* Enable the plane */
2298                 temp = I915_READ(dspcntr_reg);
2299                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2300                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
2301                         /* Flush the plane changes */
2302                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2303                 }
2304
2305                 intel_crtc_load_lut(crtc);
2306
2307                 if ((IS_I965G(dev) || plane == 0))
2308                         intel_update_fbc(crtc, &crtc->mode);
2309
2310                 /* Give the overlay scaler a chance to enable if it's on this pipe */
2311                 intel_crtc_dpms_overlay(intel_crtc, true);
2312         break;
2313         case DRM_MODE_DPMS_OFF:
2314                 /* Give the overlay scaler a chance to disable if it's on this pipe */
2315                 intel_crtc_dpms_overlay(intel_crtc, false);
2316                 drm_vblank_off(dev, pipe);
2317
2318                 if (dev_priv->cfb_plane == plane &&
2319                     dev_priv->display.disable_fbc)
2320                         dev_priv->display.disable_fbc(dev);
2321
2322                 /* Disable display plane */
2323                 temp = I915_READ(dspcntr_reg);
2324                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
2325                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
2326                         /* Flush the plane changes */
2327                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2328                         I915_READ(dspbase_reg);
2329                 }
2330
2331                 /* Wait for vblank for the disable to take effect */
2332                 intel_wait_for_vblank_off(dev, pipe);
2333
2334                 /* Don't disable pipe A or pipe A PLLs if needed */
2335                 if (pipeconf_reg == PIPEACONF &&
2336                     (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2337                         goto skip_pipe_off;
2338
2339                 /* Next, disable display pipes */
2340                 temp = I915_READ(pipeconf_reg);
2341                 if ((temp & PIPEACONF_ENABLE) != 0) {
2342                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
2343                         I915_READ(pipeconf_reg);
2344                 }
2345
2346                 /* Wait for vblank for the disable to take effect. */
2347                 intel_wait_for_vblank_off(dev, pipe);
2348
2349                 temp = I915_READ(dpll_reg);
2350                 if ((temp & DPLL_VCO_ENABLE) != 0) {
2351                         I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
2352                         I915_READ(dpll_reg);
2353                 }
2354         skip_pipe_off:
2355                 /* Wait for the clocks to turn off. */
2356                 udelay(150);
2357                 break;
2358         }
2359 }
2360
2361 /**
2362  * Sets the power management mode of the pipe and plane.
2363  */
2364 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2365 {
2366         struct drm_device *dev = crtc->dev;
2367         struct drm_i915_private *dev_priv = dev->dev_private;
2368         struct drm_i915_master_private *master_priv;
2369         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2370         int pipe = intel_crtc->pipe;
2371         bool enabled;
2372
2373         if (intel_crtc->dpms_mode == mode)
2374                 return;
2375
2376         intel_crtc->dpms_mode = mode;
2377         intel_crtc->cursor_on = mode == DRM_MODE_DPMS_ON;
2378
2379         /* When switching on the display, ensure that SR is disabled
2380          * with multiple pipes prior to enabling to new pipe.
2381          *
2382          * When switching off the display, make sure the cursor is
2383          * properly hidden prior to disabling the pipe.
2384          */
2385         if (mode == DRM_MODE_DPMS_ON)
2386                 intel_update_watermarks(dev);
2387         else
2388                 intel_crtc_update_cursor(crtc);
2389
2390         dev_priv->display.dpms(crtc, mode);
2391
2392         if (mode == DRM_MODE_DPMS_ON)
2393                 intel_crtc_update_cursor(crtc);
2394         else
2395                 intel_update_watermarks(dev);
2396
2397         if (!dev->primary->master)
2398                 return;
2399
2400         master_priv = dev->primary->master->driver_priv;
2401         if (!master_priv->sarea_priv)
2402                 return;
2403
2404         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2405
2406         switch (pipe) {
2407         case 0:
2408                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2409                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2410                 break;
2411         case 1:
2412                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2413                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2414                 break;
2415         default:
2416                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2417                 break;
2418         }
2419 }
2420
2421 static void intel_crtc_prepare (struct drm_crtc *crtc)
2422 {
2423         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2424         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2425 }
2426
2427 static void intel_crtc_commit (struct drm_crtc *crtc)
2428 {
2429         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2430         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2431 }
2432
2433 void intel_encoder_prepare (struct drm_encoder *encoder)
2434 {
2435         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2436         /* lvds has its own version of prepare see intel_lvds_prepare */
2437         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2438 }
2439
2440 void intel_encoder_commit (struct drm_encoder *encoder)
2441 {
2442         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2443         /* lvds has its own version of commit see intel_lvds_commit */
2444         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2445 }
2446
2447 void intel_encoder_destroy(struct drm_encoder *encoder)
2448 {
2449         struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
2450
2451         if (intel_encoder->ddc_bus)
2452                 intel_i2c_destroy(intel_encoder->ddc_bus);
2453
2454         if (intel_encoder->i2c_bus)
2455                 intel_i2c_destroy(intel_encoder->i2c_bus);
2456
2457         drm_encoder_cleanup(encoder);
2458         kfree(intel_encoder);
2459 }
2460
2461 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2462                                   struct drm_display_mode *mode,
2463                                   struct drm_display_mode *adjusted_mode)
2464 {
2465         struct drm_device *dev = crtc->dev;
2466         if (HAS_PCH_SPLIT(dev)) {
2467                 /* FDI link clock is fixed at 2.7G */
2468                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
2469                         return false;
2470         }
2471         return true;
2472 }
2473
2474 static int i945_get_display_clock_speed(struct drm_device *dev)
2475 {
2476         return 400000;
2477 }
2478
2479 static int i915_get_display_clock_speed(struct drm_device *dev)
2480 {
2481         return 333000;
2482 }
2483
2484 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2485 {
2486         return 200000;
2487 }
2488
2489 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2490 {
2491         u16 gcfgc = 0;
2492
2493         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2494
2495         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2496                 return 133000;
2497         else {
2498                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2499                 case GC_DISPLAY_CLOCK_333_MHZ:
2500                         return 333000;
2501                 default:
2502                 case GC_DISPLAY_CLOCK_190_200_MHZ:
2503                         return 190000;
2504                 }
2505         }
2506 }
2507
2508 static int i865_get_display_clock_speed(struct drm_device *dev)
2509 {
2510         return 266000;
2511 }
2512
2513 static int i855_get_display_clock_speed(struct drm_device *dev)
2514 {
2515         u16 hpllcc = 0;
2516         /* Assume that the hardware is in the high speed state.  This
2517          * should be the default.
2518          */
2519         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2520         case GC_CLOCK_133_200:
2521         case GC_CLOCK_100_200:
2522                 return 200000;
2523         case GC_CLOCK_166_250:
2524                 return 250000;
2525         case GC_CLOCK_100_133:
2526                 return 133000;
2527         }
2528
2529         /* Shouldn't happen */
2530         return 0;
2531 }
2532
2533 static int i830_get_display_clock_speed(struct drm_device *dev)
2534 {
2535         return 133000;
2536 }
2537
2538 /**
2539  * Return the pipe currently connected to the panel fitter,
2540  * or -1 if the panel fitter is not present or not in use
2541  */
2542 int intel_panel_fitter_pipe (struct drm_device *dev)
2543 {
2544         struct drm_i915_private *dev_priv = dev->dev_private;
2545         u32  pfit_control;
2546
2547         /* i830 doesn't have a panel fitter */
2548         if (IS_I830(dev))
2549                 return -1;
2550
2551         pfit_control = I915_READ(PFIT_CONTROL);
2552
2553         /* See if the panel fitter is in use */
2554         if ((pfit_control & PFIT_ENABLE) == 0)
2555                 return -1;
2556
2557         /* 965 can place panel fitter on either pipe */
2558         if (IS_I965G(dev))
2559                 return (pfit_control >> 29) & 0x3;
2560
2561         /* older chips can only use pipe 1 */
2562         return 1;
2563 }
2564
2565 struct fdi_m_n {
2566         u32        tu;
2567         u32        gmch_m;
2568         u32        gmch_n;
2569         u32        link_m;
2570         u32        link_n;
2571 };
2572
2573 static void
2574 fdi_reduce_ratio(u32 *num, u32 *den)
2575 {
2576         while (*num > 0xffffff || *den > 0xffffff) {
2577                 *num >>= 1;
2578                 *den >>= 1;
2579         }
2580 }
2581
2582 #define DATA_N 0x800000
2583 #define LINK_N 0x80000
2584
2585 static void
2586 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2587                      int link_clock, struct fdi_m_n *m_n)
2588 {
2589         u64 temp;
2590
2591         m_n->tu = 64; /* default size */
2592
2593         temp = (u64) DATA_N * pixel_clock;
2594         temp = div_u64(temp, link_clock);
2595         m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2596         m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2597         m_n->gmch_n = DATA_N;
2598         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2599
2600         temp = (u64) LINK_N * pixel_clock;
2601         m_n->link_m = div_u64(temp, link_clock);
2602         m_n->link_n = LINK_N;
2603         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2604 }
2605
2606
2607 struct intel_watermark_params {
2608         unsigned long fifo_size;
2609         unsigned long max_wm;
2610         unsigned long default_wm;
2611         unsigned long guard_size;
2612         unsigned long cacheline_size;
2613 };
2614
2615 /* Pineview has different values for various configs */
2616 static struct intel_watermark_params pineview_display_wm = {
2617         PINEVIEW_DISPLAY_FIFO,
2618         PINEVIEW_MAX_WM,
2619         PINEVIEW_DFT_WM,
2620         PINEVIEW_GUARD_WM,
2621         PINEVIEW_FIFO_LINE_SIZE
2622 };
2623 static struct intel_watermark_params pineview_display_hplloff_wm = {
2624         PINEVIEW_DISPLAY_FIFO,
2625         PINEVIEW_MAX_WM,
2626         PINEVIEW_DFT_HPLLOFF_WM,
2627         PINEVIEW_GUARD_WM,
2628         PINEVIEW_FIFO_LINE_SIZE
2629 };
2630 static struct intel_watermark_params pineview_cursor_wm = {
2631         PINEVIEW_CURSOR_FIFO,
2632         PINEVIEW_CURSOR_MAX_WM,
2633         PINEVIEW_CURSOR_DFT_WM,
2634         PINEVIEW_CURSOR_GUARD_WM,
2635         PINEVIEW_FIFO_LINE_SIZE,
2636 };
2637 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2638         PINEVIEW_CURSOR_FIFO,
2639         PINEVIEW_CURSOR_MAX_WM,
2640         PINEVIEW_CURSOR_DFT_WM,
2641         PINEVIEW_CURSOR_GUARD_WM,
2642         PINEVIEW_FIFO_LINE_SIZE
2643 };
2644 static struct intel_watermark_params g4x_wm_info = {
2645         G4X_FIFO_SIZE,
2646         G4X_MAX_WM,
2647         G4X_MAX_WM,
2648         2,
2649         G4X_FIFO_LINE_SIZE,
2650 };
2651 static struct intel_watermark_params g4x_cursor_wm_info = {
2652         I965_CURSOR_FIFO,
2653         I965_CURSOR_MAX_WM,
2654         I965_CURSOR_DFT_WM,
2655         2,
2656         G4X_FIFO_LINE_SIZE,
2657 };
2658 static struct intel_watermark_params i965_cursor_wm_info = {
2659         I965_CURSOR_FIFO,
2660         I965_CURSOR_MAX_WM,
2661         I965_CURSOR_DFT_WM,
2662         2,
2663         I915_FIFO_LINE_SIZE,
2664 };
2665 static struct intel_watermark_params i945_wm_info = {
2666         I945_FIFO_SIZE,
2667         I915_MAX_WM,
2668         1,
2669         2,
2670         I915_FIFO_LINE_SIZE
2671 };
2672 static struct intel_watermark_params i915_wm_info = {
2673         I915_FIFO_SIZE,
2674         I915_MAX_WM,
2675         1,
2676         2,
2677         I915_FIFO_LINE_SIZE
2678 };
2679 static struct intel_watermark_params i855_wm_info = {
2680         I855GM_FIFO_SIZE,
2681         I915_MAX_WM,
2682         1,
2683         2,
2684         I830_FIFO_LINE_SIZE
2685 };
2686 static struct intel_watermark_params i830_wm_info = {
2687         I830_FIFO_SIZE,
2688         I915_MAX_WM,
2689         1,
2690         2,
2691         I830_FIFO_LINE_SIZE
2692 };
2693
2694 static struct intel_watermark_params ironlake_display_wm_info = {
2695         ILK_DISPLAY_FIFO,
2696         ILK_DISPLAY_MAXWM,
2697         ILK_DISPLAY_DFTWM,
2698         2,
2699         ILK_FIFO_LINE_SIZE
2700 };
2701
2702 static struct intel_watermark_params ironlake_cursor_wm_info = {
2703         ILK_CURSOR_FIFO,
2704         ILK_CURSOR_MAXWM,
2705         ILK_CURSOR_DFTWM,
2706         2,
2707         ILK_FIFO_LINE_SIZE
2708 };
2709
2710 static struct intel_watermark_params ironlake_display_srwm_info = {
2711         ILK_DISPLAY_SR_FIFO,
2712         ILK_DISPLAY_MAX_SRWM,
2713         ILK_DISPLAY_DFT_SRWM,
2714         2,
2715         ILK_FIFO_LINE_SIZE
2716 };
2717
2718 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2719         ILK_CURSOR_SR_FIFO,
2720         ILK_CURSOR_MAX_SRWM,
2721         ILK_CURSOR_DFT_SRWM,
2722         2,
2723         ILK_FIFO_LINE_SIZE
2724 };
2725
2726 /**
2727  * intel_calculate_wm - calculate watermark level
2728  * @clock_in_khz: pixel clock
2729  * @wm: chip FIFO params
2730  * @pixel_size: display pixel size
2731  * @latency_ns: memory latency for the platform
2732  *
2733  * Calculate the watermark level (the level at which the display plane will
2734  * start fetching from memory again).  Each chip has a different display
2735  * FIFO size and allocation, so the caller needs to figure that out and pass
2736  * in the correct intel_watermark_params structure.
2737  *
2738  * As the pixel clock runs, the FIFO will be drained at a rate that depends
2739  * on the pixel size.  When it reaches the watermark level, it'll start
2740  * fetching FIFO line sized based chunks from memory until the FIFO fills
2741  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
2742  * will occur, and a display engine hang could result.
2743  */
2744 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2745                                         struct intel_watermark_params *wm,
2746                                         int pixel_size,
2747                                         unsigned long latency_ns)
2748 {
2749         long entries_required, wm_size;
2750
2751         /*
2752          * Note: we need to make sure we don't overflow for various clock &
2753          * latency values.
2754          * clocks go from a few thousand to several hundred thousand.
2755          * latency is usually a few thousand
2756          */
2757         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2758                 1000;
2759         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
2760
2761         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2762
2763         wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2764
2765         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2766
2767         /* Don't promote wm_size to unsigned... */
2768         if (wm_size > (long)wm->max_wm)
2769                 wm_size = wm->max_wm;
2770         if (wm_size <= 0) {
2771                 wm_size = wm->default_wm;
2772                 DRM_ERROR("Insufficient FIFO for plane, expect flickering:"
2773                           " entries required = %ld, available = %lu.\n",
2774                           entries_required + wm->guard_size,
2775                           wm->fifo_size);
2776         }
2777
2778         return wm_size;
2779 }
2780
2781 struct cxsr_latency {
2782         int is_desktop;
2783         int is_ddr3;
2784         unsigned long fsb_freq;
2785         unsigned long mem_freq;
2786         unsigned long display_sr;
2787         unsigned long display_hpll_disable;
2788         unsigned long cursor_sr;
2789         unsigned long cursor_hpll_disable;
2790 };
2791
2792 static const struct cxsr_latency cxsr_latency_table[] = {
2793         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
2794         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
2795         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
2796         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
2797         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
2798
2799         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
2800         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
2801         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
2802         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
2803         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
2804
2805         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
2806         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
2807         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
2808         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
2809         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
2810
2811         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
2812         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
2813         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
2814         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
2815         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
2816
2817         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
2818         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
2819         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
2820         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
2821         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
2822
2823         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
2824         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
2825         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
2826         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
2827         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
2828 };
2829
2830 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
2831                                                          int is_ddr3,
2832                                                          int fsb,
2833                                                          int mem)
2834 {
2835         const struct cxsr_latency *latency;
2836         int i;
2837
2838         if (fsb == 0 || mem == 0)
2839                 return NULL;
2840
2841         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2842                 latency = &cxsr_latency_table[i];
2843                 if (is_desktop == latency->is_desktop &&
2844                     is_ddr3 == latency->is_ddr3 &&
2845                     fsb == latency->fsb_freq && mem == latency->mem_freq)
2846                         return latency;
2847         }
2848
2849         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2850
2851         return NULL;
2852 }
2853
2854 static void pineview_disable_cxsr(struct drm_device *dev)
2855 {
2856         struct drm_i915_private *dev_priv = dev->dev_private;
2857
2858         /* deactivate cxsr */
2859         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
2860 }
2861
2862 /*
2863  * Latency for FIFO fetches is dependent on several factors:
2864  *   - memory configuration (speed, channels)
2865  *   - chipset
2866  *   - current MCH state
2867  * It can be fairly high in some situations, so here we assume a fairly
2868  * pessimal value.  It's a tradeoff between extra memory fetches (if we
2869  * set this value too high, the FIFO will fetch frequently to stay full)
2870  * and power consumption (set it too low to save power and we might see
2871  * FIFO underruns and display "flicker").
2872  *
2873  * A value of 5us seems to be a good balance; safe for very low end
2874  * platforms but not overly aggressive on lower latency configs.
2875  */
2876 static const int latency_ns = 5000;
2877
2878 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2879 {
2880         struct drm_i915_private *dev_priv = dev->dev_private;
2881         uint32_t dsparb = I915_READ(DSPARB);
2882         int size;
2883
2884         size = dsparb & 0x7f;
2885         if (plane)
2886                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
2887
2888         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2889                         plane ? "B" : "A", size);
2890
2891         return size;
2892 }
2893
2894 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2895 {
2896         struct drm_i915_private *dev_priv = dev->dev_private;
2897         uint32_t dsparb = I915_READ(DSPARB);
2898         int size;
2899
2900         size = dsparb & 0x1ff;
2901         if (plane)
2902                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
2903         size >>= 1; /* Convert to cachelines */
2904
2905         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2906                         plane ? "B" : "A", size);
2907
2908         return size;
2909 }
2910
2911 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2912 {
2913         struct drm_i915_private *dev_priv = dev->dev_private;
2914         uint32_t dsparb = I915_READ(DSPARB);
2915         int size;
2916
2917         size = dsparb & 0x7f;
2918         size >>= 2; /* Convert to cachelines */
2919
2920         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2921                         plane ? "B" : "A",
2922                   size);
2923
2924         return size;
2925 }
2926
2927 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2928 {
2929         struct drm_i915_private *dev_priv = dev->dev_private;
2930         uint32_t dsparb = I915_READ(DSPARB);
2931         int size;
2932
2933         size = dsparb & 0x7f;
2934         size >>= 1; /* Convert to cachelines */
2935
2936         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2937                         plane ? "B" : "A", size);
2938
2939         return size;
2940 }
2941
2942 static void pineview_update_wm(struct drm_device *dev,  int planea_clock,
2943                           int planeb_clock, int sr_hdisplay, int unused,
2944                           int pixel_size)
2945 {
2946         struct drm_i915_private *dev_priv = dev->dev_private;
2947         const struct cxsr_latency *latency;
2948         u32 reg;
2949         unsigned long wm;
2950         int sr_clock;
2951
2952         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
2953                                          dev_priv->fsb_freq, dev_priv->mem_freq);
2954         if (!latency) {
2955                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2956                 pineview_disable_cxsr(dev);
2957                 return;
2958         }
2959
2960         if (!planea_clock || !planeb_clock) {
2961                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2962
2963                 /* Display SR */
2964                 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
2965                                         pixel_size, latency->display_sr);
2966                 reg = I915_READ(DSPFW1);
2967                 reg &= ~DSPFW_SR_MASK;
2968                 reg |= wm << DSPFW_SR_SHIFT;
2969                 I915_WRITE(DSPFW1, reg);
2970                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
2971
2972                 /* cursor SR */
2973                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
2974                                         pixel_size, latency->cursor_sr);
2975                 reg = I915_READ(DSPFW3);
2976                 reg &= ~DSPFW_CURSOR_SR_MASK;
2977                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
2978                 I915_WRITE(DSPFW3, reg);
2979
2980                 /* Display HPLL off SR */
2981                 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
2982                                         pixel_size, latency->display_hpll_disable);
2983                 reg = I915_READ(DSPFW3);
2984                 reg &= ~DSPFW_HPLL_SR_MASK;
2985                 reg |= wm & DSPFW_HPLL_SR_MASK;
2986                 I915_WRITE(DSPFW3, reg);
2987
2988                 /* cursor HPLL off SR */
2989                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
2990                                         pixel_size, latency->cursor_hpll_disable);
2991                 reg = I915_READ(DSPFW3);
2992                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
2993                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
2994                 I915_WRITE(DSPFW3, reg);
2995                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
2996
2997                 /* activate cxsr */
2998                 I915_WRITE(DSPFW3,
2999                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3000                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3001         } else {
3002                 pineview_disable_cxsr(dev);
3003                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3004         }
3005 }
3006
3007 static void g4x_update_wm(struct drm_device *dev,  int planea_clock,
3008                           int planeb_clock, int sr_hdisplay, int sr_htotal,
3009                           int pixel_size)
3010 {
3011         struct drm_i915_private *dev_priv = dev->dev_private;
3012         int total_size, cacheline_size;
3013         int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
3014         struct intel_watermark_params planea_params, planeb_params;
3015         unsigned long line_time_us;
3016         int sr_clock, sr_entries = 0, entries_required;
3017
3018         /* Create copies of the base settings for each pipe */
3019         planea_params = planeb_params = g4x_wm_info;
3020
3021         /* Grab a couple of global values before we overwrite them */
3022         total_size = planea_params.fifo_size;
3023         cacheline_size = planea_params.cacheline_size;
3024
3025         /*
3026          * Note: we need to make sure we don't overflow for various clock &
3027          * latency values.
3028          * clocks go from a few thousand to several hundred thousand.
3029          * latency is usually a few thousand
3030          */
3031         entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
3032                 1000;
3033         entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3034         planea_wm = entries_required + planea_params.guard_size;
3035
3036         entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
3037                 1000;
3038         entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3039         planeb_wm = entries_required + planeb_params.guard_size;
3040
3041         cursora_wm = cursorb_wm = 16;
3042         cursor_sr = 32;
3043
3044         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3045
3046         /* Calc sr entries for one plane configs */
3047         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3048                 /* self-refresh has much higher latency */
3049                 static const int sr_latency_ns = 12000;
3050
3051                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3052                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3053
3054                 /* Use ns/us then divide to preserve precision */
3055                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3056                               pixel_size * sr_hdisplay;
3057                 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3058
3059                 entries_required = (((sr_latency_ns / line_time_us) +
3060                                      1000) / 1000) * pixel_size * 64;
3061                 entries_required = DIV_ROUND_UP(entries_required,
3062                                            g4x_cursor_wm_info.cacheline_size);
3063                 cursor_sr = entries_required + g4x_cursor_wm_info.guard_size;
3064
3065                 if (cursor_sr > g4x_cursor_wm_info.max_wm)
3066                         cursor_sr = g4x_cursor_wm_info.max_wm;
3067                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3068                               "cursor %d\n", sr_entries, cursor_sr);
3069
3070                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3071         } else {
3072                 /* Turn off self refresh if both pipes are enabled */
3073                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3074                                         & ~FW_BLC_SELF_EN);
3075         }
3076
3077         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
3078                   planea_wm, planeb_wm, sr_entries);
3079
3080         planea_wm &= 0x3f;
3081         planeb_wm &= 0x3f;
3082
3083         I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
3084                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3085                    (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
3086         I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3087                    (cursora_wm << DSPFW_CURSORA_SHIFT));
3088         /* HPLL off in SR has some issues on G4x... disable it */
3089         I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3090                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3091 }
3092
3093 static void i965_update_wm(struct drm_device *dev, int planea_clock,
3094                            int planeb_clock, int sr_hdisplay, int sr_htotal,
3095                            int pixel_size)
3096 {
3097         struct drm_i915_private *dev_priv = dev->dev_private;
3098         unsigned long line_time_us;
3099         int sr_clock, sr_entries, srwm = 1;
3100         int cursor_sr = 16;
3101
3102         /* Calc sr entries for one plane configs */
3103         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3104                 /* self-refresh has much higher latency */
3105                 static const int sr_latency_ns = 12000;
3106
3107                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3108                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3109
3110                 /* Use ns/us then divide to preserve precision */
3111                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3112                               pixel_size * sr_hdisplay;
3113                 sr_entries = DIV_ROUND_UP(sr_entries, I915_FIFO_LINE_SIZE);
3114                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
3115                 srwm = I965_FIFO_SIZE - sr_entries;
3116                 if (srwm < 0)
3117                         srwm = 1;
3118                 srwm &= 0x1ff;
3119
3120                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3121                              pixel_size * 64;
3122                 sr_entries = DIV_ROUND_UP(sr_entries,
3123                                           i965_cursor_wm_info.cacheline_size);
3124                 cursor_sr = i965_cursor_wm_info.fifo_size -
3125                             (sr_entries + i965_cursor_wm_info.guard_size);
3126
3127                 if (cursor_sr > i965_cursor_wm_info.max_wm)
3128                         cursor_sr = i965_cursor_wm_info.max_wm;
3129
3130                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3131                               "cursor %d\n", srwm, cursor_sr);
3132
3133                 if (IS_I965GM(dev))
3134                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3135         } else {
3136                 /* Turn off self refresh if both pipes are enabled */
3137                 if (IS_I965GM(dev))
3138                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3139                                    & ~FW_BLC_SELF_EN);
3140         }
3141
3142         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3143                       srwm);
3144
3145         /* 965 has limitations... */
3146         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
3147                    (8 << 0));
3148         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3149         /* update cursor SR watermark */
3150         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3151 }
3152
3153 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
3154                            int planeb_clock, int sr_hdisplay, int sr_htotal,
3155                            int pixel_size)
3156 {
3157         struct drm_i915_private *dev_priv = dev->dev_private;
3158         uint32_t fwater_lo;
3159         uint32_t fwater_hi;
3160         int total_size, cacheline_size, cwm, srwm = 1;
3161         int planea_wm, planeb_wm;
3162         struct intel_watermark_params planea_params, planeb_params;
3163         unsigned long line_time_us;
3164         int sr_clock, sr_entries = 0;
3165
3166         /* Create copies of the base settings for each pipe */
3167         if (IS_I965GM(dev) || IS_I945GM(dev))
3168                 planea_params = planeb_params = i945_wm_info;
3169         else if (IS_I9XX(dev))
3170                 planea_params = planeb_params = i915_wm_info;
3171         else
3172                 planea_params = planeb_params = i855_wm_info;
3173
3174         /* Grab a couple of global values before we overwrite them */
3175         total_size = planea_params.fifo_size;
3176         cacheline_size = planea_params.cacheline_size;
3177
3178         /* Update per-plane FIFO sizes */
3179         planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3180         planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3181
3182         planea_wm = intel_calculate_wm(planea_clock, &planea_params,
3183                                        pixel_size, latency_ns);
3184         planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
3185                                        pixel_size, latency_ns);
3186         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3187
3188         /*
3189          * Overlay gets an aggressive default since video jitter is bad.
3190          */
3191         cwm = 2;
3192
3193         /* Calc sr entries for one plane configs */
3194         if (HAS_FW_BLC(dev) && sr_hdisplay &&
3195             (!planea_clock || !planeb_clock)) {
3196                 /* self-refresh has much higher latency */
3197                 static const int sr_latency_ns = 6000;
3198
3199                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3200                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3201
3202                 /* Use ns/us then divide to preserve precision */
3203                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3204                               pixel_size * sr_hdisplay;
3205                 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3206                 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
3207                 srwm = total_size - sr_entries;
3208                 if (srwm < 0)
3209                         srwm = 1;
3210
3211                 if (IS_I945G(dev) || IS_I945GM(dev))
3212                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3213                 else if (IS_I915GM(dev)) {
3214                         /* 915M has a smaller SRWM field */
3215                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3216                         I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3217                 }
3218         } else {
3219                 /* Turn off self refresh if both pipes are enabled */
3220                 if (IS_I945G(dev) || IS_I945GM(dev)) {
3221                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3222                                    & ~FW_BLC_SELF_EN);
3223                 } else if (IS_I915GM(dev)) {
3224                         I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3225                 }
3226         }
3227
3228         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3229                   planea_wm, planeb_wm, cwm, srwm);
3230
3231         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3232         fwater_hi = (cwm & 0x1f);
3233
3234         /* Set request length to 8 cachelines per fetch */
3235         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3236         fwater_hi = fwater_hi | (1 << 8);
3237
3238         I915_WRITE(FW_BLC, fwater_lo);
3239         I915_WRITE(FW_BLC2, fwater_hi);
3240 }
3241
3242 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3243                            int unused2, int unused3, int pixel_size)
3244 {
3245         struct drm_i915_private *dev_priv = dev->dev_private;
3246         uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3247         int planea_wm;
3248
3249         i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3250
3251         planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3252                                        pixel_size, latency_ns);
3253         fwater_lo |= (3<<8) | planea_wm;
3254
3255         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3256
3257         I915_WRITE(FW_BLC, fwater_lo);
3258 }
3259
3260 #define ILK_LP0_PLANE_LATENCY           700
3261 #define ILK_LP0_CURSOR_LATENCY          1300
3262
3263 static void ironlake_update_wm(struct drm_device *dev,  int planea_clock,
3264                        int planeb_clock, int sr_hdisplay, int sr_htotal,
3265                        int pixel_size)
3266 {
3267         struct drm_i915_private *dev_priv = dev->dev_private;
3268         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
3269         int sr_wm, cursor_wm;
3270         unsigned long line_time_us;
3271         int sr_clock, entries_required;
3272         u32 reg_value;
3273         int line_count;
3274         int planea_htotal = 0, planeb_htotal = 0;
3275         struct drm_crtc *crtc;
3276
3277         /* Need htotal for all active display plane */
3278         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3279                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3280                 if (intel_crtc->dpms_mode == DRM_MODE_DPMS_ON) {
3281                         if (intel_crtc->plane == 0)
3282                                 planea_htotal = crtc->mode.htotal;
3283                         else
3284                                 planeb_htotal = crtc->mode.htotal;
3285                 }
3286         }
3287
3288         /* Calculate and update the watermark for plane A */
3289         if (planea_clock) {
3290                 entries_required = ((planea_clock / 1000) * pixel_size *
3291                                      ILK_LP0_PLANE_LATENCY) / 1000;
3292                 entries_required = DIV_ROUND_UP(entries_required,
3293                                                 ironlake_display_wm_info.cacheline_size);
3294                 planea_wm = entries_required +
3295                             ironlake_display_wm_info.guard_size;
3296
3297                 if (planea_wm > (int)ironlake_display_wm_info.max_wm)
3298                         planea_wm = ironlake_display_wm_info.max_wm;
3299
3300                 /* Use the large buffer method to calculate cursor watermark */
3301                 line_time_us = (planea_htotal * 1000) / planea_clock;
3302
3303                 /* Use ns/us then divide to preserve precision */
3304                 line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
3305
3306                 /* calculate the cursor watermark for cursor A */
3307                 entries_required = line_count * 64 * pixel_size;
3308                 entries_required = DIV_ROUND_UP(entries_required,
3309                                                 ironlake_cursor_wm_info.cacheline_size);
3310                 cursora_wm = entries_required + ironlake_cursor_wm_info.guard_size;
3311                 if (cursora_wm > ironlake_cursor_wm_info.max_wm)
3312                         cursora_wm = ironlake_cursor_wm_info.max_wm;
3313
3314                 reg_value = I915_READ(WM0_PIPEA_ILK);
3315                 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3316                 reg_value |= (planea_wm << WM0_PIPE_PLANE_SHIFT) |
3317                              (cursora_wm & WM0_PIPE_CURSOR_MASK);
3318                 I915_WRITE(WM0_PIPEA_ILK, reg_value);
3319                 DRM_DEBUG_KMS("FIFO watermarks For pipe A - plane %d, "
3320                                 "cursor: %d\n", planea_wm, cursora_wm);
3321         }
3322         /* Calculate and update the watermark for plane B */
3323         if (planeb_clock) {
3324                 entries_required = ((planeb_clock / 1000) * pixel_size *
3325                                      ILK_LP0_PLANE_LATENCY) / 1000;
3326                 entries_required = DIV_ROUND_UP(entries_required,
3327                                                 ironlake_display_wm_info.cacheline_size);
3328                 planeb_wm = entries_required +
3329                             ironlake_display_wm_info.guard_size;
3330
3331                 if (planeb_wm > (int)ironlake_display_wm_info.max_wm)
3332                         planeb_wm = ironlake_display_wm_info.max_wm;
3333
3334                 /* Use the large buffer method to calculate cursor watermark */
3335                 line_time_us = (planeb_htotal * 1000) / planeb_clock;
3336
3337                 /* Use ns/us then divide to preserve precision */
3338                 line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
3339
3340                 /* calculate the cursor watermark for cursor B */
3341                 entries_required = line_count * 64 * pixel_size;
3342                 entries_required = DIV_ROUND_UP(entries_required,
3343                                                 ironlake_cursor_wm_info.cacheline_size);
3344                 cursorb_wm = entries_required + ironlake_cursor_wm_info.guard_size;
3345                 if (cursorb_wm > ironlake_cursor_wm_info.max_wm)
3346                         cursorb_wm = ironlake_cursor_wm_info.max_wm;
3347
3348                 reg_value = I915_READ(WM0_PIPEB_ILK);
3349                 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3350                 reg_value |= (planeb_wm << WM0_PIPE_PLANE_SHIFT) |
3351                              (cursorb_wm & WM0_PIPE_CURSOR_MASK);
3352                 I915_WRITE(WM0_PIPEB_ILK, reg_value);
3353                 DRM_DEBUG_KMS("FIFO watermarks For pipe B - plane %d, "
3354                                 "cursor: %d\n", planeb_wm, cursorb_wm);
3355         }
3356
3357         /*
3358          * Calculate and update the self-refresh watermark only when one
3359          * display plane is used.
3360          */
3361         if (!planea_clock || !planeb_clock) {
3362
3363                 /* Read the self-refresh latency. The unit is 0.5us */
3364                 int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
3365
3366                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3367                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3368
3369                 /* Use ns/us then divide to preserve precision */
3370                 line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
3371                                / 1000;
3372
3373                 /* calculate the self-refresh watermark for display plane */
3374                 entries_required = line_count * sr_hdisplay * pixel_size;
3375                 entries_required = DIV_ROUND_UP(entries_required,
3376                                                 ironlake_display_srwm_info.cacheline_size);
3377                 sr_wm = entries_required +
3378                         ironlake_display_srwm_info.guard_size;
3379
3380                 /* calculate the self-refresh watermark for display cursor */
3381                 entries_required = line_count * pixel_size * 64;
3382                 entries_required = DIV_ROUND_UP(entries_required,
3383                                                 ironlake_cursor_srwm_info.cacheline_size);
3384                 cursor_wm = entries_required +
3385                             ironlake_cursor_srwm_info.guard_size;
3386
3387                 /* configure watermark and enable self-refresh */
3388                 reg_value = I915_READ(WM1_LP_ILK);
3389                 reg_value &= ~(WM1_LP_LATENCY_MASK | WM1_LP_SR_MASK |
3390                                WM1_LP_CURSOR_MASK);
3391                 reg_value |= WM1_LP_SR_EN |
3392                              (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
3393                              (sr_wm << WM1_LP_SR_SHIFT) | cursor_wm;
3394
3395                 I915_WRITE(WM1_LP_ILK, reg_value);
3396                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3397                                 "cursor %d\n", sr_wm, cursor_wm);
3398
3399         } else {
3400                 /* Turn off self refresh if both pipes are enabled */
3401                 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
3402         }
3403 }
3404 /**
3405  * intel_update_watermarks - update FIFO watermark values based on current modes
3406  *
3407  * Calculate watermark values for the various WM regs based on current mode
3408  * and plane configuration.
3409  *
3410  * There are several cases to deal with here:
3411  *   - normal (i.e. non-self-refresh)
3412  *   - self-refresh (SR) mode
3413  *   - lines are large relative to FIFO size (buffer can hold up to 2)
3414  *   - lines are small relative to FIFO size (buffer can hold more than 2
3415  *     lines), so need to account for TLB latency
3416  *
3417  *   The normal calculation is:
3418  *     watermark = dotclock * bytes per pixel * latency
3419  *   where latency is platform & configuration dependent (we assume pessimal
3420  *   values here).
3421  *
3422  *   The SR calculation is:
3423  *     watermark = (trunc(latency/line time)+1) * surface width *
3424  *       bytes per pixel
3425  *   where
3426  *     line time = htotal / dotclock
3427  *     surface width = hdisplay for normal plane and 64 for cursor
3428  *   and latency is assumed to be high, as above.
3429  *
3430  * The final value programmed to the register should always be rounded up,
3431  * and include an extra 2 entries to account for clock crossings.
3432  *
3433  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3434  * to set the non-SR watermarks to 8.
3435   */
3436 static void intel_update_watermarks(struct drm_device *dev)
3437 {
3438         struct drm_i915_private *dev_priv = dev->dev_private;
3439         struct drm_crtc *crtc;
3440         int sr_hdisplay = 0;
3441         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3442         int enabled = 0, pixel_size = 0;
3443         int sr_htotal = 0;
3444
3445         if (!dev_priv->display.update_wm)
3446                 return;
3447
3448         /* Get the clock config from both planes */
3449         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3450                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3451                 if (intel_crtc->dpms_mode == DRM_MODE_DPMS_ON) {
3452                         enabled++;
3453                         if (intel_crtc->plane == 0) {
3454                                 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3455                                           intel_crtc->pipe, crtc->mode.clock);
3456                                 planea_clock = crtc->mode.clock;
3457                         } else {
3458                                 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3459                                           intel_crtc->pipe, crtc->mode.clock);
3460                                 planeb_clock = crtc->mode.clock;
3461                         }
3462                         sr_hdisplay = crtc->mode.hdisplay;
3463                         sr_clock = crtc->mode.clock;
3464                         sr_htotal = crtc->mode.htotal;
3465                         if (crtc->fb)
3466                                 pixel_size = crtc->fb->bits_per_pixel / 8;
3467                         else
3468                                 pixel_size = 4; /* by default */
3469                 }
3470         }
3471
3472         if (enabled <= 0)
3473                 return;
3474
3475         dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3476                                     sr_hdisplay, sr_htotal, pixel_size);
3477 }
3478
3479 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3480                                struct drm_display_mode *mode,
3481                                struct drm_display_mode *adjusted_mode,
3482                                int x, int y,
3483                                struct drm_framebuffer *old_fb)
3484 {
3485         struct drm_device *dev = crtc->dev;
3486         struct drm_i915_private *dev_priv = dev->dev_private;
3487         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3488         int pipe = intel_crtc->pipe;
3489         int plane = intel_crtc->plane;
3490         int fp_reg = (pipe == 0) ? FPA0 : FPB0;
3491         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3492         int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
3493         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
3494         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
3495         int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
3496         int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
3497         int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
3498         int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
3499         int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
3500         int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
3501         int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
3502         int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
3503         int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
3504         int refclk, num_connectors = 0;
3505         intel_clock_t clock, reduced_clock;
3506         u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
3507         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3508         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3509         struct intel_encoder *has_edp_encoder = NULL;
3510         struct drm_mode_config *mode_config = &dev->mode_config;
3511         struct drm_encoder *encoder;
3512         const intel_limit_t *limit;
3513         int ret;
3514         struct fdi_m_n m_n = {0};
3515         int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
3516         int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
3517         int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
3518         int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
3519         int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
3520         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
3521         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
3522         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
3523         int trans_dpll_sel = (pipe == 0) ? 0 : 1;
3524         int lvds_reg = LVDS;
3525         u32 temp;
3526         int sdvo_pixel_multiply;
3527         int target_clock;
3528
3529         drm_vblank_pre_modeset(dev, pipe);
3530
3531         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
3532                 struct intel_encoder *intel_encoder;
3533
3534                 if (encoder->crtc != crtc)
3535                         continue;
3536
3537                 intel_encoder = enc_to_intel_encoder(encoder);
3538                 switch (intel_encoder->type) {
3539                 case INTEL_OUTPUT_LVDS:
3540                         is_lvds = true;
3541                         break;
3542                 case INTEL_OUTPUT_SDVO:
3543                 case INTEL_OUTPUT_HDMI:
3544                         is_sdvo = true;
3545                         if (intel_encoder->needs_tv_clock)
3546                                 is_tv = true;
3547                         break;
3548                 case INTEL_OUTPUT_DVO:
3549                         is_dvo = true;
3550                         break;
3551                 case INTEL_OUTPUT_TVOUT:
3552                         is_tv = true;
3553                         break;
3554                 case INTEL_OUTPUT_ANALOG:
3555                         is_crt = true;
3556                         break;
3557                 case INTEL_OUTPUT_DISPLAYPORT:
3558                         is_dp = true;
3559                         break;
3560                 case INTEL_OUTPUT_EDP:
3561                         has_edp_encoder = intel_encoder;
3562                         break;
3563                 }
3564
3565                 num_connectors++;
3566         }
3567
3568         if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3569                 refclk = dev_priv->lvds_ssc_freq * 1000;
3570                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3571                                         refclk / 1000);
3572         } else if (IS_I9XX(dev)) {
3573                 refclk = 96000;
3574                 if (HAS_PCH_SPLIT(dev))
3575                         refclk = 120000; /* 120Mhz refclk */
3576         } else {
3577                 refclk = 48000;
3578         }
3579         
3580
3581         /*
3582          * Returns a set of divisors for the desired target clock with the given
3583          * refclk, or FALSE.  The returned values represent the clock equation:
3584          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3585          */
3586         limit = intel_limit(crtc);
3587         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3588         if (!ok) {
3589                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3590                 drm_vblank_post_modeset(dev, pipe);
3591                 return -EINVAL;
3592         }
3593
3594         /* Ensure that the cursor is valid for the new mode before changing... */
3595         intel_crtc_update_cursor(crtc);
3596
3597         if (is_lvds && dev_priv->lvds_downclock_avail) {
3598                 has_reduced_clock = limit->find_pll(limit, crtc,
3599                                                             dev_priv->lvds_downclock,
3600                                                             refclk,
3601                                                             &reduced_clock);
3602                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3603                         /*
3604                          * If the different P is found, it means that we can't
3605                          * switch the display clock by using the FP0/FP1.
3606                          * In such case we will disable the LVDS downclock
3607                          * feature.
3608                          */
3609                         DRM_DEBUG_KMS("Different P is found for "
3610                                                 "LVDS clock/downclock\n");
3611                         has_reduced_clock = 0;
3612                 }
3613         }
3614         /* SDVO TV has fixed PLL values depend on its clock range,
3615            this mirrors vbios setting. */
3616         if (is_sdvo && is_tv) {
3617                 if (adjusted_mode->clock >= 100000
3618                                 && adjusted_mode->clock < 140500) {
3619                         clock.p1 = 2;
3620                         clock.p2 = 10;
3621                         clock.n = 3;
3622                         clock.m1 = 16;
3623                         clock.m2 = 8;
3624                 } else if (adjusted_mode->clock >= 140500
3625                                 && adjusted_mode->clock <= 200000) {
3626                         clock.p1 = 1;
3627                         clock.p2 = 10;
3628                         clock.n = 6;
3629                         clock.m1 = 12;
3630                         clock.m2 = 8;
3631                 }
3632         }
3633
3634         /* FDI link */
3635         if (HAS_PCH_SPLIT(dev)) {
3636                 int lane = 0, link_bw, bpp;
3637                 /* eDP doesn't require FDI link, so just set DP M/N
3638                    according to current link config */
3639                 if (has_edp_encoder) {
3640                         target_clock = mode->clock;
3641                         intel_edp_link_config(has_edp_encoder,
3642                                               &lane, &link_bw);
3643                 } else {
3644                         /* DP over FDI requires target mode clock
3645                            instead of link clock */
3646                         if (is_dp)
3647                                 target_clock = mode->clock;
3648                         else
3649                                 target_clock = adjusted_mode->clock;
3650                         link_bw = 270000;
3651                 }
3652
3653                 /* determine panel color depth */
3654                 temp = I915_READ(pipeconf_reg);
3655                 temp &= ~PIPE_BPC_MASK;
3656                 if (is_lvds) {
3657                         int lvds_reg = I915_READ(PCH_LVDS);
3658                         /* the BPC will be 6 if it is 18-bit LVDS panel */
3659                         if ((lvds_reg & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3660                                 temp |= PIPE_8BPC;
3661                         else
3662                                 temp |= PIPE_6BPC;
3663                 } else if (has_edp_encoder || (is_dp && intel_pch_has_edp(crtc))) {
3664                         switch (dev_priv->edp_bpp/3) {
3665                         case 8:
3666                                 temp |= PIPE_8BPC;
3667                                 break;
3668                         case 10:
3669                                 temp |= PIPE_10BPC;
3670                                 break;
3671                         case 6:
3672                                 temp |= PIPE_6BPC;
3673                                 break;
3674                         case 12:
3675                                 temp |= PIPE_12BPC;
3676                                 break;
3677                         }
3678                 } else
3679                         temp |= PIPE_8BPC;
3680                 I915_WRITE(pipeconf_reg, temp);
3681                 I915_READ(pipeconf_reg);
3682
3683                 switch (temp & PIPE_BPC_MASK) {
3684                 case PIPE_8BPC:
3685                         bpp = 24;
3686                         break;
3687                 case PIPE_10BPC:
3688                         bpp = 30;
3689                         break;
3690                 case PIPE_6BPC:
3691                         bpp = 18;
3692                         break;
3693                 case PIPE_12BPC:
3694                         bpp = 36;
3695                         break;
3696                 default:
3697                         DRM_ERROR("unknown pipe bpc value\n");
3698                         bpp = 24;
3699                 }
3700
3701                 if (!lane) {
3702                         /* 
3703                          * Account for spread spectrum to avoid
3704                          * oversubscribing the link. Max center spread
3705                          * is 2.5%; use 5% for safety's sake.
3706                          */
3707                         u32 bps = target_clock * bpp * 21 / 20;
3708                         lane = bps / (link_bw * 8) + 1;
3709                 }
3710
3711                 intel_crtc->fdi_lanes = lane;
3712
3713                 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3714         }
3715
3716         /* Ironlake: try to setup display ref clock before DPLL
3717          * enabling. This is only under driver's control after
3718          * PCH B stepping, previous chipset stepping should be
3719          * ignoring this setting.
3720          */
3721         if (HAS_PCH_SPLIT(dev)) {
3722                 temp = I915_READ(PCH_DREF_CONTROL);
3723                 /* Always enable nonspread source */
3724                 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3725                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3726                 I915_WRITE(PCH_DREF_CONTROL, temp);
3727                 POSTING_READ(PCH_DREF_CONTROL);
3728
3729                 temp &= ~DREF_SSC_SOURCE_MASK;
3730                 temp |= DREF_SSC_SOURCE_ENABLE;
3731                 I915_WRITE(PCH_DREF_CONTROL, temp);
3732                 POSTING_READ(PCH_DREF_CONTROL);
3733
3734                 udelay(200);
3735
3736                 if (has_edp_encoder) {
3737                         if (dev_priv->lvds_use_ssc) {
3738                                 temp |= DREF_SSC1_ENABLE;
3739                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3740                                 POSTING_READ(PCH_DREF_CONTROL);
3741
3742                                 udelay(200);
3743
3744                                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3745                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3746                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3747                                 POSTING_READ(PCH_DREF_CONTROL);
3748                         } else {
3749                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3750                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3751                                 POSTING_READ(PCH_DREF_CONTROL);
3752                         }
3753                 }
3754         }
3755
3756         if (IS_PINEVIEW(dev)) {
3757                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3758                 if (has_reduced_clock)
3759                         fp2 = (1 << reduced_clock.n) << 16 |
3760                                 reduced_clock.m1 << 8 | reduced_clock.m2;
3761         } else {
3762                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3763                 if (has_reduced_clock)
3764                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3765                                 reduced_clock.m2;
3766         }
3767
3768         if (!HAS_PCH_SPLIT(dev))
3769                 dpll = DPLL_VGA_MODE_DIS;
3770
3771         if (IS_I9XX(dev)) {
3772                 if (is_lvds)
3773                         dpll |= DPLLB_MODE_LVDS;
3774                 else
3775                         dpll |= DPLLB_MODE_DAC_SERIAL;
3776                 if (is_sdvo) {
3777                         dpll |= DPLL_DVO_HIGH_SPEED;
3778                         sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3779                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3780                                 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3781                         else if (HAS_PCH_SPLIT(dev))
3782                                 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3783                 }
3784                 if (is_dp)
3785                         dpll |= DPLL_DVO_HIGH_SPEED;
3786
3787                 /* compute bitmask from p1 value */
3788                 if (IS_PINEVIEW(dev))
3789                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3790                 else {
3791                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3792                         /* also FPA1 */
3793                         if (HAS_PCH_SPLIT(dev))
3794                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3795                         if (IS_G4X(dev) && has_reduced_clock)
3796                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3797                 }
3798                 switch (clock.p2) {
3799                 case 5:
3800                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3801                         break;
3802                 case 7:
3803                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3804                         break;
3805                 case 10:
3806                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3807                         break;
3808                 case 14:
3809                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3810                         break;
3811                 }
3812                 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev))
3813                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3814         } else {
3815                 if (is_lvds) {
3816                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3817                 } else {
3818                         if (clock.p1 == 2)
3819                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
3820                         else
3821                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3822                         if (clock.p2 == 4)
3823                                 dpll |= PLL_P2_DIVIDE_BY_4;
3824                 }
3825         }
3826
3827         if (is_sdvo && is_tv)
3828                 dpll |= PLL_REF_INPUT_TVCLKINBC;
3829         else if (is_tv)
3830                 /* XXX: just matching BIOS for now */
3831                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
3832                 dpll |= 3;
3833         else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3834                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3835         else
3836                 dpll |= PLL_REF_INPUT_DREFCLK;
3837
3838         /* setup pipeconf */
3839         pipeconf = I915_READ(pipeconf_reg);
3840
3841         /* Set up the display plane register */
3842         dspcntr = DISPPLANE_GAMMA_ENABLE;
3843
3844         /* Ironlake's plane is forced to pipe, bit 24 is to
3845            enable color space conversion */
3846         if (!HAS_PCH_SPLIT(dev)) {
3847                 if (pipe == 0)
3848                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3849                 else
3850                         dspcntr |= DISPPLANE_SEL_PIPE_B;
3851         }
3852
3853         if (pipe == 0 && !IS_I965G(dev)) {
3854                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3855                  * core speed.
3856                  *
3857                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3858                  * pipe == 0 check?
3859                  */
3860                 if (mode->clock >
3861                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3862                         pipeconf |= PIPEACONF_DOUBLE_WIDE;
3863                 else
3864                         pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
3865         }
3866
3867         dspcntr |= DISPLAY_PLANE_ENABLE;
3868         pipeconf |= PIPEACONF_ENABLE;
3869         dpll |= DPLL_VCO_ENABLE;
3870
3871
3872         /* Disable the panel fitter if it was on our pipe */
3873         if (!HAS_PCH_SPLIT(dev) && intel_panel_fitter_pipe(dev) == pipe)
3874                 I915_WRITE(PFIT_CONTROL, 0);
3875
3876         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3877         drm_mode_debug_printmodeline(mode);
3878
3879         /* assign to Ironlake registers */
3880         if (HAS_PCH_SPLIT(dev)) {
3881                 fp_reg = pch_fp_reg;
3882                 dpll_reg = pch_dpll_reg;
3883         }
3884
3885         if (!has_edp_encoder) {
3886                 I915_WRITE(fp_reg, fp);
3887                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3888                 I915_READ(dpll_reg);
3889                 udelay(150);
3890         }
3891
3892         /* enable transcoder DPLL */
3893         if (HAS_PCH_CPT(dev)) {
3894                 temp = I915_READ(PCH_DPLL_SEL);
3895                 if (trans_dpll_sel == 0)
3896                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
3897                 else
3898                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3899                 I915_WRITE(PCH_DPLL_SEL, temp);
3900                 I915_READ(PCH_DPLL_SEL);
3901                 udelay(150);
3902         }
3903
3904         if (HAS_PCH_SPLIT(dev)) {
3905                 pipeconf &= ~PIPE_ENABLE_DITHER;
3906                 pipeconf &= ~PIPE_DITHER_TYPE_MASK;
3907         }
3908
3909         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3910          * This is an exception to the general rule that mode_set doesn't turn
3911          * things on.
3912          */
3913         if (is_lvds) {
3914                 u32 lvds;
3915
3916                 if (HAS_PCH_SPLIT(dev))
3917                         lvds_reg = PCH_LVDS;
3918
3919                 lvds = I915_READ(lvds_reg);
3920                 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3921                 if (pipe == 1) {
3922                         if (HAS_PCH_CPT(dev))
3923                                 lvds |= PORT_TRANS_B_SEL_CPT;
3924                         else
3925                                 lvds |= LVDS_PIPEB_SELECT;
3926                 } else {
3927                         if (HAS_PCH_CPT(dev))
3928                                 lvds &= ~PORT_TRANS_SEL_MASK;
3929                         else
3930                                 lvds &= ~LVDS_PIPEB_SELECT;
3931                 }
3932                 /* set the corresponsding LVDS_BORDER bit */
3933                 lvds |= dev_priv->lvds_border_bits;
3934                 /* Set the B0-B3 data pairs corresponding to whether we're going to
3935                  * set the DPLLs for dual-channel mode or not.
3936                  */
3937                 if (clock.p2 == 7)
3938                         lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3939                 else
3940                         lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3941
3942                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3943                  * appropriately here, but we need to look more thoroughly into how
3944                  * panels behave in the two modes.
3945                  */
3946                 /* set the dithering flag */
3947                 if (IS_I965G(dev)) {
3948                         if (dev_priv->lvds_dither) {
3949                                 if (HAS_PCH_SPLIT(dev)) {
3950                                         pipeconf |= PIPE_ENABLE_DITHER;
3951                                         pipeconf |= PIPE_DITHER_TYPE_ST01;
3952                                 } else
3953                                         lvds |= LVDS_ENABLE_DITHER;
3954                         } else {
3955                                 if (!HAS_PCH_SPLIT(dev)) {
3956                                         lvds &= ~LVDS_ENABLE_DITHER;
3957                                 }
3958                         }
3959                 }
3960                 I915_WRITE(lvds_reg, lvds);
3961                 I915_READ(lvds_reg);
3962         }
3963         if (is_dp)
3964                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3965         else if (HAS_PCH_SPLIT(dev)) {
3966                 /* For non-DP output, clear any trans DP clock recovery setting.*/
3967                 if (pipe == 0) {
3968                         I915_WRITE(TRANSA_DATA_M1, 0);
3969                         I915_WRITE(TRANSA_DATA_N1, 0);
3970                         I915_WRITE(TRANSA_DP_LINK_M1, 0);
3971                         I915_WRITE(TRANSA_DP_LINK_N1, 0);
3972                 } else {
3973                         I915_WRITE(TRANSB_DATA_M1, 0);
3974                         I915_WRITE(TRANSB_DATA_N1, 0);
3975                         I915_WRITE(TRANSB_DP_LINK_M1, 0);
3976                         I915_WRITE(TRANSB_DP_LINK_N1, 0);
3977                 }
3978         }
3979
3980         if (!has_edp_encoder) {
3981                 I915_WRITE(fp_reg, fp);
3982                 I915_WRITE(dpll_reg, dpll);
3983                 I915_READ(dpll_reg);
3984                 /* Wait for the clocks to stabilize. */
3985                 udelay(150);
3986
3987                 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) {
3988                         if (is_sdvo) {
3989                                 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3990                                 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
3991                                         ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
3992                         } else
3993                                 I915_WRITE(dpll_md_reg, 0);
3994                 } else {
3995                         /* write it again -- the BIOS does, after all */
3996                         I915_WRITE(dpll_reg, dpll);
3997                 }
3998                 I915_READ(dpll_reg);
3999                 /* Wait for the clocks to stabilize. */
4000                 udelay(150);
4001         }
4002
4003         if (is_lvds && has_reduced_clock && i915_powersave) {
4004                 I915_WRITE(fp_reg + 4, fp2);
4005                 intel_crtc->lowfreq_avail = true;
4006                 if (HAS_PIPE_CXSR(dev)) {
4007                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4008                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4009                 }
4010         } else {
4011                 I915_WRITE(fp_reg + 4, fp);
4012                 intel_crtc->lowfreq_avail = false;
4013                 if (HAS_PIPE_CXSR(dev)) {
4014                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4015                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4016                 }
4017         }
4018
4019         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4020                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4021                 /* the chip adds 2 halflines automatically */
4022                 adjusted_mode->crtc_vdisplay -= 1;
4023                 adjusted_mode->crtc_vtotal -= 1;
4024                 adjusted_mode->crtc_vblank_start -= 1;
4025                 adjusted_mode->crtc_vblank_end -= 1;
4026                 adjusted_mode->crtc_vsync_end -= 1;
4027                 adjusted_mode->crtc_vsync_start -= 1;
4028         } else
4029                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4030
4031         I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
4032                    ((adjusted_mode->crtc_htotal - 1) << 16));
4033         I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
4034                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4035         I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
4036                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4037         I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
4038                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4039         I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
4040                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4041         I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
4042                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4043         /* pipesrc and dspsize control the size that is scaled from, which should
4044          * always be the user's requested size.
4045          */
4046         if (!HAS_PCH_SPLIT(dev)) {
4047                 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
4048                                 (mode->hdisplay - 1));
4049                 I915_WRITE(dsppos_reg, 0);
4050         }
4051         I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4052
4053         if (HAS_PCH_SPLIT(dev)) {
4054                 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
4055                 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
4056                 I915_WRITE(link_m1_reg, m_n.link_m);
4057                 I915_WRITE(link_n1_reg, m_n.link_n);
4058
4059                 if (has_edp_encoder) {
4060                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4061                 } else {
4062                         /* enable FDI RX PLL too */
4063                         temp = I915_READ(fdi_rx_reg);
4064                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
4065                         I915_READ(fdi_rx_reg);
4066                         udelay(200);
4067
4068                         /* enable FDI TX PLL too */
4069                         temp = I915_READ(fdi_tx_reg);
4070                         I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
4071                         I915_READ(fdi_tx_reg);
4072
4073                         /* enable FDI RX PCDCLK */
4074                         temp = I915_READ(fdi_rx_reg);
4075                         I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
4076                         I915_READ(fdi_rx_reg);
4077                         udelay(200);
4078                 }
4079         }
4080
4081         I915_WRITE(pipeconf_reg, pipeconf);
4082         I915_READ(pipeconf_reg);
4083
4084         intel_wait_for_vblank(dev, pipe);
4085
4086         if (IS_IRONLAKE(dev)) {
4087                 /* enable address swizzle for tiling buffer */
4088                 temp = I915_READ(DISP_ARB_CTL);
4089                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
4090         }
4091
4092         I915_WRITE(dspcntr_reg, dspcntr);
4093
4094         /* Flush the plane changes */
4095         ret = intel_pipe_set_base(crtc, x, y, old_fb);
4096
4097         intel_update_watermarks(dev);
4098
4099         drm_vblank_post_modeset(dev, pipe);
4100
4101         return ret;
4102 }
4103
4104 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4105 void intel_crtc_load_lut(struct drm_crtc *crtc)
4106 {
4107         struct drm_device *dev = crtc->dev;
4108         struct drm_i915_private *dev_priv = dev->dev_private;
4109         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4110         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
4111         int i;
4112
4113         /* The clocks have to be on to load the palette. */
4114         if (!crtc->enabled)
4115                 return;
4116
4117         /* use legacy palette for Ironlake */
4118         if (HAS_PCH_SPLIT(dev))
4119                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
4120                                                    LGC_PALETTE_B;
4121
4122         for (i = 0; i < 256; i++) {
4123                 I915_WRITE(palreg + 4 * i,
4124                            (intel_crtc->lut_r[i] << 16) |
4125                            (intel_crtc->lut_g[i] << 8) |
4126                            intel_crtc->lut_b[i]);
4127         }
4128 }
4129
4130 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
4131 {
4132         struct drm_device *dev = crtc->dev;
4133         struct drm_i915_private *dev_priv = dev->dev_private;
4134         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4135         bool visible = base != 0;
4136         u32 cntl;
4137
4138         if (intel_crtc->cursor_visible == visible)
4139                 return;
4140
4141         cntl = I915_READ(CURACNTR);
4142         if (visible) {
4143                 /* On these chipsets we can only modify the base whilst
4144                  * the cursor is disabled.
4145                  */
4146                 I915_WRITE(CURABASE, base);
4147
4148                 cntl &= ~(CURSOR_FORMAT_MASK);
4149                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
4150                 cntl |= CURSOR_ENABLE |
4151                         CURSOR_GAMMA_ENABLE |
4152                         CURSOR_FORMAT_ARGB;
4153         } else
4154                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4155         I915_WRITE(CURACNTR, cntl);
4156
4157         intel_crtc->cursor_visible = visible;
4158 }
4159
4160 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
4161 {
4162         struct drm_device *dev = crtc->dev;
4163         struct drm_i915_private *dev_priv = dev->dev_private;
4164         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4165         int pipe = intel_crtc->pipe;
4166         bool visible = base != 0;
4167
4168         if (intel_crtc->cursor_visible != visible) {
4169                 uint32_t cntl = I915_READ(pipe == 0 ? CURACNTR : CURBCNTR);
4170                 if (base) {
4171                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4172                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4173                         cntl |= pipe << 28; /* Connect to correct pipe */
4174                 } else {
4175                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4176                         cntl |= CURSOR_MODE_DISABLE;
4177                 }
4178                 I915_WRITE(pipe == 0 ? CURACNTR : CURBCNTR, cntl);
4179
4180                 intel_crtc->cursor_visible = visible;
4181         }
4182         /* and commit changes on next vblank */
4183         I915_WRITE(pipe == 0 ? CURABASE : CURBBASE, base);
4184 }
4185
4186 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
4187 static void intel_crtc_update_cursor(struct drm_crtc *crtc)
4188 {
4189         struct drm_device *dev = crtc->dev;
4190         struct drm_i915_private *dev_priv = dev->dev_private;
4191         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4192         int pipe = intel_crtc->pipe;
4193         int x = intel_crtc->cursor_x;
4194         int y = intel_crtc->cursor_y;
4195         u32 base, pos;
4196         bool visible;
4197
4198         pos = 0;
4199
4200         if (intel_crtc->cursor_on && crtc->fb) {
4201                 base = intel_crtc->cursor_addr;
4202                 if (x > (int) crtc->fb->width)
4203                         base = 0;
4204
4205                 if (y > (int) crtc->fb->height)
4206                         base = 0;
4207         } else
4208                 base = 0;
4209
4210         if (x < 0) {
4211                 if (x + intel_crtc->cursor_width < 0)
4212                         base = 0;
4213
4214                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4215                 x = -x;
4216         }
4217         pos |= x << CURSOR_X_SHIFT;
4218
4219         if (y < 0) {
4220                 if (y + intel_crtc->cursor_height < 0)
4221                         base = 0;
4222
4223                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4224                 y = -y;
4225         }
4226         pos |= y << CURSOR_Y_SHIFT;
4227
4228         visible = base != 0;
4229         if (!visible && !intel_crtc->cursor_visible)
4230                 return;
4231
4232         I915_WRITE(pipe == 0 ? CURAPOS : CURBPOS, pos);
4233         if (IS_845G(dev) || IS_I865G(dev))
4234                 i845_update_cursor(crtc, base);
4235         else
4236                 i9xx_update_cursor(crtc, base);
4237
4238         if (visible)
4239                 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
4240 }
4241
4242 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
4243                                  struct drm_file *file_priv,
4244                                  uint32_t handle,
4245                                  uint32_t width, uint32_t height)
4246 {
4247         struct drm_device *dev = crtc->dev;
4248         struct drm_i915_private *dev_priv = dev->dev_private;
4249         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4250         struct drm_gem_object *bo;
4251         struct drm_i915_gem_object *obj_priv;
4252         uint32_t addr;
4253         int ret;
4254
4255         DRM_DEBUG_KMS("\n");
4256
4257         /* if we want to turn off the cursor ignore width and height */
4258         if (!handle) {
4259                 DRM_DEBUG_KMS("cursor off\n");
4260                 addr = 0;
4261                 bo = NULL;
4262                 mutex_lock(&dev->struct_mutex);
4263                 goto finish;
4264         }
4265
4266         /* Currently we only support 64x64 cursors */
4267         if (width != 64 || height != 64) {
4268                 DRM_ERROR("we currently only support 64x64 cursors\n");
4269                 return -EINVAL;
4270         }
4271
4272         bo = drm_gem_object_lookup(dev, file_priv, handle);
4273         if (!bo)
4274                 return -ENOENT;
4275
4276         obj_priv = to_intel_bo(bo);
4277
4278         if (bo->size < width * height * 4) {
4279                 DRM_ERROR("buffer is to small\n");
4280                 ret = -ENOMEM;
4281                 goto fail;
4282         }
4283
4284         /* we only need to pin inside GTT if cursor is non-phy */
4285         mutex_lock(&dev->struct_mutex);
4286         if (!dev_priv->info->cursor_needs_physical) {
4287                 ret = i915_gem_object_pin(bo, PAGE_SIZE);
4288                 if (ret) {
4289                         DRM_ERROR("failed to pin cursor bo\n");
4290                         goto fail_locked;
4291                 }
4292
4293                 ret = i915_gem_object_set_to_gtt_domain(bo, 0);
4294                 if (ret) {
4295                         DRM_ERROR("failed to move cursor bo into the GTT\n");
4296                         goto fail_unpin;
4297                 }
4298
4299                 addr = obj_priv->gtt_offset;
4300         } else {
4301                 int align = IS_I830(dev) ? 16 * 1024 : 256;
4302                 ret = i915_gem_attach_phys_object(dev, bo,
4303                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
4304                                                   align);
4305                 if (ret) {
4306                         DRM_ERROR("failed to attach phys object\n");
4307                         goto fail_locked;
4308                 }
4309                 addr = obj_priv->phys_obj->handle->busaddr;
4310         }
4311
4312         if (!IS_I9XX(dev))
4313                 I915_WRITE(CURSIZE, (height << 12) | width);
4314
4315  finish:
4316         if (intel_crtc->cursor_bo) {
4317                 if (dev_priv->info->cursor_needs_physical) {
4318                         if (intel_crtc->cursor_bo != bo)
4319                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4320                 } else
4321                         i915_gem_object_unpin(intel_crtc->cursor_bo);
4322                 drm_gem_object_unreference(intel_crtc->cursor_bo);
4323         }
4324
4325         mutex_unlock(&dev->struct_mutex);
4326
4327         intel_crtc->cursor_addr = addr;
4328         intel_crtc->cursor_bo = bo;
4329         intel_crtc->cursor_width = width;
4330         intel_crtc->cursor_height = height;
4331
4332         intel_crtc_update_cursor(crtc);
4333
4334         return 0;
4335 fail_unpin:
4336         i915_gem_object_unpin(bo);
4337 fail_locked:
4338         mutex_unlock(&dev->struct_mutex);
4339 fail:
4340         drm_gem_object_unreference_unlocked(bo);
4341         return ret;
4342 }
4343
4344 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4345 {
4346         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4347
4348         intel_crtc->cursor_x = x;
4349         intel_crtc->cursor_y = y;
4350
4351         intel_crtc_update_cursor(crtc);
4352
4353         return 0;
4354 }
4355
4356 /** Sets the color ramps on behalf of RandR */
4357 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4358                                  u16 blue, int regno)
4359 {
4360         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4361
4362         intel_crtc->lut_r[regno] = red >> 8;
4363         intel_crtc->lut_g[regno] = green >> 8;
4364         intel_crtc->lut_b[regno] = blue >> 8;
4365 }
4366
4367 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4368                              u16 *blue, int regno)
4369 {
4370         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4371
4372         *red = intel_crtc->lut_r[regno] << 8;
4373         *green = intel_crtc->lut_g[regno] << 8;
4374         *blue = intel_crtc->lut_b[regno] << 8;
4375 }
4376
4377 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4378                                  u16 *blue, uint32_t start, uint32_t size)
4379 {
4380         int end = (start + size > 256) ? 256 : start + size, i;
4381         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4382
4383         for (i = start; i < end; i++) {
4384                 intel_crtc->lut_r[i] = red[i] >> 8;
4385                 intel_crtc->lut_g[i] = green[i] >> 8;
4386                 intel_crtc->lut_b[i] = blue[i] >> 8;
4387         }
4388
4389         intel_crtc_load_lut(crtc);
4390 }
4391
4392 /**
4393  * Get a pipe with a simple mode set on it for doing load-based monitor
4394  * detection.
4395  *
4396  * It will be up to the load-detect code to adjust the pipe as appropriate for
4397  * its requirements.  The pipe will be connected to no other encoders.
4398  *
4399  * Currently this code will only succeed if there is a pipe with no encoders
4400  * configured for it.  In the future, it could choose to temporarily disable
4401  * some outputs to free up a pipe for its use.
4402  *
4403  * \return crtc, or NULL if no pipes are available.
4404  */
4405
4406 /* VESA 640x480x72Hz mode to set on the pipe */
4407 static struct drm_display_mode load_detect_mode = {
4408         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4409                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4410 };
4411
4412 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4413                                             struct drm_connector *connector,
4414                                             struct drm_display_mode *mode,
4415                                             int *dpms_mode)
4416 {
4417         struct intel_crtc *intel_crtc;
4418         struct drm_crtc *possible_crtc;
4419         struct drm_crtc *supported_crtc =NULL;
4420         struct drm_encoder *encoder = &intel_encoder->enc;
4421         struct drm_crtc *crtc = NULL;
4422         struct drm_device *dev = encoder->dev;
4423         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4424         struct drm_crtc_helper_funcs *crtc_funcs;
4425         int i = -1;
4426
4427         /*
4428          * Algorithm gets a little messy:
4429          *   - if the connector already has an assigned crtc, use it (but make
4430          *     sure it's on first)
4431          *   - try to find the first unused crtc that can drive this connector,
4432          *     and use that if we find one
4433          *   - if there are no unused crtcs available, try to use the first
4434          *     one we found that supports the connector
4435          */
4436
4437         /* See if we already have a CRTC for this connector */
4438         if (encoder->crtc) {
4439                 crtc = encoder->crtc;
4440                 /* Make sure the crtc and connector are running */
4441                 intel_crtc = to_intel_crtc(crtc);
4442                 *dpms_mode = intel_crtc->dpms_mode;
4443                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4444                         crtc_funcs = crtc->helper_private;
4445                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4446                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4447                 }
4448                 return crtc;
4449         }
4450
4451         /* Find an unused one (if possible) */
4452         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4453                 i++;
4454                 if (!(encoder->possible_crtcs & (1 << i)))
4455                         continue;
4456                 if (!possible_crtc->enabled) {
4457                         crtc = possible_crtc;
4458                         break;
4459                 }
4460                 if (!supported_crtc)
4461                         supported_crtc = possible_crtc;
4462         }
4463
4464         /*
4465          * If we didn't find an unused CRTC, don't use any.
4466          */
4467         if (!crtc) {
4468                 return NULL;
4469         }
4470
4471         encoder->crtc = crtc;
4472         connector->encoder = encoder;
4473         intel_encoder->load_detect_temp = true;
4474
4475         intel_crtc = to_intel_crtc(crtc);
4476         *dpms_mode = intel_crtc->dpms_mode;
4477
4478         if (!crtc->enabled) {
4479                 if (!mode)
4480                         mode = &load_detect_mode;
4481                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4482         } else {
4483                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4484                         crtc_funcs = crtc->helper_private;
4485                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4486                 }
4487
4488                 /* Add this connector to the crtc */
4489                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4490                 encoder_funcs->commit(encoder);
4491         }
4492         /* let the connector get through one full cycle before testing */
4493         intel_wait_for_vblank(dev, intel_crtc->pipe);
4494
4495         return crtc;
4496 }
4497
4498 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4499                                     struct drm_connector *connector, int dpms_mode)
4500 {
4501         struct drm_encoder *encoder = &intel_encoder->enc;
4502         struct drm_device *dev = encoder->dev;
4503         struct drm_crtc *crtc = encoder->crtc;
4504         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4505         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4506
4507         if (intel_encoder->load_detect_temp) {
4508                 encoder->crtc = NULL;
4509                 connector->encoder = NULL;
4510                 intel_encoder->load_detect_temp = false;
4511                 crtc->enabled = drm_helper_crtc_in_use(crtc);
4512                 drm_helper_disable_unused_functions(dev);
4513         }
4514
4515         /* Switch crtc and encoder back off if necessary */
4516         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4517                 if (encoder->crtc == crtc)
4518                         encoder_funcs->dpms(encoder, dpms_mode);
4519                 crtc_funcs->dpms(crtc, dpms_mode);
4520         }
4521 }
4522
4523 /* Returns the clock of the currently programmed mode of the given pipe. */
4524 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4525 {
4526         struct drm_i915_private *dev_priv = dev->dev_private;
4527         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4528         int pipe = intel_crtc->pipe;
4529         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4530         u32 fp;
4531         intel_clock_t clock;
4532
4533         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4534                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4535         else
4536                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4537
4538         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4539         if (IS_PINEVIEW(dev)) {
4540                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4541                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4542         } else {
4543                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4544                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4545         }
4546
4547         if (IS_I9XX(dev)) {
4548                 if (IS_PINEVIEW(dev))
4549                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4550                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4551                 else
4552                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4553                                DPLL_FPA01_P1_POST_DIV_SHIFT);
4554
4555                 switch (dpll & DPLL_MODE_MASK) {
4556                 case DPLLB_MODE_DAC_SERIAL:
4557                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4558                                 5 : 10;
4559                         break;
4560                 case DPLLB_MODE_LVDS:
4561                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4562                                 7 : 14;
4563                         break;
4564                 default:
4565                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4566                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
4567                         return 0;
4568                 }
4569
4570                 /* XXX: Handle the 100Mhz refclk */
4571                 intel_clock(dev, 96000, &clock);
4572         } else {
4573                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4574
4575                 if (is_lvds) {
4576                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4577                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
4578                         clock.p2 = 14;
4579
4580                         if ((dpll & PLL_REF_INPUT_MASK) ==
4581                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4582                                 /* XXX: might not be 66MHz */
4583                                 intel_clock(dev, 66000, &clock);
4584                         } else
4585                                 intel_clock(dev, 48000, &clock);
4586                 } else {
4587                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
4588                                 clock.p1 = 2;
4589                         else {
4590                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4591                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4592                         }
4593                         if (dpll & PLL_P2_DIVIDE_BY_4)
4594                                 clock.p2 = 4;
4595                         else
4596                                 clock.p2 = 2;
4597
4598                         intel_clock(dev, 48000, &clock);
4599                 }
4600         }
4601
4602         /* XXX: It would be nice to validate the clocks, but we can't reuse
4603          * i830PllIsValid() because it relies on the xf86_config connector
4604          * configuration being accurate, which it isn't necessarily.
4605          */
4606
4607         return clock.dot;
4608 }
4609
4610 /** Returns the currently programmed mode of the given pipe. */
4611 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4612                                              struct drm_crtc *crtc)
4613 {
4614         struct drm_i915_private *dev_priv = dev->dev_private;
4615         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4616         int pipe = intel_crtc->pipe;
4617         struct drm_display_mode *mode;
4618         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4619         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4620         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4621         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4622
4623         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4624         if (!mode)
4625                 return NULL;
4626
4627         mode->clock = intel_crtc_clock_get(dev, crtc);
4628         mode->hdisplay = (htot & 0xffff) + 1;
4629         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4630         mode->hsync_start = (hsync & 0xffff) + 1;
4631         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4632         mode->vdisplay = (vtot & 0xffff) + 1;
4633         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4634         mode->vsync_start = (vsync & 0xffff) + 1;
4635         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4636
4637         drm_mode_set_name(mode);
4638         drm_mode_set_crtcinfo(mode, 0);
4639
4640         return mode;
4641 }
4642
4643 #define GPU_IDLE_TIMEOUT 500 /* ms */
4644
4645 /* When this timer fires, we've been idle for awhile */
4646 static void intel_gpu_idle_timer(unsigned long arg)
4647 {
4648         struct drm_device *dev = (struct drm_device *)arg;
4649         drm_i915_private_t *dev_priv = dev->dev_private;
4650
4651         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4652
4653         dev_priv->busy = false;
4654
4655         queue_work(dev_priv->wq, &dev_priv->idle_work);
4656 }
4657
4658 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4659
4660 static void intel_crtc_idle_timer(unsigned long arg)
4661 {
4662         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
4663         struct drm_crtc *crtc = &intel_crtc->base;
4664         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
4665
4666         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4667
4668         intel_crtc->busy = false;
4669
4670         queue_work(dev_priv->wq, &dev_priv->idle_work);
4671 }
4672
4673 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
4674 {
4675         struct drm_device *dev = crtc->dev;
4676         drm_i915_private_t *dev_priv = dev->dev_private;
4677         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4678         int pipe = intel_crtc->pipe;
4679         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4680         int dpll = I915_READ(dpll_reg);
4681
4682         if (HAS_PCH_SPLIT(dev))
4683                 return;
4684
4685         if (!dev_priv->lvds_downclock_avail)
4686                 return;
4687
4688         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
4689                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4690
4691                 /* Unlock panel regs */
4692                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4693                            PANEL_UNLOCK_REGS);
4694
4695                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
4696                 I915_WRITE(dpll_reg, dpll);
4697                 dpll = I915_READ(dpll_reg);
4698                 intel_wait_for_vblank(dev, pipe);
4699                 dpll = I915_READ(dpll_reg);
4700                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
4701                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4702
4703                 /* ...and lock them again */
4704                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4705         }
4706
4707         /* Schedule downclock */
4708         if (schedule)
4709                 mod_timer(&intel_crtc->idle_timer, jiffies +
4710                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4711 }
4712
4713 static void intel_decrease_pllclock(struct drm_crtc *crtc)
4714 {
4715         struct drm_device *dev = crtc->dev;
4716         drm_i915_private_t *dev_priv = dev->dev_private;
4717         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4718         int pipe = intel_crtc->pipe;
4719         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4720         int dpll = I915_READ(dpll_reg);
4721
4722         if (HAS_PCH_SPLIT(dev))
4723                 return;
4724
4725         if (!dev_priv->lvds_downclock_avail)
4726                 return;
4727
4728         /*
4729          * Since this is called by a timer, we should never get here in
4730          * the manual case.
4731          */
4732         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
4733                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4734
4735                 /* Unlock panel regs */
4736                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4737                            PANEL_UNLOCK_REGS);
4738
4739                 dpll |= DISPLAY_RATE_SELECT_FPA1;
4740                 I915_WRITE(dpll_reg, dpll);
4741                 dpll = I915_READ(dpll_reg);
4742                 intel_wait_for_vblank(dev, pipe);
4743                 dpll = I915_READ(dpll_reg);
4744                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4745                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4746
4747                 /* ...and lock them again */
4748                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4749         }
4750
4751 }
4752
4753 /**
4754  * intel_idle_update - adjust clocks for idleness
4755  * @work: work struct
4756  *
4757  * Either the GPU or display (or both) went idle.  Check the busy status
4758  * here and adjust the CRTC and GPU clocks as necessary.
4759  */
4760 static void intel_idle_update(struct work_struct *work)
4761 {
4762         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4763                                                     idle_work);
4764         struct drm_device *dev = dev_priv->dev;
4765         struct drm_crtc *crtc;
4766         struct intel_crtc *intel_crtc;
4767         int enabled = 0;
4768
4769         if (!i915_powersave)
4770                 return;
4771
4772         mutex_lock(&dev->struct_mutex);
4773
4774         i915_update_gfx_val(dev_priv);
4775
4776         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4777                 /* Skip inactive CRTCs */
4778                 if (!crtc->fb)
4779                         continue;
4780
4781                 enabled++;
4782                 intel_crtc = to_intel_crtc(crtc);
4783                 if (!intel_crtc->busy)
4784                         intel_decrease_pllclock(crtc);
4785         }
4786
4787         if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
4788                 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4789                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4790         }
4791
4792         mutex_unlock(&dev->struct_mutex);
4793 }
4794
4795 /**
4796  * intel_mark_busy - mark the GPU and possibly the display busy
4797  * @dev: drm device
4798  * @obj: object we're operating on
4799  *
4800  * Callers can use this function to indicate that the GPU is busy processing
4801  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
4802  * buffer), we'll also mark the display as busy, so we know to increase its
4803  * clock frequency.
4804  */
4805 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4806 {
4807         drm_i915_private_t *dev_priv = dev->dev_private;
4808         struct drm_crtc *crtc = NULL;
4809         struct intel_framebuffer *intel_fb;
4810         struct intel_crtc *intel_crtc;
4811
4812         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4813                 return;
4814
4815         if (!dev_priv->busy) {
4816                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4817                         u32 fw_blc_self;
4818
4819                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4820                         fw_blc_self = I915_READ(FW_BLC_SELF);
4821                         fw_blc_self &= ~FW_BLC_SELF_EN;
4822                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4823                 }
4824                 dev_priv->busy = true;
4825         } else
4826                 mod_timer(&dev_priv->idle_timer, jiffies +
4827                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4828
4829         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4830                 if (!crtc->fb)
4831                         continue;
4832
4833                 intel_crtc = to_intel_crtc(crtc);
4834                 intel_fb = to_intel_framebuffer(crtc->fb);
4835                 if (intel_fb->obj == obj) {
4836                         if (!intel_crtc->busy) {
4837                                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4838                                         u32 fw_blc_self;
4839
4840                                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4841                                         fw_blc_self = I915_READ(FW_BLC_SELF);
4842                                         fw_blc_self &= ~FW_BLC_SELF_EN;
4843                                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4844                                 }
4845                                 /* Non-busy -> busy, upclock */
4846                                 intel_increase_pllclock(crtc, true);
4847                                 intel_crtc->busy = true;
4848                         } else {
4849                                 /* Busy -> busy, put off timer */
4850                                 mod_timer(&intel_crtc->idle_timer, jiffies +
4851                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4852                         }
4853                 }
4854         }
4855 }
4856
4857 static void intel_crtc_destroy(struct drm_crtc *crtc)
4858 {
4859         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4860
4861         drm_crtc_cleanup(crtc);
4862         kfree(intel_crtc);
4863 }
4864
4865 static void intel_unpin_work_fn(struct work_struct *__work)
4866 {
4867         struct intel_unpin_work *work =
4868                 container_of(__work, struct intel_unpin_work, work);
4869
4870         mutex_lock(&work->dev->struct_mutex);
4871         i915_gem_object_unpin(work->old_fb_obj);
4872         drm_gem_object_unreference(work->pending_flip_obj);
4873         drm_gem_object_unreference(work->old_fb_obj);
4874         mutex_unlock(&work->dev->struct_mutex);
4875         kfree(work);
4876 }
4877
4878 static void do_intel_finish_page_flip(struct drm_device *dev,
4879                                       struct drm_crtc *crtc)
4880 {
4881         drm_i915_private_t *dev_priv = dev->dev_private;
4882         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4883         struct intel_unpin_work *work;
4884         struct drm_i915_gem_object *obj_priv;
4885         struct drm_pending_vblank_event *e;
4886         struct timeval now;
4887         unsigned long flags;
4888
4889         /* Ignore early vblank irqs */
4890         if (intel_crtc == NULL)
4891                 return;
4892
4893         spin_lock_irqsave(&dev->event_lock, flags);
4894         work = intel_crtc->unpin_work;
4895         if (work == NULL || !work->pending) {
4896                 spin_unlock_irqrestore(&dev->event_lock, flags);
4897                 return;
4898         }
4899
4900         intel_crtc->unpin_work = NULL;
4901         drm_vblank_put(dev, intel_crtc->pipe);
4902
4903         if (work->event) {
4904                 e = work->event;
4905                 do_gettimeofday(&now);
4906                 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4907                 e->event.tv_sec = now.tv_sec;
4908                 e->event.tv_usec = now.tv_usec;
4909                 list_add_tail(&e->base.link,
4910                               &e->base.file_priv->event_list);
4911                 wake_up_interruptible(&e->base.file_priv->event_wait);
4912         }
4913
4914         spin_unlock_irqrestore(&dev->event_lock, flags);
4915
4916         obj_priv = to_intel_bo(work->pending_flip_obj);
4917
4918         /* Initial scanout buffer will have a 0 pending flip count */
4919         if ((atomic_read(&obj_priv->pending_flip) == 0) ||
4920             atomic_dec_and_test(&obj_priv->pending_flip))
4921                 DRM_WAKEUP(&dev_priv->pending_flip_queue);
4922         schedule_work(&work->work);
4923
4924         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
4925 }
4926
4927 void intel_finish_page_flip(struct drm_device *dev, int pipe)
4928 {
4929         drm_i915_private_t *dev_priv = dev->dev_private;
4930         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
4931
4932         do_intel_finish_page_flip(dev, crtc);
4933 }
4934
4935 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
4936 {
4937         drm_i915_private_t *dev_priv = dev->dev_private;
4938         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
4939
4940         do_intel_finish_page_flip(dev, crtc);
4941 }
4942
4943 void intel_prepare_page_flip(struct drm_device *dev, int plane)
4944 {
4945         drm_i915_private_t *dev_priv = dev->dev_private;
4946         struct intel_crtc *intel_crtc =
4947                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
4948         unsigned long flags;
4949
4950         spin_lock_irqsave(&dev->event_lock, flags);
4951         if (intel_crtc->unpin_work) {
4952                 if ((++intel_crtc->unpin_work->pending) > 1)
4953                         DRM_ERROR("Prepared flip multiple times\n");
4954         } else {
4955                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
4956         }
4957         spin_unlock_irqrestore(&dev->event_lock, flags);
4958 }
4959
4960 static int intel_crtc_page_flip(struct drm_crtc *crtc,
4961                                 struct drm_framebuffer *fb,
4962                                 struct drm_pending_vblank_event *event)
4963 {
4964         struct drm_device *dev = crtc->dev;
4965         struct drm_i915_private *dev_priv = dev->dev_private;
4966         struct intel_framebuffer *intel_fb;
4967         struct drm_i915_gem_object *obj_priv;
4968         struct drm_gem_object *obj;
4969         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4970         struct intel_unpin_work *work;
4971         unsigned long flags, offset;
4972         int pipe = intel_crtc->pipe;
4973         u32 pf, pipesrc;
4974         int ret;
4975
4976         work = kzalloc(sizeof *work, GFP_KERNEL);
4977         if (work == NULL)
4978                 return -ENOMEM;
4979
4980         work->event = event;
4981         work->dev = crtc->dev;
4982         intel_fb = to_intel_framebuffer(crtc->fb);
4983         work->old_fb_obj = intel_fb->obj;
4984         INIT_WORK(&work->work, intel_unpin_work_fn);
4985
4986         /* We borrow the event spin lock for protecting unpin_work */
4987         spin_lock_irqsave(&dev->event_lock, flags);
4988         if (intel_crtc->unpin_work) {
4989                 spin_unlock_irqrestore(&dev->event_lock, flags);
4990                 kfree(work);
4991
4992                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
4993                 return -EBUSY;
4994         }
4995         intel_crtc->unpin_work = work;
4996         spin_unlock_irqrestore(&dev->event_lock, flags);
4997
4998         intel_fb = to_intel_framebuffer(fb);
4999         obj = intel_fb->obj;
5000
5001         mutex_lock(&dev->struct_mutex);
5002         ret = intel_pin_and_fence_fb_obj(dev, obj);
5003         if (ret)
5004                 goto cleanup_work;
5005
5006         /* Reference the objects for the scheduled work. */
5007         drm_gem_object_reference(work->old_fb_obj);
5008         drm_gem_object_reference(obj);
5009
5010         crtc->fb = fb;
5011         ret = i915_gem_object_flush_write_domain(obj);
5012         if (ret)
5013                 goto cleanup_objs;
5014
5015         ret = drm_vblank_get(dev, intel_crtc->pipe);
5016         if (ret)
5017                 goto cleanup_objs;
5018
5019         obj_priv = to_intel_bo(obj);
5020         atomic_inc(&obj_priv->pending_flip);
5021         work->pending_flip_obj = obj;
5022
5023         if (IS_GEN3(dev) || IS_GEN2(dev)) {
5024                 u32 flip_mask;
5025
5026                 if (intel_crtc->plane)
5027                         flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5028                 else
5029                         flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5030
5031                 BEGIN_LP_RING(2);
5032                 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
5033                 OUT_RING(0);
5034                 ADVANCE_LP_RING();
5035         }
5036
5037         work->enable_stall_check = true;
5038
5039         /* Offset into the new buffer for cases of shared fbs between CRTCs */
5040         offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
5041
5042         BEGIN_LP_RING(4);
5043         switch(INTEL_INFO(dev)->gen) {
5044         case 2:
5045                 OUT_RING(MI_DISPLAY_FLIP |
5046                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5047                 OUT_RING(fb->pitch);
5048                 OUT_RING(obj_priv->gtt_offset + offset);
5049                 OUT_RING(MI_NOOP);
5050                 break;
5051
5052         case 3:
5053                 OUT_RING(MI_DISPLAY_FLIP_I915 |
5054                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5055                 OUT_RING(fb->pitch);
5056                 OUT_RING(obj_priv->gtt_offset + offset);
5057                 OUT_RING(MI_NOOP);
5058                 break;
5059
5060         case 4:
5061         case 5:
5062                 /* i965+ uses the linear or tiled offsets from the
5063                  * Display Registers (which do not change across a page-flip)
5064                  * so we need only reprogram the base address.
5065                  */
5066                 OUT_RING(MI_DISPLAY_FLIP |
5067                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5068                 OUT_RING(fb->pitch);
5069                 OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
5070
5071                 /* XXX Enabling the panel-fitter across page-flip is so far
5072                  * untested on non-native modes, so ignore it for now.
5073                  * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5074                  */
5075                 pf = 0;
5076                 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5077                 OUT_RING(pf | pipesrc);
5078                 break;
5079
5080         case 6:
5081                 OUT_RING(MI_DISPLAY_FLIP |
5082                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5083                 OUT_RING(fb->pitch | obj_priv->tiling_mode);
5084                 OUT_RING(obj_priv->gtt_offset);
5085
5086                 pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5087                 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5088                 OUT_RING(pf | pipesrc);
5089                 break;
5090         }
5091         ADVANCE_LP_RING();
5092
5093         mutex_unlock(&dev->struct_mutex);
5094
5095         trace_i915_flip_request(intel_crtc->plane, obj);
5096
5097         return 0;
5098
5099 cleanup_objs:
5100         drm_gem_object_unreference(work->old_fb_obj);
5101         drm_gem_object_unreference(obj);
5102 cleanup_work:
5103         mutex_unlock(&dev->struct_mutex);
5104
5105         spin_lock_irqsave(&dev->event_lock, flags);
5106         intel_crtc->unpin_work = NULL;
5107         spin_unlock_irqrestore(&dev->event_lock, flags);
5108
5109         kfree(work);
5110
5111         return ret;
5112 }
5113
5114 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
5115         .dpms = intel_crtc_dpms,
5116         .mode_fixup = intel_crtc_mode_fixup,
5117         .mode_set = intel_crtc_mode_set,
5118         .mode_set_base = intel_pipe_set_base,
5119         .mode_set_base_atomic = intel_pipe_set_base_atomic,
5120         .prepare = intel_crtc_prepare,
5121         .commit = intel_crtc_commit,
5122         .load_lut = intel_crtc_load_lut,
5123 };
5124
5125 static const struct drm_crtc_funcs intel_crtc_funcs = {
5126         .cursor_set = intel_crtc_cursor_set,
5127         .cursor_move = intel_crtc_cursor_move,
5128         .gamma_set = intel_crtc_gamma_set,
5129         .set_config = drm_crtc_helper_set_config,
5130         .destroy = intel_crtc_destroy,
5131         .page_flip = intel_crtc_page_flip,
5132 };
5133
5134
5135 static void intel_crtc_init(struct drm_device *dev, int pipe)
5136 {
5137         drm_i915_private_t *dev_priv = dev->dev_private;
5138         struct intel_crtc *intel_crtc;
5139         int i;
5140
5141         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
5142         if (intel_crtc == NULL)
5143                 return;
5144
5145         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
5146
5147         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
5148         intel_crtc->pipe = pipe;
5149         intel_crtc->plane = pipe;
5150         for (i = 0; i < 256; i++) {
5151                 intel_crtc->lut_r[i] = i;
5152                 intel_crtc->lut_g[i] = i;
5153                 intel_crtc->lut_b[i] = i;
5154         }
5155
5156         /* Swap pipes & planes for FBC on pre-965 */
5157         intel_crtc->pipe = pipe;
5158         intel_crtc->plane = pipe;
5159         if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
5160                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
5161                 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
5162         }
5163
5164         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
5165                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
5166         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
5167         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
5168
5169         intel_crtc->cursor_addr = 0;
5170         intel_crtc->dpms_mode = -1;
5171         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
5172
5173         intel_crtc->busy = false;
5174
5175         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
5176                     (unsigned long)intel_crtc);
5177 }
5178
5179 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
5180                                 struct drm_file *file_priv)
5181 {
5182         drm_i915_private_t *dev_priv = dev->dev_private;
5183         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
5184         struct drm_mode_object *drmmode_obj;
5185         struct intel_crtc *crtc;
5186
5187         if (!dev_priv) {
5188                 DRM_ERROR("called with no initialization\n");
5189                 return -EINVAL;
5190         }
5191
5192         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
5193                         DRM_MODE_OBJECT_CRTC);
5194
5195         if (!drmmode_obj) {
5196                 DRM_ERROR("no such CRTC id\n");
5197                 return -EINVAL;
5198         }
5199
5200         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
5201         pipe_from_crtc_id->pipe = crtc->pipe;
5202
5203         return 0;
5204 }
5205
5206 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
5207 {
5208         struct drm_crtc *crtc = NULL;
5209
5210         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5211                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5212                 if (intel_crtc->pipe == pipe)
5213                         break;
5214         }
5215         return crtc;
5216 }
5217
5218 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
5219 {
5220         int index_mask = 0;
5221         struct drm_encoder *encoder;
5222         int entry = 0;
5223
5224         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
5225                 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
5226                 if (type_mask & intel_encoder->clone_mask)
5227                         index_mask |= (1 << entry);
5228                 entry++;
5229         }
5230         return index_mask;
5231 }
5232
5233
5234 static void intel_setup_outputs(struct drm_device *dev)
5235 {
5236         struct drm_i915_private *dev_priv = dev->dev_private;
5237         struct drm_encoder *encoder;
5238         bool dpd_is_edp = false;
5239
5240         if (IS_MOBILE(dev) && !IS_I830(dev))
5241                 intel_lvds_init(dev);
5242
5243         if (HAS_PCH_SPLIT(dev)) {
5244                 dpd_is_edp = intel_dpd_is_edp(dev);
5245
5246                 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
5247                         intel_dp_init(dev, DP_A);
5248
5249                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5250                         intel_dp_init(dev, PCH_DP_D);
5251         }
5252
5253         intel_crt_init(dev);
5254
5255         if (HAS_PCH_SPLIT(dev)) {
5256                 int found;
5257
5258                 if (I915_READ(HDMIB) & PORT_DETECTED) {
5259                         /* PCH SDVOB multiplex with HDMIB */
5260                         found = intel_sdvo_init(dev, PCH_SDVOB);
5261                         if (!found)
5262                                 intel_hdmi_init(dev, HDMIB);
5263                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
5264                                 intel_dp_init(dev, PCH_DP_B);
5265                 }
5266
5267                 if (I915_READ(HDMIC) & PORT_DETECTED)
5268                         intel_hdmi_init(dev, HDMIC);
5269
5270                 if (I915_READ(HDMID) & PORT_DETECTED)
5271                         intel_hdmi_init(dev, HDMID);
5272
5273                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
5274                         intel_dp_init(dev, PCH_DP_C);
5275
5276                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5277                         intel_dp_init(dev, PCH_DP_D);
5278
5279         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
5280                 bool found = false;
5281
5282                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5283                         DRM_DEBUG_KMS("probing SDVOB\n");
5284                         found = intel_sdvo_init(dev, SDVOB);
5285                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
5286                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
5287                                 intel_hdmi_init(dev, SDVOB);
5288                         }
5289
5290                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
5291                                 DRM_DEBUG_KMS("probing DP_B\n");
5292                                 intel_dp_init(dev, DP_B);
5293                         }
5294                 }
5295
5296                 /* Before G4X SDVOC doesn't have its own detect register */
5297
5298                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5299                         DRM_DEBUG_KMS("probing SDVOC\n");
5300                         found = intel_sdvo_init(dev, SDVOC);
5301                 }
5302
5303                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
5304
5305                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
5306                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
5307                                 intel_hdmi_init(dev, SDVOC);
5308                         }
5309                         if (SUPPORTS_INTEGRATED_DP(dev)) {
5310                                 DRM_DEBUG_KMS("probing DP_C\n");
5311                                 intel_dp_init(dev, DP_C);
5312                         }
5313                 }
5314
5315                 if (SUPPORTS_INTEGRATED_DP(dev) &&
5316                     (I915_READ(DP_D) & DP_DETECTED)) {
5317                         DRM_DEBUG_KMS("probing DP_D\n");
5318                         intel_dp_init(dev, DP_D);
5319                 }
5320         } else if (IS_GEN2(dev))
5321                 intel_dvo_init(dev);
5322
5323         if (SUPPORTS_TV(dev))
5324                 intel_tv_init(dev);
5325
5326         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
5327                 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
5328
5329                 encoder->possible_crtcs = intel_encoder->crtc_mask;
5330                 encoder->possible_clones = intel_encoder_clones(dev,
5331                                                 intel_encoder->clone_mask);
5332         }
5333 }
5334
5335 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
5336 {
5337         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5338
5339         drm_framebuffer_cleanup(fb);
5340         drm_gem_object_unreference_unlocked(intel_fb->obj);
5341
5342         kfree(intel_fb);
5343 }
5344
5345 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
5346                                                 struct drm_file *file_priv,
5347                                                 unsigned int *handle)
5348 {
5349         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5350         struct drm_gem_object *object = intel_fb->obj;
5351
5352         return drm_gem_handle_create(file_priv, object, handle);
5353 }
5354
5355 static const struct drm_framebuffer_funcs intel_fb_funcs = {
5356         .destroy = intel_user_framebuffer_destroy,
5357         .create_handle = intel_user_framebuffer_create_handle,
5358 };
5359
5360 int intel_framebuffer_init(struct drm_device *dev,
5361                            struct intel_framebuffer *intel_fb,
5362                            struct drm_mode_fb_cmd *mode_cmd,
5363                            struct drm_gem_object *obj)
5364 {
5365         int ret;
5366
5367         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
5368         if (ret) {
5369                 DRM_ERROR("framebuffer init failed %d\n", ret);
5370                 return ret;
5371         }
5372
5373         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
5374         intel_fb->obj = obj;
5375         return 0;
5376 }
5377
5378 static struct drm_framebuffer *
5379 intel_user_framebuffer_create(struct drm_device *dev,
5380                               struct drm_file *filp,
5381                               struct drm_mode_fb_cmd *mode_cmd)
5382 {
5383         struct drm_gem_object *obj;
5384         struct intel_framebuffer *intel_fb;
5385         int ret;
5386
5387         obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
5388         if (!obj)
5389                 return ERR_PTR(-ENOENT);
5390
5391         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5392         if (!intel_fb)
5393                 return ERR_PTR(-ENOMEM);
5394
5395         ret = intel_framebuffer_init(dev, intel_fb,
5396                                      mode_cmd, obj);
5397         if (ret) {
5398                 drm_gem_object_unreference_unlocked(obj);
5399                 kfree(intel_fb);
5400                 return ERR_PTR(ret);
5401         }
5402
5403         return &intel_fb->base;
5404 }
5405
5406 static const struct drm_mode_config_funcs intel_mode_funcs = {
5407         .fb_create = intel_user_framebuffer_create,
5408         .output_poll_changed = intel_fb_output_poll_changed,
5409 };
5410
5411 static struct drm_gem_object *
5412 intel_alloc_context_page(struct drm_device *dev)
5413 {
5414         struct drm_gem_object *ctx;
5415         int ret;
5416
5417         ctx = i915_gem_alloc_object(dev, 4096);
5418         if (!ctx) {
5419                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5420                 return NULL;
5421         }
5422
5423         mutex_lock(&dev->struct_mutex);
5424         ret = i915_gem_object_pin(ctx, 4096);
5425         if (ret) {
5426                 DRM_ERROR("failed to pin power context: %d\n", ret);
5427                 goto err_unref;
5428         }
5429
5430         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
5431         if (ret) {
5432                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
5433                 goto err_unpin;
5434         }
5435         mutex_unlock(&dev->struct_mutex);
5436
5437         return ctx;
5438
5439 err_unpin:
5440         i915_gem_object_unpin(ctx);
5441 err_unref:
5442         drm_gem_object_unreference(ctx);
5443         mutex_unlock(&dev->struct_mutex);
5444         return NULL;
5445 }
5446
5447 bool ironlake_set_drps(struct drm_device *dev, u8 val)
5448 {
5449         struct drm_i915_private *dev_priv = dev->dev_private;
5450         u16 rgvswctl;
5451
5452         rgvswctl = I915_READ16(MEMSWCTL);
5453         if (rgvswctl & MEMCTL_CMD_STS) {
5454                 DRM_DEBUG("gpu busy, RCS change rejected\n");
5455                 return false; /* still busy with another command */
5456         }
5457
5458         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5459                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5460         I915_WRITE16(MEMSWCTL, rgvswctl);
5461         POSTING_READ16(MEMSWCTL);
5462
5463         rgvswctl |= MEMCTL_CMD_STS;
5464         I915_WRITE16(MEMSWCTL, rgvswctl);
5465
5466         return true;
5467 }
5468
5469 void ironlake_enable_drps(struct drm_device *dev)
5470 {
5471         struct drm_i915_private *dev_priv = dev->dev_private;
5472         u32 rgvmodectl = I915_READ(MEMMODECTL);
5473         u8 fmax, fmin, fstart, vstart;
5474
5475         /* 100ms RC evaluation intervals */
5476         I915_WRITE(RCUPEI, 100000);
5477         I915_WRITE(RCDNEI, 100000);
5478
5479         /* Set max/min thresholds to 90ms and 80ms respectively */
5480         I915_WRITE(RCBMAXAVG, 90000);
5481         I915_WRITE(RCBMINAVG, 80000);
5482
5483         I915_WRITE(MEMIHYST, 1);
5484
5485         /* Set up min, max, and cur for interrupt handling */
5486         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5487         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5488         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5489                 MEMMODE_FSTART_SHIFT;
5490         fstart = fmax;
5491
5492         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
5493                 PXVFREQ_PX_SHIFT;
5494
5495         dev_priv->fmax = fstart; /* IPS callback will increase this */
5496         dev_priv->fstart = fstart;
5497
5498         dev_priv->max_delay = fmax;
5499         dev_priv->min_delay = fmin;
5500         dev_priv->cur_delay = fstart;
5501
5502         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin,
5503                          fstart);
5504
5505         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5506
5507         /*
5508          * Interrupts will be enabled in ironlake_irq_postinstall
5509          */
5510
5511         I915_WRITE(VIDSTART, vstart);
5512         POSTING_READ(VIDSTART);
5513
5514         rgvmodectl |= MEMMODE_SWMODE_EN;
5515         I915_WRITE(MEMMODECTL, rgvmodectl);
5516
5517         if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 1, 0))
5518                 DRM_ERROR("stuck trying to change perf mode\n");
5519         msleep(1);
5520
5521         ironlake_set_drps(dev, fstart);
5522
5523         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
5524                 I915_READ(0x112e0);
5525         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
5526         dev_priv->last_count2 = I915_READ(0x112f4);
5527         getrawmonotonic(&dev_priv->last_time2);
5528 }
5529
5530 void ironlake_disable_drps(struct drm_device *dev)
5531 {
5532         struct drm_i915_private *dev_priv = dev->dev_private;
5533         u16 rgvswctl = I915_READ16(MEMSWCTL);
5534
5535         /* Ack interrupts, disable EFC interrupt */
5536         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5537         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5538         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5539         I915_WRITE(DEIIR, DE_PCU_EVENT);
5540         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5541
5542         /* Go back to the starting frequency */
5543         ironlake_set_drps(dev, dev_priv->fstart);
5544         msleep(1);
5545         rgvswctl |= MEMCTL_CMD_STS;
5546         I915_WRITE(MEMSWCTL, rgvswctl);
5547         msleep(1);
5548
5549 }
5550
5551 static unsigned long intel_pxfreq(u32 vidfreq)
5552 {
5553         unsigned long freq;
5554         int div = (vidfreq & 0x3f0000) >> 16;
5555         int post = (vidfreq & 0x3000) >> 12;
5556         int pre = (vidfreq & 0x7);
5557
5558         if (!pre)
5559                 return 0;
5560
5561         freq = ((div * 133333) / ((1<<post) * pre));
5562
5563         return freq;
5564 }
5565
5566 void intel_init_emon(struct drm_device *dev)
5567 {
5568         struct drm_i915_private *dev_priv = dev->dev_private;
5569         u32 lcfuse;
5570         u8 pxw[16];
5571         int i;
5572
5573         /* Disable to program */
5574         I915_WRITE(ECR, 0);
5575         POSTING_READ(ECR);
5576
5577         /* Program energy weights for various events */
5578         I915_WRITE(SDEW, 0x15040d00);
5579         I915_WRITE(CSIEW0, 0x007f0000);
5580         I915_WRITE(CSIEW1, 0x1e220004);
5581         I915_WRITE(CSIEW2, 0x04000004);
5582
5583         for (i = 0; i < 5; i++)
5584                 I915_WRITE(PEW + (i * 4), 0);
5585         for (i = 0; i < 3; i++)
5586                 I915_WRITE(DEW + (i * 4), 0);
5587
5588         /* Program P-state weights to account for frequency power adjustment */
5589         for (i = 0; i < 16; i++) {
5590                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5591                 unsigned long freq = intel_pxfreq(pxvidfreq);
5592                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5593                         PXVFREQ_PX_SHIFT;
5594                 unsigned long val;
5595
5596                 val = vid * vid;
5597                 val *= (freq / 1000);
5598                 val *= 255;
5599                 val /= (127*127*900);
5600                 if (val > 0xff)
5601                         DRM_ERROR("bad pxval: %ld\n", val);
5602                 pxw[i] = val;
5603         }
5604         /* Render standby states get 0 weight */
5605         pxw[14] = 0;
5606         pxw[15] = 0;
5607
5608         for (i = 0; i < 4; i++) {
5609                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5610                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5611                 I915_WRITE(PXW + (i * 4), val);
5612         }
5613
5614         /* Adjust magic regs to magic values (more experimental results) */
5615         I915_WRITE(OGW0, 0);
5616         I915_WRITE(OGW1, 0);
5617         I915_WRITE(EG0, 0x00007f00);
5618         I915_WRITE(EG1, 0x0000000e);
5619         I915_WRITE(EG2, 0x000e0000);
5620         I915_WRITE(EG3, 0x68000300);
5621         I915_WRITE(EG4, 0x42000000);
5622         I915_WRITE(EG5, 0x00140031);
5623         I915_WRITE(EG6, 0);
5624         I915_WRITE(EG7, 0);
5625
5626         for (i = 0; i < 8; i++)
5627                 I915_WRITE(PXWL + (i * 4), 0);
5628
5629         /* Enable PMON + select events */
5630         I915_WRITE(ECR, 0x80000019);
5631
5632         lcfuse = I915_READ(LCFUSE02);
5633
5634         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
5635 }
5636
5637 void intel_init_clock_gating(struct drm_device *dev)
5638 {
5639         struct drm_i915_private *dev_priv = dev->dev_private;
5640
5641         /*
5642          * Disable clock gating reported to work incorrectly according to the
5643          * specs, but enable as much else as we can.
5644          */
5645         if (HAS_PCH_SPLIT(dev)) {
5646                 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
5647
5648                 if (IS_IRONLAKE(dev)) {
5649                         /* Required for FBC */
5650                         dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
5651                         /* Required for CxSR */
5652                         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
5653
5654                         I915_WRITE(PCH_3DCGDIS0,
5655                                    MARIUNIT_CLOCK_GATE_DISABLE |
5656                                    SVSMUNIT_CLOCK_GATE_DISABLE);
5657                 }
5658
5659                 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
5660
5661                 /*
5662                  * According to the spec the following bits should be set in
5663                  * order to enable memory self-refresh
5664                  * The bit 22/21 of 0x42004
5665                  * The bit 5 of 0x42020
5666                  * The bit 15 of 0x45000
5667                  */
5668                 if (IS_IRONLAKE(dev)) {
5669                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5670                                         (I915_READ(ILK_DISPLAY_CHICKEN2) |
5671                                         ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5672                         I915_WRITE(ILK_DSPCLK_GATE,
5673                                         (I915_READ(ILK_DSPCLK_GATE) |
5674                                                 ILK_DPARB_CLK_GATE));
5675                         I915_WRITE(DISP_ARB_CTL,
5676                                         (I915_READ(DISP_ARB_CTL) |
5677                                                 DISP_FBC_WM_DIS));
5678                 }
5679                 /*
5680                  * Based on the document from hardware guys the following bits
5681                  * should be set unconditionally in order to enable FBC.
5682                  * The bit 22 of 0x42000
5683                  * The bit 22 of 0x42004
5684                  * The bit 7,8,9 of 0x42020.
5685                  */
5686                 if (IS_IRONLAKE_M(dev)) {
5687                         I915_WRITE(ILK_DISPLAY_CHICKEN1,
5688                                    I915_READ(ILK_DISPLAY_CHICKEN1) |
5689                                    ILK_FBCQ_DIS);
5690                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5691                                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5692                                    ILK_DPARB_GATE);
5693                         I915_WRITE(ILK_DSPCLK_GATE,
5694                                    I915_READ(ILK_DSPCLK_GATE) |
5695                                    ILK_DPFC_DIS1 |
5696                                    ILK_DPFC_DIS2 |
5697                                    ILK_CLK_FBC);
5698                 }
5699                 if (IS_GEN6(dev))
5700                         return;
5701         } else if (IS_G4X(dev)) {
5702                 uint32_t dspclk_gate;
5703                 I915_WRITE(RENCLK_GATE_D1, 0);
5704                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5705                        GS_UNIT_CLOCK_GATE_DISABLE |
5706                        CL_UNIT_CLOCK_GATE_DISABLE);
5707                 I915_WRITE(RAMCLK_GATE_D, 0);
5708                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5709                         OVRUNIT_CLOCK_GATE_DISABLE |
5710                         OVCUNIT_CLOCK_GATE_DISABLE;
5711                 if (IS_GM45(dev))
5712                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5713                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5714         } else if (IS_I965GM(dev)) {
5715                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5716                 I915_WRITE(RENCLK_GATE_D2, 0);
5717                 I915_WRITE(DSPCLK_GATE_D, 0);
5718                 I915_WRITE(RAMCLK_GATE_D, 0);
5719                 I915_WRITE16(DEUC, 0);
5720         } else if (IS_I965G(dev)) {
5721                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5722                        I965_RCC_CLOCK_GATE_DISABLE |
5723                        I965_RCPB_CLOCK_GATE_DISABLE |
5724                        I965_ISC_CLOCK_GATE_DISABLE |
5725                        I965_FBC_CLOCK_GATE_DISABLE);
5726                 I915_WRITE(RENCLK_GATE_D2, 0);
5727         } else if (IS_I9XX(dev)) {
5728                 u32 dstate = I915_READ(D_STATE);
5729
5730                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5731                         DSTATE_DOT_CLOCK_GATING;
5732                 I915_WRITE(D_STATE, dstate);
5733         } else if (IS_I85X(dev) || IS_I865G(dev)) {
5734                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5735         } else if (IS_I830(dev)) {
5736                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5737         }
5738
5739         /*
5740          * GPU can automatically power down the render unit if given a page
5741          * to save state.
5742          */
5743         if (IS_IRONLAKE_M(dev)) {
5744                 if (dev_priv->renderctx == NULL)
5745                         dev_priv->renderctx = intel_alloc_context_page(dev);
5746                 if (dev_priv->renderctx) {
5747                         struct drm_i915_gem_object *obj_priv;
5748                         obj_priv = to_intel_bo(dev_priv->renderctx);
5749                         if (obj_priv) {
5750                                 BEGIN_LP_RING(4);
5751                                 OUT_RING(MI_SET_CONTEXT);
5752                                 OUT_RING(obj_priv->gtt_offset |
5753                                                 MI_MM_SPACE_GTT |
5754                                                 MI_SAVE_EXT_STATE_EN |
5755                                                 MI_RESTORE_EXT_STATE_EN |
5756                                                 MI_RESTORE_INHIBIT);
5757                                 OUT_RING(MI_NOOP);
5758                                 OUT_RING(MI_FLUSH);
5759                                 ADVANCE_LP_RING();
5760                         }
5761                 } else {
5762                         DRM_DEBUG_KMS("Failed to allocate render context."
5763                                       "Disable RC6\n");
5764                         return;
5765                 }
5766         }
5767
5768         if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
5769                 struct drm_i915_gem_object *obj_priv = NULL;
5770
5771                 if (dev_priv->pwrctx) {
5772                         obj_priv = to_intel_bo(dev_priv->pwrctx);
5773                 } else {
5774                         struct drm_gem_object *pwrctx;
5775
5776                         pwrctx = intel_alloc_context_page(dev);
5777                         if (pwrctx) {
5778                                 dev_priv->pwrctx = pwrctx;
5779                                 obj_priv = to_intel_bo(pwrctx);
5780                         }
5781                 }
5782
5783                 if (obj_priv) {
5784                         I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
5785                         I915_WRITE(MCHBAR_RENDER_STANDBY,
5786                                    I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
5787                 }
5788         }
5789 }
5790
5791 /* Set up chip specific display functions */
5792 static void intel_init_display(struct drm_device *dev)
5793 {
5794         struct drm_i915_private *dev_priv = dev->dev_private;
5795
5796         /* We always want a DPMS function */
5797         if (HAS_PCH_SPLIT(dev))
5798                 dev_priv->display.dpms = ironlake_crtc_dpms;
5799         else
5800                 dev_priv->display.dpms = i9xx_crtc_dpms;
5801
5802         if (I915_HAS_FBC(dev)) {
5803                 if (IS_IRONLAKE_M(dev)) {
5804                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5805                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
5806                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
5807                 } else if (IS_GM45(dev)) {
5808                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5809                         dev_priv->display.enable_fbc = g4x_enable_fbc;
5810                         dev_priv->display.disable_fbc = g4x_disable_fbc;
5811                 } else if (IS_I965GM(dev)) {
5812                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5813                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
5814                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
5815                 }
5816                 /* 855GM needs testing */
5817         }
5818
5819         /* Returns the core display clock speed */
5820         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
5821                 dev_priv->display.get_display_clock_speed =
5822                         i945_get_display_clock_speed;
5823         else if (IS_I915G(dev))
5824                 dev_priv->display.get_display_clock_speed =
5825                         i915_get_display_clock_speed;
5826         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
5827                 dev_priv->display.get_display_clock_speed =
5828                         i9xx_misc_get_display_clock_speed;
5829         else if (IS_I915GM(dev))
5830                 dev_priv->display.get_display_clock_speed =
5831                         i915gm_get_display_clock_speed;
5832         else if (IS_I865G(dev))
5833                 dev_priv->display.get_display_clock_speed =
5834                         i865_get_display_clock_speed;
5835         else if (IS_I85X(dev))
5836                 dev_priv->display.get_display_clock_speed =
5837                         i855_get_display_clock_speed;
5838         else /* 852, 830 */
5839                 dev_priv->display.get_display_clock_speed =
5840                         i830_get_display_clock_speed;
5841
5842         /* For FIFO watermark updates */
5843         if (HAS_PCH_SPLIT(dev)) {
5844                 if (IS_IRONLAKE(dev)) {
5845                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5846                                 dev_priv->display.update_wm = ironlake_update_wm;
5847                         else {
5848                                 DRM_DEBUG_KMS("Failed to get proper latency. "
5849                                               "Disable CxSR\n");
5850                                 dev_priv->display.update_wm = NULL;
5851                         }
5852                 } else
5853                         dev_priv->display.update_wm = NULL;
5854         } else if (IS_PINEVIEW(dev)) {
5855                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5856                                             dev_priv->is_ddr3,
5857                                             dev_priv->fsb_freq,
5858                                             dev_priv->mem_freq)) {
5859                         DRM_INFO("failed to find known CxSR latency "
5860                                  "(found ddr%s fsb freq %d, mem freq %d), "
5861                                  "disabling CxSR\n",
5862                                  (dev_priv->is_ddr3 == 1) ? "3": "2",
5863                                  dev_priv->fsb_freq, dev_priv->mem_freq);
5864                         /* Disable CxSR and never update its watermark again */
5865                         pineview_disable_cxsr(dev);
5866                         dev_priv->display.update_wm = NULL;
5867                 } else
5868                         dev_priv->display.update_wm = pineview_update_wm;
5869         } else if (IS_G4X(dev))
5870                 dev_priv->display.update_wm = g4x_update_wm;
5871         else if (IS_I965G(dev))
5872                 dev_priv->display.update_wm = i965_update_wm;
5873         else if (IS_I9XX(dev)) {
5874                 dev_priv->display.update_wm = i9xx_update_wm;
5875                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5876         } else if (IS_I85X(dev)) {
5877                 dev_priv->display.update_wm = i9xx_update_wm;
5878                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5879         } else {
5880                 dev_priv->display.update_wm = i830_update_wm;
5881                 if (IS_845G(dev))
5882                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
5883                 else
5884                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
5885         }
5886 }
5887
5888 /*
5889  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
5890  * resume, or other times.  This quirk makes sure that's the case for
5891  * affected systems.
5892  */
5893 static void quirk_pipea_force (struct drm_device *dev)
5894 {
5895         struct drm_i915_private *dev_priv = dev->dev_private;
5896
5897         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
5898         DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
5899 }
5900
5901 struct intel_quirk {
5902         int device;
5903         int subsystem_vendor;
5904         int subsystem_device;
5905         void (*hook)(struct drm_device *dev);
5906 };
5907
5908 struct intel_quirk intel_quirks[] = {
5909         /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
5910         { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
5911         /* HP Mini needs pipe A force quirk (LP: #322104) */
5912         { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
5913
5914         /* Thinkpad R31 needs pipe A force quirk */
5915         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
5916         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
5917         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
5918
5919         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
5920         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
5921         /* ThinkPad X40 needs pipe A force quirk */
5922
5923         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
5924         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
5925
5926         /* 855 & before need to leave pipe A & dpll A up */
5927         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
5928         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
5929 };
5930
5931 static void intel_init_quirks(struct drm_device *dev)
5932 {
5933         struct pci_dev *d = dev->pdev;
5934         int i;
5935
5936         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
5937                 struct intel_quirk *q = &intel_quirks[i];
5938
5939                 if (d->device == q->device &&
5940                     (d->subsystem_vendor == q->subsystem_vendor ||
5941                      q->subsystem_vendor == PCI_ANY_ID) &&
5942                     (d->subsystem_device == q->subsystem_device ||
5943                      q->subsystem_device == PCI_ANY_ID))
5944                         q->hook(dev);
5945         }
5946 }
5947
5948 /* Disable the VGA plane that we never use */
5949 static void i915_disable_vga(struct drm_device *dev)
5950 {
5951         struct drm_i915_private *dev_priv = dev->dev_private;
5952         u8 sr1;
5953         u32 vga_reg;
5954
5955         if (HAS_PCH_SPLIT(dev))
5956                 vga_reg = CPU_VGACNTRL;
5957         else
5958                 vga_reg = VGACNTRL;
5959
5960         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
5961         outb(1, VGA_SR_INDEX);
5962         sr1 = inb(VGA_SR_DATA);
5963         outb(sr1 | 1<<5, VGA_SR_DATA);
5964         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
5965         udelay(300);
5966
5967         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
5968         POSTING_READ(vga_reg);
5969 }
5970
5971 void intel_modeset_init(struct drm_device *dev)
5972 {
5973         struct drm_i915_private *dev_priv = dev->dev_private;
5974         int i;
5975
5976         drm_mode_config_init(dev);
5977
5978         dev->mode_config.min_width = 0;
5979         dev->mode_config.min_height = 0;
5980
5981         dev->mode_config.funcs = (void *)&intel_mode_funcs;
5982
5983         intel_init_quirks(dev);
5984
5985         intel_init_display(dev);
5986
5987         if (IS_I965G(dev)) {
5988                 dev->mode_config.max_width = 8192;
5989                 dev->mode_config.max_height = 8192;
5990         } else if (IS_I9XX(dev)) {
5991                 dev->mode_config.max_width = 4096;
5992                 dev->mode_config.max_height = 4096;
5993         } else {
5994                 dev->mode_config.max_width = 2048;
5995                 dev->mode_config.max_height = 2048;
5996         }
5997
5998         /* set memory base */
5999         if (IS_I9XX(dev))
6000                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
6001         else
6002                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
6003
6004         if (IS_MOBILE(dev) || IS_I9XX(dev))
6005                 dev_priv->num_pipe = 2;
6006         else
6007                 dev_priv->num_pipe = 1;
6008         DRM_DEBUG_KMS("%d display pipe%s available.\n",
6009                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
6010
6011         for (i = 0; i < dev_priv->num_pipe; i++) {
6012                 intel_crtc_init(dev, i);
6013         }
6014
6015         intel_setup_outputs(dev);
6016
6017         intel_init_clock_gating(dev);
6018
6019         /* Just disable it once at startup */
6020         i915_disable_vga(dev);
6021
6022         if (IS_IRONLAKE_M(dev)) {
6023                 ironlake_enable_drps(dev);
6024                 intel_init_emon(dev);
6025         }
6026
6027         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
6028         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
6029                     (unsigned long)dev);
6030
6031         intel_setup_overlay(dev);
6032 }
6033
6034 void intel_modeset_cleanup(struct drm_device *dev)
6035 {
6036         struct drm_i915_private *dev_priv = dev->dev_private;
6037         struct drm_crtc *crtc;
6038         struct intel_crtc *intel_crtc;
6039
6040         mutex_lock(&dev->struct_mutex);
6041
6042         drm_kms_helper_poll_fini(dev);
6043         intel_fbdev_fini(dev);
6044
6045         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6046                 /* Skip inactive CRTCs */
6047                 if (!crtc->fb)
6048                         continue;
6049
6050                 intel_crtc = to_intel_crtc(crtc);
6051                 intel_increase_pllclock(crtc, false);
6052                 del_timer_sync(&intel_crtc->idle_timer);
6053         }
6054
6055         del_timer_sync(&dev_priv->idle_timer);
6056
6057         if (dev_priv->display.disable_fbc)
6058                 dev_priv->display.disable_fbc(dev);
6059
6060         if (dev_priv->renderctx) {
6061                 struct drm_i915_gem_object *obj_priv;
6062
6063                 obj_priv = to_intel_bo(dev_priv->renderctx);
6064                 I915_WRITE(CCID, obj_priv->gtt_offset &~ CCID_EN);
6065                 I915_READ(CCID);
6066                 i915_gem_object_unpin(dev_priv->renderctx);
6067                 drm_gem_object_unreference(dev_priv->renderctx);
6068         }
6069
6070         if (dev_priv->pwrctx) {
6071                 struct drm_i915_gem_object *obj_priv;
6072
6073                 obj_priv = to_intel_bo(dev_priv->pwrctx);
6074                 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
6075                 I915_READ(PWRCTXA);
6076                 i915_gem_object_unpin(dev_priv->pwrctx);
6077                 drm_gem_object_unreference(dev_priv->pwrctx);
6078         }
6079
6080         if (IS_IRONLAKE_M(dev))
6081                 ironlake_disable_drps(dev);
6082
6083         mutex_unlock(&dev->struct_mutex);
6084
6085         drm_mode_config_cleanup(dev);
6086 }
6087
6088
6089 /*
6090  * Return which encoder is currently attached for connector.
6091  */
6092 struct drm_encoder *intel_attached_encoder (struct drm_connector *connector)
6093 {
6094         struct drm_mode_object *obj;
6095         struct drm_encoder *encoder;
6096         int i;
6097
6098         for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++) {
6099                 if (connector->encoder_ids[i] == 0)
6100                         break;
6101
6102                 obj = drm_mode_object_find(connector->dev,
6103                                            connector->encoder_ids[i],
6104                                            DRM_MODE_OBJECT_ENCODER);
6105                 if (!obj)
6106                         continue;
6107
6108                 encoder = obj_to_encoder(obj);
6109                 return encoder;
6110         }
6111         return NULL;
6112 }
6113
6114 /*
6115  * set vga decode state - true == enable VGA decode
6116  */
6117 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
6118 {
6119         struct drm_i915_private *dev_priv = dev->dev_private;
6120         u16 gmch_ctrl;
6121
6122         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
6123         if (state)
6124                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
6125         else
6126                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
6127         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
6128         return 0;
6129 }