]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: add fence register management to execbuf
[net-next-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include <linux/swap.h>
33 #include <linux/pci.h>
34
35 #define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
36
37 static void
38 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
39                                   uint32_t read_domains,
40                                   uint32_t write_domain);
41 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
42 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
43 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
44 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
45                                              int write);
46 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
47                                                      uint64_t offset,
48                                                      uint64_t size);
49 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
50 static int i915_gem_object_get_page_list(struct drm_gem_object *obj);
51 static void i915_gem_object_free_page_list(struct drm_gem_object *obj);
52 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
53 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54                                            unsigned alignment);
55 static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write);
56 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
57 static int i915_gem_evict_something(struct drm_device *dev);
58 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
59                                 struct drm_i915_gem_pwrite *args,
60                                 struct drm_file *file_priv);
61
62 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
63                      unsigned long end)
64 {
65         drm_i915_private_t *dev_priv = dev->dev_private;
66
67         if (start >= end ||
68             (start & (PAGE_SIZE - 1)) != 0 ||
69             (end & (PAGE_SIZE - 1)) != 0) {
70                 return -EINVAL;
71         }
72
73         drm_mm_init(&dev_priv->mm.gtt_space, start,
74                     end - start);
75
76         dev->gtt_total = (uint32_t) (end - start);
77
78         return 0;
79 }
80
81 int
82 i915_gem_init_ioctl(struct drm_device *dev, void *data,
83                     struct drm_file *file_priv)
84 {
85         struct drm_i915_gem_init *args = data;
86         int ret;
87
88         mutex_lock(&dev->struct_mutex);
89         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
90         mutex_unlock(&dev->struct_mutex);
91
92         return ret;
93 }
94
95 int
96 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
97                             struct drm_file *file_priv)
98 {
99         struct drm_i915_gem_get_aperture *args = data;
100
101         if (!(dev->driver->driver_features & DRIVER_GEM))
102                 return -ENODEV;
103
104         args->aper_size = dev->gtt_total;
105         args->aper_available_size = (args->aper_size -
106                                      atomic_read(&dev->pin_memory));
107
108         return 0;
109 }
110
111
112 /**
113  * Creates a new mm object and returns a handle to it.
114  */
115 int
116 i915_gem_create_ioctl(struct drm_device *dev, void *data,
117                       struct drm_file *file_priv)
118 {
119         struct drm_i915_gem_create *args = data;
120         struct drm_gem_object *obj;
121         int handle, ret;
122
123         args->size = roundup(args->size, PAGE_SIZE);
124
125         /* Allocate the new object */
126         obj = drm_gem_object_alloc(dev, args->size);
127         if (obj == NULL)
128                 return -ENOMEM;
129
130         ret = drm_gem_handle_create(file_priv, obj, &handle);
131         mutex_lock(&dev->struct_mutex);
132         drm_gem_object_handle_unreference(obj);
133         mutex_unlock(&dev->struct_mutex);
134
135         if (ret)
136                 return ret;
137
138         args->handle = handle;
139
140         return 0;
141 }
142
143 /**
144  * Reads data from the object referenced by handle.
145  *
146  * On error, the contents of *data are undefined.
147  */
148 int
149 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
150                      struct drm_file *file_priv)
151 {
152         struct drm_i915_gem_pread *args = data;
153         struct drm_gem_object *obj;
154         struct drm_i915_gem_object *obj_priv;
155         ssize_t read;
156         loff_t offset;
157         int ret;
158
159         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
160         if (obj == NULL)
161                 return -EBADF;
162         obj_priv = obj->driver_private;
163
164         /* Bounds check source.
165          *
166          * XXX: This could use review for overflow issues...
167          */
168         if (args->offset > obj->size || args->size > obj->size ||
169             args->offset + args->size > obj->size) {
170                 drm_gem_object_unreference(obj);
171                 return -EINVAL;
172         }
173
174         mutex_lock(&dev->struct_mutex);
175
176         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
177                                                         args->size);
178         if (ret != 0) {
179                 drm_gem_object_unreference(obj);
180                 mutex_unlock(&dev->struct_mutex);
181                 return ret;
182         }
183
184         offset = args->offset;
185
186         read = vfs_read(obj->filp, (char __user *)(uintptr_t)args->data_ptr,
187                         args->size, &offset);
188         if (read != args->size) {
189                 drm_gem_object_unreference(obj);
190                 mutex_unlock(&dev->struct_mutex);
191                 if (read < 0)
192                         return read;
193                 else
194                         return -EINVAL;
195         }
196
197         drm_gem_object_unreference(obj);
198         mutex_unlock(&dev->struct_mutex);
199
200         return 0;
201 }
202
203 /* This is the fast write path which cannot handle
204  * page faults in the source data
205  */
206
207 static inline int
208 fast_user_write(struct io_mapping *mapping,
209                 loff_t page_base, int page_offset,
210                 char __user *user_data,
211                 int length)
212 {
213         char *vaddr_atomic;
214         unsigned long unwritten;
215
216         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
217         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
218                                                       user_data, length);
219         io_mapping_unmap_atomic(vaddr_atomic);
220         if (unwritten)
221                 return -EFAULT;
222         return 0;
223 }
224
225 /* Here's the write path which can sleep for
226  * page faults
227  */
228
229 static inline int
230 slow_user_write(struct io_mapping *mapping,
231                 loff_t page_base, int page_offset,
232                 char __user *user_data,
233                 int length)
234 {
235         char __iomem *vaddr;
236         unsigned long unwritten;
237
238         vaddr = io_mapping_map_wc(mapping, page_base);
239         if (vaddr == NULL)
240                 return -EFAULT;
241         unwritten = __copy_from_user(vaddr + page_offset,
242                                      user_data, length);
243         io_mapping_unmap(vaddr);
244         if (unwritten)
245                 return -EFAULT;
246         return 0;
247 }
248
249 static int
250 i915_gem_gtt_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
251                     struct drm_i915_gem_pwrite *args,
252                     struct drm_file *file_priv)
253 {
254         struct drm_i915_gem_object *obj_priv = obj->driver_private;
255         drm_i915_private_t *dev_priv = dev->dev_private;
256         ssize_t remain;
257         loff_t offset, page_base;
258         char __user *user_data;
259         int page_offset, page_length;
260         int ret;
261
262         user_data = (char __user *) (uintptr_t) args->data_ptr;
263         remain = args->size;
264         if (!access_ok(VERIFY_READ, user_data, remain))
265                 return -EFAULT;
266
267
268         mutex_lock(&dev->struct_mutex);
269         ret = i915_gem_object_pin(obj, 0);
270         if (ret) {
271                 mutex_unlock(&dev->struct_mutex);
272                 return ret;
273         }
274         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
275         if (ret)
276                 goto fail;
277
278         obj_priv = obj->driver_private;
279         offset = obj_priv->gtt_offset + args->offset;
280         obj_priv->dirty = 1;
281
282         while (remain > 0) {
283                 /* Operation in this page
284                  *
285                  * page_base = page offset within aperture
286                  * page_offset = offset within page
287                  * page_length = bytes to copy for this page
288                  */
289                 page_base = (offset & ~(PAGE_SIZE-1));
290                 page_offset = offset & (PAGE_SIZE-1);
291                 page_length = remain;
292                 if ((page_offset + remain) > PAGE_SIZE)
293                         page_length = PAGE_SIZE - page_offset;
294
295                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
296                                        page_offset, user_data, page_length);
297
298                 /* If we get a fault while copying data, then (presumably) our
299                  * source page isn't available. In this case, use the
300                  * non-atomic function
301                  */
302                 if (ret) {
303                         ret = slow_user_write (dev_priv->mm.gtt_mapping,
304                                                page_base, page_offset,
305                                                user_data, page_length);
306                         if (ret)
307                                 goto fail;
308                 }
309
310                 remain -= page_length;
311                 user_data += page_length;
312                 offset += page_length;
313         }
314
315 fail:
316         i915_gem_object_unpin(obj);
317         mutex_unlock(&dev->struct_mutex);
318
319         return ret;
320 }
321
322 static int
323 i915_gem_shmem_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
324                       struct drm_i915_gem_pwrite *args,
325                       struct drm_file *file_priv)
326 {
327         int ret;
328         loff_t offset;
329         ssize_t written;
330
331         mutex_lock(&dev->struct_mutex);
332
333         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
334         if (ret) {
335                 mutex_unlock(&dev->struct_mutex);
336                 return ret;
337         }
338
339         offset = args->offset;
340
341         written = vfs_write(obj->filp,
342                             (char __user *)(uintptr_t) args->data_ptr,
343                             args->size, &offset);
344         if (written != args->size) {
345                 mutex_unlock(&dev->struct_mutex);
346                 if (written < 0)
347                         return written;
348                 else
349                         return -EINVAL;
350         }
351
352         mutex_unlock(&dev->struct_mutex);
353
354         return 0;
355 }
356
357 /**
358  * Writes data to the object referenced by handle.
359  *
360  * On error, the contents of the buffer that were to be modified are undefined.
361  */
362 int
363 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
364                       struct drm_file *file_priv)
365 {
366         struct drm_i915_gem_pwrite *args = data;
367         struct drm_gem_object *obj;
368         struct drm_i915_gem_object *obj_priv;
369         int ret = 0;
370
371         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
372         if (obj == NULL)
373                 return -EBADF;
374         obj_priv = obj->driver_private;
375
376         /* Bounds check destination.
377          *
378          * XXX: This could use review for overflow issues...
379          */
380         if (args->offset > obj->size || args->size > obj->size ||
381             args->offset + args->size > obj->size) {
382                 drm_gem_object_unreference(obj);
383                 return -EINVAL;
384         }
385
386         /* We can only do the GTT pwrite on untiled buffers, as otherwise
387          * it would end up going through the fenced access, and we'll get
388          * different detiling behavior between reading and writing.
389          * pread/pwrite currently are reading and writing from the CPU
390          * perspective, requiring manual detiling by the client.
391          */
392         if (obj_priv->phys_obj)
393                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
394         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
395                  dev->gtt_total != 0)
396                 ret = i915_gem_gtt_pwrite(dev, obj, args, file_priv);
397         else
398                 ret = i915_gem_shmem_pwrite(dev, obj, args, file_priv);
399
400 #if WATCH_PWRITE
401         if (ret)
402                 DRM_INFO("pwrite failed %d\n", ret);
403 #endif
404
405         drm_gem_object_unreference(obj);
406
407         return ret;
408 }
409
410 /**
411  * Called when user space prepares to use an object with the CPU, either
412  * through the mmap ioctl's mapping or a GTT mapping.
413  */
414 int
415 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
416                           struct drm_file *file_priv)
417 {
418         struct drm_i915_gem_set_domain *args = data;
419         struct drm_gem_object *obj;
420         uint32_t read_domains = args->read_domains;
421         uint32_t write_domain = args->write_domain;
422         int ret;
423
424         if (!(dev->driver->driver_features & DRIVER_GEM))
425                 return -ENODEV;
426
427         /* Only handle setting domains to types used by the CPU. */
428         if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
429                 return -EINVAL;
430
431         if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
432                 return -EINVAL;
433
434         /* Having something in the write domain implies it's in the read
435          * domain, and only that read domain.  Enforce that in the request.
436          */
437         if (write_domain != 0 && read_domains != write_domain)
438                 return -EINVAL;
439
440         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
441         if (obj == NULL)
442                 return -EBADF;
443
444         mutex_lock(&dev->struct_mutex);
445 #if WATCH_BUF
446         DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
447                  obj, obj->size, read_domains, write_domain);
448 #endif
449         if (read_domains & I915_GEM_DOMAIN_GTT) {
450                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
451
452                 /* Silently promote "you're not bound, there was nothing to do"
453                  * to success, since the client was just asking us to
454                  * make sure everything was done.
455                  */
456                 if (ret == -EINVAL)
457                         ret = 0;
458         } else {
459                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
460         }
461
462         drm_gem_object_unreference(obj);
463         mutex_unlock(&dev->struct_mutex);
464         return ret;
465 }
466
467 /**
468  * Called when user space has done writes to this buffer
469  */
470 int
471 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
472                       struct drm_file *file_priv)
473 {
474         struct drm_i915_gem_sw_finish *args = data;
475         struct drm_gem_object *obj;
476         struct drm_i915_gem_object *obj_priv;
477         int ret = 0;
478
479         if (!(dev->driver->driver_features & DRIVER_GEM))
480                 return -ENODEV;
481
482         mutex_lock(&dev->struct_mutex);
483         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
484         if (obj == NULL) {
485                 mutex_unlock(&dev->struct_mutex);
486                 return -EBADF;
487         }
488
489 #if WATCH_BUF
490         DRM_INFO("%s: sw_finish %d (%p %d)\n",
491                  __func__, args->handle, obj, obj->size);
492 #endif
493         obj_priv = obj->driver_private;
494
495         /* Pinned buffers may be scanout, so flush the cache */
496         if (obj_priv->pin_count)
497                 i915_gem_object_flush_cpu_write_domain(obj);
498
499         drm_gem_object_unreference(obj);
500         mutex_unlock(&dev->struct_mutex);
501         return ret;
502 }
503
504 /**
505  * Maps the contents of an object, returning the address it is mapped
506  * into.
507  *
508  * While the mapping holds a reference on the contents of the object, it doesn't
509  * imply a ref on the object itself.
510  */
511 int
512 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
513                    struct drm_file *file_priv)
514 {
515         struct drm_i915_gem_mmap *args = data;
516         struct drm_gem_object *obj;
517         loff_t offset;
518         unsigned long addr;
519
520         if (!(dev->driver->driver_features & DRIVER_GEM))
521                 return -ENODEV;
522
523         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
524         if (obj == NULL)
525                 return -EBADF;
526
527         offset = args->offset;
528
529         down_write(&current->mm->mmap_sem);
530         addr = do_mmap(obj->filp, 0, args->size,
531                        PROT_READ | PROT_WRITE, MAP_SHARED,
532                        args->offset);
533         up_write(&current->mm->mmap_sem);
534         mutex_lock(&dev->struct_mutex);
535         drm_gem_object_unreference(obj);
536         mutex_unlock(&dev->struct_mutex);
537         if (IS_ERR((void *)addr))
538                 return addr;
539
540         args->addr_ptr = (uint64_t) addr;
541
542         return 0;
543 }
544
545 /**
546  * i915_gem_fault - fault a page into the GTT
547  * vma: VMA in question
548  * vmf: fault info
549  *
550  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
551  * from userspace.  The fault handler takes care of binding the object to
552  * the GTT (if needed), allocating and programming a fence register (again,
553  * only if needed based on whether the old reg is still valid or the object
554  * is tiled) and inserting a new PTE into the faulting process.
555  *
556  * Note that the faulting process may involve evicting existing objects
557  * from the GTT and/or fence registers to make room.  So performance may
558  * suffer if the GTT working set is large or there are few fence registers
559  * left.
560  */
561 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
562 {
563         struct drm_gem_object *obj = vma->vm_private_data;
564         struct drm_device *dev = obj->dev;
565         struct drm_i915_private *dev_priv = dev->dev_private;
566         struct drm_i915_gem_object *obj_priv = obj->driver_private;
567         pgoff_t page_offset;
568         unsigned long pfn;
569         int ret = 0;
570         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
571
572         /* We don't use vmf->pgoff since that has the fake offset */
573         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
574                 PAGE_SHIFT;
575
576         /* Now bind it into the GTT if needed */
577         mutex_lock(&dev->struct_mutex);
578         if (!obj_priv->gtt_space) {
579                 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
580                 if (ret) {
581                         mutex_unlock(&dev->struct_mutex);
582                         return VM_FAULT_SIGBUS;
583                 }
584                 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
585         }
586
587         /* Need a new fence register? */
588         if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
589             obj_priv->tiling_mode != I915_TILING_NONE) {
590                 ret = i915_gem_object_get_fence_reg(obj, write);
591                 if (ret != 0)
592                         return VM_FAULT_SIGBUS;
593         }
594
595         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
596                 page_offset;
597
598         /* Finally, remap it using the new GTT offset */
599         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
600
601         mutex_unlock(&dev->struct_mutex);
602
603         switch (ret) {
604         case -ENOMEM:
605         case -EAGAIN:
606                 return VM_FAULT_OOM;
607         case -EFAULT:
608         case -EBUSY:
609                 DRM_ERROR("can't insert pfn??  fault or busy...\n");
610                 return VM_FAULT_SIGBUS;
611         default:
612                 return VM_FAULT_NOPAGE;
613         }
614 }
615
616 /**
617  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
618  * @obj: obj in question
619  *
620  * GEM memory mapping works by handing back to userspace a fake mmap offset
621  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
622  * up the object based on the offset and sets up the various memory mapping
623  * structures.
624  *
625  * This routine allocates and attaches a fake offset for @obj.
626  */
627 static int
628 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
629 {
630         struct drm_device *dev = obj->dev;
631         struct drm_gem_mm *mm = dev->mm_private;
632         struct drm_i915_gem_object *obj_priv = obj->driver_private;
633         struct drm_map_list *list;
634         struct drm_map *map;
635         int ret = 0;
636
637         /* Set the object up for mmap'ing */
638         list = &obj->map_list;
639         list->map = drm_calloc(1, sizeof(struct drm_map_list),
640                                DRM_MEM_DRIVER);
641         if (!list->map)
642                 return -ENOMEM;
643
644         map = list->map;
645         map->type = _DRM_GEM;
646         map->size = obj->size;
647         map->handle = obj;
648
649         /* Get a DRM GEM mmap offset allocated... */
650         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
651                                                     obj->size / PAGE_SIZE, 0, 0);
652         if (!list->file_offset_node) {
653                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
654                 ret = -ENOMEM;
655                 goto out_free_list;
656         }
657
658         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
659                                                   obj->size / PAGE_SIZE, 0);
660         if (!list->file_offset_node) {
661                 ret = -ENOMEM;
662                 goto out_free_list;
663         }
664
665         list->hash.key = list->file_offset_node->start;
666         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
667                 DRM_ERROR("failed to add to map hash\n");
668                 goto out_free_mm;
669         }
670
671         /* By now we should be all set, any drm_mmap request on the offset
672          * below will get to our mmap & fault handler */
673         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
674
675         return 0;
676
677 out_free_mm:
678         drm_mm_put_block(list->file_offset_node);
679 out_free_list:
680         drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
681
682         return ret;
683 }
684
685 /**
686  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
687  * @obj: object to check
688  *
689  * Return the required GTT alignment for an object, taking into account
690  * potential fence register mapping if needed.
691  */
692 static uint32_t
693 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
694 {
695         struct drm_device *dev = obj->dev;
696         struct drm_i915_gem_object *obj_priv = obj->driver_private;
697         int start, i;
698
699         /*
700          * Minimum alignment is 4k (GTT page size), but might be greater
701          * if a fence register is needed for the object.
702          */
703         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
704                 return 4096;
705
706         /*
707          * Previous chips need to be aligned to the size of the smallest
708          * fence register that can contain the object.
709          */
710         if (IS_I9XX(dev))
711                 start = 1024*1024;
712         else
713                 start = 512*1024;
714
715         for (i = start; i < obj->size; i <<= 1)
716                 ;
717
718         return i;
719 }
720
721 /**
722  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
723  * @dev: DRM device
724  * @data: GTT mapping ioctl data
725  * @file_priv: GEM object info
726  *
727  * Simply returns the fake offset to userspace so it can mmap it.
728  * The mmap call will end up in drm_gem_mmap(), which will set things
729  * up so we can get faults in the handler above.
730  *
731  * The fault handler will take care of binding the object into the GTT
732  * (since it may have been evicted to make room for something), allocating
733  * a fence register, and mapping the appropriate aperture address into
734  * userspace.
735  */
736 int
737 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
738                         struct drm_file *file_priv)
739 {
740         struct drm_i915_gem_mmap_gtt *args = data;
741         struct drm_i915_private *dev_priv = dev->dev_private;
742         struct drm_gem_object *obj;
743         struct drm_i915_gem_object *obj_priv;
744         int ret;
745
746         if (!(dev->driver->driver_features & DRIVER_GEM))
747                 return -ENODEV;
748
749         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
750         if (obj == NULL)
751                 return -EBADF;
752
753         mutex_lock(&dev->struct_mutex);
754
755         obj_priv = obj->driver_private;
756
757         if (!obj_priv->mmap_offset) {
758                 ret = i915_gem_create_mmap_offset(obj);
759                 if (ret)
760                         return ret;
761         }
762
763         args->offset = obj_priv->mmap_offset;
764
765         obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
766
767         /* Make sure the alignment is correct for fence regs etc */
768         if (obj_priv->agp_mem &&
769             (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
770                 drm_gem_object_unreference(obj);
771                 mutex_unlock(&dev->struct_mutex);
772                 return -EINVAL;
773         }
774
775         /*
776          * Pull it into the GTT so that we have a page list (makes the
777          * initial fault faster and any subsequent flushing possible).
778          */
779         if (!obj_priv->agp_mem) {
780                 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
781                 if (ret) {
782                         drm_gem_object_unreference(obj);
783                         mutex_unlock(&dev->struct_mutex);
784                         return ret;
785                 }
786                 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
787         }
788
789         drm_gem_object_unreference(obj);
790         mutex_unlock(&dev->struct_mutex);
791
792         return 0;
793 }
794
795 static void
796 i915_gem_object_free_page_list(struct drm_gem_object *obj)
797 {
798         struct drm_i915_gem_object *obj_priv = obj->driver_private;
799         int page_count = obj->size / PAGE_SIZE;
800         int i;
801
802         if (obj_priv->page_list == NULL)
803                 return;
804
805
806         for (i = 0; i < page_count; i++)
807                 if (obj_priv->page_list[i] != NULL) {
808                         if (obj_priv->dirty)
809                                 set_page_dirty(obj_priv->page_list[i]);
810                         mark_page_accessed(obj_priv->page_list[i]);
811                         page_cache_release(obj_priv->page_list[i]);
812                 }
813         obj_priv->dirty = 0;
814
815         drm_free(obj_priv->page_list,
816                  page_count * sizeof(struct page *),
817                  DRM_MEM_DRIVER);
818         obj_priv->page_list = NULL;
819 }
820
821 static void
822 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
823 {
824         struct drm_device *dev = obj->dev;
825         drm_i915_private_t *dev_priv = dev->dev_private;
826         struct drm_i915_gem_object *obj_priv = obj->driver_private;
827
828         /* Add a reference if we're newly entering the active list. */
829         if (!obj_priv->active) {
830                 drm_gem_object_reference(obj);
831                 obj_priv->active = 1;
832         }
833         /* Move from whatever list we were on to the tail of execution. */
834         list_move_tail(&obj_priv->list,
835                        &dev_priv->mm.active_list);
836         obj_priv->last_rendering_seqno = seqno;
837 }
838
839 static void
840 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
841 {
842         struct drm_device *dev = obj->dev;
843         drm_i915_private_t *dev_priv = dev->dev_private;
844         struct drm_i915_gem_object *obj_priv = obj->driver_private;
845
846         BUG_ON(!obj_priv->active);
847         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
848         obj_priv->last_rendering_seqno = 0;
849 }
850
851 static void
852 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
853 {
854         struct drm_device *dev = obj->dev;
855         drm_i915_private_t *dev_priv = dev->dev_private;
856         struct drm_i915_gem_object *obj_priv = obj->driver_private;
857
858         i915_verify_inactive(dev, __FILE__, __LINE__);
859         if (obj_priv->pin_count != 0)
860                 list_del_init(&obj_priv->list);
861         else
862                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
863
864         obj_priv->last_rendering_seqno = 0;
865         if (obj_priv->active) {
866                 obj_priv->active = 0;
867                 drm_gem_object_unreference(obj);
868         }
869         i915_verify_inactive(dev, __FILE__, __LINE__);
870 }
871
872 /**
873  * Creates a new sequence number, emitting a write of it to the status page
874  * plus an interrupt, which will trigger i915_user_interrupt_handler.
875  *
876  * Must be called with struct_lock held.
877  *
878  * Returned sequence numbers are nonzero on success.
879  */
880 static uint32_t
881 i915_add_request(struct drm_device *dev, uint32_t flush_domains)
882 {
883         drm_i915_private_t *dev_priv = dev->dev_private;
884         struct drm_i915_gem_request *request;
885         uint32_t seqno;
886         int was_empty;
887         RING_LOCALS;
888
889         request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
890         if (request == NULL)
891                 return 0;
892
893         /* Grab the seqno we're going to make this request be, and bump the
894          * next (skipping 0 so it can be the reserved no-seqno value).
895          */
896         seqno = dev_priv->mm.next_gem_seqno;
897         dev_priv->mm.next_gem_seqno++;
898         if (dev_priv->mm.next_gem_seqno == 0)
899                 dev_priv->mm.next_gem_seqno++;
900
901         BEGIN_LP_RING(4);
902         OUT_RING(MI_STORE_DWORD_INDEX);
903         OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
904         OUT_RING(seqno);
905
906         OUT_RING(MI_USER_INTERRUPT);
907         ADVANCE_LP_RING();
908
909         DRM_DEBUG("%d\n", seqno);
910
911         request->seqno = seqno;
912         request->emitted_jiffies = jiffies;
913         was_empty = list_empty(&dev_priv->mm.request_list);
914         list_add_tail(&request->list, &dev_priv->mm.request_list);
915
916         /* Associate any objects on the flushing list matching the write
917          * domain we're flushing with our flush.
918          */
919         if (flush_domains != 0) {
920                 struct drm_i915_gem_object *obj_priv, *next;
921
922                 list_for_each_entry_safe(obj_priv, next,
923                                          &dev_priv->mm.flushing_list, list) {
924                         struct drm_gem_object *obj = obj_priv->obj;
925
926                         if ((obj->write_domain & flush_domains) ==
927                             obj->write_domain) {
928                                 obj->write_domain = 0;
929                                 i915_gem_object_move_to_active(obj, seqno);
930                         }
931                 }
932
933         }
934
935         if (was_empty && !dev_priv->mm.suspended)
936                 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
937         return seqno;
938 }
939
940 /**
941  * Command execution barrier
942  *
943  * Ensures that all commands in the ring are finished
944  * before signalling the CPU
945  */
946 static uint32_t
947 i915_retire_commands(struct drm_device *dev)
948 {
949         drm_i915_private_t *dev_priv = dev->dev_private;
950         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
951         uint32_t flush_domains = 0;
952         RING_LOCALS;
953
954         /* The sampler always gets flushed on i965 (sigh) */
955         if (IS_I965G(dev))
956                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
957         BEGIN_LP_RING(2);
958         OUT_RING(cmd);
959         OUT_RING(0); /* noop */
960         ADVANCE_LP_RING();
961         return flush_domains;
962 }
963
964 /**
965  * Moves buffers associated only with the given active seqno from the active
966  * to inactive list, potentially freeing them.
967  */
968 static void
969 i915_gem_retire_request(struct drm_device *dev,
970                         struct drm_i915_gem_request *request)
971 {
972         drm_i915_private_t *dev_priv = dev->dev_private;
973
974         /* Move any buffers on the active list that are no longer referenced
975          * by the ringbuffer to the flushing/inactive lists as appropriate.
976          */
977         while (!list_empty(&dev_priv->mm.active_list)) {
978                 struct drm_gem_object *obj;
979                 struct drm_i915_gem_object *obj_priv;
980
981                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
982                                             struct drm_i915_gem_object,
983                                             list);
984                 obj = obj_priv->obj;
985
986                 /* If the seqno being retired doesn't match the oldest in the
987                  * list, then the oldest in the list must still be newer than
988                  * this seqno.
989                  */
990                 if (obj_priv->last_rendering_seqno != request->seqno)
991                         return;
992
993 #if WATCH_LRU
994                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
995                          __func__, request->seqno, obj);
996 #endif
997
998                 if (obj->write_domain != 0)
999                         i915_gem_object_move_to_flushing(obj);
1000                 else
1001                         i915_gem_object_move_to_inactive(obj);
1002         }
1003 }
1004
1005 /**
1006  * Returns true if seq1 is later than seq2.
1007  */
1008 static int
1009 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1010 {
1011         return (int32_t)(seq1 - seq2) >= 0;
1012 }
1013
1014 uint32_t
1015 i915_get_gem_seqno(struct drm_device *dev)
1016 {
1017         drm_i915_private_t *dev_priv = dev->dev_private;
1018
1019         return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1020 }
1021
1022 /**
1023  * This function clears the request list as sequence numbers are passed.
1024  */
1025 void
1026 i915_gem_retire_requests(struct drm_device *dev)
1027 {
1028         drm_i915_private_t *dev_priv = dev->dev_private;
1029         uint32_t seqno;
1030
1031         seqno = i915_get_gem_seqno(dev);
1032
1033         while (!list_empty(&dev_priv->mm.request_list)) {
1034                 struct drm_i915_gem_request *request;
1035                 uint32_t retiring_seqno;
1036
1037                 request = list_first_entry(&dev_priv->mm.request_list,
1038                                            struct drm_i915_gem_request,
1039                                            list);
1040                 retiring_seqno = request->seqno;
1041
1042                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1043                     dev_priv->mm.wedged) {
1044                         i915_gem_retire_request(dev, request);
1045
1046                         list_del(&request->list);
1047                         drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
1048                 } else
1049                         break;
1050         }
1051 }
1052
1053 void
1054 i915_gem_retire_work_handler(struct work_struct *work)
1055 {
1056         drm_i915_private_t *dev_priv;
1057         struct drm_device *dev;
1058
1059         dev_priv = container_of(work, drm_i915_private_t,
1060                                 mm.retire_work.work);
1061         dev = dev_priv->dev;
1062
1063         mutex_lock(&dev->struct_mutex);
1064         i915_gem_retire_requests(dev);
1065         if (!dev_priv->mm.suspended &&
1066             !list_empty(&dev_priv->mm.request_list))
1067                 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1068         mutex_unlock(&dev->struct_mutex);
1069 }
1070
1071 /**
1072  * Waits for a sequence number to be signaled, and cleans up the
1073  * request and object lists appropriately for that event.
1074  */
1075 static int
1076 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1077 {
1078         drm_i915_private_t *dev_priv = dev->dev_private;
1079         int ret = 0;
1080
1081         BUG_ON(seqno == 0);
1082
1083         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1084                 dev_priv->mm.waiting_gem_seqno = seqno;
1085                 i915_user_irq_get(dev);
1086                 ret = wait_event_interruptible(dev_priv->irq_queue,
1087                                                i915_seqno_passed(i915_get_gem_seqno(dev),
1088                                                                  seqno) ||
1089                                                dev_priv->mm.wedged);
1090                 i915_user_irq_put(dev);
1091                 dev_priv->mm.waiting_gem_seqno = 0;
1092         }
1093         if (dev_priv->mm.wedged)
1094                 ret = -EIO;
1095
1096         if (ret && ret != -ERESTARTSYS)
1097                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1098                           __func__, ret, seqno, i915_get_gem_seqno(dev));
1099
1100         /* Directly dispatch request retiring.  While we have the work queue
1101          * to handle this, the waiter on a request often wants an associated
1102          * buffer to have made it to the inactive list, and we would need
1103          * a separate wait queue to handle that.
1104          */
1105         if (ret == 0)
1106                 i915_gem_retire_requests(dev);
1107
1108         return ret;
1109 }
1110
1111 static void
1112 i915_gem_flush(struct drm_device *dev,
1113                uint32_t invalidate_domains,
1114                uint32_t flush_domains)
1115 {
1116         drm_i915_private_t *dev_priv = dev->dev_private;
1117         uint32_t cmd;
1118         RING_LOCALS;
1119
1120 #if WATCH_EXEC
1121         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1122                   invalidate_domains, flush_domains);
1123 #endif
1124
1125         if (flush_domains & I915_GEM_DOMAIN_CPU)
1126                 drm_agp_chipset_flush(dev);
1127
1128         if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
1129                                                      I915_GEM_DOMAIN_GTT)) {
1130                 /*
1131                  * read/write caches:
1132                  *
1133                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1134                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1135                  * also flushed at 2d versus 3d pipeline switches.
1136                  *
1137                  * read-only caches:
1138                  *
1139                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1140                  * MI_READ_FLUSH is set, and is always flushed on 965.
1141                  *
1142                  * I915_GEM_DOMAIN_COMMAND may not exist?
1143                  *
1144                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1145                  * invalidated when MI_EXE_FLUSH is set.
1146                  *
1147                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1148                  * invalidated with every MI_FLUSH.
1149                  *
1150                  * TLBs:
1151                  *
1152                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1153                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1154                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1155                  * are flushed at any MI_FLUSH.
1156                  */
1157
1158                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1159                 if ((invalidate_domains|flush_domains) &
1160                     I915_GEM_DOMAIN_RENDER)
1161                         cmd &= ~MI_NO_WRITE_FLUSH;
1162                 if (!IS_I965G(dev)) {
1163                         /*
1164                          * On the 965, the sampler cache always gets flushed
1165                          * and this bit is reserved.
1166                          */
1167                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1168                                 cmd |= MI_READ_FLUSH;
1169                 }
1170                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1171                         cmd |= MI_EXE_FLUSH;
1172
1173 #if WATCH_EXEC
1174                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1175 #endif
1176                 BEGIN_LP_RING(2);
1177                 OUT_RING(cmd);
1178                 OUT_RING(0); /* noop */
1179                 ADVANCE_LP_RING();
1180         }
1181 }
1182
1183 /**
1184  * Ensures that all rendering to the object has completed and the object is
1185  * safe to unbind from the GTT or access from the CPU.
1186  */
1187 static int
1188 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1189 {
1190         struct drm_device *dev = obj->dev;
1191         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1192         int ret;
1193
1194         /* This function only exists to support waiting for existing rendering,
1195          * not for emitting required flushes.
1196          */
1197         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1198
1199         /* If there is rendering queued on the buffer being evicted, wait for
1200          * it.
1201          */
1202         if (obj_priv->active) {
1203 #if WATCH_BUF
1204                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1205                           __func__, obj, obj_priv->last_rendering_seqno);
1206 #endif
1207                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1208                 if (ret != 0)
1209                         return ret;
1210         }
1211
1212         return 0;
1213 }
1214
1215 /**
1216  * Unbinds an object from the GTT aperture.
1217  */
1218 int
1219 i915_gem_object_unbind(struct drm_gem_object *obj)
1220 {
1221         struct drm_device *dev = obj->dev;
1222         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1223         loff_t offset;
1224         int ret = 0;
1225
1226 #if WATCH_BUF
1227         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1228         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1229 #endif
1230         if (obj_priv->gtt_space == NULL)
1231                 return 0;
1232
1233         if (obj_priv->pin_count != 0) {
1234                 DRM_ERROR("Attempting to unbind pinned buffer\n");
1235                 return -EINVAL;
1236         }
1237
1238         /* Move the object to the CPU domain to ensure that
1239          * any possible CPU writes while it's not in the GTT
1240          * are flushed when we go to remap it. This will
1241          * also ensure that all pending GPU writes are finished
1242          * before we unbind.
1243          */
1244         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1245         if (ret) {
1246                 if (ret != -ERESTARTSYS)
1247                         DRM_ERROR("set_domain failed: %d\n", ret);
1248                 return ret;
1249         }
1250
1251         if (obj_priv->agp_mem != NULL) {
1252                 drm_unbind_agp(obj_priv->agp_mem);
1253                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1254                 obj_priv->agp_mem = NULL;
1255         }
1256
1257         BUG_ON(obj_priv->active);
1258
1259         /* blow away mappings if mapped through GTT */
1260         offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
1261         if (dev->dev_mapping)
1262                 unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
1263
1264         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1265                 i915_gem_clear_fence_reg(obj);
1266
1267         i915_gem_object_free_page_list(obj);
1268
1269         if (obj_priv->gtt_space) {
1270                 atomic_dec(&dev->gtt_count);
1271                 atomic_sub(obj->size, &dev->gtt_memory);
1272
1273                 drm_mm_put_block(obj_priv->gtt_space);
1274                 obj_priv->gtt_space = NULL;
1275         }
1276
1277         /* Remove ourselves from the LRU list if present. */
1278         if (!list_empty(&obj_priv->list))
1279                 list_del_init(&obj_priv->list);
1280
1281         return 0;
1282 }
1283
1284 static int
1285 i915_gem_evict_something(struct drm_device *dev)
1286 {
1287         drm_i915_private_t *dev_priv = dev->dev_private;
1288         struct drm_gem_object *obj;
1289         struct drm_i915_gem_object *obj_priv;
1290         int ret = 0;
1291
1292         for (;;) {
1293                 /* If there's an inactive buffer available now, grab it
1294                  * and be done.
1295                  */
1296                 if (!list_empty(&dev_priv->mm.inactive_list)) {
1297                         obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1298                                                     struct drm_i915_gem_object,
1299                                                     list);
1300                         obj = obj_priv->obj;
1301                         BUG_ON(obj_priv->pin_count != 0);
1302 #if WATCH_LRU
1303                         DRM_INFO("%s: evicting %p\n", __func__, obj);
1304 #endif
1305                         BUG_ON(obj_priv->active);
1306
1307                         /* Wait on the rendering and unbind the buffer. */
1308                         ret = i915_gem_object_unbind(obj);
1309                         break;
1310                 }
1311
1312                 /* If we didn't get anything, but the ring is still processing
1313                  * things, wait for one of those things to finish and hopefully
1314                  * leave us a buffer to evict.
1315                  */
1316                 if (!list_empty(&dev_priv->mm.request_list)) {
1317                         struct drm_i915_gem_request *request;
1318
1319                         request = list_first_entry(&dev_priv->mm.request_list,
1320                                                    struct drm_i915_gem_request,
1321                                                    list);
1322
1323                         ret = i915_wait_request(dev, request->seqno);
1324                         if (ret)
1325                                 break;
1326
1327                         /* if waiting caused an object to become inactive,
1328                          * then loop around and wait for it. Otherwise, we
1329                          * assume that waiting freed and unbound something,
1330                          * so there should now be some space in the GTT
1331                          */
1332                         if (!list_empty(&dev_priv->mm.inactive_list))
1333                                 continue;
1334                         break;
1335                 }
1336
1337                 /* If we didn't have anything on the request list but there
1338                  * are buffers awaiting a flush, emit one and try again.
1339                  * When we wait on it, those buffers waiting for that flush
1340                  * will get moved to inactive.
1341                  */
1342                 if (!list_empty(&dev_priv->mm.flushing_list)) {
1343                         obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1344                                                     struct drm_i915_gem_object,
1345                                                     list);
1346                         obj = obj_priv->obj;
1347
1348                         i915_gem_flush(dev,
1349                                        obj->write_domain,
1350                                        obj->write_domain);
1351                         i915_add_request(dev, obj->write_domain);
1352
1353                         obj = NULL;
1354                         continue;
1355                 }
1356
1357                 DRM_ERROR("inactive empty %d request empty %d "
1358                           "flushing empty %d\n",
1359                           list_empty(&dev_priv->mm.inactive_list),
1360                           list_empty(&dev_priv->mm.request_list),
1361                           list_empty(&dev_priv->mm.flushing_list));
1362                 /* If we didn't do any of the above, there's nothing to be done
1363                  * and we just can't fit it in.
1364                  */
1365                 return -ENOMEM;
1366         }
1367         return ret;
1368 }
1369
1370 static int
1371 i915_gem_evict_everything(struct drm_device *dev)
1372 {
1373         int ret;
1374
1375         for (;;) {
1376                 ret = i915_gem_evict_something(dev);
1377                 if (ret != 0)
1378                         break;
1379         }
1380         if (ret == -ENOMEM)
1381                 return 0;
1382         return ret;
1383 }
1384
1385 static int
1386 i915_gem_object_get_page_list(struct drm_gem_object *obj)
1387 {
1388         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1389         int page_count, i;
1390         struct address_space *mapping;
1391         struct inode *inode;
1392         struct page *page;
1393         int ret;
1394
1395         if (obj_priv->page_list)
1396                 return 0;
1397
1398         /* Get the list of pages out of our struct file.  They'll be pinned
1399          * at this point until we release them.
1400          */
1401         page_count = obj->size / PAGE_SIZE;
1402         BUG_ON(obj_priv->page_list != NULL);
1403         obj_priv->page_list = drm_calloc(page_count, sizeof(struct page *),
1404                                          DRM_MEM_DRIVER);
1405         if (obj_priv->page_list == NULL) {
1406                 DRM_ERROR("Faled to allocate page list\n");
1407                 return -ENOMEM;
1408         }
1409
1410         inode = obj->filp->f_path.dentry->d_inode;
1411         mapping = inode->i_mapping;
1412         for (i = 0; i < page_count; i++) {
1413                 page = read_mapping_page(mapping, i, NULL);
1414                 if (IS_ERR(page)) {
1415                         ret = PTR_ERR(page);
1416                         DRM_ERROR("read_mapping_page failed: %d\n", ret);
1417                         i915_gem_object_free_page_list(obj);
1418                         return ret;
1419                 }
1420                 obj_priv->page_list[i] = page;
1421         }
1422         return 0;
1423 }
1424
1425 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
1426 {
1427         struct drm_gem_object *obj = reg->obj;
1428         struct drm_device *dev = obj->dev;
1429         drm_i915_private_t *dev_priv = dev->dev_private;
1430         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1431         int regnum = obj_priv->fence_reg;
1432         uint64_t val;
1433
1434         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
1435                     0xfffff000) << 32;
1436         val |= obj_priv->gtt_offset & 0xfffff000;
1437         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
1438         if (obj_priv->tiling_mode == I915_TILING_Y)
1439                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
1440         val |= I965_FENCE_REG_VALID;
1441
1442         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
1443 }
1444
1445 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
1446 {
1447         struct drm_gem_object *obj = reg->obj;
1448         struct drm_device *dev = obj->dev;
1449         drm_i915_private_t *dev_priv = dev->dev_private;
1450         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1451         int regnum = obj_priv->fence_reg;
1452         int tile_width;
1453         uint32_t val;
1454         uint32_t pitch_val;
1455
1456         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1457             (obj_priv->gtt_offset & (obj->size - 1))) {
1458                 WARN(1, "%s: object 0x%08x not 1M or size (0x%x) aligned\n",
1459                      __func__, obj_priv->gtt_offset, obj->size);
1460                 return;
1461         }
1462
1463         if (obj_priv->tiling_mode == I915_TILING_Y &&
1464             HAS_128_BYTE_Y_TILING(dev))
1465                 tile_width = 128;
1466         else
1467                 tile_width = 512;
1468
1469         /* Note: pitch better be a power of two tile widths */
1470         pitch_val = obj_priv->stride / tile_width;
1471         pitch_val = ffs(pitch_val) - 1;
1472
1473         val = obj_priv->gtt_offset;
1474         if (obj_priv->tiling_mode == I915_TILING_Y)
1475                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1476         val |= I915_FENCE_SIZE_BITS(obj->size);
1477         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1478         val |= I830_FENCE_REG_VALID;
1479
1480         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
1481 }
1482
1483 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
1484 {
1485         struct drm_gem_object *obj = reg->obj;
1486         struct drm_device *dev = obj->dev;
1487         drm_i915_private_t *dev_priv = dev->dev_private;
1488         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1489         int regnum = obj_priv->fence_reg;
1490         uint32_t val;
1491         uint32_t pitch_val;
1492
1493         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1494             (obj_priv->gtt_offset & (obj->size - 1))) {
1495                 WARN(1, "%s: object 0x%08x not 1M or size aligned\n",
1496                      __func__, obj_priv->gtt_offset);
1497                 return;
1498         }
1499
1500         pitch_val = (obj_priv->stride / 128) - 1;
1501
1502         val = obj_priv->gtt_offset;
1503         if (obj_priv->tiling_mode == I915_TILING_Y)
1504                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1505         val |= I830_FENCE_SIZE_BITS(obj->size);
1506         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1507         val |= I830_FENCE_REG_VALID;
1508
1509         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
1510
1511 }
1512
1513 /**
1514  * i915_gem_object_get_fence_reg - set up a fence reg for an object
1515  * @obj: object to map through a fence reg
1516  * @write: object is about to be written
1517  *
1518  * When mapping objects through the GTT, userspace wants to be able to write
1519  * to them without having to worry about swizzling if the object is tiled.
1520  *
1521  * This function walks the fence regs looking for a free one for @obj,
1522  * stealing one if it can't find any.
1523  *
1524  * It then sets up the reg based on the object's properties: address, pitch
1525  * and tiling format.
1526  */
1527 static int
1528 i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write)
1529 {
1530         struct drm_device *dev = obj->dev;
1531         struct drm_i915_private *dev_priv = dev->dev_private;
1532         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1533         struct drm_i915_fence_reg *reg = NULL;
1534         int i, ret;
1535
1536         switch (obj_priv->tiling_mode) {
1537         case I915_TILING_NONE:
1538                 WARN(1, "allocating a fence for non-tiled object?\n");
1539                 break;
1540         case I915_TILING_X:
1541                 if (!obj_priv->stride)
1542                         return -EINVAL;
1543                 WARN((obj_priv->stride & (512 - 1)),
1544                      "object 0x%08x is X tiled but has non-512B pitch\n",
1545                      obj_priv->gtt_offset);
1546                 break;
1547         case I915_TILING_Y:
1548                 if (!obj_priv->stride)
1549                         return -EINVAL;
1550                 WARN((obj_priv->stride & (128 - 1)),
1551                      "object 0x%08x is Y tiled but has non-128B pitch\n",
1552                      obj_priv->gtt_offset);
1553                 break;
1554         }
1555
1556         /* First try to find a free reg */
1557         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
1558                 reg = &dev_priv->fence_regs[i];
1559                 if (!reg->obj)
1560                         break;
1561         }
1562
1563         /* None available, try to steal one or wait for a user to finish */
1564         if (i == dev_priv->num_fence_regs) {
1565                 struct drm_i915_gem_object *old_obj_priv = NULL;
1566                 loff_t offset;
1567
1568 try_again:
1569                 /* Could try to use LRU here instead... */
1570                 for (i = dev_priv->fence_reg_start;
1571                      i < dev_priv->num_fence_regs; i++) {
1572                         reg = &dev_priv->fence_regs[i];
1573                         old_obj_priv = reg->obj->driver_private;
1574                         if (!old_obj_priv->pin_count)
1575                                 break;
1576                 }
1577
1578                 /*
1579                  * Now things get ugly... we have to wait for one of the
1580                  * objects to finish before trying again.
1581                  */
1582                 if (i == dev_priv->num_fence_regs) {
1583                         ret = i915_gem_object_set_to_gtt_domain(reg->obj, 0);
1584                         if (ret) {
1585                                 WARN(ret != -ERESTARTSYS,
1586                                      "switch to GTT domain failed: %d\n", ret);
1587                                 return ret;
1588                         }
1589                         goto try_again;
1590                 }
1591
1592                 /*
1593                  * Zap this virtual mapping so we can set up a fence again
1594                  * for this object next time we need it.
1595                  */
1596                 offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
1597                 if (dev->dev_mapping)
1598                         unmap_mapping_range(dev->dev_mapping, offset,
1599                                             reg->obj->size, 1);
1600                 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
1601         }
1602
1603         obj_priv->fence_reg = i;
1604         reg->obj = obj;
1605
1606         if (IS_I965G(dev))
1607                 i965_write_fence_reg(reg);
1608         else if (IS_I9XX(dev))
1609                 i915_write_fence_reg(reg);
1610         else
1611                 i830_write_fence_reg(reg);
1612
1613         return 0;
1614 }
1615
1616 /**
1617  * i915_gem_clear_fence_reg - clear out fence register info
1618  * @obj: object to clear
1619  *
1620  * Zeroes out the fence register itself and clears out the associated
1621  * data structures in dev_priv and obj_priv.
1622  */
1623 static void
1624 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
1625 {
1626         struct drm_device *dev = obj->dev;
1627         drm_i915_private_t *dev_priv = dev->dev_private;
1628         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1629
1630         if (IS_I965G(dev))
1631                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
1632         else
1633                 I915_WRITE(FENCE_REG_830_0 + (obj_priv->fence_reg * 4), 0);
1634
1635         dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
1636         obj_priv->fence_reg = I915_FENCE_REG_NONE;
1637 }
1638
1639 /**
1640  * Finds free space in the GTT aperture and binds the object there.
1641  */
1642 static int
1643 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
1644 {
1645         struct drm_device *dev = obj->dev;
1646         drm_i915_private_t *dev_priv = dev->dev_private;
1647         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1648         struct drm_mm_node *free_space;
1649         int page_count, ret;
1650
1651         if (dev_priv->mm.suspended)
1652                 return -EBUSY;
1653         if (alignment == 0)
1654                 alignment = i915_gem_get_gtt_alignment(obj);
1655         if (alignment & (PAGE_SIZE - 1)) {
1656                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
1657                 return -EINVAL;
1658         }
1659
1660  search_free:
1661         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
1662                                         obj->size, alignment, 0);
1663         if (free_space != NULL) {
1664                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
1665                                                        alignment);
1666                 if (obj_priv->gtt_space != NULL) {
1667                         obj_priv->gtt_space->private = obj;
1668                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
1669                 }
1670         }
1671         if (obj_priv->gtt_space == NULL) {
1672                 /* If the gtt is empty and we're still having trouble
1673                  * fitting our object in, we're out of memory.
1674                  */
1675 #if WATCH_LRU
1676                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
1677 #endif
1678                 if (list_empty(&dev_priv->mm.inactive_list) &&
1679                     list_empty(&dev_priv->mm.flushing_list) &&
1680                     list_empty(&dev_priv->mm.active_list)) {
1681                         DRM_ERROR("GTT full, but LRU list empty\n");
1682                         return -ENOMEM;
1683                 }
1684
1685                 ret = i915_gem_evict_something(dev);
1686                 if (ret != 0) {
1687                         if (ret != -ERESTARTSYS)
1688                                 DRM_ERROR("Failed to evict a buffer %d\n", ret);
1689                         return ret;
1690                 }
1691                 goto search_free;
1692         }
1693
1694 #if WATCH_BUF
1695         DRM_INFO("Binding object of size %d at 0x%08x\n",
1696                  obj->size, obj_priv->gtt_offset);
1697 #endif
1698         ret = i915_gem_object_get_page_list(obj);
1699         if (ret) {
1700                 drm_mm_put_block(obj_priv->gtt_space);
1701                 obj_priv->gtt_space = NULL;
1702                 return ret;
1703         }
1704
1705         page_count = obj->size / PAGE_SIZE;
1706         /* Create an AGP memory structure pointing at our pages, and bind it
1707          * into the GTT.
1708          */
1709         obj_priv->agp_mem = drm_agp_bind_pages(dev,
1710                                                obj_priv->page_list,
1711                                                page_count,
1712                                                obj_priv->gtt_offset,
1713                                                obj_priv->agp_type);
1714         if (obj_priv->agp_mem == NULL) {
1715                 i915_gem_object_free_page_list(obj);
1716                 drm_mm_put_block(obj_priv->gtt_space);
1717                 obj_priv->gtt_space = NULL;
1718                 return -ENOMEM;
1719         }
1720         atomic_inc(&dev->gtt_count);
1721         atomic_add(obj->size, &dev->gtt_memory);
1722
1723         /* Assert that the object is not currently in any GPU domain. As it
1724          * wasn't in the GTT, there shouldn't be any way it could have been in
1725          * a GPU cache
1726          */
1727         BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1728         BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1729
1730         return 0;
1731 }
1732
1733 void
1734 i915_gem_clflush_object(struct drm_gem_object *obj)
1735 {
1736         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
1737
1738         /* If we don't have a page list set up, then we're not pinned
1739          * to GPU, and we can ignore the cache flush because it'll happen
1740          * again at bind time.
1741          */
1742         if (obj_priv->page_list == NULL)
1743                 return;
1744
1745         drm_clflush_pages(obj_priv->page_list, obj->size / PAGE_SIZE);
1746 }
1747
1748 /** Flushes any GPU write domain for the object if it's dirty. */
1749 static void
1750 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
1751 {
1752         struct drm_device *dev = obj->dev;
1753         uint32_t seqno;
1754
1755         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
1756                 return;
1757
1758         /* Queue the GPU write cache flushing we need. */
1759         i915_gem_flush(dev, 0, obj->write_domain);
1760         seqno = i915_add_request(dev, obj->write_domain);
1761         obj->write_domain = 0;
1762         i915_gem_object_move_to_active(obj, seqno);
1763 }
1764
1765 /** Flushes the GTT write domain for the object if it's dirty. */
1766 static void
1767 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
1768 {
1769         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
1770                 return;
1771
1772         /* No actual flushing is required for the GTT write domain.   Writes
1773          * to it immediately go to main memory as far as we know, so there's
1774          * no chipset flush.  It also doesn't land in render cache.
1775          */
1776         obj->write_domain = 0;
1777 }
1778
1779 /** Flushes the CPU write domain for the object if it's dirty. */
1780 static void
1781 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
1782 {
1783         struct drm_device *dev = obj->dev;
1784
1785         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
1786                 return;
1787
1788         i915_gem_clflush_object(obj);
1789         drm_agp_chipset_flush(dev);
1790         obj->write_domain = 0;
1791 }
1792
1793 /**
1794  * Moves a single object to the GTT read, and possibly write domain.
1795  *
1796  * This function returns when the move is complete, including waiting on
1797  * flushes to occur.
1798  */
1799 int
1800 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
1801 {
1802         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1803         int ret;
1804
1805         /* Not valid to be called on unbound objects. */
1806         if (obj_priv->gtt_space == NULL)
1807                 return -EINVAL;
1808
1809         i915_gem_object_flush_gpu_write_domain(obj);
1810         /* Wait on any GPU rendering and flushing to occur. */
1811         ret = i915_gem_object_wait_rendering(obj);
1812         if (ret != 0)
1813                 return ret;
1814
1815         /* If we're writing through the GTT domain, then CPU and GPU caches
1816          * will need to be invalidated at next use.
1817          */
1818         if (write)
1819                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
1820
1821         i915_gem_object_flush_cpu_write_domain(obj);
1822
1823         /* It should now be out of any other write domains, and we can update
1824          * the domain values for our changes.
1825          */
1826         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
1827         obj->read_domains |= I915_GEM_DOMAIN_GTT;
1828         if (write) {
1829                 obj->write_domain = I915_GEM_DOMAIN_GTT;
1830                 obj_priv->dirty = 1;
1831         }
1832
1833         return 0;
1834 }
1835
1836 /**
1837  * Moves a single object to the CPU read, and possibly write domain.
1838  *
1839  * This function returns when the move is complete, including waiting on
1840  * flushes to occur.
1841  */
1842 static int
1843 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
1844 {
1845         struct drm_device *dev = obj->dev;
1846         int ret;
1847
1848         i915_gem_object_flush_gpu_write_domain(obj);
1849         /* Wait on any GPU rendering and flushing to occur. */
1850         ret = i915_gem_object_wait_rendering(obj);
1851         if (ret != 0)
1852                 return ret;
1853
1854         i915_gem_object_flush_gtt_write_domain(obj);
1855
1856         /* If we have a partially-valid cache of the object in the CPU,
1857          * finish invalidating it and free the per-page flags.
1858          */
1859         i915_gem_object_set_to_full_cpu_read_domain(obj);
1860
1861         /* Flush the CPU cache if it's still invalid. */
1862         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
1863                 i915_gem_clflush_object(obj);
1864                 drm_agp_chipset_flush(dev);
1865
1866                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
1867         }
1868
1869         /* It should now be out of any other write domains, and we can update
1870          * the domain values for our changes.
1871          */
1872         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
1873
1874         /* If we're writing through the CPU, then the GPU read domains will
1875          * need to be invalidated at next use.
1876          */
1877         if (write) {
1878                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
1879                 obj->write_domain = I915_GEM_DOMAIN_CPU;
1880         }
1881
1882         return 0;
1883 }
1884
1885 /*
1886  * Set the next domain for the specified object. This
1887  * may not actually perform the necessary flushing/invaliding though,
1888  * as that may want to be batched with other set_domain operations
1889  *
1890  * This is (we hope) the only really tricky part of gem. The goal
1891  * is fairly simple -- track which caches hold bits of the object
1892  * and make sure they remain coherent. A few concrete examples may
1893  * help to explain how it works. For shorthand, we use the notation
1894  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
1895  * a pair of read and write domain masks.
1896  *
1897  * Case 1: the batch buffer
1898  *
1899  *      1. Allocated
1900  *      2. Written by CPU
1901  *      3. Mapped to GTT
1902  *      4. Read by GPU
1903  *      5. Unmapped from GTT
1904  *      6. Freed
1905  *
1906  *      Let's take these a step at a time
1907  *
1908  *      1. Allocated
1909  *              Pages allocated from the kernel may still have
1910  *              cache contents, so we set them to (CPU, CPU) always.
1911  *      2. Written by CPU (using pwrite)
1912  *              The pwrite function calls set_domain (CPU, CPU) and
1913  *              this function does nothing (as nothing changes)
1914  *      3. Mapped by GTT
1915  *              This function asserts that the object is not
1916  *              currently in any GPU-based read or write domains
1917  *      4. Read by GPU
1918  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
1919  *              As write_domain is zero, this function adds in the
1920  *              current read domains (CPU+COMMAND, 0).
1921  *              flush_domains is set to CPU.
1922  *              invalidate_domains is set to COMMAND
1923  *              clflush is run to get data out of the CPU caches
1924  *              then i915_dev_set_domain calls i915_gem_flush to
1925  *              emit an MI_FLUSH and drm_agp_chipset_flush
1926  *      5. Unmapped from GTT
1927  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
1928  *              flush_domains and invalidate_domains end up both zero
1929  *              so no flushing/invalidating happens
1930  *      6. Freed
1931  *              yay, done
1932  *
1933  * Case 2: The shared render buffer
1934  *
1935  *      1. Allocated
1936  *      2. Mapped to GTT
1937  *      3. Read/written by GPU
1938  *      4. set_domain to (CPU,CPU)
1939  *      5. Read/written by CPU
1940  *      6. Read/written by GPU
1941  *
1942  *      1. Allocated
1943  *              Same as last example, (CPU, CPU)
1944  *      2. Mapped to GTT
1945  *              Nothing changes (assertions find that it is not in the GPU)
1946  *      3. Read/written by GPU
1947  *              execbuffer calls set_domain (RENDER, RENDER)
1948  *              flush_domains gets CPU
1949  *              invalidate_domains gets GPU
1950  *              clflush (obj)
1951  *              MI_FLUSH and drm_agp_chipset_flush
1952  *      4. set_domain (CPU, CPU)
1953  *              flush_domains gets GPU
1954  *              invalidate_domains gets CPU
1955  *              wait_rendering (obj) to make sure all drawing is complete.
1956  *              This will include an MI_FLUSH to get the data from GPU
1957  *              to memory
1958  *              clflush (obj) to invalidate the CPU cache
1959  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
1960  *      5. Read/written by CPU
1961  *              cache lines are loaded and dirtied
1962  *      6. Read written by GPU
1963  *              Same as last GPU access
1964  *
1965  * Case 3: The constant buffer
1966  *
1967  *      1. Allocated
1968  *      2. Written by CPU
1969  *      3. Read by GPU
1970  *      4. Updated (written) by CPU again
1971  *      5. Read by GPU
1972  *
1973  *      1. Allocated
1974  *              (CPU, CPU)
1975  *      2. Written by CPU
1976  *              (CPU, CPU)
1977  *      3. Read by GPU
1978  *              (CPU+RENDER, 0)
1979  *              flush_domains = CPU
1980  *              invalidate_domains = RENDER
1981  *              clflush (obj)
1982  *              MI_FLUSH
1983  *              drm_agp_chipset_flush
1984  *      4. Updated (written) by CPU again
1985  *              (CPU, CPU)
1986  *              flush_domains = 0 (no previous write domain)
1987  *              invalidate_domains = 0 (no new read domains)
1988  *      5. Read by GPU
1989  *              (CPU+RENDER, 0)
1990  *              flush_domains = CPU
1991  *              invalidate_domains = RENDER
1992  *              clflush (obj)
1993  *              MI_FLUSH
1994  *              drm_agp_chipset_flush
1995  */
1996 static void
1997 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
1998                                   uint32_t read_domains,
1999                                   uint32_t write_domain)
2000 {
2001         struct drm_device               *dev = obj->dev;
2002         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2003         uint32_t                        invalidate_domains = 0;
2004         uint32_t                        flush_domains = 0;
2005
2006         BUG_ON(read_domains & I915_GEM_DOMAIN_CPU);
2007         BUG_ON(write_domain == I915_GEM_DOMAIN_CPU);
2008
2009 #if WATCH_BUF
2010         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2011                  __func__, obj,
2012                  obj->read_domains, read_domains,
2013                  obj->write_domain, write_domain);
2014 #endif
2015         /*
2016          * If the object isn't moving to a new write domain,
2017          * let the object stay in multiple read domains
2018          */
2019         if (write_domain == 0)
2020                 read_domains |= obj->read_domains;
2021         else
2022                 obj_priv->dirty = 1;
2023
2024         /*
2025          * Flush the current write domain if
2026          * the new read domains don't match. Invalidate
2027          * any read domains which differ from the old
2028          * write domain
2029          */
2030         if (obj->write_domain && obj->write_domain != read_domains) {
2031                 flush_domains |= obj->write_domain;
2032                 invalidate_domains |= read_domains & ~obj->write_domain;
2033         }
2034         /*
2035          * Invalidate any read caches which may have
2036          * stale data. That is, any new read domains.
2037          */
2038         invalidate_domains |= read_domains & ~obj->read_domains;
2039         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2040 #if WATCH_BUF
2041                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2042                          __func__, flush_domains, invalidate_domains);
2043 #endif
2044                 i915_gem_clflush_object(obj);
2045         }
2046
2047         if ((write_domain | flush_domains) != 0)
2048                 obj->write_domain = write_domain;
2049         obj->read_domains = read_domains;
2050
2051         dev->invalidate_domains |= invalidate_domains;
2052         dev->flush_domains |= flush_domains;
2053 #if WATCH_BUF
2054         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2055                  __func__,
2056                  obj->read_domains, obj->write_domain,
2057                  dev->invalidate_domains, dev->flush_domains);
2058 #endif
2059 }
2060
2061 /**
2062  * Moves the object from a partially CPU read to a full one.
2063  *
2064  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2065  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2066  */
2067 static void
2068 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2069 {
2070         struct drm_device *dev = obj->dev;
2071         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2072
2073         if (!obj_priv->page_cpu_valid)
2074                 return;
2075
2076         /* If we're partially in the CPU read domain, finish moving it in.
2077          */
2078         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2079                 int i;
2080
2081                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2082                         if (obj_priv->page_cpu_valid[i])
2083                                 continue;
2084                         drm_clflush_pages(obj_priv->page_list + i, 1);
2085                 }
2086                 drm_agp_chipset_flush(dev);
2087         }
2088
2089         /* Free the page_cpu_valid mappings which are now stale, whether
2090          * or not we've got I915_GEM_DOMAIN_CPU.
2091          */
2092         drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
2093                  DRM_MEM_DRIVER);
2094         obj_priv->page_cpu_valid = NULL;
2095 }
2096
2097 /**
2098  * Set the CPU read domain on a range of the object.
2099  *
2100  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2101  * not entirely valid.  The page_cpu_valid member of the object flags which
2102  * pages have been flushed, and will be respected by
2103  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2104  * of the whole object.
2105  *
2106  * This function returns when the move is complete, including waiting on
2107  * flushes to occur.
2108  */
2109 static int
2110 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2111                                           uint64_t offset, uint64_t size)
2112 {
2113         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2114         int i, ret;
2115
2116         if (offset == 0 && size == obj->size)
2117                 return i915_gem_object_set_to_cpu_domain(obj, 0);
2118
2119         i915_gem_object_flush_gpu_write_domain(obj);
2120         /* Wait on any GPU rendering and flushing to occur. */
2121         ret = i915_gem_object_wait_rendering(obj);
2122         if (ret != 0)
2123                 return ret;
2124         i915_gem_object_flush_gtt_write_domain(obj);
2125
2126         /* If we're already fully in the CPU read domain, we're done. */
2127         if (obj_priv->page_cpu_valid == NULL &&
2128             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2129                 return 0;
2130
2131         /* Otherwise, create/clear the per-page CPU read domain flag if we're
2132          * newly adding I915_GEM_DOMAIN_CPU
2133          */
2134         if (obj_priv->page_cpu_valid == NULL) {
2135                 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
2136                                                       DRM_MEM_DRIVER);
2137                 if (obj_priv->page_cpu_valid == NULL)
2138                         return -ENOMEM;
2139         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2140                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2141
2142         /* Flush the cache on any pages that are still invalid from the CPU's
2143          * perspective.
2144          */
2145         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2146              i++) {
2147                 if (obj_priv->page_cpu_valid[i])
2148                         continue;
2149
2150                 drm_clflush_pages(obj_priv->page_list + i, 1);
2151
2152                 obj_priv->page_cpu_valid[i] = 1;
2153         }
2154
2155         /* It should now be out of any other write domains, and we can update
2156          * the domain values for our changes.
2157          */
2158         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2159
2160         obj->read_domains |= I915_GEM_DOMAIN_CPU;
2161
2162         return 0;
2163 }
2164
2165 /**
2166  * Pin an object to the GTT and evaluate the relocations landing in it.
2167  */
2168 static int
2169 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2170                                  struct drm_file *file_priv,
2171                                  struct drm_i915_gem_exec_object *entry)
2172 {
2173         struct drm_device *dev = obj->dev;
2174         drm_i915_private_t *dev_priv = dev->dev_private;
2175         struct drm_i915_gem_relocation_entry reloc;
2176         struct drm_i915_gem_relocation_entry __user *relocs;
2177         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2178         int i, ret;
2179         void __iomem *reloc_page;
2180
2181         /* Choose the GTT offset for our buffer and put it there. */
2182         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2183         if (ret)
2184                 return ret;
2185
2186         entry->offset = obj_priv->gtt_offset;
2187
2188         relocs = (struct drm_i915_gem_relocation_entry __user *)
2189                  (uintptr_t) entry->relocs_ptr;
2190         /* Apply the relocations, using the GTT aperture to avoid cache
2191          * flushing requirements.
2192          */
2193         for (i = 0; i < entry->relocation_count; i++) {
2194                 struct drm_gem_object *target_obj;
2195                 struct drm_i915_gem_object *target_obj_priv;
2196                 uint32_t reloc_val, reloc_offset;
2197                 uint32_t __iomem *reloc_entry;
2198
2199                 ret = copy_from_user(&reloc, relocs + i, sizeof(reloc));
2200                 if (ret != 0) {
2201                         i915_gem_object_unpin(obj);
2202                         return ret;
2203                 }
2204
2205                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2206                                                    reloc.target_handle);
2207                 if (target_obj == NULL) {
2208                         i915_gem_object_unpin(obj);
2209                         return -EBADF;
2210                 }
2211                 target_obj_priv = target_obj->driver_private;
2212
2213                 /* The target buffer should have appeared before us in the
2214                  * exec_object list, so it should have a GTT space bound by now.
2215                  */
2216                 if (target_obj_priv->gtt_space == NULL) {
2217                         DRM_ERROR("No GTT space found for object %d\n",
2218                                   reloc.target_handle);
2219                         drm_gem_object_unreference(target_obj);
2220                         i915_gem_object_unpin(obj);
2221                         return -EINVAL;
2222                 }
2223
2224                 if (reloc.offset > obj->size - 4) {
2225                         DRM_ERROR("Relocation beyond object bounds: "
2226                                   "obj %p target %d offset %d size %d.\n",
2227                                   obj, reloc.target_handle,
2228                                   (int) reloc.offset, (int) obj->size);
2229                         drm_gem_object_unreference(target_obj);
2230                         i915_gem_object_unpin(obj);
2231                         return -EINVAL;
2232                 }
2233                 if (reloc.offset & 3) {
2234                         DRM_ERROR("Relocation not 4-byte aligned: "
2235                                   "obj %p target %d offset %d.\n",
2236                                   obj, reloc.target_handle,
2237                                   (int) reloc.offset);
2238                         drm_gem_object_unreference(target_obj);
2239                         i915_gem_object_unpin(obj);
2240                         return -EINVAL;
2241                 }
2242
2243                 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
2244                     reloc.read_domains & I915_GEM_DOMAIN_CPU) {
2245                         DRM_ERROR("reloc with read/write CPU domains: "
2246                                   "obj %p target %d offset %d "
2247                                   "read %08x write %08x",
2248                                   obj, reloc.target_handle,
2249                                   (int) reloc.offset,
2250                                   reloc.read_domains,
2251                                   reloc.write_domain);
2252                         return -EINVAL;
2253                 }
2254
2255                 if (reloc.write_domain && target_obj->pending_write_domain &&
2256                     reloc.write_domain != target_obj->pending_write_domain) {
2257                         DRM_ERROR("Write domain conflict: "
2258                                   "obj %p target %d offset %d "
2259                                   "new %08x old %08x\n",
2260                                   obj, reloc.target_handle,
2261                                   (int) reloc.offset,
2262                                   reloc.write_domain,
2263                                   target_obj->pending_write_domain);
2264                         drm_gem_object_unreference(target_obj);
2265                         i915_gem_object_unpin(obj);
2266                         return -EINVAL;
2267                 }
2268
2269 #if WATCH_RELOC
2270                 DRM_INFO("%s: obj %p offset %08x target %d "
2271                          "read %08x write %08x gtt %08x "
2272                          "presumed %08x delta %08x\n",
2273                          __func__,
2274                          obj,
2275                          (int) reloc.offset,
2276                          (int) reloc.target_handle,
2277                          (int) reloc.read_domains,
2278                          (int) reloc.write_domain,
2279                          (int) target_obj_priv->gtt_offset,
2280                          (int) reloc.presumed_offset,
2281                          reloc.delta);
2282 #endif
2283
2284                 target_obj->pending_read_domains |= reloc.read_domains;
2285                 target_obj->pending_write_domain |= reloc.write_domain;
2286
2287                 /* If the relocation already has the right value in it, no
2288                  * more work needs to be done.
2289                  */
2290                 if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
2291                         drm_gem_object_unreference(target_obj);
2292                         continue;
2293                 }
2294
2295                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
2296                 if (ret != 0) {
2297                         drm_gem_object_unreference(target_obj);
2298                         i915_gem_object_unpin(obj);
2299                         return -EINVAL;
2300                 }
2301
2302                 /* Map the page containing the relocation we're going to
2303                  * perform.
2304                  */
2305                 reloc_offset = obj_priv->gtt_offset + reloc.offset;
2306                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
2307                                                       (reloc_offset &
2308                                                        ~(PAGE_SIZE - 1)));
2309                 reloc_entry = (uint32_t __iomem *)(reloc_page +
2310                                                    (reloc_offset & (PAGE_SIZE - 1)));
2311                 reloc_val = target_obj_priv->gtt_offset + reloc.delta;
2312
2313 #if WATCH_BUF
2314                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
2315                           obj, (unsigned int) reloc.offset,
2316                           readl(reloc_entry), reloc_val);
2317 #endif
2318                 writel(reloc_val, reloc_entry);
2319                 io_mapping_unmap_atomic(reloc_page);
2320
2321                 /* Write the updated presumed offset for this entry back out
2322                  * to the user.
2323                  */
2324                 reloc.presumed_offset = target_obj_priv->gtt_offset;
2325                 ret = copy_to_user(relocs + i, &reloc, sizeof(reloc));
2326                 if (ret != 0) {
2327                         drm_gem_object_unreference(target_obj);
2328                         i915_gem_object_unpin(obj);
2329                         return ret;
2330                 }
2331
2332                 drm_gem_object_unreference(target_obj);
2333         }
2334
2335 #if WATCH_BUF
2336         if (0)
2337                 i915_gem_dump_object(obj, 128, __func__, ~0);
2338 #endif
2339         return 0;
2340 }
2341
2342 /** Dispatch a batchbuffer to the ring
2343  */
2344 static int
2345 i915_dispatch_gem_execbuffer(struct drm_device *dev,
2346                               struct drm_i915_gem_execbuffer *exec,
2347                               uint64_t exec_offset)
2348 {
2349         drm_i915_private_t *dev_priv = dev->dev_private;
2350         struct drm_clip_rect __user *boxes = (struct drm_clip_rect __user *)
2351                                              (uintptr_t) exec->cliprects_ptr;
2352         int nbox = exec->num_cliprects;
2353         int i = 0, count;
2354         uint32_t        exec_start, exec_len;
2355         RING_LOCALS;
2356
2357         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
2358         exec_len = (uint32_t) exec->batch_len;
2359
2360         if ((exec_start | exec_len) & 0x7) {
2361                 DRM_ERROR("alignment\n");
2362                 return -EINVAL;
2363         }
2364
2365         if (!exec_start)
2366                 return -EINVAL;
2367
2368         count = nbox ? nbox : 1;
2369
2370         for (i = 0; i < count; i++) {
2371                 if (i < nbox) {
2372                         int ret = i915_emit_box(dev, boxes, i,
2373                                                 exec->DR1, exec->DR4);
2374                         if (ret)
2375                                 return ret;
2376                 }
2377
2378                 if (IS_I830(dev) || IS_845G(dev)) {
2379                         BEGIN_LP_RING(4);
2380                         OUT_RING(MI_BATCH_BUFFER);
2381                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2382                         OUT_RING(exec_start + exec_len - 4);
2383                         OUT_RING(0);
2384                         ADVANCE_LP_RING();
2385                 } else {
2386                         BEGIN_LP_RING(2);
2387                         if (IS_I965G(dev)) {
2388                                 OUT_RING(MI_BATCH_BUFFER_START |
2389                                          (2 << 6) |
2390                                          MI_BATCH_NON_SECURE_I965);
2391                                 OUT_RING(exec_start);
2392                         } else {
2393                                 OUT_RING(MI_BATCH_BUFFER_START |
2394                                          (2 << 6));
2395                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2396                         }
2397                         ADVANCE_LP_RING();
2398                 }
2399         }
2400
2401         /* XXX breadcrumb */
2402         return 0;
2403 }
2404
2405 /* Throttle our rendering by waiting until the ring has completed our requests
2406  * emitted over 20 msec ago.
2407  *
2408  * This should get us reasonable parallelism between CPU and GPU but also
2409  * relatively low latency when blocking on a particular request to finish.
2410  */
2411 static int
2412 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
2413 {
2414         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
2415         int ret = 0;
2416         uint32_t seqno;
2417
2418         mutex_lock(&dev->struct_mutex);
2419         seqno = i915_file_priv->mm.last_gem_throttle_seqno;
2420         i915_file_priv->mm.last_gem_throttle_seqno =
2421                 i915_file_priv->mm.last_gem_seqno;
2422         if (seqno)
2423                 ret = i915_wait_request(dev, seqno);
2424         mutex_unlock(&dev->struct_mutex);
2425         return ret;
2426 }
2427
2428 int
2429 i915_gem_execbuffer(struct drm_device *dev, void *data,
2430                     struct drm_file *file_priv)
2431 {
2432         drm_i915_private_t *dev_priv = dev->dev_private;
2433         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
2434         struct drm_i915_gem_execbuffer *args = data;
2435         struct drm_i915_gem_exec_object *exec_list = NULL;
2436         struct drm_gem_object **object_list = NULL;
2437         struct drm_gem_object *batch_obj;
2438         int ret, i, pinned = 0;
2439         uint64_t exec_offset;
2440         uint32_t seqno, flush_domains;
2441         int pin_tries;
2442
2443 #if WATCH_EXEC
2444         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
2445                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
2446 #endif
2447
2448         if (args->buffer_count < 1) {
2449                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
2450                 return -EINVAL;
2451         }
2452         /* Copy in the exec list from userland */
2453         exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
2454                                DRM_MEM_DRIVER);
2455         object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
2456                                  DRM_MEM_DRIVER);
2457         if (exec_list == NULL || object_list == NULL) {
2458                 DRM_ERROR("Failed to allocate exec or object list "
2459                           "for %d buffers\n",
2460                           args->buffer_count);
2461                 ret = -ENOMEM;
2462                 goto pre_mutex_err;
2463         }
2464         ret = copy_from_user(exec_list,
2465                              (struct drm_i915_relocation_entry __user *)
2466                              (uintptr_t) args->buffers_ptr,
2467                              sizeof(*exec_list) * args->buffer_count);
2468         if (ret != 0) {
2469                 DRM_ERROR("copy %d exec entries failed %d\n",
2470                           args->buffer_count, ret);
2471                 goto pre_mutex_err;
2472         }
2473
2474         mutex_lock(&dev->struct_mutex);
2475
2476         i915_verify_inactive(dev, __FILE__, __LINE__);
2477
2478         if (dev_priv->mm.wedged) {
2479                 DRM_ERROR("Execbuf while wedged\n");
2480                 mutex_unlock(&dev->struct_mutex);
2481                 return -EIO;
2482         }
2483
2484         if (dev_priv->mm.suspended) {
2485                 DRM_ERROR("Execbuf while VT-switched.\n");
2486                 mutex_unlock(&dev->struct_mutex);
2487                 return -EBUSY;
2488         }
2489
2490         /* Look up object handles */
2491         for (i = 0; i < args->buffer_count; i++) {
2492                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
2493                                                        exec_list[i].handle);
2494                 if (object_list[i] == NULL) {
2495                         DRM_ERROR("Invalid object handle %d at index %d\n",
2496                                    exec_list[i].handle, i);
2497                         ret = -EBADF;
2498                         goto err;
2499                 }
2500         }
2501
2502         /* Pin and relocate */
2503         for (pin_tries = 0; ; pin_tries++) {
2504                 ret = 0;
2505                 for (i = 0; i < args->buffer_count; i++) {
2506                         object_list[i]->pending_read_domains = 0;
2507                         object_list[i]->pending_write_domain = 0;
2508                         ret = i915_gem_object_pin_and_relocate(object_list[i],
2509                                                                file_priv,
2510                                                                &exec_list[i]);
2511                         if (ret)
2512                                 break;
2513                         pinned = i + 1;
2514                 }
2515                 /* success */
2516                 if (ret == 0)
2517                         break;
2518
2519                 /* error other than GTT full, or we've already tried again */
2520                 if (ret != -ENOMEM || pin_tries >= 1) {
2521                         if (ret != -ERESTARTSYS)
2522                                 DRM_ERROR("Failed to pin buffers %d\n", ret);
2523                         goto err;
2524                 }
2525
2526                 /* unpin all of our buffers */
2527                 for (i = 0; i < pinned; i++)
2528                         i915_gem_object_unpin(object_list[i]);
2529                 pinned = 0;
2530
2531                 /* evict everyone we can from the aperture */
2532                 ret = i915_gem_evict_everything(dev);
2533                 if (ret)
2534                         goto err;
2535         }
2536
2537         /* Set the pending read domains for the batch buffer to COMMAND */
2538         batch_obj = object_list[args->buffer_count-1];
2539         batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
2540         batch_obj->pending_write_domain = 0;
2541
2542         i915_verify_inactive(dev, __FILE__, __LINE__);
2543
2544         /* Zero the global flush/invalidate flags. These
2545          * will be modified as new domains are computed
2546          * for each object
2547          */
2548         dev->invalidate_domains = 0;
2549         dev->flush_domains = 0;
2550
2551         for (i = 0; i < args->buffer_count; i++) {
2552                 struct drm_gem_object *obj = object_list[i];
2553
2554                 /* Compute new gpu domains and update invalidate/flush */
2555                 i915_gem_object_set_to_gpu_domain(obj,
2556                                                   obj->pending_read_domains,
2557                                                   obj->pending_write_domain);
2558         }
2559
2560         i915_verify_inactive(dev, __FILE__, __LINE__);
2561
2562         if (dev->invalidate_domains | dev->flush_domains) {
2563 #if WATCH_EXEC
2564                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
2565                           __func__,
2566                          dev->invalidate_domains,
2567                          dev->flush_domains);
2568 #endif
2569                 i915_gem_flush(dev,
2570                                dev->invalidate_domains,
2571                                dev->flush_domains);
2572                 if (dev->flush_domains)
2573                         (void)i915_add_request(dev, dev->flush_domains);
2574         }
2575
2576         i915_verify_inactive(dev, __FILE__, __LINE__);
2577
2578 #if WATCH_COHERENCY
2579         for (i = 0; i < args->buffer_count; i++) {
2580                 i915_gem_object_check_coherency(object_list[i],
2581                                                 exec_list[i].handle);
2582         }
2583 #endif
2584
2585         exec_offset = exec_list[args->buffer_count - 1].offset;
2586
2587 #if WATCH_EXEC
2588         i915_gem_dump_object(object_list[args->buffer_count - 1],
2589                               args->batch_len,
2590                               __func__,
2591                               ~0);
2592 #endif
2593
2594         /* Exec the batchbuffer */
2595         ret = i915_dispatch_gem_execbuffer(dev, args, exec_offset);
2596         if (ret) {
2597                 DRM_ERROR("dispatch failed %d\n", ret);
2598                 goto err;
2599         }
2600
2601         /*
2602          * Ensure that the commands in the batch buffer are
2603          * finished before the interrupt fires
2604          */
2605         flush_domains = i915_retire_commands(dev);
2606
2607         i915_verify_inactive(dev, __FILE__, __LINE__);
2608
2609         /*
2610          * Get a seqno representing the execution of the current buffer,
2611          * which we can wait on.  We would like to mitigate these interrupts,
2612          * likely by only creating seqnos occasionally (so that we have
2613          * *some* interrupts representing completion of buffers that we can
2614          * wait on when trying to clear up gtt space).
2615          */
2616         seqno = i915_add_request(dev, flush_domains);
2617         BUG_ON(seqno == 0);
2618         i915_file_priv->mm.last_gem_seqno = seqno;
2619         for (i = 0; i < args->buffer_count; i++) {
2620                 struct drm_gem_object *obj = object_list[i];
2621
2622                 i915_gem_object_move_to_active(obj, seqno);
2623 #if WATCH_LRU
2624                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
2625 #endif
2626         }
2627 #if WATCH_LRU
2628         i915_dump_lru(dev, __func__);
2629 #endif
2630
2631         i915_verify_inactive(dev, __FILE__, __LINE__);
2632
2633         /* Copy the new buffer offsets back to the user's exec list. */
2634         ret = copy_to_user((struct drm_i915_relocation_entry __user *)
2635                            (uintptr_t) args->buffers_ptr,
2636                            exec_list,
2637                            sizeof(*exec_list) * args->buffer_count);
2638         if (ret)
2639                 DRM_ERROR("failed to copy %d exec entries "
2640                           "back to user (%d)\n",
2641                            args->buffer_count, ret);
2642 err:
2643         for (i = 0; i < pinned; i++)
2644                 i915_gem_object_unpin(object_list[i]);
2645
2646         for (i = 0; i < args->buffer_count; i++)
2647                 drm_gem_object_unreference(object_list[i]);
2648
2649         mutex_unlock(&dev->struct_mutex);
2650
2651 pre_mutex_err:
2652         drm_free(object_list, sizeof(*object_list) * args->buffer_count,
2653                  DRM_MEM_DRIVER);
2654         drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
2655                  DRM_MEM_DRIVER);
2656
2657         return ret;
2658 }
2659
2660 int
2661 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
2662 {
2663         struct drm_device *dev = obj->dev;
2664         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2665         int ret;
2666
2667         i915_verify_inactive(dev, __FILE__, __LINE__);
2668         if (obj_priv->gtt_space == NULL) {
2669                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
2670                 if (ret != 0) {
2671                         if (ret != -EBUSY && ret != -ERESTARTSYS)
2672                                 DRM_ERROR("Failure to bind: %d", ret);
2673                         return ret;
2674                 }
2675                 /*
2676                  * Pre-965 chips need a fence register set up in order to
2677                  * properly handle tiled surfaces.
2678                  */
2679                 if (!IS_I965G(dev) &&
2680                     obj_priv->fence_reg == I915_FENCE_REG_NONE &&
2681                     obj_priv->tiling_mode != I915_TILING_NONE)
2682                         i915_gem_object_get_fence_reg(obj, true);
2683         }
2684         obj_priv->pin_count++;
2685
2686         /* If the object is not active and not pending a flush,
2687          * remove it from the inactive list
2688          */
2689         if (obj_priv->pin_count == 1) {
2690                 atomic_inc(&dev->pin_count);
2691                 atomic_add(obj->size, &dev->pin_memory);
2692                 if (!obj_priv->active &&
2693                     (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2694                                            I915_GEM_DOMAIN_GTT)) == 0 &&
2695                     !list_empty(&obj_priv->list))
2696                         list_del_init(&obj_priv->list);
2697         }
2698         i915_verify_inactive(dev, __FILE__, __LINE__);
2699
2700         return 0;
2701 }
2702
2703 void
2704 i915_gem_object_unpin(struct drm_gem_object *obj)
2705 {
2706         struct drm_device *dev = obj->dev;
2707         drm_i915_private_t *dev_priv = dev->dev_private;
2708         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2709
2710         i915_verify_inactive(dev, __FILE__, __LINE__);
2711         obj_priv->pin_count--;
2712         BUG_ON(obj_priv->pin_count < 0);
2713         BUG_ON(obj_priv->gtt_space == NULL);
2714
2715         /* If the object is no longer pinned, and is
2716          * neither active nor being flushed, then stick it on
2717          * the inactive list
2718          */
2719         if (obj_priv->pin_count == 0) {
2720                 if (!obj_priv->active &&
2721                     (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2722                                            I915_GEM_DOMAIN_GTT)) == 0)
2723                         list_move_tail(&obj_priv->list,
2724                                        &dev_priv->mm.inactive_list);
2725                 atomic_dec(&dev->pin_count);
2726                 atomic_sub(obj->size, &dev->pin_memory);
2727         }
2728         i915_verify_inactive(dev, __FILE__, __LINE__);
2729 }
2730
2731 int
2732 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
2733                    struct drm_file *file_priv)
2734 {
2735         struct drm_i915_gem_pin *args = data;
2736         struct drm_gem_object *obj;
2737         struct drm_i915_gem_object *obj_priv;
2738         int ret;
2739
2740         mutex_lock(&dev->struct_mutex);
2741
2742         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2743         if (obj == NULL) {
2744                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
2745                           args->handle);
2746                 mutex_unlock(&dev->struct_mutex);
2747                 return -EBADF;
2748         }
2749         obj_priv = obj->driver_private;
2750
2751         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
2752                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
2753                           args->handle);
2754                 mutex_unlock(&dev->struct_mutex);
2755                 return -EINVAL;
2756         }
2757
2758         obj_priv->user_pin_count++;
2759         obj_priv->pin_filp = file_priv;
2760         if (obj_priv->user_pin_count == 1) {
2761                 ret = i915_gem_object_pin(obj, args->alignment);
2762                 if (ret != 0) {
2763                         drm_gem_object_unreference(obj);
2764                         mutex_unlock(&dev->struct_mutex);
2765                         return ret;
2766                 }
2767         }
2768
2769         /* XXX - flush the CPU caches for pinned objects
2770          * as the X server doesn't manage domains yet
2771          */
2772         i915_gem_object_flush_cpu_write_domain(obj);
2773         args->offset = obj_priv->gtt_offset;
2774         drm_gem_object_unreference(obj);
2775         mutex_unlock(&dev->struct_mutex);
2776
2777         return 0;
2778 }
2779
2780 int
2781 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
2782                      struct drm_file *file_priv)
2783 {
2784         struct drm_i915_gem_pin *args = data;
2785         struct drm_gem_object *obj;
2786         struct drm_i915_gem_object *obj_priv;
2787
2788         mutex_lock(&dev->struct_mutex);
2789
2790         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2791         if (obj == NULL) {
2792                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
2793                           args->handle);
2794                 mutex_unlock(&dev->struct_mutex);
2795                 return -EBADF;
2796         }
2797
2798         obj_priv = obj->driver_private;
2799         if (obj_priv->pin_filp != file_priv) {
2800                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
2801                           args->handle);
2802                 drm_gem_object_unreference(obj);
2803                 mutex_unlock(&dev->struct_mutex);
2804                 return -EINVAL;
2805         }
2806         obj_priv->user_pin_count--;
2807         if (obj_priv->user_pin_count == 0) {
2808                 obj_priv->pin_filp = NULL;
2809                 i915_gem_object_unpin(obj);
2810         }
2811
2812         drm_gem_object_unreference(obj);
2813         mutex_unlock(&dev->struct_mutex);
2814         return 0;
2815 }
2816
2817 int
2818 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2819                     struct drm_file *file_priv)
2820 {
2821         struct drm_i915_gem_busy *args = data;
2822         struct drm_gem_object *obj;
2823         struct drm_i915_gem_object *obj_priv;
2824
2825         mutex_lock(&dev->struct_mutex);
2826         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2827         if (obj == NULL) {
2828                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
2829                           args->handle);
2830                 mutex_unlock(&dev->struct_mutex);
2831                 return -EBADF;
2832         }
2833
2834         obj_priv = obj->driver_private;
2835         /* Don't count being on the flushing list against the object being
2836          * done.  Otherwise, a buffer left on the flushing list but not getting
2837          * flushed (because nobody's flushing that domain) won't ever return
2838          * unbusy and get reused by libdrm's bo cache.  The other expected
2839          * consumer of this interface, OpenGL's occlusion queries, also specs
2840          * that the objects get unbusy "eventually" without any interference.
2841          */
2842         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
2843
2844         drm_gem_object_unreference(obj);
2845         mutex_unlock(&dev->struct_mutex);
2846         return 0;
2847 }
2848
2849 int
2850 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2851                         struct drm_file *file_priv)
2852 {
2853     return i915_gem_ring_throttle(dev, file_priv);
2854 }
2855
2856 int i915_gem_init_object(struct drm_gem_object *obj)
2857 {
2858         struct drm_i915_gem_object *obj_priv;
2859
2860         obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
2861         if (obj_priv == NULL)
2862                 return -ENOMEM;
2863
2864         /*
2865          * We've just allocated pages from the kernel,
2866          * so they've just been written by the CPU with
2867          * zeros. They'll need to be clflushed before we
2868          * use them with the GPU.
2869          */
2870         obj->write_domain = I915_GEM_DOMAIN_CPU;
2871         obj->read_domains = I915_GEM_DOMAIN_CPU;
2872
2873         obj_priv->agp_type = AGP_USER_MEMORY;
2874
2875         obj->driver_private = obj_priv;
2876         obj_priv->obj = obj;
2877         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2878         INIT_LIST_HEAD(&obj_priv->list);
2879
2880         return 0;
2881 }
2882
2883 void i915_gem_free_object(struct drm_gem_object *obj)
2884 {
2885         struct drm_device *dev = obj->dev;
2886         struct drm_gem_mm *mm = dev->mm_private;
2887         struct drm_map_list *list;
2888         struct drm_map *map;
2889         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2890
2891         while (obj_priv->pin_count > 0)
2892                 i915_gem_object_unpin(obj);
2893
2894         if (obj_priv->phys_obj)
2895                 i915_gem_detach_phys_object(dev, obj);
2896
2897         i915_gem_object_unbind(obj);
2898
2899         list = &obj->map_list;
2900         drm_ht_remove_item(&mm->offset_hash, &list->hash);
2901
2902         if (list->file_offset_node) {
2903                 drm_mm_put_block(list->file_offset_node);
2904                 list->file_offset_node = NULL;
2905         }
2906
2907         map = list->map;
2908         if (map) {
2909                 drm_free(map, sizeof(*map), DRM_MEM_DRIVER);
2910                 list->map = NULL;
2911         }
2912
2913         drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
2914         drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
2915 }
2916
2917 /** Unbinds all objects that are on the given buffer list. */
2918 static int
2919 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
2920 {
2921         struct drm_gem_object *obj;
2922         struct drm_i915_gem_object *obj_priv;
2923         int ret;
2924
2925         while (!list_empty(head)) {
2926                 obj_priv = list_first_entry(head,
2927                                             struct drm_i915_gem_object,
2928                                             list);
2929                 obj = obj_priv->obj;
2930
2931                 if (obj_priv->pin_count != 0) {
2932                         DRM_ERROR("Pinned object in unbind list\n");
2933                         mutex_unlock(&dev->struct_mutex);
2934                         return -EINVAL;
2935                 }
2936
2937                 ret = i915_gem_object_unbind(obj);
2938                 if (ret != 0) {
2939                         DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
2940                                   ret);
2941                         mutex_unlock(&dev->struct_mutex);
2942                         return ret;
2943                 }
2944         }
2945
2946
2947         return 0;
2948 }
2949
2950 static int
2951 i915_gem_idle(struct drm_device *dev)
2952 {
2953         drm_i915_private_t *dev_priv = dev->dev_private;
2954         uint32_t seqno, cur_seqno, last_seqno;
2955         int stuck, ret;
2956
2957         mutex_lock(&dev->struct_mutex);
2958
2959         if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
2960                 mutex_unlock(&dev->struct_mutex);
2961                 return 0;
2962         }
2963
2964         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
2965          * We need to replace this with a semaphore, or something.
2966          */
2967         dev_priv->mm.suspended = 1;
2968
2969         /* Cancel the retire work handler, wait for it to finish if running
2970          */
2971         mutex_unlock(&dev->struct_mutex);
2972         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
2973         mutex_lock(&dev->struct_mutex);
2974
2975         i915_kernel_lost_context(dev);
2976
2977         /* Flush the GPU along with all non-CPU write domains
2978          */
2979         i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
2980                        ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2981         seqno = i915_add_request(dev, ~I915_GEM_DOMAIN_CPU);
2982
2983         if (seqno == 0) {
2984                 mutex_unlock(&dev->struct_mutex);
2985                 return -ENOMEM;
2986         }
2987
2988         dev_priv->mm.waiting_gem_seqno = seqno;
2989         last_seqno = 0;
2990         stuck = 0;
2991         for (;;) {
2992                 cur_seqno = i915_get_gem_seqno(dev);
2993                 if (i915_seqno_passed(cur_seqno, seqno))
2994                         break;
2995                 if (last_seqno == cur_seqno) {
2996                         if (stuck++ > 100) {
2997                                 DRM_ERROR("hardware wedged\n");
2998                                 dev_priv->mm.wedged = 1;
2999                                 DRM_WAKEUP(&dev_priv->irq_queue);
3000                                 break;
3001                         }
3002                 }
3003                 msleep(10);
3004                 last_seqno = cur_seqno;
3005         }
3006         dev_priv->mm.waiting_gem_seqno = 0;
3007
3008         i915_gem_retire_requests(dev);
3009
3010         if (!dev_priv->mm.wedged) {
3011                 /* Active and flushing should now be empty as we've
3012                  * waited for a sequence higher than any pending execbuffer
3013                  */
3014                 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3015                 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3016                 /* Request should now be empty as we've also waited
3017                  * for the last request in the list
3018                  */
3019                 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3020         }
3021
3022         /* Empty the active and flushing lists to inactive.  If there's
3023          * anything left at this point, it means that we're wedged and
3024          * nothing good's going to happen by leaving them there.  So strip
3025          * the GPU domains and just stuff them onto inactive.
3026          */
3027         while (!list_empty(&dev_priv->mm.active_list)) {
3028                 struct drm_i915_gem_object *obj_priv;
3029
3030                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3031                                             struct drm_i915_gem_object,
3032                                             list);
3033                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3034                 i915_gem_object_move_to_inactive(obj_priv->obj);
3035         }
3036
3037         while (!list_empty(&dev_priv->mm.flushing_list)) {
3038                 struct drm_i915_gem_object *obj_priv;
3039
3040                 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3041                                             struct drm_i915_gem_object,
3042                                             list);
3043                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3044                 i915_gem_object_move_to_inactive(obj_priv->obj);
3045         }
3046
3047
3048         /* Move all inactive buffers out of the GTT. */
3049         ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3050         WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3051         if (ret) {
3052                 mutex_unlock(&dev->struct_mutex);
3053                 return ret;
3054         }
3055
3056         i915_gem_cleanup_ringbuffer(dev);
3057         mutex_unlock(&dev->struct_mutex);
3058
3059         return 0;
3060 }
3061
3062 static int
3063 i915_gem_init_hws(struct drm_device *dev)
3064 {
3065         drm_i915_private_t *dev_priv = dev->dev_private;
3066         struct drm_gem_object *obj;
3067         struct drm_i915_gem_object *obj_priv;
3068         int ret;
3069
3070         /* If we need a physical address for the status page, it's already
3071          * initialized at driver load time.
3072          */
3073         if (!I915_NEED_GFX_HWS(dev))
3074                 return 0;
3075
3076         obj = drm_gem_object_alloc(dev, 4096);
3077         if (obj == NULL) {
3078                 DRM_ERROR("Failed to allocate status page\n");
3079                 return -ENOMEM;
3080         }
3081         obj_priv = obj->driver_private;
3082         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
3083
3084         ret = i915_gem_object_pin(obj, 4096);
3085         if (ret != 0) {
3086                 drm_gem_object_unreference(obj);
3087                 return ret;
3088         }
3089
3090         dev_priv->status_gfx_addr = obj_priv->gtt_offset;
3091
3092         dev_priv->hw_status_page = kmap(obj_priv->page_list[0]);
3093         if (dev_priv->hw_status_page == NULL) {
3094                 DRM_ERROR("Failed to map status page.\n");
3095                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3096                 drm_gem_object_unreference(obj);
3097                 return -EINVAL;
3098         }
3099         dev_priv->hws_obj = obj;
3100         memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
3101         I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
3102         I915_READ(HWS_PGA); /* posting read */
3103         DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
3104
3105         return 0;
3106 }
3107
3108 int
3109 i915_gem_init_ringbuffer(struct drm_device *dev)
3110 {
3111         drm_i915_private_t *dev_priv = dev->dev_private;
3112         struct drm_gem_object *obj;
3113         struct drm_i915_gem_object *obj_priv;
3114         drm_i915_ring_buffer_t *ring = &dev_priv->ring;
3115         int ret;
3116         u32 head;
3117
3118         ret = i915_gem_init_hws(dev);
3119         if (ret != 0)
3120                 return ret;
3121
3122         obj = drm_gem_object_alloc(dev, 128 * 1024);
3123         if (obj == NULL) {
3124                 DRM_ERROR("Failed to allocate ringbuffer\n");
3125                 return -ENOMEM;
3126         }
3127         obj_priv = obj->driver_private;
3128
3129         ret = i915_gem_object_pin(obj, 4096);
3130         if (ret != 0) {
3131                 drm_gem_object_unreference(obj);
3132                 return ret;
3133         }
3134
3135         /* Set up the kernel mapping for the ring. */
3136         ring->Size = obj->size;
3137         ring->tail_mask = obj->size - 1;
3138
3139         ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
3140         ring->map.size = obj->size;
3141         ring->map.type = 0;
3142         ring->map.flags = 0;
3143         ring->map.mtrr = 0;
3144
3145         drm_core_ioremap_wc(&ring->map, dev);
3146         if (ring->map.handle == NULL) {
3147                 DRM_ERROR("Failed to map ringbuffer.\n");
3148                 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3149                 drm_gem_object_unreference(obj);
3150                 return -EINVAL;
3151         }
3152         ring->ring_obj = obj;
3153         ring->virtual_start = ring->map.handle;
3154
3155         /* Stop the ring if it's running. */
3156         I915_WRITE(PRB0_CTL, 0);
3157         I915_WRITE(PRB0_TAIL, 0);
3158         I915_WRITE(PRB0_HEAD, 0);
3159
3160         /* Initialize the ring. */
3161         I915_WRITE(PRB0_START, obj_priv->gtt_offset);
3162         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3163
3164         /* G45 ring initialization fails to reset head to zero */
3165         if (head != 0) {
3166                 DRM_ERROR("Ring head not reset to zero "
3167                           "ctl %08x head %08x tail %08x start %08x\n",
3168                           I915_READ(PRB0_CTL),
3169                           I915_READ(PRB0_HEAD),
3170                           I915_READ(PRB0_TAIL),
3171                           I915_READ(PRB0_START));
3172                 I915_WRITE(PRB0_HEAD, 0);
3173
3174                 DRM_ERROR("Ring head forced to zero "
3175                           "ctl %08x head %08x tail %08x start %08x\n",
3176                           I915_READ(PRB0_CTL),
3177                           I915_READ(PRB0_HEAD),
3178                           I915_READ(PRB0_TAIL),
3179                           I915_READ(PRB0_START));
3180         }
3181
3182         I915_WRITE(PRB0_CTL,
3183                    ((obj->size - 4096) & RING_NR_PAGES) |
3184                    RING_NO_REPORT |
3185                    RING_VALID);
3186
3187         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3188
3189         /* If the head is still not zero, the ring is dead */
3190         if (head != 0) {
3191                 DRM_ERROR("Ring initialization failed "
3192                           "ctl %08x head %08x tail %08x start %08x\n",
3193                           I915_READ(PRB0_CTL),
3194                           I915_READ(PRB0_HEAD),
3195                           I915_READ(PRB0_TAIL),
3196                           I915_READ(PRB0_START));
3197                 return -EIO;
3198         }
3199
3200         /* Update our cache of the ring state */
3201         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3202                 i915_kernel_lost_context(dev);
3203         else {
3204                 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3205                 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
3206                 ring->space = ring->head - (ring->tail + 8);
3207                 if (ring->space < 0)
3208                         ring->space += ring->Size;
3209         }
3210
3211         return 0;
3212 }
3213
3214 void
3215 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3216 {
3217         drm_i915_private_t *dev_priv = dev->dev_private;
3218
3219         if (dev_priv->ring.ring_obj == NULL)
3220                 return;
3221
3222         drm_core_ioremapfree(&dev_priv->ring.map, dev);
3223
3224         i915_gem_object_unpin(dev_priv->ring.ring_obj);
3225         drm_gem_object_unreference(dev_priv->ring.ring_obj);
3226         dev_priv->ring.ring_obj = NULL;
3227         memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3228
3229         if (dev_priv->hws_obj != NULL) {
3230                 struct drm_gem_object *obj = dev_priv->hws_obj;
3231                 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3232
3233                 kunmap(obj_priv->page_list[0]);
3234                 i915_gem_object_unpin(obj);
3235                 drm_gem_object_unreference(obj);
3236                 dev_priv->hws_obj = NULL;
3237                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3238                 dev_priv->hw_status_page = NULL;
3239
3240                 /* Write high address into HWS_PGA when disabling. */
3241                 I915_WRITE(HWS_PGA, 0x1ffff000);
3242         }
3243 }
3244
3245 int
3246 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3247                        struct drm_file *file_priv)
3248 {
3249         drm_i915_private_t *dev_priv = dev->dev_private;
3250         int ret;
3251
3252         if (drm_core_check_feature(dev, DRIVER_MODESET))
3253                 return 0;
3254
3255         if (dev_priv->mm.wedged) {
3256                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3257                 dev_priv->mm.wedged = 0;
3258         }
3259
3260         mutex_lock(&dev->struct_mutex);
3261         dev_priv->mm.suspended = 0;
3262
3263         ret = i915_gem_init_ringbuffer(dev);
3264         if (ret != 0)
3265                 return ret;
3266
3267         BUG_ON(!list_empty(&dev_priv->mm.active_list));
3268         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3269         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3270         BUG_ON(!list_empty(&dev_priv->mm.request_list));
3271         mutex_unlock(&dev->struct_mutex);
3272
3273         drm_irq_install(dev);
3274
3275         return 0;
3276 }
3277
3278 int
3279 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3280                        struct drm_file *file_priv)
3281 {
3282         int ret;
3283
3284         if (drm_core_check_feature(dev, DRIVER_MODESET))
3285                 return 0;
3286
3287         ret = i915_gem_idle(dev);
3288         drm_irq_uninstall(dev);
3289
3290         return ret;
3291 }
3292
3293 void
3294 i915_gem_lastclose(struct drm_device *dev)
3295 {
3296         int ret;
3297
3298         if (drm_core_check_feature(dev, DRIVER_MODESET))
3299                 return;
3300
3301         ret = i915_gem_idle(dev);
3302         if (ret)
3303                 DRM_ERROR("failed to idle hardware: %d\n", ret);
3304 }
3305
3306 void
3307 i915_gem_load(struct drm_device *dev)
3308 {
3309         drm_i915_private_t *dev_priv = dev->dev_private;
3310
3311         INIT_LIST_HEAD(&dev_priv->mm.active_list);
3312         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3313         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3314         INIT_LIST_HEAD(&dev_priv->mm.request_list);
3315         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3316                           i915_gem_retire_work_handler);
3317         dev_priv->mm.next_gem_seqno = 1;
3318
3319         /* Old X drivers will take 0-2 for front, back, depth buffers */
3320         dev_priv->fence_reg_start = 3;
3321
3322         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3323                 dev_priv->num_fence_regs = 16;
3324         else
3325                 dev_priv->num_fence_regs = 8;
3326
3327         i915_gem_detect_bit_6_swizzle(dev);
3328 }
3329
3330 /*
3331  * Create a physically contiguous memory object for this object
3332  * e.g. for cursor + overlay regs
3333  */
3334 int i915_gem_init_phys_object(struct drm_device *dev,
3335                               int id, int size)
3336 {
3337         drm_i915_private_t *dev_priv = dev->dev_private;
3338         struct drm_i915_gem_phys_object *phys_obj;
3339         int ret;
3340
3341         if (dev_priv->mm.phys_objs[id - 1] || !size)
3342                 return 0;
3343
3344         phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
3345         if (!phys_obj)
3346                 return -ENOMEM;
3347
3348         phys_obj->id = id;
3349
3350         phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
3351         if (!phys_obj->handle) {
3352                 ret = -ENOMEM;
3353                 goto kfree_obj;
3354         }
3355 #ifdef CONFIG_X86
3356         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3357 #endif
3358
3359         dev_priv->mm.phys_objs[id - 1] = phys_obj;
3360
3361         return 0;
3362 kfree_obj:
3363         drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
3364         return ret;
3365 }
3366
3367 void i915_gem_free_phys_object(struct drm_device *dev, int id)
3368 {
3369         drm_i915_private_t *dev_priv = dev->dev_private;
3370         struct drm_i915_gem_phys_object *phys_obj;
3371
3372         if (!dev_priv->mm.phys_objs[id - 1])
3373                 return;
3374
3375         phys_obj = dev_priv->mm.phys_objs[id - 1];
3376         if (phys_obj->cur_obj) {
3377                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3378         }
3379
3380 #ifdef CONFIG_X86
3381         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3382 #endif
3383         drm_pci_free(dev, phys_obj->handle);
3384         kfree(phys_obj);
3385         dev_priv->mm.phys_objs[id - 1] = NULL;
3386 }
3387
3388 void i915_gem_free_all_phys_object(struct drm_device *dev)
3389 {
3390         int i;
3391
3392         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3393                 i915_gem_free_phys_object(dev, i);
3394 }
3395
3396 void i915_gem_detach_phys_object(struct drm_device *dev,
3397                                  struct drm_gem_object *obj)
3398 {
3399         struct drm_i915_gem_object *obj_priv;
3400         int i;
3401         int ret;
3402         int page_count;
3403
3404         obj_priv = obj->driver_private;
3405         if (!obj_priv->phys_obj)
3406                 return;
3407
3408         ret = i915_gem_object_get_page_list(obj);
3409         if (ret)
3410                 goto out;
3411
3412         page_count = obj->size / PAGE_SIZE;
3413
3414         for (i = 0; i < page_count; i++) {
3415                 char *dst = kmap_atomic(obj_priv->page_list[i], KM_USER0);
3416                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3417
3418                 memcpy(dst, src, PAGE_SIZE);
3419                 kunmap_atomic(dst, KM_USER0);
3420         }
3421         drm_clflush_pages(obj_priv->page_list, page_count);
3422         drm_agp_chipset_flush(dev);
3423 out:
3424         obj_priv->phys_obj->cur_obj = NULL;
3425         obj_priv->phys_obj = NULL;
3426 }
3427
3428 int
3429 i915_gem_attach_phys_object(struct drm_device *dev,
3430                             struct drm_gem_object *obj, int id)
3431 {
3432         drm_i915_private_t *dev_priv = dev->dev_private;
3433         struct drm_i915_gem_object *obj_priv;
3434         int ret = 0;
3435         int page_count;
3436         int i;
3437
3438         if (id > I915_MAX_PHYS_OBJECT)
3439                 return -EINVAL;
3440
3441         obj_priv = obj->driver_private;
3442
3443         if (obj_priv->phys_obj) {
3444                 if (obj_priv->phys_obj->id == id)
3445                         return 0;
3446                 i915_gem_detach_phys_object(dev, obj);
3447         }
3448
3449
3450         /* create a new object */
3451         if (!dev_priv->mm.phys_objs[id - 1]) {
3452                 ret = i915_gem_init_phys_object(dev, id,
3453                                                 obj->size);
3454                 if (ret) {
3455                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
3456                         goto out;
3457                 }
3458         }
3459
3460         /* bind to the object */
3461         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
3462         obj_priv->phys_obj->cur_obj = obj;
3463
3464         ret = i915_gem_object_get_page_list(obj);
3465         if (ret) {
3466                 DRM_ERROR("failed to get page list\n");
3467                 goto out;
3468         }
3469
3470         page_count = obj->size / PAGE_SIZE;
3471
3472         for (i = 0; i < page_count; i++) {
3473                 char *src = kmap_atomic(obj_priv->page_list[i], KM_USER0);
3474                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3475
3476                 memcpy(dst, src, PAGE_SIZE);
3477                 kunmap_atomic(src, KM_USER0);
3478         }
3479
3480         return 0;
3481 out:
3482         return ret;
3483 }
3484
3485 static int
3486 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
3487                      struct drm_i915_gem_pwrite *args,
3488                      struct drm_file *file_priv)
3489 {
3490         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3491         void *obj_addr;
3492         int ret;
3493         char __user *user_data;
3494
3495         user_data = (char __user *) (uintptr_t) args->data_ptr;
3496         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
3497
3498         DRM_ERROR("obj_addr %p, %lld\n", obj_addr, args->size);
3499         ret = copy_from_user(obj_addr, user_data, args->size);
3500         if (ret)
3501                 return -EFAULT;
3502
3503         drm_agp_chipset_flush(dev);
3504         return 0;
3505 }