]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/gpu/drm/i915/i915_gem.c
Merge remote branch 'korg/drm-core-next' into drm-next-stage
[net-next-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/swap.h>
35 #include <linux/pci.h>
36
37 #define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
38
39 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
42 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
43                                              int write);
44 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45                                                      uint64_t offset,
46                                                      uint64_t size);
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50                                            unsigned alignment);
51 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
52 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
53 static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55                                 struct drm_i915_gem_pwrite *args,
56                                 struct drm_file *file_priv);
57
58 static LIST_HEAD(shrink_list);
59 static DEFINE_SPINLOCK(shrink_list_lock);
60
61 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
62                      unsigned long end)
63 {
64         drm_i915_private_t *dev_priv = dev->dev_private;
65
66         if (start >= end ||
67             (start & (PAGE_SIZE - 1)) != 0 ||
68             (end & (PAGE_SIZE - 1)) != 0) {
69                 return -EINVAL;
70         }
71
72         drm_mm_init(&dev_priv->mm.gtt_space, start,
73                     end - start);
74
75         dev->gtt_total = (uint32_t) (end - start);
76
77         return 0;
78 }
79
80 int
81 i915_gem_init_ioctl(struct drm_device *dev, void *data,
82                     struct drm_file *file_priv)
83 {
84         struct drm_i915_gem_init *args = data;
85         int ret;
86
87         mutex_lock(&dev->struct_mutex);
88         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
89         mutex_unlock(&dev->struct_mutex);
90
91         return ret;
92 }
93
94 int
95 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
96                             struct drm_file *file_priv)
97 {
98         struct drm_i915_gem_get_aperture *args = data;
99
100         if (!(dev->driver->driver_features & DRIVER_GEM))
101                 return -ENODEV;
102
103         args->aper_size = dev->gtt_total;
104         args->aper_available_size = (args->aper_size -
105                                      atomic_read(&dev->pin_memory));
106
107         return 0;
108 }
109
110
111 /**
112  * Creates a new mm object and returns a handle to it.
113  */
114 int
115 i915_gem_create_ioctl(struct drm_device *dev, void *data,
116                       struct drm_file *file_priv)
117 {
118         struct drm_i915_gem_create *args = data;
119         struct drm_gem_object *obj;
120         int ret;
121         u32 handle;
122
123         args->size = roundup(args->size, PAGE_SIZE);
124
125         /* Allocate the new object */
126         obj = drm_gem_object_alloc(dev, args->size);
127         if (obj == NULL)
128                 return -ENOMEM;
129
130         ret = drm_gem_handle_create(file_priv, obj, &handle);
131         drm_gem_object_handle_unreference_unlocked(obj);
132
133         if (ret)
134                 return ret;
135
136         args->handle = handle;
137
138         return 0;
139 }
140
141 static inline int
142 fast_shmem_read(struct page **pages,
143                 loff_t page_base, int page_offset,
144                 char __user *data,
145                 int length)
146 {
147         char __iomem *vaddr;
148         int unwritten;
149
150         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
151         if (vaddr == NULL)
152                 return -ENOMEM;
153         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
154         kunmap_atomic(vaddr, KM_USER0);
155
156         if (unwritten)
157                 return -EFAULT;
158
159         return 0;
160 }
161
162 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
163 {
164         drm_i915_private_t *dev_priv = obj->dev->dev_private;
165         struct drm_i915_gem_object *obj_priv = obj->driver_private;
166
167         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
168                 obj_priv->tiling_mode != I915_TILING_NONE;
169 }
170
171 static inline int
172 slow_shmem_copy(struct page *dst_page,
173                 int dst_offset,
174                 struct page *src_page,
175                 int src_offset,
176                 int length)
177 {
178         char *dst_vaddr, *src_vaddr;
179
180         dst_vaddr = kmap_atomic(dst_page, KM_USER0);
181         if (dst_vaddr == NULL)
182                 return -ENOMEM;
183
184         src_vaddr = kmap_atomic(src_page, KM_USER1);
185         if (src_vaddr == NULL) {
186                 kunmap_atomic(dst_vaddr, KM_USER0);
187                 return -ENOMEM;
188         }
189
190         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
191
192         kunmap_atomic(src_vaddr, KM_USER1);
193         kunmap_atomic(dst_vaddr, KM_USER0);
194
195         return 0;
196 }
197
198 static inline int
199 slow_shmem_bit17_copy(struct page *gpu_page,
200                       int gpu_offset,
201                       struct page *cpu_page,
202                       int cpu_offset,
203                       int length,
204                       int is_read)
205 {
206         char *gpu_vaddr, *cpu_vaddr;
207
208         /* Use the unswizzled path if this page isn't affected. */
209         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
210                 if (is_read)
211                         return slow_shmem_copy(cpu_page, cpu_offset,
212                                                gpu_page, gpu_offset, length);
213                 else
214                         return slow_shmem_copy(gpu_page, gpu_offset,
215                                                cpu_page, cpu_offset, length);
216         }
217
218         gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
219         if (gpu_vaddr == NULL)
220                 return -ENOMEM;
221
222         cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
223         if (cpu_vaddr == NULL) {
224                 kunmap_atomic(gpu_vaddr, KM_USER0);
225                 return -ENOMEM;
226         }
227
228         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
229          * XORing with the other bits (A9 for Y, A9 and A10 for X)
230          */
231         while (length > 0) {
232                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
233                 int this_length = min(cacheline_end - gpu_offset, length);
234                 int swizzled_gpu_offset = gpu_offset ^ 64;
235
236                 if (is_read) {
237                         memcpy(cpu_vaddr + cpu_offset,
238                                gpu_vaddr + swizzled_gpu_offset,
239                                this_length);
240                 } else {
241                         memcpy(gpu_vaddr + swizzled_gpu_offset,
242                                cpu_vaddr + cpu_offset,
243                                this_length);
244                 }
245                 cpu_offset += this_length;
246                 gpu_offset += this_length;
247                 length -= this_length;
248         }
249
250         kunmap_atomic(cpu_vaddr, KM_USER1);
251         kunmap_atomic(gpu_vaddr, KM_USER0);
252
253         return 0;
254 }
255
256 /**
257  * This is the fast shmem pread path, which attempts to copy_from_user directly
258  * from the backing pages of the object to the user's address space.  On a
259  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
260  */
261 static int
262 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
263                           struct drm_i915_gem_pread *args,
264                           struct drm_file *file_priv)
265 {
266         struct drm_i915_gem_object *obj_priv = obj->driver_private;
267         ssize_t remain;
268         loff_t offset, page_base;
269         char __user *user_data;
270         int page_offset, page_length;
271         int ret;
272
273         user_data = (char __user *) (uintptr_t) args->data_ptr;
274         remain = args->size;
275
276         mutex_lock(&dev->struct_mutex);
277
278         ret = i915_gem_object_get_pages(obj, 0);
279         if (ret != 0)
280                 goto fail_unlock;
281
282         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
283                                                         args->size);
284         if (ret != 0)
285                 goto fail_put_pages;
286
287         obj_priv = obj->driver_private;
288         offset = args->offset;
289
290         while (remain > 0) {
291                 /* Operation in this page
292                  *
293                  * page_base = page offset within aperture
294                  * page_offset = offset within page
295                  * page_length = bytes to copy for this page
296                  */
297                 page_base = (offset & ~(PAGE_SIZE-1));
298                 page_offset = offset & (PAGE_SIZE-1);
299                 page_length = remain;
300                 if ((page_offset + remain) > PAGE_SIZE)
301                         page_length = PAGE_SIZE - page_offset;
302
303                 ret = fast_shmem_read(obj_priv->pages,
304                                       page_base, page_offset,
305                                       user_data, page_length);
306                 if (ret)
307                         goto fail_put_pages;
308
309                 remain -= page_length;
310                 user_data += page_length;
311                 offset += page_length;
312         }
313
314 fail_put_pages:
315         i915_gem_object_put_pages(obj);
316 fail_unlock:
317         mutex_unlock(&dev->struct_mutex);
318
319         return ret;
320 }
321
322 static int
323 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
324 {
325         int ret;
326
327         ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
328
329         /* If we've insufficient memory to map in the pages, attempt
330          * to make some space by throwing out some old buffers.
331          */
332         if (ret == -ENOMEM) {
333                 struct drm_device *dev = obj->dev;
334
335                 ret = i915_gem_evict_something(dev, obj->size);
336                 if (ret)
337                         return ret;
338
339                 ret = i915_gem_object_get_pages(obj, 0);
340         }
341
342         return ret;
343 }
344
345 /**
346  * This is the fallback shmem pread path, which allocates temporary storage
347  * in kernel space to copy_to_user into outside of the struct_mutex, so we
348  * can copy out of the object's backing pages while holding the struct mutex
349  * and not take page faults.
350  */
351 static int
352 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
353                           struct drm_i915_gem_pread *args,
354                           struct drm_file *file_priv)
355 {
356         struct drm_i915_gem_object *obj_priv = obj->driver_private;
357         struct mm_struct *mm = current->mm;
358         struct page **user_pages;
359         ssize_t remain;
360         loff_t offset, pinned_pages, i;
361         loff_t first_data_page, last_data_page, num_pages;
362         int shmem_page_index, shmem_page_offset;
363         int data_page_index,  data_page_offset;
364         int page_length;
365         int ret;
366         uint64_t data_ptr = args->data_ptr;
367         int do_bit17_swizzling;
368
369         remain = args->size;
370
371         /* Pin the user pages containing the data.  We can't fault while
372          * holding the struct mutex, yet we want to hold it while
373          * dereferencing the user data.
374          */
375         first_data_page = data_ptr / PAGE_SIZE;
376         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
377         num_pages = last_data_page - first_data_page + 1;
378
379         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
380         if (user_pages == NULL)
381                 return -ENOMEM;
382
383         down_read(&mm->mmap_sem);
384         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
385                                       num_pages, 1, 0, user_pages, NULL);
386         up_read(&mm->mmap_sem);
387         if (pinned_pages < num_pages) {
388                 ret = -EFAULT;
389                 goto fail_put_user_pages;
390         }
391
392         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
393
394         mutex_lock(&dev->struct_mutex);
395
396         ret = i915_gem_object_get_pages_or_evict(obj);
397         if (ret)
398                 goto fail_unlock;
399
400         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
401                                                         args->size);
402         if (ret != 0)
403                 goto fail_put_pages;
404
405         obj_priv = obj->driver_private;
406         offset = args->offset;
407
408         while (remain > 0) {
409                 /* Operation in this page
410                  *
411                  * shmem_page_index = page number within shmem file
412                  * shmem_page_offset = offset within page in shmem file
413                  * data_page_index = page number in get_user_pages return
414                  * data_page_offset = offset with data_page_index page.
415                  * page_length = bytes to copy for this page
416                  */
417                 shmem_page_index = offset / PAGE_SIZE;
418                 shmem_page_offset = offset & ~PAGE_MASK;
419                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
420                 data_page_offset = data_ptr & ~PAGE_MASK;
421
422                 page_length = remain;
423                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
424                         page_length = PAGE_SIZE - shmem_page_offset;
425                 if ((data_page_offset + page_length) > PAGE_SIZE)
426                         page_length = PAGE_SIZE - data_page_offset;
427
428                 if (do_bit17_swizzling) {
429                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
430                                                     shmem_page_offset,
431                                                     user_pages[data_page_index],
432                                                     data_page_offset,
433                                                     page_length,
434                                                     1);
435                 } else {
436                         ret = slow_shmem_copy(user_pages[data_page_index],
437                                               data_page_offset,
438                                               obj_priv->pages[shmem_page_index],
439                                               shmem_page_offset,
440                                               page_length);
441                 }
442                 if (ret)
443                         goto fail_put_pages;
444
445                 remain -= page_length;
446                 data_ptr += page_length;
447                 offset += page_length;
448         }
449
450 fail_put_pages:
451         i915_gem_object_put_pages(obj);
452 fail_unlock:
453         mutex_unlock(&dev->struct_mutex);
454 fail_put_user_pages:
455         for (i = 0; i < pinned_pages; i++) {
456                 SetPageDirty(user_pages[i]);
457                 page_cache_release(user_pages[i]);
458         }
459         drm_free_large(user_pages);
460
461         return ret;
462 }
463
464 /**
465  * Reads data from the object referenced by handle.
466  *
467  * On error, the contents of *data are undefined.
468  */
469 int
470 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
471                      struct drm_file *file_priv)
472 {
473         struct drm_i915_gem_pread *args = data;
474         struct drm_gem_object *obj;
475         struct drm_i915_gem_object *obj_priv;
476         int ret;
477
478         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
479         if (obj == NULL)
480                 return -EBADF;
481         obj_priv = obj->driver_private;
482
483         /* Bounds check source.
484          *
485          * XXX: This could use review for overflow issues...
486          */
487         if (args->offset > obj->size || args->size > obj->size ||
488             args->offset + args->size > obj->size) {
489                 drm_gem_object_unreference_unlocked(obj);
490                 return -EINVAL;
491         }
492
493         if (i915_gem_object_needs_bit17_swizzle(obj)) {
494                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
495         } else {
496                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
497                 if (ret != 0)
498                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
499                                                         file_priv);
500         }
501
502         drm_gem_object_unreference_unlocked(obj);
503
504         return ret;
505 }
506
507 /* This is the fast write path which cannot handle
508  * page faults in the source data
509  */
510
511 static inline int
512 fast_user_write(struct io_mapping *mapping,
513                 loff_t page_base, int page_offset,
514                 char __user *user_data,
515                 int length)
516 {
517         char *vaddr_atomic;
518         unsigned long unwritten;
519
520         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
521         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
522                                                       user_data, length);
523         io_mapping_unmap_atomic(vaddr_atomic);
524         if (unwritten)
525                 return -EFAULT;
526         return 0;
527 }
528
529 /* Here's the write path which can sleep for
530  * page faults
531  */
532
533 static inline int
534 slow_kernel_write(struct io_mapping *mapping,
535                   loff_t gtt_base, int gtt_offset,
536                   struct page *user_page, int user_offset,
537                   int length)
538 {
539         char *src_vaddr, *dst_vaddr;
540         unsigned long unwritten;
541
542         dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
543         src_vaddr = kmap_atomic(user_page, KM_USER1);
544         unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
545                                                       src_vaddr + user_offset,
546                                                       length);
547         kunmap_atomic(src_vaddr, KM_USER1);
548         io_mapping_unmap_atomic(dst_vaddr);
549         if (unwritten)
550                 return -EFAULT;
551         return 0;
552 }
553
554 static inline int
555 fast_shmem_write(struct page **pages,
556                  loff_t page_base, int page_offset,
557                  char __user *data,
558                  int length)
559 {
560         char __iomem *vaddr;
561         unsigned long unwritten;
562
563         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
564         if (vaddr == NULL)
565                 return -ENOMEM;
566         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
567         kunmap_atomic(vaddr, KM_USER0);
568
569         if (unwritten)
570                 return -EFAULT;
571         return 0;
572 }
573
574 /**
575  * This is the fast pwrite path, where we copy the data directly from the
576  * user into the GTT, uncached.
577  */
578 static int
579 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
580                          struct drm_i915_gem_pwrite *args,
581                          struct drm_file *file_priv)
582 {
583         struct drm_i915_gem_object *obj_priv = obj->driver_private;
584         drm_i915_private_t *dev_priv = dev->dev_private;
585         ssize_t remain;
586         loff_t offset, page_base;
587         char __user *user_data;
588         int page_offset, page_length;
589         int ret;
590
591         user_data = (char __user *) (uintptr_t) args->data_ptr;
592         remain = args->size;
593         if (!access_ok(VERIFY_READ, user_data, remain))
594                 return -EFAULT;
595
596
597         mutex_lock(&dev->struct_mutex);
598         ret = i915_gem_object_pin(obj, 0);
599         if (ret) {
600                 mutex_unlock(&dev->struct_mutex);
601                 return ret;
602         }
603         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
604         if (ret)
605                 goto fail;
606
607         obj_priv = obj->driver_private;
608         offset = obj_priv->gtt_offset + args->offset;
609
610         while (remain > 0) {
611                 /* Operation in this page
612                  *
613                  * page_base = page offset within aperture
614                  * page_offset = offset within page
615                  * page_length = bytes to copy for this page
616                  */
617                 page_base = (offset & ~(PAGE_SIZE-1));
618                 page_offset = offset & (PAGE_SIZE-1);
619                 page_length = remain;
620                 if ((page_offset + remain) > PAGE_SIZE)
621                         page_length = PAGE_SIZE - page_offset;
622
623                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
624                                        page_offset, user_data, page_length);
625
626                 /* If we get a fault while copying data, then (presumably) our
627                  * source page isn't available.  Return the error and we'll
628                  * retry in the slow path.
629                  */
630                 if (ret)
631                         goto fail;
632
633                 remain -= page_length;
634                 user_data += page_length;
635                 offset += page_length;
636         }
637
638 fail:
639         i915_gem_object_unpin(obj);
640         mutex_unlock(&dev->struct_mutex);
641
642         return ret;
643 }
644
645 /**
646  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
647  * the memory and maps it using kmap_atomic for copying.
648  *
649  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
650  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
651  */
652 static int
653 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
654                          struct drm_i915_gem_pwrite *args,
655                          struct drm_file *file_priv)
656 {
657         struct drm_i915_gem_object *obj_priv = obj->driver_private;
658         drm_i915_private_t *dev_priv = dev->dev_private;
659         ssize_t remain;
660         loff_t gtt_page_base, offset;
661         loff_t first_data_page, last_data_page, num_pages;
662         loff_t pinned_pages, i;
663         struct page **user_pages;
664         struct mm_struct *mm = current->mm;
665         int gtt_page_offset, data_page_offset, data_page_index, page_length;
666         int ret;
667         uint64_t data_ptr = args->data_ptr;
668
669         remain = args->size;
670
671         /* Pin the user pages containing the data.  We can't fault while
672          * holding the struct mutex, and all of the pwrite implementations
673          * want to hold it while dereferencing the user data.
674          */
675         first_data_page = data_ptr / PAGE_SIZE;
676         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
677         num_pages = last_data_page - first_data_page + 1;
678
679         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
680         if (user_pages == NULL)
681                 return -ENOMEM;
682
683         down_read(&mm->mmap_sem);
684         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
685                                       num_pages, 0, 0, user_pages, NULL);
686         up_read(&mm->mmap_sem);
687         if (pinned_pages < num_pages) {
688                 ret = -EFAULT;
689                 goto out_unpin_pages;
690         }
691
692         mutex_lock(&dev->struct_mutex);
693         ret = i915_gem_object_pin(obj, 0);
694         if (ret)
695                 goto out_unlock;
696
697         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
698         if (ret)
699                 goto out_unpin_object;
700
701         obj_priv = obj->driver_private;
702         offset = obj_priv->gtt_offset + args->offset;
703
704         while (remain > 0) {
705                 /* Operation in this page
706                  *
707                  * gtt_page_base = page offset within aperture
708                  * gtt_page_offset = offset within page in aperture
709                  * data_page_index = page number in get_user_pages return
710                  * data_page_offset = offset with data_page_index page.
711                  * page_length = bytes to copy for this page
712                  */
713                 gtt_page_base = offset & PAGE_MASK;
714                 gtt_page_offset = offset & ~PAGE_MASK;
715                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
716                 data_page_offset = data_ptr & ~PAGE_MASK;
717
718                 page_length = remain;
719                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
720                         page_length = PAGE_SIZE - gtt_page_offset;
721                 if ((data_page_offset + page_length) > PAGE_SIZE)
722                         page_length = PAGE_SIZE - data_page_offset;
723
724                 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
725                                         gtt_page_base, gtt_page_offset,
726                                         user_pages[data_page_index],
727                                         data_page_offset,
728                                         page_length);
729
730                 /* If we get a fault while copying data, then (presumably) our
731                  * source page isn't available.  Return the error and we'll
732                  * retry in the slow path.
733                  */
734                 if (ret)
735                         goto out_unpin_object;
736
737                 remain -= page_length;
738                 offset += page_length;
739                 data_ptr += page_length;
740         }
741
742 out_unpin_object:
743         i915_gem_object_unpin(obj);
744 out_unlock:
745         mutex_unlock(&dev->struct_mutex);
746 out_unpin_pages:
747         for (i = 0; i < pinned_pages; i++)
748                 page_cache_release(user_pages[i]);
749         drm_free_large(user_pages);
750
751         return ret;
752 }
753
754 /**
755  * This is the fast shmem pwrite path, which attempts to directly
756  * copy_from_user into the kmapped pages backing the object.
757  */
758 static int
759 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
760                            struct drm_i915_gem_pwrite *args,
761                            struct drm_file *file_priv)
762 {
763         struct drm_i915_gem_object *obj_priv = obj->driver_private;
764         ssize_t remain;
765         loff_t offset, page_base;
766         char __user *user_data;
767         int page_offset, page_length;
768         int ret;
769
770         user_data = (char __user *) (uintptr_t) args->data_ptr;
771         remain = args->size;
772
773         mutex_lock(&dev->struct_mutex);
774
775         ret = i915_gem_object_get_pages(obj, 0);
776         if (ret != 0)
777                 goto fail_unlock;
778
779         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
780         if (ret != 0)
781                 goto fail_put_pages;
782
783         obj_priv = obj->driver_private;
784         offset = args->offset;
785         obj_priv->dirty = 1;
786
787         while (remain > 0) {
788                 /* Operation in this page
789                  *
790                  * page_base = page offset within aperture
791                  * page_offset = offset within page
792                  * page_length = bytes to copy for this page
793                  */
794                 page_base = (offset & ~(PAGE_SIZE-1));
795                 page_offset = offset & (PAGE_SIZE-1);
796                 page_length = remain;
797                 if ((page_offset + remain) > PAGE_SIZE)
798                         page_length = PAGE_SIZE - page_offset;
799
800                 ret = fast_shmem_write(obj_priv->pages,
801                                        page_base, page_offset,
802                                        user_data, page_length);
803                 if (ret)
804                         goto fail_put_pages;
805
806                 remain -= page_length;
807                 user_data += page_length;
808                 offset += page_length;
809         }
810
811 fail_put_pages:
812         i915_gem_object_put_pages(obj);
813 fail_unlock:
814         mutex_unlock(&dev->struct_mutex);
815
816         return ret;
817 }
818
819 /**
820  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
821  * the memory and maps it using kmap_atomic for copying.
822  *
823  * This avoids taking mmap_sem for faulting on the user's address while the
824  * struct_mutex is held.
825  */
826 static int
827 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
828                            struct drm_i915_gem_pwrite *args,
829                            struct drm_file *file_priv)
830 {
831         struct drm_i915_gem_object *obj_priv = obj->driver_private;
832         struct mm_struct *mm = current->mm;
833         struct page **user_pages;
834         ssize_t remain;
835         loff_t offset, pinned_pages, i;
836         loff_t first_data_page, last_data_page, num_pages;
837         int shmem_page_index, shmem_page_offset;
838         int data_page_index,  data_page_offset;
839         int page_length;
840         int ret;
841         uint64_t data_ptr = args->data_ptr;
842         int do_bit17_swizzling;
843
844         remain = args->size;
845
846         /* Pin the user pages containing the data.  We can't fault while
847          * holding the struct mutex, and all of the pwrite implementations
848          * want to hold it while dereferencing the user data.
849          */
850         first_data_page = data_ptr / PAGE_SIZE;
851         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
852         num_pages = last_data_page - first_data_page + 1;
853
854         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
855         if (user_pages == NULL)
856                 return -ENOMEM;
857
858         down_read(&mm->mmap_sem);
859         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
860                                       num_pages, 0, 0, user_pages, NULL);
861         up_read(&mm->mmap_sem);
862         if (pinned_pages < num_pages) {
863                 ret = -EFAULT;
864                 goto fail_put_user_pages;
865         }
866
867         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
868
869         mutex_lock(&dev->struct_mutex);
870
871         ret = i915_gem_object_get_pages_or_evict(obj);
872         if (ret)
873                 goto fail_unlock;
874
875         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
876         if (ret != 0)
877                 goto fail_put_pages;
878
879         obj_priv = obj->driver_private;
880         offset = args->offset;
881         obj_priv->dirty = 1;
882
883         while (remain > 0) {
884                 /* Operation in this page
885                  *
886                  * shmem_page_index = page number within shmem file
887                  * shmem_page_offset = offset within page in shmem file
888                  * data_page_index = page number in get_user_pages return
889                  * data_page_offset = offset with data_page_index page.
890                  * page_length = bytes to copy for this page
891                  */
892                 shmem_page_index = offset / PAGE_SIZE;
893                 shmem_page_offset = offset & ~PAGE_MASK;
894                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
895                 data_page_offset = data_ptr & ~PAGE_MASK;
896
897                 page_length = remain;
898                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
899                         page_length = PAGE_SIZE - shmem_page_offset;
900                 if ((data_page_offset + page_length) > PAGE_SIZE)
901                         page_length = PAGE_SIZE - data_page_offset;
902
903                 if (do_bit17_swizzling) {
904                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
905                                                     shmem_page_offset,
906                                                     user_pages[data_page_index],
907                                                     data_page_offset,
908                                                     page_length,
909                                                     0);
910                 } else {
911                         ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
912                                               shmem_page_offset,
913                                               user_pages[data_page_index],
914                                               data_page_offset,
915                                               page_length);
916                 }
917                 if (ret)
918                         goto fail_put_pages;
919
920                 remain -= page_length;
921                 data_ptr += page_length;
922                 offset += page_length;
923         }
924
925 fail_put_pages:
926         i915_gem_object_put_pages(obj);
927 fail_unlock:
928         mutex_unlock(&dev->struct_mutex);
929 fail_put_user_pages:
930         for (i = 0; i < pinned_pages; i++)
931                 page_cache_release(user_pages[i]);
932         drm_free_large(user_pages);
933
934         return ret;
935 }
936
937 /**
938  * Writes data to the object referenced by handle.
939  *
940  * On error, the contents of the buffer that were to be modified are undefined.
941  */
942 int
943 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
944                       struct drm_file *file_priv)
945 {
946         struct drm_i915_gem_pwrite *args = data;
947         struct drm_gem_object *obj;
948         struct drm_i915_gem_object *obj_priv;
949         int ret = 0;
950
951         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
952         if (obj == NULL)
953                 return -EBADF;
954         obj_priv = obj->driver_private;
955
956         /* Bounds check destination.
957          *
958          * XXX: This could use review for overflow issues...
959          */
960         if (args->offset > obj->size || args->size > obj->size ||
961             args->offset + args->size > obj->size) {
962                 drm_gem_object_unreference_unlocked(obj);
963                 return -EINVAL;
964         }
965
966         /* We can only do the GTT pwrite on untiled buffers, as otherwise
967          * it would end up going through the fenced access, and we'll get
968          * different detiling behavior between reading and writing.
969          * pread/pwrite currently are reading and writing from the CPU
970          * perspective, requiring manual detiling by the client.
971          */
972         if (obj_priv->phys_obj)
973                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
974         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
975                  dev->gtt_total != 0) {
976                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
977                 if (ret == -EFAULT) {
978                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
979                                                        file_priv);
980                 }
981         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
982                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
983         } else {
984                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
985                 if (ret == -EFAULT) {
986                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
987                                                          file_priv);
988                 }
989         }
990
991 #if WATCH_PWRITE
992         if (ret)
993                 DRM_INFO("pwrite failed %d\n", ret);
994 #endif
995
996         drm_gem_object_unreference_unlocked(obj);
997
998         return ret;
999 }
1000
1001 /**
1002  * Called when user space prepares to use an object with the CPU, either
1003  * through the mmap ioctl's mapping or a GTT mapping.
1004  */
1005 int
1006 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1007                           struct drm_file *file_priv)
1008 {
1009         struct drm_i915_private *dev_priv = dev->dev_private;
1010         struct drm_i915_gem_set_domain *args = data;
1011         struct drm_gem_object *obj;
1012         struct drm_i915_gem_object *obj_priv;
1013         uint32_t read_domains = args->read_domains;
1014         uint32_t write_domain = args->write_domain;
1015         int ret;
1016
1017         if (!(dev->driver->driver_features & DRIVER_GEM))
1018                 return -ENODEV;
1019
1020         /* Only handle setting domains to types used by the CPU. */
1021         if (write_domain & I915_GEM_GPU_DOMAINS)
1022                 return -EINVAL;
1023
1024         if (read_domains & I915_GEM_GPU_DOMAINS)
1025                 return -EINVAL;
1026
1027         /* Having something in the write domain implies it's in the read
1028          * domain, and only that read domain.  Enforce that in the request.
1029          */
1030         if (write_domain != 0 && read_domains != write_domain)
1031                 return -EINVAL;
1032
1033         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1034         if (obj == NULL)
1035                 return -EBADF;
1036         obj_priv = obj->driver_private;
1037
1038         mutex_lock(&dev->struct_mutex);
1039
1040         intel_mark_busy(dev, obj);
1041
1042 #if WATCH_BUF
1043         DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1044                  obj, obj->size, read_domains, write_domain);
1045 #endif
1046         if (read_domains & I915_GEM_DOMAIN_GTT) {
1047                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1048
1049                 /* Update the LRU on the fence for the CPU access that's
1050                  * about to occur.
1051                  */
1052                 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1053                         list_move_tail(&obj_priv->fence_list,
1054                                        &dev_priv->mm.fence_list);
1055                 }
1056
1057                 /* Silently promote "you're not bound, there was nothing to do"
1058                  * to success, since the client was just asking us to
1059                  * make sure everything was done.
1060                  */
1061                 if (ret == -EINVAL)
1062                         ret = 0;
1063         } else {
1064                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1065         }
1066
1067         drm_gem_object_unreference(obj);
1068         mutex_unlock(&dev->struct_mutex);
1069         return ret;
1070 }
1071
1072 /**
1073  * Called when user space has done writes to this buffer
1074  */
1075 int
1076 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1077                       struct drm_file *file_priv)
1078 {
1079         struct drm_i915_gem_sw_finish *args = data;
1080         struct drm_gem_object *obj;
1081         struct drm_i915_gem_object *obj_priv;
1082         int ret = 0;
1083
1084         if (!(dev->driver->driver_features & DRIVER_GEM))
1085                 return -ENODEV;
1086
1087         mutex_lock(&dev->struct_mutex);
1088         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1089         if (obj == NULL) {
1090                 mutex_unlock(&dev->struct_mutex);
1091                 return -EBADF;
1092         }
1093
1094 #if WATCH_BUF
1095         DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1096                  __func__, args->handle, obj, obj->size);
1097 #endif
1098         obj_priv = obj->driver_private;
1099
1100         /* Pinned buffers may be scanout, so flush the cache */
1101         if (obj_priv->pin_count)
1102                 i915_gem_object_flush_cpu_write_domain(obj);
1103
1104         drm_gem_object_unreference(obj);
1105         mutex_unlock(&dev->struct_mutex);
1106         return ret;
1107 }
1108
1109 /**
1110  * Maps the contents of an object, returning the address it is mapped
1111  * into.
1112  *
1113  * While the mapping holds a reference on the contents of the object, it doesn't
1114  * imply a ref on the object itself.
1115  */
1116 int
1117 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1118                    struct drm_file *file_priv)
1119 {
1120         struct drm_i915_gem_mmap *args = data;
1121         struct drm_gem_object *obj;
1122         loff_t offset;
1123         unsigned long addr;
1124
1125         if (!(dev->driver->driver_features & DRIVER_GEM))
1126                 return -ENODEV;
1127
1128         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1129         if (obj == NULL)
1130                 return -EBADF;
1131
1132         offset = args->offset;
1133
1134         down_write(&current->mm->mmap_sem);
1135         addr = do_mmap(obj->filp, 0, args->size,
1136                        PROT_READ | PROT_WRITE, MAP_SHARED,
1137                        args->offset);
1138         up_write(&current->mm->mmap_sem);
1139         drm_gem_object_unreference_unlocked(obj);
1140         if (IS_ERR((void *)addr))
1141                 return addr;
1142
1143         args->addr_ptr = (uint64_t) addr;
1144
1145         return 0;
1146 }
1147
1148 /**
1149  * i915_gem_fault - fault a page into the GTT
1150  * vma: VMA in question
1151  * vmf: fault info
1152  *
1153  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1154  * from userspace.  The fault handler takes care of binding the object to
1155  * the GTT (if needed), allocating and programming a fence register (again,
1156  * only if needed based on whether the old reg is still valid or the object
1157  * is tiled) and inserting a new PTE into the faulting process.
1158  *
1159  * Note that the faulting process may involve evicting existing objects
1160  * from the GTT and/or fence registers to make room.  So performance may
1161  * suffer if the GTT working set is large or there are few fence registers
1162  * left.
1163  */
1164 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1165 {
1166         struct drm_gem_object *obj = vma->vm_private_data;
1167         struct drm_device *dev = obj->dev;
1168         struct drm_i915_private *dev_priv = dev->dev_private;
1169         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1170         pgoff_t page_offset;
1171         unsigned long pfn;
1172         int ret = 0;
1173         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1174
1175         /* We don't use vmf->pgoff since that has the fake offset */
1176         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1177                 PAGE_SHIFT;
1178
1179         /* Now bind it into the GTT if needed */
1180         mutex_lock(&dev->struct_mutex);
1181         if (!obj_priv->gtt_space) {
1182                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1183                 if (ret)
1184                         goto unlock;
1185
1186                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1187
1188                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1189                 if (ret)
1190                         goto unlock;
1191         }
1192
1193         /* Need a new fence register? */
1194         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1195                 ret = i915_gem_object_get_fence_reg(obj);
1196                 if (ret)
1197                         goto unlock;
1198         }
1199
1200         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1201                 page_offset;
1202
1203         /* Finally, remap it using the new GTT offset */
1204         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1205 unlock:
1206         mutex_unlock(&dev->struct_mutex);
1207
1208         switch (ret) {
1209         case 0:
1210         case -ERESTARTSYS:
1211                 return VM_FAULT_NOPAGE;
1212         case -ENOMEM:
1213         case -EAGAIN:
1214                 return VM_FAULT_OOM;
1215         default:
1216                 return VM_FAULT_SIGBUS;
1217         }
1218 }
1219
1220 /**
1221  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1222  * @obj: obj in question
1223  *
1224  * GEM memory mapping works by handing back to userspace a fake mmap offset
1225  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1226  * up the object based on the offset and sets up the various memory mapping
1227  * structures.
1228  *
1229  * This routine allocates and attaches a fake offset for @obj.
1230  */
1231 static int
1232 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1233 {
1234         struct drm_device *dev = obj->dev;
1235         struct drm_gem_mm *mm = dev->mm_private;
1236         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1237         struct drm_map_list *list;
1238         struct drm_local_map *map;
1239         int ret = 0;
1240
1241         /* Set the object up for mmap'ing */
1242         list = &obj->map_list;
1243         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1244         if (!list->map)
1245                 return -ENOMEM;
1246
1247         map = list->map;
1248         map->type = _DRM_GEM;
1249         map->size = obj->size;
1250         map->handle = obj;
1251
1252         /* Get a DRM GEM mmap offset allocated... */
1253         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1254                                                     obj->size / PAGE_SIZE, 0, 0);
1255         if (!list->file_offset_node) {
1256                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1257                 ret = -ENOMEM;
1258                 goto out_free_list;
1259         }
1260
1261         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1262                                                   obj->size / PAGE_SIZE, 0);
1263         if (!list->file_offset_node) {
1264                 ret = -ENOMEM;
1265                 goto out_free_list;
1266         }
1267
1268         list->hash.key = list->file_offset_node->start;
1269         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1270                 DRM_ERROR("failed to add to map hash\n");
1271                 ret = -ENOMEM;
1272                 goto out_free_mm;
1273         }
1274
1275         /* By now we should be all set, any drm_mmap request on the offset
1276          * below will get to our mmap & fault handler */
1277         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1278
1279         return 0;
1280
1281 out_free_mm:
1282         drm_mm_put_block(list->file_offset_node);
1283 out_free_list:
1284         kfree(list->map);
1285
1286         return ret;
1287 }
1288
1289 /**
1290  * i915_gem_release_mmap - remove physical page mappings
1291  * @obj: obj in question
1292  *
1293  * Preserve the reservation of the mmapping with the DRM core code, but
1294  * relinquish ownership of the pages back to the system.
1295  *
1296  * It is vital that we remove the page mapping if we have mapped a tiled
1297  * object through the GTT and then lose the fence register due to
1298  * resource pressure. Similarly if the object has been moved out of the
1299  * aperture, than pages mapped into userspace must be revoked. Removing the
1300  * mapping will then trigger a page fault on the next user access, allowing
1301  * fixup by i915_gem_fault().
1302  */
1303 void
1304 i915_gem_release_mmap(struct drm_gem_object *obj)
1305 {
1306         struct drm_device *dev = obj->dev;
1307         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1308
1309         if (dev->dev_mapping)
1310                 unmap_mapping_range(dev->dev_mapping,
1311                                     obj_priv->mmap_offset, obj->size, 1);
1312 }
1313
1314 static void
1315 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1316 {
1317         struct drm_device *dev = obj->dev;
1318         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1319         struct drm_gem_mm *mm = dev->mm_private;
1320         struct drm_map_list *list;
1321
1322         list = &obj->map_list;
1323         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1324
1325         if (list->file_offset_node) {
1326                 drm_mm_put_block(list->file_offset_node);
1327                 list->file_offset_node = NULL;
1328         }
1329
1330         if (list->map) {
1331                 kfree(list->map);
1332                 list->map = NULL;
1333         }
1334
1335         obj_priv->mmap_offset = 0;
1336 }
1337
1338 /**
1339  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1340  * @obj: object to check
1341  *
1342  * Return the required GTT alignment for an object, taking into account
1343  * potential fence register mapping if needed.
1344  */
1345 static uint32_t
1346 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1347 {
1348         struct drm_device *dev = obj->dev;
1349         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1350         int start, i;
1351
1352         /*
1353          * Minimum alignment is 4k (GTT page size), but might be greater
1354          * if a fence register is needed for the object.
1355          */
1356         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1357                 return 4096;
1358
1359         /*
1360          * Previous chips need to be aligned to the size of the smallest
1361          * fence register that can contain the object.
1362          */
1363         if (IS_I9XX(dev))
1364                 start = 1024*1024;
1365         else
1366                 start = 512*1024;
1367
1368         for (i = start; i < obj->size; i <<= 1)
1369                 ;
1370
1371         return i;
1372 }
1373
1374 /**
1375  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1376  * @dev: DRM device
1377  * @data: GTT mapping ioctl data
1378  * @file_priv: GEM object info
1379  *
1380  * Simply returns the fake offset to userspace so it can mmap it.
1381  * The mmap call will end up in drm_gem_mmap(), which will set things
1382  * up so we can get faults in the handler above.
1383  *
1384  * The fault handler will take care of binding the object into the GTT
1385  * (since it may have been evicted to make room for something), allocating
1386  * a fence register, and mapping the appropriate aperture address into
1387  * userspace.
1388  */
1389 int
1390 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1391                         struct drm_file *file_priv)
1392 {
1393         struct drm_i915_gem_mmap_gtt *args = data;
1394         struct drm_i915_private *dev_priv = dev->dev_private;
1395         struct drm_gem_object *obj;
1396         struct drm_i915_gem_object *obj_priv;
1397         int ret;
1398
1399         if (!(dev->driver->driver_features & DRIVER_GEM))
1400                 return -ENODEV;
1401
1402         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1403         if (obj == NULL)
1404                 return -EBADF;
1405
1406         mutex_lock(&dev->struct_mutex);
1407
1408         obj_priv = obj->driver_private;
1409
1410         if (obj_priv->madv != I915_MADV_WILLNEED) {
1411                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1412                 drm_gem_object_unreference(obj);
1413                 mutex_unlock(&dev->struct_mutex);
1414                 return -EINVAL;
1415         }
1416
1417
1418         if (!obj_priv->mmap_offset) {
1419                 ret = i915_gem_create_mmap_offset(obj);
1420                 if (ret) {
1421                         drm_gem_object_unreference(obj);
1422                         mutex_unlock(&dev->struct_mutex);
1423                         return ret;
1424                 }
1425         }
1426
1427         args->offset = obj_priv->mmap_offset;
1428
1429         /*
1430          * Pull it into the GTT so that we have a page list (makes the
1431          * initial fault faster and any subsequent flushing possible).
1432          */
1433         if (!obj_priv->agp_mem) {
1434                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1435                 if (ret) {
1436                         drm_gem_object_unreference(obj);
1437                         mutex_unlock(&dev->struct_mutex);
1438                         return ret;
1439                 }
1440                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1441         }
1442
1443         drm_gem_object_unreference(obj);
1444         mutex_unlock(&dev->struct_mutex);
1445
1446         return 0;
1447 }
1448
1449 void
1450 i915_gem_object_put_pages(struct drm_gem_object *obj)
1451 {
1452         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1453         int page_count = obj->size / PAGE_SIZE;
1454         int i;
1455
1456         BUG_ON(obj_priv->pages_refcount == 0);
1457         BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1458
1459         if (--obj_priv->pages_refcount != 0)
1460                 return;
1461
1462         if (obj_priv->tiling_mode != I915_TILING_NONE)
1463                 i915_gem_object_save_bit_17_swizzle(obj);
1464
1465         if (obj_priv->madv == I915_MADV_DONTNEED)
1466                 obj_priv->dirty = 0;
1467
1468         for (i = 0; i < page_count; i++) {
1469                 if (obj_priv->pages[i] == NULL)
1470                         break;
1471
1472                 if (obj_priv->dirty)
1473                         set_page_dirty(obj_priv->pages[i]);
1474
1475                 if (obj_priv->madv == I915_MADV_WILLNEED)
1476                         mark_page_accessed(obj_priv->pages[i]);
1477
1478                 page_cache_release(obj_priv->pages[i]);
1479         }
1480         obj_priv->dirty = 0;
1481
1482         drm_free_large(obj_priv->pages);
1483         obj_priv->pages = NULL;
1484 }
1485
1486 static void
1487 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1488 {
1489         struct drm_device *dev = obj->dev;
1490         drm_i915_private_t *dev_priv = dev->dev_private;
1491         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1492
1493         /* Add a reference if we're newly entering the active list. */
1494         if (!obj_priv->active) {
1495                 drm_gem_object_reference(obj);
1496                 obj_priv->active = 1;
1497         }
1498         /* Move from whatever list we were on to the tail of execution. */
1499         spin_lock(&dev_priv->mm.active_list_lock);
1500         list_move_tail(&obj_priv->list,
1501                        &dev_priv->mm.active_list);
1502         spin_unlock(&dev_priv->mm.active_list_lock);
1503         obj_priv->last_rendering_seqno = seqno;
1504 }
1505
1506 static void
1507 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1508 {
1509         struct drm_device *dev = obj->dev;
1510         drm_i915_private_t *dev_priv = dev->dev_private;
1511         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1512
1513         BUG_ON(!obj_priv->active);
1514         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1515         obj_priv->last_rendering_seqno = 0;
1516 }
1517
1518 /* Immediately discard the backing storage */
1519 static void
1520 i915_gem_object_truncate(struct drm_gem_object *obj)
1521 {
1522         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1523         struct inode *inode;
1524
1525         inode = obj->filp->f_path.dentry->d_inode;
1526         if (inode->i_op->truncate)
1527                 inode->i_op->truncate (inode);
1528
1529         obj_priv->madv = __I915_MADV_PURGED;
1530 }
1531
1532 static inline int
1533 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1534 {
1535         return obj_priv->madv == I915_MADV_DONTNEED;
1536 }
1537
1538 static void
1539 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1540 {
1541         struct drm_device *dev = obj->dev;
1542         drm_i915_private_t *dev_priv = dev->dev_private;
1543         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1544
1545         i915_verify_inactive(dev, __FILE__, __LINE__);
1546         if (obj_priv->pin_count != 0)
1547                 list_del_init(&obj_priv->list);
1548         else
1549                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1550
1551         BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1552
1553         obj_priv->last_rendering_seqno = 0;
1554         if (obj_priv->active) {
1555                 obj_priv->active = 0;
1556                 drm_gem_object_unreference(obj);
1557         }
1558         i915_verify_inactive(dev, __FILE__, __LINE__);
1559 }
1560
1561 /**
1562  * Creates a new sequence number, emitting a write of it to the status page
1563  * plus an interrupt, which will trigger i915_user_interrupt_handler.
1564  *
1565  * Must be called with struct_lock held.
1566  *
1567  * Returned sequence numbers are nonzero on success.
1568  */
1569 uint32_t
1570 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1571                  uint32_t flush_domains)
1572 {
1573         drm_i915_private_t *dev_priv = dev->dev_private;
1574         struct drm_i915_file_private *i915_file_priv = NULL;
1575         struct drm_i915_gem_request *request;
1576         uint32_t seqno;
1577         int was_empty;
1578         RING_LOCALS;
1579
1580         if (file_priv != NULL)
1581                 i915_file_priv = file_priv->driver_priv;
1582
1583         request = kzalloc(sizeof(*request), GFP_KERNEL);
1584         if (request == NULL)
1585                 return 0;
1586
1587         /* Grab the seqno we're going to make this request be, and bump the
1588          * next (skipping 0 so it can be the reserved no-seqno value).
1589          */
1590         seqno = dev_priv->mm.next_gem_seqno;
1591         dev_priv->mm.next_gem_seqno++;
1592         if (dev_priv->mm.next_gem_seqno == 0)
1593                 dev_priv->mm.next_gem_seqno++;
1594
1595         BEGIN_LP_RING(4);
1596         OUT_RING(MI_STORE_DWORD_INDEX);
1597         OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1598         OUT_RING(seqno);
1599
1600         OUT_RING(MI_USER_INTERRUPT);
1601         ADVANCE_LP_RING();
1602
1603         DRM_DEBUG_DRIVER("%d\n", seqno);
1604
1605         request->seqno = seqno;
1606         request->emitted_jiffies = jiffies;
1607         was_empty = list_empty(&dev_priv->mm.request_list);
1608         list_add_tail(&request->list, &dev_priv->mm.request_list);
1609         if (i915_file_priv) {
1610                 list_add_tail(&request->client_list,
1611                               &i915_file_priv->mm.request_list);
1612         } else {
1613                 INIT_LIST_HEAD(&request->client_list);
1614         }
1615
1616         /* Associate any objects on the flushing list matching the write
1617          * domain we're flushing with our flush.
1618          */
1619         if (flush_domains != 0) {
1620                 struct drm_i915_gem_object *obj_priv, *next;
1621
1622                 list_for_each_entry_safe(obj_priv, next,
1623                                          &dev_priv->mm.gpu_write_list,
1624                                          gpu_write_list) {
1625                         struct drm_gem_object *obj = obj_priv->obj;
1626
1627                         if ((obj->write_domain & flush_domains) ==
1628                             obj->write_domain) {
1629                                 uint32_t old_write_domain = obj->write_domain;
1630
1631                                 obj->write_domain = 0;
1632                                 list_del_init(&obj_priv->gpu_write_list);
1633                                 i915_gem_object_move_to_active(obj, seqno);
1634
1635                                 trace_i915_gem_object_change_domain(obj,
1636                                                                     obj->read_domains,
1637                                                                     old_write_domain);
1638                         }
1639                 }
1640
1641         }
1642
1643         if (!dev_priv->mm.suspended) {
1644                 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1645                 if (was_empty)
1646                         queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1647         }
1648         return seqno;
1649 }
1650
1651 /**
1652  * Command execution barrier
1653  *
1654  * Ensures that all commands in the ring are finished
1655  * before signalling the CPU
1656  */
1657 static uint32_t
1658 i915_retire_commands(struct drm_device *dev)
1659 {
1660         drm_i915_private_t *dev_priv = dev->dev_private;
1661         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1662         uint32_t flush_domains = 0;
1663         RING_LOCALS;
1664
1665         /* The sampler always gets flushed on i965 (sigh) */
1666         if (IS_I965G(dev))
1667                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1668         BEGIN_LP_RING(2);
1669         OUT_RING(cmd);
1670         OUT_RING(0); /* noop */
1671         ADVANCE_LP_RING();
1672         return flush_domains;
1673 }
1674
1675 /**
1676  * Moves buffers associated only with the given active seqno from the active
1677  * to inactive list, potentially freeing them.
1678  */
1679 static void
1680 i915_gem_retire_request(struct drm_device *dev,
1681                         struct drm_i915_gem_request *request)
1682 {
1683         drm_i915_private_t *dev_priv = dev->dev_private;
1684
1685         trace_i915_gem_request_retire(dev, request->seqno);
1686
1687         /* Move any buffers on the active list that are no longer referenced
1688          * by the ringbuffer to the flushing/inactive lists as appropriate.
1689          */
1690         spin_lock(&dev_priv->mm.active_list_lock);
1691         while (!list_empty(&dev_priv->mm.active_list)) {
1692                 struct drm_gem_object *obj;
1693                 struct drm_i915_gem_object *obj_priv;
1694
1695                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1696                                             struct drm_i915_gem_object,
1697                                             list);
1698                 obj = obj_priv->obj;
1699
1700                 /* If the seqno being retired doesn't match the oldest in the
1701                  * list, then the oldest in the list must still be newer than
1702                  * this seqno.
1703                  */
1704                 if (obj_priv->last_rendering_seqno != request->seqno)
1705                         goto out;
1706
1707 #if WATCH_LRU
1708                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1709                          __func__, request->seqno, obj);
1710 #endif
1711
1712                 if (obj->write_domain != 0)
1713                         i915_gem_object_move_to_flushing(obj);
1714                 else {
1715                         /* Take a reference on the object so it won't be
1716                          * freed while the spinlock is held.  The list
1717                          * protection for this spinlock is safe when breaking
1718                          * the lock like this since the next thing we do
1719                          * is just get the head of the list again.
1720                          */
1721                         drm_gem_object_reference(obj);
1722                         i915_gem_object_move_to_inactive(obj);
1723                         spin_unlock(&dev_priv->mm.active_list_lock);
1724                         drm_gem_object_unreference(obj);
1725                         spin_lock(&dev_priv->mm.active_list_lock);
1726                 }
1727         }
1728 out:
1729         spin_unlock(&dev_priv->mm.active_list_lock);
1730 }
1731
1732 /**
1733  * Returns true if seq1 is later than seq2.
1734  */
1735 bool
1736 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1737 {
1738         return (int32_t)(seq1 - seq2) >= 0;
1739 }
1740
1741 uint32_t
1742 i915_get_gem_seqno(struct drm_device *dev)
1743 {
1744         drm_i915_private_t *dev_priv = dev->dev_private;
1745
1746         return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1747 }
1748
1749 /**
1750  * This function clears the request list as sequence numbers are passed.
1751  */
1752 void
1753 i915_gem_retire_requests(struct drm_device *dev)
1754 {
1755         drm_i915_private_t *dev_priv = dev->dev_private;
1756         uint32_t seqno;
1757
1758         if (!dev_priv->hw_status_page || list_empty(&dev_priv->mm.request_list))
1759                 return;
1760
1761         seqno = i915_get_gem_seqno(dev);
1762
1763         while (!list_empty(&dev_priv->mm.request_list)) {
1764                 struct drm_i915_gem_request *request;
1765                 uint32_t retiring_seqno;
1766
1767                 request = list_first_entry(&dev_priv->mm.request_list,
1768                                            struct drm_i915_gem_request,
1769                                            list);
1770                 retiring_seqno = request->seqno;
1771
1772                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1773                     atomic_read(&dev_priv->mm.wedged)) {
1774                         i915_gem_retire_request(dev, request);
1775
1776                         list_del(&request->list);
1777                         list_del(&request->client_list);
1778                         kfree(request);
1779                 } else
1780                         break;
1781         }
1782
1783         if (unlikely (dev_priv->trace_irq_seqno &&
1784                       i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1785                 i915_user_irq_put(dev);
1786                 dev_priv->trace_irq_seqno = 0;
1787         }
1788 }
1789
1790 void
1791 i915_gem_retire_work_handler(struct work_struct *work)
1792 {
1793         drm_i915_private_t *dev_priv;
1794         struct drm_device *dev;
1795
1796         dev_priv = container_of(work, drm_i915_private_t,
1797                                 mm.retire_work.work);
1798         dev = dev_priv->dev;
1799
1800         mutex_lock(&dev->struct_mutex);
1801         i915_gem_retire_requests(dev);
1802         if (!dev_priv->mm.suspended &&
1803             !list_empty(&dev_priv->mm.request_list))
1804                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1805         mutex_unlock(&dev->struct_mutex);
1806 }
1807
1808 int
1809 i915_do_wait_request(struct drm_device *dev, uint32_t seqno, int interruptible)
1810 {
1811         drm_i915_private_t *dev_priv = dev->dev_private;
1812         u32 ier;
1813         int ret = 0;
1814
1815         BUG_ON(seqno == 0);
1816
1817         if (atomic_read(&dev_priv->mm.wedged))
1818                 return -EIO;
1819
1820         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1821                 if (IS_IRONLAKE(dev))
1822                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1823                 else
1824                         ier = I915_READ(IER);
1825                 if (!ier) {
1826                         DRM_ERROR("something (likely vbetool) disabled "
1827                                   "interrupts, re-enabling\n");
1828                         i915_driver_irq_preinstall(dev);
1829                         i915_driver_irq_postinstall(dev);
1830                 }
1831
1832                 trace_i915_gem_request_wait_begin(dev, seqno);
1833
1834                 dev_priv->mm.waiting_gem_seqno = seqno;
1835                 i915_user_irq_get(dev);
1836                 if (interruptible)
1837                         ret = wait_event_interruptible(dev_priv->irq_queue,
1838                                 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1839                                 atomic_read(&dev_priv->mm.wedged));
1840                 else
1841                         wait_event(dev_priv->irq_queue,
1842                                 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1843                                 atomic_read(&dev_priv->mm.wedged));
1844
1845                 i915_user_irq_put(dev);
1846                 dev_priv->mm.waiting_gem_seqno = 0;
1847
1848                 trace_i915_gem_request_wait_end(dev, seqno);
1849         }
1850         if (atomic_read(&dev_priv->mm.wedged))
1851                 ret = -EIO;
1852
1853         if (ret && ret != -ERESTARTSYS)
1854                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1855                           __func__, ret, seqno, i915_get_gem_seqno(dev));
1856
1857         /* Directly dispatch request retiring.  While we have the work queue
1858          * to handle this, the waiter on a request often wants an associated
1859          * buffer to have made it to the inactive list, and we would need
1860          * a separate wait queue to handle that.
1861          */
1862         if (ret == 0)
1863                 i915_gem_retire_requests(dev);
1864
1865         return ret;
1866 }
1867
1868 /**
1869  * Waits for a sequence number to be signaled, and cleans up the
1870  * request and object lists appropriately for that event.
1871  */
1872 static int
1873 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1874 {
1875         return i915_do_wait_request(dev, seqno, 1);
1876 }
1877
1878 static void
1879 i915_gem_flush(struct drm_device *dev,
1880                uint32_t invalidate_domains,
1881                uint32_t flush_domains)
1882 {
1883         drm_i915_private_t *dev_priv = dev->dev_private;
1884         uint32_t cmd;
1885         RING_LOCALS;
1886
1887 #if WATCH_EXEC
1888         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1889                   invalidate_domains, flush_domains);
1890 #endif
1891         trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
1892                                      invalidate_domains, flush_domains);
1893
1894         if (flush_domains & I915_GEM_DOMAIN_CPU)
1895                 drm_agp_chipset_flush(dev);
1896
1897         if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1898                 /*
1899                  * read/write caches:
1900                  *
1901                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1902                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1903                  * also flushed at 2d versus 3d pipeline switches.
1904                  *
1905                  * read-only caches:
1906                  *
1907                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1908                  * MI_READ_FLUSH is set, and is always flushed on 965.
1909                  *
1910                  * I915_GEM_DOMAIN_COMMAND may not exist?
1911                  *
1912                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1913                  * invalidated when MI_EXE_FLUSH is set.
1914                  *
1915                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1916                  * invalidated with every MI_FLUSH.
1917                  *
1918                  * TLBs:
1919                  *
1920                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1921                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1922                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1923                  * are flushed at any MI_FLUSH.
1924                  */
1925
1926                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1927                 if ((invalidate_domains|flush_domains) &
1928                     I915_GEM_DOMAIN_RENDER)
1929                         cmd &= ~MI_NO_WRITE_FLUSH;
1930                 if (!IS_I965G(dev)) {
1931                         /*
1932                          * On the 965, the sampler cache always gets flushed
1933                          * and this bit is reserved.
1934                          */
1935                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1936                                 cmd |= MI_READ_FLUSH;
1937                 }
1938                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1939                         cmd |= MI_EXE_FLUSH;
1940
1941 #if WATCH_EXEC
1942                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1943 #endif
1944                 BEGIN_LP_RING(2);
1945                 OUT_RING(cmd);
1946                 OUT_RING(MI_NOOP);
1947                 ADVANCE_LP_RING();
1948         }
1949 }
1950
1951 /**
1952  * Ensures that all rendering to the object has completed and the object is
1953  * safe to unbind from the GTT or access from the CPU.
1954  */
1955 static int
1956 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1957 {
1958         struct drm_device *dev = obj->dev;
1959         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1960         int ret;
1961
1962         /* This function only exists to support waiting for existing rendering,
1963          * not for emitting required flushes.
1964          */
1965         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1966
1967         /* If there is rendering queued on the buffer being evicted, wait for
1968          * it.
1969          */
1970         if (obj_priv->active) {
1971 #if WATCH_BUF
1972                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1973                           __func__, obj, obj_priv->last_rendering_seqno);
1974 #endif
1975                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1976                 if (ret != 0)
1977                         return ret;
1978         }
1979
1980         return 0;
1981 }
1982
1983 /**
1984  * Unbinds an object from the GTT aperture.
1985  */
1986 int
1987 i915_gem_object_unbind(struct drm_gem_object *obj)
1988 {
1989         struct drm_device *dev = obj->dev;
1990         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1991         int ret = 0;
1992
1993 #if WATCH_BUF
1994         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1995         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1996 #endif
1997         if (obj_priv->gtt_space == NULL)
1998                 return 0;
1999
2000         if (obj_priv->pin_count != 0) {
2001                 DRM_ERROR("Attempting to unbind pinned buffer\n");
2002                 return -EINVAL;
2003         }
2004
2005         /* blow away mappings if mapped through GTT */
2006         i915_gem_release_mmap(obj);
2007
2008         /* Move the object to the CPU domain to ensure that
2009          * any possible CPU writes while it's not in the GTT
2010          * are flushed when we go to remap it. This will
2011          * also ensure that all pending GPU writes are finished
2012          * before we unbind.
2013          */
2014         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2015         if (ret) {
2016                 if (ret != -ERESTARTSYS)
2017                         DRM_ERROR("set_domain failed: %d\n", ret);
2018                 return ret;
2019         }
2020
2021         BUG_ON(obj_priv->active);
2022
2023         /* release the fence reg _after_ flushing */
2024         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2025                 i915_gem_clear_fence_reg(obj);
2026
2027         if (obj_priv->agp_mem != NULL) {
2028                 drm_unbind_agp(obj_priv->agp_mem);
2029                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2030                 obj_priv->agp_mem = NULL;
2031         }
2032
2033         i915_gem_object_put_pages(obj);
2034         BUG_ON(obj_priv->pages_refcount);
2035
2036         if (obj_priv->gtt_space) {
2037                 atomic_dec(&dev->gtt_count);
2038                 atomic_sub(obj->size, &dev->gtt_memory);
2039
2040                 drm_mm_put_block(obj_priv->gtt_space);
2041                 obj_priv->gtt_space = NULL;
2042         }
2043
2044         /* Remove ourselves from the LRU list if present. */
2045         if (!list_empty(&obj_priv->list))
2046                 list_del_init(&obj_priv->list);
2047
2048         if (i915_gem_object_is_purgeable(obj_priv))
2049                 i915_gem_object_truncate(obj);
2050
2051         trace_i915_gem_object_unbind(obj);
2052
2053         return 0;
2054 }
2055
2056 static struct drm_gem_object *
2057 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2058 {
2059         drm_i915_private_t *dev_priv = dev->dev_private;
2060         struct drm_i915_gem_object *obj_priv;
2061         struct drm_gem_object *best = NULL;
2062         struct drm_gem_object *first = NULL;
2063
2064         /* Try to find the smallest clean object */
2065         list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2066                 struct drm_gem_object *obj = obj_priv->obj;
2067                 if (obj->size >= min_size) {
2068                         if ((!obj_priv->dirty ||
2069                              i915_gem_object_is_purgeable(obj_priv)) &&
2070                             (!best || obj->size < best->size)) {
2071                                 best = obj;
2072                                 if (best->size == min_size)
2073                                         return best;
2074                         }
2075                         if (!first)
2076                             first = obj;
2077                 }
2078         }
2079
2080         return best ? best : first;
2081 }
2082
2083 static int
2084 i915_gem_evict_everything(struct drm_device *dev)
2085 {
2086         drm_i915_private_t *dev_priv = dev->dev_private;
2087         int ret;
2088         uint32_t seqno;
2089         bool lists_empty;
2090
2091         spin_lock(&dev_priv->mm.active_list_lock);
2092         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2093                        list_empty(&dev_priv->mm.flushing_list) &&
2094                        list_empty(&dev_priv->mm.active_list));
2095         spin_unlock(&dev_priv->mm.active_list_lock);
2096
2097         if (lists_empty)
2098                 return -ENOSPC;
2099
2100         /* Flush everything (on to the inactive lists) and evict */
2101         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2102         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
2103         if (seqno == 0)
2104                 return -ENOMEM;
2105
2106         ret = i915_wait_request(dev, seqno);
2107         if (ret)
2108                 return ret;
2109
2110         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2111
2112         ret = i915_gem_evict_from_inactive_list(dev);
2113         if (ret)
2114                 return ret;
2115
2116         spin_lock(&dev_priv->mm.active_list_lock);
2117         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2118                        list_empty(&dev_priv->mm.flushing_list) &&
2119                        list_empty(&dev_priv->mm.active_list));
2120         spin_unlock(&dev_priv->mm.active_list_lock);
2121         BUG_ON(!lists_empty);
2122
2123         return 0;
2124 }
2125
2126 static int
2127 i915_gem_evict_something(struct drm_device *dev, int min_size)
2128 {
2129         drm_i915_private_t *dev_priv = dev->dev_private;
2130         struct drm_gem_object *obj;
2131         int ret;
2132
2133         for (;;) {
2134                 i915_gem_retire_requests(dev);
2135
2136                 /* If there's an inactive buffer available now, grab it
2137                  * and be done.
2138                  */
2139                 obj = i915_gem_find_inactive_object(dev, min_size);
2140                 if (obj) {
2141                         struct drm_i915_gem_object *obj_priv;
2142
2143 #if WATCH_LRU
2144                         DRM_INFO("%s: evicting %p\n", __func__, obj);
2145 #endif
2146                         obj_priv = obj->driver_private;
2147                         BUG_ON(obj_priv->pin_count != 0);
2148                         BUG_ON(obj_priv->active);
2149
2150                         /* Wait on the rendering and unbind the buffer. */
2151                         return i915_gem_object_unbind(obj);
2152                 }
2153
2154                 /* If we didn't get anything, but the ring is still processing
2155                  * things, wait for the next to finish and hopefully leave us
2156                  * a buffer to evict.
2157                  */
2158                 if (!list_empty(&dev_priv->mm.request_list)) {
2159                         struct drm_i915_gem_request *request;
2160
2161                         request = list_first_entry(&dev_priv->mm.request_list,
2162                                                    struct drm_i915_gem_request,
2163                                                    list);
2164
2165                         ret = i915_wait_request(dev, request->seqno);
2166                         if (ret)
2167                                 return ret;
2168
2169                         continue;
2170                 }
2171
2172                 /* If we didn't have anything on the request list but there
2173                  * are buffers awaiting a flush, emit one and try again.
2174                  * When we wait on it, those buffers waiting for that flush
2175                  * will get moved to inactive.
2176                  */
2177                 if (!list_empty(&dev_priv->mm.flushing_list)) {
2178                         struct drm_i915_gem_object *obj_priv;
2179
2180                         /* Find an object that we can immediately reuse */
2181                         list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2182                                 obj = obj_priv->obj;
2183                                 if (obj->size >= min_size)
2184                                         break;
2185
2186                                 obj = NULL;
2187                         }
2188
2189                         if (obj != NULL) {
2190                                 uint32_t seqno;
2191
2192                                 i915_gem_flush(dev,
2193                                                obj->write_domain,
2194                                                obj->write_domain);
2195                                 seqno = i915_add_request(dev, NULL, obj->write_domain);
2196                                 if (seqno == 0)
2197                                         return -ENOMEM;
2198
2199                                 ret = i915_wait_request(dev, seqno);
2200                                 if (ret)
2201                                         return ret;
2202
2203                                 continue;
2204                         }
2205                 }
2206
2207                 /* If we didn't do any of the above, there's no single buffer
2208                  * large enough to swap out for the new one, so just evict
2209                  * everything and start again. (This should be rare.)
2210                  */
2211                 if (!list_empty (&dev_priv->mm.inactive_list))
2212                         return i915_gem_evict_from_inactive_list(dev);
2213                 else
2214                         return i915_gem_evict_everything(dev);
2215         }
2216 }
2217
2218 int
2219 i915_gem_object_get_pages(struct drm_gem_object *obj,
2220                           gfp_t gfpmask)
2221 {
2222         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2223         int page_count, i;
2224         struct address_space *mapping;
2225         struct inode *inode;
2226         struct page *page;
2227         int ret;
2228
2229         if (obj_priv->pages_refcount++ != 0)
2230                 return 0;
2231
2232         /* Get the list of pages out of our struct file.  They'll be pinned
2233          * at this point until we release them.
2234          */
2235         page_count = obj->size / PAGE_SIZE;
2236         BUG_ON(obj_priv->pages != NULL);
2237         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2238         if (obj_priv->pages == NULL) {
2239                 obj_priv->pages_refcount--;
2240                 return -ENOMEM;
2241         }
2242
2243         inode = obj->filp->f_path.dentry->d_inode;
2244         mapping = inode->i_mapping;
2245         for (i = 0; i < page_count; i++) {
2246                 page = read_cache_page_gfp(mapping, i,
2247                                            mapping_gfp_mask (mapping) |
2248                                            __GFP_COLD |
2249                                            gfpmask);
2250                 if (IS_ERR(page)) {
2251                         ret = PTR_ERR(page);
2252                         i915_gem_object_put_pages(obj);
2253                         return ret;
2254                 }
2255                 obj_priv->pages[i] = page;
2256         }
2257
2258         if (obj_priv->tiling_mode != I915_TILING_NONE)
2259                 i915_gem_object_do_bit_17_swizzle(obj);
2260
2261         return 0;
2262 }
2263
2264 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2265 {
2266         struct drm_gem_object *obj = reg->obj;
2267         struct drm_device *dev = obj->dev;
2268         drm_i915_private_t *dev_priv = dev->dev_private;
2269         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2270         int regnum = obj_priv->fence_reg;
2271         uint64_t val;
2272
2273         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2274                     0xfffff000) << 32;
2275         val |= obj_priv->gtt_offset & 0xfffff000;
2276         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2277         if (obj_priv->tiling_mode == I915_TILING_Y)
2278                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2279         val |= I965_FENCE_REG_VALID;
2280
2281         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2282 }
2283
2284 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2285 {
2286         struct drm_gem_object *obj = reg->obj;
2287         struct drm_device *dev = obj->dev;
2288         drm_i915_private_t *dev_priv = dev->dev_private;
2289         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2290         int regnum = obj_priv->fence_reg;
2291         int tile_width;
2292         uint32_t fence_reg, val;
2293         uint32_t pitch_val;
2294
2295         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2296             (obj_priv->gtt_offset & (obj->size - 1))) {
2297                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2298                      __func__, obj_priv->gtt_offset, obj->size);
2299                 return;
2300         }
2301
2302         if (obj_priv->tiling_mode == I915_TILING_Y &&
2303             HAS_128_BYTE_Y_TILING(dev))
2304                 tile_width = 128;
2305         else
2306                 tile_width = 512;
2307
2308         /* Note: pitch better be a power of two tile widths */
2309         pitch_val = obj_priv->stride / tile_width;
2310         pitch_val = ffs(pitch_val) - 1;
2311
2312         val = obj_priv->gtt_offset;
2313         if (obj_priv->tiling_mode == I915_TILING_Y)
2314                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2315         val |= I915_FENCE_SIZE_BITS(obj->size);
2316         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2317         val |= I830_FENCE_REG_VALID;
2318
2319         if (regnum < 8)
2320                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2321         else
2322                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2323         I915_WRITE(fence_reg, val);
2324 }
2325
2326 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2327 {
2328         struct drm_gem_object *obj = reg->obj;
2329         struct drm_device *dev = obj->dev;
2330         drm_i915_private_t *dev_priv = dev->dev_private;
2331         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2332         int regnum = obj_priv->fence_reg;
2333         uint32_t val;
2334         uint32_t pitch_val;
2335         uint32_t fence_size_bits;
2336
2337         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2338             (obj_priv->gtt_offset & (obj->size - 1))) {
2339                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2340                      __func__, obj_priv->gtt_offset);
2341                 return;
2342         }
2343
2344         pitch_val = obj_priv->stride / 128;
2345         pitch_val = ffs(pitch_val) - 1;
2346         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2347
2348         val = obj_priv->gtt_offset;
2349         if (obj_priv->tiling_mode == I915_TILING_Y)
2350                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2351         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2352         WARN_ON(fence_size_bits & ~0x00000f00);
2353         val |= fence_size_bits;
2354         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2355         val |= I830_FENCE_REG_VALID;
2356
2357         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2358 }
2359
2360 /**
2361  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2362  * @obj: object to map through a fence reg
2363  *
2364  * When mapping objects through the GTT, userspace wants to be able to write
2365  * to them without having to worry about swizzling if the object is tiled.
2366  *
2367  * This function walks the fence regs looking for a free one for @obj,
2368  * stealing one if it can't find any.
2369  *
2370  * It then sets up the reg based on the object's properties: address, pitch
2371  * and tiling format.
2372  */
2373 int
2374 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2375 {
2376         struct drm_device *dev = obj->dev;
2377         struct drm_i915_private *dev_priv = dev->dev_private;
2378         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2379         struct drm_i915_fence_reg *reg = NULL;
2380         struct drm_i915_gem_object *old_obj_priv = NULL;
2381         int i, ret, avail;
2382
2383         /* Just update our place in the LRU if our fence is getting used. */
2384         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2385                 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2386                 return 0;
2387         }
2388
2389         switch (obj_priv->tiling_mode) {
2390         case I915_TILING_NONE:
2391                 WARN(1, "allocating a fence for non-tiled object?\n");
2392                 break;
2393         case I915_TILING_X:
2394                 if (!obj_priv->stride)
2395                         return -EINVAL;
2396                 WARN((obj_priv->stride & (512 - 1)),
2397                      "object 0x%08x is X tiled but has non-512B pitch\n",
2398                      obj_priv->gtt_offset);
2399                 break;
2400         case I915_TILING_Y:
2401                 if (!obj_priv->stride)
2402                         return -EINVAL;
2403                 WARN((obj_priv->stride & (128 - 1)),
2404                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2405                      obj_priv->gtt_offset);
2406                 break;
2407         }
2408
2409         /* First try to find a free reg */
2410         avail = 0;
2411         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2412                 reg = &dev_priv->fence_regs[i];
2413                 if (!reg->obj)
2414                         break;
2415
2416                 old_obj_priv = reg->obj->driver_private;
2417                 if (!old_obj_priv->pin_count)
2418                     avail++;
2419         }
2420
2421         /* None available, try to steal one or wait for a user to finish */
2422         if (i == dev_priv->num_fence_regs) {
2423                 struct drm_gem_object *old_obj = NULL;
2424
2425                 if (avail == 0)
2426                         return -ENOSPC;
2427
2428                 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2429                                     fence_list) {
2430                         old_obj = old_obj_priv->obj;
2431
2432                         if (old_obj_priv->pin_count)
2433                                 continue;
2434
2435                         /* Take a reference, as otherwise the wait_rendering
2436                          * below may cause the object to get freed out from
2437                          * under us.
2438                          */
2439                         drm_gem_object_reference(old_obj);
2440
2441                         /* i915 uses fences for GPU access to tiled buffers */
2442                         if (IS_I965G(dev) || !old_obj_priv->active)
2443                                 break;
2444
2445                         /* This brings the object to the head of the LRU if it
2446                          * had been written to.  The only way this should
2447                          * result in us waiting longer than the expected
2448                          * optimal amount of time is if there was a
2449                          * fence-using buffer later that was read-only.
2450                          */
2451                         i915_gem_object_flush_gpu_write_domain(old_obj);
2452                         ret = i915_gem_object_wait_rendering(old_obj);
2453                         if (ret != 0) {
2454                                 drm_gem_object_unreference(old_obj);
2455                                 return ret;
2456                         }
2457
2458                         break;
2459                 }
2460
2461                 /*
2462                  * Zap this virtual mapping so we can set up a fence again
2463                  * for this object next time we need it.
2464                  */
2465                 i915_gem_release_mmap(old_obj);
2466
2467                 i = old_obj_priv->fence_reg;
2468                 reg = &dev_priv->fence_regs[i];
2469
2470                 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2471                 list_del_init(&old_obj_priv->fence_list);
2472
2473                 drm_gem_object_unreference(old_obj);
2474         }
2475
2476         obj_priv->fence_reg = i;
2477         list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2478
2479         reg->obj = obj;
2480
2481         if (IS_I965G(dev))
2482                 i965_write_fence_reg(reg);
2483         else if (IS_I9XX(dev))
2484                 i915_write_fence_reg(reg);
2485         else
2486                 i830_write_fence_reg(reg);
2487
2488         trace_i915_gem_object_get_fence(obj, i, obj_priv->tiling_mode);
2489
2490         return 0;
2491 }
2492
2493 /**
2494  * i915_gem_clear_fence_reg - clear out fence register info
2495  * @obj: object to clear
2496  *
2497  * Zeroes out the fence register itself and clears out the associated
2498  * data structures in dev_priv and obj_priv.
2499  */
2500 static void
2501 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2502 {
2503         struct drm_device *dev = obj->dev;
2504         drm_i915_private_t *dev_priv = dev->dev_private;
2505         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2506
2507         if (IS_I965G(dev))
2508                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2509         else {
2510                 uint32_t fence_reg;
2511
2512                 if (obj_priv->fence_reg < 8)
2513                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2514                 else
2515                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2516                                                        8) * 4;
2517
2518                 I915_WRITE(fence_reg, 0);
2519         }
2520
2521         dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2522         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2523         list_del_init(&obj_priv->fence_list);
2524 }
2525
2526 /**
2527  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2528  * to the buffer to finish, and then resets the fence register.
2529  * @obj: tiled object holding a fence register.
2530  *
2531  * Zeroes out the fence register itself and clears out the associated
2532  * data structures in dev_priv and obj_priv.
2533  */
2534 int
2535 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2536 {
2537         struct drm_device *dev = obj->dev;
2538         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2539
2540         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2541                 return 0;
2542
2543         /* On the i915, GPU access to tiled buffers is via a fence,
2544          * therefore we must wait for any outstanding access to complete
2545          * before clearing the fence.
2546          */
2547         if (!IS_I965G(dev)) {
2548                 int ret;
2549
2550                 i915_gem_object_flush_gpu_write_domain(obj);
2551                 i915_gem_object_flush_gtt_write_domain(obj);
2552                 ret = i915_gem_object_wait_rendering(obj);
2553                 if (ret != 0)
2554                         return ret;
2555         }
2556
2557         i915_gem_clear_fence_reg (obj);
2558
2559         return 0;
2560 }
2561
2562 /**
2563  * Finds free space in the GTT aperture and binds the object there.
2564  */
2565 static int
2566 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2567 {
2568         struct drm_device *dev = obj->dev;
2569         drm_i915_private_t *dev_priv = dev->dev_private;
2570         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2571         struct drm_mm_node *free_space;
2572         gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2573         int ret;
2574
2575         if (obj_priv->madv != I915_MADV_WILLNEED) {
2576                 DRM_ERROR("Attempting to bind a purgeable object\n");
2577                 return -EINVAL;
2578         }
2579
2580         if (alignment == 0)
2581                 alignment = i915_gem_get_gtt_alignment(obj);
2582         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2583                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2584                 return -EINVAL;
2585         }
2586
2587  search_free:
2588         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2589                                         obj->size, alignment, 0);
2590         if (free_space != NULL) {
2591                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2592                                                        alignment);
2593                 if (obj_priv->gtt_space != NULL) {
2594                         obj_priv->gtt_space->private = obj;
2595                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2596                 }
2597         }
2598         if (obj_priv->gtt_space == NULL) {
2599                 /* If the gtt is empty and we're still having trouble
2600                  * fitting our object in, we're out of memory.
2601                  */
2602 #if WATCH_LRU
2603                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2604 #endif
2605                 ret = i915_gem_evict_something(dev, obj->size);
2606                 if (ret)
2607                         return ret;
2608
2609                 goto search_free;
2610         }
2611
2612 #if WATCH_BUF
2613         DRM_INFO("Binding object of size %zd at 0x%08x\n",
2614                  obj->size, obj_priv->gtt_offset);
2615 #endif
2616         ret = i915_gem_object_get_pages(obj, gfpmask);
2617         if (ret) {
2618                 drm_mm_put_block(obj_priv->gtt_space);
2619                 obj_priv->gtt_space = NULL;
2620
2621                 if (ret == -ENOMEM) {
2622                         /* first try to clear up some space from the GTT */
2623                         ret = i915_gem_evict_something(dev, obj->size);
2624                         if (ret) {
2625                                 /* now try to shrink everyone else */
2626                                 if (gfpmask) {
2627                                         gfpmask = 0;
2628                                         goto search_free;
2629                                 }
2630
2631                                 return ret;
2632                         }
2633
2634                         goto search_free;
2635                 }
2636
2637                 return ret;
2638         }
2639
2640         /* Create an AGP memory structure pointing at our pages, and bind it
2641          * into the GTT.
2642          */
2643         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2644                                                obj_priv->pages,
2645                                                obj->size >> PAGE_SHIFT,
2646                                                obj_priv->gtt_offset,
2647                                                obj_priv->agp_type);
2648         if (obj_priv->agp_mem == NULL) {
2649                 i915_gem_object_put_pages(obj);
2650                 drm_mm_put_block(obj_priv->gtt_space);
2651                 obj_priv->gtt_space = NULL;
2652
2653                 ret = i915_gem_evict_something(dev, obj->size);
2654                 if (ret)
2655                         return ret;
2656
2657                 goto search_free;
2658         }
2659         atomic_inc(&dev->gtt_count);
2660         atomic_add(obj->size, &dev->gtt_memory);
2661
2662         /* Assert that the object is not currently in any GPU domain. As it
2663          * wasn't in the GTT, there shouldn't be any way it could have been in
2664          * a GPU cache
2665          */
2666         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2667         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2668
2669         trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2670
2671         return 0;
2672 }
2673
2674 void
2675 i915_gem_clflush_object(struct drm_gem_object *obj)
2676 {
2677         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2678
2679         /* If we don't have a page list set up, then we're not pinned
2680          * to GPU, and we can ignore the cache flush because it'll happen
2681          * again at bind time.
2682          */
2683         if (obj_priv->pages == NULL)
2684                 return;
2685
2686         trace_i915_gem_object_clflush(obj);
2687
2688         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2689 }
2690
2691 /** Flushes any GPU write domain for the object if it's dirty. */
2692 static void
2693 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2694 {
2695         struct drm_device *dev = obj->dev;
2696         uint32_t seqno;
2697         uint32_t old_write_domain;
2698
2699         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2700                 return;
2701
2702         /* Queue the GPU write cache flushing we need. */
2703         old_write_domain = obj->write_domain;
2704         i915_gem_flush(dev, 0, obj->write_domain);
2705         seqno = i915_add_request(dev, NULL, obj->write_domain);
2706         BUG_ON(obj->write_domain);
2707         i915_gem_object_move_to_active(obj, seqno);
2708
2709         trace_i915_gem_object_change_domain(obj,
2710                                             obj->read_domains,
2711                                             old_write_domain);
2712 }
2713
2714 /** Flushes the GTT write domain for the object if it's dirty. */
2715 static void
2716 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2717 {
2718         uint32_t old_write_domain;
2719
2720         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2721                 return;
2722
2723         /* No actual flushing is required for the GTT write domain.   Writes
2724          * to it immediately go to main memory as far as we know, so there's
2725          * no chipset flush.  It also doesn't land in render cache.
2726          */
2727         old_write_domain = obj->write_domain;
2728         obj->write_domain = 0;
2729
2730         trace_i915_gem_object_change_domain(obj,
2731                                             obj->read_domains,
2732                                             old_write_domain);
2733 }
2734
2735 /** Flushes the CPU write domain for the object if it's dirty. */
2736 static void
2737 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2738 {
2739         struct drm_device *dev = obj->dev;
2740         uint32_t old_write_domain;
2741
2742         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2743                 return;
2744
2745         i915_gem_clflush_object(obj);
2746         drm_agp_chipset_flush(dev);
2747         old_write_domain = obj->write_domain;
2748         obj->write_domain = 0;
2749
2750         trace_i915_gem_object_change_domain(obj,
2751                                             obj->read_domains,
2752                                             old_write_domain);
2753 }
2754
2755 void
2756 i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2757 {
2758         switch (obj->write_domain) {
2759         case I915_GEM_DOMAIN_GTT:
2760                 i915_gem_object_flush_gtt_write_domain(obj);
2761                 break;
2762         case I915_GEM_DOMAIN_CPU:
2763                 i915_gem_object_flush_cpu_write_domain(obj);
2764                 break;
2765         default:
2766                 i915_gem_object_flush_gpu_write_domain(obj);
2767                 break;
2768         }
2769 }
2770
2771 /**
2772  * Moves a single object to the GTT read, and possibly write domain.
2773  *
2774  * This function returns when the move is complete, including waiting on
2775  * flushes to occur.
2776  */
2777 int
2778 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2779 {
2780         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2781         uint32_t old_write_domain, old_read_domains;
2782         int ret;
2783
2784         /* Not valid to be called on unbound objects. */
2785         if (obj_priv->gtt_space == NULL)
2786                 return -EINVAL;
2787
2788         i915_gem_object_flush_gpu_write_domain(obj);
2789         /* Wait on any GPU rendering and flushing to occur. */
2790         ret = i915_gem_object_wait_rendering(obj);
2791         if (ret != 0)
2792                 return ret;
2793
2794         old_write_domain = obj->write_domain;
2795         old_read_domains = obj->read_domains;
2796
2797         /* If we're writing through the GTT domain, then CPU and GPU caches
2798          * will need to be invalidated at next use.
2799          */
2800         if (write)
2801                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2802
2803         i915_gem_object_flush_cpu_write_domain(obj);
2804
2805         /* It should now be out of any other write domains, and we can update
2806          * the domain values for our changes.
2807          */
2808         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2809         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2810         if (write) {
2811                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2812                 obj_priv->dirty = 1;
2813         }
2814
2815         trace_i915_gem_object_change_domain(obj,
2816                                             old_read_domains,
2817                                             old_write_domain);
2818
2819         return 0;
2820 }
2821
2822 /*
2823  * Prepare buffer for display plane. Use uninterruptible for possible flush
2824  * wait, as in modesetting process we're not supposed to be interrupted.
2825  */
2826 int
2827 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2828 {
2829         struct drm_device *dev = obj->dev;
2830         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2831         uint32_t old_write_domain, old_read_domains;
2832         int ret;
2833
2834         /* Not valid to be called on unbound objects. */
2835         if (obj_priv->gtt_space == NULL)
2836                 return -EINVAL;
2837
2838         i915_gem_object_flush_gpu_write_domain(obj);
2839
2840         /* Wait on any GPU rendering and flushing to occur. */
2841         if (obj_priv->active) {
2842 #if WATCH_BUF
2843                 DRM_INFO("%s: object %p wait for seqno %08x\n",
2844                           __func__, obj, obj_priv->last_rendering_seqno);
2845 #endif
2846                 ret = i915_do_wait_request(dev, obj_priv->last_rendering_seqno, 0);
2847                 if (ret != 0)
2848                         return ret;
2849         }
2850
2851         old_write_domain = obj->write_domain;
2852         old_read_domains = obj->read_domains;
2853
2854         obj->read_domains &= I915_GEM_DOMAIN_GTT;
2855
2856         i915_gem_object_flush_cpu_write_domain(obj);
2857
2858         /* It should now be out of any other write domains, and we can update
2859          * the domain values for our changes.
2860          */
2861         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2862         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2863         obj->write_domain = I915_GEM_DOMAIN_GTT;
2864         obj_priv->dirty = 1;
2865
2866         trace_i915_gem_object_change_domain(obj,
2867                                             old_read_domains,
2868                                             old_write_domain);
2869
2870         return 0;
2871 }
2872
2873 /**
2874  * Moves a single object to the CPU read, and possibly write domain.
2875  *
2876  * This function returns when the move is complete, including waiting on
2877  * flushes to occur.
2878  */
2879 static int
2880 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2881 {
2882         uint32_t old_write_domain, old_read_domains;
2883         int ret;
2884
2885         i915_gem_object_flush_gpu_write_domain(obj);
2886         /* Wait on any GPU rendering and flushing to occur. */
2887         ret = i915_gem_object_wait_rendering(obj);
2888         if (ret != 0)
2889                 return ret;
2890
2891         i915_gem_object_flush_gtt_write_domain(obj);
2892
2893         /* If we have a partially-valid cache of the object in the CPU,
2894          * finish invalidating it and free the per-page flags.
2895          */
2896         i915_gem_object_set_to_full_cpu_read_domain(obj);
2897
2898         old_write_domain = obj->write_domain;
2899         old_read_domains = obj->read_domains;
2900
2901         /* Flush the CPU cache if it's still invalid. */
2902         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2903                 i915_gem_clflush_object(obj);
2904
2905                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2906         }
2907
2908         /* It should now be out of any other write domains, and we can update
2909          * the domain values for our changes.
2910          */
2911         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2912
2913         /* If we're writing through the CPU, then the GPU read domains will
2914          * need to be invalidated at next use.
2915          */
2916         if (write) {
2917                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2918                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2919         }
2920
2921         trace_i915_gem_object_change_domain(obj,
2922                                             old_read_domains,
2923                                             old_write_domain);
2924
2925         return 0;
2926 }
2927
2928 /*
2929  * Set the next domain for the specified object. This
2930  * may not actually perform the necessary flushing/invaliding though,
2931  * as that may want to be batched with other set_domain operations
2932  *
2933  * This is (we hope) the only really tricky part of gem. The goal
2934  * is fairly simple -- track which caches hold bits of the object
2935  * and make sure they remain coherent. A few concrete examples may
2936  * help to explain how it works. For shorthand, we use the notation
2937  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2938  * a pair of read and write domain masks.
2939  *
2940  * Case 1: the batch buffer
2941  *
2942  *      1. Allocated
2943  *      2. Written by CPU
2944  *      3. Mapped to GTT
2945  *      4. Read by GPU
2946  *      5. Unmapped from GTT
2947  *      6. Freed
2948  *
2949  *      Let's take these a step at a time
2950  *
2951  *      1. Allocated
2952  *              Pages allocated from the kernel may still have
2953  *              cache contents, so we set them to (CPU, CPU) always.
2954  *      2. Written by CPU (using pwrite)
2955  *              The pwrite function calls set_domain (CPU, CPU) and
2956  *              this function does nothing (as nothing changes)
2957  *      3. Mapped by GTT
2958  *              This function asserts that the object is not
2959  *              currently in any GPU-based read or write domains
2960  *      4. Read by GPU
2961  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
2962  *              As write_domain is zero, this function adds in the
2963  *              current read domains (CPU+COMMAND, 0).
2964  *              flush_domains is set to CPU.
2965  *              invalidate_domains is set to COMMAND
2966  *              clflush is run to get data out of the CPU caches
2967  *              then i915_dev_set_domain calls i915_gem_flush to
2968  *              emit an MI_FLUSH and drm_agp_chipset_flush
2969  *      5. Unmapped from GTT
2970  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
2971  *              flush_domains and invalidate_domains end up both zero
2972  *              so no flushing/invalidating happens
2973  *      6. Freed
2974  *              yay, done
2975  *
2976  * Case 2: The shared render buffer
2977  *
2978  *      1. Allocated
2979  *      2. Mapped to GTT
2980  *      3. Read/written by GPU
2981  *      4. set_domain to (CPU,CPU)
2982  *      5. Read/written by CPU
2983  *      6. Read/written by GPU
2984  *
2985  *      1. Allocated
2986  *              Same as last example, (CPU, CPU)
2987  *      2. Mapped to GTT
2988  *              Nothing changes (assertions find that it is not in the GPU)
2989  *      3. Read/written by GPU
2990  *              execbuffer calls set_domain (RENDER, RENDER)
2991  *              flush_domains gets CPU
2992  *              invalidate_domains gets GPU
2993  *              clflush (obj)
2994  *              MI_FLUSH and drm_agp_chipset_flush
2995  *      4. set_domain (CPU, CPU)
2996  *              flush_domains gets GPU
2997  *              invalidate_domains gets CPU
2998  *              wait_rendering (obj) to make sure all drawing is complete.
2999  *              This will include an MI_FLUSH to get the data from GPU
3000  *              to memory
3001  *              clflush (obj) to invalidate the CPU cache
3002  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3003  *      5. Read/written by CPU
3004  *              cache lines are loaded and dirtied
3005  *      6. Read written by GPU
3006  *              Same as last GPU access
3007  *
3008  * Case 3: The constant buffer
3009  *
3010  *      1. Allocated
3011  *      2. Written by CPU
3012  *      3. Read by GPU
3013  *      4. Updated (written) by CPU again
3014  *      5. Read by GPU
3015  *
3016  *      1. Allocated
3017  *              (CPU, CPU)
3018  *      2. Written by CPU
3019  *              (CPU, CPU)
3020  *      3. Read by GPU
3021  *              (CPU+RENDER, 0)
3022  *              flush_domains = CPU
3023  *              invalidate_domains = RENDER
3024  *              clflush (obj)
3025  *              MI_FLUSH
3026  *              drm_agp_chipset_flush
3027  *      4. Updated (written) by CPU again
3028  *              (CPU, CPU)
3029  *              flush_domains = 0 (no previous write domain)
3030  *              invalidate_domains = 0 (no new read domains)
3031  *      5. Read by GPU
3032  *              (CPU+RENDER, 0)
3033  *              flush_domains = CPU
3034  *              invalidate_domains = RENDER
3035  *              clflush (obj)
3036  *              MI_FLUSH
3037  *              drm_agp_chipset_flush
3038  */
3039 static void
3040 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3041 {
3042         struct drm_device               *dev = obj->dev;
3043         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
3044         uint32_t                        invalidate_domains = 0;
3045         uint32_t                        flush_domains = 0;
3046         uint32_t                        old_read_domains;
3047
3048         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3049         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3050
3051         intel_mark_busy(dev, obj);
3052
3053 #if WATCH_BUF
3054         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
3055                  __func__, obj,
3056                  obj->read_domains, obj->pending_read_domains,
3057                  obj->write_domain, obj->pending_write_domain);
3058 #endif
3059         /*
3060          * If the object isn't moving to a new write domain,
3061          * let the object stay in multiple read domains
3062          */
3063         if (obj->pending_write_domain == 0)
3064                 obj->pending_read_domains |= obj->read_domains;
3065         else
3066                 obj_priv->dirty = 1;
3067
3068         /*
3069          * Flush the current write domain if
3070          * the new read domains don't match. Invalidate
3071          * any read domains which differ from the old
3072          * write domain
3073          */
3074         if (obj->write_domain &&
3075             obj->write_domain != obj->pending_read_domains) {
3076                 flush_domains |= obj->write_domain;
3077                 invalidate_domains |=
3078                         obj->pending_read_domains & ~obj->write_domain;
3079         }
3080         /*
3081          * Invalidate any read caches which may have
3082          * stale data. That is, any new read domains.
3083          */
3084         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3085         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3086 #if WATCH_BUF
3087                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3088                          __func__, flush_domains, invalidate_domains);
3089 #endif
3090                 i915_gem_clflush_object(obj);
3091         }
3092
3093         old_read_domains = obj->read_domains;
3094
3095         /* The actual obj->write_domain will be updated with
3096          * pending_write_domain after we emit the accumulated flush for all
3097          * of our domain changes in execbuffers (which clears objects'
3098          * write_domains).  So if we have a current write domain that we
3099          * aren't changing, set pending_write_domain to that.
3100          */
3101         if (flush_domains == 0 && obj->pending_write_domain == 0)
3102                 obj->pending_write_domain = obj->write_domain;
3103         obj->read_domains = obj->pending_read_domains;
3104
3105         dev->invalidate_domains |= invalidate_domains;
3106         dev->flush_domains |= flush_domains;
3107 #if WATCH_BUF
3108         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3109                  __func__,
3110                  obj->read_domains, obj->write_domain,
3111                  dev->invalidate_domains, dev->flush_domains);
3112 #endif
3113
3114         trace_i915_gem_object_change_domain(obj,
3115                                             old_read_domains,
3116                                             obj->write_domain);
3117 }
3118
3119 /**
3120  * Moves the object from a partially CPU read to a full one.
3121  *
3122  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3123  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3124  */
3125 static void
3126 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3127 {
3128         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3129
3130         if (!obj_priv->page_cpu_valid)
3131                 return;
3132
3133         /* If we're partially in the CPU read domain, finish moving it in.
3134          */
3135         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3136                 int i;
3137
3138                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3139                         if (obj_priv->page_cpu_valid[i])
3140                                 continue;
3141                         drm_clflush_pages(obj_priv->pages + i, 1);
3142                 }
3143         }
3144
3145         /* Free the page_cpu_valid mappings which are now stale, whether
3146          * or not we've got I915_GEM_DOMAIN_CPU.
3147          */
3148         kfree(obj_priv->page_cpu_valid);
3149         obj_priv->page_cpu_valid = NULL;
3150 }
3151
3152 /**
3153  * Set the CPU read domain on a range of the object.
3154  *
3155  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3156  * not entirely valid.  The page_cpu_valid member of the object flags which
3157  * pages have been flushed, and will be respected by
3158  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3159  * of the whole object.
3160  *
3161  * This function returns when the move is complete, including waiting on
3162  * flushes to occur.
3163  */
3164 static int
3165 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3166                                           uint64_t offset, uint64_t size)
3167 {
3168         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3169         uint32_t old_read_domains;
3170         int i, ret;
3171
3172         if (offset == 0 && size == obj->size)
3173                 return i915_gem_object_set_to_cpu_domain(obj, 0);
3174
3175         i915_gem_object_flush_gpu_write_domain(obj);
3176         /* Wait on any GPU rendering and flushing to occur. */
3177         ret = i915_gem_object_wait_rendering(obj);
3178         if (ret != 0)
3179                 return ret;
3180         i915_gem_object_flush_gtt_write_domain(obj);
3181
3182         /* If we're already fully in the CPU read domain, we're done. */
3183         if (obj_priv->page_cpu_valid == NULL &&
3184             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3185                 return 0;
3186
3187         /* Otherwise, create/clear the per-page CPU read domain flag if we're
3188          * newly adding I915_GEM_DOMAIN_CPU
3189          */
3190         if (obj_priv->page_cpu_valid == NULL) {
3191                 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3192                                                    GFP_KERNEL);
3193                 if (obj_priv->page_cpu_valid == NULL)
3194                         return -ENOMEM;
3195         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3196                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3197
3198         /* Flush the cache on any pages that are still invalid from the CPU's
3199          * perspective.
3200          */
3201         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3202              i++) {
3203                 if (obj_priv->page_cpu_valid[i])
3204                         continue;
3205
3206                 drm_clflush_pages(obj_priv->pages + i, 1);
3207
3208                 obj_priv->page_cpu_valid[i] = 1;
3209         }
3210
3211         /* It should now be out of any other write domains, and we can update
3212          * the domain values for our changes.
3213          */
3214         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3215
3216         old_read_domains = obj->read_domains;
3217         obj->read_domains |= I915_GEM_DOMAIN_CPU;
3218
3219         trace_i915_gem_object_change_domain(obj,
3220                                             old_read_domains,
3221                                             obj->write_domain);
3222
3223         return 0;
3224 }
3225
3226 /**
3227  * Pin an object to the GTT and evaluate the relocations landing in it.
3228  */
3229 static int
3230 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3231                                  struct drm_file *file_priv,
3232                                  struct drm_i915_gem_exec_object2 *entry,
3233                                  struct drm_i915_gem_relocation_entry *relocs)
3234 {
3235         struct drm_device *dev = obj->dev;
3236         drm_i915_private_t *dev_priv = dev->dev_private;
3237         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3238         int i, ret;
3239         void __iomem *reloc_page;
3240         bool need_fence;
3241
3242         need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3243                      obj_priv->tiling_mode != I915_TILING_NONE;
3244
3245         /* Check fence reg constraints and rebind if necessary */
3246         if (need_fence && !i915_obj_fenceable(dev, obj))
3247                 i915_gem_object_unbind(obj);
3248
3249         /* Choose the GTT offset for our buffer and put it there. */
3250         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3251         if (ret)
3252                 return ret;
3253
3254         /*
3255          * Pre-965 chips need a fence register set up in order to
3256          * properly handle blits to/from tiled surfaces.
3257          */
3258         if (need_fence) {
3259                 ret = i915_gem_object_get_fence_reg(obj);
3260                 if (ret != 0) {
3261                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3262                                 DRM_ERROR("Failure to install fence: %d\n",
3263                                           ret);
3264                         i915_gem_object_unpin(obj);
3265                         return ret;
3266                 }
3267         }
3268
3269         entry->offset = obj_priv->gtt_offset;
3270
3271         /* Apply the relocations, using the GTT aperture to avoid cache
3272          * flushing requirements.
3273          */
3274         for (i = 0; i < entry->relocation_count; i++) {
3275                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3276                 struct drm_gem_object *target_obj;
3277                 struct drm_i915_gem_object *target_obj_priv;
3278                 uint32_t reloc_val, reloc_offset;
3279                 uint32_t __iomem *reloc_entry;
3280
3281                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3282                                                    reloc->target_handle);
3283                 if (target_obj == NULL) {
3284                         i915_gem_object_unpin(obj);
3285                         return -EBADF;
3286                 }
3287                 target_obj_priv = target_obj->driver_private;
3288
3289 #if WATCH_RELOC
3290                 DRM_INFO("%s: obj %p offset %08x target %d "
3291                          "read %08x write %08x gtt %08x "
3292                          "presumed %08x delta %08x\n",
3293                          __func__,
3294                          obj,
3295                          (int) reloc->offset,
3296                          (int) reloc->target_handle,
3297                          (int) reloc->read_domains,
3298                          (int) reloc->write_domain,
3299                          (int) target_obj_priv->gtt_offset,
3300                          (int) reloc->presumed_offset,
3301                          reloc->delta);
3302 #endif
3303
3304                 /* The target buffer should have appeared before us in the
3305                  * exec_object list, so it should have a GTT space bound by now.
3306                  */
3307                 if (target_obj_priv->gtt_space == NULL) {
3308                         DRM_ERROR("No GTT space found for object %d\n",
3309                                   reloc->target_handle);
3310                         drm_gem_object_unreference(target_obj);
3311                         i915_gem_object_unpin(obj);
3312                         return -EINVAL;
3313                 }
3314
3315                 /* Validate that the target is in a valid r/w GPU domain */
3316                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3317                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3318                         DRM_ERROR("reloc with read/write CPU domains: "
3319                                   "obj %p target %d offset %d "
3320                                   "read %08x write %08x",
3321                                   obj, reloc->target_handle,
3322                                   (int) reloc->offset,
3323                                   reloc->read_domains,
3324                                   reloc->write_domain);
3325                         drm_gem_object_unreference(target_obj);
3326                         i915_gem_object_unpin(obj);
3327                         return -EINVAL;
3328                 }
3329                 if (reloc->write_domain && target_obj->pending_write_domain &&
3330                     reloc->write_domain != target_obj->pending_write_domain) {
3331                         DRM_ERROR("Write domain conflict: "
3332                                   "obj %p target %d offset %d "
3333                                   "new %08x old %08x\n",
3334                                   obj, reloc->target_handle,
3335                                   (int) reloc->offset,
3336                                   reloc->write_domain,
3337                                   target_obj->pending_write_domain);
3338                         drm_gem_object_unreference(target_obj);
3339                         i915_gem_object_unpin(obj);
3340                         return -EINVAL;
3341                 }
3342
3343                 target_obj->pending_read_domains |= reloc->read_domains;
3344                 target_obj->pending_write_domain |= reloc->write_domain;
3345
3346                 /* If the relocation already has the right value in it, no
3347                  * more work needs to be done.
3348                  */
3349                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3350                         drm_gem_object_unreference(target_obj);
3351                         continue;
3352                 }
3353
3354                 /* Check that the relocation address is valid... */
3355                 if (reloc->offset > obj->size - 4) {
3356                         DRM_ERROR("Relocation beyond object bounds: "
3357                                   "obj %p target %d offset %d size %d.\n",
3358                                   obj, reloc->target_handle,
3359                                   (int) reloc->offset, (int) obj->size);
3360                         drm_gem_object_unreference(target_obj);
3361                         i915_gem_object_unpin(obj);
3362                         return -EINVAL;
3363                 }
3364                 if (reloc->offset & 3) {
3365                         DRM_ERROR("Relocation not 4-byte aligned: "
3366                                   "obj %p target %d offset %d.\n",
3367                                   obj, reloc->target_handle,
3368                                   (int) reloc->offset);
3369                         drm_gem_object_unreference(target_obj);
3370                         i915_gem_object_unpin(obj);
3371                         return -EINVAL;
3372                 }
3373
3374                 /* and points to somewhere within the target object. */
3375                 if (reloc->delta >= target_obj->size) {
3376                         DRM_ERROR("Relocation beyond target object bounds: "
3377                                   "obj %p target %d delta %d size %d.\n",
3378                                   obj, reloc->target_handle,
3379                                   (int) reloc->delta, (int) target_obj->size);
3380                         drm_gem_object_unreference(target_obj);
3381                         i915_gem_object_unpin(obj);
3382                         return -EINVAL;
3383                 }
3384
3385                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3386                 if (ret != 0) {
3387                         drm_gem_object_unreference(target_obj);
3388                         i915_gem_object_unpin(obj);
3389                         return -EINVAL;
3390                 }
3391
3392                 /* Map the page containing the relocation we're going to
3393                  * perform.
3394                  */
3395                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3396                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3397                                                       (reloc_offset &
3398                                                        ~(PAGE_SIZE - 1)));
3399                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3400                                                    (reloc_offset & (PAGE_SIZE - 1)));
3401                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3402
3403 #if WATCH_BUF
3404                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3405                           obj, (unsigned int) reloc->offset,
3406                           readl(reloc_entry), reloc_val);
3407 #endif
3408                 writel(reloc_val, reloc_entry);
3409                 io_mapping_unmap_atomic(reloc_page);
3410
3411                 /* The updated presumed offset for this entry will be
3412                  * copied back out to the user.
3413                  */
3414                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3415
3416                 drm_gem_object_unreference(target_obj);
3417         }
3418
3419 #if WATCH_BUF
3420         if (0)
3421                 i915_gem_dump_object(obj, 128, __func__, ~0);
3422 #endif
3423         return 0;
3424 }
3425
3426 /** Dispatch a batchbuffer to the ring
3427  */
3428 static int
3429 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3430                               struct drm_i915_gem_execbuffer2 *exec,
3431                               struct drm_clip_rect *cliprects,
3432                               uint64_t exec_offset)
3433 {
3434         drm_i915_private_t *dev_priv = dev->dev_private;
3435         int nbox = exec->num_cliprects;
3436         int i = 0, count;
3437         uint32_t exec_start, exec_len;
3438         RING_LOCALS;
3439
3440         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3441         exec_len = (uint32_t) exec->batch_len;
3442
3443         trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno + 1);
3444
3445         count = nbox ? nbox : 1;
3446
3447         for (i = 0; i < count; i++) {
3448                 if (i < nbox) {
3449                         int ret = i915_emit_box(dev, cliprects, i,
3450                                                 exec->DR1, exec->DR4);
3451                         if (ret)
3452                                 return ret;
3453                 }
3454
3455                 if (IS_I830(dev) || IS_845G(dev)) {
3456                         BEGIN_LP_RING(4);
3457                         OUT_RING(MI_BATCH_BUFFER);
3458                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3459                         OUT_RING(exec_start + exec_len - 4);
3460                         OUT_RING(0);
3461                         ADVANCE_LP_RING();
3462                 } else {
3463                         BEGIN_LP_RING(2);
3464                         if (IS_I965G(dev)) {
3465                                 OUT_RING(MI_BATCH_BUFFER_START |
3466                                          (2 << 6) |
3467                                          MI_BATCH_NON_SECURE_I965);
3468                                 OUT_RING(exec_start);
3469                         } else {
3470                                 OUT_RING(MI_BATCH_BUFFER_START |
3471                                          (2 << 6));
3472                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3473                         }
3474                         ADVANCE_LP_RING();
3475                 }
3476         }
3477
3478         /* XXX breadcrumb */
3479         return 0;
3480 }
3481
3482 /* Throttle our rendering by waiting until the ring has completed our requests
3483  * emitted over 20 msec ago.
3484  *
3485  * Note that if we were to use the current jiffies each time around the loop,
3486  * we wouldn't escape the function with any frames outstanding if the time to
3487  * render a frame was over 20ms.
3488  *
3489  * This should get us reasonable parallelism between CPU and GPU but also
3490  * relatively low latency when blocking on a particular request to finish.
3491  */
3492 static int
3493 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3494 {
3495         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3496         int ret = 0;
3497         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3498
3499         mutex_lock(&dev->struct_mutex);
3500         while (!list_empty(&i915_file_priv->mm.request_list)) {
3501                 struct drm_i915_gem_request *request;
3502
3503                 request = list_first_entry(&i915_file_priv->mm.request_list,
3504                                            struct drm_i915_gem_request,
3505                                            client_list);
3506
3507                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3508                         break;
3509
3510                 ret = i915_wait_request(dev, request->seqno);
3511                 if (ret != 0)
3512                         break;
3513         }
3514         mutex_unlock(&dev->struct_mutex);
3515
3516         return ret;
3517 }
3518
3519 static int
3520 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3521                               uint32_t buffer_count,
3522                               struct drm_i915_gem_relocation_entry **relocs)
3523 {
3524         uint32_t reloc_count = 0, reloc_index = 0, i;
3525         int ret;
3526
3527         *relocs = NULL;
3528         for (i = 0; i < buffer_count; i++) {
3529                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3530                         return -EINVAL;
3531                 reloc_count += exec_list[i].relocation_count;
3532         }
3533
3534         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3535         if (*relocs == NULL) {
3536                 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3537                 return -ENOMEM;
3538         }
3539
3540         for (i = 0; i < buffer_count; i++) {
3541                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3542
3543                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3544
3545                 ret = copy_from_user(&(*relocs)[reloc_index],
3546                                      user_relocs,
3547                                      exec_list[i].relocation_count *
3548                                      sizeof(**relocs));
3549                 if (ret != 0) {
3550                         drm_free_large(*relocs);
3551                         *relocs = NULL;
3552                         return -EFAULT;
3553                 }
3554
3555                 reloc_index += exec_list[i].relocation_count;
3556         }
3557
3558         return 0;
3559 }
3560
3561 static int
3562 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3563                             uint32_t buffer_count,
3564                             struct drm_i915_gem_relocation_entry *relocs)
3565 {
3566         uint32_t reloc_count = 0, i;
3567         int ret = 0;
3568
3569         if (relocs == NULL)
3570             return 0;
3571
3572         for (i = 0; i < buffer_count; i++) {
3573                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3574                 int unwritten;
3575
3576                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3577
3578                 unwritten = copy_to_user(user_relocs,
3579                                          &relocs[reloc_count],
3580                                          exec_list[i].relocation_count *
3581                                          sizeof(*relocs));
3582
3583                 if (unwritten) {
3584                         ret = -EFAULT;
3585                         goto err;
3586                 }
3587
3588                 reloc_count += exec_list[i].relocation_count;
3589         }
3590
3591 err:
3592         drm_free_large(relocs);
3593
3594         return ret;
3595 }
3596
3597 static int
3598 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3599                            uint64_t exec_offset)
3600 {
3601         uint32_t exec_start, exec_len;
3602
3603         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3604         exec_len = (uint32_t) exec->batch_len;
3605
3606         if ((exec_start | exec_len) & 0x7)
3607                 return -EINVAL;
3608
3609         if (!exec_start)
3610                 return -EINVAL;
3611
3612         return 0;
3613 }
3614
3615 static int
3616 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3617                                struct drm_gem_object **object_list,
3618                                int count)
3619 {
3620         drm_i915_private_t *dev_priv = dev->dev_private;
3621         struct drm_i915_gem_object *obj_priv;
3622         DEFINE_WAIT(wait);
3623         int i, ret = 0;
3624
3625         for (;;) {
3626                 prepare_to_wait(&dev_priv->pending_flip_queue,
3627                                 &wait, TASK_INTERRUPTIBLE);
3628                 for (i = 0; i < count; i++) {
3629                         obj_priv = object_list[i]->driver_private;
3630                         if (atomic_read(&obj_priv->pending_flip) > 0)
3631                                 break;
3632                 }
3633                 if (i == count)
3634                         break;
3635
3636                 if (!signal_pending(current)) {
3637                         mutex_unlock(&dev->struct_mutex);
3638                         schedule();
3639                         mutex_lock(&dev->struct_mutex);
3640                         continue;
3641                 }
3642                 ret = -ERESTARTSYS;
3643                 break;
3644         }
3645         finish_wait(&dev_priv->pending_flip_queue, &wait);
3646
3647         return ret;
3648 }
3649
3650 int
3651 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3652                        struct drm_file *file_priv,
3653                        struct drm_i915_gem_execbuffer2 *args,
3654                        struct drm_i915_gem_exec_object2 *exec_list)
3655 {
3656         drm_i915_private_t *dev_priv = dev->dev_private;
3657         struct drm_gem_object **object_list = NULL;
3658         struct drm_gem_object *batch_obj;
3659         struct drm_i915_gem_object *obj_priv;
3660         struct drm_clip_rect *cliprects = NULL;
3661         struct drm_i915_gem_relocation_entry *relocs = NULL;
3662         int ret = 0, ret2, i, pinned = 0;
3663         uint64_t exec_offset;
3664         uint32_t seqno, flush_domains, reloc_index;
3665         int pin_tries, flips;
3666
3667 #if WATCH_EXEC
3668         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3669                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3670 #endif
3671
3672         if (args->buffer_count < 1) {
3673                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3674                 return -EINVAL;
3675         }
3676         object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3677         if (object_list == NULL) {
3678                 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3679                           args->buffer_count);
3680                 ret = -ENOMEM;
3681                 goto pre_mutex_err;
3682         }
3683
3684         if (args->num_cliprects != 0) {
3685                 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3686                                     GFP_KERNEL);
3687                 if (cliprects == NULL) {
3688                         ret = -ENOMEM;
3689                         goto pre_mutex_err;
3690                 }
3691
3692                 ret = copy_from_user(cliprects,
3693                                      (struct drm_clip_rect __user *)
3694                                      (uintptr_t) args->cliprects_ptr,
3695                                      sizeof(*cliprects) * args->num_cliprects);
3696                 if (ret != 0) {
3697                         DRM_ERROR("copy %d cliprects failed: %d\n",
3698                                   args->num_cliprects, ret);
3699                         goto pre_mutex_err;
3700                 }
3701         }
3702
3703         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3704                                             &relocs);
3705         if (ret != 0)
3706                 goto pre_mutex_err;
3707
3708         mutex_lock(&dev->struct_mutex);
3709
3710         i915_verify_inactive(dev, __FILE__, __LINE__);
3711
3712         if (atomic_read(&dev_priv->mm.wedged)) {
3713                 mutex_unlock(&dev->struct_mutex);
3714                 ret = -EIO;
3715                 goto pre_mutex_err;
3716         }
3717
3718         if (dev_priv->mm.suspended) {
3719                 mutex_unlock(&dev->struct_mutex);
3720                 ret = -EBUSY;
3721                 goto pre_mutex_err;
3722         }
3723
3724         /* Look up object handles */
3725         flips = 0;
3726         for (i = 0; i < args->buffer_count; i++) {
3727                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3728                                                        exec_list[i].handle);
3729                 if (object_list[i] == NULL) {
3730                         DRM_ERROR("Invalid object handle %d at index %d\n",
3731                                    exec_list[i].handle, i);
3732                         /* prevent error path from reading uninitialized data */
3733                         args->buffer_count = i + 1;
3734                         ret = -EBADF;
3735                         goto err;
3736                 }
3737
3738                 obj_priv = object_list[i]->driver_private;
3739                 if (obj_priv->in_execbuffer) {
3740                         DRM_ERROR("Object %p appears more than once in object list\n",
3741                                    object_list[i]);
3742                         /* prevent error path from reading uninitialized data */
3743                         args->buffer_count = i + 1;
3744                         ret = -EBADF;
3745                         goto err;
3746                 }
3747                 obj_priv->in_execbuffer = true;
3748                 flips += atomic_read(&obj_priv->pending_flip);
3749         }
3750
3751         if (flips > 0) {
3752                 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3753                                                      args->buffer_count);
3754                 if (ret)
3755                         goto err;
3756         }
3757
3758         /* Pin and relocate */
3759         for (pin_tries = 0; ; pin_tries++) {
3760                 ret = 0;
3761                 reloc_index = 0;
3762
3763                 for (i = 0; i < args->buffer_count; i++) {
3764                         object_list[i]->pending_read_domains = 0;
3765                         object_list[i]->pending_write_domain = 0;
3766                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3767                                                                file_priv,
3768                                                                &exec_list[i],
3769                                                                &relocs[reloc_index]);
3770                         if (ret)
3771                                 break;
3772                         pinned = i + 1;
3773                         reloc_index += exec_list[i].relocation_count;
3774                 }
3775                 /* success */
3776                 if (ret == 0)
3777                         break;
3778
3779                 /* error other than GTT full, or we've already tried again */
3780                 if (ret != -ENOSPC || pin_tries >= 1) {
3781                         if (ret != -ERESTARTSYS) {
3782                                 unsigned long long total_size = 0;
3783                                 for (i = 0; i < args->buffer_count; i++)
3784                                         total_size += object_list[i]->size;
3785                                 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
3786                                           pinned+1, args->buffer_count,
3787                                           total_size, ret);
3788                                 DRM_ERROR("%d objects [%d pinned], "
3789                                           "%d object bytes [%d pinned], "
3790                                           "%d/%d gtt bytes\n",
3791                                           atomic_read(&dev->object_count),
3792                                           atomic_read(&dev->pin_count),
3793                                           atomic_read(&dev->object_memory),
3794                                           atomic_read(&dev->pin_memory),
3795                                           atomic_read(&dev->gtt_memory),
3796                                           dev->gtt_total);
3797                         }
3798                         goto err;
3799                 }
3800
3801                 /* unpin all of our buffers */
3802                 for (i = 0; i < pinned; i++)
3803                         i915_gem_object_unpin(object_list[i]);
3804                 pinned = 0;
3805
3806                 /* evict everyone we can from the aperture */
3807                 ret = i915_gem_evict_everything(dev);
3808                 if (ret && ret != -ENOSPC)
3809                         goto err;
3810         }
3811
3812         /* Set the pending read domains for the batch buffer to COMMAND */
3813         batch_obj = object_list[args->buffer_count-1];
3814         if (batch_obj->pending_write_domain) {
3815                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3816                 ret = -EINVAL;
3817                 goto err;
3818         }
3819         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3820
3821         /* Sanity check the batch buffer, prior to moving objects */
3822         exec_offset = exec_list[args->buffer_count - 1].offset;
3823         ret = i915_gem_check_execbuffer (args, exec_offset);
3824         if (ret != 0) {
3825                 DRM_ERROR("execbuf with invalid offset/length\n");
3826                 goto err;
3827         }
3828
3829         i915_verify_inactive(dev, __FILE__, __LINE__);
3830
3831         /* Zero the global flush/invalidate flags. These
3832          * will be modified as new domains are computed
3833          * for each object
3834          */
3835         dev->invalidate_domains = 0;
3836         dev->flush_domains = 0;
3837
3838         for (i = 0; i < args->buffer_count; i++) {
3839                 struct drm_gem_object *obj = object_list[i];
3840
3841                 /* Compute new gpu domains and update invalidate/flush */
3842                 i915_gem_object_set_to_gpu_domain(obj);
3843         }
3844
3845         i915_verify_inactive(dev, __FILE__, __LINE__);
3846
3847         if (dev->invalidate_domains | dev->flush_domains) {
3848 #if WATCH_EXEC
3849                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3850                           __func__,
3851                          dev->invalidate_domains,
3852                          dev->flush_domains);
3853 #endif
3854                 i915_gem_flush(dev,
3855                                dev->invalidate_domains,
3856                                dev->flush_domains);
3857                 if (dev->flush_domains & I915_GEM_GPU_DOMAINS)
3858                         (void)i915_add_request(dev, file_priv,
3859                                                dev->flush_domains);
3860         }
3861
3862         for (i = 0; i < args->buffer_count; i++) {
3863                 struct drm_gem_object *obj = object_list[i];
3864                 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3865                 uint32_t old_write_domain = obj->write_domain;
3866
3867                 obj->write_domain = obj->pending_write_domain;
3868                 if (obj->write_domain)
3869                         list_move_tail(&obj_priv->gpu_write_list,
3870                                        &dev_priv->mm.gpu_write_list);
3871                 else
3872                         list_del_init(&obj_priv->gpu_write_list);
3873
3874                 trace_i915_gem_object_change_domain(obj,
3875                                                     obj->read_domains,
3876                                                     old_write_domain);
3877         }
3878
3879         i915_verify_inactive(dev, __FILE__, __LINE__);
3880
3881 #if WATCH_COHERENCY
3882         for (i = 0; i < args->buffer_count; i++) {
3883                 i915_gem_object_check_coherency(object_list[i],
3884                                                 exec_list[i].handle);
3885         }
3886 #endif
3887
3888 #if WATCH_EXEC
3889         i915_gem_dump_object(batch_obj,
3890                               args->batch_len,
3891                               __func__,
3892                               ~0);
3893 #endif
3894
3895         /* Exec the batchbuffer */
3896         ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3897         if (ret) {
3898                 DRM_ERROR("dispatch failed %d\n", ret);
3899                 goto err;
3900         }
3901
3902         /*
3903          * Ensure that the commands in the batch buffer are
3904          * finished before the interrupt fires
3905          */
3906         flush_domains = i915_retire_commands(dev);
3907
3908         i915_verify_inactive(dev, __FILE__, __LINE__);
3909
3910         /*
3911          * Get a seqno representing the execution of the current buffer,
3912          * which we can wait on.  We would like to mitigate these interrupts,
3913          * likely by only creating seqnos occasionally (so that we have
3914          * *some* interrupts representing completion of buffers that we can
3915          * wait on when trying to clear up gtt space).
3916          */
3917         seqno = i915_add_request(dev, file_priv, flush_domains);
3918         BUG_ON(seqno == 0);
3919         for (i = 0; i < args->buffer_count; i++) {
3920                 struct drm_gem_object *obj = object_list[i];
3921
3922                 i915_gem_object_move_to_active(obj, seqno);
3923 #if WATCH_LRU
3924                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3925 #endif
3926         }
3927 #if WATCH_LRU
3928         i915_dump_lru(dev, __func__);
3929 #endif
3930
3931         i915_verify_inactive(dev, __FILE__, __LINE__);
3932
3933 err:
3934         for (i = 0; i < pinned; i++)
3935                 i915_gem_object_unpin(object_list[i]);
3936
3937         for (i = 0; i < args->buffer_count; i++) {
3938                 if (object_list[i]) {
3939                         obj_priv = object_list[i]->driver_private;
3940                         obj_priv->in_execbuffer = false;
3941                 }
3942                 drm_gem_object_unreference(object_list[i]);
3943         }
3944
3945         mutex_unlock(&dev->struct_mutex);
3946
3947 pre_mutex_err:
3948         /* Copy the updated relocations out regardless of current error
3949          * state.  Failure to update the relocs would mean that the next
3950          * time userland calls execbuf, it would do so with presumed offset
3951          * state that didn't match the actual object state.
3952          */
3953         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3954                                            relocs);
3955         if (ret2 != 0) {
3956                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3957
3958                 if (ret == 0)
3959                         ret = ret2;
3960         }
3961
3962         drm_free_large(object_list);
3963         kfree(cliprects);
3964
3965         return ret;
3966 }
3967
3968 /*
3969  * Legacy execbuffer just creates an exec2 list from the original exec object
3970  * list array and passes it to the real function.
3971  */
3972 int
3973 i915_gem_execbuffer(struct drm_device *dev, void *data,
3974                     struct drm_file *file_priv)
3975 {
3976         struct drm_i915_gem_execbuffer *args = data;
3977         struct drm_i915_gem_execbuffer2 exec2;
3978         struct drm_i915_gem_exec_object *exec_list = NULL;
3979         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3980         int ret, i;
3981
3982 #if WATCH_EXEC
3983         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3984                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3985 #endif
3986
3987         if (args->buffer_count < 1) {
3988                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3989                 return -EINVAL;
3990         }
3991
3992         /* Copy in the exec list from userland */
3993         exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3994         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3995         if (exec_list == NULL || exec2_list == NULL) {
3996                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3997                           args->buffer_count);
3998                 drm_free_large(exec_list);
3999                 drm_free_large(exec2_list);
4000                 return -ENOMEM;
4001         }
4002         ret = copy_from_user(exec_list,
4003                              (struct drm_i915_relocation_entry __user *)
4004                              (uintptr_t) args->buffers_ptr,
4005                              sizeof(*exec_list) * args->buffer_count);
4006         if (ret != 0) {
4007                 DRM_ERROR("copy %d exec entries failed %d\n",
4008                           args->buffer_count, ret);
4009                 drm_free_large(exec_list);
4010                 drm_free_large(exec2_list);
4011                 return -EFAULT;
4012         }
4013
4014         for (i = 0; i < args->buffer_count; i++) {
4015                 exec2_list[i].handle = exec_list[i].handle;
4016                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4017                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4018                 exec2_list[i].alignment = exec_list[i].alignment;
4019                 exec2_list[i].offset = exec_list[i].offset;
4020                 if (!IS_I965G(dev))
4021                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4022                 else
4023                         exec2_list[i].flags = 0;
4024         }
4025
4026         exec2.buffers_ptr = args->buffers_ptr;
4027         exec2.buffer_count = args->buffer_count;
4028         exec2.batch_start_offset = args->batch_start_offset;
4029         exec2.batch_len = args->batch_len;
4030         exec2.DR1 = args->DR1;
4031         exec2.DR4 = args->DR4;
4032         exec2.num_cliprects = args->num_cliprects;
4033         exec2.cliprects_ptr = args->cliprects_ptr;
4034         exec2.flags = 0;
4035
4036         ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4037         if (!ret) {
4038                 /* Copy the new buffer offsets back to the user's exec list. */
4039                 for (i = 0; i < args->buffer_count; i++)
4040                         exec_list[i].offset = exec2_list[i].offset;
4041                 /* ... and back out to userspace */
4042                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4043                                    (uintptr_t) args->buffers_ptr,
4044                                    exec_list,
4045                                    sizeof(*exec_list) * args->buffer_count);
4046                 if (ret) {
4047                         ret = -EFAULT;
4048                         DRM_ERROR("failed to copy %d exec entries "
4049                                   "back to user (%d)\n",
4050                                   args->buffer_count, ret);
4051                 }
4052         }
4053
4054         drm_free_large(exec_list);
4055         drm_free_large(exec2_list);
4056         return ret;
4057 }
4058
4059 int
4060 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4061                      struct drm_file *file_priv)
4062 {
4063         struct drm_i915_gem_execbuffer2 *args = data;
4064         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4065         int ret;
4066
4067 #if WATCH_EXEC
4068         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4069                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4070 #endif
4071
4072         if (args->buffer_count < 1) {
4073                 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4074                 return -EINVAL;
4075         }
4076
4077         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4078         if (exec2_list == NULL) {
4079                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4080                           args->buffer_count);
4081                 return -ENOMEM;
4082         }
4083         ret = copy_from_user(exec2_list,
4084                              (struct drm_i915_relocation_entry __user *)
4085                              (uintptr_t) args->buffers_ptr,
4086                              sizeof(*exec2_list) * args->buffer_count);
4087         if (ret != 0) {
4088                 DRM_ERROR("copy %d exec entries failed %d\n",
4089                           args->buffer_count, ret);
4090                 drm_free_large(exec2_list);
4091                 return -EFAULT;
4092         }
4093
4094         ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4095         if (!ret) {
4096                 /* Copy the new buffer offsets back to the user's exec list. */
4097                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4098                                    (uintptr_t) args->buffers_ptr,
4099                                    exec2_list,
4100                                    sizeof(*exec2_list) * args->buffer_count);
4101                 if (ret) {
4102                         ret = -EFAULT;
4103                         DRM_ERROR("failed to copy %d exec entries "
4104                                   "back to user (%d)\n",
4105                                   args->buffer_count, ret);
4106                 }
4107         }
4108
4109         drm_free_large(exec2_list);
4110         return ret;
4111 }
4112
4113 int
4114 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4115 {
4116         struct drm_device *dev = obj->dev;
4117         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4118         int ret;
4119
4120         i915_verify_inactive(dev, __FILE__, __LINE__);
4121         if (obj_priv->gtt_space == NULL) {
4122                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4123                 if (ret)
4124                         return ret;
4125         }
4126
4127         obj_priv->pin_count++;
4128
4129         /* If the object is not active and not pending a flush,
4130          * remove it from the inactive list
4131          */
4132         if (obj_priv->pin_count == 1) {
4133                 atomic_inc(&dev->pin_count);
4134                 atomic_add(obj->size, &dev->pin_memory);
4135                 if (!obj_priv->active &&
4136                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
4137                     !list_empty(&obj_priv->list))
4138                         list_del_init(&obj_priv->list);
4139         }
4140         i915_verify_inactive(dev, __FILE__, __LINE__);
4141
4142         return 0;
4143 }
4144
4145 void
4146 i915_gem_object_unpin(struct drm_gem_object *obj)
4147 {
4148         struct drm_device *dev = obj->dev;
4149         drm_i915_private_t *dev_priv = dev->dev_private;
4150         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4151
4152         i915_verify_inactive(dev, __FILE__, __LINE__);
4153         obj_priv->pin_count--;
4154         BUG_ON(obj_priv->pin_count < 0);
4155         BUG_ON(obj_priv->gtt_space == NULL);
4156
4157         /* If the object is no longer pinned, and is
4158          * neither active nor being flushed, then stick it on
4159          * the inactive list
4160          */
4161         if (obj_priv->pin_count == 0) {
4162                 if (!obj_priv->active &&
4163                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4164                         list_move_tail(&obj_priv->list,
4165                                        &dev_priv->mm.inactive_list);
4166                 atomic_dec(&dev->pin_count);
4167                 atomic_sub(obj->size, &dev->pin_memory);
4168         }
4169         i915_verify_inactive(dev, __FILE__, __LINE__);
4170 }
4171
4172 int
4173 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4174                    struct drm_file *file_priv)
4175 {
4176         struct drm_i915_gem_pin *args = data;
4177         struct drm_gem_object *obj;
4178         struct drm_i915_gem_object *obj_priv;
4179         int ret;
4180
4181         mutex_lock(&dev->struct_mutex);
4182
4183         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4184         if (obj == NULL) {
4185                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4186                           args->handle);
4187                 mutex_unlock(&dev->struct_mutex);
4188                 return -EBADF;
4189         }
4190         obj_priv = obj->driver_private;
4191
4192         if (obj_priv->madv != I915_MADV_WILLNEED) {
4193                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4194                 drm_gem_object_unreference(obj);
4195                 mutex_unlock(&dev->struct_mutex);
4196                 return -EINVAL;
4197         }
4198
4199         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4200                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4201                           args->handle);
4202                 drm_gem_object_unreference(obj);
4203                 mutex_unlock(&dev->struct_mutex);
4204                 return -EINVAL;
4205         }
4206
4207         obj_priv->user_pin_count++;
4208         obj_priv->pin_filp = file_priv;
4209         if (obj_priv->user_pin_count == 1) {
4210                 ret = i915_gem_object_pin(obj, args->alignment);
4211                 if (ret != 0) {
4212                         drm_gem_object_unreference(obj);
4213                         mutex_unlock(&dev->struct_mutex);
4214                         return ret;
4215                 }
4216         }
4217
4218         /* XXX - flush the CPU caches for pinned objects
4219          * as the X server doesn't manage domains yet
4220          */
4221         i915_gem_object_flush_cpu_write_domain(obj);
4222         args->offset = obj_priv->gtt_offset;
4223         drm_gem_object_unreference(obj);
4224         mutex_unlock(&dev->struct_mutex);
4225
4226         return 0;
4227 }
4228
4229 int
4230 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4231                      struct drm_file *file_priv)
4232 {
4233         struct drm_i915_gem_pin *args = data;
4234         struct drm_gem_object *obj;
4235         struct drm_i915_gem_object *obj_priv;
4236
4237         mutex_lock(&dev->struct_mutex);
4238
4239         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4240         if (obj == NULL) {
4241                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4242                           args->handle);
4243                 mutex_unlock(&dev->struct_mutex);
4244                 return -EBADF;
4245         }
4246
4247         obj_priv = obj->driver_private;
4248         if (obj_priv->pin_filp != file_priv) {
4249                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4250                           args->handle);
4251                 drm_gem_object_unreference(obj);
4252                 mutex_unlock(&dev->struct_mutex);
4253                 return -EINVAL;
4254         }
4255         obj_priv->user_pin_count--;
4256         if (obj_priv->user_pin_count == 0) {
4257                 obj_priv->pin_filp = NULL;
4258                 i915_gem_object_unpin(obj);
4259         }
4260
4261         drm_gem_object_unreference(obj);
4262         mutex_unlock(&dev->struct_mutex);
4263         return 0;
4264 }
4265
4266 int
4267 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4268                     struct drm_file *file_priv)
4269 {
4270         struct drm_i915_gem_busy *args = data;
4271         struct drm_gem_object *obj;
4272         struct drm_i915_gem_object *obj_priv;
4273
4274         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4275         if (obj == NULL) {
4276                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4277                           args->handle);
4278                 return -EBADF;
4279         }
4280
4281         mutex_lock(&dev->struct_mutex);
4282         /* Update the active list for the hardware's current position.
4283          * Otherwise this only updates on a delayed timer or when irqs are
4284          * actually unmasked, and our working set ends up being larger than
4285          * required.
4286          */
4287         i915_gem_retire_requests(dev);
4288
4289         obj_priv = obj->driver_private;
4290         /* Don't count being on the flushing list against the object being
4291          * done.  Otherwise, a buffer left on the flushing list but not getting
4292          * flushed (because nobody's flushing that domain) won't ever return
4293          * unbusy and get reused by libdrm's bo cache.  The other expected
4294          * consumer of this interface, OpenGL's occlusion queries, also specs
4295          * that the objects get unbusy "eventually" without any interference.
4296          */
4297         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4298
4299         drm_gem_object_unreference(obj);
4300         mutex_unlock(&dev->struct_mutex);
4301         return 0;
4302 }
4303
4304 int
4305 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4306                         struct drm_file *file_priv)
4307 {
4308     return i915_gem_ring_throttle(dev, file_priv);
4309 }
4310
4311 int
4312 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4313                        struct drm_file *file_priv)
4314 {
4315         struct drm_i915_gem_madvise *args = data;
4316         struct drm_gem_object *obj;
4317         struct drm_i915_gem_object *obj_priv;
4318
4319         switch (args->madv) {
4320         case I915_MADV_DONTNEED:
4321         case I915_MADV_WILLNEED:
4322             break;
4323         default:
4324             return -EINVAL;
4325         }
4326
4327         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4328         if (obj == NULL) {
4329                 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4330                           args->handle);
4331                 return -EBADF;
4332         }
4333
4334         mutex_lock(&dev->struct_mutex);
4335         obj_priv = obj->driver_private;
4336
4337         if (obj_priv->pin_count) {
4338                 drm_gem_object_unreference(obj);
4339                 mutex_unlock(&dev->struct_mutex);
4340
4341                 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4342                 return -EINVAL;
4343         }
4344
4345         if (obj_priv->madv != __I915_MADV_PURGED)
4346                 obj_priv->madv = args->madv;
4347
4348         /* if the object is no longer bound, discard its backing storage */
4349         if (i915_gem_object_is_purgeable(obj_priv) &&
4350             obj_priv->gtt_space == NULL)
4351                 i915_gem_object_truncate(obj);
4352
4353         args->retained = obj_priv->madv != __I915_MADV_PURGED;
4354
4355         drm_gem_object_unreference(obj);
4356         mutex_unlock(&dev->struct_mutex);
4357
4358         return 0;
4359 }
4360
4361 int i915_gem_init_object(struct drm_gem_object *obj)
4362 {
4363         struct drm_i915_gem_object *obj_priv;
4364
4365         obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
4366         if (obj_priv == NULL)
4367                 return -ENOMEM;
4368
4369         /*
4370          * We've just allocated pages from the kernel,
4371          * so they've just been written by the CPU with
4372          * zeros. They'll need to be clflushed before we
4373          * use them with the GPU.
4374          */
4375         obj->write_domain = I915_GEM_DOMAIN_CPU;
4376         obj->read_domains = I915_GEM_DOMAIN_CPU;
4377
4378         obj_priv->agp_type = AGP_USER_MEMORY;
4379
4380         obj->driver_private = obj_priv;
4381         obj_priv->obj = obj;
4382         obj_priv->fence_reg = I915_FENCE_REG_NONE;
4383         INIT_LIST_HEAD(&obj_priv->list);
4384         INIT_LIST_HEAD(&obj_priv->gpu_write_list);
4385         INIT_LIST_HEAD(&obj_priv->fence_list);
4386         obj_priv->madv = I915_MADV_WILLNEED;
4387
4388         trace_i915_gem_object_create(obj);
4389
4390         return 0;
4391 }
4392
4393 void i915_gem_free_object(struct drm_gem_object *obj)
4394 {
4395         struct drm_device *dev = obj->dev;
4396         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4397
4398         trace_i915_gem_object_destroy(obj);
4399
4400         while (obj_priv->pin_count > 0)
4401                 i915_gem_object_unpin(obj);
4402
4403         if (obj_priv->phys_obj)
4404                 i915_gem_detach_phys_object(dev, obj);
4405
4406         i915_gem_object_unbind(obj);
4407
4408         if (obj_priv->mmap_offset)
4409                 i915_gem_free_mmap_offset(obj);
4410
4411         kfree(obj_priv->page_cpu_valid);
4412         kfree(obj_priv->bit_17);
4413         kfree(obj->driver_private);
4414 }
4415
4416 /** Unbinds all inactive objects. */
4417 static int
4418 i915_gem_evict_from_inactive_list(struct drm_device *dev)
4419 {
4420         drm_i915_private_t *dev_priv = dev->dev_private;
4421
4422         while (!list_empty(&dev_priv->mm.inactive_list)) {
4423                 struct drm_gem_object *obj;
4424                 int ret;
4425
4426                 obj = list_first_entry(&dev_priv->mm.inactive_list,
4427                                        struct drm_i915_gem_object,
4428                                        list)->obj;
4429
4430                 ret = i915_gem_object_unbind(obj);
4431                 if (ret != 0) {
4432                         DRM_ERROR("Error unbinding object: %d\n", ret);
4433                         return ret;
4434                 }
4435         }
4436
4437         return 0;
4438 }
4439
4440 int
4441 i915_gem_idle(struct drm_device *dev)
4442 {
4443         drm_i915_private_t *dev_priv = dev->dev_private;
4444         uint32_t seqno, cur_seqno, last_seqno;
4445         int stuck, ret;
4446
4447         mutex_lock(&dev->struct_mutex);
4448
4449         if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
4450                 mutex_unlock(&dev->struct_mutex);
4451                 return 0;
4452         }
4453
4454         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4455          * We need to replace this with a semaphore, or something.
4456          */
4457         dev_priv->mm.suspended = 1;
4458         del_timer(&dev_priv->hangcheck_timer);
4459
4460         /* Cancel the retire work handler, wait for it to finish if running
4461          */
4462         mutex_unlock(&dev->struct_mutex);
4463         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4464         mutex_lock(&dev->struct_mutex);
4465
4466         i915_kernel_lost_context(dev);
4467
4468         /* Flush the GPU along with all non-CPU write domains
4469          */
4470         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
4471         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
4472
4473         if (seqno == 0) {
4474                 mutex_unlock(&dev->struct_mutex);
4475                 return -ENOMEM;
4476         }
4477
4478         dev_priv->mm.waiting_gem_seqno = seqno;
4479         last_seqno = 0;
4480         stuck = 0;
4481         for (;;) {
4482                 cur_seqno = i915_get_gem_seqno(dev);
4483                 if (i915_seqno_passed(cur_seqno, seqno))
4484                         break;
4485                 if (last_seqno == cur_seqno) {
4486                         if (stuck++ > 100) {
4487                                 DRM_ERROR("hardware wedged\n");
4488                                 atomic_set(&dev_priv->mm.wedged, 1);
4489                                 DRM_WAKEUP(&dev_priv->irq_queue);
4490                                 break;
4491                         }
4492                 }
4493                 msleep(10);
4494                 last_seqno = cur_seqno;
4495         }
4496         dev_priv->mm.waiting_gem_seqno = 0;
4497
4498         i915_gem_retire_requests(dev);
4499
4500         spin_lock(&dev_priv->mm.active_list_lock);
4501         if (!atomic_read(&dev_priv->mm.wedged)) {
4502                 /* Active and flushing should now be empty as we've
4503                  * waited for a sequence higher than any pending execbuffer
4504                  */
4505                 WARN_ON(!list_empty(&dev_priv->mm.active_list));
4506                 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
4507                 /* Request should now be empty as we've also waited
4508                  * for the last request in the list
4509                  */
4510                 WARN_ON(!list_empty(&dev_priv->mm.request_list));
4511         }
4512
4513         /* Empty the active and flushing lists to inactive.  If there's
4514          * anything left at this point, it means that we're wedged and
4515          * nothing good's going to happen by leaving them there.  So strip
4516          * the GPU domains and just stuff them onto inactive.
4517          */
4518         while (!list_empty(&dev_priv->mm.active_list)) {
4519                 struct drm_gem_object *obj;
4520                 uint32_t old_write_domain;
4521
4522                 obj = list_first_entry(&dev_priv->mm.active_list,
4523                                        struct drm_i915_gem_object,
4524                                        list)->obj;
4525                 old_write_domain = obj->write_domain;
4526                 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4527                 i915_gem_object_move_to_inactive(obj);
4528
4529                 trace_i915_gem_object_change_domain(obj,
4530                                                     obj->read_domains,
4531                                                     old_write_domain);
4532         }
4533         spin_unlock(&dev_priv->mm.active_list_lock);
4534
4535         while (!list_empty(&dev_priv->mm.flushing_list)) {
4536                 struct drm_gem_object *obj;
4537                 uint32_t old_write_domain;
4538
4539                 obj = list_first_entry(&dev_priv->mm.flushing_list,
4540                                        struct drm_i915_gem_object,
4541                                        list)->obj;
4542                 old_write_domain = obj->write_domain;
4543                 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4544                 i915_gem_object_move_to_inactive(obj);
4545
4546                 trace_i915_gem_object_change_domain(obj,
4547                                                     obj->read_domains,
4548                                                     old_write_domain);
4549         }
4550
4551
4552         /* Move all inactive buffers out of the GTT. */
4553         ret = i915_gem_evict_from_inactive_list(dev);
4554         WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
4555         if (ret) {
4556                 mutex_unlock(&dev->struct_mutex);
4557                 return ret;
4558         }
4559
4560         i915_gem_cleanup_ringbuffer(dev);
4561         mutex_unlock(&dev->struct_mutex);
4562
4563         return 0;
4564 }
4565
4566 static int
4567 i915_gem_init_hws(struct drm_device *dev)
4568 {
4569         drm_i915_private_t *dev_priv = dev->dev_private;
4570         struct drm_gem_object *obj;
4571         struct drm_i915_gem_object *obj_priv;
4572         int ret;
4573
4574         /* If we need a physical address for the status page, it's already
4575          * initialized at driver load time.
4576          */
4577         if (!I915_NEED_GFX_HWS(dev))
4578                 return 0;
4579
4580         obj = drm_gem_object_alloc(dev, 4096);
4581         if (obj == NULL) {
4582                 DRM_ERROR("Failed to allocate status page\n");
4583                 return -ENOMEM;
4584         }
4585         obj_priv = obj->driver_private;
4586         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4587
4588         ret = i915_gem_object_pin(obj, 4096);
4589         if (ret != 0) {
4590                 drm_gem_object_unreference(obj);
4591                 return ret;
4592         }
4593
4594         dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4595
4596         dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4597         if (dev_priv->hw_status_page == NULL) {
4598                 DRM_ERROR("Failed to map status page.\n");
4599                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4600                 i915_gem_object_unpin(obj);
4601                 drm_gem_object_unreference(obj);
4602                 return -EINVAL;
4603         }
4604         dev_priv->hws_obj = obj;
4605         memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4606         I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4607         I915_READ(HWS_PGA); /* posting read */
4608         DRM_DEBUG_DRIVER("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4609
4610         return 0;
4611 }
4612
4613 static void
4614 i915_gem_cleanup_hws(struct drm_device *dev)
4615 {
4616         drm_i915_private_t *dev_priv = dev->dev_private;
4617         struct drm_gem_object *obj;
4618         struct drm_i915_gem_object *obj_priv;
4619
4620         if (dev_priv->hws_obj == NULL)
4621                 return;
4622
4623         obj = dev_priv->hws_obj;
4624         obj_priv = obj->driver_private;
4625
4626         kunmap(obj_priv->pages[0]);
4627         i915_gem_object_unpin(obj);
4628         drm_gem_object_unreference(obj);
4629         dev_priv->hws_obj = NULL;
4630
4631         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4632         dev_priv->hw_status_page = NULL;
4633
4634         /* Write high address into HWS_PGA when disabling. */
4635         I915_WRITE(HWS_PGA, 0x1ffff000);
4636 }
4637
4638 int
4639 i915_gem_init_ringbuffer(struct drm_device *dev)
4640 {
4641         drm_i915_private_t *dev_priv = dev->dev_private;
4642         struct drm_gem_object *obj;
4643         struct drm_i915_gem_object *obj_priv;
4644         drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4645         int ret;
4646         u32 head;
4647
4648         ret = i915_gem_init_hws(dev);
4649         if (ret != 0)
4650                 return ret;
4651
4652         obj = drm_gem_object_alloc(dev, 128 * 1024);
4653         if (obj == NULL) {
4654                 DRM_ERROR("Failed to allocate ringbuffer\n");
4655                 i915_gem_cleanup_hws(dev);
4656                 return -ENOMEM;
4657         }
4658         obj_priv = obj->driver_private;
4659
4660         ret = i915_gem_object_pin(obj, 4096);
4661         if (ret != 0) {
4662                 drm_gem_object_unreference(obj);
4663                 i915_gem_cleanup_hws(dev);
4664                 return ret;
4665         }
4666
4667         /* Set up the kernel mapping for the ring. */
4668         ring->Size = obj->size;
4669
4670         ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4671         ring->map.size = obj->size;
4672         ring->map.type = 0;
4673         ring->map.flags = 0;
4674         ring->map.mtrr = 0;
4675
4676         drm_core_ioremap_wc(&ring->map, dev);
4677         if (ring->map.handle == NULL) {
4678                 DRM_ERROR("Failed to map ringbuffer.\n");
4679                 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4680                 i915_gem_object_unpin(obj);
4681                 drm_gem_object_unreference(obj);
4682                 i915_gem_cleanup_hws(dev);
4683                 return -EINVAL;
4684         }
4685         ring->ring_obj = obj;
4686         ring->virtual_start = ring->map.handle;
4687
4688         /* Stop the ring if it's running. */
4689         I915_WRITE(PRB0_CTL, 0);
4690         I915_WRITE(PRB0_TAIL, 0);
4691         I915_WRITE(PRB0_HEAD, 0);
4692
4693         /* Initialize the ring. */
4694         I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4695         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4696
4697         /* G45 ring initialization fails to reset head to zero */
4698         if (head != 0) {
4699                 DRM_ERROR("Ring head not reset to zero "
4700                           "ctl %08x head %08x tail %08x start %08x\n",
4701                           I915_READ(PRB0_CTL),
4702                           I915_READ(PRB0_HEAD),
4703                           I915_READ(PRB0_TAIL),
4704                           I915_READ(PRB0_START));
4705                 I915_WRITE(PRB0_HEAD, 0);
4706
4707                 DRM_ERROR("Ring head forced to zero "
4708                           "ctl %08x head %08x tail %08x start %08x\n",
4709                           I915_READ(PRB0_CTL),
4710                           I915_READ(PRB0_HEAD),
4711                           I915_READ(PRB0_TAIL),
4712                           I915_READ(PRB0_START));
4713         }
4714
4715         I915_WRITE(PRB0_CTL,
4716                    ((obj->size - 4096) & RING_NR_PAGES) |
4717                    RING_NO_REPORT |
4718                    RING_VALID);
4719
4720         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4721
4722         /* If the head is still not zero, the ring is dead */
4723         if (head != 0) {
4724                 DRM_ERROR("Ring initialization failed "
4725                           "ctl %08x head %08x tail %08x start %08x\n",
4726                           I915_READ(PRB0_CTL),
4727                           I915_READ(PRB0_HEAD),
4728                           I915_READ(PRB0_TAIL),
4729                           I915_READ(PRB0_START));
4730                 return -EIO;
4731         }
4732
4733         /* Update our cache of the ring state */
4734         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4735                 i915_kernel_lost_context(dev);
4736         else {
4737                 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4738                 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4739                 ring->space = ring->head - (ring->tail + 8);
4740                 if (ring->space < 0)
4741                         ring->space += ring->Size;
4742         }
4743
4744         return 0;
4745 }
4746
4747 void
4748 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4749 {
4750         drm_i915_private_t *dev_priv = dev->dev_private;
4751
4752         if (dev_priv->ring.ring_obj == NULL)
4753                 return;
4754
4755         drm_core_ioremapfree(&dev_priv->ring.map, dev);
4756
4757         i915_gem_object_unpin(dev_priv->ring.ring_obj);
4758         drm_gem_object_unreference(dev_priv->ring.ring_obj);
4759         dev_priv->ring.ring_obj = NULL;
4760         memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4761
4762         i915_gem_cleanup_hws(dev);
4763 }
4764
4765 int
4766 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4767                        struct drm_file *file_priv)
4768 {
4769         drm_i915_private_t *dev_priv = dev->dev_private;
4770         int ret;
4771
4772         if (drm_core_check_feature(dev, DRIVER_MODESET))
4773                 return 0;
4774
4775         if (atomic_read(&dev_priv->mm.wedged)) {
4776                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4777                 atomic_set(&dev_priv->mm.wedged, 0);
4778         }
4779
4780         mutex_lock(&dev->struct_mutex);
4781         dev_priv->mm.suspended = 0;
4782
4783         ret = i915_gem_init_ringbuffer(dev);
4784         if (ret != 0) {
4785                 mutex_unlock(&dev->struct_mutex);
4786                 return ret;
4787         }
4788
4789         spin_lock(&dev_priv->mm.active_list_lock);
4790         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4791         spin_unlock(&dev_priv->mm.active_list_lock);
4792
4793         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4794         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4795         BUG_ON(!list_empty(&dev_priv->mm.request_list));
4796         mutex_unlock(&dev->struct_mutex);
4797
4798         drm_irq_install(dev);
4799
4800         return 0;
4801 }
4802
4803 int
4804 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4805                        struct drm_file *file_priv)
4806 {
4807         if (drm_core_check_feature(dev, DRIVER_MODESET))
4808                 return 0;
4809
4810         drm_irq_uninstall(dev);
4811         return i915_gem_idle(dev);
4812 }
4813
4814 void
4815 i915_gem_lastclose(struct drm_device *dev)
4816 {
4817         int ret;
4818
4819         if (drm_core_check_feature(dev, DRIVER_MODESET))
4820                 return;
4821
4822         ret = i915_gem_idle(dev);
4823         if (ret)
4824                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4825 }
4826
4827 void
4828 i915_gem_load(struct drm_device *dev)
4829 {
4830         int i;
4831         drm_i915_private_t *dev_priv = dev->dev_private;
4832
4833         spin_lock_init(&dev_priv->mm.active_list_lock);
4834         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4835         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4836         INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4837         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4838         INIT_LIST_HEAD(&dev_priv->mm.request_list);
4839         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4840         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4841                           i915_gem_retire_work_handler);
4842         dev_priv->mm.next_gem_seqno = 1;
4843
4844         spin_lock(&shrink_list_lock);
4845         list_add(&dev_priv->mm.shrink_list, &shrink_list);
4846         spin_unlock(&shrink_list_lock);
4847
4848         /* Old X drivers will take 0-2 for front, back, depth buffers */
4849         dev_priv->fence_reg_start = 3;
4850
4851         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4852                 dev_priv->num_fence_regs = 16;
4853         else
4854                 dev_priv->num_fence_regs = 8;
4855
4856         /* Initialize fence registers to zero */
4857         if (IS_I965G(dev)) {
4858                 for (i = 0; i < 16; i++)
4859                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4860         } else {
4861                 for (i = 0; i < 8; i++)
4862                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4863                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4864                         for (i = 0; i < 8; i++)
4865                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4866         }
4867         i915_gem_detect_bit_6_swizzle(dev);
4868         init_waitqueue_head(&dev_priv->pending_flip_queue);
4869 }
4870
4871 /*
4872  * Create a physically contiguous memory object for this object
4873  * e.g. for cursor + overlay regs
4874  */
4875 int i915_gem_init_phys_object(struct drm_device *dev,
4876                               int id, int size)
4877 {
4878         drm_i915_private_t *dev_priv = dev->dev_private;
4879         struct drm_i915_gem_phys_object *phys_obj;
4880         int ret;
4881
4882         if (dev_priv->mm.phys_objs[id - 1] || !size)
4883                 return 0;
4884
4885         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4886         if (!phys_obj)
4887                 return -ENOMEM;
4888
4889         phys_obj->id = id;
4890
4891         phys_obj->handle = drm_pci_alloc(dev, size, 0);
4892         if (!phys_obj->handle) {
4893                 ret = -ENOMEM;
4894                 goto kfree_obj;
4895         }
4896 #ifdef CONFIG_X86
4897         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4898 #endif
4899
4900         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4901
4902         return 0;
4903 kfree_obj:
4904         kfree(phys_obj);
4905         return ret;
4906 }
4907
4908 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4909 {
4910         drm_i915_private_t *dev_priv = dev->dev_private;
4911         struct drm_i915_gem_phys_object *phys_obj;
4912
4913         if (!dev_priv->mm.phys_objs[id - 1])
4914                 return;
4915
4916         phys_obj = dev_priv->mm.phys_objs[id - 1];
4917         if (phys_obj->cur_obj) {
4918                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4919         }
4920
4921 #ifdef CONFIG_X86
4922         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4923 #endif
4924         drm_pci_free(dev, phys_obj->handle);
4925         kfree(phys_obj);
4926         dev_priv->mm.phys_objs[id - 1] = NULL;
4927 }
4928
4929 void i915_gem_free_all_phys_object(struct drm_device *dev)
4930 {
4931         int i;
4932
4933         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4934                 i915_gem_free_phys_object(dev, i);
4935 }
4936
4937 void i915_gem_detach_phys_object(struct drm_device *dev,
4938                                  struct drm_gem_object *obj)
4939 {
4940         struct drm_i915_gem_object *obj_priv;
4941         int i;
4942         int ret;
4943         int page_count;
4944
4945         obj_priv = obj->driver_private;
4946         if (!obj_priv->phys_obj)
4947                 return;
4948
4949         ret = i915_gem_object_get_pages(obj, 0);
4950         if (ret)
4951                 goto out;
4952
4953         page_count = obj->size / PAGE_SIZE;
4954
4955         for (i = 0; i < page_count; i++) {
4956                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4957                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4958
4959                 memcpy(dst, src, PAGE_SIZE);
4960                 kunmap_atomic(dst, KM_USER0);
4961         }
4962         drm_clflush_pages(obj_priv->pages, page_count);
4963         drm_agp_chipset_flush(dev);
4964
4965         i915_gem_object_put_pages(obj);
4966 out:
4967         obj_priv->phys_obj->cur_obj = NULL;
4968         obj_priv->phys_obj = NULL;
4969 }
4970
4971 int
4972 i915_gem_attach_phys_object(struct drm_device *dev,
4973                             struct drm_gem_object *obj, int id)
4974 {
4975         drm_i915_private_t *dev_priv = dev->dev_private;
4976         struct drm_i915_gem_object *obj_priv;
4977         int ret = 0;
4978         int page_count;
4979         int i;
4980
4981         if (id > I915_MAX_PHYS_OBJECT)
4982                 return -EINVAL;
4983
4984         obj_priv = obj->driver_private;
4985
4986         if (obj_priv->phys_obj) {
4987                 if (obj_priv->phys_obj->id == id)
4988                         return 0;
4989                 i915_gem_detach_phys_object(dev, obj);
4990         }
4991
4992
4993         /* create a new object */
4994         if (!dev_priv->mm.phys_objs[id - 1]) {
4995                 ret = i915_gem_init_phys_object(dev, id,
4996                                                 obj->size);
4997                 if (ret) {
4998                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4999                         goto out;
5000                 }
5001         }
5002
5003         /* bind to the object */
5004         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
5005         obj_priv->phys_obj->cur_obj = obj;
5006
5007         ret = i915_gem_object_get_pages(obj, 0);
5008         if (ret) {
5009                 DRM_ERROR("failed to get page list\n");
5010                 goto out;
5011         }
5012
5013         page_count = obj->size / PAGE_SIZE;
5014
5015         for (i = 0; i < page_count; i++) {
5016                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
5017                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
5018
5019                 memcpy(dst, src, PAGE_SIZE);
5020                 kunmap_atomic(src, KM_USER0);
5021         }
5022
5023         i915_gem_object_put_pages(obj);
5024
5025         return 0;
5026 out:
5027         return ret;
5028 }
5029
5030 static int
5031 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
5032                      struct drm_i915_gem_pwrite *args,
5033                      struct drm_file *file_priv)
5034 {
5035         struct drm_i915_gem_object *obj_priv = obj->driver_private;
5036         void *obj_addr;
5037         int ret;
5038         char __user *user_data;
5039
5040         user_data = (char __user *) (uintptr_t) args->data_ptr;
5041         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
5042
5043         DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
5044         ret = copy_from_user(obj_addr, user_data, args->size);
5045         if (ret)
5046                 return -EFAULT;
5047
5048         drm_agp_chipset_flush(dev);
5049         return 0;
5050 }
5051
5052 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
5053 {
5054         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
5055
5056         /* Clean up our request list when the client is going away, so that
5057          * later retire_requests won't dereference our soon-to-be-gone
5058          * file_priv.
5059          */
5060         mutex_lock(&dev->struct_mutex);
5061         while (!list_empty(&i915_file_priv->mm.request_list))
5062                 list_del_init(i915_file_priv->mm.request_list.next);
5063         mutex_unlock(&dev->struct_mutex);
5064 }
5065
5066 static int
5067 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
5068 {
5069         drm_i915_private_t *dev_priv, *next_dev;
5070         struct drm_i915_gem_object *obj_priv, *next_obj;
5071         int cnt = 0;
5072         int would_deadlock = 1;
5073
5074         /* "fast-path" to count number of available objects */
5075         if (nr_to_scan == 0) {
5076                 spin_lock(&shrink_list_lock);
5077                 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5078                         struct drm_device *dev = dev_priv->dev;
5079
5080                         if (mutex_trylock(&dev->struct_mutex)) {
5081                                 list_for_each_entry(obj_priv,
5082                                                     &dev_priv->mm.inactive_list,
5083                                                     list)
5084                                         cnt++;
5085                                 mutex_unlock(&dev->struct_mutex);
5086                         }
5087                 }
5088                 spin_unlock(&shrink_list_lock);
5089
5090                 return (cnt / 100) * sysctl_vfs_cache_pressure;
5091         }
5092
5093         spin_lock(&shrink_list_lock);
5094
5095         /* first scan for clean buffers */
5096         list_for_each_entry_safe(dev_priv, next_dev,
5097                                  &shrink_list, mm.shrink_list) {
5098                 struct drm_device *dev = dev_priv->dev;
5099
5100                 if (! mutex_trylock(&dev->struct_mutex))
5101                         continue;
5102
5103                 spin_unlock(&shrink_list_lock);
5104
5105                 i915_gem_retire_requests(dev);
5106
5107                 list_for_each_entry_safe(obj_priv, next_obj,
5108                                          &dev_priv->mm.inactive_list,
5109                                          list) {
5110                         if (i915_gem_object_is_purgeable(obj_priv)) {
5111                                 i915_gem_object_unbind(obj_priv->obj);
5112                                 if (--nr_to_scan <= 0)
5113                                         break;
5114                         }
5115                 }
5116
5117                 spin_lock(&shrink_list_lock);
5118                 mutex_unlock(&dev->struct_mutex);
5119
5120                 would_deadlock = 0;
5121
5122                 if (nr_to_scan <= 0)
5123                         break;
5124         }
5125
5126         /* second pass, evict/count anything still on the inactive list */
5127         list_for_each_entry_safe(dev_priv, next_dev,
5128                                  &shrink_list, mm.shrink_list) {
5129                 struct drm_device *dev = dev_priv->dev;
5130
5131                 if (! mutex_trylock(&dev->struct_mutex))
5132                         continue;
5133
5134                 spin_unlock(&shrink_list_lock);
5135
5136                 list_for_each_entry_safe(obj_priv, next_obj,
5137                                          &dev_priv->mm.inactive_list,
5138                                          list) {
5139                         if (nr_to_scan > 0) {
5140                                 i915_gem_object_unbind(obj_priv->obj);
5141                                 nr_to_scan--;
5142                         } else
5143                                 cnt++;
5144                 }
5145
5146                 spin_lock(&shrink_list_lock);
5147                 mutex_unlock(&dev->struct_mutex);
5148
5149                 would_deadlock = 0;
5150         }
5151
5152         spin_unlock(&shrink_list_lock);
5153
5154         if (would_deadlock)
5155                 return -1;
5156         else if (cnt > 0)
5157                 return (cnt / 100) * sysctl_vfs_cache_pressure;
5158         else
5159                 return 0;
5160 }
5161
5162 static struct shrinker shrinker = {
5163         .shrink = i915_gem_shrink,
5164         .seeks = DEFAULT_SEEKS,
5165 };
5166
5167 __init void
5168 i915_gem_shrinker_init(void)
5169 {
5170     register_shrinker(&shrinker);
5171 }
5172
5173 __exit void
5174 i915_gem_shrinker_exit(void)
5175 {
5176     unregister_shrinker(&shrinker);
5177 }