]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/firewire/ohci.c
firewire: ohci: do not enable interrupts without the handler
[net-next-2.6.git] / drivers / firewire / ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/gfp.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/pci.h>
37 #include <linux/pci_ids.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
40
41 #include <asm/byteorder.h>
42 #include <asm/page.h>
43 #include <asm/system.h>
44
45 #ifdef CONFIG_PPC_PMAC
46 #include <asm/pmac_feature.h>
47 #endif
48
49 #include "core.h"
50 #include "ohci.h"
51
52 #define DESCRIPTOR_OUTPUT_MORE          0
53 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
54 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
55 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
56 #define DESCRIPTOR_STATUS               (1 << 11)
57 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
58 #define DESCRIPTOR_PING                 (1 << 7)
59 #define DESCRIPTOR_YY                   (1 << 6)
60 #define DESCRIPTOR_NO_IRQ               (0 << 4)
61 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
62 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
63 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
64 #define DESCRIPTOR_WAIT                 (3 << 0)
65
66 struct descriptor {
67         __le16 req_count;
68         __le16 control;
69         __le32 data_address;
70         __le32 branch_address;
71         __le16 res_count;
72         __le16 transfer_status;
73 } __attribute__((aligned(16)));
74
75 #define CONTROL_SET(regs)       (regs)
76 #define CONTROL_CLEAR(regs)     ((regs) + 4)
77 #define COMMAND_PTR(regs)       ((regs) + 12)
78 #define CONTEXT_MATCH(regs)     ((regs) + 16)
79
80 struct ar_buffer {
81         struct descriptor descriptor;
82         struct ar_buffer *next;
83         __le32 data[0];
84 };
85
86 struct ar_context {
87         struct fw_ohci *ohci;
88         struct ar_buffer *current_buffer;
89         struct ar_buffer *last_buffer;
90         void *pointer;
91         u32 regs;
92         struct tasklet_struct tasklet;
93 };
94
95 struct context;
96
97 typedef int (*descriptor_callback_t)(struct context *ctx,
98                                      struct descriptor *d,
99                                      struct descriptor *last);
100
101 /*
102  * A buffer that contains a block of DMA-able coherent memory used for
103  * storing a portion of a DMA descriptor program.
104  */
105 struct descriptor_buffer {
106         struct list_head list;
107         dma_addr_t buffer_bus;
108         size_t buffer_size;
109         size_t used;
110         struct descriptor buffer[0];
111 };
112
113 struct context {
114         struct fw_ohci *ohci;
115         u32 regs;
116         int total_allocation;
117
118         /*
119          * List of page-sized buffers for storing DMA descriptors.
120          * Head of list contains buffers in use and tail of list contains
121          * free buffers.
122          */
123         struct list_head buffer_list;
124
125         /*
126          * Pointer to a buffer inside buffer_list that contains the tail
127          * end of the current DMA program.
128          */
129         struct descriptor_buffer *buffer_tail;
130
131         /*
132          * The descriptor containing the branch address of the first
133          * descriptor that has not yet been filled by the device.
134          */
135         struct descriptor *last;
136
137         /*
138          * The last descriptor in the DMA program.  It contains the branch
139          * address that must be updated upon appending a new descriptor.
140          */
141         struct descriptor *prev;
142
143         descriptor_callback_t callback;
144
145         struct tasklet_struct tasklet;
146 };
147
148 #define IT_HEADER_SY(v)          ((v) <<  0)
149 #define IT_HEADER_TCODE(v)       ((v) <<  4)
150 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
151 #define IT_HEADER_TAG(v)         ((v) << 14)
152 #define IT_HEADER_SPEED(v)       ((v) << 16)
153 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
154
155 struct iso_context {
156         struct fw_iso_context base;
157         struct context context;
158         int excess_bytes;
159         void *header;
160         size_t header_length;
161 };
162
163 #define CONFIG_ROM_SIZE 1024
164
165 struct fw_ohci {
166         struct fw_card card;
167
168         __iomem char *registers;
169         int node_id;
170         int generation;
171         int request_generation; /* for timestamping incoming requests */
172         unsigned quirks;
173
174         /*
175          * Spinlock for accessing fw_ohci data.  Never call out of
176          * this driver with this lock held.
177          */
178         spinlock_t lock;
179
180         struct ar_context ar_request_ctx;
181         struct ar_context ar_response_ctx;
182         struct context at_request_ctx;
183         struct context at_response_ctx;
184
185         u32 it_context_mask;
186         struct iso_context *it_context_list;
187         u64 ir_context_channels;
188         u32 ir_context_mask;
189         struct iso_context *ir_context_list;
190
191         __be32    *config_rom;
192         dma_addr_t config_rom_bus;
193         __be32    *next_config_rom;
194         dma_addr_t next_config_rom_bus;
195         __be32     next_header;
196
197         __le32    *self_id_cpu;
198         dma_addr_t self_id_bus;
199         struct tasklet_struct bus_reset_tasklet;
200
201         u32 self_id_buffer[512];
202 };
203
204 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
205 {
206         return container_of(card, struct fw_ohci, card);
207 }
208
209 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
210 #define IR_CONTEXT_BUFFER_FILL          0x80000000
211 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
212 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
213 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
214 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
215
216 #define CONTEXT_RUN     0x8000
217 #define CONTEXT_WAKE    0x1000
218 #define CONTEXT_DEAD    0x0800
219 #define CONTEXT_ACTIVE  0x0400
220
221 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
222 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
223 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
224
225 #define OHCI1394_REGISTER_SIZE          0x800
226 #define OHCI_LOOP_COUNT                 500
227 #define OHCI1394_PCI_HCI_Control        0x40
228 #define SELF_ID_BUF_SIZE                0x800
229 #define OHCI_TCODE_PHY_PACKET           0x0e
230 #define OHCI_VERSION_1_1                0x010010
231
232 static char ohci_driver_name[] = KBUILD_MODNAME;
233
234 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
235
236 #define QUIRK_CYCLE_TIMER               1
237 #define QUIRK_RESET_PACKET              2
238 #define QUIRK_BE_HEADERS                4
239 #define QUIRK_NO_1394A                  8
240
241 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
242 static const struct {
243         unsigned short vendor, device, flags;
244 } ohci_quirks[] = {
245         {PCI_VENDOR_ID_TI,      PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
246                                                             QUIRK_RESET_PACKET |
247                                                             QUIRK_NO_1394A},
248         {PCI_VENDOR_ID_TI,      PCI_ANY_ID,     QUIRK_RESET_PACKET},
249         {PCI_VENDOR_ID_AL,      PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
250         {PCI_VENDOR_ID_NEC,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
251         {PCI_VENDOR_ID_VIA,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
252         {PCI_VENDOR_ID_APPLE,   PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
253 };
254
255 /* This overrides anything that was found in ohci_quirks[]. */
256 static int param_quirks;
257 module_param_named(quirks, param_quirks, int, 0644);
258 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
259         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
260         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
261         ", AR/selfID endianess = "      __stringify(QUIRK_BE_HEADERS)
262         ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
263         ")");
264
265 #define OHCI_PARAM_DEBUG_AT_AR          1
266 #define OHCI_PARAM_DEBUG_SELFIDS        2
267 #define OHCI_PARAM_DEBUG_IRQS           4
268 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
269
270 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
271
272 static int param_debug;
273 module_param_named(debug, param_debug, int, 0644);
274 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
275         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
276         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
277         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
278         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
279         ", or a combination, or all = -1)");
280
281 static void log_irqs(u32 evt)
282 {
283         if (likely(!(param_debug &
284                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
285                 return;
286
287         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
288             !(evt & OHCI1394_busReset))
289                 return;
290
291         fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
292             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
293             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
294             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
295             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
296             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
297             evt & OHCI1394_isochRx              ? " IR"                 : "",
298             evt & OHCI1394_isochTx              ? " IT"                 : "",
299             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
300             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
301             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
302             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
303             evt & OHCI1394_busReset             ? " busReset"           : "",
304             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
305                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
306                     OHCI1394_respTxComplete | OHCI1394_isochRx |
307                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
308                     OHCI1394_cycleTooLong | OHCI1394_cycleInconsistent |
309                     OHCI1394_regAccessFail | OHCI1394_busReset)
310                                                 ? " ?"                  : "");
311 }
312
313 static const char *speed[] = {
314         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
315 };
316 static const char *power[] = {
317         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
318         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
319 };
320 static const char port[] = { '.', '-', 'p', 'c', };
321
322 static char _p(u32 *s, int shift)
323 {
324         return port[*s >> shift & 3];
325 }
326
327 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
328 {
329         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
330                 return;
331
332         fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
333                   self_id_count, generation, node_id);
334
335         for (; self_id_count--; ++s)
336                 if ((*s & 1 << 23) == 0)
337                         fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
338                             "%s gc=%d %s %s%s%s\n",
339                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
340                             speed[*s >> 14 & 3], *s >> 16 & 63,
341                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
342                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
343                 else
344                         fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
345                             *s, *s >> 24 & 63,
346                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
347                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
348 }
349
350 static const char *evts[] = {
351         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
352         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
353         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
354         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
355         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
356         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
357         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
358         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
359         [0x10] = "-reserved-",          [0x11] = "ack_complete",
360         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
361         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
362         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
363         [0x18] = "-reserved-",          [0x19] = "-reserved-",
364         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
365         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
366         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
367         [0x20] = "pending/cancelled",
368 };
369 static const char *tcodes[] = {
370         [0x0] = "QW req",               [0x1] = "BW req",
371         [0x2] = "W resp",               [0x3] = "-reserved-",
372         [0x4] = "QR req",               [0x5] = "BR req",
373         [0x6] = "QR resp",              [0x7] = "BR resp",
374         [0x8] = "cycle start",          [0x9] = "Lk req",
375         [0xa] = "async stream packet",  [0xb] = "Lk resp",
376         [0xc] = "-reserved-",           [0xd] = "-reserved-",
377         [0xe] = "link internal",        [0xf] = "-reserved-",
378 };
379 static const char *phys[] = {
380         [0x0] = "phy config packet",    [0x1] = "link-on packet",
381         [0x2] = "self-id packet",       [0x3] = "-reserved-",
382 };
383
384 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
385 {
386         int tcode = header[0] >> 4 & 0xf;
387         char specific[12];
388
389         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
390                 return;
391
392         if (unlikely(evt >= ARRAY_SIZE(evts)))
393                         evt = 0x1f;
394
395         if (evt == OHCI1394_evt_bus_reset) {
396                 fw_notify("A%c evt_bus_reset, generation %d\n",
397                     dir, (header[2] >> 16) & 0xff);
398                 return;
399         }
400
401         if (header[0] == ~header[1]) {
402                 fw_notify("A%c %s, %s, %08x\n",
403                     dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
404                 return;
405         }
406
407         switch (tcode) {
408         case 0x0: case 0x6: case 0x8:
409                 snprintf(specific, sizeof(specific), " = %08x",
410                          be32_to_cpu((__force __be32)header[3]));
411                 break;
412         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
413                 snprintf(specific, sizeof(specific), " %x,%x",
414                          header[3] >> 16, header[3] & 0xffff);
415                 break;
416         default:
417                 specific[0] = '\0';
418         }
419
420         switch (tcode) {
421         case 0xe: case 0xa:
422                 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
423                 break;
424         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
425                 fw_notify("A%c spd %x tl %02x, "
426                     "%04x -> %04x, %s, "
427                     "%s, %04x%08x%s\n",
428                     dir, speed, header[0] >> 10 & 0x3f,
429                     header[1] >> 16, header[0] >> 16, evts[evt],
430                     tcodes[tcode], header[1] & 0xffff, header[2], specific);
431                 break;
432         default:
433                 fw_notify("A%c spd %x tl %02x, "
434                     "%04x -> %04x, %s, "
435                     "%s%s\n",
436                     dir, speed, header[0] >> 10 & 0x3f,
437                     header[1] >> 16, header[0] >> 16, evts[evt],
438                     tcodes[tcode], specific);
439         }
440 }
441
442 #else
443
444 #define param_debug 0
445 static inline void log_irqs(u32 evt) {}
446 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
447 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
448
449 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
450
451 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
452 {
453         writel(data, ohci->registers + offset);
454 }
455
456 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
457 {
458         return readl(ohci->registers + offset);
459 }
460
461 static inline void flush_writes(const struct fw_ohci *ohci)
462 {
463         /* Do a dummy read to flush writes. */
464         reg_read(ohci, OHCI1394_Version);
465 }
466
467 static int read_phy_reg(struct fw_ohci *ohci, int addr)
468 {
469         u32 val;
470         int i;
471
472         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
473         for (i = 0; i < 10; i++) {
474                 val = reg_read(ohci, OHCI1394_PhyControl);
475                 if (val & OHCI1394_PhyControl_ReadDone)
476                         return OHCI1394_PhyControl_ReadData(val);
477
478                 msleep(1);
479         }
480         fw_error("failed to read phy reg\n");
481
482         return -EBUSY;
483 }
484
485 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
486 {
487         int i;
488
489         reg_write(ohci, OHCI1394_PhyControl,
490                   OHCI1394_PhyControl_Write(addr, val));
491         for (i = 0; i < 100; i++) {
492                 val = reg_read(ohci, OHCI1394_PhyControl);
493                 if (!(val & OHCI1394_PhyControl_WritePending))
494                         return 0;
495
496                 msleep(1);
497         }
498         fw_error("failed to write phy reg\n");
499
500         return -EBUSY;
501 }
502
503 static int ohci_update_phy_reg(struct fw_card *card, int addr,
504                                int clear_bits, int set_bits)
505 {
506         struct fw_ohci *ohci = fw_ohci(card);
507         int ret;
508
509         ret = read_phy_reg(ohci, addr);
510         if (ret < 0)
511                 return ret;
512
513         /*
514          * The interrupt status bits are cleared by writing a one bit.
515          * Avoid clearing them unless explicitly requested in set_bits.
516          */
517         if (addr == 5)
518                 clear_bits |= PHY_INT_STATUS_BITS;
519
520         return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
521 }
522
523 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
524 {
525         int ret;
526
527         ret = ohci_update_phy_reg(&ohci->card, 7, PHY_PAGE_SELECT, page << 5);
528         if (ret < 0)
529                 return ret;
530
531         return read_phy_reg(ohci, addr);
532 }
533
534 static int ar_context_add_page(struct ar_context *ctx)
535 {
536         struct device *dev = ctx->ohci->card.device;
537         struct ar_buffer *ab;
538         dma_addr_t uninitialized_var(ab_bus);
539         size_t offset;
540
541         ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
542         if (ab == NULL)
543                 return -ENOMEM;
544
545         ab->next = NULL;
546         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
547         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
548                                                     DESCRIPTOR_STATUS |
549                                                     DESCRIPTOR_BRANCH_ALWAYS);
550         offset = offsetof(struct ar_buffer, data);
551         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
552         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
553         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
554         ab->descriptor.branch_address = 0;
555
556         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
557         ctx->last_buffer->next = ab;
558         ctx->last_buffer = ab;
559
560         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
561         flush_writes(ctx->ohci);
562
563         return 0;
564 }
565
566 static void ar_context_release(struct ar_context *ctx)
567 {
568         struct ar_buffer *ab, *ab_next;
569         size_t offset;
570         dma_addr_t ab_bus;
571
572         for (ab = ctx->current_buffer; ab; ab = ab_next) {
573                 ab_next = ab->next;
574                 offset = offsetof(struct ar_buffer, data);
575                 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
576                 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
577                                   ab, ab_bus);
578         }
579 }
580
581 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
582 #define cond_le32_to_cpu(v) \
583         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
584 #else
585 #define cond_le32_to_cpu(v) le32_to_cpu(v)
586 #endif
587
588 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
589 {
590         struct fw_ohci *ohci = ctx->ohci;
591         struct fw_packet p;
592         u32 status, length, tcode;
593         int evt;
594
595         p.header[0] = cond_le32_to_cpu(buffer[0]);
596         p.header[1] = cond_le32_to_cpu(buffer[1]);
597         p.header[2] = cond_le32_to_cpu(buffer[2]);
598
599         tcode = (p.header[0] >> 4) & 0x0f;
600         switch (tcode) {
601         case TCODE_WRITE_QUADLET_REQUEST:
602         case TCODE_READ_QUADLET_RESPONSE:
603                 p.header[3] = (__force __u32) buffer[3];
604                 p.header_length = 16;
605                 p.payload_length = 0;
606                 break;
607
608         case TCODE_READ_BLOCK_REQUEST :
609                 p.header[3] = cond_le32_to_cpu(buffer[3]);
610                 p.header_length = 16;
611                 p.payload_length = 0;
612                 break;
613
614         case TCODE_WRITE_BLOCK_REQUEST:
615         case TCODE_READ_BLOCK_RESPONSE:
616         case TCODE_LOCK_REQUEST:
617         case TCODE_LOCK_RESPONSE:
618                 p.header[3] = cond_le32_to_cpu(buffer[3]);
619                 p.header_length = 16;
620                 p.payload_length = p.header[3] >> 16;
621                 break;
622
623         case TCODE_WRITE_RESPONSE:
624         case TCODE_READ_QUADLET_REQUEST:
625         case OHCI_TCODE_PHY_PACKET:
626                 p.header_length = 12;
627                 p.payload_length = 0;
628                 break;
629
630         default:
631                 /* FIXME: Stop context, discard everything, and restart? */
632                 p.header_length = 0;
633                 p.payload_length = 0;
634         }
635
636         p.payload = (void *) buffer + p.header_length;
637
638         /* FIXME: What to do about evt_* errors? */
639         length = (p.header_length + p.payload_length + 3) / 4;
640         status = cond_le32_to_cpu(buffer[length]);
641         evt    = (status >> 16) & 0x1f;
642
643         p.ack        = evt - 16;
644         p.speed      = (status >> 21) & 0x7;
645         p.timestamp  = status & 0xffff;
646         p.generation = ohci->request_generation;
647
648         log_ar_at_event('R', p.speed, p.header, evt);
649
650         /*
651          * The OHCI bus reset handler synthesizes a phy packet with
652          * the new generation number when a bus reset happens (see
653          * section 8.4.2.3).  This helps us determine when a request
654          * was received and make sure we send the response in the same
655          * generation.  We only need this for requests; for responses
656          * we use the unique tlabel for finding the matching
657          * request.
658          *
659          * Alas some chips sometimes emit bus reset packets with a
660          * wrong generation.  We set the correct generation for these
661          * at a slightly incorrect time (in bus_reset_tasklet).
662          */
663         if (evt == OHCI1394_evt_bus_reset) {
664                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
665                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
666         } else if (ctx == &ohci->ar_request_ctx) {
667                 fw_core_handle_request(&ohci->card, &p);
668         } else {
669                 fw_core_handle_response(&ohci->card, &p);
670         }
671
672         return buffer + length + 1;
673 }
674
675 static void ar_context_tasklet(unsigned long data)
676 {
677         struct ar_context *ctx = (struct ar_context *)data;
678         struct fw_ohci *ohci = ctx->ohci;
679         struct ar_buffer *ab;
680         struct descriptor *d;
681         void *buffer, *end;
682
683         ab = ctx->current_buffer;
684         d = &ab->descriptor;
685
686         if (d->res_count == 0) {
687                 size_t size, rest, offset;
688                 dma_addr_t start_bus;
689                 void *start;
690
691                 /*
692                  * This descriptor is finished and we may have a
693                  * packet split across this and the next buffer. We
694                  * reuse the page for reassembling the split packet.
695                  */
696
697                 offset = offsetof(struct ar_buffer, data);
698                 start = buffer = ab;
699                 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
700
701                 ab = ab->next;
702                 d = &ab->descriptor;
703                 size = buffer + PAGE_SIZE - ctx->pointer;
704                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
705                 memmove(buffer, ctx->pointer, size);
706                 memcpy(buffer + size, ab->data, rest);
707                 ctx->current_buffer = ab;
708                 ctx->pointer = (void *) ab->data + rest;
709                 end = buffer + size + rest;
710
711                 while (buffer < end)
712                         buffer = handle_ar_packet(ctx, buffer);
713
714                 dma_free_coherent(ohci->card.device, PAGE_SIZE,
715                                   start, start_bus);
716                 ar_context_add_page(ctx);
717         } else {
718                 buffer = ctx->pointer;
719                 ctx->pointer = end =
720                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
721
722                 while (buffer < end)
723                         buffer = handle_ar_packet(ctx, buffer);
724         }
725 }
726
727 static int ar_context_init(struct ar_context *ctx,
728                            struct fw_ohci *ohci, u32 regs)
729 {
730         struct ar_buffer ab;
731
732         ctx->regs        = regs;
733         ctx->ohci        = ohci;
734         ctx->last_buffer = &ab;
735         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
736
737         ar_context_add_page(ctx);
738         ar_context_add_page(ctx);
739         ctx->current_buffer = ab.next;
740         ctx->pointer = ctx->current_buffer->data;
741
742         return 0;
743 }
744
745 static void ar_context_run(struct ar_context *ctx)
746 {
747         struct ar_buffer *ab = ctx->current_buffer;
748         dma_addr_t ab_bus;
749         size_t offset;
750
751         offset = offsetof(struct ar_buffer, data);
752         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
753
754         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
755         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
756         flush_writes(ctx->ohci);
757 }
758
759 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
760 {
761         int b, key;
762
763         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
764         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
765
766         /* figure out which descriptor the branch address goes in */
767         if (z == 2 && (b == 3 || key == 2))
768                 return d;
769         else
770                 return d + z - 1;
771 }
772
773 static void context_tasklet(unsigned long data)
774 {
775         struct context *ctx = (struct context *) data;
776         struct descriptor *d, *last;
777         u32 address;
778         int z;
779         struct descriptor_buffer *desc;
780
781         desc = list_entry(ctx->buffer_list.next,
782                         struct descriptor_buffer, list);
783         last = ctx->last;
784         while (last->branch_address != 0) {
785                 struct descriptor_buffer *old_desc = desc;
786                 address = le32_to_cpu(last->branch_address);
787                 z = address & 0xf;
788                 address &= ~0xf;
789
790                 /* If the branch address points to a buffer outside of the
791                  * current buffer, advance to the next buffer. */
792                 if (address < desc->buffer_bus ||
793                                 address >= desc->buffer_bus + desc->used)
794                         desc = list_entry(desc->list.next,
795                                         struct descriptor_buffer, list);
796                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
797                 last = find_branch_descriptor(d, z);
798
799                 if (!ctx->callback(ctx, d, last))
800                         break;
801
802                 if (old_desc != desc) {
803                         /* If we've advanced to the next buffer, move the
804                          * previous buffer to the free list. */
805                         unsigned long flags;
806                         old_desc->used = 0;
807                         spin_lock_irqsave(&ctx->ohci->lock, flags);
808                         list_move_tail(&old_desc->list, &ctx->buffer_list);
809                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
810                 }
811                 ctx->last = last;
812         }
813 }
814
815 /*
816  * Allocate a new buffer and add it to the list of free buffers for this
817  * context.  Must be called with ohci->lock held.
818  */
819 static int context_add_buffer(struct context *ctx)
820 {
821         struct descriptor_buffer *desc;
822         dma_addr_t uninitialized_var(bus_addr);
823         int offset;
824
825         /*
826          * 16MB of descriptors should be far more than enough for any DMA
827          * program.  This will catch run-away userspace or DoS attacks.
828          */
829         if (ctx->total_allocation >= 16*1024*1024)
830                 return -ENOMEM;
831
832         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
833                         &bus_addr, GFP_ATOMIC);
834         if (!desc)
835                 return -ENOMEM;
836
837         offset = (void *)&desc->buffer - (void *)desc;
838         desc->buffer_size = PAGE_SIZE - offset;
839         desc->buffer_bus = bus_addr + offset;
840         desc->used = 0;
841
842         list_add_tail(&desc->list, &ctx->buffer_list);
843         ctx->total_allocation += PAGE_SIZE;
844
845         return 0;
846 }
847
848 static int context_init(struct context *ctx, struct fw_ohci *ohci,
849                         u32 regs, descriptor_callback_t callback)
850 {
851         ctx->ohci = ohci;
852         ctx->regs = regs;
853         ctx->total_allocation = 0;
854
855         INIT_LIST_HEAD(&ctx->buffer_list);
856         if (context_add_buffer(ctx) < 0)
857                 return -ENOMEM;
858
859         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
860                         struct descriptor_buffer, list);
861
862         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
863         ctx->callback = callback;
864
865         /*
866          * We put a dummy descriptor in the buffer that has a NULL
867          * branch address and looks like it's been sent.  That way we
868          * have a descriptor to append DMA programs to.
869          */
870         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
871         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
872         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
873         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
874         ctx->last = ctx->buffer_tail->buffer;
875         ctx->prev = ctx->buffer_tail->buffer;
876
877         return 0;
878 }
879
880 static void context_release(struct context *ctx)
881 {
882         struct fw_card *card = &ctx->ohci->card;
883         struct descriptor_buffer *desc, *tmp;
884
885         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
886                 dma_free_coherent(card->device, PAGE_SIZE, desc,
887                         desc->buffer_bus -
888                         ((void *)&desc->buffer - (void *)desc));
889 }
890
891 /* Must be called with ohci->lock held */
892 static struct descriptor *context_get_descriptors(struct context *ctx,
893                                                   int z, dma_addr_t *d_bus)
894 {
895         struct descriptor *d = NULL;
896         struct descriptor_buffer *desc = ctx->buffer_tail;
897
898         if (z * sizeof(*d) > desc->buffer_size)
899                 return NULL;
900
901         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
902                 /* No room for the descriptor in this buffer, so advance to the
903                  * next one. */
904
905                 if (desc->list.next == &ctx->buffer_list) {
906                         /* If there is no free buffer next in the list,
907                          * allocate one. */
908                         if (context_add_buffer(ctx) < 0)
909                                 return NULL;
910                 }
911                 desc = list_entry(desc->list.next,
912                                 struct descriptor_buffer, list);
913                 ctx->buffer_tail = desc;
914         }
915
916         d = desc->buffer + desc->used / sizeof(*d);
917         memset(d, 0, z * sizeof(*d));
918         *d_bus = desc->buffer_bus + desc->used;
919
920         return d;
921 }
922
923 static void context_run(struct context *ctx, u32 extra)
924 {
925         struct fw_ohci *ohci = ctx->ohci;
926
927         reg_write(ohci, COMMAND_PTR(ctx->regs),
928                   le32_to_cpu(ctx->last->branch_address));
929         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
930         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
931         flush_writes(ohci);
932 }
933
934 static void context_append(struct context *ctx,
935                            struct descriptor *d, int z, int extra)
936 {
937         dma_addr_t d_bus;
938         struct descriptor_buffer *desc = ctx->buffer_tail;
939
940         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
941
942         desc->used += (z + extra) * sizeof(*d);
943         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
944         ctx->prev = find_branch_descriptor(d, z);
945
946         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
947         flush_writes(ctx->ohci);
948 }
949
950 static void context_stop(struct context *ctx)
951 {
952         u32 reg;
953         int i;
954
955         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
956         flush_writes(ctx->ohci);
957
958         for (i = 0; i < 10; i++) {
959                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
960                 if ((reg & CONTEXT_ACTIVE) == 0)
961                         return;
962
963                 mdelay(1);
964         }
965         fw_error("Error: DMA context still active (0x%08x)\n", reg);
966 }
967
968 struct driver_data {
969         struct fw_packet *packet;
970 };
971
972 /*
973  * This function apppends a packet to the DMA queue for transmission.
974  * Must always be called with the ochi->lock held to ensure proper
975  * generation handling and locking around packet queue manipulation.
976  */
977 static int at_context_queue_packet(struct context *ctx,
978                                    struct fw_packet *packet)
979 {
980         struct fw_ohci *ohci = ctx->ohci;
981         dma_addr_t d_bus, uninitialized_var(payload_bus);
982         struct driver_data *driver_data;
983         struct descriptor *d, *last;
984         __le32 *header;
985         int z, tcode;
986         u32 reg;
987
988         d = context_get_descriptors(ctx, 4, &d_bus);
989         if (d == NULL) {
990                 packet->ack = RCODE_SEND_ERROR;
991                 return -1;
992         }
993
994         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
995         d[0].res_count = cpu_to_le16(packet->timestamp);
996
997         /*
998          * The DMA format for asyncronous link packets is different
999          * from the IEEE1394 layout, so shift the fields around
1000          * accordingly.  If header_length is 8, it's a PHY packet, to
1001          * which we need to prepend an extra quadlet.
1002          */
1003
1004         header = (__le32 *) &d[1];
1005         switch (packet->header_length) {
1006         case 16:
1007         case 12:
1008                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1009                                         (packet->speed << 16));
1010                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1011                                         (packet->header[0] & 0xffff0000));
1012                 header[2] = cpu_to_le32(packet->header[2]);
1013
1014                 tcode = (packet->header[0] >> 4) & 0x0f;
1015                 if (TCODE_IS_BLOCK_PACKET(tcode))
1016                         header[3] = cpu_to_le32(packet->header[3]);
1017                 else
1018                         header[3] = (__force __le32) packet->header[3];
1019
1020                 d[0].req_count = cpu_to_le16(packet->header_length);
1021                 break;
1022
1023         case 8:
1024                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1025                                         (packet->speed << 16));
1026                 header[1] = cpu_to_le32(packet->header[0]);
1027                 header[2] = cpu_to_le32(packet->header[1]);
1028                 d[0].req_count = cpu_to_le16(12);
1029                 break;
1030
1031         case 4:
1032                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1033                                         (packet->speed << 16));
1034                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1035                 d[0].req_count = cpu_to_le16(8);
1036                 break;
1037
1038         default:
1039                 /* BUG(); */
1040                 packet->ack = RCODE_SEND_ERROR;
1041                 return -1;
1042         }
1043
1044         driver_data = (struct driver_data *) &d[3];
1045         driver_data->packet = packet;
1046         packet->driver_data = driver_data;
1047
1048         if (packet->payload_length > 0) {
1049                 payload_bus =
1050                         dma_map_single(ohci->card.device, packet->payload,
1051                                        packet->payload_length, DMA_TO_DEVICE);
1052                 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1053                         packet->ack = RCODE_SEND_ERROR;
1054                         return -1;
1055                 }
1056                 packet->payload_bus     = payload_bus;
1057                 packet->payload_mapped  = true;
1058
1059                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1060                 d[2].data_address = cpu_to_le32(payload_bus);
1061                 last = &d[2];
1062                 z = 3;
1063         } else {
1064                 last = &d[0];
1065                 z = 2;
1066         }
1067
1068         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1069                                      DESCRIPTOR_IRQ_ALWAYS |
1070                                      DESCRIPTOR_BRANCH_ALWAYS);
1071
1072         /*
1073          * If the controller and packet generations don't match, we need to
1074          * bail out and try again.  If IntEvent.busReset is set, the AT context
1075          * is halted, so appending to the context and trying to run it is
1076          * futile.  Most controllers do the right thing and just flush the AT
1077          * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1078          * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1079          * up stalling out.  So we just bail out in software and try again
1080          * later, and everyone is happy.
1081          * FIXME: Document how the locking works.
1082          */
1083         if (ohci->generation != packet->generation ||
1084             reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1085                 if (packet->payload_mapped)
1086                         dma_unmap_single(ohci->card.device, payload_bus,
1087                                          packet->payload_length, DMA_TO_DEVICE);
1088                 packet->ack = RCODE_GENERATION;
1089                 return -1;
1090         }
1091
1092         context_append(ctx, d, z, 4 - z);
1093
1094         /* If the context isn't already running, start it up. */
1095         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1096         if ((reg & CONTEXT_RUN) == 0)
1097                 context_run(ctx, 0);
1098
1099         return 0;
1100 }
1101
1102 static int handle_at_packet(struct context *context,
1103                             struct descriptor *d,
1104                             struct descriptor *last)
1105 {
1106         struct driver_data *driver_data;
1107         struct fw_packet *packet;
1108         struct fw_ohci *ohci = context->ohci;
1109         int evt;
1110
1111         if (last->transfer_status == 0)
1112                 /* This descriptor isn't done yet, stop iteration. */
1113                 return 0;
1114
1115         driver_data = (struct driver_data *) &d[3];
1116         packet = driver_data->packet;
1117         if (packet == NULL)
1118                 /* This packet was cancelled, just continue. */
1119                 return 1;
1120
1121         if (packet->payload_mapped)
1122                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1123                                  packet->payload_length, DMA_TO_DEVICE);
1124
1125         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1126         packet->timestamp = le16_to_cpu(last->res_count);
1127
1128         log_ar_at_event('T', packet->speed, packet->header, evt);
1129
1130         switch (evt) {
1131         case OHCI1394_evt_timeout:
1132                 /* Async response transmit timed out. */
1133                 packet->ack = RCODE_CANCELLED;
1134                 break;
1135
1136         case OHCI1394_evt_flushed:
1137                 /*
1138                  * The packet was flushed should give same error as
1139                  * when we try to use a stale generation count.
1140                  */
1141                 packet->ack = RCODE_GENERATION;
1142                 break;
1143
1144         case OHCI1394_evt_missing_ack:
1145                 /*
1146                  * Using a valid (current) generation count, but the
1147                  * node is not on the bus or not sending acks.
1148                  */
1149                 packet->ack = RCODE_NO_ACK;
1150                 break;
1151
1152         case ACK_COMPLETE + 0x10:
1153         case ACK_PENDING + 0x10:
1154         case ACK_BUSY_X + 0x10:
1155         case ACK_BUSY_A + 0x10:
1156         case ACK_BUSY_B + 0x10:
1157         case ACK_DATA_ERROR + 0x10:
1158         case ACK_TYPE_ERROR + 0x10:
1159                 packet->ack = evt - 0x10;
1160                 break;
1161
1162         default:
1163                 packet->ack = RCODE_SEND_ERROR;
1164                 break;
1165         }
1166
1167         packet->callback(packet, &ohci->card, packet->ack);
1168
1169         return 1;
1170 }
1171
1172 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1173 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1174 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1175 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1176 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1177
1178 static void handle_local_rom(struct fw_ohci *ohci,
1179                              struct fw_packet *packet, u32 csr)
1180 {
1181         struct fw_packet response;
1182         int tcode, length, i;
1183
1184         tcode = HEADER_GET_TCODE(packet->header[0]);
1185         if (TCODE_IS_BLOCK_PACKET(tcode))
1186                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1187         else
1188                 length = 4;
1189
1190         i = csr - CSR_CONFIG_ROM;
1191         if (i + length > CONFIG_ROM_SIZE) {
1192                 fw_fill_response(&response, packet->header,
1193                                  RCODE_ADDRESS_ERROR, NULL, 0);
1194         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1195                 fw_fill_response(&response, packet->header,
1196                                  RCODE_TYPE_ERROR, NULL, 0);
1197         } else {
1198                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1199                                  (void *) ohci->config_rom + i, length);
1200         }
1201
1202         fw_core_handle_response(&ohci->card, &response);
1203 }
1204
1205 static void handle_local_lock(struct fw_ohci *ohci,
1206                               struct fw_packet *packet, u32 csr)
1207 {
1208         struct fw_packet response;
1209         int tcode, length, ext_tcode, sel;
1210         __be32 *payload, lock_old;
1211         u32 lock_arg, lock_data;
1212
1213         tcode = HEADER_GET_TCODE(packet->header[0]);
1214         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1215         payload = packet->payload;
1216         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1217
1218         if (tcode == TCODE_LOCK_REQUEST &&
1219             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1220                 lock_arg = be32_to_cpu(payload[0]);
1221                 lock_data = be32_to_cpu(payload[1]);
1222         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1223                 lock_arg = 0;
1224                 lock_data = 0;
1225         } else {
1226                 fw_fill_response(&response, packet->header,
1227                                  RCODE_TYPE_ERROR, NULL, 0);
1228                 goto out;
1229         }
1230
1231         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1232         reg_write(ohci, OHCI1394_CSRData, lock_data);
1233         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1234         reg_write(ohci, OHCI1394_CSRControl, sel);
1235
1236         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1237                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1238         else
1239                 fw_notify("swap not done yet\n");
1240
1241         fw_fill_response(&response, packet->header,
1242                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1243  out:
1244         fw_core_handle_response(&ohci->card, &response);
1245 }
1246
1247 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1248 {
1249         u64 offset;
1250         u32 csr;
1251
1252         if (ctx == &ctx->ohci->at_request_ctx) {
1253                 packet->ack = ACK_PENDING;
1254                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1255         }
1256
1257         offset =
1258                 ((unsigned long long)
1259                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1260                 packet->header[2];
1261         csr = offset - CSR_REGISTER_BASE;
1262
1263         /* Handle config rom reads. */
1264         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1265                 handle_local_rom(ctx->ohci, packet, csr);
1266         else switch (csr) {
1267         case CSR_BUS_MANAGER_ID:
1268         case CSR_BANDWIDTH_AVAILABLE:
1269         case CSR_CHANNELS_AVAILABLE_HI:
1270         case CSR_CHANNELS_AVAILABLE_LO:
1271                 handle_local_lock(ctx->ohci, packet, csr);
1272                 break;
1273         default:
1274                 if (ctx == &ctx->ohci->at_request_ctx)
1275                         fw_core_handle_request(&ctx->ohci->card, packet);
1276                 else
1277                         fw_core_handle_response(&ctx->ohci->card, packet);
1278                 break;
1279         }
1280
1281         if (ctx == &ctx->ohci->at_response_ctx) {
1282                 packet->ack = ACK_COMPLETE;
1283                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1284         }
1285 }
1286
1287 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1288 {
1289         unsigned long flags;
1290         int ret;
1291
1292         spin_lock_irqsave(&ctx->ohci->lock, flags);
1293
1294         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1295             ctx->ohci->generation == packet->generation) {
1296                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1297                 handle_local_request(ctx, packet);
1298                 return;
1299         }
1300
1301         ret = at_context_queue_packet(ctx, packet);
1302         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1303
1304         if (ret < 0)
1305                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1306
1307 }
1308
1309 static void bus_reset_tasklet(unsigned long data)
1310 {
1311         struct fw_ohci *ohci = (struct fw_ohci *)data;
1312         int self_id_count, i, j, reg;
1313         int generation, new_generation;
1314         unsigned long flags;
1315         void *free_rom = NULL;
1316         dma_addr_t free_rom_bus = 0;
1317
1318         reg = reg_read(ohci, OHCI1394_NodeID);
1319         if (!(reg & OHCI1394_NodeID_idValid)) {
1320                 fw_notify("node ID not valid, new bus reset in progress\n");
1321                 return;
1322         }
1323         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1324                 fw_notify("malconfigured bus\n");
1325                 return;
1326         }
1327         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1328                                OHCI1394_NodeID_nodeNumber);
1329
1330         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1331         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1332                 fw_notify("inconsistent self IDs\n");
1333                 return;
1334         }
1335         /*
1336          * The count in the SelfIDCount register is the number of
1337          * bytes in the self ID receive buffer.  Since we also receive
1338          * the inverted quadlets and a header quadlet, we shift one
1339          * bit extra to get the actual number of self IDs.
1340          */
1341         self_id_count = (reg >> 3) & 0xff;
1342         if (self_id_count == 0 || self_id_count > 252) {
1343                 fw_notify("inconsistent self IDs\n");
1344                 return;
1345         }
1346         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1347         rmb();
1348
1349         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1350                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1351                         fw_notify("inconsistent self IDs\n");
1352                         return;
1353                 }
1354                 ohci->self_id_buffer[j] =
1355                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1356         }
1357         rmb();
1358
1359         /*
1360          * Check the consistency of the self IDs we just read.  The
1361          * problem we face is that a new bus reset can start while we
1362          * read out the self IDs from the DMA buffer. If this happens,
1363          * the DMA buffer will be overwritten with new self IDs and we
1364          * will read out inconsistent data.  The OHCI specification
1365          * (section 11.2) recommends a technique similar to
1366          * linux/seqlock.h, where we remember the generation of the
1367          * self IDs in the buffer before reading them out and compare
1368          * it to the current generation after reading them out.  If
1369          * the two generations match we know we have a consistent set
1370          * of self IDs.
1371          */
1372
1373         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1374         if (new_generation != generation) {
1375                 fw_notify("recursive bus reset detected, "
1376                           "discarding self ids\n");
1377                 return;
1378         }
1379
1380         /* FIXME: Document how the locking works. */
1381         spin_lock_irqsave(&ohci->lock, flags);
1382
1383         ohci->generation = generation;
1384         context_stop(&ohci->at_request_ctx);
1385         context_stop(&ohci->at_response_ctx);
1386         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1387
1388         if (ohci->quirks & QUIRK_RESET_PACKET)
1389                 ohci->request_generation = generation;
1390
1391         /*
1392          * This next bit is unrelated to the AT context stuff but we
1393          * have to do it under the spinlock also.  If a new config rom
1394          * was set up before this reset, the old one is now no longer
1395          * in use and we can free it. Update the config rom pointers
1396          * to point to the current config rom and clear the
1397          * next_config_rom pointer so a new udpate can take place.
1398          */
1399
1400         if (ohci->next_config_rom != NULL) {
1401                 if (ohci->next_config_rom != ohci->config_rom) {
1402                         free_rom      = ohci->config_rom;
1403                         free_rom_bus  = ohci->config_rom_bus;
1404                 }
1405                 ohci->config_rom      = ohci->next_config_rom;
1406                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1407                 ohci->next_config_rom = NULL;
1408
1409                 /*
1410                  * Restore config_rom image and manually update
1411                  * config_rom registers.  Writing the header quadlet
1412                  * will indicate that the config rom is ready, so we
1413                  * do that last.
1414                  */
1415                 reg_write(ohci, OHCI1394_BusOptions,
1416                           be32_to_cpu(ohci->config_rom[2]));
1417                 ohci->config_rom[0] = ohci->next_header;
1418                 reg_write(ohci, OHCI1394_ConfigROMhdr,
1419                           be32_to_cpu(ohci->next_header));
1420         }
1421
1422 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1423         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1424         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1425 #endif
1426
1427         spin_unlock_irqrestore(&ohci->lock, flags);
1428
1429         if (free_rom)
1430                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1431                                   free_rom, free_rom_bus);
1432
1433         log_selfids(ohci->node_id, generation,
1434                     self_id_count, ohci->self_id_buffer);
1435
1436         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1437                                  self_id_count, ohci->self_id_buffer);
1438 }
1439
1440 static irqreturn_t irq_handler(int irq, void *data)
1441 {
1442         struct fw_ohci *ohci = data;
1443         u32 event, iso_event;
1444         int i;
1445
1446         event = reg_read(ohci, OHCI1394_IntEventClear);
1447
1448         if (!event || !~event)
1449                 return IRQ_NONE;
1450
1451         /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1452         reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1453         log_irqs(event);
1454
1455         if (event & OHCI1394_selfIDComplete)
1456                 tasklet_schedule(&ohci->bus_reset_tasklet);
1457
1458         if (event & OHCI1394_RQPkt)
1459                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1460
1461         if (event & OHCI1394_RSPkt)
1462                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1463
1464         if (event & OHCI1394_reqTxComplete)
1465                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1466
1467         if (event & OHCI1394_respTxComplete)
1468                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1469
1470         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1471         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1472
1473         while (iso_event) {
1474                 i = ffs(iso_event) - 1;
1475                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1476                 iso_event &= ~(1 << i);
1477         }
1478
1479         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1480         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1481
1482         while (iso_event) {
1483                 i = ffs(iso_event) - 1;
1484                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1485                 iso_event &= ~(1 << i);
1486         }
1487
1488         if (unlikely(event & OHCI1394_regAccessFail))
1489                 fw_error("Register access failure - "
1490                          "please notify linux1394-devel@lists.sf.net\n");
1491
1492         if (unlikely(event & OHCI1394_postedWriteErr))
1493                 fw_error("PCI posted write error\n");
1494
1495         if (unlikely(event & OHCI1394_cycleTooLong)) {
1496                 if (printk_ratelimit())
1497                         fw_notify("isochronous cycle too long\n");
1498                 reg_write(ohci, OHCI1394_LinkControlSet,
1499                           OHCI1394_LinkControl_cycleMaster);
1500         }
1501
1502         if (unlikely(event & OHCI1394_cycleInconsistent)) {
1503                 /*
1504                  * We need to clear this event bit in order to make
1505                  * cycleMatch isochronous I/O work.  In theory we should
1506                  * stop active cycleMatch iso contexts now and restart
1507                  * them at least two cycles later.  (FIXME?)
1508                  */
1509                 if (printk_ratelimit())
1510                         fw_notify("isochronous cycle inconsistent\n");
1511         }
1512
1513         return IRQ_HANDLED;
1514 }
1515
1516 static int software_reset(struct fw_ohci *ohci)
1517 {
1518         int i;
1519
1520         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1521
1522         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1523                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1524                      OHCI1394_HCControl_softReset) == 0)
1525                         return 0;
1526                 msleep(1);
1527         }
1528
1529         return -EBUSY;
1530 }
1531
1532 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1533 {
1534         size_t size = length * 4;
1535
1536         memcpy(dest, src, size);
1537         if (size < CONFIG_ROM_SIZE)
1538                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1539 }
1540
1541 static int configure_1394a_enhancements(struct fw_ohci *ohci)
1542 {
1543         bool enable_1394a;
1544         int ret, clear, set, offset;
1545
1546         /* Check if the driver should configure link and PHY. */
1547         if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1548               OHCI1394_HCControl_programPhyEnable))
1549                 return 0;
1550
1551         /* Paranoia: check whether the PHY supports 1394a, too. */
1552         enable_1394a = false;
1553         ret = read_phy_reg(ohci, 2);
1554         if (ret < 0)
1555                 return ret;
1556         if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
1557                 ret = read_paged_phy_reg(ohci, 1, 8);
1558                 if (ret < 0)
1559                         return ret;
1560                 if (ret >= 1)
1561                         enable_1394a = true;
1562         }
1563
1564         if (ohci->quirks & QUIRK_NO_1394A)
1565                 enable_1394a = false;
1566
1567         /* Configure PHY and link consistently. */
1568         if (enable_1394a) {
1569                 clear = 0;
1570                 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1571         } else {
1572                 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1573                 set = 0;
1574         }
1575         ret = ohci_update_phy_reg(&ohci->card, 5, clear, set);
1576         if (ret < 0)
1577                 return ret;
1578
1579         if (enable_1394a)
1580                 offset = OHCI1394_HCControlSet;
1581         else
1582                 offset = OHCI1394_HCControlClear;
1583         reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
1584
1585         /* Clean up: configuration has been taken care of. */
1586         reg_write(ohci, OHCI1394_HCControlClear,
1587                   OHCI1394_HCControl_programPhyEnable);
1588
1589         return 0;
1590 }
1591
1592 static int ohci_enable(struct fw_card *card,
1593                        const __be32 *config_rom, size_t length)
1594 {
1595         struct fw_ohci *ohci = fw_ohci(card);
1596         struct pci_dev *dev = to_pci_dev(card->device);
1597         u32 lps, irqs;
1598         int i, ret;
1599
1600         if (software_reset(ohci)) {
1601                 fw_error("Failed to reset ohci card.\n");
1602                 return -EBUSY;
1603         }
1604
1605         /*
1606          * Now enable LPS, which we need in order to start accessing
1607          * most of the registers.  In fact, on some cards (ALI M5251),
1608          * accessing registers in the SClk domain without LPS enabled
1609          * will lock up the machine.  Wait 50msec to make sure we have
1610          * full link enabled.  However, with some cards (well, at least
1611          * a JMicron PCIe card), we have to try again sometimes.
1612          */
1613         reg_write(ohci, OHCI1394_HCControlSet,
1614                   OHCI1394_HCControl_LPS |
1615                   OHCI1394_HCControl_postedWriteEnable);
1616         flush_writes(ohci);
1617
1618         for (lps = 0, i = 0; !lps && i < 3; i++) {
1619                 msleep(50);
1620                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1621                       OHCI1394_HCControl_LPS;
1622         }
1623
1624         if (!lps) {
1625                 fw_error("Failed to set Link Power Status\n");
1626                 return -EIO;
1627         }
1628
1629         reg_write(ohci, OHCI1394_HCControlClear,
1630                   OHCI1394_HCControl_noByteSwapData);
1631
1632         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1633         reg_write(ohci, OHCI1394_LinkControlClear,
1634                   OHCI1394_LinkControl_rcvPhyPkt);
1635         reg_write(ohci, OHCI1394_LinkControlSet,
1636                   OHCI1394_LinkControl_rcvSelfID |
1637                   OHCI1394_LinkControl_cycleTimerEnable |
1638                   OHCI1394_LinkControl_cycleMaster);
1639
1640         reg_write(ohci, OHCI1394_ATRetries,
1641                   OHCI1394_MAX_AT_REQ_RETRIES |
1642                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1643                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1644
1645         ar_context_run(&ohci->ar_request_ctx);
1646         ar_context_run(&ohci->ar_response_ctx);
1647
1648         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1649         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1650         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1651
1652         ret = configure_1394a_enhancements(ohci);
1653         if (ret < 0)
1654                 return ret;
1655
1656         /* Activate link_on bit and contender bit in our self ID packets.*/
1657         ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
1658         if (ret < 0)
1659                 return ret;
1660
1661         /*
1662          * When the link is not yet enabled, the atomic config rom
1663          * update mechanism described below in ohci_set_config_rom()
1664          * is not active.  We have to update ConfigRomHeader and
1665          * BusOptions manually, and the write to ConfigROMmap takes
1666          * effect immediately.  We tie this to the enabling of the
1667          * link, so we have a valid config rom before enabling - the
1668          * OHCI requires that ConfigROMhdr and BusOptions have valid
1669          * values before enabling.
1670          *
1671          * However, when the ConfigROMmap is written, some controllers
1672          * always read back quadlets 0 and 2 from the config rom to
1673          * the ConfigRomHeader and BusOptions registers on bus reset.
1674          * They shouldn't do that in this initial case where the link
1675          * isn't enabled.  This means we have to use the same
1676          * workaround here, setting the bus header to 0 and then write
1677          * the right values in the bus reset tasklet.
1678          */
1679
1680         if (config_rom) {
1681                 ohci->next_config_rom =
1682                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1683                                            &ohci->next_config_rom_bus,
1684                                            GFP_KERNEL);
1685                 if (ohci->next_config_rom == NULL)
1686                         return -ENOMEM;
1687
1688                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1689         } else {
1690                 /*
1691                  * In the suspend case, config_rom is NULL, which
1692                  * means that we just reuse the old config rom.
1693                  */
1694                 ohci->next_config_rom = ohci->config_rom;
1695                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1696         }
1697
1698         ohci->next_header = ohci->next_config_rom[0];
1699         ohci->next_config_rom[0] = 0;
1700         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1701         reg_write(ohci, OHCI1394_BusOptions,
1702                   be32_to_cpu(ohci->next_config_rom[2]));
1703         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1704
1705         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1706
1707         if (request_irq(dev->irq, irq_handler,
1708                         IRQF_SHARED, ohci_driver_name, ohci)) {
1709                 fw_error("Failed to allocate shared interrupt %d.\n",
1710                          dev->irq);
1711                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1712                                   ohci->config_rom, ohci->config_rom_bus);
1713                 return -EIO;
1714         }
1715
1716         irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1717                 OHCI1394_RQPkt | OHCI1394_RSPkt |
1718                 OHCI1394_isochTx | OHCI1394_isochRx |
1719                 OHCI1394_postedWriteErr |
1720                 OHCI1394_selfIDComplete |
1721                 OHCI1394_regAccessFail |
1722                 OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
1723                 OHCI1394_masterIntEnable;
1724         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1725                 irqs |= OHCI1394_busReset;
1726         reg_write(ohci, OHCI1394_IntMaskSet, irqs);
1727
1728         reg_write(ohci, OHCI1394_HCControlSet,
1729                   OHCI1394_HCControl_linkEnable |
1730                   OHCI1394_HCControl_BIBimageValid);
1731         flush_writes(ohci);
1732
1733         /*
1734          * We are ready to go, initiate bus reset to finish the
1735          * initialization.
1736          */
1737
1738         fw_core_initiate_bus_reset(&ohci->card, 1);
1739
1740         return 0;
1741 }
1742
1743 static int ohci_set_config_rom(struct fw_card *card,
1744                                const __be32 *config_rom, size_t length)
1745 {
1746         struct fw_ohci *ohci;
1747         unsigned long flags;
1748         int ret = -EBUSY;
1749         __be32 *next_config_rom;
1750         dma_addr_t uninitialized_var(next_config_rom_bus);
1751
1752         ohci = fw_ohci(card);
1753
1754         /*
1755          * When the OHCI controller is enabled, the config rom update
1756          * mechanism is a bit tricky, but easy enough to use.  See
1757          * section 5.5.6 in the OHCI specification.
1758          *
1759          * The OHCI controller caches the new config rom address in a
1760          * shadow register (ConfigROMmapNext) and needs a bus reset
1761          * for the changes to take place.  When the bus reset is
1762          * detected, the controller loads the new values for the
1763          * ConfigRomHeader and BusOptions registers from the specified
1764          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1765          * shadow register. All automatically and atomically.
1766          *
1767          * Now, there's a twist to this story.  The automatic load of
1768          * ConfigRomHeader and BusOptions doesn't honor the
1769          * noByteSwapData bit, so with a be32 config rom, the
1770          * controller will load be32 values in to these registers
1771          * during the atomic update, even on litte endian
1772          * architectures.  The workaround we use is to put a 0 in the
1773          * header quadlet; 0 is endian agnostic and means that the
1774          * config rom isn't ready yet.  In the bus reset tasklet we
1775          * then set up the real values for the two registers.
1776          *
1777          * We use ohci->lock to avoid racing with the code that sets
1778          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1779          */
1780
1781         next_config_rom =
1782                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1783                                    &next_config_rom_bus, GFP_KERNEL);
1784         if (next_config_rom == NULL)
1785                 return -ENOMEM;
1786
1787         spin_lock_irqsave(&ohci->lock, flags);
1788
1789         if (ohci->next_config_rom == NULL) {
1790                 ohci->next_config_rom = next_config_rom;
1791                 ohci->next_config_rom_bus = next_config_rom_bus;
1792
1793                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1794
1795                 ohci->next_header = config_rom[0];
1796                 ohci->next_config_rom[0] = 0;
1797
1798                 reg_write(ohci, OHCI1394_ConfigROMmap,
1799                           ohci->next_config_rom_bus);
1800                 ret = 0;
1801         }
1802
1803         spin_unlock_irqrestore(&ohci->lock, flags);
1804
1805         /*
1806          * Now initiate a bus reset to have the changes take
1807          * effect. We clean up the old config rom memory and DMA
1808          * mappings in the bus reset tasklet, since the OHCI
1809          * controller could need to access it before the bus reset
1810          * takes effect.
1811          */
1812         if (ret == 0)
1813                 fw_core_initiate_bus_reset(&ohci->card, 1);
1814         else
1815                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1816                                   next_config_rom, next_config_rom_bus);
1817
1818         return ret;
1819 }
1820
1821 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1822 {
1823         struct fw_ohci *ohci = fw_ohci(card);
1824
1825         at_context_transmit(&ohci->at_request_ctx, packet);
1826 }
1827
1828 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1829 {
1830         struct fw_ohci *ohci = fw_ohci(card);
1831
1832         at_context_transmit(&ohci->at_response_ctx, packet);
1833 }
1834
1835 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1836 {
1837         struct fw_ohci *ohci = fw_ohci(card);
1838         struct context *ctx = &ohci->at_request_ctx;
1839         struct driver_data *driver_data = packet->driver_data;
1840         int ret = -ENOENT;
1841
1842         tasklet_disable(&ctx->tasklet);
1843
1844         if (packet->ack != 0)
1845                 goto out;
1846
1847         if (packet->payload_mapped)
1848                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1849                                  packet->payload_length, DMA_TO_DEVICE);
1850
1851         log_ar_at_event('T', packet->speed, packet->header, 0x20);
1852         driver_data->packet = NULL;
1853         packet->ack = RCODE_CANCELLED;
1854         packet->callback(packet, &ohci->card, packet->ack);
1855         ret = 0;
1856  out:
1857         tasklet_enable(&ctx->tasklet);
1858
1859         return ret;
1860 }
1861
1862 static int ohci_enable_phys_dma(struct fw_card *card,
1863                                 int node_id, int generation)
1864 {
1865 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1866         return 0;
1867 #else
1868         struct fw_ohci *ohci = fw_ohci(card);
1869         unsigned long flags;
1870         int n, ret = 0;
1871
1872         /*
1873          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1874          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1875          */
1876
1877         spin_lock_irqsave(&ohci->lock, flags);
1878
1879         if (ohci->generation != generation) {
1880                 ret = -ESTALE;
1881                 goto out;
1882         }
1883
1884         /*
1885          * Note, if the node ID contains a non-local bus ID, physical DMA is
1886          * enabled for _all_ nodes on remote buses.
1887          */
1888
1889         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1890         if (n < 32)
1891                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1892         else
1893                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1894
1895         flush_writes(ohci);
1896  out:
1897         spin_unlock_irqrestore(&ohci->lock, flags);
1898
1899         return ret;
1900 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1901 }
1902
1903 static u32 cycle_timer_ticks(u32 cycle_timer)
1904 {
1905         u32 ticks;
1906
1907         ticks = cycle_timer & 0xfff;
1908         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1909         ticks += (3072 * 8000) * (cycle_timer >> 25);
1910
1911         return ticks;
1912 }
1913
1914 /*
1915  * Some controllers exhibit one or more of the following bugs when updating the
1916  * iso cycle timer register:
1917  *  - When the lowest six bits are wrapping around to zero, a read that happens
1918  *    at the same time will return garbage in the lowest ten bits.
1919  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1920  *    not incremented for about 60 ns.
1921  *  - Occasionally, the entire register reads zero.
1922  *
1923  * To catch these, we read the register three times and ensure that the
1924  * difference between each two consecutive reads is approximately the same, i.e.
1925  * less than twice the other.  Furthermore, any negative difference indicates an
1926  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1927  * execute, so we have enough precision to compute the ratio of the differences.)
1928  */
1929 static u32 ohci_get_cycle_time(struct fw_card *card)
1930 {
1931         struct fw_ohci *ohci = fw_ohci(card);
1932         u32 c0, c1, c2;
1933         u32 t0, t1, t2;
1934         s32 diff01, diff12;
1935         int i;
1936
1937         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1938
1939         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1940                 i = 0;
1941                 c1 = c2;
1942                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1943                 do {
1944                         c0 = c1;
1945                         c1 = c2;
1946                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1947                         t0 = cycle_timer_ticks(c0);
1948                         t1 = cycle_timer_ticks(c1);
1949                         t2 = cycle_timer_ticks(c2);
1950                         diff01 = t1 - t0;
1951                         diff12 = t2 - t1;
1952                 } while ((diff01 <= 0 || diff12 <= 0 ||
1953                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1954                          && i++ < 20);
1955         }
1956
1957         return c2;
1958 }
1959
1960 static void copy_iso_headers(struct iso_context *ctx, void *p)
1961 {
1962         int i = ctx->header_length;
1963
1964         if (i + ctx->base.header_size > PAGE_SIZE)
1965                 return;
1966
1967         /*
1968          * The iso header is byteswapped to little endian by
1969          * the controller, but the remaining header quadlets
1970          * are big endian.  We want to present all the headers
1971          * as big endian, so we have to swap the first quadlet.
1972          */
1973         if (ctx->base.header_size > 0)
1974                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1975         if (ctx->base.header_size > 4)
1976                 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
1977         if (ctx->base.header_size > 8)
1978                 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
1979         ctx->header_length += ctx->base.header_size;
1980 }
1981
1982 static int handle_ir_packet_per_buffer(struct context *context,
1983                                        struct descriptor *d,
1984                                        struct descriptor *last)
1985 {
1986         struct iso_context *ctx =
1987                 container_of(context, struct iso_context, context);
1988         struct descriptor *pd;
1989         __le32 *ir_header;
1990         void *p;
1991
1992         for (pd = d; pd <= last; pd++) {
1993                 if (pd->transfer_status)
1994                         break;
1995         }
1996         if (pd > last)
1997                 /* Descriptor(s) not done yet, stop iteration */
1998                 return 0;
1999
2000         p = last + 1;
2001         copy_iso_headers(ctx, p);
2002
2003         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2004                 ir_header = (__le32 *) p;
2005                 ctx->base.callback(&ctx->base,
2006                                    le32_to_cpu(ir_header[0]) & 0xffff,
2007                                    ctx->header_length, ctx->header,
2008                                    ctx->base.callback_data);
2009                 ctx->header_length = 0;
2010         }
2011
2012         return 1;
2013 }
2014
2015 static int handle_it_packet(struct context *context,
2016                             struct descriptor *d,
2017                             struct descriptor *last)
2018 {
2019         struct iso_context *ctx =
2020                 container_of(context, struct iso_context, context);
2021         int i;
2022         struct descriptor *pd;
2023
2024         for (pd = d; pd <= last; pd++)
2025                 if (pd->transfer_status)
2026                         break;
2027         if (pd > last)
2028                 /* Descriptor(s) not done yet, stop iteration */
2029                 return 0;
2030
2031         i = ctx->header_length;
2032         if (i + 4 < PAGE_SIZE) {
2033                 /* Present this value as big-endian to match the receive code */
2034                 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2035                                 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2036                                 le16_to_cpu(pd->res_count));
2037                 ctx->header_length += 4;
2038         }
2039         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2040                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
2041                                    ctx->header_length, ctx->header,
2042                                    ctx->base.callback_data);
2043                 ctx->header_length = 0;
2044         }
2045         return 1;
2046 }
2047
2048 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2049                                 int type, int channel, size_t header_size)
2050 {
2051         struct fw_ohci *ohci = fw_ohci(card);
2052         struct iso_context *ctx, *list;
2053         descriptor_callback_t callback;
2054         u64 *channels, dont_care = ~0ULL;
2055         u32 *mask, regs;
2056         unsigned long flags;
2057         int index, ret = -ENOMEM;
2058
2059         if (type == FW_ISO_CONTEXT_TRANSMIT) {
2060                 channels = &dont_care;
2061                 mask = &ohci->it_context_mask;
2062                 list = ohci->it_context_list;
2063                 callback = handle_it_packet;
2064         } else {
2065                 channels = &ohci->ir_context_channels;
2066                 mask = &ohci->ir_context_mask;
2067                 list = ohci->ir_context_list;
2068                 callback = handle_ir_packet_per_buffer;
2069         }
2070
2071         spin_lock_irqsave(&ohci->lock, flags);
2072         index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2073         if (index >= 0) {
2074                 *channels &= ~(1ULL << channel);
2075                 *mask &= ~(1 << index);
2076         }
2077         spin_unlock_irqrestore(&ohci->lock, flags);
2078
2079         if (index < 0)
2080                 return ERR_PTR(-EBUSY);
2081
2082         if (type == FW_ISO_CONTEXT_TRANSMIT)
2083                 regs = OHCI1394_IsoXmitContextBase(index);
2084         else
2085                 regs = OHCI1394_IsoRcvContextBase(index);
2086
2087         ctx = &list[index];
2088         memset(ctx, 0, sizeof(*ctx));
2089         ctx->header_length = 0;
2090         ctx->header = (void *) __get_free_page(GFP_KERNEL);
2091         if (ctx->header == NULL)
2092                 goto out;
2093
2094         ret = context_init(&ctx->context, ohci, regs, callback);
2095         if (ret < 0)
2096                 goto out_with_header;
2097
2098         return &ctx->base;
2099
2100  out_with_header:
2101         free_page((unsigned long)ctx->header);
2102  out:
2103         spin_lock_irqsave(&ohci->lock, flags);
2104         *mask |= 1 << index;
2105         spin_unlock_irqrestore(&ohci->lock, flags);
2106
2107         return ERR_PTR(ret);
2108 }
2109
2110 static int ohci_start_iso(struct fw_iso_context *base,
2111                           s32 cycle, u32 sync, u32 tags)
2112 {
2113         struct iso_context *ctx = container_of(base, struct iso_context, base);
2114         struct fw_ohci *ohci = ctx->context.ohci;
2115         u32 control, match;
2116         int index;
2117
2118         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2119                 index = ctx - ohci->it_context_list;
2120                 match = 0;
2121                 if (cycle >= 0)
2122                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2123                                 (cycle & 0x7fff) << 16;
2124
2125                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2126                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2127                 context_run(&ctx->context, match);
2128         } else {
2129                 index = ctx - ohci->ir_context_list;
2130                 control = IR_CONTEXT_ISOCH_HEADER;
2131                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2132                 if (cycle >= 0) {
2133                         match |= (cycle & 0x07fff) << 12;
2134                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2135                 }
2136
2137                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2138                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2139                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2140                 context_run(&ctx->context, control);
2141         }
2142
2143         return 0;
2144 }
2145
2146 static int ohci_stop_iso(struct fw_iso_context *base)
2147 {
2148         struct fw_ohci *ohci = fw_ohci(base->card);
2149         struct iso_context *ctx = container_of(base, struct iso_context, base);
2150         int index;
2151
2152         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2153                 index = ctx - ohci->it_context_list;
2154                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2155         } else {
2156                 index = ctx - ohci->ir_context_list;
2157                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2158         }
2159         flush_writes(ohci);
2160         context_stop(&ctx->context);
2161
2162         return 0;
2163 }
2164
2165 static void ohci_free_iso_context(struct fw_iso_context *base)
2166 {
2167         struct fw_ohci *ohci = fw_ohci(base->card);
2168         struct iso_context *ctx = container_of(base, struct iso_context, base);
2169         unsigned long flags;
2170         int index;
2171
2172         ohci_stop_iso(base);
2173         context_release(&ctx->context);
2174         free_page((unsigned long)ctx->header);
2175
2176         spin_lock_irqsave(&ohci->lock, flags);
2177
2178         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2179                 index = ctx - ohci->it_context_list;
2180                 ohci->it_context_mask |= 1 << index;
2181         } else {
2182                 index = ctx - ohci->ir_context_list;
2183                 ohci->ir_context_mask |= 1 << index;
2184                 ohci->ir_context_channels |= 1ULL << base->channel;
2185         }
2186
2187         spin_unlock_irqrestore(&ohci->lock, flags);
2188 }
2189
2190 static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2191                                    struct fw_iso_packet *packet,
2192                                    struct fw_iso_buffer *buffer,
2193                                    unsigned long payload)
2194 {
2195         struct iso_context *ctx = container_of(base, struct iso_context, base);
2196         struct descriptor *d, *last, *pd;
2197         struct fw_iso_packet *p;
2198         __le32 *header;
2199         dma_addr_t d_bus, page_bus;
2200         u32 z, header_z, payload_z, irq;
2201         u32 payload_index, payload_end_index, next_page_index;
2202         int page, end_page, i, length, offset;
2203
2204         p = packet;
2205         payload_index = payload;
2206
2207         if (p->skip)
2208                 z = 1;
2209         else
2210                 z = 2;
2211         if (p->header_length > 0)
2212                 z++;
2213
2214         /* Determine the first page the payload isn't contained in. */
2215         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2216         if (p->payload_length > 0)
2217                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2218         else
2219                 payload_z = 0;
2220
2221         z += payload_z;
2222
2223         /* Get header size in number of descriptors. */
2224         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2225
2226         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2227         if (d == NULL)
2228                 return -ENOMEM;
2229
2230         if (!p->skip) {
2231                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2232                 d[0].req_count = cpu_to_le16(8);
2233                 /*
2234                  * Link the skip address to this descriptor itself.  This causes
2235                  * a context to skip a cycle whenever lost cycles or FIFO
2236                  * overruns occur, without dropping the data.  The application
2237                  * should then decide whether this is an error condition or not.
2238                  * FIXME:  Make the context's cycle-lost behaviour configurable?
2239                  */
2240                 d[0].branch_address = cpu_to_le32(d_bus | z);
2241
2242                 header = (__le32 *) &d[1];
2243                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2244                                         IT_HEADER_TAG(p->tag) |
2245                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2246                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2247                                         IT_HEADER_SPEED(ctx->base.speed));
2248                 header[1] =
2249                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2250                                                           p->payload_length));
2251         }
2252
2253         if (p->header_length > 0) {
2254                 d[2].req_count    = cpu_to_le16(p->header_length);
2255                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2256                 memcpy(&d[z], p->header, p->header_length);
2257         }
2258
2259         pd = d + z - payload_z;
2260         payload_end_index = payload_index + p->payload_length;
2261         for (i = 0; i < payload_z; i++) {
2262                 page               = payload_index >> PAGE_SHIFT;
2263                 offset             = payload_index & ~PAGE_MASK;
2264                 next_page_index    = (page + 1) << PAGE_SHIFT;
2265                 length             =
2266                         min(next_page_index, payload_end_index) - payload_index;
2267                 pd[i].req_count    = cpu_to_le16(length);
2268
2269                 page_bus = page_private(buffer->pages[page]);
2270                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2271
2272                 payload_index += length;
2273         }
2274
2275         if (p->interrupt)
2276                 irq = DESCRIPTOR_IRQ_ALWAYS;
2277         else
2278                 irq = DESCRIPTOR_NO_IRQ;
2279
2280         last = z == 2 ? d : d + z - 1;
2281         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2282                                      DESCRIPTOR_STATUS |
2283                                      DESCRIPTOR_BRANCH_ALWAYS |
2284                                      irq);
2285
2286         context_append(&ctx->context, d, z, header_z);
2287
2288         return 0;
2289 }
2290
2291 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2292                                         struct fw_iso_packet *packet,
2293                                         struct fw_iso_buffer *buffer,
2294                                         unsigned long payload)
2295 {
2296         struct iso_context *ctx = container_of(base, struct iso_context, base);
2297         struct descriptor *d, *pd;
2298         struct fw_iso_packet *p = packet;
2299         dma_addr_t d_bus, page_bus;
2300         u32 z, header_z, rest;
2301         int i, j, length;
2302         int page, offset, packet_count, header_size, payload_per_buffer;
2303
2304         /*
2305          * The OHCI controller puts the isochronous header and trailer in the
2306          * buffer, so we need at least 8 bytes.
2307          */
2308         packet_count = p->header_length / ctx->base.header_size;
2309         header_size  = max(ctx->base.header_size, (size_t)8);
2310
2311         /* Get header size in number of descriptors. */
2312         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2313         page     = payload >> PAGE_SHIFT;
2314         offset   = payload & ~PAGE_MASK;
2315         payload_per_buffer = p->payload_length / packet_count;
2316
2317         for (i = 0; i < packet_count; i++) {
2318                 /* d points to the header descriptor */
2319                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2320                 d = context_get_descriptors(&ctx->context,
2321                                 z + header_z, &d_bus);
2322                 if (d == NULL)
2323                         return -ENOMEM;
2324
2325                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2326                                               DESCRIPTOR_INPUT_MORE);
2327                 if (p->skip && i == 0)
2328                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2329                 d->req_count    = cpu_to_le16(header_size);
2330                 d->res_count    = d->req_count;
2331                 d->transfer_status = 0;
2332                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2333
2334                 rest = payload_per_buffer;
2335                 pd = d;
2336                 for (j = 1; j < z; j++) {
2337                         pd++;
2338                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2339                                                   DESCRIPTOR_INPUT_MORE);
2340
2341                         if (offset + rest < PAGE_SIZE)
2342                                 length = rest;
2343                         else
2344                                 length = PAGE_SIZE - offset;
2345                         pd->req_count = cpu_to_le16(length);
2346                         pd->res_count = pd->req_count;
2347                         pd->transfer_status = 0;
2348
2349                         page_bus = page_private(buffer->pages[page]);
2350                         pd->data_address = cpu_to_le32(page_bus + offset);
2351
2352                         offset = (offset + length) & ~PAGE_MASK;
2353                         rest -= length;
2354                         if (offset == 0)
2355                                 page++;
2356                 }
2357                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2358                                           DESCRIPTOR_INPUT_LAST |
2359                                           DESCRIPTOR_BRANCH_ALWAYS);
2360                 if (p->interrupt && i == packet_count - 1)
2361                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2362
2363                 context_append(&ctx->context, d, z, header_z);
2364         }
2365
2366         return 0;
2367 }
2368
2369 static int ohci_queue_iso(struct fw_iso_context *base,
2370                           struct fw_iso_packet *packet,
2371                           struct fw_iso_buffer *buffer,
2372                           unsigned long payload)
2373 {
2374         struct iso_context *ctx = container_of(base, struct iso_context, base);
2375         unsigned long flags;
2376         int ret;
2377
2378         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2379         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2380                 ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2381         else
2382                 ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2383                                                         buffer, payload);
2384         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2385
2386         return ret;
2387 }
2388
2389 static const struct fw_card_driver ohci_driver = {
2390         .enable                 = ohci_enable,
2391         .update_phy_reg         = ohci_update_phy_reg,
2392         .set_config_rom         = ohci_set_config_rom,
2393         .send_request           = ohci_send_request,
2394         .send_response          = ohci_send_response,
2395         .cancel_packet          = ohci_cancel_packet,
2396         .enable_phys_dma        = ohci_enable_phys_dma,
2397         .get_cycle_time         = ohci_get_cycle_time,
2398
2399         .allocate_iso_context   = ohci_allocate_iso_context,
2400         .free_iso_context       = ohci_free_iso_context,
2401         .queue_iso              = ohci_queue_iso,
2402         .start_iso              = ohci_start_iso,
2403         .stop_iso               = ohci_stop_iso,
2404 };
2405
2406 #ifdef CONFIG_PPC_PMAC
2407 static void pmac_ohci_on(struct pci_dev *dev)
2408 {
2409         if (machine_is(powermac)) {
2410                 struct device_node *ofn = pci_device_to_OF_node(dev);
2411
2412                 if (ofn) {
2413                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2414                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2415                 }
2416         }
2417 }
2418
2419 static void pmac_ohci_off(struct pci_dev *dev)
2420 {
2421         if (machine_is(powermac)) {
2422                 struct device_node *ofn = pci_device_to_OF_node(dev);
2423
2424                 if (ofn) {
2425                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2426                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2427                 }
2428         }
2429 }
2430 #else
2431 static inline void pmac_ohci_on(struct pci_dev *dev) {}
2432 static inline void pmac_ohci_off(struct pci_dev *dev) {}
2433 #endif /* CONFIG_PPC_PMAC */
2434
2435 static int __devinit pci_probe(struct pci_dev *dev,
2436                                const struct pci_device_id *ent)
2437 {
2438         struct fw_ohci *ohci;
2439         u32 bus_options, max_receive, link_speed, version, link_enh;
2440         u64 guid;
2441         int i, err, n_ir, n_it;
2442         size_t size;
2443
2444         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2445         if (ohci == NULL) {
2446                 err = -ENOMEM;
2447                 goto fail;
2448         }
2449
2450         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2451
2452         pmac_ohci_on(dev);
2453
2454         err = pci_enable_device(dev);
2455         if (err) {
2456                 fw_error("Failed to enable OHCI hardware\n");
2457                 goto fail_free;
2458         }
2459
2460         pci_set_master(dev);
2461         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2462         pci_set_drvdata(dev, ohci);
2463
2464         spin_lock_init(&ohci->lock);
2465
2466         tasklet_init(&ohci->bus_reset_tasklet,
2467                      bus_reset_tasklet, (unsigned long)ohci);
2468
2469         err = pci_request_region(dev, 0, ohci_driver_name);
2470         if (err) {
2471                 fw_error("MMIO resource unavailable\n");
2472                 goto fail_disable;
2473         }
2474
2475         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2476         if (ohci->registers == NULL) {
2477                 fw_error("Failed to remap registers\n");
2478                 err = -ENXIO;
2479                 goto fail_iomem;
2480         }
2481
2482         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
2483                 if (ohci_quirks[i].vendor == dev->vendor &&
2484                     (ohci_quirks[i].device == dev->device ||
2485                      ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
2486                         ohci->quirks = ohci_quirks[i].flags;
2487                         break;
2488                 }
2489         if (param_quirks)
2490                 ohci->quirks = param_quirks;
2491
2492         /* TI OHCI-Lynx and compatible: set recommended configuration bits. */
2493         if (dev->vendor == PCI_VENDOR_ID_TI) {
2494                 pci_read_config_dword(dev, PCI_CFG_TI_LinkEnh, &link_enh);
2495
2496                 /* adjust latency of ATx FIFO: use 1.7 KB threshold */
2497                 link_enh &= ~TI_LinkEnh_atx_thresh_mask;
2498                 link_enh |= TI_LinkEnh_atx_thresh_1_7K;
2499
2500                 /* use priority arbitration for asynchronous responses */
2501                 link_enh |= TI_LinkEnh_enab_unfair;
2502
2503                 /* required for aPhyEnhanceEnable to work */
2504                 link_enh |= TI_LinkEnh_enab_accel;
2505
2506                 pci_write_config_dword(dev, PCI_CFG_TI_LinkEnh, link_enh);
2507         }
2508
2509         ar_context_init(&ohci->ar_request_ctx, ohci,
2510                         OHCI1394_AsReqRcvContextControlSet);
2511
2512         ar_context_init(&ohci->ar_response_ctx, ohci,
2513                         OHCI1394_AsRspRcvContextControlSet);
2514
2515         context_init(&ohci->at_request_ctx, ohci,
2516                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2517
2518         context_init(&ohci->at_response_ctx, ohci,
2519                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2520
2521         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2522         ohci->ir_context_channels = ~0ULL;
2523         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2524         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2525         n_ir = hweight32(ohci->ir_context_mask);
2526         size = sizeof(struct iso_context) * n_ir;
2527         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2528
2529         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2530         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2531         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2532         n_it = hweight32(ohci->it_context_mask);
2533         size = sizeof(struct iso_context) * n_it;
2534         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2535
2536         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2537                 err = -ENOMEM;
2538                 goto fail_contexts;
2539         }
2540
2541         /* self-id dma buffer allocation */
2542         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2543                                                SELF_ID_BUF_SIZE,
2544                                                &ohci->self_id_bus,
2545                                                GFP_KERNEL);
2546         if (ohci->self_id_cpu == NULL) {
2547                 err = -ENOMEM;
2548                 goto fail_contexts;
2549         }
2550
2551         bus_options = reg_read(ohci, OHCI1394_BusOptions);
2552         max_receive = (bus_options >> 12) & 0xf;
2553         link_speed = bus_options & 0x7;
2554         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2555                 reg_read(ohci, OHCI1394_GUIDLo);
2556
2557         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2558         if (err)
2559                 goto fail_self_id;
2560
2561         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2562         fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
2563                   "%d IR + %d IT contexts, quirks 0x%x\n",
2564                   dev_name(&dev->dev), version >> 16, version & 0xff,
2565                   n_ir, n_it, ohci->quirks);
2566
2567         return 0;
2568
2569  fail_self_id:
2570         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2571                           ohci->self_id_cpu, ohci->self_id_bus);
2572  fail_contexts:
2573         kfree(ohci->ir_context_list);
2574         kfree(ohci->it_context_list);
2575         context_release(&ohci->at_response_ctx);
2576         context_release(&ohci->at_request_ctx);
2577         ar_context_release(&ohci->ar_response_ctx);
2578         ar_context_release(&ohci->ar_request_ctx);
2579         pci_iounmap(dev, ohci->registers);
2580  fail_iomem:
2581         pci_release_region(dev, 0);
2582  fail_disable:
2583         pci_disable_device(dev);
2584  fail_free:
2585         kfree(&ohci->card);
2586         pmac_ohci_off(dev);
2587  fail:
2588         if (err == -ENOMEM)
2589                 fw_error("Out of memory\n");
2590
2591         return err;
2592 }
2593
2594 static void pci_remove(struct pci_dev *dev)
2595 {
2596         struct fw_ohci *ohci;
2597
2598         ohci = pci_get_drvdata(dev);
2599         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2600         flush_writes(ohci);
2601         fw_core_remove_card(&ohci->card);
2602
2603         /*
2604          * FIXME: Fail all pending packets here, now that the upper
2605          * layers can't queue any more.
2606          */
2607
2608         software_reset(ohci);
2609         free_irq(dev->irq, ohci);
2610
2611         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2612                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2613                                   ohci->next_config_rom, ohci->next_config_rom_bus);
2614         if (ohci->config_rom)
2615                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2616                                   ohci->config_rom, ohci->config_rom_bus);
2617         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2618                           ohci->self_id_cpu, ohci->self_id_bus);
2619         ar_context_release(&ohci->ar_request_ctx);
2620         ar_context_release(&ohci->ar_response_ctx);
2621         context_release(&ohci->at_request_ctx);
2622         context_release(&ohci->at_response_ctx);
2623         kfree(ohci->it_context_list);
2624         kfree(ohci->ir_context_list);
2625         pci_iounmap(dev, ohci->registers);
2626         pci_release_region(dev, 0);
2627         pci_disable_device(dev);
2628         kfree(&ohci->card);
2629         pmac_ohci_off(dev);
2630
2631         fw_notify("Removed fw-ohci device.\n");
2632 }
2633
2634 #ifdef CONFIG_PM
2635 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2636 {
2637         struct fw_ohci *ohci = pci_get_drvdata(dev);
2638         int err;
2639
2640         software_reset(ohci);
2641         free_irq(dev->irq, ohci);
2642         err = pci_save_state(dev);
2643         if (err) {
2644                 fw_error("pci_save_state failed\n");
2645                 return err;
2646         }
2647         err = pci_set_power_state(dev, pci_choose_state(dev, state));
2648         if (err)
2649                 fw_error("pci_set_power_state failed with %d\n", err);
2650         pmac_ohci_off(dev);
2651
2652         return 0;
2653 }
2654
2655 static int pci_resume(struct pci_dev *dev)
2656 {
2657         struct fw_ohci *ohci = pci_get_drvdata(dev);
2658         int err;
2659
2660         pmac_ohci_on(dev);
2661         pci_set_power_state(dev, PCI_D0);
2662         pci_restore_state(dev);
2663         err = pci_enable_device(dev);
2664         if (err) {
2665                 fw_error("pci_enable_device failed\n");
2666                 return err;
2667         }
2668
2669         return ohci_enable(&ohci->card, NULL, 0);
2670 }
2671 #endif
2672
2673 static const struct pci_device_id pci_table[] = {
2674         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2675         { }
2676 };
2677
2678 MODULE_DEVICE_TABLE(pci, pci_table);
2679
2680 static struct pci_driver fw_ohci_pci_driver = {
2681         .name           = ohci_driver_name,
2682         .id_table       = pci_table,
2683         .probe          = pci_probe,
2684         .remove         = pci_remove,
2685 #ifdef CONFIG_PM
2686         .resume         = pci_resume,
2687         .suspend        = pci_suspend,
2688 #endif
2689 };
2690
2691 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2692 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2693 MODULE_LICENSE("GPL");
2694
2695 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2696 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2697 MODULE_ALIAS("ohci1394");
2698 #endif
2699
2700 static int __init fw_ohci_init(void)
2701 {
2702         return pci_register_driver(&fw_ohci_pci_driver);
2703 }
2704
2705 static void __exit fw_ohci_cleanup(void)
2706 {
2707         pci_unregister_driver(&fw_ohci_pci_driver);
2708 }
2709
2710 module_init(fw_ohci_init);
2711 module_exit(fw_ohci_cleanup);