]> bbs.cooldavid.org Git - net-next-2.6.git/blob - block/cfq-iosched.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/lethal/sh-2.6
[net-next-2.6.git] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/hash.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15
16 /*
17  * tunables
18  */
19 static const int cfq_quantum = 4;               /* max queue in one round of service */
20 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
21 static const int cfq_back_max = 16 * 1024;      /* maximum backwards seek, in KiB */
22 static const int cfq_back_penalty = 2;          /* penalty of a backwards seek */
23
24 static const int cfq_slice_sync = HZ / 10;
25 static int cfq_slice_async = HZ / 25;
26 static const int cfq_slice_async_rq = 2;
27 static int cfq_slice_idle = HZ / 125;
28
29 #define CFQ_IDLE_GRACE          (HZ / 10)
30 #define CFQ_SLICE_SCALE         (5)
31
32 #define CFQ_KEY_ASYNC           (0)
33
34 /*
35  * for the hash of cfqq inside the cfqd
36  */
37 #define CFQ_QHASH_SHIFT         6
38 #define CFQ_QHASH_ENTRIES       (1 << CFQ_QHASH_SHIFT)
39 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
40
41 #define list_entry_cfqq(ptr)    list_entry((ptr), struct cfq_queue, cfq_list)
42
43 #define RQ_CIC(rq)              ((struct cfq_io_context*)(rq)->elevator_private)
44 #define RQ_CFQQ(rq)             ((rq)->elevator_private2)
45
46 static kmem_cache_t *cfq_pool;
47 static kmem_cache_t *cfq_ioc_pool;
48
49 static DEFINE_PER_CPU(unsigned long, ioc_count);
50 static struct completion *ioc_gone;
51
52 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
53 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
54 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
55
56 #define ASYNC                   (0)
57 #define SYNC                    (1)
58
59 #define cfq_cfqq_dispatched(cfqq)       \
60         ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
61
62 #define cfq_cfqq_class_sync(cfqq)       ((cfqq)->key != CFQ_KEY_ASYNC)
63
64 #define cfq_cfqq_sync(cfqq)             \
65         (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
66
67 #define sample_valid(samples)   ((samples) > 80)
68
69 /*
70  * Per block device queue structure
71  */
72 struct cfq_data {
73         request_queue_t *queue;
74
75         /*
76          * rr list of queues with requests and the count of them
77          */
78         struct list_head rr_list[CFQ_PRIO_LISTS];
79         struct list_head busy_rr;
80         struct list_head cur_rr;
81         struct list_head idle_rr;
82         unsigned int busy_queues;
83
84         /*
85          * cfqq lookup hash
86          */
87         struct hlist_head *cfq_hash;
88
89         int rq_in_driver;
90         int hw_tag;
91
92         /*
93          * idle window management
94          */
95         struct timer_list idle_slice_timer;
96         struct work_struct unplug_work;
97
98         struct cfq_queue *active_queue;
99         struct cfq_io_context *active_cic;
100         int cur_prio, cur_end_prio;
101         unsigned int dispatch_slice;
102
103         struct timer_list idle_class_timer;
104
105         sector_t last_sector;
106         unsigned long last_end_request;
107
108         /*
109          * tunables, see top of file
110          */
111         unsigned int cfq_quantum;
112         unsigned int cfq_fifo_expire[2];
113         unsigned int cfq_back_penalty;
114         unsigned int cfq_back_max;
115         unsigned int cfq_slice[2];
116         unsigned int cfq_slice_async_rq;
117         unsigned int cfq_slice_idle;
118
119         struct list_head cic_list;
120 };
121
122 /*
123  * Per process-grouping structure
124  */
125 struct cfq_queue {
126         /* reference count */
127         atomic_t ref;
128         /* parent cfq_data */
129         struct cfq_data *cfqd;
130         /* cfqq lookup hash */
131         struct hlist_node cfq_hash;
132         /* hash key */
133         unsigned int key;
134         /* member of the rr/busy/cur/idle cfqd list */
135         struct list_head cfq_list;
136         /* sorted list of pending requests */
137         struct rb_root sort_list;
138         /* if fifo isn't expired, next request to serve */
139         struct request *next_rq;
140         /* requests queued in sort_list */
141         int queued[2];
142         /* currently allocated requests */
143         int allocated[2];
144         /* pending metadata requests */
145         int meta_pending;
146         /* fifo list of requests in sort_list */
147         struct list_head fifo;
148
149         unsigned long slice_start;
150         unsigned long slice_end;
151         unsigned long slice_left;
152
153         /* number of requests that are on the dispatch list */
154         int on_dispatch[2];
155
156         /* io prio of this group */
157         unsigned short ioprio, org_ioprio;
158         unsigned short ioprio_class, org_ioprio_class;
159
160         /* various state flags, see below */
161         unsigned int flags;
162 };
163
164 enum cfqq_state_flags {
165         CFQ_CFQQ_FLAG_on_rr = 0,
166         CFQ_CFQQ_FLAG_wait_request,
167         CFQ_CFQQ_FLAG_must_alloc,
168         CFQ_CFQQ_FLAG_must_alloc_slice,
169         CFQ_CFQQ_FLAG_must_dispatch,
170         CFQ_CFQQ_FLAG_fifo_expire,
171         CFQ_CFQQ_FLAG_idle_window,
172         CFQ_CFQQ_FLAG_prio_changed,
173         CFQ_CFQQ_FLAG_queue_new,
174 };
175
176 #define CFQ_CFQQ_FNS(name)                                              \
177 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
178 {                                                                       \
179         cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name);                     \
180 }                                                                       \
181 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
182 {                                                                       \
183         cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                    \
184 }                                                                       \
185 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
186 {                                                                       \
187         return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;        \
188 }
189
190 CFQ_CFQQ_FNS(on_rr);
191 CFQ_CFQQ_FNS(wait_request);
192 CFQ_CFQQ_FNS(must_alloc);
193 CFQ_CFQQ_FNS(must_alloc_slice);
194 CFQ_CFQQ_FNS(must_dispatch);
195 CFQ_CFQQ_FNS(fifo_expire);
196 CFQ_CFQQ_FNS(idle_window);
197 CFQ_CFQQ_FNS(prio_changed);
198 CFQ_CFQQ_FNS(queue_new);
199 #undef CFQ_CFQQ_FNS
200
201 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
202 static void cfq_dispatch_insert(request_queue_t *, struct request *);
203 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
204
205 /*
206  * scheduler run of queue, if there are requests pending and no one in the
207  * driver that will restart queueing
208  */
209 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
210 {
211         if (cfqd->busy_queues)
212                 kblockd_schedule_work(&cfqd->unplug_work);
213 }
214
215 static int cfq_queue_empty(request_queue_t *q)
216 {
217         struct cfq_data *cfqd = q->elevator->elevator_data;
218
219         return !cfqd->busy_queues;
220 }
221
222 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw)
223 {
224         if (rw == READ || rw == WRITE_SYNC)
225                 return task->pid;
226
227         return CFQ_KEY_ASYNC;
228 }
229
230 /*
231  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
232  * We choose the request that is closest to the head right now. Distance
233  * behind the head is penalized and only allowed to a certain extent.
234  */
235 static struct request *
236 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
237 {
238         sector_t last, s1, s2, d1 = 0, d2 = 0;
239         unsigned long back_max;
240 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
241 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
242         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
243
244         if (rq1 == NULL || rq1 == rq2)
245                 return rq2;
246         if (rq2 == NULL)
247                 return rq1;
248
249         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
250                 return rq1;
251         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
252                 return rq2;
253         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
254                 return rq1;
255         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
256                 return rq2;
257
258         s1 = rq1->sector;
259         s2 = rq2->sector;
260
261         last = cfqd->last_sector;
262
263         /*
264          * by definition, 1KiB is 2 sectors
265          */
266         back_max = cfqd->cfq_back_max * 2;
267
268         /*
269          * Strict one way elevator _except_ in the case where we allow
270          * short backward seeks which are biased as twice the cost of a
271          * similar forward seek.
272          */
273         if (s1 >= last)
274                 d1 = s1 - last;
275         else if (s1 + back_max >= last)
276                 d1 = (last - s1) * cfqd->cfq_back_penalty;
277         else
278                 wrap |= CFQ_RQ1_WRAP;
279
280         if (s2 >= last)
281                 d2 = s2 - last;
282         else if (s2 + back_max >= last)
283                 d2 = (last - s2) * cfqd->cfq_back_penalty;
284         else
285                 wrap |= CFQ_RQ2_WRAP;
286
287         /* Found required data */
288
289         /*
290          * By doing switch() on the bit mask "wrap" we avoid having to
291          * check two variables for all permutations: --> faster!
292          */
293         switch (wrap) {
294         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
295                 if (d1 < d2)
296                         return rq1;
297                 else if (d2 < d1)
298                         return rq2;
299                 else {
300                         if (s1 >= s2)
301                                 return rq1;
302                         else
303                                 return rq2;
304                 }
305
306         case CFQ_RQ2_WRAP:
307                 return rq1;
308         case CFQ_RQ1_WRAP:
309                 return rq2;
310         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
311         default:
312                 /*
313                  * Since both rqs are wrapped,
314                  * start with the one that's further behind head
315                  * (--> only *one* back seek required),
316                  * since back seek takes more time than forward.
317                  */
318                 if (s1 <= s2)
319                         return rq1;
320                 else
321                         return rq2;
322         }
323 }
324
325 /*
326  * would be nice to take fifo expire time into account as well
327  */
328 static struct request *
329 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
330                   struct request *last)
331 {
332         struct rb_node *rbnext = rb_next(&last->rb_node);
333         struct rb_node *rbprev = rb_prev(&last->rb_node);
334         struct request *next = NULL, *prev = NULL;
335
336         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
337
338         if (rbprev)
339                 prev = rb_entry_rq(rbprev);
340
341         if (rbnext)
342                 next = rb_entry_rq(rbnext);
343         else {
344                 rbnext = rb_first(&cfqq->sort_list);
345                 if (rbnext && rbnext != &last->rb_node)
346                         next = rb_entry_rq(rbnext);
347         }
348
349         return cfq_choose_req(cfqd, next, prev);
350 }
351
352 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
353 {
354         struct cfq_data *cfqd = cfqq->cfqd;
355         struct list_head *list;
356
357         BUG_ON(!cfq_cfqq_on_rr(cfqq));
358
359         list_del(&cfqq->cfq_list);
360
361         if (cfq_class_rt(cfqq))
362                 list = &cfqd->cur_rr;
363         else if (cfq_class_idle(cfqq))
364                 list = &cfqd->idle_rr;
365         else {
366                 /*
367                  * if cfqq has requests in flight, don't allow it to be
368                  * found in cfq_set_active_queue before it has finished them.
369                  * this is done to increase fairness between a process that
370                  * has lots of io pending vs one that only generates one
371                  * sporadically or synchronously
372                  */
373                 if (cfq_cfqq_dispatched(cfqq))
374                         list = &cfqd->busy_rr;
375                 else
376                         list = &cfqd->rr_list[cfqq->ioprio];
377         }
378
379         /*
380          * If this queue was preempted or is new (never been serviced), let
381          * it be added first for fairness but beind other new queues.
382          * Otherwise, just add to the back  of the list.
383          */
384         if (preempted || cfq_cfqq_queue_new(cfqq)) {
385                 struct list_head *n = list;
386                 struct cfq_queue *__cfqq;
387
388                 while (n->next != list) {
389                         __cfqq = list_entry_cfqq(n->next);
390                         if (!cfq_cfqq_queue_new(__cfqq))
391                                 break;
392
393                         n = n->next;
394                 }
395
396                 list = n;
397         }
398
399         list_add_tail(&cfqq->cfq_list, list);
400 }
401
402 /*
403  * add to busy list of queues for service, trying to be fair in ordering
404  * the pending list according to last request service
405  */
406 static inline void
407 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
408 {
409         BUG_ON(cfq_cfqq_on_rr(cfqq));
410         cfq_mark_cfqq_on_rr(cfqq);
411         cfqd->busy_queues++;
412
413         cfq_resort_rr_list(cfqq, 0);
414 }
415
416 static inline void
417 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
418 {
419         BUG_ON(!cfq_cfqq_on_rr(cfqq));
420         cfq_clear_cfqq_on_rr(cfqq);
421         list_del_init(&cfqq->cfq_list);
422
423         BUG_ON(!cfqd->busy_queues);
424         cfqd->busy_queues--;
425 }
426
427 /*
428  * rb tree support functions
429  */
430 static inline void cfq_del_rq_rb(struct request *rq)
431 {
432         struct cfq_queue *cfqq = RQ_CFQQ(rq);
433         struct cfq_data *cfqd = cfqq->cfqd;
434         const int sync = rq_is_sync(rq);
435
436         BUG_ON(!cfqq->queued[sync]);
437         cfqq->queued[sync]--;
438
439         elv_rb_del(&cfqq->sort_list, rq);
440
441         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
442                 cfq_del_cfqq_rr(cfqd, cfqq);
443 }
444
445 static void cfq_add_rq_rb(struct request *rq)
446 {
447         struct cfq_queue *cfqq = RQ_CFQQ(rq);
448         struct cfq_data *cfqd = cfqq->cfqd;
449         struct request *__alias;
450
451         cfqq->queued[rq_is_sync(rq)]++;
452
453         /*
454          * looks a little odd, but the first insert might return an alias.
455          * if that happens, put the alias on the dispatch list
456          */
457         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
458                 cfq_dispatch_insert(cfqd->queue, __alias);
459 }
460
461 static inline void
462 cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
463 {
464         elv_rb_del(&cfqq->sort_list, rq);
465         cfqq->queued[rq_is_sync(rq)]--;
466         cfq_add_rq_rb(rq);
467 }
468
469 static struct request *
470 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
471 {
472         struct task_struct *tsk = current;
473         pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio));
474         struct cfq_queue *cfqq;
475
476         cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
477         if (cfqq) {
478                 sector_t sector = bio->bi_sector + bio_sectors(bio);
479
480                 return elv_rb_find(&cfqq->sort_list, sector);
481         }
482
483         return NULL;
484 }
485
486 static void cfq_activate_request(request_queue_t *q, struct request *rq)
487 {
488         struct cfq_data *cfqd = q->elevator->elevator_data;
489
490         cfqd->rq_in_driver++;
491
492         /*
493          * If the depth is larger 1, it really could be queueing. But lets
494          * make the mark a little higher - idling could still be good for
495          * low queueing, and a low queueing number could also just indicate
496          * a SCSI mid layer like behaviour where limit+1 is often seen.
497          */
498         if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
499                 cfqd->hw_tag = 1;
500 }
501
502 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
503 {
504         struct cfq_data *cfqd = q->elevator->elevator_data;
505
506         WARN_ON(!cfqd->rq_in_driver);
507         cfqd->rq_in_driver--;
508 }
509
510 static void cfq_remove_request(struct request *rq)
511 {
512         struct cfq_queue *cfqq = RQ_CFQQ(rq);
513
514         if (cfqq->next_rq == rq)
515                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
516
517         list_del_init(&rq->queuelist);
518         cfq_del_rq_rb(rq);
519
520         if (rq_is_meta(rq)) {
521                 WARN_ON(!cfqq->meta_pending);
522                 cfqq->meta_pending--;
523         }
524 }
525
526 static int
527 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
528 {
529         struct cfq_data *cfqd = q->elevator->elevator_data;
530         struct request *__rq;
531
532         __rq = cfq_find_rq_fmerge(cfqd, bio);
533         if (__rq && elv_rq_merge_ok(__rq, bio)) {
534                 *req = __rq;
535                 return ELEVATOR_FRONT_MERGE;
536         }
537
538         return ELEVATOR_NO_MERGE;
539 }
540
541 static void cfq_merged_request(request_queue_t *q, struct request *req,
542                                int type)
543 {
544         if (type == ELEVATOR_FRONT_MERGE) {
545                 struct cfq_queue *cfqq = RQ_CFQQ(req);
546
547                 cfq_reposition_rq_rb(cfqq, req);
548         }
549 }
550
551 static void
552 cfq_merged_requests(request_queue_t *q, struct request *rq,
553                     struct request *next)
554 {
555         /*
556          * reposition in fifo if next is older than rq
557          */
558         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
559             time_before(next->start_time, rq->start_time))
560                 list_move(&rq->queuelist, &next->queuelist);
561
562         cfq_remove_request(next);
563 }
564
565 static inline void
566 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
567 {
568         if (cfqq) {
569                 /*
570                  * stop potential idle class queues waiting service
571                  */
572                 del_timer(&cfqd->idle_class_timer);
573
574                 cfqq->slice_start = jiffies;
575                 cfqq->slice_end = 0;
576                 cfqq->slice_left = 0;
577                 cfq_clear_cfqq_must_alloc_slice(cfqq);
578                 cfq_clear_cfqq_fifo_expire(cfqq);
579         }
580
581         cfqd->active_queue = cfqq;
582 }
583
584 /*
585  * current cfqq expired its slice (or was too idle), select new one
586  */
587 static void
588 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
589                     int preempted)
590 {
591         unsigned long now = jiffies;
592
593         if (cfq_cfqq_wait_request(cfqq))
594                 del_timer(&cfqd->idle_slice_timer);
595
596         if (!preempted && !cfq_cfqq_dispatched(cfqq))
597                 cfq_schedule_dispatch(cfqd);
598
599         cfq_clear_cfqq_must_dispatch(cfqq);
600         cfq_clear_cfqq_wait_request(cfqq);
601         cfq_clear_cfqq_queue_new(cfqq);
602
603         /*
604          * store what was left of this slice, if the queue idled out
605          * or was preempted
606          */
607         if (time_after(cfqq->slice_end, now))
608                 cfqq->slice_left = cfqq->slice_end - now;
609         else
610                 cfqq->slice_left = 0;
611
612         if (cfq_cfqq_on_rr(cfqq))
613                 cfq_resort_rr_list(cfqq, preempted);
614
615         if (cfqq == cfqd->active_queue)
616                 cfqd->active_queue = NULL;
617
618         if (cfqd->active_cic) {
619                 put_io_context(cfqd->active_cic->ioc);
620                 cfqd->active_cic = NULL;
621         }
622
623         cfqd->dispatch_slice = 0;
624 }
625
626 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
627 {
628         struct cfq_queue *cfqq = cfqd->active_queue;
629
630         if (cfqq)
631                 __cfq_slice_expired(cfqd, cfqq, preempted);
632 }
633
634 /*
635  * 0
636  * 0,1
637  * 0,1,2
638  * 0,1,2,3
639  * 0,1,2,3,4
640  * 0,1,2,3,4,5
641  * 0,1,2,3,4,5,6
642  * 0,1,2,3,4,5,6,7
643  */
644 static int cfq_get_next_prio_level(struct cfq_data *cfqd)
645 {
646         int prio, wrap;
647
648         prio = -1;
649         wrap = 0;
650         do {
651                 int p;
652
653                 for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
654                         if (!list_empty(&cfqd->rr_list[p])) {
655                                 prio = p;
656                                 break;
657                         }
658                 }
659
660                 if (prio != -1)
661                         break;
662                 cfqd->cur_prio = 0;
663                 if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
664                         cfqd->cur_end_prio = 0;
665                         if (wrap)
666                                 break;
667                         wrap = 1;
668                 }
669         } while (1);
670
671         if (unlikely(prio == -1))
672                 return -1;
673
674         BUG_ON(prio >= CFQ_PRIO_LISTS);
675
676         list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
677
678         cfqd->cur_prio = prio + 1;
679         if (cfqd->cur_prio > cfqd->cur_end_prio) {
680                 cfqd->cur_end_prio = cfqd->cur_prio;
681                 cfqd->cur_prio = 0;
682         }
683         if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
684                 cfqd->cur_prio = 0;
685                 cfqd->cur_end_prio = 0;
686         }
687
688         return prio;
689 }
690
691 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
692 {
693         struct cfq_queue *cfqq = NULL;
694
695         if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1) {
696                 /*
697                  * if current list is non-empty, grab first entry. if it is
698                  * empty, get next prio level and grab first entry then if any
699                  * are spliced
700                  */
701                 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
702         } else if (!list_empty(&cfqd->busy_rr)) {
703                 /*
704                  * If no new queues are available, check if the busy list has
705                  * some before falling back to idle io.
706                  */
707                 cfqq = list_entry_cfqq(cfqd->busy_rr.next);
708         } else if (!list_empty(&cfqd->idle_rr)) {
709                 /*
710                  * if we have idle queues and no rt or be queues had pending
711                  * requests, either allow immediate service if the grace period
712                  * has passed or arm the idle grace timer
713                  */
714                 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
715
716                 if (time_after_eq(jiffies, end))
717                         cfqq = list_entry_cfqq(cfqd->idle_rr.next);
718                 else
719                         mod_timer(&cfqd->idle_class_timer, end);
720         }
721
722         __cfq_set_active_queue(cfqd, cfqq);
723         return cfqq;
724 }
725
726 #define CIC_SEEKY(cic) ((cic)->seek_mean > (128 * 1024))
727
728 static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
729
730 {
731         struct cfq_io_context *cic;
732         unsigned long sl;
733
734         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
735         WARN_ON(cfqq != cfqd->active_queue);
736
737         /*
738          * idle is disabled, either manually or by past process history
739          */
740         if (!cfqd->cfq_slice_idle)
741                 return 0;
742         if (!cfq_cfqq_idle_window(cfqq))
743                 return 0;
744         /*
745          * task has exited, don't wait
746          */
747         cic = cfqd->active_cic;
748         if (!cic || !cic->ioc->task)
749                 return 0;
750
751         cfq_mark_cfqq_must_dispatch(cfqq);
752         cfq_mark_cfqq_wait_request(cfqq);
753
754         sl = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
755
756         /*
757          * we don't want to idle for seeks, but we do want to allow
758          * fair distribution of slice time for a process doing back-to-back
759          * seeks. so allow a little bit of time for him to submit a new rq
760          */
761         if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
762                 sl = min(sl, msecs_to_jiffies(2));
763
764         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
765         return 1;
766 }
767
768 static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
769 {
770         struct cfq_data *cfqd = q->elevator->elevator_data;
771         struct cfq_queue *cfqq = RQ_CFQQ(rq);
772
773         cfq_remove_request(rq);
774         cfqq->on_dispatch[rq_is_sync(rq)]++;
775         elv_dispatch_sort(q, rq);
776
777         rq = list_entry(q->queue_head.prev, struct request, queuelist);
778         cfqd->last_sector = rq->sector + rq->nr_sectors;
779 }
780
781 /*
782  * return expired entry, or NULL to just start from scratch in rbtree
783  */
784 static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
785 {
786         struct cfq_data *cfqd = cfqq->cfqd;
787         struct request *rq;
788         int fifo;
789
790         if (cfq_cfqq_fifo_expire(cfqq))
791                 return NULL;
792         if (list_empty(&cfqq->fifo))
793                 return NULL;
794
795         fifo = cfq_cfqq_class_sync(cfqq);
796         rq = rq_entry_fifo(cfqq->fifo.next);
797
798         if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
799                 cfq_mark_cfqq_fifo_expire(cfqq);
800                 return rq;
801         }
802
803         return NULL;
804 }
805
806 /*
807  * Scale schedule slice based on io priority. Use the sync time slice only
808  * if a queue is marked sync and has sync io queued. A sync queue with async
809  * io only, should not get full sync slice length.
810  */
811 static inline int
812 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
813 {
814         const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
815
816         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
817
818         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
819 }
820
821 static inline void
822 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
823 {
824         cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
825 }
826
827 static inline int
828 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
829 {
830         const int base_rq = cfqd->cfq_slice_async_rq;
831
832         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
833
834         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
835 }
836
837 /*
838  * get next queue for service
839  */
840 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
841 {
842         unsigned long now = jiffies;
843         struct cfq_queue *cfqq;
844
845         cfqq = cfqd->active_queue;
846         if (!cfqq)
847                 goto new_queue;
848
849         /*
850          * slice has expired
851          */
852         if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end))
853                 goto expire;
854
855         /*
856          * if queue has requests, dispatch one. if not, check if
857          * enough slice is left to wait for one
858          */
859         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
860                 goto keep_queue;
861         else if (cfq_cfqq_dispatched(cfqq)) {
862                 cfqq = NULL;
863                 goto keep_queue;
864         } else if (cfq_cfqq_class_sync(cfqq)) {
865                 if (cfq_arm_slice_timer(cfqd, cfqq))
866                         return NULL;
867         }
868
869 expire:
870         cfq_slice_expired(cfqd, 0);
871 new_queue:
872         cfqq = cfq_set_active_queue(cfqd);
873 keep_queue:
874         return cfqq;
875 }
876
877 static int
878 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
879                         int max_dispatch)
880 {
881         int dispatched = 0;
882
883         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
884
885         do {
886                 struct request *rq;
887
888                 /*
889                  * follow expired path, else get first next available
890                  */
891                 if ((rq = cfq_check_fifo(cfqq)) == NULL)
892                         rq = cfqq->next_rq;
893
894                 /*
895                  * finally, insert request into driver dispatch list
896                  */
897                 cfq_dispatch_insert(cfqd->queue, rq);
898
899                 cfqd->dispatch_slice++;
900                 dispatched++;
901
902                 if (!cfqd->active_cic) {
903                         atomic_inc(&RQ_CIC(rq)->ioc->refcount);
904                         cfqd->active_cic = RQ_CIC(rq);
905                 }
906
907                 if (RB_EMPTY_ROOT(&cfqq->sort_list))
908                         break;
909
910         } while (dispatched < max_dispatch);
911
912         /*
913          * if slice end isn't set yet, set it.
914          */
915         if (!cfqq->slice_end)
916                 cfq_set_prio_slice(cfqd, cfqq);
917
918         /*
919          * expire an async queue immediately if it has used up its slice. idle
920          * queue always expire after 1 dispatch round.
921          */
922         if ((!cfq_cfqq_sync(cfqq) &&
923             cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
924             cfq_class_idle(cfqq) ||
925             !cfq_cfqq_idle_window(cfqq))
926                 cfq_slice_expired(cfqd, 0);
927
928         return dispatched;
929 }
930
931 static int
932 cfq_forced_dispatch_cfqqs(struct list_head *list)
933 {
934         struct cfq_queue *cfqq, *next;
935         int dispatched;
936
937         dispatched = 0;
938         list_for_each_entry_safe(cfqq, next, list, cfq_list) {
939                 while (cfqq->next_rq) {
940                         cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
941                         dispatched++;
942                 }
943                 BUG_ON(!list_empty(&cfqq->fifo));
944         }
945
946         return dispatched;
947 }
948
949 static int
950 cfq_forced_dispatch(struct cfq_data *cfqd)
951 {
952         int i, dispatched = 0;
953
954         for (i = 0; i < CFQ_PRIO_LISTS; i++)
955                 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
956
957         dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
958         dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
959         dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
960
961         cfq_slice_expired(cfqd, 0);
962
963         BUG_ON(cfqd->busy_queues);
964
965         return dispatched;
966 }
967
968 static int
969 cfq_dispatch_requests(request_queue_t *q, int force)
970 {
971         struct cfq_data *cfqd = q->elevator->elevator_data;
972         struct cfq_queue *cfqq, *prev_cfqq;
973         int dispatched;
974
975         if (!cfqd->busy_queues)
976                 return 0;
977
978         if (unlikely(force))
979                 return cfq_forced_dispatch(cfqd);
980
981         dispatched = 0;
982         prev_cfqq = NULL;
983         while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
984                 int max_dispatch;
985
986                 /*
987                  * Don't repeat dispatch from the previous queue.
988                  */
989                 if (prev_cfqq == cfqq)
990                         break;
991
992                 cfq_clear_cfqq_must_dispatch(cfqq);
993                 cfq_clear_cfqq_wait_request(cfqq);
994                 del_timer(&cfqd->idle_slice_timer);
995
996                 max_dispatch = cfqd->cfq_quantum;
997                 if (cfq_class_idle(cfqq))
998                         max_dispatch = 1;
999
1000                 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1001
1002                 /*
1003                  * If the dispatch cfqq has idling enabled and is still
1004                  * the active queue, break out.
1005                  */
1006                 if (cfq_cfqq_idle_window(cfqq) && cfqd->active_queue)
1007                         break;
1008
1009                 prev_cfqq = cfqq;
1010         }
1011
1012         return dispatched;
1013 }
1014
1015 /*
1016  * task holds one reference to the queue, dropped when task exits. each rq
1017  * in-flight on this queue also holds a reference, dropped when rq is freed.
1018  *
1019  * queue lock must be held here.
1020  */
1021 static void cfq_put_queue(struct cfq_queue *cfqq)
1022 {
1023         struct cfq_data *cfqd = cfqq->cfqd;
1024
1025         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1026
1027         if (!atomic_dec_and_test(&cfqq->ref))
1028                 return;
1029
1030         BUG_ON(rb_first(&cfqq->sort_list));
1031         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1032         BUG_ON(cfq_cfqq_on_rr(cfqq));
1033
1034         if (unlikely(cfqd->active_queue == cfqq))
1035                 __cfq_slice_expired(cfqd, cfqq, 0);
1036
1037         /*
1038          * it's on the empty list and still hashed
1039          */
1040         list_del(&cfqq->cfq_list);
1041         hlist_del(&cfqq->cfq_hash);
1042         kmem_cache_free(cfq_pool, cfqq);
1043 }
1044
1045 static struct cfq_queue *
1046 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1047                     const int hashval)
1048 {
1049         struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1050         struct hlist_node *entry;
1051         struct cfq_queue *__cfqq;
1052
1053         hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1054                 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1055
1056                 if (__cfqq->key == key && (__p == prio || !prio))
1057                         return __cfqq;
1058         }
1059
1060         return NULL;
1061 }
1062
1063 static struct cfq_queue *
1064 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1065 {
1066         return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1067 }
1068
1069 static void cfq_free_io_context(struct io_context *ioc)
1070 {
1071         struct cfq_io_context *__cic;
1072         struct rb_node *n;
1073         int freed = 0;
1074
1075         while ((n = rb_first(&ioc->cic_root)) != NULL) {
1076                 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1077                 rb_erase(&__cic->rb_node, &ioc->cic_root);
1078                 kmem_cache_free(cfq_ioc_pool, __cic);
1079                 freed++;
1080         }
1081
1082         elv_ioc_count_mod(ioc_count, -freed);
1083
1084         if (ioc_gone && !elv_ioc_count_read(ioc_count))
1085                 complete(ioc_gone);
1086 }
1087
1088 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1089 {
1090         if (unlikely(cfqq == cfqd->active_queue))
1091                 __cfq_slice_expired(cfqd, cfqq, 0);
1092
1093         cfq_put_queue(cfqq);
1094 }
1095
1096 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1097                                          struct cfq_io_context *cic)
1098 {
1099         list_del_init(&cic->queue_list);
1100         smp_wmb();
1101         cic->key = NULL;
1102
1103         if (cic->cfqq[ASYNC]) {
1104                 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1105                 cic->cfqq[ASYNC] = NULL;
1106         }
1107
1108         if (cic->cfqq[SYNC]) {
1109                 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1110                 cic->cfqq[SYNC] = NULL;
1111         }
1112 }
1113
1114
1115 /*
1116  * Called with interrupts disabled
1117  */
1118 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1119 {
1120         struct cfq_data *cfqd = cic->key;
1121
1122         if (cfqd) {
1123                 request_queue_t *q = cfqd->queue;
1124
1125                 spin_lock_irq(q->queue_lock);
1126                 __cfq_exit_single_io_context(cfqd, cic);
1127                 spin_unlock_irq(q->queue_lock);
1128         }
1129 }
1130
1131 static void cfq_exit_io_context(struct io_context *ioc)
1132 {
1133         struct cfq_io_context *__cic;
1134         struct rb_node *n;
1135
1136         /*
1137          * put the reference this task is holding to the various queues
1138          */
1139
1140         n = rb_first(&ioc->cic_root);
1141         while (n != NULL) {
1142                 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1143
1144                 cfq_exit_single_io_context(__cic);
1145                 n = rb_next(n);
1146         }
1147 }
1148
1149 static struct cfq_io_context *
1150 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1151 {
1152         struct cfq_io_context *cic;
1153
1154         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask, cfqd->queue->node);
1155         if (cic) {
1156                 memset(cic, 0, sizeof(*cic));
1157                 cic->last_end_request = jiffies;
1158                 INIT_LIST_HEAD(&cic->queue_list);
1159                 cic->dtor = cfq_free_io_context;
1160                 cic->exit = cfq_exit_io_context;
1161                 elv_ioc_count_inc(ioc_count);
1162         }
1163
1164         return cic;
1165 }
1166
1167 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1168 {
1169         struct task_struct *tsk = current;
1170         int ioprio_class;
1171
1172         if (!cfq_cfqq_prio_changed(cfqq))
1173                 return;
1174
1175         ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1176         switch (ioprio_class) {
1177                 default:
1178                         printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1179                 case IOPRIO_CLASS_NONE:
1180                         /*
1181                          * no prio set, place us in the middle of the BE classes
1182                          */
1183                         cfqq->ioprio = task_nice_ioprio(tsk);
1184                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1185                         break;
1186                 case IOPRIO_CLASS_RT:
1187                         cfqq->ioprio = task_ioprio(tsk);
1188                         cfqq->ioprio_class = IOPRIO_CLASS_RT;
1189                         break;
1190                 case IOPRIO_CLASS_BE:
1191                         cfqq->ioprio = task_ioprio(tsk);
1192                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1193                         break;
1194                 case IOPRIO_CLASS_IDLE:
1195                         cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1196                         cfqq->ioprio = 7;
1197                         cfq_clear_cfqq_idle_window(cfqq);
1198                         break;
1199         }
1200
1201         /*
1202          * keep track of original prio settings in case we have to temporarily
1203          * elevate the priority of this queue
1204          */
1205         cfqq->org_ioprio = cfqq->ioprio;
1206         cfqq->org_ioprio_class = cfqq->ioprio_class;
1207
1208         if (cfq_cfqq_on_rr(cfqq))
1209                 cfq_resort_rr_list(cfqq, 0);
1210
1211         cfq_clear_cfqq_prio_changed(cfqq);
1212 }
1213
1214 static inline void changed_ioprio(struct cfq_io_context *cic)
1215 {
1216         struct cfq_data *cfqd = cic->key;
1217         struct cfq_queue *cfqq;
1218         unsigned long flags;
1219
1220         if (unlikely(!cfqd))
1221                 return;
1222
1223         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1224
1225         cfqq = cic->cfqq[ASYNC];
1226         if (cfqq) {
1227                 struct cfq_queue *new_cfqq;
1228                 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC, cic->ioc->task,
1229                                          GFP_ATOMIC);
1230                 if (new_cfqq) {
1231                         cic->cfqq[ASYNC] = new_cfqq;
1232                         cfq_put_queue(cfqq);
1233                 }
1234         }
1235
1236         cfqq = cic->cfqq[SYNC];
1237         if (cfqq)
1238                 cfq_mark_cfqq_prio_changed(cfqq);
1239
1240         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1241 }
1242
1243 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1244 {
1245         struct cfq_io_context *cic;
1246         struct rb_node *n;
1247
1248         ioc->ioprio_changed = 0;
1249
1250         n = rb_first(&ioc->cic_root);
1251         while (n != NULL) {
1252                 cic = rb_entry(n, struct cfq_io_context, rb_node);
1253
1254                 changed_ioprio(cic);
1255                 n = rb_next(n);
1256         }
1257 }
1258
1259 static struct cfq_queue *
1260 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1261               gfp_t gfp_mask)
1262 {
1263         const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1264         struct cfq_queue *cfqq, *new_cfqq = NULL;
1265         unsigned short ioprio;
1266
1267 retry:
1268         ioprio = tsk->ioprio;
1269         cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1270
1271         if (!cfqq) {
1272                 if (new_cfqq) {
1273                         cfqq = new_cfqq;
1274                         new_cfqq = NULL;
1275                 } else if (gfp_mask & __GFP_WAIT) {
1276                         /*
1277                          * Inform the allocator of the fact that we will
1278                          * just repeat this allocation if it fails, to allow
1279                          * the allocator to do whatever it needs to attempt to
1280                          * free memory.
1281                          */
1282                         spin_unlock_irq(cfqd->queue->queue_lock);
1283                         new_cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask|__GFP_NOFAIL, cfqd->queue->node);
1284                         spin_lock_irq(cfqd->queue->queue_lock);
1285                         goto retry;
1286                 } else {
1287                         cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask, cfqd->queue->node);
1288                         if (!cfqq)
1289                                 goto out;
1290                 }
1291
1292                 memset(cfqq, 0, sizeof(*cfqq));
1293
1294                 INIT_HLIST_NODE(&cfqq->cfq_hash);
1295                 INIT_LIST_HEAD(&cfqq->cfq_list);
1296                 INIT_LIST_HEAD(&cfqq->fifo);
1297
1298                 cfqq->key = key;
1299                 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1300                 atomic_set(&cfqq->ref, 0);
1301                 cfqq->cfqd = cfqd;
1302                 /*
1303                  * set ->slice_left to allow preemption for a new process
1304                  */
1305                 cfqq->slice_left = 2 * cfqd->cfq_slice_idle;
1306                 cfq_mark_cfqq_idle_window(cfqq);
1307                 cfq_mark_cfqq_prio_changed(cfqq);
1308                 cfq_mark_cfqq_queue_new(cfqq);
1309                 cfq_init_prio_data(cfqq);
1310         }
1311
1312         if (new_cfqq)
1313                 kmem_cache_free(cfq_pool, new_cfqq);
1314
1315         atomic_inc(&cfqq->ref);
1316 out:
1317         WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1318         return cfqq;
1319 }
1320
1321 static void
1322 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1323 {
1324         WARN_ON(!list_empty(&cic->queue_list));
1325         rb_erase(&cic->rb_node, &ioc->cic_root);
1326         kmem_cache_free(cfq_ioc_pool, cic);
1327         elv_ioc_count_dec(ioc_count);
1328 }
1329
1330 static struct cfq_io_context *
1331 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1332 {
1333         struct rb_node *n;
1334         struct cfq_io_context *cic;
1335         void *k, *key = cfqd;
1336
1337 restart:
1338         n = ioc->cic_root.rb_node;
1339         while (n) {
1340                 cic = rb_entry(n, struct cfq_io_context, rb_node);
1341                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1342                 k = cic->key;
1343                 if (unlikely(!k)) {
1344                         cfq_drop_dead_cic(ioc, cic);
1345                         goto restart;
1346                 }
1347
1348                 if (key < k)
1349                         n = n->rb_left;
1350                 else if (key > k)
1351                         n = n->rb_right;
1352                 else
1353                         return cic;
1354         }
1355
1356         return NULL;
1357 }
1358
1359 static inline void
1360 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1361              struct cfq_io_context *cic)
1362 {
1363         struct rb_node **p;
1364         struct rb_node *parent;
1365         struct cfq_io_context *__cic;
1366         unsigned long flags;
1367         void *k;
1368
1369         cic->ioc = ioc;
1370         cic->key = cfqd;
1371
1372 restart:
1373         parent = NULL;
1374         p = &ioc->cic_root.rb_node;
1375         while (*p) {
1376                 parent = *p;
1377                 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1378                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1379                 k = __cic->key;
1380                 if (unlikely(!k)) {
1381                         cfq_drop_dead_cic(ioc, __cic);
1382                         goto restart;
1383                 }
1384
1385                 if (cic->key < k)
1386                         p = &(*p)->rb_left;
1387                 else if (cic->key > k)
1388                         p = &(*p)->rb_right;
1389                 else
1390                         BUG();
1391         }
1392
1393         rb_link_node(&cic->rb_node, parent, p);
1394         rb_insert_color(&cic->rb_node, &ioc->cic_root);
1395
1396         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1397         list_add(&cic->queue_list, &cfqd->cic_list);
1398         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1399 }
1400
1401 /*
1402  * Setup general io context and cfq io context. There can be several cfq
1403  * io contexts per general io context, if this process is doing io to more
1404  * than one device managed by cfq.
1405  */
1406 static struct cfq_io_context *
1407 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1408 {
1409         struct io_context *ioc = NULL;
1410         struct cfq_io_context *cic;
1411
1412         might_sleep_if(gfp_mask & __GFP_WAIT);
1413
1414         ioc = get_io_context(gfp_mask, cfqd->queue->node);
1415         if (!ioc)
1416                 return NULL;
1417
1418         cic = cfq_cic_rb_lookup(cfqd, ioc);
1419         if (cic)
1420                 goto out;
1421
1422         cic = cfq_alloc_io_context(cfqd, gfp_mask);
1423         if (cic == NULL)
1424                 goto err;
1425
1426         cfq_cic_link(cfqd, ioc, cic);
1427 out:
1428         smp_read_barrier_depends();
1429         if (unlikely(ioc->ioprio_changed))
1430                 cfq_ioc_set_ioprio(ioc);
1431
1432         return cic;
1433 err:
1434         put_io_context(ioc);
1435         return NULL;
1436 }
1437
1438 static void
1439 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1440 {
1441         unsigned long elapsed, ttime;
1442
1443         /*
1444          * if this context already has stuff queued, thinktime is from
1445          * last queue not last end
1446          */
1447 #if 0
1448         if (time_after(cic->last_end_request, cic->last_queue))
1449                 elapsed = jiffies - cic->last_end_request;
1450         else
1451                 elapsed = jiffies - cic->last_queue;
1452 #else
1453                 elapsed = jiffies - cic->last_end_request;
1454 #endif
1455
1456         ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1457
1458         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1459         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1460         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1461 }
1462
1463 static void
1464 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1465                        struct request *rq)
1466 {
1467         sector_t sdist;
1468         u64 total;
1469
1470         if (cic->last_request_pos < rq->sector)
1471                 sdist = rq->sector - cic->last_request_pos;
1472         else
1473                 sdist = cic->last_request_pos - rq->sector;
1474
1475         /*
1476          * Don't allow the seek distance to get too large from the
1477          * odd fragment, pagein, etc
1478          */
1479         if (cic->seek_samples <= 60) /* second&third seek */
1480                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1481         else
1482                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1483
1484         cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1485         cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1486         total = cic->seek_total + (cic->seek_samples/2);
1487         do_div(total, cic->seek_samples);
1488         cic->seek_mean = (sector_t)total;
1489 }
1490
1491 /*
1492  * Disable idle window if the process thinks too long or seeks so much that
1493  * it doesn't matter
1494  */
1495 static void
1496 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1497                        struct cfq_io_context *cic)
1498 {
1499         int enable_idle = cfq_cfqq_idle_window(cfqq);
1500
1501         if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1502             (cfqd->hw_tag && CIC_SEEKY(cic)))
1503                 enable_idle = 0;
1504         else if (sample_valid(cic->ttime_samples)) {
1505                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1506                         enable_idle = 0;
1507                 else
1508                         enable_idle = 1;
1509         }
1510
1511         if (enable_idle)
1512                 cfq_mark_cfqq_idle_window(cfqq);
1513         else
1514                 cfq_clear_cfqq_idle_window(cfqq);
1515 }
1516
1517
1518 /*
1519  * Check if new_cfqq should preempt the currently active queue. Return 0 for
1520  * no or if we aren't sure, a 1 will cause a preempt.
1521  */
1522 static int
1523 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1524                    struct request *rq)
1525 {
1526         struct cfq_queue *cfqq = cfqd->active_queue;
1527
1528         if (cfq_class_idle(new_cfqq))
1529                 return 0;
1530
1531         if (!cfqq)
1532                 return 0;
1533
1534         if (cfq_class_idle(cfqq))
1535                 return 1;
1536         if (!cfq_cfqq_wait_request(new_cfqq))
1537                 return 0;
1538         /*
1539          * if it doesn't have slice left, forget it
1540          */
1541         if (new_cfqq->slice_left < cfqd->cfq_slice_idle)
1542                 return 0;
1543         /*
1544          * if the new request is sync, but the currently running queue is
1545          * not, let the sync request have priority.
1546          */
1547         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1548                 return 1;
1549         /*
1550          * So both queues are sync. Let the new request get disk time if
1551          * it's a metadata request and the current queue is doing regular IO.
1552          */
1553         if (rq_is_meta(rq) && !cfqq->meta_pending)
1554                 return 1;
1555
1556         return 0;
1557 }
1558
1559 /*
1560  * cfqq preempts the active queue. if we allowed preempt with no slice left,
1561  * let it have half of its nominal slice.
1562  */
1563 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1564 {
1565         cfq_slice_expired(cfqd, 1);
1566
1567         if (!cfqq->slice_left)
1568                 cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2;
1569
1570         /*
1571          * Put the new queue at the front of the of the current list,
1572          * so we know that it will be selected next.
1573          */
1574         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1575         list_move(&cfqq->cfq_list, &cfqd->cur_rr);
1576
1577         cfqq->slice_end = cfqq->slice_left + jiffies;
1578 }
1579
1580 /*
1581  * Called when a new fs request (rq) is added (to cfqq). Check if there's
1582  * something we should do about it
1583  */
1584 static void
1585 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1586                 struct request *rq)
1587 {
1588         struct cfq_io_context *cic = RQ_CIC(rq);
1589
1590         if (rq_is_meta(rq))
1591                 cfqq->meta_pending++;
1592
1593         /*
1594          * check if this request is a better next-serve candidate)) {
1595          */
1596         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
1597         BUG_ON(!cfqq->next_rq);
1598
1599         /*
1600          * we never wait for an async request and we don't allow preemption
1601          * of an async request. so just return early
1602          */
1603         if (!rq_is_sync(rq)) {
1604                 /*
1605                  * sync process issued an async request, if it's waiting
1606                  * then expire it and kick rq handling.
1607                  */
1608                 if (cic == cfqd->active_cic &&
1609                     del_timer(&cfqd->idle_slice_timer)) {
1610                         cfq_slice_expired(cfqd, 0);
1611                         blk_start_queueing(cfqd->queue);
1612                 }
1613                 return;
1614         }
1615
1616         cfq_update_io_thinktime(cfqd, cic);
1617         cfq_update_io_seektime(cfqd, cic, rq);
1618         cfq_update_idle_window(cfqd, cfqq, cic);
1619
1620         cic->last_queue = jiffies;
1621         cic->last_request_pos = rq->sector + rq->nr_sectors;
1622
1623         if (cfqq == cfqd->active_queue) {
1624                 /*
1625                  * if we are waiting for a request for this queue, let it rip
1626                  * immediately and flag that we must not expire this queue
1627                  * just now
1628                  */
1629                 if (cfq_cfqq_wait_request(cfqq)) {
1630                         cfq_mark_cfqq_must_dispatch(cfqq);
1631                         del_timer(&cfqd->idle_slice_timer);
1632                         blk_start_queueing(cfqd->queue);
1633                 }
1634         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1635                 /*
1636                  * not the active queue - expire current slice if it is
1637                  * idle and has expired it's mean thinktime or this new queue
1638                  * has some old slice time left and is of higher priority
1639                  */
1640                 cfq_preempt_queue(cfqd, cfqq);
1641                 cfq_mark_cfqq_must_dispatch(cfqq);
1642                 blk_start_queueing(cfqd->queue);
1643         }
1644 }
1645
1646 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1647 {
1648         struct cfq_data *cfqd = q->elevator->elevator_data;
1649         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1650
1651         cfq_init_prio_data(cfqq);
1652
1653         cfq_add_rq_rb(rq);
1654
1655         if (!cfq_cfqq_on_rr(cfqq))
1656                 cfq_add_cfqq_rr(cfqd, cfqq);
1657
1658         list_add_tail(&rq->queuelist, &cfqq->fifo);
1659
1660         cfq_rq_enqueued(cfqd, cfqq, rq);
1661 }
1662
1663 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1664 {
1665         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1666         struct cfq_data *cfqd = cfqq->cfqd;
1667         const int sync = rq_is_sync(rq);
1668         unsigned long now;
1669
1670         now = jiffies;
1671
1672         WARN_ON(!cfqd->rq_in_driver);
1673         WARN_ON(!cfqq->on_dispatch[sync]);
1674         cfqd->rq_in_driver--;
1675         cfqq->on_dispatch[sync]--;
1676
1677         if (!cfq_class_idle(cfqq))
1678                 cfqd->last_end_request = now;
1679
1680         if (!cfq_cfqq_dispatched(cfqq) && cfq_cfqq_on_rr(cfqq))
1681                 cfq_resort_rr_list(cfqq, 0);
1682
1683         if (sync)
1684                 RQ_CIC(rq)->last_end_request = now;
1685
1686         /*
1687          * If this is the active queue, check if it needs to be expired,
1688          * or if we want to idle in case it has no pending requests.
1689          */
1690         if (cfqd->active_queue == cfqq) {
1691                 if (time_after(now, cfqq->slice_end))
1692                         cfq_slice_expired(cfqd, 0);
1693                 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1694                         if (!cfq_arm_slice_timer(cfqd, cfqq))
1695                                 cfq_schedule_dispatch(cfqd);
1696                 }
1697         }
1698 }
1699
1700 /*
1701  * we temporarily boost lower priority queues if they are holding fs exclusive
1702  * resources. they are boosted to normal prio (CLASS_BE/4)
1703  */
1704 static void cfq_prio_boost(struct cfq_queue *cfqq)
1705 {
1706         const int ioprio_class = cfqq->ioprio_class;
1707         const int ioprio = cfqq->ioprio;
1708
1709         if (has_fs_excl()) {
1710                 /*
1711                  * boost idle prio on transactions that would lock out other
1712                  * users of the filesystem
1713                  */
1714                 if (cfq_class_idle(cfqq))
1715                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1716                 if (cfqq->ioprio > IOPRIO_NORM)
1717                         cfqq->ioprio = IOPRIO_NORM;
1718         } else {
1719                 /*
1720                  * check if we need to unboost the queue
1721                  */
1722                 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1723                         cfqq->ioprio_class = cfqq->org_ioprio_class;
1724                 if (cfqq->ioprio != cfqq->org_ioprio)
1725                         cfqq->ioprio = cfqq->org_ioprio;
1726         }
1727
1728         /*
1729          * refile between round-robin lists if we moved the priority class
1730          */
1731         if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio) &&
1732             cfq_cfqq_on_rr(cfqq))
1733                 cfq_resort_rr_list(cfqq, 0);
1734 }
1735
1736 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1737 {
1738         if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1739             !cfq_cfqq_must_alloc_slice(cfqq)) {
1740                 cfq_mark_cfqq_must_alloc_slice(cfqq);
1741                 return ELV_MQUEUE_MUST;
1742         }
1743
1744         return ELV_MQUEUE_MAY;
1745 }
1746
1747 static int cfq_may_queue(request_queue_t *q, int rw)
1748 {
1749         struct cfq_data *cfqd = q->elevator->elevator_data;
1750         struct task_struct *tsk = current;
1751         struct cfq_queue *cfqq;
1752
1753         /*
1754          * don't force setup of a queue from here, as a call to may_queue
1755          * does not necessarily imply that a request actually will be queued.
1756          * so just lookup a possibly existing queue, or return 'may queue'
1757          * if that fails
1758          */
1759         cfqq = cfq_find_cfq_hash(cfqd, cfq_queue_pid(tsk, rw), tsk->ioprio);
1760         if (cfqq) {
1761                 cfq_init_prio_data(cfqq);
1762                 cfq_prio_boost(cfqq);
1763
1764                 return __cfq_may_queue(cfqq);
1765         }
1766
1767         return ELV_MQUEUE_MAY;
1768 }
1769
1770 /*
1771  * queue lock held here
1772  */
1773 static void cfq_put_request(request_queue_t *q, struct request *rq)
1774 {
1775         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1776
1777         if (cfqq) {
1778                 const int rw = rq_data_dir(rq);
1779
1780                 BUG_ON(!cfqq->allocated[rw]);
1781                 cfqq->allocated[rw]--;
1782
1783                 put_io_context(RQ_CIC(rq)->ioc);
1784
1785                 rq->elevator_private = NULL;
1786                 rq->elevator_private2 = NULL;
1787
1788                 cfq_put_queue(cfqq);
1789         }
1790 }
1791
1792 /*
1793  * Allocate cfq data structures associated with this request.
1794  */
1795 static int
1796 cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
1797 {
1798         struct cfq_data *cfqd = q->elevator->elevator_data;
1799         struct task_struct *tsk = current;
1800         struct cfq_io_context *cic;
1801         const int rw = rq_data_dir(rq);
1802         pid_t key = cfq_queue_pid(tsk, rw);
1803         struct cfq_queue *cfqq;
1804         unsigned long flags;
1805         int is_sync = key != CFQ_KEY_ASYNC;
1806
1807         might_sleep_if(gfp_mask & __GFP_WAIT);
1808
1809         cic = cfq_get_io_context(cfqd, gfp_mask);
1810
1811         spin_lock_irqsave(q->queue_lock, flags);
1812
1813         if (!cic)
1814                 goto queue_fail;
1815
1816         if (!cic->cfqq[is_sync]) {
1817                 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
1818                 if (!cfqq)
1819                         goto queue_fail;
1820
1821                 cic->cfqq[is_sync] = cfqq;
1822         } else
1823                 cfqq = cic->cfqq[is_sync];
1824
1825         cfqq->allocated[rw]++;
1826         cfq_clear_cfqq_must_alloc(cfqq);
1827         atomic_inc(&cfqq->ref);
1828
1829         spin_unlock_irqrestore(q->queue_lock, flags);
1830
1831         rq->elevator_private = cic;
1832         rq->elevator_private2 = cfqq;
1833         return 0;
1834
1835 queue_fail:
1836         if (cic)
1837                 put_io_context(cic->ioc);
1838
1839         cfq_schedule_dispatch(cfqd);
1840         spin_unlock_irqrestore(q->queue_lock, flags);
1841         return 1;
1842 }
1843
1844 static void cfq_kick_queue(void *data)
1845 {
1846         request_queue_t *q = data;
1847         unsigned long flags;
1848
1849         spin_lock_irqsave(q->queue_lock, flags);
1850         blk_start_queueing(q);
1851         spin_unlock_irqrestore(q->queue_lock, flags);
1852 }
1853
1854 /*
1855  * Timer running if the active_queue is currently idling inside its time slice
1856  */
1857 static void cfq_idle_slice_timer(unsigned long data)
1858 {
1859         struct cfq_data *cfqd = (struct cfq_data *) data;
1860         struct cfq_queue *cfqq;
1861         unsigned long flags;
1862
1863         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1864
1865         if ((cfqq = cfqd->active_queue) != NULL) {
1866                 unsigned long now = jiffies;
1867
1868                 /*
1869                  * expired
1870                  */
1871                 if (time_after(now, cfqq->slice_end))
1872                         goto expire;
1873
1874                 /*
1875                  * only expire and reinvoke request handler, if there are
1876                  * other queues with pending requests
1877                  */
1878                 if (!cfqd->busy_queues)
1879                         goto out_cont;
1880
1881                 /*
1882                  * not expired and it has a request pending, let it dispatch
1883                  */
1884                 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
1885                         cfq_mark_cfqq_must_dispatch(cfqq);
1886                         goto out_kick;
1887                 }
1888         }
1889 expire:
1890         cfq_slice_expired(cfqd, 0);
1891 out_kick:
1892         cfq_schedule_dispatch(cfqd);
1893 out_cont:
1894         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1895 }
1896
1897 /*
1898  * Timer running if an idle class queue is waiting for service
1899  */
1900 static void cfq_idle_class_timer(unsigned long data)
1901 {
1902         struct cfq_data *cfqd = (struct cfq_data *) data;
1903         unsigned long flags, end;
1904
1905         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1906
1907         /*
1908          * race with a non-idle queue, reset timer
1909          */
1910         end = cfqd->last_end_request + CFQ_IDLE_GRACE;
1911         if (!time_after_eq(jiffies, end))
1912                 mod_timer(&cfqd->idle_class_timer, end);
1913         else
1914                 cfq_schedule_dispatch(cfqd);
1915
1916         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1917 }
1918
1919 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
1920 {
1921         del_timer_sync(&cfqd->idle_slice_timer);
1922         del_timer_sync(&cfqd->idle_class_timer);
1923         blk_sync_queue(cfqd->queue);
1924 }
1925
1926 static void cfq_exit_queue(elevator_t *e)
1927 {
1928         struct cfq_data *cfqd = e->elevator_data;
1929         request_queue_t *q = cfqd->queue;
1930
1931         cfq_shutdown_timer_wq(cfqd);
1932
1933         spin_lock_irq(q->queue_lock);
1934
1935         if (cfqd->active_queue)
1936                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
1937
1938         while (!list_empty(&cfqd->cic_list)) {
1939                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
1940                                                         struct cfq_io_context,
1941                                                         queue_list);
1942
1943                 __cfq_exit_single_io_context(cfqd, cic);
1944         }
1945
1946         spin_unlock_irq(q->queue_lock);
1947
1948         cfq_shutdown_timer_wq(cfqd);
1949
1950         kfree(cfqd->cfq_hash);
1951         kfree(cfqd);
1952 }
1953
1954 static void *cfq_init_queue(request_queue_t *q, elevator_t *e)
1955 {
1956         struct cfq_data *cfqd;
1957         int i;
1958
1959         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
1960         if (!cfqd)
1961                 return NULL;
1962
1963         memset(cfqd, 0, sizeof(*cfqd));
1964
1965         for (i = 0; i < CFQ_PRIO_LISTS; i++)
1966                 INIT_LIST_HEAD(&cfqd->rr_list[i]);
1967
1968         INIT_LIST_HEAD(&cfqd->busy_rr);
1969         INIT_LIST_HEAD(&cfqd->cur_rr);
1970         INIT_LIST_HEAD(&cfqd->idle_rr);
1971         INIT_LIST_HEAD(&cfqd->cic_list);
1972
1973         cfqd->cfq_hash = kmalloc_node(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL, q->node);
1974         if (!cfqd->cfq_hash)
1975                 goto out_free;
1976
1977         for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
1978                 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
1979
1980         cfqd->queue = q;
1981
1982         init_timer(&cfqd->idle_slice_timer);
1983         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
1984         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
1985
1986         init_timer(&cfqd->idle_class_timer);
1987         cfqd->idle_class_timer.function = cfq_idle_class_timer;
1988         cfqd->idle_class_timer.data = (unsigned long) cfqd;
1989
1990         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue, q);
1991
1992         cfqd->cfq_quantum = cfq_quantum;
1993         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
1994         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1995         cfqd->cfq_back_max = cfq_back_max;
1996         cfqd->cfq_back_penalty = cfq_back_penalty;
1997         cfqd->cfq_slice[0] = cfq_slice_async;
1998         cfqd->cfq_slice[1] = cfq_slice_sync;
1999         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2000         cfqd->cfq_slice_idle = cfq_slice_idle;
2001
2002         return cfqd;
2003 out_free:
2004         kfree(cfqd);
2005         return NULL;
2006 }
2007
2008 static void cfq_slab_kill(void)
2009 {
2010         if (cfq_pool)
2011                 kmem_cache_destroy(cfq_pool);
2012         if (cfq_ioc_pool)
2013                 kmem_cache_destroy(cfq_ioc_pool);
2014 }
2015
2016 static int __init cfq_slab_setup(void)
2017 {
2018         cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2019                                         NULL, NULL);
2020         if (!cfq_pool)
2021                 goto fail;
2022
2023         cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2024                         sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2025         if (!cfq_ioc_pool)
2026                 goto fail;
2027
2028         return 0;
2029 fail:
2030         cfq_slab_kill();
2031         return -ENOMEM;
2032 }
2033
2034 /*
2035  * sysfs parts below -->
2036  */
2037
2038 static ssize_t
2039 cfq_var_show(unsigned int var, char *page)
2040 {
2041         return sprintf(page, "%d\n", var);
2042 }
2043
2044 static ssize_t
2045 cfq_var_store(unsigned int *var, const char *page, size_t count)
2046 {
2047         char *p = (char *) page;
2048
2049         *var = simple_strtoul(p, &p, 10);
2050         return count;
2051 }
2052
2053 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
2054 static ssize_t __FUNC(elevator_t *e, char *page)                        \
2055 {                                                                       \
2056         struct cfq_data *cfqd = e->elevator_data;                       \
2057         unsigned int __data = __VAR;                                    \
2058         if (__CONV)                                                     \
2059                 __data = jiffies_to_msecs(__data);                      \
2060         return cfq_var_show(__data, (page));                            \
2061 }
2062 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2063 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2064 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2065 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2066 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2067 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2068 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2069 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2070 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2071 #undef SHOW_FUNCTION
2072
2073 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
2074 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count)    \
2075 {                                                                       \
2076         struct cfq_data *cfqd = e->elevator_data;                       \
2077         unsigned int __data;                                            \
2078         int ret = cfq_var_store(&__data, (page), count);                \
2079         if (__data < (MIN))                                             \
2080                 __data = (MIN);                                         \
2081         else if (__data > (MAX))                                        \
2082                 __data = (MAX);                                         \
2083         if (__CONV)                                                     \
2084                 *(__PTR) = msecs_to_jiffies(__data);                    \
2085         else                                                            \
2086                 *(__PTR) = __data;                                      \
2087         return ret;                                                     \
2088 }
2089 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2090 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2091 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2092 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2093 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2094 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2095 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2096 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2097 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2098 #undef STORE_FUNCTION
2099
2100 #define CFQ_ATTR(name) \
2101         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2102
2103 static struct elv_fs_entry cfq_attrs[] = {
2104         CFQ_ATTR(quantum),
2105         CFQ_ATTR(fifo_expire_sync),
2106         CFQ_ATTR(fifo_expire_async),
2107         CFQ_ATTR(back_seek_max),
2108         CFQ_ATTR(back_seek_penalty),
2109         CFQ_ATTR(slice_sync),
2110         CFQ_ATTR(slice_async),
2111         CFQ_ATTR(slice_async_rq),
2112         CFQ_ATTR(slice_idle),
2113         __ATTR_NULL
2114 };
2115
2116 static struct elevator_type iosched_cfq = {
2117         .ops = {
2118                 .elevator_merge_fn =            cfq_merge,
2119                 .elevator_merged_fn =           cfq_merged_request,
2120                 .elevator_merge_req_fn =        cfq_merged_requests,
2121                 .elevator_dispatch_fn =         cfq_dispatch_requests,
2122                 .elevator_add_req_fn =          cfq_insert_request,
2123                 .elevator_activate_req_fn =     cfq_activate_request,
2124                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
2125                 .elevator_queue_empty_fn =      cfq_queue_empty,
2126                 .elevator_completed_req_fn =    cfq_completed_request,
2127                 .elevator_former_req_fn =       elv_rb_former_request,
2128                 .elevator_latter_req_fn =       elv_rb_latter_request,
2129                 .elevator_set_req_fn =          cfq_set_request,
2130                 .elevator_put_req_fn =          cfq_put_request,
2131                 .elevator_may_queue_fn =        cfq_may_queue,
2132                 .elevator_init_fn =             cfq_init_queue,
2133                 .elevator_exit_fn =             cfq_exit_queue,
2134                 .trim =                         cfq_free_io_context,
2135         },
2136         .elevator_attrs =       cfq_attrs,
2137         .elevator_name =        "cfq",
2138         .elevator_owner =       THIS_MODULE,
2139 };
2140
2141 static int __init cfq_init(void)
2142 {
2143         int ret;
2144
2145         /*
2146          * could be 0 on HZ < 1000 setups
2147          */
2148         if (!cfq_slice_async)
2149                 cfq_slice_async = 1;
2150         if (!cfq_slice_idle)
2151                 cfq_slice_idle = 1;
2152
2153         if (cfq_slab_setup())
2154                 return -ENOMEM;
2155
2156         ret = elv_register(&iosched_cfq);
2157         if (ret)
2158                 cfq_slab_kill();
2159
2160         return ret;
2161 }
2162
2163 static void __exit cfq_exit(void)
2164 {
2165         DECLARE_COMPLETION_ONSTACK(all_gone);
2166         elv_unregister(&iosched_cfq);
2167         ioc_gone = &all_gone;
2168         /* ioc_gone's update must be visible before reading ioc_count */
2169         smp_wmb();
2170         if (elv_ioc_count_read(ioc_count))
2171                 wait_for_completion(ioc_gone);
2172         synchronize_rcu();
2173         cfq_slab_kill();
2174 }
2175
2176 module_init(cfq_init);
2177 module_exit(cfq_exit);
2178
2179 MODULE_AUTHOR("Jens Axboe");
2180 MODULE_LICENSE("GPL");
2181 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");