]> bbs.cooldavid.org Git - net-next-2.6.git/blob - arch/x86/kvm/vmx.c
Merge branch 'dell-wmi' into release
[net-next-2.6.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "irq.h"
19 #include "mmu.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27 #include <linux/moduleparam.h>
28 #include <linux/ftrace_event.h>
29 #include "kvm_cache_regs.h"
30 #include "x86.h"
31
32 #include <asm/io.h>
33 #include <asm/desc.h>
34 #include <asm/vmx.h>
35 #include <asm/virtext.h>
36 #include <asm/mce.h>
37
38 #include "trace.h"
39
40 #define __ex(x) __kvm_handle_fault_on_reboot(x)
41
42 MODULE_AUTHOR("Qumranet");
43 MODULE_LICENSE("GPL");
44
45 static int __read_mostly bypass_guest_pf = 1;
46 module_param(bypass_guest_pf, bool, S_IRUGO);
47
48 static int __read_mostly enable_vpid = 1;
49 module_param_named(vpid, enable_vpid, bool, 0444);
50
51 static int __read_mostly flexpriority_enabled = 1;
52 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
53
54 static int __read_mostly enable_ept = 1;
55 module_param_named(ept, enable_ept, bool, S_IRUGO);
56
57 static int __read_mostly enable_unrestricted_guest = 1;
58 module_param_named(unrestricted_guest,
59                         enable_unrestricted_guest, bool, S_IRUGO);
60
61 static int __read_mostly emulate_invalid_guest_state = 0;
62 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
63
64 /*
65  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
66  * ple_gap:    upper bound on the amount of time between two successive
67  *             executions of PAUSE in a loop. Also indicate if ple enabled.
68  *             According to test, this time is usually small than 41 cycles.
69  * ple_window: upper bound on the amount of time a guest is allowed to execute
70  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
71  *             less than 2^12 cycles
72  * Time is measured based on a counter that runs at the same rate as the TSC,
73  * refer SDM volume 3b section 21.6.13 & 22.1.3.
74  */
75 #define KVM_VMX_DEFAULT_PLE_GAP    41
76 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
77 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
78 module_param(ple_gap, int, S_IRUGO);
79
80 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
81 module_param(ple_window, int, S_IRUGO);
82
83 struct vmcs {
84         u32 revision_id;
85         u32 abort;
86         char data[0];
87 };
88
89 struct shared_msr_entry {
90         unsigned index;
91         u64 data;
92         u64 mask;
93 };
94
95 struct vcpu_vmx {
96         struct kvm_vcpu       vcpu;
97         struct list_head      local_vcpus_link;
98         unsigned long         host_rsp;
99         int                   launched;
100         u8                    fail;
101         u32                   idt_vectoring_info;
102         struct shared_msr_entry *guest_msrs;
103         int                   nmsrs;
104         int                   save_nmsrs;
105 #ifdef CONFIG_X86_64
106         u64                   msr_host_kernel_gs_base;
107         u64                   msr_guest_kernel_gs_base;
108 #endif
109         struct vmcs          *vmcs;
110         struct {
111                 int           loaded;
112                 u16           fs_sel, gs_sel, ldt_sel;
113                 int           gs_ldt_reload_needed;
114                 int           fs_reload_needed;
115         } host_state;
116         struct {
117                 int vm86_active;
118                 u8 save_iopl;
119                 struct kvm_save_segment {
120                         u16 selector;
121                         unsigned long base;
122                         u32 limit;
123                         u32 ar;
124                 } tr, es, ds, fs, gs;
125                 struct {
126                         bool pending;
127                         u8 vector;
128                         unsigned rip;
129                 } irq;
130         } rmode;
131         int vpid;
132         bool emulation_required;
133
134         /* Support for vnmi-less CPUs */
135         int soft_vnmi_blocked;
136         ktime_t entry_time;
137         s64 vnmi_blocked_time;
138         u32 exit_reason;
139 };
140
141 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
142 {
143         return container_of(vcpu, struct vcpu_vmx, vcpu);
144 }
145
146 static int init_rmode(struct kvm *kvm);
147 static u64 construct_eptp(unsigned long root_hpa);
148
149 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
150 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
151 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
152
153 static unsigned long *vmx_io_bitmap_a;
154 static unsigned long *vmx_io_bitmap_b;
155 static unsigned long *vmx_msr_bitmap_legacy;
156 static unsigned long *vmx_msr_bitmap_longmode;
157
158 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
159 static DEFINE_SPINLOCK(vmx_vpid_lock);
160
161 static struct vmcs_config {
162         int size;
163         int order;
164         u32 revision_id;
165         u32 pin_based_exec_ctrl;
166         u32 cpu_based_exec_ctrl;
167         u32 cpu_based_2nd_exec_ctrl;
168         u32 vmexit_ctrl;
169         u32 vmentry_ctrl;
170 } vmcs_config;
171
172 static struct vmx_capability {
173         u32 ept;
174         u32 vpid;
175 } vmx_capability;
176
177 #define VMX_SEGMENT_FIELD(seg)                                  \
178         [VCPU_SREG_##seg] = {                                   \
179                 .selector = GUEST_##seg##_SELECTOR,             \
180                 .base = GUEST_##seg##_BASE,                     \
181                 .limit = GUEST_##seg##_LIMIT,                   \
182                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
183         }
184
185 static struct kvm_vmx_segment_field {
186         unsigned selector;
187         unsigned base;
188         unsigned limit;
189         unsigned ar_bytes;
190 } kvm_vmx_segment_fields[] = {
191         VMX_SEGMENT_FIELD(CS),
192         VMX_SEGMENT_FIELD(DS),
193         VMX_SEGMENT_FIELD(ES),
194         VMX_SEGMENT_FIELD(FS),
195         VMX_SEGMENT_FIELD(GS),
196         VMX_SEGMENT_FIELD(SS),
197         VMX_SEGMENT_FIELD(TR),
198         VMX_SEGMENT_FIELD(LDTR),
199 };
200
201 static u64 host_efer;
202
203 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
204
205 /*
206  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
207  * away by decrementing the array size.
208  */
209 static const u32 vmx_msr_index[] = {
210 #ifdef CONFIG_X86_64
211         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
212 #endif
213         MSR_EFER, MSR_K6_STAR,
214 };
215 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
216
217 static inline int is_page_fault(u32 intr_info)
218 {
219         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
220                              INTR_INFO_VALID_MASK)) ==
221                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
222 }
223
224 static inline int is_no_device(u32 intr_info)
225 {
226         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
227                              INTR_INFO_VALID_MASK)) ==
228                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
229 }
230
231 static inline int is_invalid_opcode(u32 intr_info)
232 {
233         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
234                              INTR_INFO_VALID_MASK)) ==
235                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
236 }
237
238 static inline int is_external_interrupt(u32 intr_info)
239 {
240         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
241                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
242 }
243
244 static inline int is_machine_check(u32 intr_info)
245 {
246         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
247                              INTR_INFO_VALID_MASK)) ==
248                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
249 }
250
251 static inline int cpu_has_vmx_msr_bitmap(void)
252 {
253         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
254 }
255
256 static inline int cpu_has_vmx_tpr_shadow(void)
257 {
258         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
259 }
260
261 static inline int vm_need_tpr_shadow(struct kvm *kvm)
262 {
263         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
264 }
265
266 static inline int cpu_has_secondary_exec_ctrls(void)
267 {
268         return vmcs_config.cpu_based_exec_ctrl &
269                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
270 }
271
272 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
273 {
274         return vmcs_config.cpu_based_2nd_exec_ctrl &
275                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
276 }
277
278 static inline bool cpu_has_vmx_flexpriority(void)
279 {
280         return cpu_has_vmx_tpr_shadow() &&
281                 cpu_has_vmx_virtualize_apic_accesses();
282 }
283
284 static inline bool cpu_has_vmx_ept_execute_only(void)
285 {
286         return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
287 }
288
289 static inline bool cpu_has_vmx_eptp_uncacheable(void)
290 {
291         return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
292 }
293
294 static inline bool cpu_has_vmx_eptp_writeback(void)
295 {
296         return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
297 }
298
299 static inline bool cpu_has_vmx_ept_2m_page(void)
300 {
301         return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
302 }
303
304 static inline int cpu_has_vmx_invept_individual_addr(void)
305 {
306         return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
307 }
308
309 static inline int cpu_has_vmx_invept_context(void)
310 {
311         return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
312 }
313
314 static inline int cpu_has_vmx_invept_global(void)
315 {
316         return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
317 }
318
319 static inline int cpu_has_vmx_ept(void)
320 {
321         return vmcs_config.cpu_based_2nd_exec_ctrl &
322                 SECONDARY_EXEC_ENABLE_EPT;
323 }
324
325 static inline int cpu_has_vmx_unrestricted_guest(void)
326 {
327         return vmcs_config.cpu_based_2nd_exec_ctrl &
328                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
329 }
330
331 static inline int cpu_has_vmx_ple(void)
332 {
333         return vmcs_config.cpu_based_2nd_exec_ctrl &
334                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
335 }
336
337 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
338 {
339         return flexpriority_enabled &&
340                 (cpu_has_vmx_virtualize_apic_accesses()) &&
341                 (irqchip_in_kernel(kvm));
342 }
343
344 static inline int cpu_has_vmx_vpid(void)
345 {
346         return vmcs_config.cpu_based_2nd_exec_ctrl &
347                 SECONDARY_EXEC_ENABLE_VPID;
348 }
349
350 static inline int cpu_has_virtual_nmis(void)
351 {
352         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
353 }
354
355 static inline bool report_flexpriority(void)
356 {
357         return flexpriority_enabled;
358 }
359
360 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
361 {
362         int i;
363
364         for (i = 0; i < vmx->nmsrs; ++i)
365                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
366                         return i;
367         return -1;
368 }
369
370 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
371 {
372     struct {
373         u64 vpid : 16;
374         u64 rsvd : 48;
375         u64 gva;
376     } operand = { vpid, 0, gva };
377
378     asm volatile (__ex(ASM_VMX_INVVPID)
379                   /* CF==1 or ZF==1 --> rc = -1 */
380                   "; ja 1f ; ud2 ; 1:"
381                   : : "a"(&operand), "c"(ext) : "cc", "memory");
382 }
383
384 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
385 {
386         struct {
387                 u64 eptp, gpa;
388         } operand = {eptp, gpa};
389
390         asm volatile (__ex(ASM_VMX_INVEPT)
391                         /* CF==1 or ZF==1 --> rc = -1 */
392                         "; ja 1f ; ud2 ; 1:\n"
393                         : : "a" (&operand), "c" (ext) : "cc", "memory");
394 }
395
396 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
397 {
398         int i;
399
400         i = __find_msr_index(vmx, msr);
401         if (i >= 0)
402                 return &vmx->guest_msrs[i];
403         return NULL;
404 }
405
406 static void vmcs_clear(struct vmcs *vmcs)
407 {
408         u64 phys_addr = __pa(vmcs);
409         u8 error;
410
411         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
412                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
413                       : "cc", "memory");
414         if (error)
415                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
416                        vmcs, phys_addr);
417 }
418
419 static void __vcpu_clear(void *arg)
420 {
421         struct vcpu_vmx *vmx = arg;
422         int cpu = raw_smp_processor_id();
423
424         if (vmx->vcpu.cpu == cpu)
425                 vmcs_clear(vmx->vmcs);
426         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
427                 per_cpu(current_vmcs, cpu) = NULL;
428         rdtscll(vmx->vcpu.arch.host_tsc);
429         list_del(&vmx->local_vcpus_link);
430         vmx->vcpu.cpu = -1;
431         vmx->launched = 0;
432 }
433
434 static void vcpu_clear(struct vcpu_vmx *vmx)
435 {
436         if (vmx->vcpu.cpu == -1)
437                 return;
438         smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
439 }
440
441 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
442 {
443         if (vmx->vpid == 0)
444                 return;
445
446         __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
447 }
448
449 static inline void ept_sync_global(void)
450 {
451         if (cpu_has_vmx_invept_global())
452                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
453 }
454
455 static inline void ept_sync_context(u64 eptp)
456 {
457         if (enable_ept) {
458                 if (cpu_has_vmx_invept_context())
459                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
460                 else
461                         ept_sync_global();
462         }
463 }
464
465 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
466 {
467         if (enable_ept) {
468                 if (cpu_has_vmx_invept_individual_addr())
469                         __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
470                                         eptp, gpa);
471                 else
472                         ept_sync_context(eptp);
473         }
474 }
475
476 static unsigned long vmcs_readl(unsigned long field)
477 {
478         unsigned long value;
479
480         asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
481                       : "=a"(value) : "d"(field) : "cc");
482         return value;
483 }
484
485 static u16 vmcs_read16(unsigned long field)
486 {
487         return vmcs_readl(field);
488 }
489
490 static u32 vmcs_read32(unsigned long field)
491 {
492         return vmcs_readl(field);
493 }
494
495 static u64 vmcs_read64(unsigned long field)
496 {
497 #ifdef CONFIG_X86_64
498         return vmcs_readl(field);
499 #else
500         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
501 #endif
502 }
503
504 static noinline void vmwrite_error(unsigned long field, unsigned long value)
505 {
506         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
507                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
508         dump_stack();
509 }
510
511 static void vmcs_writel(unsigned long field, unsigned long value)
512 {
513         u8 error;
514
515         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
516                        : "=q"(error) : "a"(value), "d"(field) : "cc");
517         if (unlikely(error))
518                 vmwrite_error(field, value);
519 }
520
521 static void vmcs_write16(unsigned long field, u16 value)
522 {
523         vmcs_writel(field, value);
524 }
525
526 static void vmcs_write32(unsigned long field, u32 value)
527 {
528         vmcs_writel(field, value);
529 }
530
531 static void vmcs_write64(unsigned long field, u64 value)
532 {
533         vmcs_writel(field, value);
534 #ifndef CONFIG_X86_64
535         asm volatile ("");
536         vmcs_writel(field+1, value >> 32);
537 #endif
538 }
539
540 static void vmcs_clear_bits(unsigned long field, u32 mask)
541 {
542         vmcs_writel(field, vmcs_readl(field) & ~mask);
543 }
544
545 static void vmcs_set_bits(unsigned long field, u32 mask)
546 {
547         vmcs_writel(field, vmcs_readl(field) | mask);
548 }
549
550 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
551 {
552         u32 eb;
553
554         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR);
555         if (!vcpu->fpu_active)
556                 eb |= 1u << NM_VECTOR;
557         /*
558          * Unconditionally intercept #DB so we can maintain dr6 without
559          * reading it every exit.
560          */
561         eb |= 1u << DB_VECTOR;
562         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
563                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
564                         eb |= 1u << BP_VECTOR;
565         }
566         if (to_vmx(vcpu)->rmode.vm86_active)
567                 eb = ~0;
568         if (enable_ept)
569                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
570         vmcs_write32(EXCEPTION_BITMAP, eb);
571 }
572
573 static void reload_tss(void)
574 {
575         /*
576          * VT restores TR but not its size.  Useless.
577          */
578         struct descriptor_table gdt;
579         struct desc_struct *descs;
580
581         kvm_get_gdt(&gdt);
582         descs = (void *)gdt.base;
583         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
584         load_TR_desc();
585 }
586
587 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
588 {
589         u64 guest_efer;
590         u64 ignore_bits;
591
592         guest_efer = vmx->vcpu.arch.shadow_efer;
593
594         /*
595          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
596          * outside long mode
597          */
598         ignore_bits = EFER_NX | EFER_SCE;
599 #ifdef CONFIG_X86_64
600         ignore_bits |= EFER_LMA | EFER_LME;
601         /* SCE is meaningful only in long mode on Intel */
602         if (guest_efer & EFER_LMA)
603                 ignore_bits &= ~(u64)EFER_SCE;
604 #endif
605         guest_efer &= ~ignore_bits;
606         guest_efer |= host_efer & ignore_bits;
607         vmx->guest_msrs[efer_offset].data = guest_efer;
608         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
609         return true;
610 }
611
612 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
613 {
614         struct vcpu_vmx *vmx = to_vmx(vcpu);
615         int i;
616
617         if (vmx->host_state.loaded)
618                 return;
619
620         vmx->host_state.loaded = 1;
621         /*
622          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
623          * allow segment selectors with cpl > 0 or ti == 1.
624          */
625         vmx->host_state.ldt_sel = kvm_read_ldt();
626         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
627         vmx->host_state.fs_sel = kvm_read_fs();
628         if (!(vmx->host_state.fs_sel & 7)) {
629                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
630                 vmx->host_state.fs_reload_needed = 0;
631         } else {
632                 vmcs_write16(HOST_FS_SELECTOR, 0);
633                 vmx->host_state.fs_reload_needed = 1;
634         }
635         vmx->host_state.gs_sel = kvm_read_gs();
636         if (!(vmx->host_state.gs_sel & 7))
637                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
638         else {
639                 vmcs_write16(HOST_GS_SELECTOR, 0);
640                 vmx->host_state.gs_ldt_reload_needed = 1;
641         }
642
643 #ifdef CONFIG_X86_64
644         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
645         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
646 #else
647         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
648         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
649 #endif
650
651 #ifdef CONFIG_X86_64
652         if (is_long_mode(&vmx->vcpu)) {
653                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
654                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
655         }
656 #endif
657         for (i = 0; i < vmx->save_nmsrs; ++i)
658                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
659                                    vmx->guest_msrs[i].data,
660                                    vmx->guest_msrs[i].mask);
661 }
662
663 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
664 {
665         unsigned long flags;
666
667         if (!vmx->host_state.loaded)
668                 return;
669
670         ++vmx->vcpu.stat.host_state_reload;
671         vmx->host_state.loaded = 0;
672         if (vmx->host_state.fs_reload_needed)
673                 kvm_load_fs(vmx->host_state.fs_sel);
674         if (vmx->host_state.gs_ldt_reload_needed) {
675                 kvm_load_ldt(vmx->host_state.ldt_sel);
676                 /*
677                  * If we have to reload gs, we must take care to
678                  * preserve our gs base.
679                  */
680                 local_irq_save(flags);
681                 kvm_load_gs(vmx->host_state.gs_sel);
682 #ifdef CONFIG_X86_64
683                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
684 #endif
685                 local_irq_restore(flags);
686         }
687         reload_tss();
688 #ifdef CONFIG_X86_64
689         if (is_long_mode(&vmx->vcpu)) {
690                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
691                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
692         }
693 #endif
694 }
695
696 static void vmx_load_host_state(struct vcpu_vmx *vmx)
697 {
698         preempt_disable();
699         __vmx_load_host_state(vmx);
700         preempt_enable();
701 }
702
703 /*
704  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
705  * vcpu mutex is already taken.
706  */
707 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
708 {
709         struct vcpu_vmx *vmx = to_vmx(vcpu);
710         u64 phys_addr = __pa(vmx->vmcs);
711         u64 tsc_this, delta, new_offset;
712
713         if (vcpu->cpu != cpu) {
714                 vcpu_clear(vmx);
715                 kvm_migrate_timers(vcpu);
716                 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
717                 local_irq_disable();
718                 list_add(&vmx->local_vcpus_link,
719                          &per_cpu(vcpus_on_cpu, cpu));
720                 local_irq_enable();
721         }
722
723         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
724                 u8 error;
725
726                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
727                 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
728                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
729                               : "cc");
730                 if (error)
731                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
732                                vmx->vmcs, phys_addr);
733         }
734
735         if (vcpu->cpu != cpu) {
736                 struct descriptor_table dt;
737                 unsigned long sysenter_esp;
738
739                 vcpu->cpu = cpu;
740                 /*
741                  * Linux uses per-cpu TSS and GDT, so set these when switching
742                  * processors.
743                  */
744                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
745                 kvm_get_gdt(&dt);
746                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
747
748                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
749                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
750
751                 /*
752                  * Make sure the time stamp counter is monotonous.
753                  */
754                 rdtscll(tsc_this);
755                 if (tsc_this < vcpu->arch.host_tsc) {
756                         delta = vcpu->arch.host_tsc - tsc_this;
757                         new_offset = vmcs_read64(TSC_OFFSET) + delta;
758                         vmcs_write64(TSC_OFFSET, new_offset);
759                 }
760         }
761 }
762
763 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
764 {
765         __vmx_load_host_state(to_vmx(vcpu));
766 }
767
768 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
769 {
770         if (vcpu->fpu_active)
771                 return;
772         vcpu->fpu_active = 1;
773         vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
774         if (vcpu->arch.cr0 & X86_CR0_TS)
775                 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
776         update_exception_bitmap(vcpu);
777 }
778
779 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
780 {
781         if (!vcpu->fpu_active)
782                 return;
783         vcpu->fpu_active = 0;
784         vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
785         update_exception_bitmap(vcpu);
786 }
787
788 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
789 {
790         unsigned long rflags;
791
792         rflags = vmcs_readl(GUEST_RFLAGS);
793         if (to_vmx(vcpu)->rmode.vm86_active)
794                 rflags &= ~(unsigned long)(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
795         return rflags;
796 }
797
798 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
799 {
800         if (to_vmx(vcpu)->rmode.vm86_active)
801                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
802         vmcs_writel(GUEST_RFLAGS, rflags);
803 }
804
805 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
806 {
807         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
808         int ret = 0;
809
810         if (interruptibility & GUEST_INTR_STATE_STI)
811                 ret |= X86_SHADOW_INT_STI;
812         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
813                 ret |= X86_SHADOW_INT_MOV_SS;
814
815         return ret & mask;
816 }
817
818 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
819 {
820         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
821         u32 interruptibility = interruptibility_old;
822
823         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
824
825         if (mask & X86_SHADOW_INT_MOV_SS)
826                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
827         if (mask & X86_SHADOW_INT_STI)
828                 interruptibility |= GUEST_INTR_STATE_STI;
829
830         if ((interruptibility != interruptibility_old))
831                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
832 }
833
834 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
835 {
836         unsigned long rip;
837
838         rip = kvm_rip_read(vcpu);
839         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
840         kvm_rip_write(vcpu, rip);
841
842         /* skipping an emulated instruction also counts */
843         vmx_set_interrupt_shadow(vcpu, 0);
844 }
845
846 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
847                                 bool has_error_code, u32 error_code)
848 {
849         struct vcpu_vmx *vmx = to_vmx(vcpu);
850         u32 intr_info = nr | INTR_INFO_VALID_MASK;
851
852         if (has_error_code) {
853                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
854                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
855         }
856
857         if (vmx->rmode.vm86_active) {
858                 vmx->rmode.irq.pending = true;
859                 vmx->rmode.irq.vector = nr;
860                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
861                 if (kvm_exception_is_soft(nr))
862                         vmx->rmode.irq.rip +=
863                                 vmx->vcpu.arch.event_exit_inst_len;
864                 intr_info |= INTR_TYPE_SOFT_INTR;
865                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
866                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
867                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
868                 return;
869         }
870
871         if (kvm_exception_is_soft(nr)) {
872                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
873                              vmx->vcpu.arch.event_exit_inst_len);
874                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
875         } else
876                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
877
878         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
879 }
880
881 /*
882  * Swap MSR entry in host/guest MSR entry array.
883  */
884 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
885 {
886         struct shared_msr_entry tmp;
887
888         tmp = vmx->guest_msrs[to];
889         vmx->guest_msrs[to] = vmx->guest_msrs[from];
890         vmx->guest_msrs[from] = tmp;
891 }
892
893 /*
894  * Set up the vmcs to automatically save and restore system
895  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
896  * mode, as fiddling with msrs is very expensive.
897  */
898 static void setup_msrs(struct vcpu_vmx *vmx)
899 {
900         int save_nmsrs, index;
901         unsigned long *msr_bitmap;
902
903         vmx_load_host_state(vmx);
904         save_nmsrs = 0;
905 #ifdef CONFIG_X86_64
906         if (is_long_mode(&vmx->vcpu)) {
907                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
908                 if (index >= 0)
909                         move_msr_up(vmx, index, save_nmsrs++);
910                 index = __find_msr_index(vmx, MSR_LSTAR);
911                 if (index >= 0)
912                         move_msr_up(vmx, index, save_nmsrs++);
913                 index = __find_msr_index(vmx, MSR_CSTAR);
914                 if (index >= 0)
915                         move_msr_up(vmx, index, save_nmsrs++);
916                 /*
917                  * MSR_K6_STAR is only needed on long mode guests, and only
918                  * if efer.sce is enabled.
919                  */
920                 index = __find_msr_index(vmx, MSR_K6_STAR);
921                 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
922                         move_msr_up(vmx, index, save_nmsrs++);
923         }
924 #endif
925         index = __find_msr_index(vmx, MSR_EFER);
926         if (index >= 0 && update_transition_efer(vmx, index))
927                 move_msr_up(vmx, index, save_nmsrs++);
928
929         vmx->save_nmsrs = save_nmsrs;
930
931         if (cpu_has_vmx_msr_bitmap()) {
932                 if (is_long_mode(&vmx->vcpu))
933                         msr_bitmap = vmx_msr_bitmap_longmode;
934                 else
935                         msr_bitmap = vmx_msr_bitmap_legacy;
936
937                 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
938         }
939 }
940
941 /*
942  * reads and returns guest's timestamp counter "register"
943  * guest_tsc = host_tsc + tsc_offset    -- 21.3
944  */
945 static u64 guest_read_tsc(void)
946 {
947         u64 host_tsc, tsc_offset;
948
949         rdtscll(host_tsc);
950         tsc_offset = vmcs_read64(TSC_OFFSET);
951         return host_tsc + tsc_offset;
952 }
953
954 /*
955  * writes 'guest_tsc' into guest's timestamp counter "register"
956  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
957  */
958 static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
959 {
960         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
961 }
962
963 /*
964  * Reads an msr value (of 'msr_index') into 'pdata'.
965  * Returns 0 on success, non-0 otherwise.
966  * Assumes vcpu_load() was already called.
967  */
968 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
969 {
970         u64 data;
971         struct shared_msr_entry *msr;
972
973         if (!pdata) {
974                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
975                 return -EINVAL;
976         }
977
978         switch (msr_index) {
979 #ifdef CONFIG_X86_64
980         case MSR_FS_BASE:
981                 data = vmcs_readl(GUEST_FS_BASE);
982                 break;
983         case MSR_GS_BASE:
984                 data = vmcs_readl(GUEST_GS_BASE);
985                 break;
986         case MSR_KERNEL_GS_BASE:
987                 vmx_load_host_state(to_vmx(vcpu));
988                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
989                 break;
990 #endif
991         case MSR_EFER:
992                 return kvm_get_msr_common(vcpu, msr_index, pdata);
993         case MSR_IA32_TSC:
994                 data = guest_read_tsc();
995                 break;
996         case MSR_IA32_SYSENTER_CS:
997                 data = vmcs_read32(GUEST_SYSENTER_CS);
998                 break;
999         case MSR_IA32_SYSENTER_EIP:
1000                 data = vmcs_readl(GUEST_SYSENTER_EIP);
1001                 break;
1002         case MSR_IA32_SYSENTER_ESP:
1003                 data = vmcs_readl(GUEST_SYSENTER_ESP);
1004                 break;
1005         default:
1006                 vmx_load_host_state(to_vmx(vcpu));
1007                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
1008                 if (msr) {
1009                         vmx_load_host_state(to_vmx(vcpu));
1010                         data = msr->data;
1011                         break;
1012                 }
1013                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1014         }
1015
1016         *pdata = data;
1017         return 0;
1018 }
1019
1020 /*
1021  * Writes msr value into into the appropriate "register".
1022  * Returns 0 on success, non-0 otherwise.
1023  * Assumes vcpu_load() was already called.
1024  */
1025 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1026 {
1027         struct vcpu_vmx *vmx = to_vmx(vcpu);
1028         struct shared_msr_entry *msr;
1029         u64 host_tsc;
1030         int ret = 0;
1031
1032         switch (msr_index) {
1033         case MSR_EFER:
1034                 vmx_load_host_state(vmx);
1035                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1036                 break;
1037 #ifdef CONFIG_X86_64
1038         case MSR_FS_BASE:
1039                 vmcs_writel(GUEST_FS_BASE, data);
1040                 break;
1041         case MSR_GS_BASE:
1042                 vmcs_writel(GUEST_GS_BASE, data);
1043                 break;
1044         case MSR_KERNEL_GS_BASE:
1045                 vmx_load_host_state(vmx);
1046                 vmx->msr_guest_kernel_gs_base = data;
1047                 break;
1048 #endif
1049         case MSR_IA32_SYSENTER_CS:
1050                 vmcs_write32(GUEST_SYSENTER_CS, data);
1051                 break;
1052         case MSR_IA32_SYSENTER_EIP:
1053                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1054                 break;
1055         case MSR_IA32_SYSENTER_ESP:
1056                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1057                 break;
1058         case MSR_IA32_TSC:
1059                 rdtscll(host_tsc);
1060                 guest_write_tsc(data, host_tsc);
1061                 break;
1062         case MSR_IA32_CR_PAT:
1063                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1064                         vmcs_write64(GUEST_IA32_PAT, data);
1065                         vcpu->arch.pat = data;
1066                         break;
1067                 }
1068                 /* Otherwise falls through to kvm_set_msr_common */
1069         default:
1070                 msr = find_msr_entry(vmx, msr_index);
1071                 if (msr) {
1072                         vmx_load_host_state(vmx);
1073                         msr->data = data;
1074                         break;
1075                 }
1076                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1077         }
1078
1079         return ret;
1080 }
1081
1082 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1083 {
1084         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1085         switch (reg) {
1086         case VCPU_REGS_RSP:
1087                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1088                 break;
1089         case VCPU_REGS_RIP:
1090                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1091                 break;
1092         case VCPU_EXREG_PDPTR:
1093                 if (enable_ept)
1094                         ept_save_pdptrs(vcpu);
1095                 break;
1096         default:
1097                 break;
1098         }
1099 }
1100
1101 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1102 {
1103         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1104                 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1105         else
1106                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1107
1108         update_exception_bitmap(vcpu);
1109 }
1110
1111 static __init int cpu_has_kvm_support(void)
1112 {
1113         return cpu_has_vmx();
1114 }
1115
1116 static __init int vmx_disabled_by_bios(void)
1117 {
1118         u64 msr;
1119
1120         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1121         return (msr & (FEATURE_CONTROL_LOCKED |
1122                        FEATURE_CONTROL_VMXON_ENABLED))
1123             == FEATURE_CONTROL_LOCKED;
1124         /* locked but not enabled */
1125 }
1126
1127 static int hardware_enable(void *garbage)
1128 {
1129         int cpu = raw_smp_processor_id();
1130         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1131         u64 old;
1132
1133         if (read_cr4() & X86_CR4_VMXE)
1134                 return -EBUSY;
1135
1136         INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1137         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1138         if ((old & (FEATURE_CONTROL_LOCKED |
1139                     FEATURE_CONTROL_VMXON_ENABLED))
1140             != (FEATURE_CONTROL_LOCKED |
1141                 FEATURE_CONTROL_VMXON_ENABLED))
1142                 /* enable and lock */
1143                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1144                        FEATURE_CONTROL_LOCKED |
1145                        FEATURE_CONTROL_VMXON_ENABLED);
1146         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1147         asm volatile (ASM_VMX_VMXON_RAX
1148                       : : "a"(&phys_addr), "m"(phys_addr)
1149                       : "memory", "cc");
1150
1151         ept_sync_global();
1152
1153         return 0;
1154 }
1155
1156 static void vmclear_local_vcpus(void)
1157 {
1158         int cpu = raw_smp_processor_id();
1159         struct vcpu_vmx *vmx, *n;
1160
1161         list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1162                                  local_vcpus_link)
1163                 __vcpu_clear(vmx);
1164 }
1165
1166
1167 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1168  * tricks.
1169  */
1170 static void kvm_cpu_vmxoff(void)
1171 {
1172         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1173         write_cr4(read_cr4() & ~X86_CR4_VMXE);
1174 }
1175
1176 static void hardware_disable(void *garbage)
1177 {
1178         vmclear_local_vcpus();
1179         kvm_cpu_vmxoff();
1180 }
1181
1182 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1183                                       u32 msr, u32 *result)
1184 {
1185         u32 vmx_msr_low, vmx_msr_high;
1186         u32 ctl = ctl_min | ctl_opt;
1187
1188         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1189
1190         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1191         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
1192
1193         /* Ensure minimum (required) set of control bits are supported. */
1194         if (ctl_min & ~ctl)
1195                 return -EIO;
1196
1197         *result = ctl;
1198         return 0;
1199 }
1200
1201 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1202 {
1203         u32 vmx_msr_low, vmx_msr_high;
1204         u32 min, opt, min2, opt2;
1205         u32 _pin_based_exec_control = 0;
1206         u32 _cpu_based_exec_control = 0;
1207         u32 _cpu_based_2nd_exec_control = 0;
1208         u32 _vmexit_control = 0;
1209         u32 _vmentry_control = 0;
1210
1211         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1212         opt = PIN_BASED_VIRTUAL_NMIS;
1213         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1214                                 &_pin_based_exec_control) < 0)
1215                 return -EIO;
1216
1217         min = CPU_BASED_HLT_EXITING |
1218 #ifdef CONFIG_X86_64
1219               CPU_BASED_CR8_LOAD_EXITING |
1220               CPU_BASED_CR8_STORE_EXITING |
1221 #endif
1222               CPU_BASED_CR3_LOAD_EXITING |
1223               CPU_BASED_CR3_STORE_EXITING |
1224               CPU_BASED_USE_IO_BITMAPS |
1225               CPU_BASED_MOV_DR_EXITING |
1226               CPU_BASED_USE_TSC_OFFSETING |
1227               CPU_BASED_INVLPG_EXITING;
1228         opt = CPU_BASED_TPR_SHADOW |
1229               CPU_BASED_USE_MSR_BITMAPS |
1230               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1231         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1232                                 &_cpu_based_exec_control) < 0)
1233                 return -EIO;
1234 #ifdef CONFIG_X86_64
1235         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1236                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1237                                            ~CPU_BASED_CR8_STORE_EXITING;
1238 #endif
1239         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1240                 min2 = 0;
1241                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1242                         SECONDARY_EXEC_WBINVD_EXITING |
1243                         SECONDARY_EXEC_ENABLE_VPID |
1244                         SECONDARY_EXEC_ENABLE_EPT |
1245                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
1246                         SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1247                 if (adjust_vmx_controls(min2, opt2,
1248                                         MSR_IA32_VMX_PROCBASED_CTLS2,
1249                                         &_cpu_based_2nd_exec_control) < 0)
1250                         return -EIO;
1251         }
1252 #ifndef CONFIG_X86_64
1253         if (!(_cpu_based_2nd_exec_control &
1254                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1255                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1256 #endif
1257         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1258                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1259                    enabled */
1260                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
1261                                              CPU_BASED_CR3_STORE_EXITING |
1262                                              CPU_BASED_INVLPG_EXITING);
1263                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1264                       vmx_capability.ept, vmx_capability.vpid);
1265         }
1266
1267         min = 0;
1268 #ifdef CONFIG_X86_64
1269         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1270 #endif
1271         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1272         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1273                                 &_vmexit_control) < 0)
1274                 return -EIO;
1275
1276         min = 0;
1277         opt = VM_ENTRY_LOAD_IA32_PAT;
1278         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1279                                 &_vmentry_control) < 0)
1280                 return -EIO;
1281
1282         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1283
1284         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1285         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1286                 return -EIO;
1287
1288 #ifdef CONFIG_X86_64
1289         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1290         if (vmx_msr_high & (1u<<16))
1291                 return -EIO;
1292 #endif
1293
1294         /* Require Write-Back (WB) memory type for VMCS accesses. */
1295         if (((vmx_msr_high >> 18) & 15) != 6)
1296                 return -EIO;
1297
1298         vmcs_conf->size = vmx_msr_high & 0x1fff;
1299         vmcs_conf->order = get_order(vmcs_config.size);
1300         vmcs_conf->revision_id = vmx_msr_low;
1301
1302         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1303         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1304         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1305         vmcs_conf->vmexit_ctrl         = _vmexit_control;
1306         vmcs_conf->vmentry_ctrl        = _vmentry_control;
1307
1308         return 0;
1309 }
1310
1311 static struct vmcs *alloc_vmcs_cpu(int cpu)
1312 {
1313         int node = cpu_to_node(cpu);
1314         struct page *pages;
1315         struct vmcs *vmcs;
1316
1317         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1318         if (!pages)
1319                 return NULL;
1320         vmcs = page_address(pages);
1321         memset(vmcs, 0, vmcs_config.size);
1322         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1323         return vmcs;
1324 }
1325
1326 static struct vmcs *alloc_vmcs(void)
1327 {
1328         return alloc_vmcs_cpu(raw_smp_processor_id());
1329 }
1330
1331 static void free_vmcs(struct vmcs *vmcs)
1332 {
1333         free_pages((unsigned long)vmcs, vmcs_config.order);
1334 }
1335
1336 static void free_kvm_area(void)
1337 {
1338         int cpu;
1339
1340         for_each_possible_cpu(cpu) {
1341                 free_vmcs(per_cpu(vmxarea, cpu));
1342                 per_cpu(vmxarea, cpu) = NULL;
1343         }
1344 }
1345
1346 static __init int alloc_kvm_area(void)
1347 {
1348         int cpu;
1349
1350         for_each_possible_cpu(cpu) {
1351                 struct vmcs *vmcs;
1352
1353                 vmcs = alloc_vmcs_cpu(cpu);
1354                 if (!vmcs) {
1355                         free_kvm_area();
1356                         return -ENOMEM;
1357                 }
1358
1359                 per_cpu(vmxarea, cpu) = vmcs;
1360         }
1361         return 0;
1362 }
1363
1364 static __init int hardware_setup(void)
1365 {
1366         if (setup_vmcs_config(&vmcs_config) < 0)
1367                 return -EIO;
1368
1369         if (boot_cpu_has(X86_FEATURE_NX))
1370                 kvm_enable_efer_bits(EFER_NX);
1371
1372         if (!cpu_has_vmx_vpid())
1373                 enable_vpid = 0;
1374
1375         if (!cpu_has_vmx_ept()) {
1376                 enable_ept = 0;
1377                 enable_unrestricted_guest = 0;
1378         }
1379
1380         if (!cpu_has_vmx_unrestricted_guest())
1381                 enable_unrestricted_guest = 0;
1382
1383         if (!cpu_has_vmx_flexpriority())
1384                 flexpriority_enabled = 0;
1385
1386         if (!cpu_has_vmx_tpr_shadow())
1387                 kvm_x86_ops->update_cr8_intercept = NULL;
1388
1389         if (enable_ept && !cpu_has_vmx_ept_2m_page())
1390                 kvm_disable_largepages();
1391
1392         if (!cpu_has_vmx_ple())
1393                 ple_gap = 0;
1394
1395         return alloc_kvm_area();
1396 }
1397
1398 static __exit void hardware_unsetup(void)
1399 {
1400         free_kvm_area();
1401 }
1402
1403 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1404 {
1405         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1406
1407         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1408                 vmcs_write16(sf->selector, save->selector);
1409                 vmcs_writel(sf->base, save->base);
1410                 vmcs_write32(sf->limit, save->limit);
1411                 vmcs_write32(sf->ar_bytes, save->ar);
1412         } else {
1413                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1414                         << AR_DPL_SHIFT;
1415                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1416         }
1417 }
1418
1419 static void enter_pmode(struct kvm_vcpu *vcpu)
1420 {
1421         unsigned long flags;
1422         struct vcpu_vmx *vmx = to_vmx(vcpu);
1423
1424         vmx->emulation_required = 1;
1425         vmx->rmode.vm86_active = 0;
1426
1427         vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1428         vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1429         vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1430
1431         flags = vmcs_readl(GUEST_RFLAGS);
1432         flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1433         flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
1434         vmcs_writel(GUEST_RFLAGS, flags);
1435
1436         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1437                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1438
1439         update_exception_bitmap(vcpu);
1440
1441         if (emulate_invalid_guest_state)
1442                 return;
1443
1444         fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1445         fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1446         fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1447         fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1448
1449         vmcs_write16(GUEST_SS_SELECTOR, 0);
1450         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1451
1452         vmcs_write16(GUEST_CS_SELECTOR,
1453                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1454         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1455 }
1456
1457 static gva_t rmode_tss_base(struct kvm *kvm)
1458 {
1459         if (!kvm->arch.tss_addr) {
1460                 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1461                                  kvm->memslots[0].npages - 3;
1462                 return base_gfn << PAGE_SHIFT;
1463         }
1464         return kvm->arch.tss_addr;
1465 }
1466
1467 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1468 {
1469         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1470
1471         save->selector = vmcs_read16(sf->selector);
1472         save->base = vmcs_readl(sf->base);
1473         save->limit = vmcs_read32(sf->limit);
1474         save->ar = vmcs_read32(sf->ar_bytes);
1475         vmcs_write16(sf->selector, save->base >> 4);
1476         vmcs_write32(sf->base, save->base & 0xfffff);
1477         vmcs_write32(sf->limit, 0xffff);
1478         vmcs_write32(sf->ar_bytes, 0xf3);
1479 }
1480
1481 static void enter_rmode(struct kvm_vcpu *vcpu)
1482 {
1483         unsigned long flags;
1484         struct vcpu_vmx *vmx = to_vmx(vcpu);
1485
1486         if (enable_unrestricted_guest)
1487                 return;
1488
1489         vmx->emulation_required = 1;
1490         vmx->rmode.vm86_active = 1;
1491
1492         vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1493         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1494
1495         vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1496         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1497
1498         vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1499         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1500
1501         flags = vmcs_readl(GUEST_RFLAGS);
1502         vmx->rmode.save_iopl
1503                 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1504
1505         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1506
1507         vmcs_writel(GUEST_RFLAGS, flags);
1508         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1509         update_exception_bitmap(vcpu);
1510
1511         if (emulate_invalid_guest_state)
1512                 goto continue_rmode;
1513
1514         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1515         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1516         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1517
1518         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1519         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1520         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1521                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1522         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1523
1524         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1525         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1526         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1527         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1528
1529 continue_rmode:
1530         kvm_mmu_reset_context(vcpu);
1531         init_rmode(vcpu->kvm);
1532 }
1533
1534 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1535 {
1536         struct vcpu_vmx *vmx = to_vmx(vcpu);
1537         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1538
1539         if (!msr)
1540                 return;
1541
1542         /*
1543          * Force kernel_gs_base reloading before EFER changes, as control
1544          * of this msr depends on is_long_mode().
1545          */
1546         vmx_load_host_state(to_vmx(vcpu));
1547         vcpu->arch.shadow_efer = efer;
1548         if (!msr)
1549                 return;
1550         if (efer & EFER_LMA) {
1551                 vmcs_write32(VM_ENTRY_CONTROLS,
1552                              vmcs_read32(VM_ENTRY_CONTROLS) |
1553                              VM_ENTRY_IA32E_MODE);
1554                 msr->data = efer;
1555         } else {
1556                 vmcs_write32(VM_ENTRY_CONTROLS,
1557                              vmcs_read32(VM_ENTRY_CONTROLS) &
1558                              ~VM_ENTRY_IA32E_MODE);
1559
1560                 msr->data = efer & ~EFER_LME;
1561         }
1562         setup_msrs(vmx);
1563 }
1564
1565 #ifdef CONFIG_X86_64
1566
1567 static void enter_lmode(struct kvm_vcpu *vcpu)
1568 {
1569         u32 guest_tr_ar;
1570
1571         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1572         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1573                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1574                        __func__);
1575                 vmcs_write32(GUEST_TR_AR_BYTES,
1576                              (guest_tr_ar & ~AR_TYPE_MASK)
1577                              | AR_TYPE_BUSY_64_TSS);
1578         }
1579         vcpu->arch.shadow_efer |= EFER_LMA;
1580         vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
1581 }
1582
1583 static void exit_lmode(struct kvm_vcpu *vcpu)
1584 {
1585         vcpu->arch.shadow_efer &= ~EFER_LMA;
1586
1587         vmcs_write32(VM_ENTRY_CONTROLS,
1588                      vmcs_read32(VM_ENTRY_CONTROLS)
1589                      & ~VM_ENTRY_IA32E_MODE);
1590 }
1591
1592 #endif
1593
1594 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1595 {
1596         vpid_sync_vcpu_all(to_vmx(vcpu));
1597         if (enable_ept)
1598                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1599 }
1600
1601 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1602 {
1603         vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1604         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1605 }
1606
1607 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1608 {
1609         if (!test_bit(VCPU_EXREG_PDPTR,
1610                       (unsigned long *)&vcpu->arch.regs_dirty))
1611                 return;
1612
1613         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1614                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1615                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1616                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1617                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1618         }
1619 }
1620
1621 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
1622 {
1623         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1624                 vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
1625                 vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
1626                 vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
1627                 vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
1628         }
1629
1630         __set_bit(VCPU_EXREG_PDPTR,
1631                   (unsigned long *)&vcpu->arch.regs_avail);
1632         __set_bit(VCPU_EXREG_PDPTR,
1633                   (unsigned long *)&vcpu->arch.regs_dirty);
1634 }
1635
1636 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1637
1638 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1639                                         unsigned long cr0,
1640                                         struct kvm_vcpu *vcpu)
1641 {
1642         if (!(cr0 & X86_CR0_PG)) {
1643                 /* From paging/starting to nonpaging */
1644                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1645                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1646                              (CPU_BASED_CR3_LOAD_EXITING |
1647                               CPU_BASED_CR3_STORE_EXITING));
1648                 vcpu->arch.cr0 = cr0;
1649                 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1650         } else if (!is_paging(vcpu)) {
1651                 /* From nonpaging to paging */
1652                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1653                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1654                              ~(CPU_BASED_CR3_LOAD_EXITING |
1655                                CPU_BASED_CR3_STORE_EXITING));
1656                 vcpu->arch.cr0 = cr0;
1657                 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1658         }
1659
1660         if (!(cr0 & X86_CR0_WP))
1661                 *hw_cr0 &= ~X86_CR0_WP;
1662 }
1663
1664 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1665                                         struct kvm_vcpu *vcpu)
1666 {
1667         if (!is_paging(vcpu)) {
1668                 *hw_cr4 &= ~X86_CR4_PAE;
1669                 *hw_cr4 |= X86_CR4_PSE;
1670         } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1671                 *hw_cr4 &= ~X86_CR4_PAE;
1672 }
1673
1674 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1675 {
1676         struct vcpu_vmx *vmx = to_vmx(vcpu);
1677         unsigned long hw_cr0;
1678
1679         if (enable_unrestricted_guest)
1680                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
1681                         | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
1682         else
1683                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1684
1685         vmx_fpu_deactivate(vcpu);
1686
1687         if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
1688                 enter_pmode(vcpu);
1689
1690         if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
1691                 enter_rmode(vcpu);
1692
1693 #ifdef CONFIG_X86_64
1694         if (vcpu->arch.shadow_efer & EFER_LME) {
1695                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1696                         enter_lmode(vcpu);
1697                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1698                         exit_lmode(vcpu);
1699         }
1700 #endif
1701
1702         if (enable_ept)
1703                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1704
1705         vmcs_writel(CR0_READ_SHADOW, cr0);
1706         vmcs_writel(GUEST_CR0, hw_cr0);
1707         vcpu->arch.cr0 = cr0;
1708
1709         if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1710                 vmx_fpu_activate(vcpu);
1711 }
1712
1713 static u64 construct_eptp(unsigned long root_hpa)
1714 {
1715         u64 eptp;
1716
1717         /* TODO write the value reading from MSR */
1718         eptp = VMX_EPT_DEFAULT_MT |
1719                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1720         eptp |= (root_hpa & PAGE_MASK);
1721
1722         return eptp;
1723 }
1724
1725 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1726 {
1727         unsigned long guest_cr3;
1728         u64 eptp;
1729
1730         guest_cr3 = cr3;
1731         if (enable_ept) {
1732                 eptp = construct_eptp(cr3);
1733                 vmcs_write64(EPT_POINTER, eptp);
1734                 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1735                         vcpu->kvm->arch.ept_identity_map_addr;
1736                 ept_load_pdptrs(vcpu);
1737         }
1738
1739         vmx_flush_tlb(vcpu);
1740         vmcs_writel(GUEST_CR3, guest_cr3);
1741         if (vcpu->arch.cr0 & X86_CR0_PE)
1742                 vmx_fpu_deactivate(vcpu);
1743 }
1744
1745 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1746 {
1747         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1748                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1749
1750         vcpu->arch.cr4 = cr4;
1751         if (enable_ept)
1752                 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1753
1754         vmcs_writel(CR4_READ_SHADOW, cr4);
1755         vmcs_writel(GUEST_CR4, hw_cr4);
1756 }
1757
1758 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1759 {
1760         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1761
1762         return vmcs_readl(sf->base);
1763 }
1764
1765 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1766                             struct kvm_segment *var, int seg)
1767 {
1768         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1769         u32 ar;
1770
1771         var->base = vmcs_readl(sf->base);
1772         var->limit = vmcs_read32(sf->limit);
1773         var->selector = vmcs_read16(sf->selector);
1774         ar = vmcs_read32(sf->ar_bytes);
1775         if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
1776                 ar = 0;
1777         var->type = ar & 15;
1778         var->s = (ar >> 4) & 1;
1779         var->dpl = (ar >> 5) & 3;
1780         var->present = (ar >> 7) & 1;
1781         var->avl = (ar >> 12) & 1;
1782         var->l = (ar >> 13) & 1;
1783         var->db = (ar >> 14) & 1;
1784         var->g = (ar >> 15) & 1;
1785         var->unusable = (ar >> 16) & 1;
1786 }
1787
1788 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1789 {
1790         if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1791                 return 0;
1792
1793         if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1794                 return 3;
1795
1796         return vmcs_read16(GUEST_CS_SELECTOR) & 3;
1797 }
1798
1799 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1800 {
1801         u32 ar;
1802
1803         if (var->unusable)
1804                 ar = 1 << 16;
1805         else {
1806                 ar = var->type & 15;
1807                 ar |= (var->s & 1) << 4;
1808                 ar |= (var->dpl & 3) << 5;
1809                 ar |= (var->present & 1) << 7;
1810                 ar |= (var->avl & 1) << 12;
1811                 ar |= (var->l & 1) << 13;
1812                 ar |= (var->db & 1) << 14;
1813                 ar |= (var->g & 1) << 15;
1814         }
1815         if (ar == 0) /* a 0 value means unusable */
1816                 ar = AR_UNUSABLE_MASK;
1817
1818         return ar;
1819 }
1820
1821 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1822                             struct kvm_segment *var, int seg)
1823 {
1824         struct vcpu_vmx *vmx = to_vmx(vcpu);
1825         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1826         u32 ar;
1827
1828         if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
1829                 vmx->rmode.tr.selector = var->selector;
1830                 vmx->rmode.tr.base = var->base;
1831                 vmx->rmode.tr.limit = var->limit;
1832                 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
1833                 return;
1834         }
1835         vmcs_writel(sf->base, var->base);
1836         vmcs_write32(sf->limit, var->limit);
1837         vmcs_write16(sf->selector, var->selector);
1838         if (vmx->rmode.vm86_active && var->s) {
1839                 /*
1840                  * Hack real-mode segments into vm86 compatibility.
1841                  */
1842                 if (var->base == 0xffff0000 && var->selector == 0xf000)
1843                         vmcs_writel(sf->base, 0xf0000);
1844                 ar = 0xf3;
1845         } else
1846                 ar = vmx_segment_access_rights(var);
1847
1848         /*
1849          *   Fix the "Accessed" bit in AR field of segment registers for older
1850          * qemu binaries.
1851          *   IA32 arch specifies that at the time of processor reset the
1852          * "Accessed" bit in the AR field of segment registers is 1. And qemu
1853          * is setting it to 0 in the usedland code. This causes invalid guest
1854          * state vmexit when "unrestricted guest" mode is turned on.
1855          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
1856          * tree. Newer qemu binaries with that qemu fix would not need this
1857          * kvm hack.
1858          */
1859         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
1860                 ar |= 0x1; /* Accessed */
1861
1862         vmcs_write32(sf->ar_bytes, ar);
1863 }
1864
1865 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1866 {
1867         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1868
1869         *db = (ar >> 14) & 1;
1870         *l = (ar >> 13) & 1;
1871 }
1872
1873 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1874 {
1875         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1876         dt->base = vmcs_readl(GUEST_IDTR_BASE);
1877 }
1878
1879 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1880 {
1881         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1882         vmcs_writel(GUEST_IDTR_BASE, dt->base);
1883 }
1884
1885 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1886 {
1887         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1888         dt->base = vmcs_readl(GUEST_GDTR_BASE);
1889 }
1890
1891 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1892 {
1893         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1894         vmcs_writel(GUEST_GDTR_BASE, dt->base);
1895 }
1896
1897 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
1898 {
1899         struct kvm_segment var;
1900         u32 ar;
1901
1902         vmx_get_segment(vcpu, &var, seg);
1903         ar = vmx_segment_access_rights(&var);
1904
1905         if (var.base != (var.selector << 4))
1906                 return false;
1907         if (var.limit != 0xffff)
1908                 return false;
1909         if (ar != 0xf3)
1910                 return false;
1911
1912         return true;
1913 }
1914
1915 static bool code_segment_valid(struct kvm_vcpu *vcpu)
1916 {
1917         struct kvm_segment cs;
1918         unsigned int cs_rpl;
1919
1920         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1921         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
1922
1923         if (cs.unusable)
1924                 return false;
1925         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
1926                 return false;
1927         if (!cs.s)
1928                 return false;
1929         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
1930                 if (cs.dpl > cs_rpl)
1931                         return false;
1932         } else {
1933                 if (cs.dpl != cs_rpl)
1934                         return false;
1935         }
1936         if (!cs.present)
1937                 return false;
1938
1939         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1940         return true;
1941 }
1942
1943 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
1944 {
1945         struct kvm_segment ss;
1946         unsigned int ss_rpl;
1947
1948         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1949         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
1950
1951         if (ss.unusable)
1952                 return true;
1953         if (ss.type != 3 && ss.type != 7)
1954                 return false;
1955         if (!ss.s)
1956                 return false;
1957         if (ss.dpl != ss_rpl) /* DPL != RPL */
1958                 return false;
1959         if (!ss.present)
1960                 return false;
1961
1962         return true;
1963 }
1964
1965 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
1966 {
1967         struct kvm_segment var;
1968         unsigned int rpl;
1969
1970         vmx_get_segment(vcpu, &var, seg);
1971         rpl = var.selector & SELECTOR_RPL_MASK;
1972
1973         if (var.unusable)
1974                 return true;
1975         if (!var.s)
1976                 return false;
1977         if (!var.present)
1978                 return false;
1979         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
1980                 if (var.dpl < rpl) /* DPL < RPL */
1981                         return false;
1982         }
1983
1984         /* TODO: Add other members to kvm_segment_field to allow checking for other access
1985          * rights flags
1986          */
1987         return true;
1988 }
1989
1990 static bool tr_valid(struct kvm_vcpu *vcpu)
1991 {
1992         struct kvm_segment tr;
1993
1994         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
1995
1996         if (tr.unusable)
1997                 return false;
1998         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
1999                 return false;
2000         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
2001                 return false;
2002         if (!tr.present)
2003                 return false;
2004
2005         return true;
2006 }
2007
2008 static bool ldtr_valid(struct kvm_vcpu *vcpu)
2009 {
2010         struct kvm_segment ldtr;
2011
2012         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
2013
2014         if (ldtr.unusable)
2015                 return true;
2016         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
2017                 return false;
2018         if (ldtr.type != 2)
2019                 return false;
2020         if (!ldtr.present)
2021                 return false;
2022
2023         return true;
2024 }
2025
2026 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2027 {
2028         struct kvm_segment cs, ss;
2029
2030         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2031         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2032
2033         return ((cs.selector & SELECTOR_RPL_MASK) ==
2034                  (ss.selector & SELECTOR_RPL_MASK));
2035 }
2036
2037 /*
2038  * Check if guest state is valid. Returns true if valid, false if
2039  * not.
2040  * We assume that registers are always usable
2041  */
2042 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2043 {
2044         /* real mode guest state checks */
2045         if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
2046                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2047                         return false;
2048                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2049                         return false;
2050                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2051                         return false;
2052                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2053                         return false;
2054                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2055                         return false;
2056                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2057                         return false;
2058         } else {
2059         /* protected mode guest state checks */
2060                 if (!cs_ss_rpl_check(vcpu))
2061                         return false;
2062                 if (!code_segment_valid(vcpu))
2063                         return false;
2064                 if (!stack_segment_valid(vcpu))
2065                         return false;
2066                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2067                         return false;
2068                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2069                         return false;
2070                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2071                         return false;
2072                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2073                         return false;
2074                 if (!tr_valid(vcpu))
2075                         return false;
2076                 if (!ldtr_valid(vcpu))
2077                         return false;
2078         }
2079         /* TODO:
2080          * - Add checks on RIP
2081          * - Add checks on RFLAGS
2082          */
2083
2084         return true;
2085 }
2086
2087 static int init_rmode_tss(struct kvm *kvm)
2088 {
2089         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2090         u16 data = 0;
2091         int ret = 0;
2092         int r;
2093
2094         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2095         if (r < 0)
2096                 goto out;
2097         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2098         r = kvm_write_guest_page(kvm, fn++, &data,
2099                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
2100         if (r < 0)
2101                 goto out;
2102         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2103         if (r < 0)
2104                 goto out;
2105         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2106         if (r < 0)
2107                 goto out;
2108         data = ~0;
2109         r = kvm_write_guest_page(kvm, fn, &data,
2110                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2111                                  sizeof(u8));
2112         if (r < 0)
2113                 goto out;
2114
2115         ret = 1;
2116 out:
2117         return ret;
2118 }
2119
2120 static int init_rmode_identity_map(struct kvm *kvm)
2121 {
2122         int i, r, ret;
2123         pfn_t identity_map_pfn;
2124         u32 tmp;
2125
2126         if (!enable_ept)
2127                 return 1;
2128         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2129                 printk(KERN_ERR "EPT: identity-mapping pagetable "
2130                         "haven't been allocated!\n");
2131                 return 0;
2132         }
2133         if (likely(kvm->arch.ept_identity_pagetable_done))
2134                 return 1;
2135         ret = 0;
2136         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2137         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2138         if (r < 0)
2139                 goto out;
2140         /* Set up identity-mapping pagetable for EPT in real mode */
2141         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2142                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2143                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2144                 r = kvm_write_guest_page(kvm, identity_map_pfn,
2145                                 &tmp, i * sizeof(tmp), sizeof(tmp));
2146                 if (r < 0)
2147                         goto out;
2148         }
2149         kvm->arch.ept_identity_pagetable_done = true;
2150         ret = 1;
2151 out:
2152         return ret;
2153 }
2154
2155 static void seg_setup(int seg)
2156 {
2157         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2158         unsigned int ar;
2159
2160         vmcs_write16(sf->selector, 0);
2161         vmcs_writel(sf->base, 0);
2162         vmcs_write32(sf->limit, 0xffff);
2163         if (enable_unrestricted_guest) {
2164                 ar = 0x93;
2165                 if (seg == VCPU_SREG_CS)
2166                         ar |= 0x08; /* code segment */
2167         } else
2168                 ar = 0xf3;
2169
2170         vmcs_write32(sf->ar_bytes, ar);
2171 }
2172
2173 static int alloc_apic_access_page(struct kvm *kvm)
2174 {
2175         struct kvm_userspace_memory_region kvm_userspace_mem;
2176         int r = 0;
2177
2178         down_write(&kvm->slots_lock);
2179         if (kvm->arch.apic_access_page)
2180                 goto out;
2181         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2182         kvm_userspace_mem.flags = 0;
2183         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2184         kvm_userspace_mem.memory_size = PAGE_SIZE;
2185         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2186         if (r)
2187                 goto out;
2188
2189         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2190 out:
2191         up_write(&kvm->slots_lock);
2192         return r;
2193 }
2194
2195 static int alloc_identity_pagetable(struct kvm *kvm)
2196 {
2197         struct kvm_userspace_memory_region kvm_userspace_mem;
2198         int r = 0;
2199
2200         down_write(&kvm->slots_lock);
2201         if (kvm->arch.ept_identity_pagetable)
2202                 goto out;
2203         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2204         kvm_userspace_mem.flags = 0;
2205         kvm_userspace_mem.guest_phys_addr =
2206                 kvm->arch.ept_identity_map_addr;
2207         kvm_userspace_mem.memory_size = PAGE_SIZE;
2208         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2209         if (r)
2210                 goto out;
2211
2212         kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2213                         kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
2214 out:
2215         up_write(&kvm->slots_lock);
2216         return r;
2217 }
2218
2219 static void allocate_vpid(struct vcpu_vmx *vmx)
2220 {
2221         int vpid;
2222
2223         vmx->vpid = 0;
2224         if (!enable_vpid)
2225                 return;
2226         spin_lock(&vmx_vpid_lock);
2227         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2228         if (vpid < VMX_NR_VPIDS) {
2229                 vmx->vpid = vpid;
2230                 __set_bit(vpid, vmx_vpid_bitmap);
2231         }
2232         spin_unlock(&vmx_vpid_lock);
2233 }
2234
2235 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2236 {
2237         int f = sizeof(unsigned long);
2238
2239         if (!cpu_has_vmx_msr_bitmap())
2240                 return;
2241
2242         /*
2243          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2244          * have the write-low and read-high bitmap offsets the wrong way round.
2245          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2246          */
2247         if (msr <= 0x1fff) {
2248                 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2249                 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2250         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2251                 msr &= 0x1fff;
2252                 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2253                 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2254         }
2255 }
2256
2257 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2258 {
2259         if (!longmode_only)
2260                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2261         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2262 }
2263
2264 /*
2265  * Sets up the vmcs for emulated real mode.
2266  */
2267 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2268 {
2269         u32 host_sysenter_cs, msr_low, msr_high;
2270         u32 junk;
2271         u64 host_pat, tsc_this, tsc_base;
2272         unsigned long a;
2273         struct descriptor_table dt;
2274         int i;
2275         unsigned long kvm_vmx_return;
2276         u32 exec_control;
2277
2278         /* I/O */
2279         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2280         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2281
2282         if (cpu_has_vmx_msr_bitmap())
2283                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2284
2285         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2286
2287         /* Control */
2288         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2289                 vmcs_config.pin_based_exec_ctrl);
2290
2291         exec_control = vmcs_config.cpu_based_exec_ctrl;
2292         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2293                 exec_control &= ~CPU_BASED_TPR_SHADOW;
2294 #ifdef CONFIG_X86_64
2295                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2296                                 CPU_BASED_CR8_LOAD_EXITING;
2297 #endif
2298         }
2299         if (!enable_ept)
2300                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2301                                 CPU_BASED_CR3_LOAD_EXITING  |
2302                                 CPU_BASED_INVLPG_EXITING;
2303         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2304
2305         if (cpu_has_secondary_exec_ctrls()) {
2306                 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2307                 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2308                         exec_control &=
2309                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2310                 if (vmx->vpid == 0)
2311                         exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2312                 if (!enable_ept) {
2313                         exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2314                         enable_unrestricted_guest = 0;
2315                 }
2316                 if (!enable_unrestricted_guest)
2317                         exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2318                 if (!ple_gap)
2319                         exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
2320                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2321         }
2322
2323         if (ple_gap) {
2324                 vmcs_write32(PLE_GAP, ple_gap);
2325                 vmcs_write32(PLE_WINDOW, ple_window);
2326         }
2327
2328         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2329         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2330         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
2331
2332         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
2333         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
2334         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
2335
2336         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
2337         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2338         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2339         vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs());    /* 22.2.4 */
2340         vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs());    /* 22.2.4 */
2341         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2342 #ifdef CONFIG_X86_64
2343         rdmsrl(MSR_FS_BASE, a);
2344         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2345         rdmsrl(MSR_GS_BASE, a);
2346         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2347 #else
2348         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2349         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2350 #endif
2351
2352         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
2353
2354         kvm_get_idt(&dt);
2355         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
2356
2357         asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2358         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2359         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2360         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2361         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2362
2363         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2364         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2365         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2366         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
2367         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2368         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
2369
2370         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2371                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2372                 host_pat = msr_low | ((u64) msr_high << 32);
2373                 vmcs_write64(HOST_IA32_PAT, host_pat);
2374         }
2375         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2376                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2377                 host_pat = msr_low | ((u64) msr_high << 32);
2378                 /* Write the default value follow host pat */
2379                 vmcs_write64(GUEST_IA32_PAT, host_pat);
2380                 /* Keep arch.pat sync with GUEST_IA32_PAT */
2381                 vmx->vcpu.arch.pat = host_pat;
2382         }
2383
2384         for (i = 0; i < NR_VMX_MSR; ++i) {
2385                 u32 index = vmx_msr_index[i];
2386                 u32 data_low, data_high;
2387                 u64 data;
2388                 int j = vmx->nmsrs;
2389
2390                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2391                         continue;
2392                 if (wrmsr_safe(index, data_low, data_high) < 0)
2393                         continue;
2394                 data = data_low | ((u64)data_high << 32);
2395                 vmx->guest_msrs[j].index = i;
2396                 vmx->guest_msrs[j].data = 0;
2397                 vmx->guest_msrs[j].mask = -1ull;
2398                 ++vmx->nmsrs;
2399         }
2400
2401         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2402
2403         /* 22.2.1, 20.8.1 */
2404         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2405
2406         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2407         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
2408
2409         tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
2410         rdtscll(tsc_this);
2411         if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
2412                 tsc_base = tsc_this;
2413
2414         guest_write_tsc(0, tsc_base);
2415
2416         return 0;
2417 }
2418
2419 static int init_rmode(struct kvm *kvm)
2420 {
2421         if (!init_rmode_tss(kvm))
2422                 return 0;
2423         if (!init_rmode_identity_map(kvm))
2424                 return 0;
2425         return 1;
2426 }
2427
2428 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2429 {
2430         struct vcpu_vmx *vmx = to_vmx(vcpu);
2431         u64 msr;
2432         int ret;
2433
2434         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2435         down_read(&vcpu->kvm->slots_lock);
2436         if (!init_rmode(vmx->vcpu.kvm)) {
2437                 ret = -ENOMEM;
2438                 goto out;
2439         }
2440
2441         vmx->rmode.vm86_active = 0;
2442
2443         vmx->soft_vnmi_blocked = 0;
2444
2445         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2446         kvm_set_cr8(&vmx->vcpu, 0);
2447         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2448         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2449                 msr |= MSR_IA32_APICBASE_BSP;
2450         kvm_set_apic_base(&vmx->vcpu, msr);
2451
2452         fx_init(&vmx->vcpu);
2453
2454         seg_setup(VCPU_SREG_CS);
2455         /*
2456          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2457          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
2458          */
2459         if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
2460                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2461                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2462         } else {
2463                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2464                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2465         }
2466
2467         seg_setup(VCPU_SREG_DS);
2468         seg_setup(VCPU_SREG_ES);
2469         seg_setup(VCPU_SREG_FS);
2470         seg_setup(VCPU_SREG_GS);
2471         seg_setup(VCPU_SREG_SS);
2472
2473         vmcs_write16(GUEST_TR_SELECTOR, 0);
2474         vmcs_writel(GUEST_TR_BASE, 0);
2475         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2476         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2477
2478         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2479         vmcs_writel(GUEST_LDTR_BASE, 0);
2480         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2481         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2482
2483         vmcs_write32(GUEST_SYSENTER_CS, 0);
2484         vmcs_writel(GUEST_SYSENTER_ESP, 0);
2485         vmcs_writel(GUEST_SYSENTER_EIP, 0);
2486
2487         vmcs_writel(GUEST_RFLAGS, 0x02);
2488         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2489                 kvm_rip_write(vcpu, 0xfff0);
2490         else
2491                 kvm_rip_write(vcpu, 0);
2492         kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2493
2494         vmcs_writel(GUEST_DR7, 0x400);
2495
2496         vmcs_writel(GUEST_GDTR_BASE, 0);
2497         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2498
2499         vmcs_writel(GUEST_IDTR_BASE, 0);
2500         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2501
2502         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2503         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2504         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2505
2506         /* Special registers */
2507         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2508
2509         setup_msrs(vmx);
2510
2511         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
2512
2513         if (cpu_has_vmx_tpr_shadow()) {
2514                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2515                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2516                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2517                                 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2518                 vmcs_write32(TPR_THRESHOLD, 0);
2519         }
2520
2521         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2522                 vmcs_write64(APIC_ACCESS_ADDR,
2523                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2524
2525         if (vmx->vpid != 0)
2526                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2527
2528         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
2529         vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2530         vmx_set_cr4(&vmx->vcpu, 0);
2531         vmx_set_efer(&vmx->vcpu, 0);
2532         vmx_fpu_activate(&vmx->vcpu);
2533         update_exception_bitmap(&vmx->vcpu);
2534
2535         vpid_sync_vcpu_all(vmx);
2536
2537         ret = 0;
2538
2539         /* HACK: Don't enable emulation on guest boot/reset */
2540         vmx->emulation_required = 0;
2541
2542 out:
2543         up_read(&vcpu->kvm->slots_lock);
2544         return ret;
2545 }
2546
2547 static void enable_irq_window(struct kvm_vcpu *vcpu)
2548 {
2549         u32 cpu_based_vm_exec_control;
2550
2551         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2552         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2553         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2554 }
2555
2556 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2557 {
2558         u32 cpu_based_vm_exec_control;
2559
2560         if (!cpu_has_virtual_nmis()) {
2561                 enable_irq_window(vcpu);
2562                 return;
2563         }
2564
2565         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2566         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2567         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2568 }
2569
2570 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2571 {
2572         struct vcpu_vmx *vmx = to_vmx(vcpu);
2573         uint32_t intr;
2574         int irq = vcpu->arch.interrupt.nr;
2575
2576         trace_kvm_inj_virq(irq);
2577
2578         ++vcpu->stat.irq_injections;
2579         if (vmx->rmode.vm86_active) {
2580                 vmx->rmode.irq.pending = true;
2581                 vmx->rmode.irq.vector = irq;
2582                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2583                 if (vcpu->arch.interrupt.soft)
2584                         vmx->rmode.irq.rip +=
2585                                 vmx->vcpu.arch.event_exit_inst_len;
2586                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2587                              irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2588                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2589                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2590                 return;
2591         }
2592         intr = irq | INTR_INFO_VALID_MASK;
2593         if (vcpu->arch.interrupt.soft) {
2594                 intr |= INTR_TYPE_SOFT_INTR;
2595                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2596                              vmx->vcpu.arch.event_exit_inst_len);
2597         } else
2598                 intr |= INTR_TYPE_EXT_INTR;
2599         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2600 }
2601
2602 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2603 {
2604         struct vcpu_vmx *vmx = to_vmx(vcpu);
2605
2606         if (!cpu_has_virtual_nmis()) {
2607                 /*
2608                  * Tracking the NMI-blocked state in software is built upon
2609                  * finding the next open IRQ window. This, in turn, depends on
2610                  * well-behaving guests: They have to keep IRQs disabled at
2611                  * least as long as the NMI handler runs. Otherwise we may
2612                  * cause NMI nesting, maybe breaking the guest. But as this is
2613                  * highly unlikely, we can live with the residual risk.
2614                  */
2615                 vmx->soft_vnmi_blocked = 1;
2616                 vmx->vnmi_blocked_time = 0;
2617         }
2618
2619         ++vcpu->stat.nmi_injections;
2620         if (vmx->rmode.vm86_active) {
2621                 vmx->rmode.irq.pending = true;
2622                 vmx->rmode.irq.vector = NMI_VECTOR;
2623                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2624                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2625                              NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2626                              INTR_INFO_VALID_MASK);
2627                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2628                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2629                 return;
2630         }
2631         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2632                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2633 }
2634
2635 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2636 {
2637         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2638                 return 0;
2639
2640         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2641                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
2642                                 GUEST_INTR_STATE_NMI));
2643 }
2644
2645 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
2646 {
2647         if (!cpu_has_virtual_nmis())
2648                 return to_vmx(vcpu)->soft_vnmi_blocked;
2649         else
2650                 return !!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2651                           GUEST_INTR_STATE_NMI);
2652 }
2653
2654 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
2655 {
2656         struct vcpu_vmx *vmx = to_vmx(vcpu);
2657
2658         if (!cpu_has_virtual_nmis()) {
2659                 if (vmx->soft_vnmi_blocked != masked) {
2660                         vmx->soft_vnmi_blocked = masked;
2661                         vmx->vnmi_blocked_time = 0;
2662                 }
2663         } else {
2664                 if (masked)
2665                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
2666                                       GUEST_INTR_STATE_NMI);
2667                 else
2668                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
2669                                         GUEST_INTR_STATE_NMI);
2670         }
2671 }
2672
2673 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2674 {
2675         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2676                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2677                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
2678 }
2679
2680 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2681 {
2682         int ret;
2683         struct kvm_userspace_memory_region tss_mem = {
2684                 .slot = TSS_PRIVATE_MEMSLOT,
2685                 .guest_phys_addr = addr,
2686                 .memory_size = PAGE_SIZE * 3,
2687                 .flags = 0,
2688         };
2689
2690         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2691         if (ret)
2692                 return ret;
2693         kvm->arch.tss_addr = addr;
2694         return 0;
2695 }
2696
2697 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2698                                   int vec, u32 err_code)
2699 {
2700         /*
2701          * Instruction with address size override prefix opcode 0x67
2702          * Cause the #SS fault with 0 error code in VM86 mode.
2703          */
2704         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2705                 if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
2706                         return 1;
2707         /*
2708          * Forward all other exceptions that are valid in real mode.
2709          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2710          *        the required debugging infrastructure rework.
2711          */
2712         switch (vec) {
2713         case DB_VECTOR:
2714                 if (vcpu->guest_debug &
2715                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
2716                         return 0;
2717                 kvm_queue_exception(vcpu, vec);
2718                 return 1;
2719         case BP_VECTOR:
2720                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2721                         return 0;
2722                 /* fall through */
2723         case DE_VECTOR:
2724         case OF_VECTOR:
2725         case BR_VECTOR:
2726         case UD_VECTOR:
2727         case DF_VECTOR:
2728         case SS_VECTOR:
2729         case GP_VECTOR:
2730         case MF_VECTOR:
2731                 kvm_queue_exception(vcpu, vec);
2732                 return 1;
2733         }
2734         return 0;
2735 }
2736
2737 /*
2738  * Trigger machine check on the host. We assume all the MSRs are already set up
2739  * by the CPU and that we still run on the same CPU as the MCE occurred on.
2740  * We pass a fake environment to the machine check handler because we want
2741  * the guest to be always treated like user space, no matter what context
2742  * it used internally.
2743  */
2744 static void kvm_machine_check(void)
2745 {
2746 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
2747         struct pt_regs regs = {
2748                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
2749                 .flags = X86_EFLAGS_IF,
2750         };
2751
2752         do_machine_check(&regs, 0);
2753 #endif
2754 }
2755
2756 static int handle_machine_check(struct kvm_vcpu *vcpu)
2757 {
2758         /* already handled by vcpu_run */
2759         return 1;
2760 }
2761
2762 static int handle_exception(struct kvm_vcpu *vcpu)
2763 {
2764         struct vcpu_vmx *vmx = to_vmx(vcpu);
2765         struct kvm_run *kvm_run = vcpu->run;
2766         u32 intr_info, ex_no, error_code;
2767         unsigned long cr2, rip, dr6;
2768         u32 vect_info;
2769         enum emulation_result er;
2770
2771         vect_info = vmx->idt_vectoring_info;
2772         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2773
2774         if (is_machine_check(intr_info))
2775                 return handle_machine_check(vcpu);
2776
2777         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2778             !is_page_fault(intr_info)) {
2779                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2780                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
2781                 vcpu->run->internal.ndata = 2;
2782                 vcpu->run->internal.data[0] = vect_info;
2783                 vcpu->run->internal.data[1] = intr_info;
2784                 return 0;
2785         }
2786
2787         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
2788                 return 1;  /* already handled by vmx_vcpu_run() */
2789
2790         if (is_no_device(intr_info)) {
2791                 vmx_fpu_activate(vcpu);
2792                 return 1;
2793         }
2794
2795         if (is_invalid_opcode(intr_info)) {
2796                 er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
2797                 if (er != EMULATE_DONE)
2798                         kvm_queue_exception(vcpu, UD_VECTOR);
2799                 return 1;
2800         }
2801
2802         error_code = 0;
2803         rip = kvm_rip_read(vcpu);
2804         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2805                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2806         if (is_page_fault(intr_info)) {
2807                 /* EPT won't cause page fault directly */
2808                 if (enable_ept)
2809                         BUG();
2810                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2811                 trace_kvm_page_fault(cr2, error_code);
2812
2813                 if (kvm_event_needs_reinjection(vcpu))
2814                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
2815                 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2816         }
2817
2818         if (vmx->rmode.vm86_active &&
2819             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2820                                                                 error_code)) {
2821                 if (vcpu->arch.halt_request) {
2822                         vcpu->arch.halt_request = 0;
2823                         return kvm_emulate_halt(vcpu);
2824                 }
2825                 return 1;
2826         }
2827
2828         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
2829         switch (ex_no) {
2830         case DB_VECTOR:
2831                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
2832                 if (!(vcpu->guest_debug &
2833                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
2834                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
2835                         kvm_queue_exception(vcpu, DB_VECTOR);
2836                         return 1;
2837                 }
2838                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
2839                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
2840                 /* fall through */
2841         case BP_VECTOR:
2842                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2843                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
2844                 kvm_run->debug.arch.exception = ex_no;
2845                 break;
2846         default:
2847                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2848                 kvm_run->ex.exception = ex_no;
2849                 kvm_run->ex.error_code = error_code;
2850                 break;
2851         }
2852         return 0;
2853 }
2854
2855 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
2856 {
2857         ++vcpu->stat.irq_exits;
2858         return 1;
2859 }
2860
2861 static int handle_triple_fault(struct kvm_vcpu *vcpu)
2862 {
2863         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
2864         return 0;
2865 }
2866
2867 static int handle_io(struct kvm_vcpu *vcpu)
2868 {
2869         unsigned long exit_qualification;
2870         int size, in, string;
2871         unsigned port;
2872
2873         ++vcpu->stat.io_exits;
2874         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2875         string = (exit_qualification & 16) != 0;
2876
2877         if (string) {
2878                 if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DO_MMIO)
2879                         return 0;
2880                 return 1;
2881         }
2882
2883         size = (exit_qualification & 7) + 1;
2884         in = (exit_qualification & 8) != 0;
2885         port = exit_qualification >> 16;
2886
2887         skip_emulated_instruction(vcpu);
2888         return kvm_emulate_pio(vcpu, in, size, port);
2889 }
2890
2891 static void
2892 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2893 {
2894         /*
2895          * Patch in the VMCALL instruction:
2896          */
2897         hypercall[0] = 0x0f;
2898         hypercall[1] = 0x01;
2899         hypercall[2] = 0xc1;
2900 }
2901
2902 static int handle_cr(struct kvm_vcpu *vcpu)
2903 {
2904         unsigned long exit_qualification, val;
2905         int cr;
2906         int reg;
2907
2908         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2909         cr = exit_qualification & 15;
2910         reg = (exit_qualification >> 8) & 15;
2911         switch ((exit_qualification >> 4) & 3) {
2912         case 0: /* mov to cr */
2913                 val = kvm_register_read(vcpu, reg);
2914                 trace_kvm_cr_write(cr, val);
2915                 switch (cr) {
2916                 case 0:
2917                         kvm_set_cr0(vcpu, val);
2918                         skip_emulated_instruction(vcpu);
2919                         return 1;
2920                 case 3:
2921                         kvm_set_cr3(vcpu, val);
2922                         skip_emulated_instruction(vcpu);
2923                         return 1;
2924                 case 4:
2925                         kvm_set_cr4(vcpu, val);
2926                         skip_emulated_instruction(vcpu);
2927                         return 1;
2928                 case 8: {
2929                                 u8 cr8_prev = kvm_get_cr8(vcpu);
2930                                 u8 cr8 = kvm_register_read(vcpu, reg);
2931                                 kvm_set_cr8(vcpu, cr8);
2932                                 skip_emulated_instruction(vcpu);
2933                                 if (irqchip_in_kernel(vcpu->kvm))
2934                                         return 1;
2935                                 if (cr8_prev <= cr8)
2936                                         return 1;
2937                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2938                                 return 0;
2939                         }
2940                 };
2941                 break;
2942         case 2: /* clts */
2943                 vmx_fpu_deactivate(vcpu);
2944                 vcpu->arch.cr0 &= ~X86_CR0_TS;
2945                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2946                 vmx_fpu_activate(vcpu);
2947                 skip_emulated_instruction(vcpu);
2948                 return 1;
2949         case 1: /*mov from cr*/
2950                 switch (cr) {
2951                 case 3:
2952                         kvm_register_write(vcpu, reg, vcpu->arch.cr3);
2953                         trace_kvm_cr_read(cr, vcpu->arch.cr3);
2954                         skip_emulated_instruction(vcpu);
2955                         return 1;
2956                 case 8:
2957                         val = kvm_get_cr8(vcpu);
2958                         kvm_register_write(vcpu, reg, val);
2959                         trace_kvm_cr_read(cr, val);
2960                         skip_emulated_instruction(vcpu);
2961                         return 1;
2962                 }
2963                 break;
2964         case 3: /* lmsw */
2965                 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2966
2967                 skip_emulated_instruction(vcpu);
2968                 return 1;
2969         default:
2970                 break;
2971         }
2972         vcpu->run->exit_reason = 0;
2973         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2974                (int)(exit_qualification >> 4) & 3, cr);
2975         return 0;
2976 }
2977
2978 static int handle_dr(struct kvm_vcpu *vcpu)
2979 {
2980         unsigned long exit_qualification;
2981         unsigned long val;
2982         int dr, reg;
2983
2984         if (!kvm_require_cpl(vcpu, 0))
2985                 return 1;
2986         dr = vmcs_readl(GUEST_DR7);
2987         if (dr & DR7_GD) {
2988                 /*
2989                  * As the vm-exit takes precedence over the debug trap, we
2990                  * need to emulate the latter, either for the host or the
2991                  * guest debugging itself.
2992                  */
2993                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
2994                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
2995                         vcpu->run->debug.arch.dr7 = dr;
2996                         vcpu->run->debug.arch.pc =
2997                                 vmcs_readl(GUEST_CS_BASE) +
2998                                 vmcs_readl(GUEST_RIP);
2999                         vcpu->run->debug.arch.exception = DB_VECTOR;
3000                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
3001                         return 0;
3002                 } else {
3003                         vcpu->arch.dr7 &= ~DR7_GD;
3004                         vcpu->arch.dr6 |= DR6_BD;
3005                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3006                         kvm_queue_exception(vcpu, DB_VECTOR);
3007                         return 1;
3008                 }
3009         }
3010
3011         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3012         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
3013         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
3014         if (exit_qualification & TYPE_MOV_FROM_DR) {
3015                 switch (dr) {
3016                 case 0 ... 3:
3017                         val = vcpu->arch.db[dr];
3018                         break;
3019                 case 6:
3020                         val = vcpu->arch.dr6;
3021                         break;
3022                 case 7:
3023                         val = vcpu->arch.dr7;
3024                         break;
3025                 default:
3026                         val = 0;
3027                 }
3028                 kvm_register_write(vcpu, reg, val);
3029         } else {
3030                 val = vcpu->arch.regs[reg];
3031                 switch (dr) {
3032                 case 0 ... 3:
3033                         vcpu->arch.db[dr] = val;
3034                         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
3035                                 vcpu->arch.eff_db[dr] = val;
3036                         break;
3037                 case 4 ... 5:
3038                         if (vcpu->arch.cr4 & X86_CR4_DE)
3039                                 kvm_queue_exception(vcpu, UD_VECTOR);
3040                         break;
3041                 case 6:
3042                         if (val & 0xffffffff00000000ULL) {
3043                                 kvm_queue_exception(vcpu, GP_VECTOR);
3044                                 break;
3045                         }
3046                         vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
3047                         break;
3048                 case 7:
3049                         if (val & 0xffffffff00000000ULL) {
3050                                 kvm_queue_exception(vcpu, GP_VECTOR);
3051                                 break;
3052                         }
3053                         vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
3054                         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
3055                                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3056                                 vcpu->arch.switch_db_regs =
3057                                         (val & DR7_BP_EN_MASK);
3058                         }
3059                         break;
3060                 }
3061         }
3062         skip_emulated_instruction(vcpu);
3063         return 1;
3064 }
3065
3066 static int handle_cpuid(struct kvm_vcpu *vcpu)
3067 {
3068         kvm_emulate_cpuid(vcpu);
3069         return 1;
3070 }
3071
3072 static int handle_rdmsr(struct kvm_vcpu *vcpu)
3073 {
3074         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3075         u64 data;
3076
3077         if (vmx_get_msr(vcpu, ecx, &data)) {
3078                 kvm_inject_gp(vcpu, 0);
3079                 return 1;
3080         }
3081
3082         trace_kvm_msr_read(ecx, data);
3083
3084         /* FIXME: handling of bits 32:63 of rax, rdx */
3085         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3086         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3087         skip_emulated_instruction(vcpu);
3088         return 1;
3089 }
3090
3091 static int handle_wrmsr(struct kvm_vcpu *vcpu)
3092 {
3093         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3094         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3095                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3096
3097         trace_kvm_msr_write(ecx, data);
3098
3099         if (vmx_set_msr(vcpu, ecx, data) != 0) {
3100                 kvm_inject_gp(vcpu, 0);
3101                 return 1;
3102         }
3103
3104         skip_emulated_instruction(vcpu);
3105         return 1;
3106 }
3107
3108 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
3109 {
3110         return 1;
3111 }
3112
3113 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
3114 {
3115         u32 cpu_based_vm_exec_control;
3116
3117         /* clear pending irq */
3118         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3119         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3120         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3121
3122         ++vcpu->stat.irq_window_exits;
3123
3124         /*
3125          * If the user space waits to inject interrupts, exit as soon as
3126          * possible
3127          */
3128         if (!irqchip_in_kernel(vcpu->kvm) &&
3129             vcpu->run->request_interrupt_window &&
3130             !kvm_cpu_has_interrupt(vcpu)) {
3131                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3132                 return 0;
3133         }
3134         return 1;
3135 }
3136
3137 static int handle_halt(struct kvm_vcpu *vcpu)
3138 {
3139         skip_emulated_instruction(vcpu);
3140         return kvm_emulate_halt(vcpu);
3141 }
3142
3143 static int handle_vmcall(struct kvm_vcpu *vcpu)
3144 {
3145         skip_emulated_instruction(vcpu);
3146         kvm_emulate_hypercall(vcpu);
3147         return 1;
3148 }
3149
3150 static int handle_vmx_insn(struct kvm_vcpu *vcpu)
3151 {
3152         kvm_queue_exception(vcpu, UD_VECTOR);
3153         return 1;
3154 }
3155
3156 static int handle_invlpg(struct kvm_vcpu *vcpu)
3157 {
3158         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3159
3160         kvm_mmu_invlpg(vcpu, exit_qualification);
3161         skip_emulated_instruction(vcpu);
3162         return 1;
3163 }
3164
3165 static int handle_wbinvd(struct kvm_vcpu *vcpu)
3166 {
3167         skip_emulated_instruction(vcpu);
3168         /* TODO: Add support for VT-d/pass-through device */
3169         return 1;
3170 }
3171
3172 static int handle_apic_access(struct kvm_vcpu *vcpu)
3173 {
3174         unsigned long exit_qualification;
3175         enum emulation_result er;
3176         unsigned long offset;
3177
3178         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3179         offset = exit_qualification & 0xffful;
3180
3181         er = emulate_instruction(vcpu, 0, 0, 0);
3182
3183         if (er !=  EMULATE_DONE) {
3184                 printk(KERN_ERR
3185                        "Fail to handle apic access vmexit! Offset is 0x%lx\n",
3186                        offset);
3187                 return -ENOEXEC;
3188         }
3189         return 1;
3190 }
3191
3192 static int handle_task_switch(struct kvm_vcpu *vcpu)
3193 {
3194         struct vcpu_vmx *vmx = to_vmx(vcpu);
3195         unsigned long exit_qualification;
3196         u16 tss_selector;
3197         int reason, type, idt_v;
3198
3199         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3200         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3201
3202         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3203
3204         reason = (u32)exit_qualification >> 30;
3205         if (reason == TASK_SWITCH_GATE && idt_v) {
3206                 switch (type) {
3207                 case INTR_TYPE_NMI_INTR:
3208                         vcpu->arch.nmi_injected = false;
3209                         if (cpu_has_virtual_nmis())
3210                                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3211                                               GUEST_INTR_STATE_NMI);
3212                         break;
3213                 case INTR_TYPE_EXT_INTR:
3214                 case INTR_TYPE_SOFT_INTR:
3215                         kvm_clear_interrupt_queue(vcpu);
3216                         break;
3217                 case INTR_TYPE_HARD_EXCEPTION:
3218                 case INTR_TYPE_SOFT_EXCEPTION:
3219                         kvm_clear_exception_queue(vcpu);
3220                         break;
3221                 default:
3222                         break;
3223                 }
3224         }
3225         tss_selector = exit_qualification;
3226
3227         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3228                        type != INTR_TYPE_EXT_INTR &&
3229                        type != INTR_TYPE_NMI_INTR))
3230                 skip_emulated_instruction(vcpu);
3231
3232         if (!kvm_task_switch(vcpu, tss_selector, reason))
3233                 return 0;
3234
3235         /* clear all local breakpoint enable flags */
3236         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3237
3238         /*
3239          * TODO: What about debug traps on tss switch?
3240          *       Are we supposed to inject them and update dr6?
3241          */
3242
3243         return 1;
3244 }
3245
3246 static int handle_ept_violation(struct kvm_vcpu *vcpu)
3247 {
3248         unsigned long exit_qualification;
3249         gpa_t gpa;
3250         int gla_validity;
3251
3252         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3253
3254         if (exit_qualification & (1 << 6)) {
3255                 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3256                 return -EINVAL;
3257         }
3258
3259         gla_validity = (exit_qualification >> 7) & 0x3;
3260         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3261                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3262                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3263                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3264                         vmcs_readl(GUEST_LINEAR_ADDRESS));
3265                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3266                         (long unsigned int)exit_qualification);
3267                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3268                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
3269                 return 0;
3270         }
3271
3272         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3273         trace_kvm_page_fault(gpa, exit_qualification);
3274         return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
3275 }
3276
3277 static u64 ept_rsvd_mask(u64 spte, int level)
3278 {
3279         int i;
3280         u64 mask = 0;
3281
3282         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
3283                 mask |= (1ULL << i);
3284
3285         if (level > 2)
3286                 /* bits 7:3 reserved */
3287                 mask |= 0xf8;
3288         else if (level == 2) {
3289                 if (spte & (1ULL << 7))
3290                         /* 2MB ref, bits 20:12 reserved */
3291                         mask |= 0x1ff000;
3292                 else
3293                         /* bits 6:3 reserved */
3294                         mask |= 0x78;
3295         }
3296
3297         return mask;
3298 }
3299
3300 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
3301                                        int level)
3302 {
3303         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
3304
3305         /* 010b (write-only) */
3306         WARN_ON((spte & 0x7) == 0x2);
3307
3308         /* 110b (write/execute) */
3309         WARN_ON((spte & 0x7) == 0x6);
3310
3311         /* 100b (execute-only) and value not supported by logical processor */
3312         if (!cpu_has_vmx_ept_execute_only())
3313                 WARN_ON((spte & 0x7) == 0x4);
3314
3315         /* not 000b */
3316         if ((spte & 0x7)) {
3317                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
3318
3319                 if (rsvd_bits != 0) {
3320                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
3321                                          __func__, rsvd_bits);
3322                         WARN_ON(1);
3323                 }
3324
3325                 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
3326                         u64 ept_mem_type = (spte & 0x38) >> 3;
3327
3328                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
3329                             ept_mem_type == 7) {
3330                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
3331                                                 __func__, ept_mem_type);
3332                                 WARN_ON(1);
3333                         }
3334                 }
3335         }
3336 }
3337
3338 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
3339 {
3340         u64 sptes[4];
3341         int nr_sptes, i;
3342         gpa_t gpa;
3343
3344         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3345
3346         printk(KERN_ERR "EPT: Misconfiguration.\n");
3347         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
3348
3349         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
3350
3351         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
3352                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
3353
3354         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3355         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
3356
3357         return 0;
3358 }
3359
3360 static int handle_nmi_window(struct kvm_vcpu *vcpu)
3361 {
3362         u32 cpu_based_vm_exec_control;
3363
3364         /* clear pending NMI */
3365         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3366         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3367         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3368         ++vcpu->stat.nmi_window_exits;
3369
3370         return 1;
3371 }
3372
3373 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
3374 {
3375         struct vcpu_vmx *vmx = to_vmx(vcpu);
3376         enum emulation_result err = EMULATE_DONE;
3377         int ret = 1;
3378
3379         while (!guest_state_valid(vcpu)) {
3380                 err = emulate_instruction(vcpu, 0, 0, 0);
3381
3382                 if (err == EMULATE_DO_MMIO) {
3383                         ret = 0;
3384                         goto out;
3385                 }
3386
3387                 if (err != EMULATE_DONE) {
3388                         kvm_report_emulation_failure(vcpu, "emulation failure");
3389                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3390                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3391                         vcpu->run->internal.ndata = 0;
3392                         ret = 0;
3393                         goto out;
3394                 }
3395
3396                 if (signal_pending(current))
3397                         goto out;
3398                 if (need_resched())
3399                         schedule();
3400         }
3401
3402         vmx->emulation_required = 0;
3403 out:
3404         return ret;
3405 }
3406
3407 /*
3408  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
3409  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
3410  */
3411 static int handle_pause(struct kvm_vcpu *vcpu)
3412 {
3413         skip_emulated_instruction(vcpu);
3414         kvm_vcpu_on_spin(vcpu);
3415
3416         return 1;
3417 }
3418
3419 /*
3420  * The exit handlers return 1 if the exit was handled fully and guest execution
3421  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
3422  * to be done to userspace and return 0.
3423  */
3424 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3425         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
3426         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
3427         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
3428         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
3429         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
3430         [EXIT_REASON_CR_ACCESS]               = handle_cr,
3431         [EXIT_REASON_DR_ACCESS]               = handle_dr,
3432         [EXIT_REASON_CPUID]                   = handle_cpuid,
3433         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
3434         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
3435         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
3436         [EXIT_REASON_HLT]                     = handle_halt,
3437         [EXIT_REASON_INVLPG]                  = handle_invlpg,
3438         [EXIT_REASON_VMCALL]                  = handle_vmcall,
3439         [EXIT_REASON_VMCLEAR]                 = handle_vmx_insn,
3440         [EXIT_REASON_VMLAUNCH]                = handle_vmx_insn,
3441         [EXIT_REASON_VMPTRLD]                 = handle_vmx_insn,
3442         [EXIT_REASON_VMPTRST]                 = handle_vmx_insn,
3443         [EXIT_REASON_VMREAD]                  = handle_vmx_insn,
3444         [EXIT_REASON_VMRESUME]                = handle_vmx_insn,
3445         [EXIT_REASON_VMWRITE]                 = handle_vmx_insn,
3446         [EXIT_REASON_VMOFF]                   = handle_vmx_insn,
3447         [EXIT_REASON_VMON]                    = handle_vmx_insn,
3448         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
3449         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
3450         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
3451         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
3452         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
3453         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
3454         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
3455         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
3456 };
3457
3458 static const int kvm_vmx_max_exit_handlers =
3459         ARRAY_SIZE(kvm_vmx_exit_handlers);
3460
3461 /*
3462  * The guest has exited.  See if we can fix it or if we need userspace
3463  * assistance.
3464  */
3465 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
3466 {
3467         struct vcpu_vmx *vmx = to_vmx(vcpu);
3468         u32 exit_reason = vmx->exit_reason;
3469         u32 vectoring_info = vmx->idt_vectoring_info;
3470
3471         trace_kvm_exit(exit_reason, kvm_rip_read(vcpu));
3472
3473         /* If guest state is invalid, start emulating */
3474         if (vmx->emulation_required && emulate_invalid_guest_state)
3475                 return handle_invalid_guest_state(vcpu);
3476
3477         /* Access CR3 don't cause VMExit in paging mode, so we need
3478          * to sync with guest real CR3. */
3479         if (enable_ept && is_paging(vcpu))
3480                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3481
3482         if (unlikely(vmx->fail)) {
3483                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3484                 vcpu->run->fail_entry.hardware_entry_failure_reason
3485                         = vmcs_read32(VM_INSTRUCTION_ERROR);
3486                 return 0;
3487         }
3488
3489         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3490                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3491                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
3492                         exit_reason != EXIT_REASON_TASK_SWITCH))
3493                 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3494                        "(0x%x) and exit reason is 0x%x\n",
3495                        __func__, vectoring_info, exit_reason);
3496
3497         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3498                 if (vmx_interrupt_allowed(vcpu)) {
3499                         vmx->soft_vnmi_blocked = 0;
3500                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3501                            vcpu->arch.nmi_pending) {
3502                         /*
3503                          * This CPU don't support us in finding the end of an
3504                          * NMI-blocked window if the guest runs with IRQs
3505                          * disabled. So we pull the trigger after 1 s of
3506                          * futile waiting, but inform the user about this.
3507                          */
3508                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3509                                "state on VCPU %d after 1 s timeout\n",
3510                                __func__, vcpu->vcpu_id);
3511                         vmx->soft_vnmi_blocked = 0;
3512                 }
3513         }
3514
3515         if (exit_reason < kvm_vmx_max_exit_handlers
3516             && kvm_vmx_exit_handlers[exit_reason])
3517                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
3518         else {
3519                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3520                 vcpu->run->hw.hardware_exit_reason = exit_reason;
3521         }
3522         return 0;
3523 }
3524
3525 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3526 {
3527         if (irr == -1 || tpr < irr) {
3528                 vmcs_write32(TPR_THRESHOLD, 0);
3529                 return;
3530         }
3531
3532         vmcs_write32(TPR_THRESHOLD, irr);
3533 }
3534
3535 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3536 {
3537         u32 exit_intr_info;
3538         u32 idt_vectoring_info = vmx->idt_vectoring_info;
3539         bool unblock_nmi;
3540         u8 vector;
3541         int type;
3542         bool idtv_info_valid;
3543
3544         exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3545
3546         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
3547
3548         /* Handle machine checks before interrupts are enabled */
3549         if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
3550             || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
3551                 && is_machine_check(exit_intr_info)))
3552                 kvm_machine_check();
3553
3554         /* We need to handle NMIs before interrupts are enabled */
3555         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3556             (exit_intr_info & INTR_INFO_VALID_MASK))
3557                 asm("int $2");
3558
3559         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3560
3561         if (cpu_has_virtual_nmis()) {
3562                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3563                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3564                 /*
3565                  * SDM 3: 27.7.1.2 (September 2008)
3566                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
3567                  * a guest IRET fault.
3568                  * SDM 3: 23.2.2 (September 2008)
3569                  * Bit 12 is undefined in any of the following cases:
3570                  *  If the VM exit sets the valid bit in the IDT-vectoring
3571                  *   information field.
3572                  *  If the VM exit is due to a double fault.
3573                  */
3574                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3575                     vector != DF_VECTOR && !idtv_info_valid)
3576                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3577                                       GUEST_INTR_STATE_NMI);
3578         } else if (unlikely(vmx->soft_vnmi_blocked))
3579                 vmx->vnmi_blocked_time +=
3580                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3581
3582         vmx->vcpu.arch.nmi_injected = false;
3583         kvm_clear_exception_queue(&vmx->vcpu);
3584         kvm_clear_interrupt_queue(&vmx->vcpu);
3585
3586         if (!idtv_info_valid)
3587                 return;
3588
3589         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3590         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3591
3592         switch (type) {
3593         case INTR_TYPE_NMI_INTR:
3594                 vmx->vcpu.arch.nmi_injected = true;
3595                 /*
3596                  * SDM 3: 27.7.1.2 (September 2008)
3597                  * Clear bit "block by NMI" before VM entry if a NMI
3598                  * delivery faulted.
3599                  */
3600                 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3601                                 GUEST_INTR_STATE_NMI);
3602                 break;
3603         case INTR_TYPE_SOFT_EXCEPTION:
3604                 vmx->vcpu.arch.event_exit_inst_len =
3605                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3606                 /* fall through */
3607         case INTR_TYPE_HARD_EXCEPTION:
3608                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3609                         u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3610                         kvm_queue_exception_e(&vmx->vcpu, vector, err);
3611                 } else
3612                         kvm_queue_exception(&vmx->vcpu, vector);
3613                 break;
3614         case INTR_TYPE_SOFT_INTR:
3615                 vmx->vcpu.arch.event_exit_inst_len =
3616                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3617                 /* fall through */
3618         case INTR_TYPE_EXT_INTR:
3619                 kvm_queue_interrupt(&vmx->vcpu, vector,
3620                         type == INTR_TYPE_SOFT_INTR);
3621                 break;
3622         default:
3623                 break;
3624         }
3625 }
3626
3627 /*
3628  * Failure to inject an interrupt should give us the information
3629  * in IDT_VECTORING_INFO_FIELD.  However, if the failure occurs
3630  * when fetching the interrupt redirection bitmap in the real-mode
3631  * tss, this doesn't happen.  So we do it ourselves.
3632  */
3633 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3634 {
3635         vmx->rmode.irq.pending = 0;
3636         if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3637                 return;
3638         kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3639         if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3640                 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3641                 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3642                 return;
3643         }
3644         vmx->idt_vectoring_info =
3645                 VECTORING_INFO_VALID_MASK
3646                 | INTR_TYPE_EXT_INTR
3647                 | vmx->rmode.irq.vector;
3648 }
3649
3650 #ifdef CONFIG_X86_64
3651 #define R "r"
3652 #define Q "q"
3653 #else
3654 #define R "e"
3655 #define Q "l"
3656 #endif
3657
3658 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
3659 {
3660         struct vcpu_vmx *vmx = to_vmx(vcpu);
3661
3662         /* Record the guest's net vcpu time for enforced NMI injections. */
3663         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3664                 vmx->entry_time = ktime_get();
3665
3666         /* Don't enter VMX if guest state is invalid, let the exit handler
3667            start emulation until we arrive back to a valid state */
3668         if (vmx->emulation_required && emulate_invalid_guest_state)
3669                 return;
3670
3671         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3672                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3673         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3674                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3675
3676         /* When single-stepping over STI and MOV SS, we must clear the
3677          * corresponding interruptibility bits in the guest state. Otherwise
3678          * vmentry fails as it then expects bit 14 (BS) in pending debug
3679          * exceptions being set, but that's not correct for the guest debugging
3680          * case. */
3681         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3682                 vmx_set_interrupt_shadow(vcpu, 0);
3683
3684         /*
3685          * Loading guest fpu may have cleared host cr0.ts
3686          */
3687         vmcs_writel(HOST_CR0, read_cr0());
3688
3689         if (vcpu->arch.switch_db_regs)
3690                 set_debugreg(vcpu->arch.dr6, 6);
3691
3692         asm(
3693                 /* Store host registers */
3694                 "push %%"R"dx; push %%"R"bp;"
3695                 "push %%"R"cx \n\t"
3696                 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3697                 "je 1f \n\t"
3698                 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3699                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3700                 "1: \n\t"
3701                 /* Reload cr2 if changed */
3702                 "mov %c[cr2](%0), %%"R"ax \n\t"
3703                 "mov %%cr2, %%"R"dx \n\t"
3704                 "cmp %%"R"ax, %%"R"dx \n\t"
3705                 "je 2f \n\t"
3706                 "mov %%"R"ax, %%cr2 \n\t"
3707                 "2: \n\t"
3708                 /* Check if vmlaunch of vmresume is needed */
3709                 "cmpl $0, %c[launched](%0) \n\t"
3710                 /* Load guest registers.  Don't clobber flags. */
3711                 "mov %c[rax](%0), %%"R"ax \n\t"
3712                 "mov %c[rbx](%0), %%"R"bx \n\t"
3713                 "mov %c[rdx](%0), %%"R"dx \n\t"
3714                 "mov %c[rsi](%0), %%"R"si \n\t"
3715                 "mov %c[rdi](%0), %%"R"di \n\t"
3716                 "mov %c[rbp](%0), %%"R"bp \n\t"
3717 #ifdef CONFIG_X86_64
3718                 "mov %c[r8](%0),  %%r8  \n\t"
3719                 "mov %c[r9](%0),  %%r9  \n\t"
3720                 "mov %c[r10](%0), %%r10 \n\t"
3721                 "mov %c[r11](%0), %%r11 \n\t"
3722                 "mov %c[r12](%0), %%r12 \n\t"
3723                 "mov %c[r13](%0), %%r13 \n\t"
3724                 "mov %c[r14](%0), %%r14 \n\t"
3725                 "mov %c[r15](%0), %%r15 \n\t"
3726 #endif
3727                 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3728
3729                 /* Enter guest mode */
3730                 "jne .Llaunched \n\t"
3731                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3732                 "jmp .Lkvm_vmx_return \n\t"
3733                 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3734                 ".Lkvm_vmx_return: "
3735                 /* Save guest registers, load host registers, keep flags */
3736                 "xchg %0,     (%%"R"sp) \n\t"
3737                 "mov %%"R"ax, %c[rax](%0) \n\t"
3738                 "mov %%"R"bx, %c[rbx](%0) \n\t"
3739                 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3740                 "mov %%"R"dx, %c[rdx](%0) \n\t"
3741                 "mov %%"R"si, %c[rsi](%0) \n\t"
3742                 "mov %%"R"di, %c[rdi](%0) \n\t"
3743                 "mov %%"R"bp, %c[rbp](%0) \n\t"
3744 #ifdef CONFIG_X86_64
3745                 "mov %%r8,  %c[r8](%0) \n\t"
3746                 "mov %%r9,  %c[r9](%0) \n\t"
3747                 "mov %%r10, %c[r10](%0) \n\t"
3748                 "mov %%r11, %c[r11](%0) \n\t"
3749                 "mov %%r12, %c[r12](%0) \n\t"
3750                 "mov %%r13, %c[r13](%0) \n\t"
3751                 "mov %%r14, %c[r14](%0) \n\t"
3752                 "mov %%r15, %c[r15](%0) \n\t"
3753 #endif
3754                 "mov %%cr2, %%"R"ax   \n\t"
3755                 "mov %%"R"ax, %c[cr2](%0) \n\t"
3756
3757                 "pop  %%"R"bp; pop  %%"R"bp; pop  %%"R"dx \n\t"
3758                 "setbe %c[fail](%0) \n\t"
3759               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3760                 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3761                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3762                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3763                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3764                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3765                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3766                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3767                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3768                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3769                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3770 #ifdef CONFIG_X86_64
3771                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3772                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3773                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3774                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3775                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3776                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3777                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3778                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3779 #endif
3780                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3781               : "cc", "memory"
3782                 , R"bx", R"di", R"si"
3783 #ifdef CONFIG_X86_64
3784                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3785 #endif
3786               );
3787
3788         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
3789                                   | (1 << VCPU_EXREG_PDPTR));
3790         vcpu->arch.regs_dirty = 0;
3791
3792         if (vcpu->arch.switch_db_regs)
3793                 get_debugreg(vcpu->arch.dr6, 6);
3794
3795         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3796         if (vmx->rmode.irq.pending)
3797                 fixup_rmode_irq(vmx);
3798
3799         asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3800         vmx->launched = 1;
3801
3802         vmx_complete_interrupts(vmx);
3803 }
3804
3805 #undef R
3806 #undef Q
3807
3808 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3809 {
3810         struct vcpu_vmx *vmx = to_vmx(vcpu);
3811
3812         if (vmx->vmcs) {
3813                 vcpu_clear(vmx);
3814                 free_vmcs(vmx->vmcs);
3815                 vmx->vmcs = NULL;
3816         }
3817 }
3818
3819 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3820 {
3821         struct vcpu_vmx *vmx = to_vmx(vcpu);
3822
3823         spin_lock(&vmx_vpid_lock);
3824         if (vmx->vpid != 0)
3825                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3826         spin_unlock(&vmx_vpid_lock);
3827         vmx_free_vmcs(vcpu);
3828         kfree(vmx->guest_msrs);
3829         kvm_vcpu_uninit(vcpu);
3830         kmem_cache_free(kvm_vcpu_cache, vmx);
3831 }
3832
3833 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3834 {
3835         int err;
3836         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3837         int cpu;
3838
3839         if (!vmx)
3840                 return ERR_PTR(-ENOMEM);
3841
3842         allocate_vpid(vmx);
3843
3844         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3845         if (err)
3846                 goto free_vcpu;
3847
3848         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3849         if (!vmx->guest_msrs) {
3850                 err = -ENOMEM;
3851                 goto uninit_vcpu;
3852         }
3853
3854         vmx->vmcs = alloc_vmcs();
3855         if (!vmx->vmcs)
3856                 goto free_msrs;
3857
3858         vmcs_clear(vmx->vmcs);
3859
3860         cpu = get_cpu();
3861         vmx_vcpu_load(&vmx->vcpu, cpu);
3862         err = vmx_vcpu_setup(vmx);
3863         vmx_vcpu_put(&vmx->vcpu);
3864         put_cpu();
3865         if (err)
3866                 goto free_vmcs;
3867         if (vm_need_virtualize_apic_accesses(kvm))
3868                 if (alloc_apic_access_page(kvm) != 0)
3869                         goto free_vmcs;
3870
3871         if (enable_ept) {
3872                 if (!kvm->arch.ept_identity_map_addr)
3873                         kvm->arch.ept_identity_map_addr =
3874                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3875                 if (alloc_identity_pagetable(kvm) != 0)
3876                         goto free_vmcs;
3877         }
3878
3879         return &vmx->vcpu;
3880
3881 free_vmcs:
3882         free_vmcs(vmx->vmcs);
3883 free_msrs:
3884         kfree(vmx->guest_msrs);
3885 uninit_vcpu:
3886         kvm_vcpu_uninit(&vmx->vcpu);
3887 free_vcpu:
3888         kmem_cache_free(kvm_vcpu_cache, vmx);
3889         return ERR_PTR(err);
3890 }
3891
3892 static void __init vmx_check_processor_compat(void *rtn)
3893 {
3894         struct vmcs_config vmcs_conf;
3895
3896         *(int *)rtn = 0;
3897         if (setup_vmcs_config(&vmcs_conf) < 0)
3898                 *(int *)rtn = -EIO;
3899         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3900                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3901                                 smp_processor_id());
3902                 *(int *)rtn = -EIO;
3903         }
3904 }
3905
3906 static int get_ept_level(void)
3907 {
3908         return VMX_EPT_DEFAULT_GAW + 1;
3909 }
3910
3911 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3912 {
3913         u64 ret;
3914
3915         /* For VT-d and EPT combination
3916          * 1. MMIO: always map as UC
3917          * 2. EPT with VT-d:
3918          *   a. VT-d without snooping control feature: can't guarantee the
3919          *      result, try to trust guest.
3920          *   b. VT-d with snooping control feature: snooping control feature of
3921          *      VT-d engine can guarantee the cache correctness. Just set it
3922          *      to WB to keep consistent with host. So the same as item 3.
3923          * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
3924          *    consistent with host MTRR
3925          */
3926         if (is_mmio)
3927                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
3928         else if (vcpu->kvm->arch.iommu_domain &&
3929                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
3930                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
3931                       VMX_EPT_MT_EPTE_SHIFT;
3932         else
3933                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
3934                         | VMX_EPT_IGMT_BIT;
3935
3936         return ret;
3937 }
3938
3939 static const struct trace_print_flags vmx_exit_reasons_str[] = {
3940         { EXIT_REASON_EXCEPTION_NMI,           "exception" },
3941         { EXIT_REASON_EXTERNAL_INTERRUPT,      "ext_irq" },
3942         { EXIT_REASON_TRIPLE_FAULT,            "triple_fault" },
3943         { EXIT_REASON_NMI_WINDOW,              "nmi_window" },
3944         { EXIT_REASON_IO_INSTRUCTION,          "io_instruction" },
3945         { EXIT_REASON_CR_ACCESS,               "cr_access" },
3946         { EXIT_REASON_DR_ACCESS,               "dr_access" },
3947         { EXIT_REASON_CPUID,                   "cpuid" },
3948         { EXIT_REASON_MSR_READ,                "rdmsr" },
3949         { EXIT_REASON_MSR_WRITE,               "wrmsr" },
3950         { EXIT_REASON_PENDING_INTERRUPT,       "interrupt_window" },
3951         { EXIT_REASON_HLT,                     "halt" },
3952         { EXIT_REASON_INVLPG,                  "invlpg" },
3953         { EXIT_REASON_VMCALL,                  "hypercall" },
3954         { EXIT_REASON_TPR_BELOW_THRESHOLD,     "tpr_below_thres" },
3955         { EXIT_REASON_APIC_ACCESS,             "apic_access" },
3956         { EXIT_REASON_WBINVD,                  "wbinvd" },
3957         { EXIT_REASON_TASK_SWITCH,             "task_switch" },
3958         { EXIT_REASON_EPT_VIOLATION,           "ept_violation" },
3959         { -1, NULL }
3960 };
3961
3962 static bool vmx_gb_page_enable(void)
3963 {
3964         return false;
3965 }
3966
3967 static struct kvm_x86_ops vmx_x86_ops = {
3968         .cpu_has_kvm_support = cpu_has_kvm_support,
3969         .disabled_by_bios = vmx_disabled_by_bios,
3970         .hardware_setup = hardware_setup,
3971         .hardware_unsetup = hardware_unsetup,
3972         .check_processor_compatibility = vmx_check_processor_compat,
3973         .hardware_enable = hardware_enable,
3974         .hardware_disable = hardware_disable,
3975         .cpu_has_accelerated_tpr = report_flexpriority,
3976
3977         .vcpu_create = vmx_create_vcpu,
3978         .vcpu_free = vmx_free_vcpu,
3979         .vcpu_reset = vmx_vcpu_reset,
3980
3981         .prepare_guest_switch = vmx_save_host_state,
3982         .vcpu_load = vmx_vcpu_load,
3983         .vcpu_put = vmx_vcpu_put,
3984
3985         .set_guest_debug = set_guest_debug,
3986         .get_msr = vmx_get_msr,
3987         .set_msr = vmx_set_msr,
3988         .get_segment_base = vmx_get_segment_base,
3989         .get_segment = vmx_get_segment,
3990         .set_segment = vmx_set_segment,
3991         .get_cpl = vmx_get_cpl,
3992         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3993         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3994         .set_cr0 = vmx_set_cr0,
3995         .set_cr3 = vmx_set_cr3,
3996         .set_cr4 = vmx_set_cr4,
3997         .set_efer = vmx_set_efer,
3998         .get_idt = vmx_get_idt,
3999         .set_idt = vmx_set_idt,
4000         .get_gdt = vmx_get_gdt,
4001         .set_gdt = vmx_set_gdt,
4002         .cache_reg = vmx_cache_reg,
4003         .get_rflags = vmx_get_rflags,
4004         .set_rflags = vmx_set_rflags,
4005
4006         .tlb_flush = vmx_flush_tlb,
4007
4008         .run = vmx_vcpu_run,
4009         .handle_exit = vmx_handle_exit,
4010         .skip_emulated_instruction = skip_emulated_instruction,
4011         .set_interrupt_shadow = vmx_set_interrupt_shadow,
4012         .get_interrupt_shadow = vmx_get_interrupt_shadow,
4013         .patch_hypercall = vmx_patch_hypercall,
4014         .set_irq = vmx_inject_irq,
4015         .set_nmi = vmx_inject_nmi,
4016         .queue_exception = vmx_queue_exception,
4017         .interrupt_allowed = vmx_interrupt_allowed,
4018         .nmi_allowed = vmx_nmi_allowed,
4019         .get_nmi_mask = vmx_get_nmi_mask,
4020         .set_nmi_mask = vmx_set_nmi_mask,
4021         .enable_nmi_window = enable_nmi_window,
4022         .enable_irq_window = enable_irq_window,
4023         .update_cr8_intercept = update_cr8_intercept,
4024
4025         .set_tss_addr = vmx_set_tss_addr,
4026         .get_tdp_level = get_ept_level,
4027         .get_mt_mask = vmx_get_mt_mask,
4028
4029         .exit_reasons_str = vmx_exit_reasons_str,
4030         .gb_page_enable = vmx_gb_page_enable,
4031 };
4032
4033 static int __init vmx_init(void)
4034 {
4035         int r, i;
4036
4037         rdmsrl_safe(MSR_EFER, &host_efer);
4038
4039         for (i = 0; i < NR_VMX_MSR; ++i)
4040                 kvm_define_shared_msr(i, vmx_msr_index[i]);
4041
4042         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
4043         if (!vmx_io_bitmap_a)
4044                 return -ENOMEM;
4045
4046         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
4047         if (!vmx_io_bitmap_b) {
4048                 r = -ENOMEM;
4049                 goto out;
4050         }
4051
4052         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
4053         if (!vmx_msr_bitmap_legacy) {
4054                 r = -ENOMEM;
4055                 goto out1;
4056         }
4057
4058         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
4059         if (!vmx_msr_bitmap_longmode) {
4060                 r = -ENOMEM;
4061                 goto out2;
4062         }
4063
4064         /*
4065          * Allow direct access to the PC debug port (it is often used for I/O
4066          * delays, but the vmexits simply slow things down).
4067          */
4068         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
4069         clear_bit(0x80, vmx_io_bitmap_a);
4070
4071         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
4072
4073         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
4074         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
4075
4076         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
4077
4078         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
4079         if (r)
4080                 goto out3;
4081
4082         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
4083         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
4084         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
4085         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
4086         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
4087         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
4088
4089         if (enable_ept) {
4090                 bypass_guest_pf = 0;
4091                 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
4092                         VMX_EPT_WRITABLE_MASK);
4093                 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4094                                 VMX_EPT_EXECUTABLE_MASK);
4095                 kvm_enable_tdp();
4096         } else
4097                 kvm_disable_tdp();
4098
4099         if (bypass_guest_pf)
4100                 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
4101
4102         return 0;
4103
4104 out3:
4105         free_page((unsigned long)vmx_msr_bitmap_longmode);
4106 out2:
4107         free_page((unsigned long)vmx_msr_bitmap_legacy);
4108 out1:
4109         free_page((unsigned long)vmx_io_bitmap_b);
4110 out:
4111         free_page((unsigned long)vmx_io_bitmap_a);
4112         return r;
4113 }
4114
4115 static void __exit vmx_exit(void)
4116 {
4117         free_page((unsigned long)vmx_msr_bitmap_legacy);
4118         free_page((unsigned long)vmx_msr_bitmap_longmode);
4119         free_page((unsigned long)vmx_io_bitmap_b);
4120         free_page((unsigned long)vmx_io_bitmap_a);
4121
4122         kvm_exit();
4123 }
4124
4125 module_init(vmx_init)
4126 module_exit(vmx_exit)