]> bbs.cooldavid.org Git - net-next-2.6.git/blob - arch/x86/kvm/vmx.c
KVM: Fix mov cr3 #GP at wrong instruction
[net-next-2.6.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affilates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31 #include <linux/tboot.h>
32 #include "kvm_cache_regs.h"
33 #include "x86.h"
34
35 #include <asm/io.h>
36 #include <asm/desc.h>
37 #include <asm/vmx.h>
38 #include <asm/virtext.h>
39 #include <asm/mce.h>
40 #include <asm/i387.h>
41 #include <asm/xcr.h>
42
43 #include "trace.h"
44
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49
50 static int __read_mostly bypass_guest_pf = 1;
51 module_param(bypass_guest_pf, bool, S_IRUGO);
52
53 static int __read_mostly enable_vpid = 1;
54 module_param_named(vpid, enable_vpid, bool, 0444);
55
56 static int __read_mostly flexpriority_enabled = 1;
57 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
58
59 static int __read_mostly enable_ept = 1;
60 module_param_named(ept, enable_ept, bool, S_IRUGO);
61
62 static int __read_mostly enable_unrestricted_guest = 1;
63 module_param_named(unrestricted_guest,
64                         enable_unrestricted_guest, bool, S_IRUGO);
65
66 static int __read_mostly emulate_invalid_guest_state = 0;
67 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
68
69 static int __read_mostly vmm_exclusive = 1;
70 module_param(vmm_exclusive, bool, S_IRUGO);
71
72 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST                           \
73         (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
74 #define KVM_GUEST_CR0_MASK                                              \
75         (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
76 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST                         \
77         (X86_CR0_WP | X86_CR0_NE)
78 #define KVM_VM_CR0_ALWAYS_ON                                            \
79         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
80 #define KVM_CR4_GUEST_OWNED_BITS                                      \
81         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
82          | X86_CR4_OSXMMEXCPT)
83
84 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
85 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
86
87 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
88
89 /*
90  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
91  * ple_gap:    upper bound on the amount of time between two successive
92  *             executions of PAUSE in a loop. Also indicate if ple enabled.
93  *             According to test, this time is usually small than 41 cycles.
94  * ple_window: upper bound on the amount of time a guest is allowed to execute
95  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
96  *             less than 2^12 cycles
97  * Time is measured based on a counter that runs at the same rate as the TSC,
98  * refer SDM volume 3b section 21.6.13 & 22.1.3.
99  */
100 #define KVM_VMX_DEFAULT_PLE_GAP    41
101 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
102 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
103 module_param(ple_gap, int, S_IRUGO);
104
105 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
106 module_param(ple_window, int, S_IRUGO);
107
108 #define NR_AUTOLOAD_MSRS 1
109
110 struct vmcs {
111         u32 revision_id;
112         u32 abort;
113         char data[0];
114 };
115
116 struct shared_msr_entry {
117         unsigned index;
118         u64 data;
119         u64 mask;
120 };
121
122 struct vcpu_vmx {
123         struct kvm_vcpu       vcpu;
124         struct list_head      local_vcpus_link;
125         unsigned long         host_rsp;
126         int                   launched;
127         u8                    fail;
128         u32                   idt_vectoring_info;
129         struct shared_msr_entry *guest_msrs;
130         int                   nmsrs;
131         int                   save_nmsrs;
132 #ifdef CONFIG_X86_64
133         u64                   msr_host_kernel_gs_base;
134         u64                   msr_guest_kernel_gs_base;
135 #endif
136         struct vmcs          *vmcs;
137         struct msr_autoload {
138                 unsigned nr;
139                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
140                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
141         } msr_autoload;
142         struct {
143                 int           loaded;
144                 u16           fs_sel, gs_sel, ldt_sel;
145                 int           gs_ldt_reload_needed;
146                 int           fs_reload_needed;
147         } host_state;
148         struct {
149                 int vm86_active;
150                 ulong save_rflags;
151                 struct kvm_save_segment {
152                         u16 selector;
153                         unsigned long base;
154                         u32 limit;
155                         u32 ar;
156                 } tr, es, ds, fs, gs;
157                 struct {
158                         bool pending;
159                         u8 vector;
160                         unsigned rip;
161                 } irq;
162         } rmode;
163         int vpid;
164         bool emulation_required;
165
166         /* Support for vnmi-less CPUs */
167         int soft_vnmi_blocked;
168         ktime_t entry_time;
169         s64 vnmi_blocked_time;
170         u32 exit_reason;
171
172         bool rdtscp_enabled;
173 };
174
175 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
176 {
177         return container_of(vcpu, struct vcpu_vmx, vcpu);
178 }
179
180 static int init_rmode(struct kvm *kvm);
181 static u64 construct_eptp(unsigned long root_hpa);
182 static void kvm_cpu_vmxon(u64 addr);
183 static void kvm_cpu_vmxoff(void);
184
185 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
186 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
187 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
188
189 static unsigned long *vmx_io_bitmap_a;
190 static unsigned long *vmx_io_bitmap_b;
191 static unsigned long *vmx_msr_bitmap_legacy;
192 static unsigned long *vmx_msr_bitmap_longmode;
193
194 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
195 static DEFINE_SPINLOCK(vmx_vpid_lock);
196
197 static struct vmcs_config {
198         int size;
199         int order;
200         u32 revision_id;
201         u32 pin_based_exec_ctrl;
202         u32 cpu_based_exec_ctrl;
203         u32 cpu_based_2nd_exec_ctrl;
204         u32 vmexit_ctrl;
205         u32 vmentry_ctrl;
206 } vmcs_config;
207
208 static struct vmx_capability {
209         u32 ept;
210         u32 vpid;
211 } vmx_capability;
212
213 #define VMX_SEGMENT_FIELD(seg)                                  \
214         [VCPU_SREG_##seg] = {                                   \
215                 .selector = GUEST_##seg##_SELECTOR,             \
216                 .base = GUEST_##seg##_BASE,                     \
217                 .limit = GUEST_##seg##_LIMIT,                   \
218                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
219         }
220
221 static struct kvm_vmx_segment_field {
222         unsigned selector;
223         unsigned base;
224         unsigned limit;
225         unsigned ar_bytes;
226 } kvm_vmx_segment_fields[] = {
227         VMX_SEGMENT_FIELD(CS),
228         VMX_SEGMENT_FIELD(DS),
229         VMX_SEGMENT_FIELD(ES),
230         VMX_SEGMENT_FIELD(FS),
231         VMX_SEGMENT_FIELD(GS),
232         VMX_SEGMENT_FIELD(SS),
233         VMX_SEGMENT_FIELD(TR),
234         VMX_SEGMENT_FIELD(LDTR),
235 };
236
237 static u64 host_efer;
238
239 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
240
241 /*
242  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
243  * away by decrementing the array size.
244  */
245 static const u32 vmx_msr_index[] = {
246 #ifdef CONFIG_X86_64
247         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
248 #endif
249         MSR_EFER, MSR_TSC_AUX, MSR_K6_STAR,
250 };
251 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
252
253 static inline bool is_page_fault(u32 intr_info)
254 {
255         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
256                              INTR_INFO_VALID_MASK)) ==
257                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
258 }
259
260 static inline bool is_no_device(u32 intr_info)
261 {
262         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
263                              INTR_INFO_VALID_MASK)) ==
264                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
265 }
266
267 static inline bool is_invalid_opcode(u32 intr_info)
268 {
269         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
270                              INTR_INFO_VALID_MASK)) ==
271                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
272 }
273
274 static inline bool is_external_interrupt(u32 intr_info)
275 {
276         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
277                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
278 }
279
280 static inline bool is_machine_check(u32 intr_info)
281 {
282         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
283                              INTR_INFO_VALID_MASK)) ==
284                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
285 }
286
287 static inline bool cpu_has_vmx_msr_bitmap(void)
288 {
289         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
290 }
291
292 static inline bool cpu_has_vmx_tpr_shadow(void)
293 {
294         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
295 }
296
297 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
298 {
299         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
300 }
301
302 static inline bool cpu_has_secondary_exec_ctrls(void)
303 {
304         return vmcs_config.cpu_based_exec_ctrl &
305                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
306 }
307
308 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
309 {
310         return vmcs_config.cpu_based_2nd_exec_ctrl &
311                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
312 }
313
314 static inline bool cpu_has_vmx_flexpriority(void)
315 {
316         return cpu_has_vmx_tpr_shadow() &&
317                 cpu_has_vmx_virtualize_apic_accesses();
318 }
319
320 static inline bool cpu_has_vmx_ept_execute_only(void)
321 {
322         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
323 }
324
325 static inline bool cpu_has_vmx_eptp_uncacheable(void)
326 {
327         return vmx_capability.ept & VMX_EPTP_UC_BIT;
328 }
329
330 static inline bool cpu_has_vmx_eptp_writeback(void)
331 {
332         return vmx_capability.ept & VMX_EPTP_WB_BIT;
333 }
334
335 static inline bool cpu_has_vmx_ept_2m_page(void)
336 {
337         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
338 }
339
340 static inline bool cpu_has_vmx_ept_1g_page(void)
341 {
342         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
343 }
344
345 static inline bool cpu_has_vmx_ept_4levels(void)
346 {
347         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
348 }
349
350 static inline bool cpu_has_vmx_invept_individual_addr(void)
351 {
352         return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
353 }
354
355 static inline bool cpu_has_vmx_invept_context(void)
356 {
357         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
358 }
359
360 static inline bool cpu_has_vmx_invept_global(void)
361 {
362         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
363 }
364
365 static inline bool cpu_has_vmx_invvpid_single(void)
366 {
367         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
368 }
369
370 static inline bool cpu_has_vmx_invvpid_global(void)
371 {
372         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
373 }
374
375 static inline bool cpu_has_vmx_ept(void)
376 {
377         return vmcs_config.cpu_based_2nd_exec_ctrl &
378                 SECONDARY_EXEC_ENABLE_EPT;
379 }
380
381 static inline bool cpu_has_vmx_unrestricted_guest(void)
382 {
383         return vmcs_config.cpu_based_2nd_exec_ctrl &
384                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
385 }
386
387 static inline bool cpu_has_vmx_ple(void)
388 {
389         return vmcs_config.cpu_based_2nd_exec_ctrl &
390                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
391 }
392
393 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
394 {
395         return flexpriority_enabled && irqchip_in_kernel(kvm);
396 }
397
398 static inline bool cpu_has_vmx_vpid(void)
399 {
400         return vmcs_config.cpu_based_2nd_exec_ctrl &
401                 SECONDARY_EXEC_ENABLE_VPID;
402 }
403
404 static inline bool cpu_has_vmx_rdtscp(void)
405 {
406         return vmcs_config.cpu_based_2nd_exec_ctrl &
407                 SECONDARY_EXEC_RDTSCP;
408 }
409
410 static inline bool cpu_has_virtual_nmis(void)
411 {
412         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
413 }
414
415 static inline bool report_flexpriority(void)
416 {
417         return flexpriority_enabled;
418 }
419
420 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
421 {
422         int i;
423
424         for (i = 0; i < vmx->nmsrs; ++i)
425                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
426                         return i;
427         return -1;
428 }
429
430 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
431 {
432     struct {
433         u64 vpid : 16;
434         u64 rsvd : 48;
435         u64 gva;
436     } operand = { vpid, 0, gva };
437
438     asm volatile (__ex(ASM_VMX_INVVPID)
439                   /* CF==1 or ZF==1 --> rc = -1 */
440                   "; ja 1f ; ud2 ; 1:"
441                   : : "a"(&operand), "c"(ext) : "cc", "memory");
442 }
443
444 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
445 {
446         struct {
447                 u64 eptp, gpa;
448         } operand = {eptp, gpa};
449
450         asm volatile (__ex(ASM_VMX_INVEPT)
451                         /* CF==1 or ZF==1 --> rc = -1 */
452                         "; ja 1f ; ud2 ; 1:\n"
453                         : : "a" (&operand), "c" (ext) : "cc", "memory");
454 }
455
456 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
457 {
458         int i;
459
460         i = __find_msr_index(vmx, msr);
461         if (i >= 0)
462                 return &vmx->guest_msrs[i];
463         return NULL;
464 }
465
466 static void vmcs_clear(struct vmcs *vmcs)
467 {
468         u64 phys_addr = __pa(vmcs);
469         u8 error;
470
471         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
472                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
473                       : "cc", "memory");
474         if (error)
475                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
476                        vmcs, phys_addr);
477 }
478
479 static void vmcs_load(struct vmcs *vmcs)
480 {
481         u64 phys_addr = __pa(vmcs);
482         u8 error;
483
484         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
485                         : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
486                         : "cc", "memory");
487         if (error)
488                 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
489                        vmcs, phys_addr);
490 }
491
492 static void __vcpu_clear(void *arg)
493 {
494         struct vcpu_vmx *vmx = arg;
495         int cpu = raw_smp_processor_id();
496
497         if (vmx->vcpu.cpu == cpu)
498                 vmcs_clear(vmx->vmcs);
499         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
500                 per_cpu(current_vmcs, cpu) = NULL;
501         rdtscll(vmx->vcpu.arch.host_tsc);
502         list_del(&vmx->local_vcpus_link);
503         vmx->vcpu.cpu = -1;
504         vmx->launched = 0;
505 }
506
507 static void vcpu_clear(struct vcpu_vmx *vmx)
508 {
509         if (vmx->vcpu.cpu == -1)
510                 return;
511         smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
512 }
513
514 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
515 {
516         if (vmx->vpid == 0)
517                 return;
518
519         if (cpu_has_vmx_invvpid_single())
520                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
521 }
522
523 static inline void vpid_sync_vcpu_global(void)
524 {
525         if (cpu_has_vmx_invvpid_global())
526                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
527 }
528
529 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
530 {
531         if (cpu_has_vmx_invvpid_single())
532                 vpid_sync_vcpu_single(vmx);
533         else
534                 vpid_sync_vcpu_global();
535 }
536
537 static inline void ept_sync_global(void)
538 {
539         if (cpu_has_vmx_invept_global())
540                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
541 }
542
543 static inline void ept_sync_context(u64 eptp)
544 {
545         if (enable_ept) {
546                 if (cpu_has_vmx_invept_context())
547                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
548                 else
549                         ept_sync_global();
550         }
551 }
552
553 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
554 {
555         if (enable_ept) {
556                 if (cpu_has_vmx_invept_individual_addr())
557                         __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
558                                         eptp, gpa);
559                 else
560                         ept_sync_context(eptp);
561         }
562 }
563
564 static unsigned long vmcs_readl(unsigned long field)
565 {
566         unsigned long value;
567
568         asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
569                       : "=a"(value) : "d"(field) : "cc");
570         return value;
571 }
572
573 static u16 vmcs_read16(unsigned long field)
574 {
575         return vmcs_readl(field);
576 }
577
578 static u32 vmcs_read32(unsigned long field)
579 {
580         return vmcs_readl(field);
581 }
582
583 static u64 vmcs_read64(unsigned long field)
584 {
585 #ifdef CONFIG_X86_64
586         return vmcs_readl(field);
587 #else
588         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
589 #endif
590 }
591
592 static noinline void vmwrite_error(unsigned long field, unsigned long value)
593 {
594         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
595                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
596         dump_stack();
597 }
598
599 static void vmcs_writel(unsigned long field, unsigned long value)
600 {
601         u8 error;
602
603         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
604                        : "=q"(error) : "a"(value), "d"(field) : "cc");
605         if (unlikely(error))
606                 vmwrite_error(field, value);
607 }
608
609 static void vmcs_write16(unsigned long field, u16 value)
610 {
611         vmcs_writel(field, value);
612 }
613
614 static void vmcs_write32(unsigned long field, u32 value)
615 {
616         vmcs_writel(field, value);
617 }
618
619 static void vmcs_write64(unsigned long field, u64 value)
620 {
621         vmcs_writel(field, value);
622 #ifndef CONFIG_X86_64
623         asm volatile ("");
624         vmcs_writel(field+1, value >> 32);
625 #endif
626 }
627
628 static void vmcs_clear_bits(unsigned long field, u32 mask)
629 {
630         vmcs_writel(field, vmcs_readl(field) & ~mask);
631 }
632
633 static void vmcs_set_bits(unsigned long field, u32 mask)
634 {
635         vmcs_writel(field, vmcs_readl(field) | mask);
636 }
637
638 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
639 {
640         u32 eb;
641
642         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
643              (1u << NM_VECTOR) | (1u << DB_VECTOR);
644         if ((vcpu->guest_debug &
645              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
646             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
647                 eb |= 1u << BP_VECTOR;
648         if (to_vmx(vcpu)->rmode.vm86_active)
649                 eb = ~0;
650         if (enable_ept)
651                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
652         if (vcpu->fpu_active)
653                 eb &= ~(1u << NM_VECTOR);
654         vmcs_write32(EXCEPTION_BITMAP, eb);
655 }
656
657 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
658 {
659         unsigned i;
660         struct msr_autoload *m = &vmx->msr_autoload;
661
662         for (i = 0; i < m->nr; ++i)
663                 if (m->guest[i].index == msr)
664                         break;
665
666         if (i == m->nr)
667                 return;
668         --m->nr;
669         m->guest[i] = m->guest[m->nr];
670         m->host[i] = m->host[m->nr];
671         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
672         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
673 }
674
675 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
676                                   u64 guest_val, u64 host_val)
677 {
678         unsigned i;
679         struct msr_autoload *m = &vmx->msr_autoload;
680
681         for (i = 0; i < m->nr; ++i)
682                 if (m->guest[i].index == msr)
683                         break;
684
685         if (i == m->nr) {
686                 ++m->nr;
687                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
688                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
689         }
690
691         m->guest[i].index = msr;
692         m->guest[i].value = guest_val;
693         m->host[i].index = msr;
694         m->host[i].value = host_val;
695 }
696
697 static void reload_tss(void)
698 {
699         /*
700          * VT restores TR but not its size.  Useless.
701          */
702         struct desc_ptr gdt;
703         struct desc_struct *descs;
704
705         native_store_gdt(&gdt);
706         descs = (void *)gdt.address;
707         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
708         load_TR_desc();
709 }
710
711 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
712 {
713         u64 guest_efer;
714         u64 ignore_bits;
715
716         guest_efer = vmx->vcpu.arch.efer;
717
718         /*
719          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
720          * outside long mode
721          */
722         ignore_bits = EFER_NX | EFER_SCE;
723 #ifdef CONFIG_X86_64
724         ignore_bits |= EFER_LMA | EFER_LME;
725         /* SCE is meaningful only in long mode on Intel */
726         if (guest_efer & EFER_LMA)
727                 ignore_bits &= ~(u64)EFER_SCE;
728 #endif
729         guest_efer &= ~ignore_bits;
730         guest_efer |= host_efer & ignore_bits;
731         vmx->guest_msrs[efer_offset].data = guest_efer;
732         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
733
734         clear_atomic_switch_msr(vmx, MSR_EFER);
735         /* On ept, can't emulate nx, and must switch nx atomically */
736         if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
737                 guest_efer = vmx->vcpu.arch.efer;
738                 if (!(guest_efer & EFER_LMA))
739                         guest_efer &= ~EFER_LME;
740                 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
741                 return false;
742         }
743
744         return true;
745 }
746
747 static unsigned long segment_base(u16 selector)
748 {
749         struct desc_ptr gdt;
750         struct desc_struct *d;
751         unsigned long table_base;
752         unsigned long v;
753
754         if (!(selector & ~3))
755                 return 0;
756
757         native_store_gdt(&gdt);
758         table_base = gdt.address;
759
760         if (selector & 4) {           /* from ldt */
761                 u16 ldt_selector = kvm_read_ldt();
762
763                 if (!(ldt_selector & ~3))
764                         return 0;
765
766                 table_base = segment_base(ldt_selector);
767         }
768         d = (struct desc_struct *)(table_base + (selector & ~7));
769         v = get_desc_base(d);
770 #ifdef CONFIG_X86_64
771        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
772                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
773 #endif
774         return v;
775 }
776
777 static inline unsigned long kvm_read_tr_base(void)
778 {
779         u16 tr;
780         asm("str %0" : "=g"(tr));
781         return segment_base(tr);
782 }
783
784 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
785 {
786         struct vcpu_vmx *vmx = to_vmx(vcpu);
787         int i;
788
789         if (vmx->host_state.loaded)
790                 return;
791
792         vmx->host_state.loaded = 1;
793         /*
794          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
795          * allow segment selectors with cpl > 0 or ti == 1.
796          */
797         vmx->host_state.ldt_sel = kvm_read_ldt();
798         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
799         vmx->host_state.fs_sel = kvm_read_fs();
800         if (!(vmx->host_state.fs_sel & 7)) {
801                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
802                 vmx->host_state.fs_reload_needed = 0;
803         } else {
804                 vmcs_write16(HOST_FS_SELECTOR, 0);
805                 vmx->host_state.fs_reload_needed = 1;
806         }
807         vmx->host_state.gs_sel = kvm_read_gs();
808         if (!(vmx->host_state.gs_sel & 7))
809                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
810         else {
811                 vmcs_write16(HOST_GS_SELECTOR, 0);
812                 vmx->host_state.gs_ldt_reload_needed = 1;
813         }
814
815 #ifdef CONFIG_X86_64
816         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
817         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
818 #else
819         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
820         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
821 #endif
822
823 #ifdef CONFIG_X86_64
824         if (is_long_mode(&vmx->vcpu)) {
825                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
826                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
827         }
828 #endif
829         for (i = 0; i < vmx->save_nmsrs; ++i)
830                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
831                                    vmx->guest_msrs[i].data,
832                                    vmx->guest_msrs[i].mask);
833 }
834
835 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
836 {
837         unsigned long flags;
838
839         if (!vmx->host_state.loaded)
840                 return;
841
842         ++vmx->vcpu.stat.host_state_reload;
843         vmx->host_state.loaded = 0;
844         if (vmx->host_state.fs_reload_needed)
845                 kvm_load_fs(vmx->host_state.fs_sel);
846         if (vmx->host_state.gs_ldt_reload_needed) {
847                 kvm_load_ldt(vmx->host_state.ldt_sel);
848                 /*
849                  * If we have to reload gs, we must take care to
850                  * preserve our gs base.
851                  */
852                 local_irq_save(flags);
853                 kvm_load_gs(vmx->host_state.gs_sel);
854 #ifdef CONFIG_X86_64
855                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
856 #endif
857                 local_irq_restore(flags);
858         }
859         reload_tss();
860 #ifdef CONFIG_X86_64
861         if (is_long_mode(&vmx->vcpu)) {
862                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
863                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
864         }
865 #endif
866         if (current_thread_info()->status & TS_USEDFPU)
867                 clts();
868 }
869
870 static void vmx_load_host_state(struct vcpu_vmx *vmx)
871 {
872         preempt_disable();
873         __vmx_load_host_state(vmx);
874         preempt_enable();
875 }
876
877 /*
878  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
879  * vcpu mutex is already taken.
880  */
881 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
882 {
883         struct vcpu_vmx *vmx = to_vmx(vcpu);
884         u64 tsc_this, delta, new_offset;
885         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
886
887         if (!vmm_exclusive)
888                 kvm_cpu_vmxon(phys_addr);
889         else if (vcpu->cpu != cpu)
890                 vcpu_clear(vmx);
891
892         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
893                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
894                 vmcs_load(vmx->vmcs);
895         }
896
897         if (vcpu->cpu != cpu) {
898                 struct desc_ptr dt;
899                 unsigned long sysenter_esp;
900
901                 kvm_migrate_timers(vcpu);
902                 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
903                 local_irq_disable();
904                 list_add(&vmx->local_vcpus_link,
905                          &per_cpu(vcpus_on_cpu, cpu));
906                 local_irq_enable();
907
908                 vcpu->cpu = cpu;
909                 /*
910                  * Linux uses per-cpu TSS and GDT, so set these when switching
911                  * processors.
912                  */
913                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
914                 native_store_gdt(&dt);
915                 vmcs_writel(HOST_GDTR_BASE, dt.address);   /* 22.2.4 */
916
917                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
918                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
919
920                 /*
921                  * Make sure the time stamp counter is monotonous.
922                  */
923                 rdtscll(tsc_this);
924                 if (tsc_this < vcpu->arch.host_tsc) {
925                         delta = vcpu->arch.host_tsc - tsc_this;
926                         new_offset = vmcs_read64(TSC_OFFSET) + delta;
927                         vmcs_write64(TSC_OFFSET, new_offset);
928                 }
929         }
930 }
931
932 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
933 {
934         __vmx_load_host_state(to_vmx(vcpu));
935         if (!vmm_exclusive) {
936                 __vcpu_clear(to_vmx(vcpu));
937                 kvm_cpu_vmxoff();
938         }
939 }
940
941 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
942 {
943         ulong cr0;
944
945         if (vcpu->fpu_active)
946                 return;
947         vcpu->fpu_active = 1;
948         cr0 = vmcs_readl(GUEST_CR0);
949         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
950         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
951         vmcs_writel(GUEST_CR0, cr0);
952         update_exception_bitmap(vcpu);
953         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
954         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
955 }
956
957 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
958
959 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
960 {
961         vmx_decache_cr0_guest_bits(vcpu);
962         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
963         update_exception_bitmap(vcpu);
964         vcpu->arch.cr0_guest_owned_bits = 0;
965         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
966         vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
967 }
968
969 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
970 {
971         unsigned long rflags, save_rflags;
972
973         rflags = vmcs_readl(GUEST_RFLAGS);
974         if (to_vmx(vcpu)->rmode.vm86_active) {
975                 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
976                 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
977                 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
978         }
979         return rflags;
980 }
981
982 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
983 {
984         if (to_vmx(vcpu)->rmode.vm86_active) {
985                 to_vmx(vcpu)->rmode.save_rflags = rflags;
986                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
987         }
988         vmcs_writel(GUEST_RFLAGS, rflags);
989 }
990
991 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
992 {
993         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
994         int ret = 0;
995
996         if (interruptibility & GUEST_INTR_STATE_STI)
997                 ret |= KVM_X86_SHADOW_INT_STI;
998         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
999                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1000
1001         return ret & mask;
1002 }
1003
1004 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1005 {
1006         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1007         u32 interruptibility = interruptibility_old;
1008
1009         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1010
1011         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1012                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1013         else if (mask & KVM_X86_SHADOW_INT_STI)
1014                 interruptibility |= GUEST_INTR_STATE_STI;
1015
1016         if ((interruptibility != interruptibility_old))
1017                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1018 }
1019
1020 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1021 {
1022         unsigned long rip;
1023
1024         rip = kvm_rip_read(vcpu);
1025         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1026         kvm_rip_write(vcpu, rip);
1027
1028         /* skipping an emulated instruction also counts */
1029         vmx_set_interrupt_shadow(vcpu, 0);
1030 }
1031
1032 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1033                                 bool has_error_code, u32 error_code,
1034                                 bool reinject)
1035 {
1036         struct vcpu_vmx *vmx = to_vmx(vcpu);
1037         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1038
1039         if (has_error_code) {
1040                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1041                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1042         }
1043
1044         if (vmx->rmode.vm86_active) {
1045                 vmx->rmode.irq.pending = true;
1046                 vmx->rmode.irq.vector = nr;
1047                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
1048                 if (kvm_exception_is_soft(nr))
1049                         vmx->rmode.irq.rip +=
1050                                 vmx->vcpu.arch.event_exit_inst_len;
1051                 intr_info |= INTR_TYPE_SOFT_INTR;
1052                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1053                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
1054                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
1055                 return;
1056         }
1057
1058         if (kvm_exception_is_soft(nr)) {
1059                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1060                              vmx->vcpu.arch.event_exit_inst_len);
1061                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1062         } else
1063                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1064
1065         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1066 }
1067
1068 static bool vmx_rdtscp_supported(void)
1069 {
1070         return cpu_has_vmx_rdtscp();
1071 }
1072
1073 /*
1074  * Swap MSR entry in host/guest MSR entry array.
1075  */
1076 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1077 {
1078         struct shared_msr_entry tmp;
1079
1080         tmp = vmx->guest_msrs[to];
1081         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1082         vmx->guest_msrs[from] = tmp;
1083 }
1084
1085 /*
1086  * Set up the vmcs to automatically save and restore system
1087  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1088  * mode, as fiddling with msrs is very expensive.
1089  */
1090 static void setup_msrs(struct vcpu_vmx *vmx)
1091 {
1092         int save_nmsrs, index;
1093         unsigned long *msr_bitmap;
1094
1095         vmx_load_host_state(vmx);
1096         save_nmsrs = 0;
1097 #ifdef CONFIG_X86_64
1098         if (is_long_mode(&vmx->vcpu)) {
1099                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1100                 if (index >= 0)
1101                         move_msr_up(vmx, index, save_nmsrs++);
1102                 index = __find_msr_index(vmx, MSR_LSTAR);
1103                 if (index >= 0)
1104                         move_msr_up(vmx, index, save_nmsrs++);
1105                 index = __find_msr_index(vmx, MSR_CSTAR);
1106                 if (index >= 0)
1107                         move_msr_up(vmx, index, save_nmsrs++);
1108                 index = __find_msr_index(vmx, MSR_TSC_AUX);
1109                 if (index >= 0 && vmx->rdtscp_enabled)
1110                         move_msr_up(vmx, index, save_nmsrs++);
1111                 /*
1112                  * MSR_K6_STAR is only needed on long mode guests, and only
1113                  * if efer.sce is enabled.
1114                  */
1115                 index = __find_msr_index(vmx, MSR_K6_STAR);
1116                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1117                         move_msr_up(vmx, index, save_nmsrs++);
1118         }
1119 #endif
1120         index = __find_msr_index(vmx, MSR_EFER);
1121         if (index >= 0 && update_transition_efer(vmx, index))
1122                 move_msr_up(vmx, index, save_nmsrs++);
1123
1124         vmx->save_nmsrs = save_nmsrs;
1125
1126         if (cpu_has_vmx_msr_bitmap()) {
1127                 if (is_long_mode(&vmx->vcpu))
1128                         msr_bitmap = vmx_msr_bitmap_longmode;
1129                 else
1130                         msr_bitmap = vmx_msr_bitmap_legacy;
1131
1132                 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1133         }
1134 }
1135
1136 /*
1137  * reads and returns guest's timestamp counter "register"
1138  * guest_tsc = host_tsc + tsc_offset    -- 21.3
1139  */
1140 static u64 guest_read_tsc(void)
1141 {
1142         u64 host_tsc, tsc_offset;
1143
1144         rdtscll(host_tsc);
1145         tsc_offset = vmcs_read64(TSC_OFFSET);
1146         return host_tsc + tsc_offset;
1147 }
1148
1149 /*
1150  * writes 'guest_tsc' into guest's timestamp counter "register"
1151  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
1152  */
1153 static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
1154 {
1155         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
1156 }
1157
1158 /*
1159  * Reads an msr value (of 'msr_index') into 'pdata'.
1160  * Returns 0 on success, non-0 otherwise.
1161  * Assumes vcpu_load() was already called.
1162  */
1163 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1164 {
1165         u64 data;
1166         struct shared_msr_entry *msr;
1167
1168         if (!pdata) {
1169                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
1170                 return -EINVAL;
1171         }
1172
1173         switch (msr_index) {
1174 #ifdef CONFIG_X86_64
1175         case MSR_FS_BASE:
1176                 data = vmcs_readl(GUEST_FS_BASE);
1177                 break;
1178         case MSR_GS_BASE:
1179                 data = vmcs_readl(GUEST_GS_BASE);
1180                 break;
1181         case MSR_KERNEL_GS_BASE:
1182                 vmx_load_host_state(to_vmx(vcpu));
1183                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
1184                 break;
1185 #endif
1186         case MSR_EFER:
1187                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1188         case MSR_IA32_TSC:
1189                 data = guest_read_tsc();
1190                 break;
1191         case MSR_IA32_SYSENTER_CS:
1192                 data = vmcs_read32(GUEST_SYSENTER_CS);
1193                 break;
1194         case MSR_IA32_SYSENTER_EIP:
1195                 data = vmcs_readl(GUEST_SYSENTER_EIP);
1196                 break;
1197         case MSR_IA32_SYSENTER_ESP:
1198                 data = vmcs_readl(GUEST_SYSENTER_ESP);
1199                 break;
1200         case MSR_TSC_AUX:
1201                 if (!to_vmx(vcpu)->rdtscp_enabled)
1202                         return 1;
1203                 /* Otherwise falls through */
1204         default:
1205                 vmx_load_host_state(to_vmx(vcpu));
1206                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
1207                 if (msr) {
1208                         vmx_load_host_state(to_vmx(vcpu));
1209                         data = msr->data;
1210                         break;
1211                 }
1212                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1213         }
1214
1215         *pdata = data;
1216         return 0;
1217 }
1218
1219 /*
1220  * Writes msr value into into the appropriate "register".
1221  * Returns 0 on success, non-0 otherwise.
1222  * Assumes vcpu_load() was already called.
1223  */
1224 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1225 {
1226         struct vcpu_vmx *vmx = to_vmx(vcpu);
1227         struct shared_msr_entry *msr;
1228         u64 host_tsc;
1229         int ret = 0;
1230
1231         switch (msr_index) {
1232         case MSR_EFER:
1233                 vmx_load_host_state(vmx);
1234                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1235                 break;
1236 #ifdef CONFIG_X86_64
1237         case MSR_FS_BASE:
1238                 vmcs_writel(GUEST_FS_BASE, data);
1239                 break;
1240         case MSR_GS_BASE:
1241                 vmcs_writel(GUEST_GS_BASE, data);
1242                 break;
1243         case MSR_KERNEL_GS_BASE:
1244                 vmx_load_host_state(vmx);
1245                 vmx->msr_guest_kernel_gs_base = data;
1246                 break;
1247 #endif
1248         case MSR_IA32_SYSENTER_CS:
1249                 vmcs_write32(GUEST_SYSENTER_CS, data);
1250                 break;
1251         case MSR_IA32_SYSENTER_EIP:
1252                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1253                 break;
1254         case MSR_IA32_SYSENTER_ESP:
1255                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1256                 break;
1257         case MSR_IA32_TSC:
1258                 rdtscll(host_tsc);
1259                 guest_write_tsc(data, host_tsc);
1260                 break;
1261         case MSR_IA32_CR_PAT:
1262                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1263                         vmcs_write64(GUEST_IA32_PAT, data);
1264                         vcpu->arch.pat = data;
1265                         break;
1266                 }
1267                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1268                 break;
1269         case MSR_TSC_AUX:
1270                 if (!vmx->rdtscp_enabled)
1271                         return 1;
1272                 /* Check reserved bit, higher 32 bits should be zero */
1273                 if ((data >> 32) != 0)
1274                         return 1;
1275                 /* Otherwise falls through */
1276         default:
1277                 msr = find_msr_entry(vmx, msr_index);
1278                 if (msr) {
1279                         vmx_load_host_state(vmx);
1280                         msr->data = data;
1281                         break;
1282                 }
1283                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1284         }
1285
1286         return ret;
1287 }
1288
1289 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1290 {
1291         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1292         switch (reg) {
1293         case VCPU_REGS_RSP:
1294                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1295                 break;
1296         case VCPU_REGS_RIP:
1297                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1298                 break;
1299         case VCPU_EXREG_PDPTR:
1300                 if (enable_ept)
1301                         ept_save_pdptrs(vcpu);
1302                 break;
1303         default:
1304                 break;
1305         }
1306 }
1307
1308 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1309 {
1310         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1311                 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1312         else
1313                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1314
1315         update_exception_bitmap(vcpu);
1316 }
1317
1318 static __init int cpu_has_kvm_support(void)
1319 {
1320         return cpu_has_vmx();
1321 }
1322
1323 static __init int vmx_disabled_by_bios(void)
1324 {
1325         u64 msr;
1326
1327         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1328         if (msr & FEATURE_CONTROL_LOCKED) {
1329                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
1330                         && tboot_enabled())
1331                         return 1;
1332                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
1333                         && !tboot_enabled())
1334                         return 1;
1335         }
1336
1337         return 0;
1338         /* locked but not enabled */
1339 }
1340
1341 static void kvm_cpu_vmxon(u64 addr)
1342 {
1343         asm volatile (ASM_VMX_VMXON_RAX
1344                         : : "a"(&addr), "m"(addr)
1345                         : "memory", "cc");
1346 }
1347
1348 static int hardware_enable(void *garbage)
1349 {
1350         int cpu = raw_smp_processor_id();
1351         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1352         u64 old, test_bits;
1353
1354         if (read_cr4() & X86_CR4_VMXE)
1355                 return -EBUSY;
1356
1357         INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1358         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1359
1360         test_bits = FEATURE_CONTROL_LOCKED;
1361         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1362         if (tboot_enabled())
1363                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
1364
1365         if ((old & test_bits) != test_bits) {
1366                 /* enable and lock */
1367                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
1368         }
1369         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1370
1371         if (vmm_exclusive) {
1372                 kvm_cpu_vmxon(phys_addr);
1373                 ept_sync_global();
1374         }
1375
1376         return 0;
1377 }
1378
1379 static void vmclear_local_vcpus(void)
1380 {
1381         int cpu = raw_smp_processor_id();
1382         struct vcpu_vmx *vmx, *n;
1383
1384         list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1385                                  local_vcpus_link)
1386                 __vcpu_clear(vmx);
1387 }
1388
1389
1390 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1391  * tricks.
1392  */
1393 static void kvm_cpu_vmxoff(void)
1394 {
1395         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1396 }
1397
1398 static void hardware_disable(void *garbage)
1399 {
1400         if (vmm_exclusive) {
1401                 vmclear_local_vcpus();
1402                 kvm_cpu_vmxoff();
1403         }
1404         write_cr4(read_cr4() & ~X86_CR4_VMXE);
1405 }
1406
1407 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1408                                       u32 msr, u32 *result)
1409 {
1410         u32 vmx_msr_low, vmx_msr_high;
1411         u32 ctl = ctl_min | ctl_opt;
1412
1413         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1414
1415         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1416         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
1417
1418         /* Ensure minimum (required) set of control bits are supported. */
1419         if (ctl_min & ~ctl)
1420                 return -EIO;
1421
1422         *result = ctl;
1423         return 0;
1424 }
1425
1426 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1427 {
1428         u32 vmx_msr_low, vmx_msr_high;
1429         u32 min, opt, min2, opt2;
1430         u32 _pin_based_exec_control = 0;
1431         u32 _cpu_based_exec_control = 0;
1432         u32 _cpu_based_2nd_exec_control = 0;
1433         u32 _vmexit_control = 0;
1434         u32 _vmentry_control = 0;
1435
1436         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1437         opt = PIN_BASED_VIRTUAL_NMIS;
1438         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1439                                 &_pin_based_exec_control) < 0)
1440                 return -EIO;
1441
1442         min = CPU_BASED_HLT_EXITING |
1443 #ifdef CONFIG_X86_64
1444               CPU_BASED_CR8_LOAD_EXITING |
1445               CPU_BASED_CR8_STORE_EXITING |
1446 #endif
1447               CPU_BASED_CR3_LOAD_EXITING |
1448               CPU_BASED_CR3_STORE_EXITING |
1449               CPU_BASED_USE_IO_BITMAPS |
1450               CPU_BASED_MOV_DR_EXITING |
1451               CPU_BASED_USE_TSC_OFFSETING |
1452               CPU_BASED_MWAIT_EXITING |
1453               CPU_BASED_MONITOR_EXITING |
1454               CPU_BASED_INVLPG_EXITING;
1455         opt = CPU_BASED_TPR_SHADOW |
1456               CPU_BASED_USE_MSR_BITMAPS |
1457               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1458         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1459                                 &_cpu_based_exec_control) < 0)
1460                 return -EIO;
1461 #ifdef CONFIG_X86_64
1462         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1463                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1464                                            ~CPU_BASED_CR8_STORE_EXITING;
1465 #endif
1466         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1467                 min2 = 0;
1468                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1469                         SECONDARY_EXEC_WBINVD_EXITING |
1470                         SECONDARY_EXEC_ENABLE_VPID |
1471                         SECONDARY_EXEC_ENABLE_EPT |
1472                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
1473                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
1474                         SECONDARY_EXEC_RDTSCP;
1475                 if (adjust_vmx_controls(min2, opt2,
1476                                         MSR_IA32_VMX_PROCBASED_CTLS2,
1477                                         &_cpu_based_2nd_exec_control) < 0)
1478                         return -EIO;
1479         }
1480 #ifndef CONFIG_X86_64
1481         if (!(_cpu_based_2nd_exec_control &
1482                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1483                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1484 #endif
1485         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1486                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1487                    enabled */
1488                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
1489                                              CPU_BASED_CR3_STORE_EXITING |
1490                                              CPU_BASED_INVLPG_EXITING);
1491                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1492                       vmx_capability.ept, vmx_capability.vpid);
1493         }
1494
1495         min = 0;
1496 #ifdef CONFIG_X86_64
1497         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1498 #endif
1499         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1500         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1501                                 &_vmexit_control) < 0)
1502                 return -EIO;
1503
1504         min = 0;
1505         opt = VM_ENTRY_LOAD_IA32_PAT;
1506         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1507                                 &_vmentry_control) < 0)
1508                 return -EIO;
1509
1510         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1511
1512         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1513         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1514                 return -EIO;
1515
1516 #ifdef CONFIG_X86_64
1517         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1518         if (vmx_msr_high & (1u<<16))
1519                 return -EIO;
1520 #endif
1521
1522         /* Require Write-Back (WB) memory type for VMCS accesses. */
1523         if (((vmx_msr_high >> 18) & 15) != 6)
1524                 return -EIO;
1525
1526         vmcs_conf->size = vmx_msr_high & 0x1fff;
1527         vmcs_conf->order = get_order(vmcs_config.size);
1528         vmcs_conf->revision_id = vmx_msr_low;
1529
1530         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1531         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1532         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1533         vmcs_conf->vmexit_ctrl         = _vmexit_control;
1534         vmcs_conf->vmentry_ctrl        = _vmentry_control;
1535
1536         return 0;
1537 }
1538
1539 static struct vmcs *alloc_vmcs_cpu(int cpu)
1540 {
1541         int node = cpu_to_node(cpu);
1542         struct page *pages;
1543         struct vmcs *vmcs;
1544
1545         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1546         if (!pages)
1547                 return NULL;
1548         vmcs = page_address(pages);
1549         memset(vmcs, 0, vmcs_config.size);
1550         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1551         return vmcs;
1552 }
1553
1554 static struct vmcs *alloc_vmcs(void)
1555 {
1556         return alloc_vmcs_cpu(raw_smp_processor_id());
1557 }
1558
1559 static void free_vmcs(struct vmcs *vmcs)
1560 {
1561         free_pages((unsigned long)vmcs, vmcs_config.order);
1562 }
1563
1564 static void free_kvm_area(void)
1565 {
1566         int cpu;
1567
1568         for_each_possible_cpu(cpu) {
1569                 free_vmcs(per_cpu(vmxarea, cpu));
1570                 per_cpu(vmxarea, cpu) = NULL;
1571         }
1572 }
1573
1574 static __init int alloc_kvm_area(void)
1575 {
1576         int cpu;
1577
1578         for_each_possible_cpu(cpu) {
1579                 struct vmcs *vmcs;
1580
1581                 vmcs = alloc_vmcs_cpu(cpu);
1582                 if (!vmcs) {
1583                         free_kvm_area();
1584                         return -ENOMEM;
1585                 }
1586
1587                 per_cpu(vmxarea, cpu) = vmcs;
1588         }
1589         return 0;
1590 }
1591
1592 static __init int hardware_setup(void)
1593 {
1594         if (setup_vmcs_config(&vmcs_config) < 0)
1595                 return -EIO;
1596
1597         if (boot_cpu_has(X86_FEATURE_NX))
1598                 kvm_enable_efer_bits(EFER_NX);
1599
1600         if (!cpu_has_vmx_vpid())
1601                 enable_vpid = 0;
1602
1603         if (!cpu_has_vmx_ept() ||
1604             !cpu_has_vmx_ept_4levels()) {
1605                 enable_ept = 0;
1606                 enable_unrestricted_guest = 0;
1607         }
1608
1609         if (!cpu_has_vmx_unrestricted_guest())
1610                 enable_unrestricted_guest = 0;
1611
1612         if (!cpu_has_vmx_flexpriority())
1613                 flexpriority_enabled = 0;
1614
1615         if (!cpu_has_vmx_tpr_shadow())
1616                 kvm_x86_ops->update_cr8_intercept = NULL;
1617
1618         if (enable_ept && !cpu_has_vmx_ept_2m_page())
1619                 kvm_disable_largepages();
1620
1621         if (!cpu_has_vmx_ple())
1622                 ple_gap = 0;
1623
1624         return alloc_kvm_area();
1625 }
1626
1627 static __exit void hardware_unsetup(void)
1628 {
1629         free_kvm_area();
1630 }
1631
1632 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1633 {
1634         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1635
1636         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1637                 vmcs_write16(sf->selector, save->selector);
1638                 vmcs_writel(sf->base, save->base);
1639                 vmcs_write32(sf->limit, save->limit);
1640                 vmcs_write32(sf->ar_bytes, save->ar);
1641         } else {
1642                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1643                         << AR_DPL_SHIFT;
1644                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1645         }
1646 }
1647
1648 static void enter_pmode(struct kvm_vcpu *vcpu)
1649 {
1650         unsigned long flags;
1651         struct vcpu_vmx *vmx = to_vmx(vcpu);
1652
1653         vmx->emulation_required = 1;
1654         vmx->rmode.vm86_active = 0;
1655
1656         vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1657         vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1658         vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1659
1660         flags = vmcs_readl(GUEST_RFLAGS);
1661         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1662         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1663         vmcs_writel(GUEST_RFLAGS, flags);
1664
1665         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1666                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1667
1668         update_exception_bitmap(vcpu);
1669
1670         if (emulate_invalid_guest_state)
1671                 return;
1672
1673         fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1674         fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1675         fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1676         fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1677
1678         vmcs_write16(GUEST_SS_SELECTOR, 0);
1679         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1680
1681         vmcs_write16(GUEST_CS_SELECTOR,
1682                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1683         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1684 }
1685
1686 static gva_t rmode_tss_base(struct kvm *kvm)
1687 {
1688         if (!kvm->arch.tss_addr) {
1689                 struct kvm_memslots *slots;
1690                 gfn_t base_gfn;
1691
1692                 slots = kvm_memslots(kvm);
1693                 base_gfn = slots->memslots[0].base_gfn +
1694                                  kvm->memslots->memslots[0].npages - 3;
1695                 return base_gfn << PAGE_SHIFT;
1696         }
1697         return kvm->arch.tss_addr;
1698 }
1699
1700 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1701 {
1702         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1703
1704         save->selector = vmcs_read16(sf->selector);
1705         save->base = vmcs_readl(sf->base);
1706         save->limit = vmcs_read32(sf->limit);
1707         save->ar = vmcs_read32(sf->ar_bytes);
1708         vmcs_write16(sf->selector, save->base >> 4);
1709         vmcs_write32(sf->base, save->base & 0xfffff);
1710         vmcs_write32(sf->limit, 0xffff);
1711         vmcs_write32(sf->ar_bytes, 0xf3);
1712 }
1713
1714 static void enter_rmode(struct kvm_vcpu *vcpu)
1715 {
1716         unsigned long flags;
1717         struct vcpu_vmx *vmx = to_vmx(vcpu);
1718
1719         if (enable_unrestricted_guest)
1720                 return;
1721
1722         vmx->emulation_required = 1;
1723         vmx->rmode.vm86_active = 1;
1724
1725         vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1726         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1727
1728         vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1729         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1730
1731         vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1732         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1733
1734         flags = vmcs_readl(GUEST_RFLAGS);
1735         vmx->rmode.save_rflags = flags;
1736
1737         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1738
1739         vmcs_writel(GUEST_RFLAGS, flags);
1740         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1741         update_exception_bitmap(vcpu);
1742
1743         if (emulate_invalid_guest_state)
1744                 goto continue_rmode;
1745
1746         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1747         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1748         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1749
1750         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1751         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1752         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1753                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1754         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1755
1756         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1757         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1758         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1759         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1760
1761 continue_rmode:
1762         kvm_mmu_reset_context(vcpu);
1763         init_rmode(vcpu->kvm);
1764 }
1765
1766 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1767 {
1768         struct vcpu_vmx *vmx = to_vmx(vcpu);
1769         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1770
1771         if (!msr)
1772                 return;
1773
1774         /*
1775          * Force kernel_gs_base reloading before EFER changes, as control
1776          * of this msr depends on is_long_mode().
1777          */
1778         vmx_load_host_state(to_vmx(vcpu));
1779         vcpu->arch.efer = efer;
1780         if (efer & EFER_LMA) {
1781                 vmcs_write32(VM_ENTRY_CONTROLS,
1782                              vmcs_read32(VM_ENTRY_CONTROLS) |
1783                              VM_ENTRY_IA32E_MODE);
1784                 msr->data = efer;
1785         } else {
1786                 vmcs_write32(VM_ENTRY_CONTROLS,
1787                              vmcs_read32(VM_ENTRY_CONTROLS) &
1788                              ~VM_ENTRY_IA32E_MODE);
1789
1790                 msr->data = efer & ~EFER_LME;
1791         }
1792         setup_msrs(vmx);
1793 }
1794
1795 #ifdef CONFIG_X86_64
1796
1797 static void enter_lmode(struct kvm_vcpu *vcpu)
1798 {
1799         u32 guest_tr_ar;
1800
1801         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1802         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1803                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1804                        __func__);
1805                 vmcs_write32(GUEST_TR_AR_BYTES,
1806                              (guest_tr_ar & ~AR_TYPE_MASK)
1807                              | AR_TYPE_BUSY_64_TSS);
1808         }
1809         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
1810 }
1811
1812 static void exit_lmode(struct kvm_vcpu *vcpu)
1813 {
1814         vmcs_write32(VM_ENTRY_CONTROLS,
1815                      vmcs_read32(VM_ENTRY_CONTROLS)
1816                      & ~VM_ENTRY_IA32E_MODE);
1817         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
1818 }
1819
1820 #endif
1821
1822 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1823 {
1824         vpid_sync_context(to_vmx(vcpu));
1825         if (enable_ept)
1826                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1827 }
1828
1829 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1830 {
1831         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
1832
1833         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
1834         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
1835 }
1836
1837 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1838 {
1839         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
1840
1841         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
1842         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
1843 }
1844
1845 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1846 {
1847         if (!test_bit(VCPU_EXREG_PDPTR,
1848                       (unsigned long *)&vcpu->arch.regs_dirty))
1849                 return;
1850
1851         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1852                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1853                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1854                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1855                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1856         }
1857 }
1858
1859 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
1860 {
1861         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1862                 vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
1863                 vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
1864                 vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
1865                 vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
1866         }
1867
1868         __set_bit(VCPU_EXREG_PDPTR,
1869                   (unsigned long *)&vcpu->arch.regs_avail);
1870         __set_bit(VCPU_EXREG_PDPTR,
1871                   (unsigned long *)&vcpu->arch.regs_dirty);
1872 }
1873
1874 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1875
1876 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1877                                         unsigned long cr0,
1878                                         struct kvm_vcpu *vcpu)
1879 {
1880         if (!(cr0 & X86_CR0_PG)) {
1881                 /* From paging/starting to nonpaging */
1882                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1883                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1884                              (CPU_BASED_CR3_LOAD_EXITING |
1885                               CPU_BASED_CR3_STORE_EXITING));
1886                 vcpu->arch.cr0 = cr0;
1887                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1888         } else if (!is_paging(vcpu)) {
1889                 /* From nonpaging to paging */
1890                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1891                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1892                              ~(CPU_BASED_CR3_LOAD_EXITING |
1893                                CPU_BASED_CR3_STORE_EXITING));
1894                 vcpu->arch.cr0 = cr0;
1895                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1896         }
1897
1898         if (!(cr0 & X86_CR0_WP))
1899                 *hw_cr0 &= ~X86_CR0_WP;
1900 }
1901
1902 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1903 {
1904         struct vcpu_vmx *vmx = to_vmx(vcpu);
1905         unsigned long hw_cr0;
1906
1907         if (enable_unrestricted_guest)
1908                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
1909                         | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
1910         else
1911                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1912
1913         if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
1914                 enter_pmode(vcpu);
1915
1916         if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
1917                 enter_rmode(vcpu);
1918
1919 #ifdef CONFIG_X86_64
1920         if (vcpu->arch.efer & EFER_LME) {
1921                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1922                         enter_lmode(vcpu);
1923                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1924                         exit_lmode(vcpu);
1925         }
1926 #endif
1927
1928         if (enable_ept)
1929                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1930
1931         if (!vcpu->fpu_active)
1932                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
1933
1934         vmcs_writel(CR0_READ_SHADOW, cr0);
1935         vmcs_writel(GUEST_CR0, hw_cr0);
1936         vcpu->arch.cr0 = cr0;
1937 }
1938
1939 static u64 construct_eptp(unsigned long root_hpa)
1940 {
1941         u64 eptp;
1942
1943         /* TODO write the value reading from MSR */
1944         eptp = VMX_EPT_DEFAULT_MT |
1945                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1946         eptp |= (root_hpa & PAGE_MASK);
1947
1948         return eptp;
1949 }
1950
1951 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1952 {
1953         unsigned long guest_cr3;
1954         u64 eptp;
1955
1956         guest_cr3 = cr3;
1957         if (enable_ept) {
1958                 eptp = construct_eptp(cr3);
1959                 vmcs_write64(EPT_POINTER, eptp);
1960                 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1961                         vcpu->kvm->arch.ept_identity_map_addr;
1962                 ept_load_pdptrs(vcpu);
1963         }
1964
1965         vmx_flush_tlb(vcpu);
1966         vmcs_writel(GUEST_CR3, guest_cr3);
1967 }
1968
1969 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1970 {
1971         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1972                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1973
1974         vcpu->arch.cr4 = cr4;
1975         if (enable_ept) {
1976                 if (!is_paging(vcpu)) {
1977                         hw_cr4 &= ~X86_CR4_PAE;
1978                         hw_cr4 |= X86_CR4_PSE;
1979                 } else if (!(cr4 & X86_CR4_PAE)) {
1980                         hw_cr4 &= ~X86_CR4_PAE;
1981                 }
1982         }
1983
1984         vmcs_writel(CR4_READ_SHADOW, cr4);
1985         vmcs_writel(GUEST_CR4, hw_cr4);
1986 }
1987
1988 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1989 {
1990         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1991
1992         return vmcs_readl(sf->base);
1993 }
1994
1995 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1996                             struct kvm_segment *var, int seg)
1997 {
1998         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1999         u32 ar;
2000
2001         var->base = vmcs_readl(sf->base);
2002         var->limit = vmcs_read32(sf->limit);
2003         var->selector = vmcs_read16(sf->selector);
2004         ar = vmcs_read32(sf->ar_bytes);
2005         if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
2006                 ar = 0;
2007         var->type = ar & 15;
2008         var->s = (ar >> 4) & 1;
2009         var->dpl = (ar >> 5) & 3;
2010         var->present = (ar >> 7) & 1;
2011         var->avl = (ar >> 12) & 1;
2012         var->l = (ar >> 13) & 1;
2013         var->db = (ar >> 14) & 1;
2014         var->g = (ar >> 15) & 1;
2015         var->unusable = (ar >> 16) & 1;
2016 }
2017
2018 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2019 {
2020         if (!is_protmode(vcpu))
2021                 return 0;
2022
2023         if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
2024                 return 3;
2025
2026         return vmcs_read16(GUEST_CS_SELECTOR) & 3;
2027 }
2028
2029 static u32 vmx_segment_access_rights(struct kvm_segment *var)
2030 {
2031         u32 ar;
2032
2033         if (var->unusable)
2034                 ar = 1 << 16;
2035         else {
2036                 ar = var->type & 15;
2037                 ar |= (var->s & 1) << 4;
2038                 ar |= (var->dpl & 3) << 5;
2039                 ar |= (var->present & 1) << 7;
2040                 ar |= (var->avl & 1) << 12;
2041                 ar |= (var->l & 1) << 13;
2042                 ar |= (var->db & 1) << 14;
2043                 ar |= (var->g & 1) << 15;
2044         }
2045         if (ar == 0) /* a 0 value means unusable */
2046                 ar = AR_UNUSABLE_MASK;
2047
2048         return ar;
2049 }
2050
2051 static void vmx_set_segment(struct kvm_vcpu *vcpu,
2052                             struct kvm_segment *var, int seg)
2053 {
2054         struct vcpu_vmx *vmx = to_vmx(vcpu);
2055         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2056         u32 ar;
2057
2058         if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
2059                 vmx->rmode.tr.selector = var->selector;
2060                 vmx->rmode.tr.base = var->base;
2061                 vmx->rmode.tr.limit = var->limit;
2062                 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
2063                 return;
2064         }
2065         vmcs_writel(sf->base, var->base);
2066         vmcs_write32(sf->limit, var->limit);
2067         vmcs_write16(sf->selector, var->selector);
2068         if (vmx->rmode.vm86_active && var->s) {
2069                 /*
2070                  * Hack real-mode segments into vm86 compatibility.
2071                  */
2072                 if (var->base == 0xffff0000 && var->selector == 0xf000)
2073                         vmcs_writel(sf->base, 0xf0000);
2074                 ar = 0xf3;
2075         } else
2076                 ar = vmx_segment_access_rights(var);
2077
2078         /*
2079          *   Fix the "Accessed" bit in AR field of segment registers for older
2080          * qemu binaries.
2081          *   IA32 arch specifies that at the time of processor reset the
2082          * "Accessed" bit in the AR field of segment registers is 1. And qemu
2083          * is setting it to 0 in the usedland code. This causes invalid guest
2084          * state vmexit when "unrestricted guest" mode is turned on.
2085          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
2086          * tree. Newer qemu binaries with that qemu fix would not need this
2087          * kvm hack.
2088          */
2089         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
2090                 ar |= 0x1; /* Accessed */
2091
2092         vmcs_write32(sf->ar_bytes, ar);
2093 }
2094
2095 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2096 {
2097         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
2098
2099         *db = (ar >> 14) & 1;
2100         *l = (ar >> 13) & 1;
2101 }
2102
2103 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2104 {
2105         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
2106         dt->address = vmcs_readl(GUEST_IDTR_BASE);
2107 }
2108
2109 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2110 {
2111         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
2112         vmcs_writel(GUEST_IDTR_BASE, dt->address);
2113 }
2114
2115 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2116 {
2117         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
2118         dt->address = vmcs_readl(GUEST_GDTR_BASE);
2119 }
2120
2121 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2122 {
2123         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
2124         vmcs_writel(GUEST_GDTR_BASE, dt->address);
2125 }
2126
2127 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
2128 {
2129         struct kvm_segment var;
2130         u32 ar;
2131
2132         vmx_get_segment(vcpu, &var, seg);
2133         ar = vmx_segment_access_rights(&var);
2134
2135         if (var.base != (var.selector << 4))
2136                 return false;
2137         if (var.limit != 0xffff)
2138                 return false;
2139         if (ar != 0xf3)
2140                 return false;
2141
2142         return true;
2143 }
2144
2145 static bool code_segment_valid(struct kvm_vcpu *vcpu)
2146 {
2147         struct kvm_segment cs;
2148         unsigned int cs_rpl;
2149
2150         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2151         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
2152
2153         if (cs.unusable)
2154                 return false;
2155         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
2156                 return false;
2157         if (!cs.s)
2158                 return false;
2159         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
2160                 if (cs.dpl > cs_rpl)
2161                         return false;
2162         } else {
2163                 if (cs.dpl != cs_rpl)
2164                         return false;
2165         }
2166         if (!cs.present)
2167                 return false;
2168
2169         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
2170         return true;
2171 }
2172
2173 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
2174 {
2175         struct kvm_segment ss;
2176         unsigned int ss_rpl;
2177
2178         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2179         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
2180
2181         if (ss.unusable)
2182                 return true;
2183         if (ss.type != 3 && ss.type != 7)
2184                 return false;
2185         if (!ss.s)
2186                 return false;
2187         if (ss.dpl != ss_rpl) /* DPL != RPL */
2188                 return false;
2189         if (!ss.present)
2190                 return false;
2191
2192         return true;
2193 }
2194
2195 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
2196 {
2197         struct kvm_segment var;
2198         unsigned int rpl;
2199
2200         vmx_get_segment(vcpu, &var, seg);
2201         rpl = var.selector & SELECTOR_RPL_MASK;
2202
2203         if (var.unusable)
2204                 return true;
2205         if (!var.s)
2206                 return false;
2207         if (!var.present)
2208                 return false;
2209         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
2210                 if (var.dpl < rpl) /* DPL < RPL */
2211                         return false;
2212         }
2213
2214         /* TODO: Add other members to kvm_segment_field to allow checking for other access
2215          * rights flags
2216          */
2217         return true;
2218 }
2219
2220 static bool tr_valid(struct kvm_vcpu *vcpu)
2221 {
2222         struct kvm_segment tr;
2223
2224         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
2225
2226         if (tr.unusable)
2227                 return false;
2228         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
2229                 return false;
2230         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
2231                 return false;
2232         if (!tr.present)
2233                 return false;
2234
2235         return true;
2236 }
2237
2238 static bool ldtr_valid(struct kvm_vcpu *vcpu)
2239 {
2240         struct kvm_segment ldtr;
2241
2242         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
2243
2244         if (ldtr.unusable)
2245                 return true;
2246         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
2247                 return false;
2248         if (ldtr.type != 2)
2249                 return false;
2250         if (!ldtr.present)
2251                 return false;
2252
2253         return true;
2254 }
2255
2256 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2257 {
2258         struct kvm_segment cs, ss;
2259
2260         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2261         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2262
2263         return ((cs.selector & SELECTOR_RPL_MASK) ==
2264                  (ss.selector & SELECTOR_RPL_MASK));
2265 }
2266
2267 /*
2268  * Check if guest state is valid. Returns true if valid, false if
2269  * not.
2270  * We assume that registers are always usable
2271  */
2272 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2273 {
2274         /* real mode guest state checks */
2275         if (!is_protmode(vcpu)) {
2276                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2277                         return false;
2278                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2279                         return false;
2280                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2281                         return false;
2282                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2283                         return false;
2284                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2285                         return false;
2286                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2287                         return false;
2288         } else {
2289         /* protected mode guest state checks */
2290                 if (!cs_ss_rpl_check(vcpu))
2291                         return false;
2292                 if (!code_segment_valid(vcpu))
2293                         return false;
2294                 if (!stack_segment_valid(vcpu))
2295                         return false;
2296                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2297                         return false;
2298                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2299                         return false;
2300                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2301                         return false;
2302                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2303                         return false;
2304                 if (!tr_valid(vcpu))
2305                         return false;
2306                 if (!ldtr_valid(vcpu))
2307                         return false;
2308         }
2309         /* TODO:
2310          * - Add checks on RIP
2311          * - Add checks on RFLAGS
2312          */
2313
2314         return true;
2315 }
2316
2317 static int init_rmode_tss(struct kvm *kvm)
2318 {
2319         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2320         u16 data = 0;
2321         int ret = 0;
2322         int r;
2323
2324         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2325         if (r < 0)
2326                 goto out;
2327         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2328         r = kvm_write_guest_page(kvm, fn++, &data,
2329                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
2330         if (r < 0)
2331                 goto out;
2332         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2333         if (r < 0)
2334                 goto out;
2335         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2336         if (r < 0)
2337                 goto out;
2338         data = ~0;
2339         r = kvm_write_guest_page(kvm, fn, &data,
2340                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2341                                  sizeof(u8));
2342         if (r < 0)
2343                 goto out;
2344
2345         ret = 1;
2346 out:
2347         return ret;
2348 }
2349
2350 static int init_rmode_identity_map(struct kvm *kvm)
2351 {
2352         int i, r, ret;
2353         pfn_t identity_map_pfn;
2354         u32 tmp;
2355
2356         if (!enable_ept)
2357                 return 1;
2358         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2359                 printk(KERN_ERR "EPT: identity-mapping pagetable "
2360                         "haven't been allocated!\n");
2361                 return 0;
2362         }
2363         if (likely(kvm->arch.ept_identity_pagetable_done))
2364                 return 1;
2365         ret = 0;
2366         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2367         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2368         if (r < 0)
2369                 goto out;
2370         /* Set up identity-mapping pagetable for EPT in real mode */
2371         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2372                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2373                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2374                 r = kvm_write_guest_page(kvm, identity_map_pfn,
2375                                 &tmp, i * sizeof(tmp), sizeof(tmp));
2376                 if (r < 0)
2377                         goto out;
2378         }
2379         kvm->arch.ept_identity_pagetable_done = true;
2380         ret = 1;
2381 out:
2382         return ret;
2383 }
2384
2385 static void seg_setup(int seg)
2386 {
2387         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2388         unsigned int ar;
2389
2390         vmcs_write16(sf->selector, 0);
2391         vmcs_writel(sf->base, 0);
2392         vmcs_write32(sf->limit, 0xffff);
2393         if (enable_unrestricted_guest) {
2394                 ar = 0x93;
2395                 if (seg == VCPU_SREG_CS)
2396                         ar |= 0x08; /* code segment */
2397         } else
2398                 ar = 0xf3;
2399
2400         vmcs_write32(sf->ar_bytes, ar);
2401 }
2402
2403 static int alloc_apic_access_page(struct kvm *kvm)
2404 {
2405         struct kvm_userspace_memory_region kvm_userspace_mem;
2406         int r = 0;
2407
2408         mutex_lock(&kvm->slots_lock);
2409         if (kvm->arch.apic_access_page)
2410                 goto out;
2411         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2412         kvm_userspace_mem.flags = 0;
2413         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2414         kvm_userspace_mem.memory_size = PAGE_SIZE;
2415         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2416         if (r)
2417                 goto out;
2418
2419         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2420 out:
2421         mutex_unlock(&kvm->slots_lock);
2422         return r;
2423 }
2424
2425 static int alloc_identity_pagetable(struct kvm *kvm)
2426 {
2427         struct kvm_userspace_memory_region kvm_userspace_mem;
2428         int r = 0;
2429
2430         mutex_lock(&kvm->slots_lock);
2431         if (kvm->arch.ept_identity_pagetable)
2432                 goto out;
2433         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2434         kvm_userspace_mem.flags = 0;
2435         kvm_userspace_mem.guest_phys_addr =
2436                 kvm->arch.ept_identity_map_addr;
2437         kvm_userspace_mem.memory_size = PAGE_SIZE;
2438         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2439         if (r)
2440                 goto out;
2441
2442         kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2443                         kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
2444 out:
2445         mutex_unlock(&kvm->slots_lock);
2446         return r;
2447 }
2448
2449 static void allocate_vpid(struct vcpu_vmx *vmx)
2450 {
2451         int vpid;
2452
2453         vmx->vpid = 0;
2454         if (!enable_vpid)
2455                 return;
2456         spin_lock(&vmx_vpid_lock);
2457         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2458         if (vpid < VMX_NR_VPIDS) {
2459                 vmx->vpid = vpid;
2460                 __set_bit(vpid, vmx_vpid_bitmap);
2461         }
2462         spin_unlock(&vmx_vpid_lock);
2463 }
2464
2465 static void free_vpid(struct vcpu_vmx *vmx)
2466 {
2467         if (!enable_vpid)
2468                 return;
2469         spin_lock(&vmx_vpid_lock);
2470         if (vmx->vpid != 0)
2471                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
2472         spin_unlock(&vmx_vpid_lock);
2473 }
2474
2475 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2476 {
2477         int f = sizeof(unsigned long);
2478
2479         if (!cpu_has_vmx_msr_bitmap())
2480                 return;
2481
2482         /*
2483          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2484          * have the write-low and read-high bitmap offsets the wrong way round.
2485          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2486          */
2487         if (msr <= 0x1fff) {
2488                 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2489                 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2490         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2491                 msr &= 0x1fff;
2492                 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2493                 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2494         }
2495 }
2496
2497 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2498 {
2499         if (!longmode_only)
2500                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2501         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2502 }
2503
2504 /*
2505  * Sets up the vmcs for emulated real mode.
2506  */
2507 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2508 {
2509         u32 host_sysenter_cs, msr_low, msr_high;
2510         u32 junk;
2511         u64 host_pat, tsc_this, tsc_base;
2512         unsigned long a;
2513         struct desc_ptr dt;
2514         int i;
2515         unsigned long kvm_vmx_return;
2516         u32 exec_control;
2517
2518         /* I/O */
2519         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2520         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2521
2522         if (cpu_has_vmx_msr_bitmap())
2523                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2524
2525         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2526
2527         /* Control */
2528         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2529                 vmcs_config.pin_based_exec_ctrl);
2530
2531         exec_control = vmcs_config.cpu_based_exec_ctrl;
2532         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2533                 exec_control &= ~CPU_BASED_TPR_SHADOW;
2534 #ifdef CONFIG_X86_64
2535                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2536                                 CPU_BASED_CR8_LOAD_EXITING;
2537 #endif
2538         }
2539         if (!enable_ept)
2540                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2541                                 CPU_BASED_CR3_LOAD_EXITING  |
2542                                 CPU_BASED_INVLPG_EXITING;
2543         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2544
2545         if (cpu_has_secondary_exec_ctrls()) {
2546                 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2547                 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2548                         exec_control &=
2549                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2550                 if (vmx->vpid == 0)
2551                         exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2552                 if (!enable_ept) {
2553                         exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2554                         enable_unrestricted_guest = 0;
2555                 }
2556                 if (!enable_unrestricted_guest)
2557                         exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2558                 if (!ple_gap)
2559                         exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
2560                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2561         }
2562
2563         if (ple_gap) {
2564                 vmcs_write32(PLE_GAP, ple_gap);
2565                 vmcs_write32(PLE_WINDOW, ple_window);
2566         }
2567
2568         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2569         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2570         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
2571
2572         vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS);  /* 22.2.3 */
2573         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
2574         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
2575
2576         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
2577         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2578         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2579         vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs());    /* 22.2.4 */
2580         vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs());    /* 22.2.4 */
2581         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2582 #ifdef CONFIG_X86_64
2583         rdmsrl(MSR_FS_BASE, a);
2584         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2585         rdmsrl(MSR_GS_BASE, a);
2586         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2587 #else
2588         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2589         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2590 #endif
2591
2592         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
2593
2594         native_store_idt(&dt);
2595         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
2596
2597         asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2598         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2599         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2600         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2601         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2602         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2603         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
2604
2605         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2606         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2607         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2608         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
2609         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2610         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
2611
2612         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2613                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2614                 host_pat = msr_low | ((u64) msr_high << 32);
2615                 vmcs_write64(HOST_IA32_PAT, host_pat);
2616         }
2617         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2618                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2619                 host_pat = msr_low | ((u64) msr_high << 32);
2620                 /* Write the default value follow host pat */
2621                 vmcs_write64(GUEST_IA32_PAT, host_pat);
2622                 /* Keep arch.pat sync with GUEST_IA32_PAT */
2623                 vmx->vcpu.arch.pat = host_pat;
2624         }
2625
2626         for (i = 0; i < NR_VMX_MSR; ++i) {
2627                 u32 index = vmx_msr_index[i];
2628                 u32 data_low, data_high;
2629                 int j = vmx->nmsrs;
2630
2631                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2632                         continue;
2633                 if (wrmsr_safe(index, data_low, data_high) < 0)
2634                         continue;
2635                 vmx->guest_msrs[j].index = i;
2636                 vmx->guest_msrs[j].data = 0;
2637                 vmx->guest_msrs[j].mask = -1ull;
2638                 ++vmx->nmsrs;
2639         }
2640
2641         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2642
2643         /* 22.2.1, 20.8.1 */
2644         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2645
2646         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2647         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
2648         if (enable_ept)
2649                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
2650         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
2651
2652         tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
2653         rdtscll(tsc_this);
2654         if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
2655                 tsc_base = tsc_this;
2656
2657         guest_write_tsc(0, tsc_base);
2658
2659         return 0;
2660 }
2661
2662 static int init_rmode(struct kvm *kvm)
2663 {
2664         int idx, ret = 0;
2665
2666         idx = srcu_read_lock(&kvm->srcu);
2667         if (!init_rmode_tss(kvm))
2668                 goto exit;
2669         if (!init_rmode_identity_map(kvm))
2670                 goto exit;
2671
2672         ret = 1;
2673 exit:
2674         srcu_read_unlock(&kvm->srcu, idx);
2675         return ret;
2676 }
2677
2678 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2679 {
2680         struct vcpu_vmx *vmx = to_vmx(vcpu);
2681         u64 msr;
2682         int ret;
2683
2684         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2685         if (!init_rmode(vmx->vcpu.kvm)) {
2686                 ret = -ENOMEM;
2687                 goto out;
2688         }
2689
2690         vmx->rmode.vm86_active = 0;
2691
2692         vmx->soft_vnmi_blocked = 0;
2693
2694         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2695         kvm_set_cr8(&vmx->vcpu, 0);
2696         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2697         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2698                 msr |= MSR_IA32_APICBASE_BSP;
2699         kvm_set_apic_base(&vmx->vcpu, msr);
2700
2701         ret = fx_init(&vmx->vcpu);
2702         if (ret != 0)
2703                 goto out;
2704
2705         seg_setup(VCPU_SREG_CS);
2706         /*
2707          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2708          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
2709          */
2710         if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
2711                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2712                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2713         } else {
2714                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2715                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2716         }
2717
2718         seg_setup(VCPU_SREG_DS);
2719         seg_setup(VCPU_SREG_ES);
2720         seg_setup(VCPU_SREG_FS);
2721         seg_setup(VCPU_SREG_GS);
2722         seg_setup(VCPU_SREG_SS);
2723
2724         vmcs_write16(GUEST_TR_SELECTOR, 0);
2725         vmcs_writel(GUEST_TR_BASE, 0);
2726         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2727         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2728
2729         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2730         vmcs_writel(GUEST_LDTR_BASE, 0);
2731         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2732         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2733
2734         vmcs_write32(GUEST_SYSENTER_CS, 0);
2735         vmcs_writel(GUEST_SYSENTER_ESP, 0);
2736         vmcs_writel(GUEST_SYSENTER_EIP, 0);
2737
2738         vmcs_writel(GUEST_RFLAGS, 0x02);
2739         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2740                 kvm_rip_write(vcpu, 0xfff0);
2741         else
2742                 kvm_rip_write(vcpu, 0);
2743         kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2744
2745         vmcs_writel(GUEST_DR7, 0x400);
2746
2747         vmcs_writel(GUEST_GDTR_BASE, 0);
2748         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2749
2750         vmcs_writel(GUEST_IDTR_BASE, 0);
2751         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2752
2753         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2754         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2755         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2756
2757         /* Special registers */
2758         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2759
2760         setup_msrs(vmx);
2761
2762         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
2763
2764         if (cpu_has_vmx_tpr_shadow()) {
2765                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2766                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2767                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2768                                 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2769                 vmcs_write32(TPR_THRESHOLD, 0);
2770         }
2771
2772         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2773                 vmcs_write64(APIC_ACCESS_ADDR,
2774                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2775
2776         if (vmx->vpid != 0)
2777                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2778
2779         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
2780         vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
2781         vmx_set_cr4(&vmx->vcpu, 0);
2782         vmx_set_efer(&vmx->vcpu, 0);
2783         vmx_fpu_activate(&vmx->vcpu);
2784         update_exception_bitmap(&vmx->vcpu);
2785
2786         vpid_sync_context(vmx);
2787
2788         ret = 0;
2789
2790         /* HACK: Don't enable emulation on guest boot/reset */
2791         vmx->emulation_required = 0;
2792
2793 out:
2794         return ret;
2795 }
2796
2797 static void enable_irq_window(struct kvm_vcpu *vcpu)
2798 {
2799         u32 cpu_based_vm_exec_control;
2800
2801         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2802         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2803         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2804 }
2805
2806 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2807 {
2808         u32 cpu_based_vm_exec_control;
2809
2810         if (!cpu_has_virtual_nmis()) {
2811                 enable_irq_window(vcpu);
2812                 return;
2813         }
2814
2815         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2816         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2817         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2818 }
2819
2820 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2821 {
2822         struct vcpu_vmx *vmx = to_vmx(vcpu);
2823         uint32_t intr;
2824         int irq = vcpu->arch.interrupt.nr;
2825
2826         trace_kvm_inj_virq(irq);
2827
2828         ++vcpu->stat.irq_injections;
2829         if (vmx->rmode.vm86_active) {
2830                 vmx->rmode.irq.pending = true;
2831                 vmx->rmode.irq.vector = irq;
2832                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2833                 if (vcpu->arch.interrupt.soft)
2834                         vmx->rmode.irq.rip +=
2835                                 vmx->vcpu.arch.event_exit_inst_len;
2836                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2837                              irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2838                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2839                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2840                 return;
2841         }
2842         intr = irq | INTR_INFO_VALID_MASK;
2843         if (vcpu->arch.interrupt.soft) {
2844                 intr |= INTR_TYPE_SOFT_INTR;
2845                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2846                              vmx->vcpu.arch.event_exit_inst_len);
2847         } else
2848                 intr |= INTR_TYPE_EXT_INTR;
2849         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2850 }
2851
2852 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2853 {
2854         struct vcpu_vmx *vmx = to_vmx(vcpu);
2855
2856         if (!cpu_has_virtual_nmis()) {
2857                 /*
2858                  * Tracking the NMI-blocked state in software is built upon
2859                  * finding the next open IRQ window. This, in turn, depends on
2860                  * well-behaving guests: They have to keep IRQs disabled at
2861                  * least as long as the NMI handler runs. Otherwise we may
2862                  * cause NMI nesting, maybe breaking the guest. But as this is
2863                  * highly unlikely, we can live with the residual risk.
2864                  */
2865                 vmx->soft_vnmi_blocked = 1;
2866                 vmx->vnmi_blocked_time = 0;
2867         }
2868
2869         ++vcpu->stat.nmi_injections;
2870         if (vmx->rmode.vm86_active) {
2871                 vmx->rmode.irq.pending = true;
2872                 vmx->rmode.irq.vector = NMI_VECTOR;
2873                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2874                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2875                              NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2876                              INTR_INFO_VALID_MASK);
2877                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2878                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2879                 return;
2880         }
2881         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2882                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2883 }
2884
2885 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2886 {
2887         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2888                 return 0;
2889
2890         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2891                         (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_NMI));
2892 }
2893
2894 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
2895 {
2896         if (!cpu_has_virtual_nmis())
2897                 return to_vmx(vcpu)->soft_vnmi_blocked;
2898         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
2899 }
2900
2901 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
2902 {
2903         struct vcpu_vmx *vmx = to_vmx(vcpu);
2904
2905         if (!cpu_has_virtual_nmis()) {
2906                 if (vmx->soft_vnmi_blocked != masked) {
2907                         vmx->soft_vnmi_blocked = masked;
2908                         vmx->vnmi_blocked_time = 0;
2909                 }
2910         } else {
2911                 if (masked)
2912                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
2913                                       GUEST_INTR_STATE_NMI);
2914                 else
2915                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
2916                                         GUEST_INTR_STATE_NMI);
2917         }
2918 }
2919
2920 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2921 {
2922         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2923                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2924                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
2925 }
2926
2927 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2928 {
2929         int ret;
2930         struct kvm_userspace_memory_region tss_mem = {
2931                 .slot = TSS_PRIVATE_MEMSLOT,
2932                 .guest_phys_addr = addr,
2933                 .memory_size = PAGE_SIZE * 3,
2934                 .flags = 0,
2935         };
2936
2937         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2938         if (ret)
2939                 return ret;
2940         kvm->arch.tss_addr = addr;
2941         return 0;
2942 }
2943
2944 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2945                                   int vec, u32 err_code)
2946 {
2947         /*
2948          * Instruction with address size override prefix opcode 0x67
2949          * Cause the #SS fault with 0 error code in VM86 mode.
2950          */
2951         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2952                 if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
2953                         return 1;
2954         /*
2955          * Forward all other exceptions that are valid in real mode.
2956          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2957          *        the required debugging infrastructure rework.
2958          */
2959         switch (vec) {
2960         case DB_VECTOR:
2961                 if (vcpu->guest_debug &
2962                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
2963                         return 0;
2964                 kvm_queue_exception(vcpu, vec);
2965                 return 1;
2966         case BP_VECTOR:
2967                 /*
2968                  * Update instruction length as we may reinject the exception
2969                  * from user space while in guest debugging mode.
2970                  */
2971                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
2972                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2973                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2974                         return 0;
2975                 /* fall through */
2976         case DE_VECTOR:
2977         case OF_VECTOR:
2978         case BR_VECTOR:
2979         case UD_VECTOR:
2980         case DF_VECTOR:
2981         case SS_VECTOR:
2982         case GP_VECTOR:
2983         case MF_VECTOR:
2984                 kvm_queue_exception(vcpu, vec);
2985                 return 1;
2986         }
2987         return 0;
2988 }
2989
2990 /*
2991  * Trigger machine check on the host. We assume all the MSRs are already set up
2992  * by the CPU and that we still run on the same CPU as the MCE occurred on.
2993  * We pass a fake environment to the machine check handler because we want
2994  * the guest to be always treated like user space, no matter what context
2995  * it used internally.
2996  */
2997 static void kvm_machine_check(void)
2998 {
2999 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
3000         struct pt_regs regs = {
3001                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
3002                 .flags = X86_EFLAGS_IF,
3003         };
3004
3005         do_machine_check(&regs, 0);
3006 #endif
3007 }
3008
3009 static int handle_machine_check(struct kvm_vcpu *vcpu)
3010 {
3011         /* already handled by vcpu_run */
3012         return 1;
3013 }
3014
3015 static int handle_exception(struct kvm_vcpu *vcpu)
3016 {
3017         struct vcpu_vmx *vmx = to_vmx(vcpu);
3018         struct kvm_run *kvm_run = vcpu->run;
3019         u32 intr_info, ex_no, error_code;
3020         unsigned long cr2, rip, dr6;
3021         u32 vect_info;
3022         enum emulation_result er;
3023
3024         vect_info = vmx->idt_vectoring_info;
3025         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3026
3027         if (is_machine_check(intr_info))
3028                 return handle_machine_check(vcpu);
3029
3030         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
3031             !is_page_fault(intr_info)) {
3032                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3033                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
3034                 vcpu->run->internal.ndata = 2;
3035                 vcpu->run->internal.data[0] = vect_info;
3036                 vcpu->run->internal.data[1] = intr_info;
3037                 return 0;
3038         }
3039
3040         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
3041                 return 1;  /* already handled by vmx_vcpu_run() */
3042
3043         if (is_no_device(intr_info)) {
3044                 vmx_fpu_activate(vcpu);
3045                 return 1;
3046         }
3047
3048         if (is_invalid_opcode(intr_info)) {
3049                 er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
3050                 if (er != EMULATE_DONE)
3051                         kvm_queue_exception(vcpu, UD_VECTOR);
3052                 return 1;
3053         }
3054
3055         error_code = 0;
3056         rip = kvm_rip_read(vcpu);
3057         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
3058                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
3059         if (is_page_fault(intr_info)) {
3060                 /* EPT won't cause page fault directly */
3061                 if (enable_ept)
3062                         BUG();
3063                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
3064                 trace_kvm_page_fault(cr2, error_code);
3065
3066                 if (kvm_event_needs_reinjection(vcpu))
3067                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
3068                 return kvm_mmu_page_fault(vcpu, cr2, error_code);
3069         }
3070
3071         if (vmx->rmode.vm86_active &&
3072             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
3073                                                                 error_code)) {
3074                 if (vcpu->arch.halt_request) {
3075                         vcpu->arch.halt_request = 0;
3076                         return kvm_emulate_halt(vcpu);
3077                 }
3078                 return 1;
3079         }
3080
3081         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
3082         switch (ex_no) {
3083         case DB_VECTOR:
3084                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
3085                 if (!(vcpu->guest_debug &
3086                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
3087                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
3088                         kvm_queue_exception(vcpu, DB_VECTOR);
3089                         return 1;
3090                 }
3091                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
3092                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
3093                 /* fall through */
3094         case BP_VECTOR:
3095                 /*
3096                  * Update instruction length as we may reinject #BP from
3097                  * user space while in guest debugging mode. Reading it for
3098                  * #DB as well causes no harm, it is not used in that case.
3099                  */
3100                 vmx->vcpu.arch.event_exit_inst_len =
3101                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3102                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
3103                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
3104                 kvm_run->debug.arch.exception = ex_no;
3105                 break;
3106         default:
3107                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
3108                 kvm_run->ex.exception = ex_no;
3109                 kvm_run->ex.error_code = error_code;
3110                 break;
3111         }
3112         return 0;
3113 }
3114
3115 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
3116 {
3117         ++vcpu->stat.irq_exits;
3118         return 1;
3119 }
3120
3121 static int handle_triple_fault(struct kvm_vcpu *vcpu)
3122 {
3123         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
3124         return 0;
3125 }
3126
3127 static int handle_io(struct kvm_vcpu *vcpu)
3128 {
3129         unsigned long exit_qualification;
3130         int size, in, string;
3131         unsigned port;
3132
3133         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3134         string = (exit_qualification & 16) != 0;
3135         in = (exit_qualification & 8) != 0;
3136
3137         ++vcpu->stat.io_exits;
3138
3139         if (string || in)
3140                 return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
3141
3142         port = exit_qualification >> 16;
3143         size = (exit_qualification & 7) + 1;
3144         skip_emulated_instruction(vcpu);
3145
3146         return kvm_fast_pio_out(vcpu, size, port);
3147 }
3148
3149 static void
3150 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3151 {
3152         /*
3153          * Patch in the VMCALL instruction:
3154          */
3155         hypercall[0] = 0x0f;
3156         hypercall[1] = 0x01;
3157         hypercall[2] = 0xc1;
3158 }
3159
3160 static void complete_insn_gp(struct kvm_vcpu *vcpu, int err)
3161 {
3162         if (err)
3163                 kvm_inject_gp(vcpu, 0);
3164         else
3165                 skip_emulated_instruction(vcpu);
3166 }
3167
3168 static int handle_cr(struct kvm_vcpu *vcpu)
3169 {
3170         unsigned long exit_qualification, val;
3171         int cr;
3172         int reg;
3173         int err;
3174
3175         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3176         cr = exit_qualification & 15;
3177         reg = (exit_qualification >> 8) & 15;
3178         switch ((exit_qualification >> 4) & 3) {
3179         case 0: /* mov to cr */
3180                 val = kvm_register_read(vcpu, reg);
3181                 trace_kvm_cr_write(cr, val);
3182                 switch (cr) {
3183                 case 0:
3184                         err = kvm_set_cr0(vcpu, val);
3185                         complete_insn_gp(vcpu, err);
3186                         return 1;
3187                 case 3:
3188                         err = kvm_set_cr3(vcpu, val);
3189                         complete_insn_gp(vcpu, err);
3190                         return 1;
3191                 case 4:
3192                         err = kvm_set_cr4(vcpu, val);
3193                         complete_insn_gp(vcpu, err);
3194                         return 1;
3195                 case 8: {
3196                                 u8 cr8_prev = kvm_get_cr8(vcpu);
3197                                 u8 cr8 = kvm_register_read(vcpu, reg);
3198                                 kvm_set_cr8(vcpu, cr8);
3199                                 skip_emulated_instruction(vcpu);
3200                                 if (irqchip_in_kernel(vcpu->kvm))
3201                                         return 1;
3202                                 if (cr8_prev <= cr8)
3203                                         return 1;
3204                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
3205                                 return 0;
3206                         }
3207                 };
3208                 break;
3209         case 2: /* clts */
3210                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3211                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
3212                 skip_emulated_instruction(vcpu);
3213                 vmx_fpu_activate(vcpu);
3214                 return 1;
3215         case 1: /*mov from cr*/
3216                 switch (cr) {
3217                 case 3:
3218                         kvm_register_write(vcpu, reg, vcpu->arch.cr3);
3219                         trace_kvm_cr_read(cr, vcpu->arch.cr3);
3220                         skip_emulated_instruction(vcpu);
3221                         return 1;
3222                 case 8:
3223                         val = kvm_get_cr8(vcpu);
3224                         kvm_register_write(vcpu, reg, val);
3225                         trace_kvm_cr_read(cr, val);
3226                         skip_emulated_instruction(vcpu);
3227                         return 1;
3228                 }
3229                 break;
3230         case 3: /* lmsw */
3231                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
3232                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
3233                 kvm_lmsw(vcpu, val);
3234
3235                 skip_emulated_instruction(vcpu);
3236                 return 1;
3237         default:
3238                 break;
3239         }
3240         vcpu->run->exit_reason = 0;
3241         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
3242                (int)(exit_qualification >> 4) & 3, cr);
3243         return 0;
3244 }
3245
3246 static int handle_dr(struct kvm_vcpu *vcpu)
3247 {
3248         unsigned long exit_qualification;
3249         int dr, reg;
3250
3251         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
3252         if (!kvm_require_cpl(vcpu, 0))
3253                 return 1;
3254         dr = vmcs_readl(GUEST_DR7);
3255         if (dr & DR7_GD) {
3256                 /*
3257                  * As the vm-exit takes precedence over the debug trap, we
3258                  * need to emulate the latter, either for the host or the
3259                  * guest debugging itself.
3260                  */
3261                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
3262                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
3263                         vcpu->run->debug.arch.dr7 = dr;
3264                         vcpu->run->debug.arch.pc =
3265                                 vmcs_readl(GUEST_CS_BASE) +
3266                                 vmcs_readl(GUEST_RIP);
3267                         vcpu->run->debug.arch.exception = DB_VECTOR;
3268                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
3269                         return 0;
3270                 } else {
3271                         vcpu->arch.dr7 &= ~DR7_GD;
3272                         vcpu->arch.dr6 |= DR6_BD;
3273                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3274                         kvm_queue_exception(vcpu, DB_VECTOR);
3275                         return 1;
3276                 }
3277         }
3278
3279         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3280         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
3281         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
3282         if (exit_qualification & TYPE_MOV_FROM_DR) {
3283                 unsigned long val;
3284                 if (!kvm_get_dr(vcpu, dr, &val))
3285                         kvm_register_write(vcpu, reg, val);
3286         } else
3287                 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
3288         skip_emulated_instruction(vcpu);
3289         return 1;
3290 }
3291
3292 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
3293 {
3294         vmcs_writel(GUEST_DR7, val);
3295 }
3296
3297 static int handle_cpuid(struct kvm_vcpu *vcpu)
3298 {
3299         kvm_emulate_cpuid(vcpu);
3300         return 1;
3301 }
3302
3303 static int handle_rdmsr(struct kvm_vcpu *vcpu)
3304 {
3305         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3306         u64 data;
3307
3308         if (vmx_get_msr(vcpu, ecx, &data)) {
3309                 trace_kvm_msr_read_ex(ecx);
3310                 kvm_inject_gp(vcpu, 0);
3311                 return 1;
3312         }
3313
3314         trace_kvm_msr_read(ecx, data);
3315
3316         /* FIXME: handling of bits 32:63 of rax, rdx */
3317         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3318         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3319         skip_emulated_instruction(vcpu);
3320         return 1;
3321 }
3322
3323 static int handle_wrmsr(struct kvm_vcpu *vcpu)
3324 {
3325         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3326         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3327                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3328
3329         if (vmx_set_msr(vcpu, ecx, data) != 0) {
3330                 trace_kvm_msr_write_ex(ecx, data);
3331                 kvm_inject_gp(vcpu, 0);
3332                 return 1;
3333         }
3334
3335         trace_kvm_msr_write(ecx, data);
3336         skip_emulated_instruction(vcpu);
3337         return 1;
3338 }
3339
3340 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
3341 {
3342         return 1;
3343 }
3344
3345 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
3346 {
3347         u32 cpu_based_vm_exec_control;
3348
3349         /* clear pending irq */
3350         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3351         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3352         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3353
3354         ++vcpu->stat.irq_window_exits;
3355
3356         /*
3357          * If the user space waits to inject interrupts, exit as soon as
3358          * possible
3359          */
3360         if (!irqchip_in_kernel(vcpu->kvm) &&
3361             vcpu->run->request_interrupt_window &&
3362             !kvm_cpu_has_interrupt(vcpu)) {
3363                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3364                 return 0;
3365         }
3366         return 1;
3367 }
3368
3369 static int handle_halt(struct kvm_vcpu *vcpu)
3370 {
3371         skip_emulated_instruction(vcpu);
3372         return kvm_emulate_halt(vcpu);
3373 }
3374
3375 static int handle_vmcall(struct kvm_vcpu *vcpu)
3376 {
3377         skip_emulated_instruction(vcpu);
3378         kvm_emulate_hypercall(vcpu);
3379         return 1;
3380 }
3381
3382 static int handle_vmx_insn(struct kvm_vcpu *vcpu)
3383 {
3384         kvm_queue_exception(vcpu, UD_VECTOR);
3385         return 1;
3386 }
3387
3388 static int handle_invlpg(struct kvm_vcpu *vcpu)
3389 {
3390         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3391
3392         kvm_mmu_invlpg(vcpu, exit_qualification);
3393         skip_emulated_instruction(vcpu);
3394         return 1;
3395 }
3396
3397 static int handle_wbinvd(struct kvm_vcpu *vcpu)
3398 {
3399         skip_emulated_instruction(vcpu);
3400         /* TODO: Add support for VT-d/pass-through device */
3401         return 1;
3402 }
3403
3404 static int handle_xsetbv(struct kvm_vcpu *vcpu)
3405 {
3406         u64 new_bv = kvm_read_edx_eax(vcpu);
3407         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3408
3409         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
3410                 skip_emulated_instruction(vcpu);
3411         return 1;
3412 }
3413
3414 static int handle_apic_access(struct kvm_vcpu *vcpu)
3415 {
3416         return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
3417 }
3418
3419 static int handle_task_switch(struct kvm_vcpu *vcpu)
3420 {
3421         struct vcpu_vmx *vmx = to_vmx(vcpu);
3422         unsigned long exit_qualification;
3423         bool has_error_code = false;
3424         u32 error_code = 0;
3425         u16 tss_selector;
3426         int reason, type, idt_v;
3427
3428         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3429         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3430
3431         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3432
3433         reason = (u32)exit_qualification >> 30;
3434         if (reason == TASK_SWITCH_GATE && idt_v) {
3435                 switch (type) {
3436                 case INTR_TYPE_NMI_INTR:
3437                         vcpu->arch.nmi_injected = false;
3438                         if (cpu_has_virtual_nmis())
3439                                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3440                                               GUEST_INTR_STATE_NMI);
3441                         break;
3442                 case INTR_TYPE_EXT_INTR:
3443                 case INTR_TYPE_SOFT_INTR:
3444                         kvm_clear_interrupt_queue(vcpu);
3445                         break;
3446                 case INTR_TYPE_HARD_EXCEPTION:
3447                         if (vmx->idt_vectoring_info &
3448                             VECTORING_INFO_DELIVER_CODE_MASK) {
3449                                 has_error_code = true;
3450                                 error_code =
3451                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
3452                         }
3453                         /* fall through */
3454                 case INTR_TYPE_SOFT_EXCEPTION:
3455                         kvm_clear_exception_queue(vcpu);
3456                         break;
3457                 default:
3458                         break;
3459                 }
3460         }
3461         tss_selector = exit_qualification;
3462
3463         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3464                        type != INTR_TYPE_EXT_INTR &&
3465                        type != INTR_TYPE_NMI_INTR))
3466                 skip_emulated_instruction(vcpu);
3467
3468         if (kvm_task_switch(vcpu, tss_selector, reason,
3469                                 has_error_code, error_code) == EMULATE_FAIL) {
3470                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3471                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3472                 vcpu->run->internal.ndata = 0;
3473                 return 0;
3474         }
3475
3476         /* clear all local breakpoint enable flags */
3477         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3478
3479         /*
3480          * TODO: What about debug traps on tss switch?
3481          *       Are we supposed to inject them and update dr6?
3482          */
3483
3484         return 1;
3485 }
3486
3487 static int handle_ept_violation(struct kvm_vcpu *vcpu)
3488 {
3489         unsigned long exit_qualification;
3490         gpa_t gpa;
3491         int gla_validity;
3492
3493         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3494
3495         if (exit_qualification & (1 << 6)) {
3496                 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3497                 return -EINVAL;
3498         }
3499
3500         gla_validity = (exit_qualification >> 7) & 0x3;
3501         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3502                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3503                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3504                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3505                         vmcs_readl(GUEST_LINEAR_ADDRESS));
3506                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3507                         (long unsigned int)exit_qualification);
3508                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3509                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
3510                 return 0;
3511         }
3512
3513         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3514         trace_kvm_page_fault(gpa, exit_qualification);
3515         return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
3516 }
3517
3518 static u64 ept_rsvd_mask(u64 spte, int level)
3519 {
3520         int i;
3521         u64 mask = 0;
3522
3523         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
3524                 mask |= (1ULL << i);
3525
3526         if (level > 2)
3527                 /* bits 7:3 reserved */
3528                 mask |= 0xf8;
3529         else if (level == 2) {
3530                 if (spte & (1ULL << 7))
3531                         /* 2MB ref, bits 20:12 reserved */
3532                         mask |= 0x1ff000;
3533                 else
3534                         /* bits 6:3 reserved */
3535                         mask |= 0x78;
3536         }
3537
3538         return mask;
3539 }
3540
3541 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
3542                                        int level)
3543 {
3544         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
3545
3546         /* 010b (write-only) */
3547         WARN_ON((spte & 0x7) == 0x2);
3548
3549         /* 110b (write/execute) */
3550         WARN_ON((spte & 0x7) == 0x6);
3551
3552         /* 100b (execute-only) and value not supported by logical processor */
3553         if (!cpu_has_vmx_ept_execute_only())
3554                 WARN_ON((spte & 0x7) == 0x4);
3555
3556         /* not 000b */
3557         if ((spte & 0x7)) {
3558                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
3559
3560                 if (rsvd_bits != 0) {
3561                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
3562                                          __func__, rsvd_bits);
3563                         WARN_ON(1);
3564                 }
3565
3566                 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
3567                         u64 ept_mem_type = (spte & 0x38) >> 3;
3568
3569                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
3570                             ept_mem_type == 7) {
3571                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
3572                                                 __func__, ept_mem_type);
3573                                 WARN_ON(1);
3574                         }
3575                 }
3576         }
3577 }
3578
3579 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
3580 {
3581         u64 sptes[4];
3582         int nr_sptes, i;
3583         gpa_t gpa;
3584
3585         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3586
3587         printk(KERN_ERR "EPT: Misconfiguration.\n");
3588         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
3589
3590         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
3591
3592         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
3593                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
3594
3595         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3596         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
3597
3598         return 0;
3599 }
3600
3601 static int handle_nmi_window(struct kvm_vcpu *vcpu)
3602 {
3603         u32 cpu_based_vm_exec_control;
3604
3605         /* clear pending NMI */
3606         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3607         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3608         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3609         ++vcpu->stat.nmi_window_exits;
3610
3611         return 1;
3612 }
3613
3614 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
3615 {
3616         struct vcpu_vmx *vmx = to_vmx(vcpu);
3617         enum emulation_result err = EMULATE_DONE;
3618         int ret = 1;
3619
3620         while (!guest_state_valid(vcpu)) {
3621                 err = emulate_instruction(vcpu, 0, 0, 0);
3622
3623                 if (err == EMULATE_DO_MMIO) {
3624                         ret = 0;
3625                         goto out;
3626                 }
3627
3628                 if (err != EMULATE_DONE)
3629                         return 0;
3630
3631                 if (signal_pending(current))
3632                         goto out;
3633                 if (need_resched())
3634                         schedule();
3635         }
3636
3637         vmx->emulation_required = 0;
3638 out:
3639         return ret;
3640 }
3641
3642 /*
3643  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
3644  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
3645  */
3646 static int handle_pause(struct kvm_vcpu *vcpu)
3647 {
3648         skip_emulated_instruction(vcpu);
3649         kvm_vcpu_on_spin(vcpu);
3650
3651         return 1;
3652 }
3653
3654 static int handle_invalid_op(struct kvm_vcpu *vcpu)
3655 {
3656         kvm_queue_exception(vcpu, UD_VECTOR);
3657         return 1;
3658 }
3659
3660 /*
3661  * The exit handlers return 1 if the exit was handled fully and guest execution
3662  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
3663  * to be done to userspace and return 0.
3664  */
3665 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3666         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
3667         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
3668         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
3669         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
3670         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
3671         [EXIT_REASON_CR_ACCESS]               = handle_cr,
3672         [EXIT_REASON_DR_ACCESS]               = handle_dr,
3673         [EXIT_REASON_CPUID]                   = handle_cpuid,
3674         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
3675         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
3676         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
3677         [EXIT_REASON_HLT]                     = handle_halt,
3678         [EXIT_REASON_INVLPG]                  = handle_invlpg,
3679         [EXIT_REASON_VMCALL]                  = handle_vmcall,
3680         [EXIT_REASON_VMCLEAR]                 = handle_vmx_insn,
3681         [EXIT_REASON_VMLAUNCH]                = handle_vmx_insn,
3682         [EXIT_REASON_VMPTRLD]                 = handle_vmx_insn,
3683         [EXIT_REASON_VMPTRST]                 = handle_vmx_insn,
3684         [EXIT_REASON_VMREAD]                  = handle_vmx_insn,
3685         [EXIT_REASON_VMRESUME]                = handle_vmx_insn,
3686         [EXIT_REASON_VMWRITE]                 = handle_vmx_insn,
3687         [EXIT_REASON_VMOFF]                   = handle_vmx_insn,
3688         [EXIT_REASON_VMON]                    = handle_vmx_insn,
3689         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
3690         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
3691         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
3692         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
3693         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
3694         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
3695         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
3696         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
3697         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
3698         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_invalid_op,
3699         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op,
3700 };
3701
3702 static const int kvm_vmx_max_exit_handlers =
3703         ARRAY_SIZE(kvm_vmx_exit_handlers);
3704
3705 /*
3706  * The guest has exited.  See if we can fix it or if we need userspace
3707  * assistance.
3708  */
3709 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
3710 {
3711         struct vcpu_vmx *vmx = to_vmx(vcpu);
3712         u32 exit_reason = vmx->exit_reason;
3713         u32 vectoring_info = vmx->idt_vectoring_info;
3714
3715         trace_kvm_exit(exit_reason, vcpu);
3716
3717         /* If guest state is invalid, start emulating */
3718         if (vmx->emulation_required && emulate_invalid_guest_state)
3719                 return handle_invalid_guest_state(vcpu);
3720
3721         /* Access CR3 don't cause VMExit in paging mode, so we need
3722          * to sync with guest real CR3. */
3723         if (enable_ept && is_paging(vcpu))
3724                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3725
3726         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
3727                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3728                 vcpu->run->fail_entry.hardware_entry_failure_reason
3729                         = exit_reason;
3730                 return 0;
3731         }
3732
3733         if (unlikely(vmx->fail)) {
3734                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3735                 vcpu->run->fail_entry.hardware_entry_failure_reason
3736                         = vmcs_read32(VM_INSTRUCTION_ERROR);
3737                 return 0;
3738         }
3739
3740         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3741                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3742                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
3743                         exit_reason != EXIT_REASON_TASK_SWITCH))
3744                 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3745                        "(0x%x) and exit reason is 0x%x\n",
3746                        __func__, vectoring_info, exit_reason);
3747
3748         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3749                 if (vmx_interrupt_allowed(vcpu)) {
3750                         vmx->soft_vnmi_blocked = 0;
3751                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3752                            vcpu->arch.nmi_pending) {
3753                         /*
3754                          * This CPU don't support us in finding the end of an
3755                          * NMI-blocked window if the guest runs with IRQs
3756                          * disabled. So we pull the trigger after 1 s of
3757                          * futile waiting, but inform the user about this.
3758                          */
3759                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3760                                "state on VCPU %d after 1 s timeout\n",
3761                                __func__, vcpu->vcpu_id);
3762                         vmx->soft_vnmi_blocked = 0;
3763                 }
3764         }
3765
3766         if (exit_reason < kvm_vmx_max_exit_handlers
3767             && kvm_vmx_exit_handlers[exit_reason])
3768                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
3769         else {
3770                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3771                 vcpu->run->hw.hardware_exit_reason = exit_reason;
3772         }
3773         return 0;
3774 }
3775
3776 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3777 {
3778         if (irr == -1 || tpr < irr) {
3779                 vmcs_write32(TPR_THRESHOLD, 0);
3780                 return;
3781         }
3782
3783         vmcs_write32(TPR_THRESHOLD, irr);
3784 }
3785
3786 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3787 {
3788         u32 exit_intr_info;
3789         u32 idt_vectoring_info = vmx->idt_vectoring_info;
3790         bool unblock_nmi;
3791         u8 vector;
3792         int type;
3793         bool idtv_info_valid;
3794
3795         exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3796
3797         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
3798
3799         /* Handle machine checks before interrupts are enabled */
3800         if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
3801             || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
3802                 && is_machine_check(exit_intr_info)))
3803                 kvm_machine_check();
3804
3805         /* We need to handle NMIs before interrupts are enabled */
3806         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3807             (exit_intr_info & INTR_INFO_VALID_MASK)) {
3808                 kvm_before_handle_nmi(&vmx->vcpu);
3809                 asm("int $2");
3810                 kvm_after_handle_nmi(&vmx->vcpu);
3811         }
3812
3813         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3814
3815         if (cpu_has_virtual_nmis()) {
3816                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3817                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3818                 /*
3819                  * SDM 3: 27.7.1.2 (September 2008)
3820                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
3821                  * a guest IRET fault.
3822                  * SDM 3: 23.2.2 (September 2008)
3823                  * Bit 12 is undefined in any of the following cases:
3824                  *  If the VM exit sets the valid bit in the IDT-vectoring
3825                  *   information field.
3826                  *  If the VM exit is due to a double fault.
3827                  */
3828                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3829                     vector != DF_VECTOR && !idtv_info_valid)
3830                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3831                                       GUEST_INTR_STATE_NMI);
3832         } else if (unlikely(vmx->soft_vnmi_blocked))
3833                 vmx->vnmi_blocked_time +=
3834                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3835
3836         vmx->vcpu.arch.nmi_injected = false;
3837         kvm_clear_exception_queue(&vmx->vcpu);
3838         kvm_clear_interrupt_queue(&vmx->vcpu);
3839
3840         if (!idtv_info_valid)
3841                 return;
3842
3843         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3844         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3845
3846         switch (type) {
3847         case INTR_TYPE_NMI_INTR:
3848                 vmx->vcpu.arch.nmi_injected = true;
3849                 /*
3850                  * SDM 3: 27.7.1.2 (September 2008)
3851                  * Clear bit "block by NMI" before VM entry if a NMI
3852                  * delivery faulted.
3853                  */
3854                 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3855                                 GUEST_INTR_STATE_NMI);
3856                 break;
3857         case INTR_TYPE_SOFT_EXCEPTION:
3858                 vmx->vcpu.arch.event_exit_inst_len =
3859                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3860                 /* fall through */
3861         case INTR_TYPE_HARD_EXCEPTION:
3862                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3863                         u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3864                         kvm_queue_exception_e(&vmx->vcpu, vector, err);
3865                 } else
3866                         kvm_queue_exception(&vmx->vcpu, vector);
3867                 break;
3868         case INTR_TYPE_SOFT_INTR:
3869                 vmx->vcpu.arch.event_exit_inst_len =
3870                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3871                 /* fall through */
3872         case INTR_TYPE_EXT_INTR:
3873                 kvm_queue_interrupt(&vmx->vcpu, vector,
3874                         type == INTR_TYPE_SOFT_INTR);
3875                 break;
3876         default:
3877                 break;
3878         }
3879 }
3880
3881 /*
3882  * Failure to inject an interrupt should give us the information
3883  * in IDT_VECTORING_INFO_FIELD.  However, if the failure occurs
3884  * when fetching the interrupt redirection bitmap in the real-mode
3885  * tss, this doesn't happen.  So we do it ourselves.
3886  */
3887 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3888 {
3889         vmx->rmode.irq.pending = 0;
3890         if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3891                 return;
3892         kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3893         if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3894                 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3895                 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3896                 return;
3897         }
3898         vmx->idt_vectoring_info =
3899                 VECTORING_INFO_VALID_MASK
3900                 | INTR_TYPE_EXT_INTR
3901                 | vmx->rmode.irq.vector;
3902 }
3903
3904 #ifdef CONFIG_X86_64
3905 #define R "r"
3906 #define Q "q"
3907 #else
3908 #define R "e"
3909 #define Q "l"
3910 #endif
3911
3912 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
3913 {
3914         struct vcpu_vmx *vmx = to_vmx(vcpu);
3915
3916         /* Record the guest's net vcpu time for enforced NMI injections. */
3917         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3918                 vmx->entry_time = ktime_get();
3919
3920         /* Don't enter VMX if guest state is invalid, let the exit handler
3921            start emulation until we arrive back to a valid state */
3922         if (vmx->emulation_required && emulate_invalid_guest_state)
3923                 return;
3924
3925         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3926                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3927         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3928                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3929
3930         /* When single-stepping over STI and MOV SS, we must clear the
3931          * corresponding interruptibility bits in the guest state. Otherwise
3932          * vmentry fails as it then expects bit 14 (BS) in pending debug
3933          * exceptions being set, but that's not correct for the guest debugging
3934          * case. */
3935         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3936                 vmx_set_interrupt_shadow(vcpu, 0);
3937
3938         asm(
3939                 /* Store host registers */
3940                 "push %%"R"dx; push %%"R"bp;"
3941                 "push %%"R"cx \n\t"
3942                 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3943                 "je 1f \n\t"
3944                 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3945                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3946                 "1: \n\t"
3947                 /* Reload cr2 if changed */
3948                 "mov %c[cr2](%0), %%"R"ax \n\t"
3949                 "mov %%cr2, %%"R"dx \n\t"
3950                 "cmp %%"R"ax, %%"R"dx \n\t"
3951                 "je 2f \n\t"
3952                 "mov %%"R"ax, %%cr2 \n\t"
3953                 "2: \n\t"
3954                 /* Check if vmlaunch of vmresume is needed */
3955                 "cmpl $0, %c[launched](%0) \n\t"
3956                 /* Load guest registers.  Don't clobber flags. */
3957                 "mov %c[rax](%0), %%"R"ax \n\t"
3958                 "mov %c[rbx](%0), %%"R"bx \n\t"
3959                 "mov %c[rdx](%0), %%"R"dx \n\t"
3960                 "mov %c[rsi](%0), %%"R"si \n\t"
3961                 "mov %c[rdi](%0), %%"R"di \n\t"
3962                 "mov %c[rbp](%0), %%"R"bp \n\t"
3963 #ifdef CONFIG_X86_64
3964                 "mov %c[r8](%0),  %%r8  \n\t"
3965                 "mov %c[r9](%0),  %%r9  \n\t"
3966                 "mov %c[r10](%0), %%r10 \n\t"
3967                 "mov %c[r11](%0), %%r11 \n\t"
3968                 "mov %c[r12](%0), %%r12 \n\t"
3969                 "mov %c[r13](%0), %%r13 \n\t"
3970                 "mov %c[r14](%0), %%r14 \n\t"
3971                 "mov %c[r15](%0), %%r15 \n\t"
3972 #endif
3973                 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3974
3975                 /* Enter guest mode */
3976                 "jne .Llaunched \n\t"
3977                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3978                 "jmp .Lkvm_vmx_return \n\t"
3979                 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3980                 ".Lkvm_vmx_return: "
3981                 /* Save guest registers, load host registers, keep flags */
3982                 "xchg %0,     (%%"R"sp) \n\t"
3983                 "mov %%"R"ax, %c[rax](%0) \n\t"
3984                 "mov %%"R"bx, %c[rbx](%0) \n\t"
3985                 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3986                 "mov %%"R"dx, %c[rdx](%0) \n\t"
3987                 "mov %%"R"si, %c[rsi](%0) \n\t"
3988                 "mov %%"R"di, %c[rdi](%0) \n\t"
3989                 "mov %%"R"bp, %c[rbp](%0) \n\t"
3990 #ifdef CONFIG_X86_64
3991                 "mov %%r8,  %c[r8](%0) \n\t"
3992                 "mov %%r9,  %c[r9](%0) \n\t"
3993                 "mov %%r10, %c[r10](%0) \n\t"
3994                 "mov %%r11, %c[r11](%0) \n\t"
3995                 "mov %%r12, %c[r12](%0) \n\t"
3996                 "mov %%r13, %c[r13](%0) \n\t"
3997                 "mov %%r14, %c[r14](%0) \n\t"
3998                 "mov %%r15, %c[r15](%0) \n\t"
3999 #endif
4000                 "mov %%cr2, %%"R"ax   \n\t"
4001                 "mov %%"R"ax, %c[cr2](%0) \n\t"
4002
4003                 "pop  %%"R"bp; pop  %%"R"bp; pop  %%"R"dx \n\t"
4004                 "setbe %c[fail](%0) \n\t"
4005               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
4006                 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
4007                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
4008                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
4009                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
4010                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
4011                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
4012                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
4013                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
4014                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
4015                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
4016 #ifdef CONFIG_X86_64
4017                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
4018                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
4019                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
4020                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
4021                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
4022                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
4023                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
4024                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
4025 #endif
4026                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
4027               : "cc", "memory"
4028                 , R"bx", R"di", R"si"
4029 #ifdef CONFIG_X86_64
4030                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
4031 #endif
4032               );
4033
4034         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
4035                                   | (1 << VCPU_EXREG_PDPTR));
4036         vcpu->arch.regs_dirty = 0;
4037
4038         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
4039         if (vmx->rmode.irq.pending)
4040                 fixup_rmode_irq(vmx);
4041
4042         asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
4043         vmx->launched = 1;
4044
4045         vmx_complete_interrupts(vmx);
4046 }
4047
4048 #undef R
4049 #undef Q
4050
4051 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
4052 {
4053         struct vcpu_vmx *vmx = to_vmx(vcpu);
4054
4055         if (vmx->vmcs) {
4056                 vcpu_clear(vmx);
4057                 free_vmcs(vmx->vmcs);
4058                 vmx->vmcs = NULL;
4059         }
4060 }
4061
4062 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
4063 {
4064         struct vcpu_vmx *vmx = to_vmx(vcpu);
4065
4066         free_vpid(vmx);
4067         vmx_free_vmcs(vcpu);
4068         kfree(vmx->guest_msrs);
4069         kvm_vcpu_uninit(vcpu);
4070         kmem_cache_free(kvm_vcpu_cache, vmx);
4071 }
4072
4073 static inline void vmcs_init(struct vmcs *vmcs)
4074 {
4075         u64 phys_addr = __pa(per_cpu(vmxarea, raw_smp_processor_id()));
4076
4077         if (!vmm_exclusive)
4078                 kvm_cpu_vmxon(phys_addr);
4079
4080         vmcs_clear(vmcs);
4081
4082         if (!vmm_exclusive)
4083                 kvm_cpu_vmxoff();
4084 }
4085
4086 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
4087 {
4088         int err;
4089         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
4090         int cpu;
4091
4092         if (!vmx)
4093                 return ERR_PTR(-ENOMEM);
4094
4095         allocate_vpid(vmx);
4096
4097         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
4098         if (err)
4099                 goto free_vcpu;
4100
4101         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
4102         if (!vmx->guest_msrs) {
4103                 err = -ENOMEM;
4104                 goto uninit_vcpu;
4105         }
4106
4107         vmx->vmcs = alloc_vmcs();
4108         if (!vmx->vmcs)
4109                 goto free_msrs;
4110
4111         vmcs_init(vmx->vmcs);
4112
4113         cpu = get_cpu();
4114         vmx_vcpu_load(&vmx->vcpu, cpu);
4115         err = vmx_vcpu_setup(vmx);
4116         vmx_vcpu_put(&vmx->vcpu);
4117         put_cpu();
4118         if (err)
4119                 goto free_vmcs;
4120         if (vm_need_virtualize_apic_accesses(kvm))
4121                 if (alloc_apic_access_page(kvm) != 0)
4122                         goto free_vmcs;
4123
4124         if (enable_ept) {
4125                 if (!kvm->arch.ept_identity_map_addr)
4126                         kvm->arch.ept_identity_map_addr =
4127                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
4128                 if (alloc_identity_pagetable(kvm) != 0)
4129                         goto free_vmcs;
4130         }
4131
4132         return &vmx->vcpu;
4133
4134 free_vmcs:
4135         free_vmcs(vmx->vmcs);
4136 free_msrs:
4137         kfree(vmx->guest_msrs);
4138 uninit_vcpu:
4139         kvm_vcpu_uninit(&vmx->vcpu);
4140 free_vcpu:
4141         free_vpid(vmx);
4142         kmem_cache_free(kvm_vcpu_cache, vmx);
4143         return ERR_PTR(err);
4144 }
4145
4146 static void __init vmx_check_processor_compat(void *rtn)
4147 {
4148         struct vmcs_config vmcs_conf;
4149
4150         *(int *)rtn = 0;
4151         if (setup_vmcs_config(&vmcs_conf) < 0)
4152                 *(int *)rtn = -EIO;
4153         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
4154                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
4155                                 smp_processor_id());
4156                 *(int *)rtn = -EIO;
4157         }
4158 }
4159
4160 static int get_ept_level(void)
4161 {
4162         return VMX_EPT_DEFAULT_GAW + 1;
4163 }
4164
4165 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4166 {
4167         u64 ret;
4168
4169         /* For VT-d and EPT combination
4170          * 1. MMIO: always map as UC
4171          * 2. EPT with VT-d:
4172          *   a. VT-d without snooping control feature: can't guarantee the
4173          *      result, try to trust guest.
4174          *   b. VT-d with snooping control feature: snooping control feature of
4175          *      VT-d engine can guarantee the cache correctness. Just set it
4176          *      to WB to keep consistent with host. So the same as item 3.
4177          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
4178          *    consistent with host MTRR
4179          */
4180         if (is_mmio)
4181                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
4182         else if (vcpu->kvm->arch.iommu_domain &&
4183                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
4184                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
4185                       VMX_EPT_MT_EPTE_SHIFT;
4186         else
4187                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
4188                         | VMX_EPT_IPAT_BIT;
4189
4190         return ret;
4191 }
4192
4193 #define _ER(x) { EXIT_REASON_##x, #x }
4194
4195 static const struct trace_print_flags vmx_exit_reasons_str[] = {
4196         _ER(EXCEPTION_NMI),
4197         _ER(EXTERNAL_INTERRUPT),
4198         _ER(TRIPLE_FAULT),
4199         _ER(PENDING_INTERRUPT),
4200         _ER(NMI_WINDOW),
4201         _ER(TASK_SWITCH),
4202         _ER(CPUID),
4203         _ER(HLT),
4204         _ER(INVLPG),
4205         _ER(RDPMC),
4206         _ER(RDTSC),
4207         _ER(VMCALL),
4208         _ER(VMCLEAR),
4209         _ER(VMLAUNCH),
4210         _ER(VMPTRLD),
4211         _ER(VMPTRST),
4212         _ER(VMREAD),
4213         _ER(VMRESUME),
4214         _ER(VMWRITE),
4215         _ER(VMOFF),
4216         _ER(VMON),
4217         _ER(CR_ACCESS),
4218         _ER(DR_ACCESS),
4219         _ER(IO_INSTRUCTION),
4220         _ER(MSR_READ),
4221         _ER(MSR_WRITE),
4222         _ER(MWAIT_INSTRUCTION),
4223         _ER(MONITOR_INSTRUCTION),
4224         _ER(PAUSE_INSTRUCTION),
4225         _ER(MCE_DURING_VMENTRY),
4226         _ER(TPR_BELOW_THRESHOLD),
4227         _ER(APIC_ACCESS),
4228         _ER(EPT_VIOLATION),
4229         _ER(EPT_MISCONFIG),
4230         _ER(WBINVD),
4231         { -1, NULL }
4232 };
4233
4234 #undef _ER
4235
4236 static int vmx_get_lpage_level(void)
4237 {
4238         if (enable_ept && !cpu_has_vmx_ept_1g_page())
4239                 return PT_DIRECTORY_LEVEL;
4240         else
4241                 /* For shadow and EPT supported 1GB page */
4242                 return PT_PDPE_LEVEL;
4243 }
4244
4245 static inline u32 bit(int bitno)
4246 {
4247         return 1 << (bitno & 31);
4248 }
4249
4250 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
4251 {
4252         struct kvm_cpuid_entry2 *best;
4253         struct vcpu_vmx *vmx = to_vmx(vcpu);
4254         u32 exec_control;
4255
4256         vmx->rdtscp_enabled = false;
4257         if (vmx_rdtscp_supported()) {
4258                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
4259                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
4260                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
4261                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
4262                                 vmx->rdtscp_enabled = true;
4263                         else {
4264                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
4265                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4266                                                 exec_control);
4267                         }
4268                 }
4269         }
4270 }
4271
4272 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4273 {
4274 }
4275
4276 static struct kvm_x86_ops vmx_x86_ops = {
4277         .cpu_has_kvm_support = cpu_has_kvm_support,
4278         .disabled_by_bios = vmx_disabled_by_bios,
4279         .hardware_setup = hardware_setup,
4280         .hardware_unsetup = hardware_unsetup,
4281         .check_processor_compatibility = vmx_check_processor_compat,
4282         .hardware_enable = hardware_enable,
4283         .hardware_disable = hardware_disable,
4284         .cpu_has_accelerated_tpr = report_flexpriority,
4285
4286         .vcpu_create = vmx_create_vcpu,
4287         .vcpu_free = vmx_free_vcpu,
4288         .vcpu_reset = vmx_vcpu_reset,
4289
4290         .prepare_guest_switch = vmx_save_host_state,
4291         .vcpu_load = vmx_vcpu_load,
4292         .vcpu_put = vmx_vcpu_put,
4293
4294         .set_guest_debug = set_guest_debug,
4295         .get_msr = vmx_get_msr,
4296         .set_msr = vmx_set_msr,
4297         .get_segment_base = vmx_get_segment_base,
4298         .get_segment = vmx_get_segment,
4299         .set_segment = vmx_set_segment,
4300         .get_cpl = vmx_get_cpl,
4301         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
4302         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
4303         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
4304         .set_cr0 = vmx_set_cr0,
4305         .set_cr3 = vmx_set_cr3,
4306         .set_cr4 = vmx_set_cr4,
4307         .set_efer = vmx_set_efer,
4308         .get_idt = vmx_get_idt,
4309         .set_idt = vmx_set_idt,
4310         .get_gdt = vmx_get_gdt,
4311         .set_gdt = vmx_set_gdt,
4312         .set_dr7 = vmx_set_dr7,
4313         .cache_reg = vmx_cache_reg,
4314         .get_rflags = vmx_get_rflags,
4315         .set_rflags = vmx_set_rflags,
4316         .fpu_activate = vmx_fpu_activate,
4317         .fpu_deactivate = vmx_fpu_deactivate,
4318
4319         .tlb_flush = vmx_flush_tlb,
4320
4321         .run = vmx_vcpu_run,
4322         .handle_exit = vmx_handle_exit,
4323         .skip_emulated_instruction = skip_emulated_instruction,
4324         .set_interrupt_shadow = vmx_set_interrupt_shadow,
4325         .get_interrupt_shadow = vmx_get_interrupt_shadow,
4326         .patch_hypercall = vmx_patch_hypercall,
4327         .set_irq = vmx_inject_irq,
4328         .set_nmi = vmx_inject_nmi,
4329         .queue_exception = vmx_queue_exception,
4330         .interrupt_allowed = vmx_interrupt_allowed,
4331         .nmi_allowed = vmx_nmi_allowed,
4332         .get_nmi_mask = vmx_get_nmi_mask,
4333         .set_nmi_mask = vmx_set_nmi_mask,
4334         .enable_nmi_window = enable_nmi_window,
4335         .enable_irq_window = enable_irq_window,
4336         .update_cr8_intercept = update_cr8_intercept,
4337
4338         .set_tss_addr = vmx_set_tss_addr,
4339         .get_tdp_level = get_ept_level,
4340         .get_mt_mask = vmx_get_mt_mask,
4341
4342         .exit_reasons_str = vmx_exit_reasons_str,
4343         .get_lpage_level = vmx_get_lpage_level,
4344
4345         .cpuid_update = vmx_cpuid_update,
4346
4347         .rdtscp_supported = vmx_rdtscp_supported,
4348
4349         .set_supported_cpuid = vmx_set_supported_cpuid,
4350 };
4351
4352 static int __init vmx_init(void)
4353 {
4354         int r, i;
4355
4356         rdmsrl_safe(MSR_EFER, &host_efer);
4357
4358         for (i = 0; i < NR_VMX_MSR; ++i)
4359                 kvm_define_shared_msr(i, vmx_msr_index[i]);
4360
4361         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
4362         if (!vmx_io_bitmap_a)
4363                 return -ENOMEM;
4364
4365         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
4366         if (!vmx_io_bitmap_b) {
4367                 r = -ENOMEM;
4368                 goto out;
4369         }
4370
4371         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
4372         if (!vmx_msr_bitmap_legacy) {
4373                 r = -ENOMEM;
4374                 goto out1;
4375         }
4376
4377         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
4378         if (!vmx_msr_bitmap_longmode) {
4379                 r = -ENOMEM;
4380                 goto out2;
4381         }
4382
4383         /*
4384          * Allow direct access to the PC debug port (it is often used for I/O
4385          * delays, but the vmexits simply slow things down).
4386          */
4387         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
4388         clear_bit(0x80, vmx_io_bitmap_a);
4389
4390         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
4391
4392         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
4393         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
4394
4395         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
4396
4397         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
4398                      __alignof__(struct vcpu_vmx), THIS_MODULE);
4399         if (r)
4400                 goto out3;
4401
4402         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
4403         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
4404         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
4405         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
4406         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
4407         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
4408
4409         if (enable_ept) {
4410                 bypass_guest_pf = 0;
4411                 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
4412                         VMX_EPT_WRITABLE_MASK);
4413                 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4414                                 VMX_EPT_EXECUTABLE_MASK);
4415                 kvm_enable_tdp();
4416         } else
4417                 kvm_disable_tdp();
4418
4419         if (bypass_guest_pf)
4420                 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
4421
4422         return 0;
4423
4424 out3:
4425         free_page((unsigned long)vmx_msr_bitmap_longmode);
4426 out2:
4427         free_page((unsigned long)vmx_msr_bitmap_legacy);
4428 out1:
4429         free_page((unsigned long)vmx_io_bitmap_b);
4430 out:
4431         free_page((unsigned long)vmx_io_bitmap_a);
4432         return r;
4433 }
4434
4435 static void __exit vmx_exit(void)
4436 {
4437         free_page((unsigned long)vmx_msr_bitmap_legacy);
4438         free_page((unsigned long)vmx_msr_bitmap_longmode);
4439         free_page((unsigned long)vmx_io_bitmap_b);
4440         free_page((unsigned long)vmx_io_bitmap_a);
4441
4442         kvm_exit();
4443 }
4444
4445 module_init(vmx_init)
4446 module_exit(vmx_exit)