]> bbs.cooldavid.org Git - net-next-2.6.git/blob - arch/x86/kvm/mmu.c
a26f13bd34e079d210998bd818a81fbd7d6d8c42
[net-next-2.6.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affilates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "mmu.h"
22 #include "x86.h"
23 #include "kvm_cache_regs.h"
24
25 #include <linux/kvm_host.h>
26 #include <linux/types.h>
27 #include <linux/string.h>
28 #include <linux/mm.h>
29 #include <linux/highmem.h>
30 #include <linux/module.h>
31 #include <linux/swap.h>
32 #include <linux/hugetlb.h>
33 #include <linux/compiler.h>
34 #include <linux/srcu.h>
35 #include <linux/slab.h>
36 #include <linux/uaccess.h>
37
38 #include <asm/page.h>
39 #include <asm/cmpxchg.h>
40 #include <asm/io.h>
41 #include <asm/vmx.h>
42
43 /*
44  * When setting this variable to true it enables Two-Dimensional-Paging
45  * where the hardware walks 2 page tables:
46  * 1. the guest-virtual to guest-physical
47  * 2. while doing 1. it walks guest-physical to host-physical
48  * If the hardware supports that we don't need to do shadow paging.
49  */
50 bool tdp_enabled = false;
51
52 enum {
53         AUDIT_PRE_PAGE_FAULT,
54         AUDIT_POST_PAGE_FAULT,
55         AUDIT_PRE_PTE_WRITE,
56         AUDIT_POST_PTE_WRITE
57 };
58
59 char *audit_point_name[] = {
60         "pre page fault",
61         "post page fault",
62         "pre pte write",
63         "post pte write"
64 };
65
66 #undef MMU_DEBUG
67
68 #ifdef MMU_DEBUG
69
70 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
71 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
72
73 #else
74
75 #define pgprintk(x...) do { } while (0)
76 #define rmap_printk(x...) do { } while (0)
77
78 #endif
79
80 #ifdef MMU_DEBUG
81 static int dbg = 0;
82 module_param(dbg, bool, 0644);
83 #endif
84
85 static int oos_shadow = 1;
86 module_param(oos_shadow, bool, 0644);
87
88 #ifndef MMU_DEBUG
89 #define ASSERT(x) do { } while (0)
90 #else
91 #define ASSERT(x)                                                       \
92         if (!(x)) {                                                     \
93                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
94                        __FILE__, __LINE__, #x);                         \
95         }
96 #endif
97
98 #define PTE_PREFETCH_NUM                8
99
100 #define PT_FIRST_AVAIL_BITS_SHIFT 9
101 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
102
103 #define PT64_LEVEL_BITS 9
104
105 #define PT64_LEVEL_SHIFT(level) \
106                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
107
108 #define PT64_LEVEL_MASK(level) \
109                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
110
111 #define PT64_INDEX(address, level)\
112         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
113
114
115 #define PT32_LEVEL_BITS 10
116
117 #define PT32_LEVEL_SHIFT(level) \
118                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
119
120 #define PT32_LEVEL_MASK(level) \
121                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
122 #define PT32_LVL_OFFSET_MASK(level) \
123         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
124                                                 * PT32_LEVEL_BITS))) - 1))
125
126 #define PT32_INDEX(address, level)\
127         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
128
129
130 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
131 #define PT64_DIR_BASE_ADDR_MASK \
132         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
133 #define PT64_LVL_ADDR_MASK(level) \
134         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
135                                                 * PT64_LEVEL_BITS))) - 1))
136 #define PT64_LVL_OFFSET_MASK(level) \
137         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
138                                                 * PT64_LEVEL_BITS))) - 1))
139
140 #define PT32_BASE_ADDR_MASK PAGE_MASK
141 #define PT32_DIR_BASE_ADDR_MASK \
142         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
143 #define PT32_LVL_ADDR_MASK(level) \
144         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
145                                             * PT32_LEVEL_BITS))) - 1))
146
147 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
148                         | PT64_NX_MASK)
149
150 #define RMAP_EXT 4
151
152 #define ACC_EXEC_MASK    1
153 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
154 #define ACC_USER_MASK    PT_USER_MASK
155 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
156
157 #include <trace/events/kvm.h>
158
159 #define CREATE_TRACE_POINTS
160 #include "mmutrace.h"
161
162 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
163
164 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
165
166 struct kvm_rmap_desc {
167         u64 *sptes[RMAP_EXT];
168         struct kvm_rmap_desc *more;
169 };
170
171 struct kvm_shadow_walk_iterator {
172         u64 addr;
173         hpa_t shadow_addr;
174         int level;
175         u64 *sptep;
176         unsigned index;
177 };
178
179 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
180         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
181              shadow_walk_okay(&(_walker));                      \
182              shadow_walk_next(&(_walker)))
183
184 typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte);
185
186 static struct kmem_cache *pte_chain_cache;
187 static struct kmem_cache *rmap_desc_cache;
188 static struct kmem_cache *mmu_page_header_cache;
189 static struct percpu_counter kvm_total_used_mmu_pages;
190
191 static u64 __read_mostly shadow_trap_nonpresent_pte;
192 static u64 __read_mostly shadow_notrap_nonpresent_pte;
193 static u64 __read_mostly shadow_base_present_pte;
194 static u64 __read_mostly shadow_nx_mask;
195 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
196 static u64 __read_mostly shadow_user_mask;
197 static u64 __read_mostly shadow_accessed_mask;
198 static u64 __read_mostly shadow_dirty_mask;
199
200 static inline u64 rsvd_bits(int s, int e)
201 {
202         return ((1ULL << (e - s + 1)) - 1) << s;
203 }
204
205 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
206 {
207         shadow_trap_nonpresent_pte = trap_pte;
208         shadow_notrap_nonpresent_pte = notrap_pte;
209 }
210 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
211
212 void kvm_mmu_set_base_ptes(u64 base_pte)
213 {
214         shadow_base_present_pte = base_pte;
215 }
216 EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
217
218 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
219                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
220 {
221         shadow_user_mask = user_mask;
222         shadow_accessed_mask = accessed_mask;
223         shadow_dirty_mask = dirty_mask;
224         shadow_nx_mask = nx_mask;
225         shadow_x_mask = x_mask;
226 }
227 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
228
229 static bool is_write_protection(struct kvm_vcpu *vcpu)
230 {
231         return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
232 }
233
234 static int is_cpuid_PSE36(void)
235 {
236         return 1;
237 }
238
239 static int is_nx(struct kvm_vcpu *vcpu)
240 {
241         return vcpu->arch.efer & EFER_NX;
242 }
243
244 static int is_shadow_present_pte(u64 pte)
245 {
246         return pte != shadow_trap_nonpresent_pte
247                 && pte != shadow_notrap_nonpresent_pte;
248 }
249
250 static int is_large_pte(u64 pte)
251 {
252         return pte & PT_PAGE_SIZE_MASK;
253 }
254
255 static int is_writable_pte(unsigned long pte)
256 {
257         return pte & PT_WRITABLE_MASK;
258 }
259
260 static int is_dirty_gpte(unsigned long pte)
261 {
262         return pte & PT_DIRTY_MASK;
263 }
264
265 static int is_rmap_spte(u64 pte)
266 {
267         return is_shadow_present_pte(pte);
268 }
269
270 static int is_last_spte(u64 pte, int level)
271 {
272         if (level == PT_PAGE_TABLE_LEVEL)
273                 return 1;
274         if (is_large_pte(pte))
275                 return 1;
276         return 0;
277 }
278
279 static pfn_t spte_to_pfn(u64 pte)
280 {
281         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
282 }
283
284 static gfn_t pse36_gfn_delta(u32 gpte)
285 {
286         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
287
288         return (gpte & PT32_DIR_PSE36_MASK) << shift;
289 }
290
291 static void __set_spte(u64 *sptep, u64 spte)
292 {
293         set_64bit(sptep, spte);
294 }
295
296 static u64 __xchg_spte(u64 *sptep, u64 new_spte)
297 {
298 #ifdef CONFIG_X86_64
299         return xchg(sptep, new_spte);
300 #else
301         u64 old_spte;
302
303         do {
304                 old_spte = *sptep;
305         } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
306
307         return old_spte;
308 #endif
309 }
310
311 static bool spte_has_volatile_bits(u64 spte)
312 {
313         if (!shadow_accessed_mask)
314                 return false;
315
316         if (!is_shadow_present_pte(spte))
317                 return false;
318
319         if ((spte & shadow_accessed_mask) &&
320               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
321                 return false;
322
323         return true;
324 }
325
326 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
327 {
328         return (old_spte & bit_mask) && !(new_spte & bit_mask);
329 }
330
331 static void update_spte(u64 *sptep, u64 new_spte)
332 {
333         u64 mask, old_spte = *sptep;
334
335         WARN_ON(!is_rmap_spte(new_spte));
336
337         new_spte |= old_spte & shadow_dirty_mask;
338
339         mask = shadow_accessed_mask;
340         if (is_writable_pte(old_spte))
341                 mask |= shadow_dirty_mask;
342
343         if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
344                 __set_spte(sptep, new_spte);
345         else
346                 old_spte = __xchg_spte(sptep, new_spte);
347
348         if (!shadow_accessed_mask)
349                 return;
350
351         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
352                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
353         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
354                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
355 }
356
357 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
358                                   struct kmem_cache *base_cache, int min)
359 {
360         void *obj;
361
362         if (cache->nobjs >= min)
363                 return 0;
364         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
365                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
366                 if (!obj)
367                         return -ENOMEM;
368                 cache->objects[cache->nobjs++] = obj;
369         }
370         return 0;
371 }
372
373 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
374                                   struct kmem_cache *cache)
375 {
376         while (mc->nobjs)
377                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
378 }
379
380 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
381                                        int min)
382 {
383         struct page *page;
384
385         if (cache->nobjs >= min)
386                 return 0;
387         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
388                 page = alloc_page(GFP_KERNEL);
389                 if (!page)
390                         return -ENOMEM;
391                 cache->objects[cache->nobjs++] = page_address(page);
392         }
393         return 0;
394 }
395
396 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
397 {
398         while (mc->nobjs)
399                 free_page((unsigned long)mc->objects[--mc->nobjs]);
400 }
401
402 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
403 {
404         int r;
405
406         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
407                                    pte_chain_cache, 4);
408         if (r)
409                 goto out;
410         r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
411                                    rmap_desc_cache, 4 + PTE_PREFETCH_NUM);
412         if (r)
413                 goto out;
414         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
415         if (r)
416                 goto out;
417         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
418                                    mmu_page_header_cache, 4);
419 out:
420         return r;
421 }
422
423 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
424 {
425         mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
426         mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
427         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
428         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
429                                 mmu_page_header_cache);
430 }
431
432 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
433                                     size_t size)
434 {
435         void *p;
436
437         BUG_ON(!mc->nobjs);
438         p = mc->objects[--mc->nobjs];
439         return p;
440 }
441
442 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
443 {
444         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
445                                       sizeof(struct kvm_pte_chain));
446 }
447
448 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
449 {
450         kmem_cache_free(pte_chain_cache, pc);
451 }
452
453 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
454 {
455         return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
456                                       sizeof(struct kvm_rmap_desc));
457 }
458
459 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
460 {
461         kmem_cache_free(rmap_desc_cache, rd);
462 }
463
464 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
465 {
466         if (!sp->role.direct)
467                 return sp->gfns[index];
468
469         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
470 }
471
472 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
473 {
474         if (sp->role.direct)
475                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
476         else
477                 sp->gfns[index] = gfn;
478 }
479
480 /*
481  * Return the pointer to the largepage write count for a given
482  * gfn, handling slots that are not large page aligned.
483  */
484 static int *slot_largepage_idx(gfn_t gfn,
485                                struct kvm_memory_slot *slot,
486                                int level)
487 {
488         unsigned long idx;
489
490         idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
491               (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
492         return &slot->lpage_info[level - 2][idx].write_count;
493 }
494
495 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
496 {
497         struct kvm_memory_slot *slot;
498         int *write_count;
499         int i;
500
501         slot = gfn_to_memslot(kvm, gfn);
502         for (i = PT_DIRECTORY_LEVEL;
503              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
504                 write_count   = slot_largepage_idx(gfn, slot, i);
505                 *write_count += 1;
506         }
507 }
508
509 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
510 {
511         struct kvm_memory_slot *slot;
512         int *write_count;
513         int i;
514
515         slot = gfn_to_memslot(kvm, gfn);
516         for (i = PT_DIRECTORY_LEVEL;
517              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
518                 write_count   = slot_largepage_idx(gfn, slot, i);
519                 *write_count -= 1;
520                 WARN_ON(*write_count < 0);
521         }
522 }
523
524 static int has_wrprotected_page(struct kvm *kvm,
525                                 gfn_t gfn,
526                                 int level)
527 {
528         struct kvm_memory_slot *slot;
529         int *largepage_idx;
530
531         slot = gfn_to_memslot(kvm, gfn);
532         if (slot) {
533                 largepage_idx = slot_largepage_idx(gfn, slot, level);
534                 return *largepage_idx;
535         }
536
537         return 1;
538 }
539
540 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
541 {
542         unsigned long page_size;
543         int i, ret = 0;
544
545         page_size = kvm_host_page_size(kvm, gfn);
546
547         for (i = PT_PAGE_TABLE_LEVEL;
548              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
549                 if (page_size >= KVM_HPAGE_SIZE(i))
550                         ret = i;
551                 else
552                         break;
553         }
554
555         return ret;
556 }
557
558 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
559 {
560         struct kvm_memory_slot *slot;
561         int host_level, level, max_level;
562
563         slot = gfn_to_memslot(vcpu->kvm, large_gfn);
564         if (slot && slot->dirty_bitmap)
565                 return PT_PAGE_TABLE_LEVEL;
566
567         host_level = host_mapping_level(vcpu->kvm, large_gfn);
568
569         if (host_level == PT_PAGE_TABLE_LEVEL)
570                 return host_level;
571
572         max_level = kvm_x86_ops->get_lpage_level() < host_level ?
573                 kvm_x86_ops->get_lpage_level() : host_level;
574
575         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
576                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
577                         break;
578
579         return level - 1;
580 }
581
582 /*
583  * Take gfn and return the reverse mapping to it.
584  */
585
586 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
587 {
588         struct kvm_memory_slot *slot;
589         unsigned long idx;
590
591         slot = gfn_to_memslot(kvm, gfn);
592         if (likely(level == PT_PAGE_TABLE_LEVEL))
593                 return &slot->rmap[gfn - slot->base_gfn];
594
595         idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
596                 (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
597
598         return &slot->lpage_info[level - 2][idx].rmap_pde;
599 }
600
601 /*
602  * Reverse mapping data structures:
603  *
604  * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
605  * that points to page_address(page).
606  *
607  * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
608  * containing more mappings.
609  *
610  * Returns the number of rmap entries before the spte was added or zero if
611  * the spte was not added.
612  *
613  */
614 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
615 {
616         struct kvm_mmu_page *sp;
617         struct kvm_rmap_desc *desc;
618         unsigned long *rmapp;
619         int i, count = 0;
620
621         if (!is_rmap_spte(*spte))
622                 return count;
623         sp = page_header(__pa(spte));
624         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
625         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
626         if (!*rmapp) {
627                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
628                 *rmapp = (unsigned long)spte;
629         } else if (!(*rmapp & 1)) {
630                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
631                 desc = mmu_alloc_rmap_desc(vcpu);
632                 desc->sptes[0] = (u64 *)*rmapp;
633                 desc->sptes[1] = spte;
634                 *rmapp = (unsigned long)desc | 1;
635         } else {
636                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
637                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
638                 while (desc->sptes[RMAP_EXT-1] && desc->more) {
639                         desc = desc->more;
640                         count += RMAP_EXT;
641                 }
642                 if (desc->sptes[RMAP_EXT-1]) {
643                         desc->more = mmu_alloc_rmap_desc(vcpu);
644                         desc = desc->more;
645                 }
646                 for (i = 0; desc->sptes[i]; ++i)
647                         ;
648                 desc->sptes[i] = spte;
649         }
650         return count;
651 }
652
653 static void rmap_desc_remove_entry(unsigned long *rmapp,
654                                    struct kvm_rmap_desc *desc,
655                                    int i,
656                                    struct kvm_rmap_desc *prev_desc)
657 {
658         int j;
659
660         for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
661                 ;
662         desc->sptes[i] = desc->sptes[j];
663         desc->sptes[j] = NULL;
664         if (j != 0)
665                 return;
666         if (!prev_desc && !desc->more)
667                 *rmapp = (unsigned long)desc->sptes[0];
668         else
669                 if (prev_desc)
670                         prev_desc->more = desc->more;
671                 else
672                         *rmapp = (unsigned long)desc->more | 1;
673         mmu_free_rmap_desc(desc);
674 }
675
676 static void rmap_remove(struct kvm *kvm, u64 *spte)
677 {
678         struct kvm_rmap_desc *desc;
679         struct kvm_rmap_desc *prev_desc;
680         struct kvm_mmu_page *sp;
681         gfn_t gfn;
682         unsigned long *rmapp;
683         int i;
684
685         sp = page_header(__pa(spte));
686         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
687         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
688         if (!*rmapp) {
689                 printk(KERN_ERR "rmap_remove: %p 0->BUG\n", spte);
690                 BUG();
691         } else if (!(*rmapp & 1)) {
692                 rmap_printk("rmap_remove:  %p 1->0\n", spte);
693                 if ((u64 *)*rmapp != spte) {
694                         printk(KERN_ERR "rmap_remove:  %p 1->BUG\n", spte);
695                         BUG();
696                 }
697                 *rmapp = 0;
698         } else {
699                 rmap_printk("rmap_remove:  %p many->many\n", spte);
700                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
701                 prev_desc = NULL;
702                 while (desc) {
703                         for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
704                                 if (desc->sptes[i] == spte) {
705                                         rmap_desc_remove_entry(rmapp,
706                                                                desc, i,
707                                                                prev_desc);
708                                         return;
709                                 }
710                         prev_desc = desc;
711                         desc = desc->more;
712                 }
713                 pr_err("rmap_remove: %p many->many\n", spte);
714                 BUG();
715         }
716 }
717
718 static void set_spte_track_bits(u64 *sptep, u64 new_spte)
719 {
720         pfn_t pfn;
721         u64 old_spte = *sptep;
722
723         if (!spte_has_volatile_bits(old_spte))
724                 __set_spte(sptep, new_spte);
725         else
726                 old_spte = __xchg_spte(sptep, new_spte);
727
728         if (!is_rmap_spte(old_spte))
729                 return;
730
731         pfn = spte_to_pfn(old_spte);
732         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
733                 kvm_set_pfn_accessed(pfn);
734         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
735                 kvm_set_pfn_dirty(pfn);
736 }
737
738 static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
739 {
740         set_spte_track_bits(sptep, new_spte);
741         rmap_remove(kvm, sptep);
742 }
743
744 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
745 {
746         struct kvm_rmap_desc *desc;
747         u64 *prev_spte;
748         int i;
749
750         if (!*rmapp)
751                 return NULL;
752         else if (!(*rmapp & 1)) {
753                 if (!spte)
754                         return (u64 *)*rmapp;
755                 return NULL;
756         }
757         desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
758         prev_spte = NULL;
759         while (desc) {
760                 for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
761                         if (prev_spte == spte)
762                                 return desc->sptes[i];
763                         prev_spte = desc->sptes[i];
764                 }
765                 desc = desc->more;
766         }
767         return NULL;
768 }
769
770 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
771 {
772         unsigned long *rmapp;
773         u64 *spte;
774         int i, write_protected = 0;
775
776         rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
777
778         spte = rmap_next(kvm, rmapp, NULL);
779         while (spte) {
780                 BUG_ON(!spte);
781                 BUG_ON(!(*spte & PT_PRESENT_MASK));
782                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
783                 if (is_writable_pte(*spte)) {
784                         update_spte(spte, *spte & ~PT_WRITABLE_MASK);
785                         write_protected = 1;
786                 }
787                 spte = rmap_next(kvm, rmapp, spte);
788         }
789
790         /* check for huge page mappings */
791         for (i = PT_DIRECTORY_LEVEL;
792              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
793                 rmapp = gfn_to_rmap(kvm, gfn, i);
794                 spte = rmap_next(kvm, rmapp, NULL);
795                 while (spte) {
796                         BUG_ON(!spte);
797                         BUG_ON(!(*spte & PT_PRESENT_MASK));
798                         BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
799                         pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
800                         if (is_writable_pte(*spte)) {
801                                 drop_spte(kvm, spte,
802                                           shadow_trap_nonpresent_pte);
803                                 --kvm->stat.lpages;
804                                 spte = NULL;
805                                 write_protected = 1;
806                         }
807                         spte = rmap_next(kvm, rmapp, spte);
808                 }
809         }
810
811         return write_protected;
812 }
813
814 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
815                            unsigned long data)
816 {
817         u64 *spte;
818         int need_tlb_flush = 0;
819
820         while ((spte = rmap_next(kvm, rmapp, NULL))) {
821                 BUG_ON(!(*spte & PT_PRESENT_MASK));
822                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
823                 drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
824                 need_tlb_flush = 1;
825         }
826         return need_tlb_flush;
827 }
828
829 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
830                              unsigned long data)
831 {
832         int need_flush = 0;
833         u64 *spte, new_spte;
834         pte_t *ptep = (pte_t *)data;
835         pfn_t new_pfn;
836
837         WARN_ON(pte_huge(*ptep));
838         new_pfn = pte_pfn(*ptep);
839         spte = rmap_next(kvm, rmapp, NULL);
840         while (spte) {
841                 BUG_ON(!is_shadow_present_pte(*spte));
842                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
843                 need_flush = 1;
844                 if (pte_write(*ptep)) {
845                         drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
846                         spte = rmap_next(kvm, rmapp, NULL);
847                 } else {
848                         new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
849                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
850
851                         new_spte &= ~PT_WRITABLE_MASK;
852                         new_spte &= ~SPTE_HOST_WRITEABLE;
853                         new_spte &= ~shadow_accessed_mask;
854                         set_spte_track_bits(spte, new_spte);
855                         spte = rmap_next(kvm, rmapp, spte);
856                 }
857         }
858         if (need_flush)
859                 kvm_flush_remote_tlbs(kvm);
860
861         return 0;
862 }
863
864 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
865                           unsigned long data,
866                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
867                                          unsigned long data))
868 {
869         int i, j;
870         int ret;
871         int retval = 0;
872         struct kvm_memslots *slots;
873
874         slots = kvm_memslots(kvm);
875
876         for (i = 0; i < slots->nmemslots; i++) {
877                 struct kvm_memory_slot *memslot = &slots->memslots[i];
878                 unsigned long start = memslot->userspace_addr;
879                 unsigned long end;
880
881                 end = start + (memslot->npages << PAGE_SHIFT);
882                 if (hva >= start && hva < end) {
883                         gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
884
885                         ret = handler(kvm, &memslot->rmap[gfn_offset], data);
886
887                         for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
888                                 unsigned long idx;
889                                 int sh;
890
891                                 sh = KVM_HPAGE_GFN_SHIFT(PT_DIRECTORY_LEVEL+j);
892                                 idx = ((memslot->base_gfn+gfn_offset) >> sh) -
893                                         (memslot->base_gfn >> sh);
894                                 ret |= handler(kvm,
895                                         &memslot->lpage_info[j][idx].rmap_pde,
896                                         data);
897                         }
898                         trace_kvm_age_page(hva, memslot, ret);
899                         retval |= ret;
900                 }
901         }
902
903         return retval;
904 }
905
906 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
907 {
908         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
909 }
910
911 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
912 {
913         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
914 }
915
916 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
917                          unsigned long data)
918 {
919         u64 *spte;
920         int young = 0;
921
922         /*
923          * Emulate the accessed bit for EPT, by checking if this page has
924          * an EPT mapping, and clearing it if it does. On the next access,
925          * a new EPT mapping will be established.
926          * This has some overhead, but not as much as the cost of swapping
927          * out actively used pages or breaking up actively used hugepages.
928          */
929         if (!shadow_accessed_mask)
930                 return kvm_unmap_rmapp(kvm, rmapp, data);
931
932         spte = rmap_next(kvm, rmapp, NULL);
933         while (spte) {
934                 int _young;
935                 u64 _spte = *spte;
936                 BUG_ON(!(_spte & PT_PRESENT_MASK));
937                 _young = _spte & PT_ACCESSED_MASK;
938                 if (_young) {
939                         young = 1;
940                         clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
941                 }
942                 spte = rmap_next(kvm, rmapp, spte);
943         }
944         return young;
945 }
946
947 #define RMAP_RECYCLE_THRESHOLD 1000
948
949 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
950 {
951         unsigned long *rmapp;
952         struct kvm_mmu_page *sp;
953
954         sp = page_header(__pa(spte));
955
956         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
957
958         kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
959         kvm_flush_remote_tlbs(vcpu->kvm);
960 }
961
962 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
963 {
964         return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
965 }
966
967 #ifdef MMU_DEBUG
968 static int is_empty_shadow_page(u64 *spt)
969 {
970         u64 *pos;
971         u64 *end;
972
973         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
974                 if (is_shadow_present_pte(*pos)) {
975                         printk(KERN_ERR "%s: %p %llx\n", __func__,
976                                pos, *pos);
977                         return 0;
978                 }
979         return 1;
980 }
981 #endif
982
983 /*
984  * This value is the sum of all of the kvm instances's
985  * kvm->arch.n_used_mmu_pages values.  We need a global,
986  * aggregate version in order to make the slab shrinker
987  * faster
988  */
989 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
990 {
991         kvm->arch.n_used_mmu_pages += nr;
992         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
993 }
994
995 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
996 {
997         ASSERT(is_empty_shadow_page(sp->spt));
998         hlist_del(&sp->hash_link);
999         list_del(&sp->link);
1000         __free_page(virt_to_page(sp->spt));
1001         if (!sp->role.direct)
1002                 __free_page(virt_to_page(sp->gfns));
1003         kmem_cache_free(mmu_page_header_cache, sp);
1004         kvm_mod_used_mmu_pages(kvm, -1);
1005 }
1006
1007 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1008 {
1009         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1010 }
1011
1012 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1013                                                u64 *parent_pte, int direct)
1014 {
1015         struct kvm_mmu_page *sp;
1016
1017         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
1018         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1019         if (!direct)
1020                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1021                                                   PAGE_SIZE);
1022         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1023         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1024         bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
1025         sp->multimapped = 0;
1026         sp->parent_pte = parent_pte;
1027         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1028         return sp;
1029 }
1030
1031 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1032                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1033 {
1034         struct kvm_pte_chain *pte_chain;
1035         struct hlist_node *node;
1036         int i;
1037
1038         if (!parent_pte)
1039                 return;
1040         if (!sp->multimapped) {
1041                 u64 *old = sp->parent_pte;
1042
1043                 if (!old) {
1044                         sp->parent_pte = parent_pte;
1045                         return;
1046                 }
1047                 sp->multimapped = 1;
1048                 pte_chain = mmu_alloc_pte_chain(vcpu);
1049                 INIT_HLIST_HEAD(&sp->parent_ptes);
1050                 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
1051                 pte_chain->parent_ptes[0] = old;
1052         }
1053         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
1054                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
1055                         continue;
1056                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
1057                         if (!pte_chain->parent_ptes[i]) {
1058                                 pte_chain->parent_ptes[i] = parent_pte;
1059                                 return;
1060                         }
1061         }
1062         pte_chain = mmu_alloc_pte_chain(vcpu);
1063         BUG_ON(!pte_chain);
1064         hlist_add_head(&pte_chain->link, &sp->parent_ptes);
1065         pte_chain->parent_ptes[0] = parent_pte;
1066 }
1067
1068 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1069                                        u64 *parent_pte)
1070 {
1071         struct kvm_pte_chain *pte_chain;
1072         struct hlist_node *node;
1073         int i;
1074
1075         if (!sp->multimapped) {
1076                 BUG_ON(sp->parent_pte != parent_pte);
1077                 sp->parent_pte = NULL;
1078                 return;
1079         }
1080         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
1081                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
1082                         if (!pte_chain->parent_ptes[i])
1083                                 break;
1084                         if (pte_chain->parent_ptes[i] != parent_pte)
1085                                 continue;
1086                         while (i + 1 < NR_PTE_CHAIN_ENTRIES
1087                                 && pte_chain->parent_ptes[i + 1]) {
1088                                 pte_chain->parent_ptes[i]
1089                                         = pte_chain->parent_ptes[i + 1];
1090                                 ++i;
1091                         }
1092                         pte_chain->parent_ptes[i] = NULL;
1093                         if (i == 0) {
1094                                 hlist_del(&pte_chain->link);
1095                                 mmu_free_pte_chain(pte_chain);
1096                                 if (hlist_empty(&sp->parent_ptes)) {
1097                                         sp->multimapped = 0;
1098                                         sp->parent_pte = NULL;
1099                                 }
1100                         }
1101                         return;
1102                 }
1103         BUG();
1104 }
1105
1106 static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
1107 {
1108         struct kvm_pte_chain *pte_chain;
1109         struct hlist_node *node;
1110         struct kvm_mmu_page *parent_sp;
1111         int i;
1112
1113         if (!sp->multimapped && sp->parent_pte) {
1114                 parent_sp = page_header(__pa(sp->parent_pte));
1115                 fn(parent_sp, sp->parent_pte);
1116                 return;
1117         }
1118
1119         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
1120                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
1121                         u64 *spte = pte_chain->parent_ptes[i];
1122
1123                         if (!spte)
1124                                 break;
1125                         parent_sp = page_header(__pa(spte));
1126                         fn(parent_sp, spte);
1127                 }
1128 }
1129
1130 static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte);
1131 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1132 {
1133         mmu_parent_walk(sp, mark_unsync);
1134 }
1135
1136 static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)
1137 {
1138         unsigned int index;
1139
1140         index = spte - sp->spt;
1141         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1142                 return;
1143         if (sp->unsync_children++)
1144                 return;
1145         kvm_mmu_mark_parents_unsync(sp);
1146 }
1147
1148 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1149                                     struct kvm_mmu_page *sp)
1150 {
1151         int i;
1152
1153         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1154                 sp->spt[i] = shadow_trap_nonpresent_pte;
1155 }
1156
1157 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1158                                struct kvm_mmu_page *sp, bool clear_unsync)
1159 {
1160         return 1;
1161 }
1162
1163 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1164 {
1165 }
1166
1167 #define KVM_PAGE_ARRAY_NR 16
1168
1169 struct kvm_mmu_pages {
1170         struct mmu_page_and_offset {
1171                 struct kvm_mmu_page *sp;
1172                 unsigned int idx;
1173         } page[KVM_PAGE_ARRAY_NR];
1174         unsigned int nr;
1175 };
1176
1177 #define for_each_unsync_children(bitmap, idx)           \
1178         for (idx = find_first_bit(bitmap, 512);         \
1179              idx < 512;                                 \
1180              idx = find_next_bit(bitmap, 512, idx+1))
1181
1182 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1183                          int idx)
1184 {
1185         int i;
1186
1187         if (sp->unsync)
1188                 for (i=0; i < pvec->nr; i++)
1189                         if (pvec->page[i].sp == sp)
1190                                 return 0;
1191
1192         pvec->page[pvec->nr].sp = sp;
1193         pvec->page[pvec->nr].idx = idx;
1194         pvec->nr++;
1195         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1196 }
1197
1198 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1199                            struct kvm_mmu_pages *pvec)
1200 {
1201         int i, ret, nr_unsync_leaf = 0;
1202
1203         for_each_unsync_children(sp->unsync_child_bitmap, i) {
1204                 struct kvm_mmu_page *child;
1205                 u64 ent = sp->spt[i];
1206
1207                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1208                         goto clear_child_bitmap;
1209
1210                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1211
1212                 if (child->unsync_children) {
1213                         if (mmu_pages_add(pvec, child, i))
1214                                 return -ENOSPC;
1215
1216                         ret = __mmu_unsync_walk(child, pvec);
1217                         if (!ret)
1218                                 goto clear_child_bitmap;
1219                         else if (ret > 0)
1220                                 nr_unsync_leaf += ret;
1221                         else
1222                                 return ret;
1223                 } else if (child->unsync) {
1224                         nr_unsync_leaf++;
1225                         if (mmu_pages_add(pvec, child, i))
1226                                 return -ENOSPC;
1227                 } else
1228                          goto clear_child_bitmap;
1229
1230                 continue;
1231
1232 clear_child_bitmap:
1233                 __clear_bit(i, sp->unsync_child_bitmap);
1234                 sp->unsync_children--;
1235                 WARN_ON((int)sp->unsync_children < 0);
1236         }
1237
1238
1239         return nr_unsync_leaf;
1240 }
1241
1242 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1243                            struct kvm_mmu_pages *pvec)
1244 {
1245         if (!sp->unsync_children)
1246                 return 0;
1247
1248         mmu_pages_add(pvec, sp, 0);
1249         return __mmu_unsync_walk(sp, pvec);
1250 }
1251
1252 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1253 {
1254         WARN_ON(!sp->unsync);
1255         trace_kvm_mmu_sync_page(sp);
1256         sp->unsync = 0;
1257         --kvm->stat.mmu_unsync;
1258 }
1259
1260 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1261                                     struct list_head *invalid_list);
1262 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1263                                     struct list_head *invalid_list);
1264
1265 #define for_each_gfn_sp(kvm, sp, gfn, pos)                              \
1266   hlist_for_each_entry(sp, pos,                                         \
1267    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)   \
1268         if ((sp)->gfn != (gfn)) {} else
1269
1270 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos)               \
1271   hlist_for_each_entry(sp, pos,                                         \
1272    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)   \
1273                 if ((sp)->gfn != (gfn) || (sp)->role.direct ||          \
1274                         (sp)->role.invalid) {} else
1275
1276 /* @sp->gfn should be write-protected at the call site */
1277 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1278                            struct list_head *invalid_list, bool clear_unsync)
1279 {
1280         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1281                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1282                 return 1;
1283         }
1284
1285         if (clear_unsync)
1286                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1287
1288         if (vcpu->arch.mmu.sync_page(vcpu, sp, clear_unsync)) {
1289                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1290                 return 1;
1291         }
1292
1293         kvm_mmu_flush_tlb(vcpu);
1294         return 0;
1295 }
1296
1297 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1298                                    struct kvm_mmu_page *sp)
1299 {
1300         LIST_HEAD(invalid_list);
1301         int ret;
1302
1303         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1304         if (ret)
1305                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1306
1307         return ret;
1308 }
1309
1310 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1311                          struct list_head *invalid_list)
1312 {
1313         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1314 }
1315
1316 /* @gfn should be write-protected at the call site */
1317 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1318 {
1319         struct kvm_mmu_page *s;
1320         struct hlist_node *node;
1321         LIST_HEAD(invalid_list);
1322         bool flush = false;
1323
1324         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1325                 if (!s->unsync)
1326                         continue;
1327
1328                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1329                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1330                         (vcpu->arch.mmu.sync_page(vcpu, s, true))) {
1331                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1332                         continue;
1333                 }
1334                 kvm_unlink_unsync_page(vcpu->kvm, s);
1335                 flush = true;
1336         }
1337
1338         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1339         if (flush)
1340                 kvm_mmu_flush_tlb(vcpu);
1341 }
1342
1343 struct mmu_page_path {
1344         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1345         unsigned int idx[PT64_ROOT_LEVEL-1];
1346 };
1347
1348 #define for_each_sp(pvec, sp, parents, i)                       \
1349                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1350                         sp = pvec.page[i].sp;                   \
1351                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1352                         i = mmu_pages_next(&pvec, &parents, i))
1353
1354 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1355                           struct mmu_page_path *parents,
1356                           int i)
1357 {
1358         int n;
1359
1360         for (n = i+1; n < pvec->nr; n++) {
1361                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1362
1363                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1364                         parents->idx[0] = pvec->page[n].idx;
1365                         return n;
1366                 }
1367
1368                 parents->parent[sp->role.level-2] = sp;
1369                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1370         }
1371
1372         return n;
1373 }
1374
1375 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1376 {
1377         struct kvm_mmu_page *sp;
1378         unsigned int level = 0;
1379
1380         do {
1381                 unsigned int idx = parents->idx[level];
1382
1383                 sp = parents->parent[level];
1384                 if (!sp)
1385                         return;
1386
1387                 --sp->unsync_children;
1388                 WARN_ON((int)sp->unsync_children < 0);
1389                 __clear_bit(idx, sp->unsync_child_bitmap);
1390                 level++;
1391         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1392 }
1393
1394 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1395                                struct mmu_page_path *parents,
1396                                struct kvm_mmu_pages *pvec)
1397 {
1398         parents->parent[parent->role.level-1] = NULL;
1399         pvec->nr = 0;
1400 }
1401
1402 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1403                               struct kvm_mmu_page *parent)
1404 {
1405         int i;
1406         struct kvm_mmu_page *sp;
1407         struct mmu_page_path parents;
1408         struct kvm_mmu_pages pages;
1409         LIST_HEAD(invalid_list);
1410
1411         kvm_mmu_pages_init(parent, &parents, &pages);
1412         while (mmu_unsync_walk(parent, &pages)) {
1413                 int protected = 0;
1414
1415                 for_each_sp(pages, sp, parents, i)
1416                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1417
1418                 if (protected)
1419                         kvm_flush_remote_tlbs(vcpu->kvm);
1420
1421                 for_each_sp(pages, sp, parents, i) {
1422                         kvm_sync_page(vcpu, sp, &invalid_list);
1423                         mmu_pages_clear_parents(&parents);
1424                 }
1425                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1426                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1427                 kvm_mmu_pages_init(parent, &parents, &pages);
1428         }
1429 }
1430
1431 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1432                                              gfn_t gfn,
1433                                              gva_t gaddr,
1434                                              unsigned level,
1435                                              int direct,
1436                                              unsigned access,
1437                                              u64 *parent_pte)
1438 {
1439         union kvm_mmu_page_role role;
1440         unsigned quadrant;
1441         struct kvm_mmu_page *sp;
1442         struct hlist_node *node;
1443         bool need_sync = false;
1444
1445         role = vcpu->arch.mmu.base_role;
1446         role.level = level;
1447         role.direct = direct;
1448         if (role.direct)
1449                 role.cr4_pae = 0;
1450         role.access = access;
1451         if (!vcpu->arch.mmu.direct_map
1452             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1453                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1454                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1455                 role.quadrant = quadrant;
1456         }
1457         for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1458                 if (!need_sync && sp->unsync)
1459                         need_sync = true;
1460
1461                 if (sp->role.word != role.word)
1462                         continue;
1463
1464                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1465                         break;
1466
1467                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1468                 if (sp->unsync_children) {
1469                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1470                         kvm_mmu_mark_parents_unsync(sp);
1471                 } else if (sp->unsync)
1472                         kvm_mmu_mark_parents_unsync(sp);
1473
1474                 trace_kvm_mmu_get_page(sp, false);
1475                 return sp;
1476         }
1477         ++vcpu->kvm->stat.mmu_cache_miss;
1478         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1479         if (!sp)
1480                 return sp;
1481         sp->gfn = gfn;
1482         sp->role = role;
1483         hlist_add_head(&sp->hash_link,
1484                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1485         if (!direct) {
1486                 if (rmap_write_protect(vcpu->kvm, gfn))
1487                         kvm_flush_remote_tlbs(vcpu->kvm);
1488                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1489                         kvm_sync_pages(vcpu, gfn);
1490
1491                 account_shadowed(vcpu->kvm, gfn);
1492         }
1493         if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
1494                 vcpu->arch.mmu.prefetch_page(vcpu, sp);
1495         else
1496                 nonpaging_prefetch_page(vcpu, sp);
1497         trace_kvm_mmu_get_page(sp, true);
1498         return sp;
1499 }
1500
1501 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1502                              struct kvm_vcpu *vcpu, u64 addr)
1503 {
1504         iterator->addr = addr;
1505         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1506         iterator->level = vcpu->arch.mmu.shadow_root_level;
1507         if (iterator->level == PT32E_ROOT_LEVEL) {
1508                 iterator->shadow_addr
1509                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1510                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1511                 --iterator->level;
1512                 if (!iterator->shadow_addr)
1513                         iterator->level = 0;
1514         }
1515 }
1516
1517 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1518 {
1519         if (iterator->level < PT_PAGE_TABLE_LEVEL)
1520                 return false;
1521
1522         if (iterator->level == PT_PAGE_TABLE_LEVEL)
1523                 if (is_large_pte(*iterator->sptep))
1524                         return false;
1525
1526         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1527         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1528         return true;
1529 }
1530
1531 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1532 {
1533         iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
1534         --iterator->level;
1535 }
1536
1537 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1538 {
1539         u64 spte;
1540
1541         spte = __pa(sp->spt)
1542                 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1543                 | PT_WRITABLE_MASK | PT_USER_MASK;
1544         __set_spte(sptep, spte);
1545 }
1546
1547 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1548 {
1549         if (is_large_pte(*sptep)) {
1550                 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
1551                 kvm_flush_remote_tlbs(vcpu->kvm);
1552         }
1553 }
1554
1555 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1556                                    unsigned direct_access)
1557 {
1558         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1559                 struct kvm_mmu_page *child;
1560
1561                 /*
1562                  * For the direct sp, if the guest pte's dirty bit
1563                  * changed form clean to dirty, it will corrupt the
1564                  * sp's access: allow writable in the read-only sp,
1565                  * so we should update the spte at this point to get
1566                  * a new sp with the correct access.
1567                  */
1568                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1569                 if (child->role.access == direct_access)
1570                         return;
1571
1572                 mmu_page_remove_parent_pte(child, sptep);
1573                 __set_spte(sptep, shadow_trap_nonpresent_pte);
1574                 kvm_flush_remote_tlbs(vcpu->kvm);
1575         }
1576 }
1577
1578 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1579                                          struct kvm_mmu_page *sp)
1580 {
1581         unsigned i;
1582         u64 *pt;
1583         u64 ent;
1584
1585         pt = sp->spt;
1586
1587         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1588                 ent = pt[i];
1589
1590                 if (is_shadow_present_pte(ent)) {
1591                         if (!is_last_spte(ent, sp->role.level)) {
1592                                 ent &= PT64_BASE_ADDR_MASK;
1593                                 mmu_page_remove_parent_pte(page_header(ent),
1594                                                            &pt[i]);
1595                         } else {
1596                                 if (is_large_pte(ent))
1597                                         --kvm->stat.lpages;
1598                                 drop_spte(kvm, &pt[i],
1599                                           shadow_trap_nonpresent_pte);
1600                         }
1601                 }
1602                 pt[i] = shadow_trap_nonpresent_pte;
1603         }
1604 }
1605
1606 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1607 {
1608         mmu_page_remove_parent_pte(sp, parent_pte);
1609 }
1610
1611 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1612 {
1613         int i;
1614         struct kvm_vcpu *vcpu;
1615
1616         kvm_for_each_vcpu(i, vcpu, kvm)
1617                 vcpu->arch.last_pte_updated = NULL;
1618 }
1619
1620 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1621 {
1622         u64 *parent_pte;
1623
1624         while (sp->multimapped || sp->parent_pte) {
1625                 if (!sp->multimapped)
1626                         parent_pte = sp->parent_pte;
1627                 else {
1628                         struct kvm_pte_chain *chain;
1629
1630                         chain = container_of(sp->parent_ptes.first,
1631                                              struct kvm_pte_chain, link);
1632                         parent_pte = chain->parent_ptes[0];
1633                 }
1634                 BUG_ON(!parent_pte);
1635                 kvm_mmu_put_page(sp, parent_pte);
1636                 __set_spte(parent_pte, shadow_trap_nonpresent_pte);
1637         }
1638 }
1639
1640 static int mmu_zap_unsync_children(struct kvm *kvm,
1641                                    struct kvm_mmu_page *parent,
1642                                    struct list_head *invalid_list)
1643 {
1644         int i, zapped = 0;
1645         struct mmu_page_path parents;
1646         struct kvm_mmu_pages pages;
1647
1648         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1649                 return 0;
1650
1651         kvm_mmu_pages_init(parent, &parents, &pages);
1652         while (mmu_unsync_walk(parent, &pages)) {
1653                 struct kvm_mmu_page *sp;
1654
1655                 for_each_sp(pages, sp, parents, i) {
1656                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1657                         mmu_pages_clear_parents(&parents);
1658                         zapped++;
1659                 }
1660                 kvm_mmu_pages_init(parent, &parents, &pages);
1661         }
1662
1663         return zapped;
1664 }
1665
1666 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1667                                     struct list_head *invalid_list)
1668 {
1669         int ret;
1670
1671         trace_kvm_mmu_prepare_zap_page(sp);
1672         ++kvm->stat.mmu_shadow_zapped;
1673         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1674         kvm_mmu_page_unlink_children(kvm, sp);
1675         kvm_mmu_unlink_parents(kvm, sp);
1676         if (!sp->role.invalid && !sp->role.direct)
1677                 unaccount_shadowed(kvm, sp->gfn);
1678         if (sp->unsync)
1679                 kvm_unlink_unsync_page(kvm, sp);
1680         if (!sp->root_count) {
1681                 /* Count self */
1682                 ret++;
1683                 list_move(&sp->link, invalid_list);
1684         } else {
1685                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1686                 kvm_reload_remote_mmus(kvm);
1687         }
1688
1689         sp->role.invalid = 1;
1690         kvm_mmu_reset_last_pte_updated(kvm);
1691         return ret;
1692 }
1693
1694 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1695                                     struct list_head *invalid_list)
1696 {
1697         struct kvm_mmu_page *sp;
1698
1699         if (list_empty(invalid_list))
1700                 return;
1701
1702         kvm_flush_remote_tlbs(kvm);
1703
1704         do {
1705                 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1706                 WARN_ON(!sp->role.invalid || sp->root_count);
1707                 kvm_mmu_free_page(kvm, sp);
1708         } while (!list_empty(invalid_list));
1709
1710 }
1711
1712 /*
1713  * Changing the number of mmu pages allocated to the vm
1714  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
1715  */
1716 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
1717 {
1718         LIST_HEAD(invalid_list);
1719         /*
1720          * If we set the number of mmu pages to be smaller be than the
1721          * number of actived pages , we must to free some mmu pages before we
1722          * change the value
1723          */
1724
1725         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
1726                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
1727                         !list_empty(&kvm->arch.active_mmu_pages)) {
1728                         struct kvm_mmu_page *page;
1729
1730                         page = container_of(kvm->arch.active_mmu_pages.prev,
1731                                             struct kvm_mmu_page, link);
1732                         kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
1733                         kvm_mmu_commit_zap_page(kvm, &invalid_list);
1734                 }
1735                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
1736         }
1737
1738         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
1739 }
1740
1741 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1742 {
1743         struct kvm_mmu_page *sp;
1744         struct hlist_node *node;
1745         LIST_HEAD(invalid_list);
1746         int r;
1747
1748         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
1749         r = 0;
1750
1751         for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1752                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
1753                          sp->role.word);
1754                 r = 1;
1755                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1756         }
1757         kvm_mmu_commit_zap_page(kvm, &invalid_list);
1758         return r;
1759 }
1760
1761 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1762 {
1763         struct kvm_mmu_page *sp;
1764         struct hlist_node *node;
1765         LIST_HEAD(invalid_list);
1766
1767         for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1768                 pgprintk("%s: zap %llx %x\n",
1769                          __func__, gfn, sp->role.word);
1770                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1771         }
1772         kvm_mmu_commit_zap_page(kvm, &invalid_list);
1773 }
1774
1775 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1776 {
1777         int slot = memslot_id(kvm, gfn);
1778         struct kvm_mmu_page *sp = page_header(__pa(pte));
1779
1780         __set_bit(slot, sp->slot_bitmap);
1781 }
1782
1783 static void mmu_convert_notrap(struct kvm_mmu_page *sp)
1784 {
1785         int i;
1786         u64 *pt = sp->spt;
1787
1788         if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
1789                 return;
1790
1791         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1792                 if (pt[i] == shadow_notrap_nonpresent_pte)
1793                         __set_spte(&pt[i], shadow_trap_nonpresent_pte);
1794         }
1795 }
1796
1797 /*
1798  * The function is based on mtrr_type_lookup() in
1799  * arch/x86/kernel/cpu/mtrr/generic.c
1800  */
1801 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
1802                          u64 start, u64 end)
1803 {
1804         int i;
1805         u64 base, mask;
1806         u8 prev_match, curr_match;
1807         int num_var_ranges = KVM_NR_VAR_MTRR;
1808
1809         if (!mtrr_state->enabled)
1810                 return 0xFF;
1811
1812         /* Make end inclusive end, instead of exclusive */
1813         end--;
1814
1815         /* Look in fixed ranges. Just return the type as per start */
1816         if (mtrr_state->have_fixed && (start < 0x100000)) {
1817                 int idx;
1818
1819                 if (start < 0x80000) {
1820                         idx = 0;
1821                         idx += (start >> 16);
1822                         return mtrr_state->fixed_ranges[idx];
1823                 } else if (start < 0xC0000) {
1824                         idx = 1 * 8;
1825                         idx += ((start - 0x80000) >> 14);
1826                         return mtrr_state->fixed_ranges[idx];
1827                 } else if (start < 0x1000000) {
1828                         idx = 3 * 8;
1829                         idx += ((start - 0xC0000) >> 12);
1830                         return mtrr_state->fixed_ranges[idx];
1831                 }
1832         }
1833
1834         /*
1835          * Look in variable ranges
1836          * Look of multiple ranges matching this address and pick type
1837          * as per MTRR precedence
1838          */
1839         if (!(mtrr_state->enabled & 2))
1840                 return mtrr_state->def_type;
1841
1842         prev_match = 0xFF;
1843         for (i = 0; i < num_var_ranges; ++i) {
1844                 unsigned short start_state, end_state;
1845
1846                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
1847                         continue;
1848
1849                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
1850                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
1851                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
1852                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
1853
1854                 start_state = ((start & mask) == (base & mask));
1855                 end_state = ((end & mask) == (base & mask));
1856                 if (start_state != end_state)
1857                         return 0xFE;
1858
1859                 if ((start & mask) != (base & mask))
1860                         continue;
1861
1862                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
1863                 if (prev_match == 0xFF) {
1864                         prev_match = curr_match;
1865                         continue;
1866                 }
1867
1868                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
1869                     curr_match == MTRR_TYPE_UNCACHABLE)
1870                         return MTRR_TYPE_UNCACHABLE;
1871
1872                 if ((prev_match == MTRR_TYPE_WRBACK &&
1873                      curr_match == MTRR_TYPE_WRTHROUGH) ||
1874                     (prev_match == MTRR_TYPE_WRTHROUGH &&
1875                      curr_match == MTRR_TYPE_WRBACK)) {
1876                         prev_match = MTRR_TYPE_WRTHROUGH;
1877                         curr_match = MTRR_TYPE_WRTHROUGH;
1878                 }
1879
1880                 if (prev_match != curr_match)
1881                         return MTRR_TYPE_UNCACHABLE;
1882         }
1883
1884         if (prev_match != 0xFF)
1885                 return prev_match;
1886
1887         return mtrr_state->def_type;
1888 }
1889
1890 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
1891 {
1892         u8 mtrr;
1893
1894         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
1895                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
1896         if (mtrr == 0xfe || mtrr == 0xff)
1897                 mtrr = MTRR_TYPE_WRBACK;
1898         return mtrr;
1899 }
1900 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
1901
1902 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1903 {
1904         trace_kvm_mmu_unsync_page(sp);
1905         ++vcpu->kvm->stat.mmu_unsync;
1906         sp->unsync = 1;
1907
1908         kvm_mmu_mark_parents_unsync(sp);
1909         mmu_convert_notrap(sp);
1910 }
1911
1912 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1913 {
1914         struct kvm_mmu_page *s;
1915         struct hlist_node *node;
1916
1917         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1918                 if (s->unsync)
1919                         continue;
1920                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1921                 __kvm_unsync_page(vcpu, s);
1922         }
1923 }
1924
1925 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
1926                                   bool can_unsync)
1927 {
1928         struct kvm_mmu_page *s;
1929         struct hlist_node *node;
1930         bool need_unsync = false;
1931
1932         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1933                 if (!can_unsync)
1934                         return 1;
1935
1936                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
1937                         return 1;
1938
1939                 if (!need_unsync && !s->unsync) {
1940                         if (!oos_shadow)
1941                                 return 1;
1942                         need_unsync = true;
1943                 }
1944         }
1945         if (need_unsync)
1946                 kvm_unsync_pages(vcpu, gfn);
1947         return 0;
1948 }
1949
1950 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1951                     unsigned pte_access, int user_fault,
1952                     int write_fault, int dirty, int level,
1953                     gfn_t gfn, pfn_t pfn, bool speculative,
1954                     bool can_unsync, bool reset_host_protection)
1955 {
1956         u64 spte;
1957         int ret = 0;
1958
1959         /*
1960          * We don't set the accessed bit, since we sometimes want to see
1961          * whether the guest actually used the pte (in order to detect
1962          * demand paging).
1963          */
1964         spte = shadow_base_present_pte;
1965         if (!speculative)
1966                 spte |= shadow_accessed_mask;
1967         if (!dirty)
1968                 pte_access &= ~ACC_WRITE_MASK;
1969         if (pte_access & ACC_EXEC_MASK)
1970                 spte |= shadow_x_mask;
1971         else
1972                 spte |= shadow_nx_mask;
1973         if (pte_access & ACC_USER_MASK)
1974                 spte |= shadow_user_mask;
1975         if (level > PT_PAGE_TABLE_LEVEL)
1976                 spte |= PT_PAGE_SIZE_MASK;
1977         if (vcpu->arch.mmu.direct_map)
1978                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
1979                         kvm_is_mmio_pfn(pfn));
1980
1981         if (reset_host_protection)
1982                 spte |= SPTE_HOST_WRITEABLE;
1983
1984         spte |= (u64)pfn << PAGE_SHIFT;
1985
1986         if ((pte_access & ACC_WRITE_MASK)
1987             || (!vcpu->arch.mmu.direct_map && write_fault
1988                 && !is_write_protection(vcpu) && !user_fault)) {
1989
1990                 if (level > PT_PAGE_TABLE_LEVEL &&
1991                     has_wrprotected_page(vcpu->kvm, gfn, level)) {
1992                         ret = 1;
1993                         drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
1994                         goto done;
1995                 }
1996
1997                 spte |= PT_WRITABLE_MASK;
1998
1999                 if (!vcpu->arch.mmu.direct_map
2000                     && !(pte_access & ACC_WRITE_MASK))
2001                         spte &= ~PT_USER_MASK;
2002
2003                 /*
2004                  * Optimization: for pte sync, if spte was writable the hash
2005                  * lookup is unnecessary (and expensive). Write protection
2006                  * is responsibility of mmu_get_page / kvm_sync_page.
2007                  * Same reasoning can be applied to dirty page accounting.
2008                  */
2009                 if (!can_unsync && is_writable_pte(*sptep))
2010                         goto set_pte;
2011
2012                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2013                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2014                                  __func__, gfn);
2015                         ret = 1;
2016                         pte_access &= ~ACC_WRITE_MASK;
2017                         if (is_writable_pte(spte))
2018                                 spte &= ~PT_WRITABLE_MASK;
2019                 }
2020         }
2021
2022         if (pte_access & ACC_WRITE_MASK)
2023                 mark_page_dirty(vcpu->kvm, gfn);
2024
2025 set_pte:
2026         update_spte(sptep, spte);
2027 done:
2028         return ret;
2029 }
2030
2031 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2032                          unsigned pt_access, unsigned pte_access,
2033                          int user_fault, int write_fault, int dirty,
2034                          int *ptwrite, int level, gfn_t gfn,
2035                          pfn_t pfn, bool speculative,
2036                          bool reset_host_protection)
2037 {
2038         int was_rmapped = 0;
2039         int rmap_count;
2040
2041         pgprintk("%s: spte %llx access %x write_fault %d"
2042                  " user_fault %d gfn %llx\n",
2043                  __func__, *sptep, pt_access,
2044                  write_fault, user_fault, gfn);
2045
2046         if (is_rmap_spte(*sptep)) {
2047                 /*
2048                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2049                  * the parent of the now unreachable PTE.
2050                  */
2051                 if (level > PT_PAGE_TABLE_LEVEL &&
2052                     !is_large_pte(*sptep)) {
2053                         struct kvm_mmu_page *child;
2054                         u64 pte = *sptep;
2055
2056                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2057                         mmu_page_remove_parent_pte(child, sptep);
2058                         __set_spte(sptep, shadow_trap_nonpresent_pte);
2059                         kvm_flush_remote_tlbs(vcpu->kvm);
2060                 } else if (pfn != spte_to_pfn(*sptep)) {
2061                         pgprintk("hfn old %llx new %llx\n",
2062                                  spte_to_pfn(*sptep), pfn);
2063                         drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
2064                         kvm_flush_remote_tlbs(vcpu->kvm);
2065                 } else
2066                         was_rmapped = 1;
2067         }
2068
2069         if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2070                       dirty, level, gfn, pfn, speculative, true,
2071                       reset_host_protection)) {
2072                 if (write_fault)
2073                         *ptwrite = 1;
2074                 kvm_mmu_flush_tlb(vcpu);
2075         }
2076
2077         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2078         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2079                  is_large_pte(*sptep)? "2MB" : "4kB",
2080                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2081                  *sptep, sptep);
2082         if (!was_rmapped && is_large_pte(*sptep))
2083                 ++vcpu->kvm->stat.lpages;
2084
2085         page_header_update_slot(vcpu->kvm, sptep, gfn);
2086         if (!was_rmapped) {
2087                 rmap_count = rmap_add(vcpu, sptep, gfn);
2088                 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2089                         rmap_recycle(vcpu, sptep, gfn);
2090         }
2091         kvm_release_pfn_clean(pfn);
2092         if (speculative) {
2093                 vcpu->arch.last_pte_updated = sptep;
2094                 vcpu->arch.last_pte_gfn = gfn;
2095         }
2096 }
2097
2098 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2099 {
2100 }
2101
2102 static struct kvm_memory_slot *
2103 pte_prefetch_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn, bool no_dirty_log)
2104 {
2105         struct kvm_memory_slot *slot;
2106
2107         slot = gfn_to_memslot(vcpu->kvm, gfn);
2108         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
2109               (no_dirty_log && slot->dirty_bitmap))
2110                 slot = NULL;
2111
2112         return slot;
2113 }
2114
2115 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2116                                      bool no_dirty_log)
2117 {
2118         struct kvm_memory_slot *slot;
2119         unsigned long hva;
2120
2121         slot = pte_prefetch_gfn_to_memslot(vcpu, gfn, no_dirty_log);
2122         if (!slot) {
2123                 get_page(bad_page);
2124                 return page_to_pfn(bad_page);
2125         }
2126
2127         hva = gfn_to_hva_memslot(slot, gfn);
2128
2129         return hva_to_pfn_atomic(vcpu->kvm, hva);
2130 }
2131
2132 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2133                                     struct kvm_mmu_page *sp,
2134                                     u64 *start, u64 *end)
2135 {
2136         struct page *pages[PTE_PREFETCH_NUM];
2137         unsigned access = sp->role.access;
2138         int i, ret;
2139         gfn_t gfn;
2140
2141         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2142         if (!pte_prefetch_gfn_to_memslot(vcpu, gfn, access & ACC_WRITE_MASK))
2143                 return -1;
2144
2145         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2146         if (ret <= 0)
2147                 return -1;
2148
2149         for (i = 0; i < ret; i++, gfn++, start++)
2150                 mmu_set_spte(vcpu, start, ACC_ALL,
2151                              access, 0, 0, 1, NULL,
2152                              sp->role.level, gfn,
2153                              page_to_pfn(pages[i]), true, true);
2154
2155         return 0;
2156 }
2157
2158 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2159                                   struct kvm_mmu_page *sp, u64 *sptep)
2160 {
2161         u64 *spte, *start = NULL;
2162         int i;
2163
2164         WARN_ON(!sp->role.direct);
2165
2166         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2167         spte = sp->spt + i;
2168
2169         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2170                 if (*spte != shadow_trap_nonpresent_pte || spte == sptep) {
2171                         if (!start)
2172                                 continue;
2173                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2174                                 break;
2175                         start = NULL;
2176                 } else if (!start)
2177                         start = spte;
2178         }
2179 }
2180
2181 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2182 {
2183         struct kvm_mmu_page *sp;
2184
2185         /*
2186          * Since it's no accessed bit on EPT, it's no way to
2187          * distinguish between actually accessed translations
2188          * and prefetched, so disable pte prefetch if EPT is
2189          * enabled.
2190          */
2191         if (!shadow_accessed_mask)
2192                 return;
2193
2194         sp = page_header(__pa(sptep));
2195         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2196                 return;
2197
2198         __direct_pte_prefetch(vcpu, sp, sptep);
2199 }
2200
2201 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2202                         int level, gfn_t gfn, pfn_t pfn)
2203 {
2204         struct kvm_shadow_walk_iterator iterator;
2205         struct kvm_mmu_page *sp;
2206         int pt_write = 0;
2207         gfn_t pseudo_gfn;
2208
2209         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2210                 if (iterator.level == level) {
2211                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
2212                                      0, write, 1, &pt_write,
2213                                      level, gfn, pfn, false, true);
2214                         direct_pte_prefetch(vcpu, iterator.sptep);
2215                         ++vcpu->stat.pf_fixed;
2216                         break;
2217                 }
2218
2219                 if (*iterator.sptep == shadow_trap_nonpresent_pte) {
2220                         u64 base_addr = iterator.addr;
2221
2222                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2223                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2224                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2225                                               iterator.level - 1,
2226                                               1, ACC_ALL, iterator.sptep);
2227                         if (!sp) {
2228                                 pgprintk("nonpaging_map: ENOMEM\n");
2229                                 kvm_release_pfn_clean(pfn);
2230                                 return -ENOMEM;
2231                         }
2232
2233                         __set_spte(iterator.sptep,
2234                                    __pa(sp->spt)
2235                                    | PT_PRESENT_MASK | PT_WRITABLE_MASK
2236                                    | shadow_user_mask | shadow_x_mask);
2237                 }
2238         }
2239         return pt_write;
2240 }
2241
2242 static void kvm_send_hwpoison_signal(struct kvm *kvm, gfn_t gfn)
2243 {
2244         char buf[1];
2245         void __user *hva;
2246         int r;
2247
2248         /* Touch the page, so send SIGBUS */
2249         hva = (void __user *)gfn_to_hva(kvm, gfn);
2250         r = copy_from_user(buf, hva, 1);
2251 }
2252
2253 static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
2254 {
2255         kvm_release_pfn_clean(pfn);
2256         if (is_hwpoison_pfn(pfn)) {
2257                 kvm_send_hwpoison_signal(kvm, gfn);
2258                 return 0;
2259         } else if (is_fault_pfn(pfn))
2260                 return -EFAULT;
2261
2262         return 1;
2263 }
2264
2265 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
2266 {
2267         int r;
2268         int level;
2269         pfn_t pfn;
2270         unsigned long mmu_seq;
2271
2272         level = mapping_level(vcpu, gfn);
2273
2274         /*
2275          * This path builds a PAE pagetable - so we can map 2mb pages at
2276          * maximum. Therefore check if the level is larger than that.
2277          */
2278         if (level > PT_DIRECTORY_LEVEL)
2279                 level = PT_DIRECTORY_LEVEL;
2280
2281         gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2282
2283         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2284         smp_rmb();
2285         pfn = gfn_to_pfn(vcpu->kvm, gfn);
2286
2287         /* mmio */
2288         if (is_error_pfn(pfn))
2289                 return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2290
2291         spin_lock(&vcpu->kvm->mmu_lock);
2292         if (mmu_notifier_retry(vcpu, mmu_seq))
2293                 goto out_unlock;
2294         kvm_mmu_free_some_pages(vcpu);
2295         r = __direct_map(vcpu, v, write, level, gfn, pfn);
2296         spin_unlock(&vcpu->kvm->mmu_lock);
2297
2298
2299         return r;
2300
2301 out_unlock:
2302         spin_unlock(&vcpu->kvm->mmu_lock);
2303         kvm_release_pfn_clean(pfn);
2304         return 0;
2305 }
2306
2307
2308 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2309 {
2310         int i;
2311         struct kvm_mmu_page *sp;
2312         LIST_HEAD(invalid_list);
2313
2314         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2315                 return;
2316         spin_lock(&vcpu->kvm->mmu_lock);
2317         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2318                 hpa_t root = vcpu->arch.mmu.root_hpa;
2319
2320                 sp = page_header(root);
2321                 --sp->root_count;
2322                 if (!sp->root_count && sp->role.invalid) {
2323                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2324                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2325                 }
2326                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2327                 spin_unlock(&vcpu->kvm->mmu_lock);
2328                 return;
2329         }
2330         for (i = 0; i < 4; ++i) {
2331                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2332
2333                 if (root) {
2334                         root &= PT64_BASE_ADDR_MASK;
2335                         sp = page_header(root);
2336                         --sp->root_count;
2337                         if (!sp->root_count && sp->role.invalid)
2338                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2339                                                          &invalid_list);
2340                 }
2341                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2342         }
2343         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2344         spin_unlock(&vcpu->kvm->mmu_lock);
2345         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2346 }
2347
2348 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2349 {
2350         int ret = 0;
2351
2352         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2353                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2354                 ret = 1;
2355         }
2356
2357         return ret;
2358 }
2359
2360 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2361 {
2362         int i;
2363         gfn_t root_gfn;
2364         struct kvm_mmu_page *sp;
2365         int direct = 0;
2366         u64 pdptr;
2367
2368         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2369
2370         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2371                 hpa_t root = vcpu->arch.mmu.root_hpa;
2372
2373                 ASSERT(!VALID_PAGE(root));
2374                 if (mmu_check_root(vcpu, root_gfn))
2375                         return 1;
2376                 if (vcpu->arch.mmu.direct_map) {
2377                         direct = 1;
2378                         root_gfn = 0;
2379                 }
2380                 spin_lock(&vcpu->kvm->mmu_lock);
2381                 kvm_mmu_free_some_pages(vcpu);
2382                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
2383                                       PT64_ROOT_LEVEL, direct,
2384                                       ACC_ALL, NULL);
2385                 root = __pa(sp->spt);
2386                 ++sp->root_count;
2387                 spin_unlock(&vcpu->kvm->mmu_lock);
2388                 vcpu->arch.mmu.root_hpa = root;
2389                 return 0;
2390         }
2391         direct = !is_paging(vcpu);
2392
2393         if (mmu_check_root(vcpu, root_gfn))
2394                 return 1;
2395
2396         for (i = 0; i < 4; ++i) {
2397                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2398
2399                 ASSERT(!VALID_PAGE(root));
2400                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2401                         pdptr = kvm_pdptr_read(vcpu, i);
2402                         if (!is_present_gpte(pdptr)) {
2403                                 vcpu->arch.mmu.pae_root[i] = 0;
2404                                 continue;
2405                         }
2406                         root_gfn = pdptr >> PAGE_SHIFT;
2407                         if (mmu_check_root(vcpu, root_gfn))
2408                                 return 1;
2409                 } else if (vcpu->arch.mmu.root_level == 0)
2410                         root_gfn = 0;
2411                 if (vcpu->arch.mmu.direct_map) {
2412                         direct = 1;
2413                         root_gfn = i << 30;
2414                 }
2415                 spin_lock(&vcpu->kvm->mmu_lock);
2416                 kvm_mmu_free_some_pages(vcpu);
2417                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2418                                       PT32_ROOT_LEVEL, direct,
2419                                       ACC_ALL, NULL);
2420                 root = __pa(sp->spt);
2421                 ++sp->root_count;
2422                 spin_unlock(&vcpu->kvm->mmu_lock);
2423
2424                 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2425         }
2426         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2427         return 0;
2428 }
2429
2430 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2431 {
2432         int i;
2433         struct kvm_mmu_page *sp;
2434
2435         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2436                 return;
2437         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2438                 hpa_t root = vcpu->arch.mmu.root_hpa;
2439                 sp = page_header(root);
2440                 mmu_sync_children(vcpu, sp);
2441                 return;
2442         }
2443         for (i = 0; i < 4; ++i) {
2444                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2445
2446                 if (root && VALID_PAGE(root)) {
2447                         root &= PT64_BASE_ADDR_MASK;
2448                         sp = page_header(root);
2449                         mmu_sync_children(vcpu, sp);
2450                 }
2451         }
2452 }
2453
2454 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2455 {
2456         spin_lock(&vcpu->kvm->mmu_lock);
2457         mmu_sync_roots(vcpu);
2458         spin_unlock(&vcpu->kvm->mmu_lock);
2459 }
2460
2461 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2462                                   u32 access, u32 *error)
2463 {
2464         if (error)
2465                 *error = 0;
2466         return vaddr;
2467 }
2468
2469 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2470                                          u32 access, u32 *error)
2471 {
2472         if (error)
2473                 *error = 0;
2474         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2475 }
2476
2477 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2478                                 u32 error_code)
2479 {
2480         gfn_t gfn;
2481         int r;
2482
2483         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2484         r = mmu_topup_memory_caches(vcpu);
2485         if (r)
2486                 return r;
2487
2488         ASSERT(vcpu);
2489         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2490
2491         gfn = gva >> PAGE_SHIFT;
2492
2493         return nonpaging_map(vcpu, gva & PAGE_MASK,
2494                              error_code & PFERR_WRITE_MASK, gfn);
2495 }
2496
2497 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
2498                                 u32 error_code)
2499 {
2500         pfn_t pfn;
2501         int r;
2502         int level;
2503         gfn_t gfn = gpa >> PAGE_SHIFT;
2504         unsigned long mmu_seq;
2505
2506         ASSERT(vcpu);
2507         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2508
2509         r = mmu_topup_memory_caches(vcpu);
2510         if (r)
2511                 return r;
2512
2513         level = mapping_level(vcpu, gfn);
2514
2515         gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2516
2517         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2518         smp_rmb();
2519         pfn = gfn_to_pfn(vcpu->kvm, gfn);
2520         if (is_error_pfn(pfn))
2521                 return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2522         spin_lock(&vcpu->kvm->mmu_lock);
2523         if (mmu_notifier_retry(vcpu, mmu_seq))
2524                 goto out_unlock;
2525         kvm_mmu_free_some_pages(vcpu);
2526         r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
2527                          level, gfn, pfn);
2528         spin_unlock(&vcpu->kvm->mmu_lock);
2529
2530         return r;
2531
2532 out_unlock:
2533         spin_unlock(&vcpu->kvm->mmu_lock);
2534         kvm_release_pfn_clean(pfn);
2535         return 0;
2536 }
2537
2538 static void nonpaging_free(struct kvm_vcpu *vcpu)
2539 {
2540         mmu_free_roots(vcpu);
2541 }
2542
2543 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
2544                                   struct kvm_mmu *context)
2545 {
2546         context->new_cr3 = nonpaging_new_cr3;
2547         context->page_fault = nonpaging_page_fault;
2548         context->gva_to_gpa = nonpaging_gva_to_gpa;
2549         context->free = nonpaging_free;
2550         context->prefetch_page = nonpaging_prefetch_page;
2551         context->sync_page = nonpaging_sync_page;
2552         context->invlpg = nonpaging_invlpg;
2553         context->root_level = 0;
2554         context->shadow_root_level = PT32E_ROOT_LEVEL;
2555         context->root_hpa = INVALID_PAGE;
2556         context->direct_map = true;
2557         return 0;
2558 }
2559
2560 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2561 {
2562         ++vcpu->stat.tlb_flush;
2563         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2564 }
2565
2566 static void paging_new_cr3(struct kvm_vcpu *vcpu)
2567 {
2568         pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
2569         mmu_free_roots(vcpu);
2570 }
2571
2572 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
2573 {
2574         return vcpu->arch.cr3;
2575 }
2576
2577 static void inject_page_fault(struct kvm_vcpu *vcpu)
2578 {
2579         vcpu->arch.mmu.inject_page_fault(vcpu);
2580 }
2581
2582 static void paging_free(struct kvm_vcpu *vcpu)
2583 {
2584         nonpaging_free(vcpu);
2585 }
2586
2587 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2588 {
2589         int bit7;
2590
2591         bit7 = (gpte >> 7) & 1;
2592         return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2593 }
2594
2595 #define PTTYPE 64
2596 #include "paging_tmpl.h"
2597 #undef PTTYPE
2598
2599 #define PTTYPE 32
2600 #include "paging_tmpl.h"
2601 #undef PTTYPE
2602
2603 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
2604                                   struct kvm_mmu *context,
2605                                   int level)
2606 {
2607         int maxphyaddr = cpuid_maxphyaddr(vcpu);
2608         u64 exb_bit_rsvd = 0;
2609
2610         if (!is_nx(vcpu))
2611                 exb_bit_rsvd = rsvd_bits(63, 63);
2612         switch (level) {
2613         case PT32_ROOT_LEVEL:
2614                 /* no rsvd bits for 2 level 4K page table entries */
2615                 context->rsvd_bits_mask[0][1] = 0;
2616                 context->rsvd_bits_mask[0][0] = 0;
2617                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2618
2619                 if (!is_pse(vcpu)) {
2620                         context->rsvd_bits_mask[1][1] = 0;
2621                         break;
2622                 }
2623
2624                 if (is_cpuid_PSE36())
2625                         /* 36bits PSE 4MB page */
2626                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
2627                 else
2628                         /* 32 bits PSE 4MB page */
2629                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
2630                 break;
2631         case PT32E_ROOT_LEVEL:
2632                 context->rsvd_bits_mask[0][2] =
2633                         rsvd_bits(maxphyaddr, 63) |
2634                         rsvd_bits(7, 8) | rsvd_bits(1, 2);      /* PDPTE */
2635                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2636                         rsvd_bits(maxphyaddr, 62);      /* PDE */
2637                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2638                         rsvd_bits(maxphyaddr, 62);      /* PTE */
2639                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2640                         rsvd_bits(maxphyaddr, 62) |
2641                         rsvd_bits(13, 20);              /* large page */
2642                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2643                 break;
2644         case PT64_ROOT_LEVEL:
2645                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
2646                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2647                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
2648                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2649                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2650                         rsvd_bits(maxphyaddr, 51);
2651                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2652                         rsvd_bits(maxphyaddr, 51);
2653                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
2654                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
2655                         rsvd_bits(maxphyaddr, 51) |
2656                         rsvd_bits(13, 29);
2657                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2658                         rsvd_bits(maxphyaddr, 51) |
2659                         rsvd_bits(13, 20);              /* large page */
2660                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2661                 break;
2662         }
2663 }
2664
2665 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
2666                                         struct kvm_mmu *context,
2667                                         int level)
2668 {
2669         reset_rsvds_bits_mask(vcpu, context, level);
2670
2671         ASSERT(is_pae(vcpu));
2672         context->new_cr3 = paging_new_cr3;
2673         context->page_fault = paging64_page_fault;
2674         context->gva_to_gpa = paging64_gva_to_gpa;
2675         context->prefetch_page = paging64_prefetch_page;
2676         context->sync_page = paging64_sync_page;
2677         context->invlpg = paging64_invlpg;
2678         context->free = paging_free;
2679         context->root_level = level;
2680         context->shadow_root_level = level;
2681         context->root_hpa = INVALID_PAGE;
2682         context->direct_map = false;
2683         return 0;
2684 }
2685
2686 static int paging64_init_context(struct kvm_vcpu *vcpu,
2687                                  struct kvm_mmu *context)
2688 {
2689         return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
2690 }
2691
2692 static int paging32_init_context(struct kvm_vcpu *vcpu,
2693                                  struct kvm_mmu *context)
2694 {
2695         reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
2696
2697         context->new_cr3 = paging_new_cr3;
2698         context->page_fault = paging32_page_fault;
2699         context->gva_to_gpa = paging32_gva_to_gpa;
2700         context->free = paging_free;
2701         context->prefetch_page = paging32_prefetch_page;
2702         context->sync_page = paging32_sync_page;
2703         context->invlpg = paging32_invlpg;
2704         context->root_level = PT32_ROOT_LEVEL;
2705         context->shadow_root_level = PT32E_ROOT_LEVEL;
2706         context->root_hpa = INVALID_PAGE;
2707         context->direct_map = false;
2708         return 0;
2709 }
2710
2711 static int paging32E_init_context(struct kvm_vcpu *vcpu,
2712                                   struct kvm_mmu *context)
2713 {
2714         return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
2715 }
2716
2717 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
2718 {
2719         struct kvm_mmu *context = vcpu->arch.walk_mmu;
2720
2721         context->new_cr3 = nonpaging_new_cr3;
2722         context->page_fault = tdp_page_fault;
2723         context->free = nonpaging_free;
2724         context->prefetch_page = nonpaging_prefetch_page;
2725         context->sync_page = nonpaging_sync_page;
2726         context->invlpg = nonpaging_invlpg;
2727         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
2728         context->root_hpa = INVALID_PAGE;
2729         context->direct_map = true;
2730         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
2731         context->get_cr3 = get_cr3;
2732         context->inject_page_fault = kvm_inject_page_fault;
2733
2734         if (!is_paging(vcpu)) {
2735                 context->gva_to_gpa = nonpaging_gva_to_gpa;
2736                 context->root_level = 0;
2737         } else if (is_long_mode(vcpu)) {
2738                 reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
2739                 context->gva_to_gpa = paging64_gva_to_gpa;
2740                 context->root_level = PT64_ROOT_LEVEL;
2741         } else if (is_pae(vcpu)) {
2742                 reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
2743                 context->gva_to_gpa = paging64_gva_to_gpa;
2744                 context->root_level = PT32E_ROOT_LEVEL;
2745         } else {
2746                 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
2747                 context->gva_to_gpa = paging32_gva_to_gpa;
2748                 context->root_level = PT32_ROOT_LEVEL;
2749         }
2750
2751         return 0;
2752 }
2753
2754 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
2755 {
2756         int r;
2757         ASSERT(vcpu);
2758         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2759
2760         if (!is_paging(vcpu))
2761                 r = nonpaging_init_context(vcpu, context);
2762         else if (is_long_mode(vcpu))
2763                 r = paging64_init_context(vcpu, context);
2764         else if (is_pae(vcpu))
2765                 r = paging32E_init_context(vcpu, context);
2766         else
2767                 r = paging32_init_context(vcpu, context);
2768
2769         vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
2770         vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
2771
2772         return r;
2773 }
2774 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
2775
2776 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
2777 {
2778         int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
2779
2780         vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
2781         vcpu->arch.walk_mmu->get_cr3           = get_cr3;
2782         vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
2783
2784         return r;
2785 }
2786
2787 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
2788 {
2789         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
2790
2791         g_context->get_cr3           = get_cr3;
2792         g_context->inject_page_fault = kvm_inject_page_fault;
2793
2794         /*
2795          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
2796          * translation of l2_gpa to l1_gpa addresses is done using the
2797          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
2798          * functions between mmu and nested_mmu are swapped.
2799          */
2800         if (!is_paging(vcpu)) {
2801                 g_context->root_level = 0;
2802                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
2803         } else if (is_long_mode(vcpu)) {
2804                 reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
2805                 g_context->root_level = PT64_ROOT_LEVEL;
2806                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
2807         } else if (is_pae(vcpu)) {
2808                 reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
2809                 g_context->root_level = PT32E_ROOT_LEVEL;
2810                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
2811         } else {
2812                 reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
2813                 g_context->root_level = PT32_ROOT_LEVEL;
2814                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
2815         }
2816
2817         return 0;
2818 }
2819
2820 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
2821 {
2822         vcpu->arch.update_pte.pfn = bad_pfn;
2823
2824         if (mmu_is_nested(vcpu))
2825                 return init_kvm_nested_mmu(vcpu);
2826         else if (tdp_enabled)
2827                 return init_kvm_tdp_mmu(vcpu);
2828         else
2829                 return init_kvm_softmmu(vcpu);
2830 }
2831
2832 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
2833 {
2834         ASSERT(vcpu);
2835         if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
2836                 /* mmu.free() should set root_hpa = INVALID_PAGE */
2837                 vcpu->arch.mmu.free(vcpu);
2838 }
2839
2840 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
2841 {
2842         destroy_kvm_mmu(vcpu);
2843         return init_kvm_mmu(vcpu);
2844 }
2845 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
2846
2847 int kvm_mmu_load(struct kvm_vcpu *vcpu)
2848 {
2849         int r;
2850
2851         r = mmu_topup_memory_caches(vcpu);
2852         if (r)
2853                 goto out;
2854         r = mmu_alloc_roots(vcpu);
2855         spin_lock(&vcpu->kvm->mmu_lock);
2856         mmu_sync_roots(vcpu);
2857         spin_unlock(&vcpu->kvm->mmu_lock);
2858         if (r)
2859                 goto out;
2860         /* set_cr3() should ensure TLB has been flushed */
2861         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
2862 out:
2863         return r;
2864 }
2865 EXPORT_SYMBOL_GPL(kvm_mmu_load);
2866
2867 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
2868 {
2869         mmu_free_roots(vcpu);
2870 }
2871
2872 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
2873                                   struct kvm_mmu_page *sp,
2874                                   u64 *spte)
2875 {
2876         u64 pte;
2877         struct kvm_mmu_page *child;
2878
2879         pte = *spte;
2880         if (is_shadow_present_pte(pte)) {
2881                 if (is_last_spte(pte, sp->role.level))
2882                         drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte);
2883                 else {
2884                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2885                         mmu_page_remove_parent_pte(child, spte);
2886                 }
2887         }
2888         __set_spte(spte, shadow_trap_nonpresent_pte);
2889         if (is_large_pte(pte))
2890                 --vcpu->kvm->stat.lpages;
2891 }
2892
2893 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
2894                                   struct kvm_mmu_page *sp,
2895                                   u64 *spte,
2896                                   const void *new)
2897 {
2898         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
2899                 ++vcpu->kvm->stat.mmu_pde_zapped;
2900                 return;
2901         }
2902
2903         if (is_rsvd_bits_set(&vcpu->arch.mmu, *(u64 *)new, PT_PAGE_TABLE_LEVEL))
2904                 return;
2905
2906         ++vcpu->kvm->stat.mmu_pte_updated;
2907         if (!sp->role.cr4_pae)
2908                 paging32_update_pte(vcpu, sp, spte, new);
2909         else
2910                 paging64_update_pte(vcpu, sp, spte, new);
2911 }
2912
2913 static bool need_remote_flush(u64 old, u64 new)
2914 {
2915         if (!is_shadow_present_pte(old))
2916                 return false;
2917         if (!is_shadow_present_pte(new))
2918                 return true;
2919         if ((old ^ new) & PT64_BASE_ADDR_MASK)
2920                 return true;
2921         old ^= PT64_NX_MASK;
2922         new ^= PT64_NX_MASK;
2923         return (old & ~new & PT64_PERM_MASK) != 0;
2924 }
2925
2926 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
2927                                     bool remote_flush, bool local_flush)
2928 {
2929         if (zap_page)
2930                 return;
2931
2932         if (remote_flush)
2933                 kvm_flush_remote_tlbs(vcpu->kvm);
2934         else if (local_flush)
2935                 kvm_mmu_flush_tlb(vcpu);
2936 }
2937
2938 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
2939 {
2940         u64 *spte = vcpu->arch.last_pte_updated;
2941
2942         return !!(spte && (*spte & shadow_accessed_mask));
2943 }
2944
2945 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
2946                                           u64 gpte)
2947 {
2948         gfn_t gfn;
2949         pfn_t pfn;
2950
2951         if (!is_present_gpte(gpte))
2952                 return;
2953         gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
2954
2955         vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
2956         smp_rmb();
2957         pfn = gfn_to_pfn(vcpu->kvm, gfn);
2958
2959         if (is_error_pfn(pfn)) {
2960                 kvm_release_pfn_clean(pfn);
2961                 return;
2962         }
2963         vcpu->arch.update_pte.gfn = gfn;
2964         vcpu->arch.update_pte.pfn = pfn;
2965 }
2966
2967 static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2968 {
2969         u64 *spte = vcpu->arch.last_pte_updated;
2970
2971         if (spte
2972             && vcpu->arch.last_pte_gfn == gfn
2973             && shadow_accessed_mask
2974             && !(*spte & shadow_accessed_mask)
2975             && is_shadow_present_pte(*spte))
2976                 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
2977 }
2978
2979 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
2980                        const u8 *new, int bytes,
2981                        bool guest_initiated)
2982 {
2983         gfn_t gfn = gpa >> PAGE_SHIFT;
2984         union kvm_mmu_page_role mask = { .word = 0 };
2985         struct kvm_mmu_page *sp;
2986         struct hlist_node *node;
2987         LIST_HEAD(invalid_list);
2988         u64 entry, gentry;
2989         u64 *spte;
2990         unsigned offset = offset_in_page(gpa);
2991         unsigned pte_size;
2992         unsigned page_offset;
2993         unsigned misaligned;
2994         unsigned quadrant;
2995         int level;
2996         int flooded = 0;
2997         int npte;
2998         int r;
2999         int invlpg_counter;
3000         bool remote_flush, local_flush, zap_page;
3001
3002         zap_page = remote_flush = local_flush = false;
3003
3004         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3005
3006         invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
3007
3008         /*
3009          * Assume that the pte write on a page table of the same type
3010          * as the current vcpu paging mode.  This is nearly always true
3011          * (might be false while changing modes).  Note it is verified later
3012          * by update_pte().
3013          */
3014         if ((is_pae(vcpu) && bytes == 4) || !new) {
3015                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3016                 if (is_pae(vcpu)) {
3017                         gpa &= ~(gpa_t)7;
3018                         bytes = 8;
3019                 }
3020                 r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
3021                 if (r)
3022                         gentry = 0;
3023                 new = (const u8 *)&gentry;
3024         }
3025
3026         switch (bytes) {
3027         case 4:
3028                 gentry = *(const u32 *)new;
3029                 break;
3030         case 8:
3031                 gentry = *(const u64 *)new;
3032                 break;
3033         default:
3034                 gentry = 0;
3035                 break;
3036         }
3037
3038         mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
3039         spin_lock(&vcpu->kvm->mmu_lock);
3040         if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
3041                 gentry = 0;
3042         kvm_mmu_access_page(vcpu, gfn);
3043         kvm_mmu_free_some_pages(vcpu);
3044         ++vcpu->kvm->stat.mmu_pte_write;
3045         trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3046         if (guest_initiated) {
3047                 if (gfn == vcpu->arch.last_pt_write_gfn
3048                     && !last_updated_pte_accessed(vcpu)) {
3049                         ++vcpu->arch.last_pt_write_count;
3050                         if (vcpu->arch.last_pt_write_count >= 3)
3051                                 flooded = 1;
3052                 } else {
3053                         vcpu->arch.last_pt_write_gfn = gfn;
3054                         vcpu->arch.last_pt_write_count = 1;
3055                         vcpu->arch.last_pte_updated = NULL;
3056                 }
3057         }
3058
3059         mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3060         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3061                 pte_size = sp->role.cr4_pae ? 8 : 4;
3062                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3063                 misaligned |= bytes < 4;
3064                 if (misaligned || flooded) {
3065                         /*
3066                          * Misaligned accesses are too much trouble to fix
3067                          * up; also, they usually indicate a page is not used
3068                          * as a page table.
3069                          *
3070                          * If we're seeing too many writes to a page,
3071                          * it may no longer be a page table, or we may be
3072                          * forking, in which case it is better to unmap the
3073                          * page.
3074                          */
3075                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3076                                  gpa, bytes, sp->role.word);
3077                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3078                                                      &invalid_list);
3079                         ++vcpu->kvm->stat.mmu_flooded;
3080                         continue;
3081                 }
3082                 page_offset = offset;
3083                 level = sp->role.level;
3084                 npte = 1;
3085                 if (!sp->role.cr4_pae) {
3086                         page_offset <<= 1;      /* 32->64 */
3087                         /*
3088                          * A 32-bit pde maps 4MB while the shadow pdes map
3089                          * only 2MB.  So we need to double the offset again
3090                          * and zap two pdes instead of one.
3091                          */
3092                         if (level == PT32_ROOT_LEVEL) {
3093                                 page_offset &= ~7; /* kill rounding error */
3094                                 page_offset <<= 1;
3095                                 npte = 2;
3096                         }
3097                         quadrant = page_offset >> PAGE_SHIFT;
3098                         page_offset &= ~PAGE_MASK;
3099                         if (quadrant != sp->role.quadrant)
3100                                 continue;
3101                 }
3102                 local_flush = true;
3103                 spte = &sp->spt[page_offset / sizeof(*spte)];
3104                 while (npte--) {
3105                         entry = *spte;
3106                         mmu_pte_write_zap_pte(vcpu, sp, spte);
3107                         if (gentry &&
3108                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3109                               & mask.word))
3110                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3111                         if (!remote_flush && need_remote_flush(entry, *spte))
3112                                 remote_flush = true;
3113                         ++spte;
3114                 }
3115         }
3116         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3117         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3118         trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3119         spin_unlock(&vcpu->kvm->mmu_lock);
3120         if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
3121                 kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
3122                 vcpu->arch.update_pte.pfn = bad_pfn;
3123         }
3124 }
3125
3126 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3127 {
3128         gpa_t gpa;
3129         int r;
3130
3131         if (vcpu->arch.mmu.direct_map)
3132                 return 0;
3133
3134         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3135
3136         spin_lock(&vcpu->kvm->mmu_lock);
3137         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3138         spin_unlock(&vcpu->kvm->mmu_lock);
3139         return r;
3140 }
3141 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3142
3143 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3144 {
3145         LIST_HEAD(invalid_list);
3146
3147         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3148                !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3149                 struct kvm_mmu_page *sp;
3150
3151                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3152                                   struct kvm_mmu_page, link);
3153                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3154                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3155                 ++vcpu->kvm->stat.mmu_recycled;
3156         }
3157 }
3158
3159 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
3160 {
3161         int r;
3162         enum emulation_result er;
3163
3164         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
3165         if (r < 0)
3166                 goto out;
3167
3168         if (!r) {
3169                 r = 1;
3170                 goto out;
3171         }
3172
3173         r = mmu_topup_memory_caches(vcpu);
3174         if (r)
3175                 goto out;
3176
3177         er = emulate_instruction(vcpu, cr2, error_code, 0);
3178
3179         switch (er) {
3180         case EMULATE_DONE:
3181                 return 1;
3182         case EMULATE_DO_MMIO:
3183                 ++vcpu->stat.mmio_exits;
3184                 /* fall through */
3185         case EMULATE_FAIL:
3186                 return 0;
3187         default:
3188                 BUG();
3189         }
3190 out:
3191         return r;
3192 }
3193 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3194
3195 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3196 {
3197         vcpu->arch.mmu.invlpg(vcpu, gva);
3198         kvm_mmu_flush_tlb(vcpu);
3199         ++vcpu->stat.invlpg;
3200 }
3201 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3202
3203 void kvm_enable_tdp(void)
3204 {
3205         tdp_enabled = true;
3206 }
3207 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3208
3209 void kvm_disable_tdp(void)
3210 {
3211         tdp_enabled = false;
3212 }
3213 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3214
3215 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3216 {
3217         free_page((unsigned long)vcpu->arch.mmu.pae_root);
3218 }
3219
3220 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3221 {
3222         struct page *page;
3223         int i;
3224
3225         ASSERT(vcpu);
3226
3227         /*
3228          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3229          * Therefore we need to allocate shadow page tables in the first
3230          * 4GB of memory, which happens to fit the DMA32 zone.
3231          */
3232         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3233         if (!page)
3234                 return -ENOMEM;
3235
3236         vcpu->arch.mmu.pae_root = page_address(page);
3237         for (i = 0; i < 4; ++i)
3238                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3239
3240         return 0;
3241 }
3242
3243 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3244 {
3245         ASSERT(vcpu);
3246         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3247
3248         return alloc_mmu_pages(vcpu);
3249 }
3250
3251 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3252 {
3253         ASSERT(vcpu);
3254         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3255
3256         return init_kvm_mmu(vcpu);
3257 }
3258
3259 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
3260 {
3261         ASSERT(vcpu);
3262
3263         destroy_kvm_mmu(vcpu);
3264         free_mmu_pages(vcpu);
3265         mmu_free_memory_caches(vcpu);
3266 }
3267
3268 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3269 {
3270         struct kvm_mmu_page *sp;
3271
3272         list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3273                 int i;
3274                 u64 *pt;
3275
3276                 if (!test_bit(slot, sp->slot_bitmap))
3277                         continue;
3278
3279                 pt = sp->spt;
3280                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
3281                         /* avoid RMW */
3282                         if (is_writable_pte(pt[i]))
3283                                 pt[i] &= ~PT_WRITABLE_MASK;
3284         }
3285         kvm_flush_remote_tlbs(kvm);
3286 }
3287
3288 void kvm_mmu_zap_all(struct kvm *kvm)
3289 {
3290         struct kvm_mmu_page *sp, *node;
3291         LIST_HEAD(invalid_list);
3292
3293         spin_lock(&kvm->mmu_lock);
3294 restart:
3295         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3296                 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3297                         goto restart;
3298
3299         kvm_mmu_commit_zap_page(kvm, &invalid_list);
3300         spin_unlock(&kvm->mmu_lock);
3301 }
3302
3303 static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3304                                                struct list_head *invalid_list)
3305 {
3306         struct kvm_mmu_page *page;
3307
3308         page = container_of(kvm->arch.active_mmu_pages.prev,
3309                             struct kvm_mmu_page, link);
3310         return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3311 }
3312
3313 static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
3314 {
3315         struct kvm *kvm;
3316         struct kvm *kvm_freed = NULL;
3317
3318         if (nr_to_scan == 0)
3319                 goto out;
3320
3321         spin_lock(&kvm_lock);
3322
3323         list_for_each_entry(kvm, &vm_list, vm_list) {
3324                 int idx, freed_pages;
3325                 LIST_HEAD(invalid_list);
3326
3327                 idx = srcu_read_lock(&kvm->srcu);
3328                 spin_lock(&kvm->mmu_lock);
3329                 if (!kvm_freed && nr_to_scan > 0 &&
3330                     kvm->arch.n_used_mmu_pages > 0) {
3331                         freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3332                                                           &invalid_list);
3333                         kvm_freed = kvm;
3334                 }
3335                 nr_to_scan--;
3336
3337                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3338                 spin_unlock(&kvm->mmu_lock);
3339                 srcu_read_unlock(&kvm->srcu, idx);
3340         }
3341         if (kvm_freed)
3342                 list_move_tail(&kvm_freed->vm_list, &vm_list);
3343
3344         spin_unlock(&kvm_lock);
3345
3346 out:
3347         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3348 }
3349
3350 static struct shrinker mmu_shrinker = {
3351         .shrink = mmu_shrink,
3352         .seeks = DEFAULT_SEEKS * 10,
3353 };
3354
3355 static void mmu_destroy_caches(void)
3356 {
3357         if (pte_chain_cache)
3358                 kmem_cache_destroy(pte_chain_cache);
3359         if (rmap_desc_cache)
3360                 kmem_cache_destroy(rmap_desc_cache);
3361         if (mmu_page_header_cache)
3362                 kmem_cache_destroy(mmu_page_header_cache);
3363 }
3364
3365 void kvm_mmu_module_exit(void)
3366 {
3367         mmu_destroy_caches();
3368         percpu_counter_destroy(&kvm_total_used_mmu_pages);
3369         unregister_shrinker(&mmu_shrinker);
3370 }
3371
3372 int kvm_mmu_module_init(void)
3373 {
3374         pte_chain_cache = kmem_cache_create("kvm_pte_chain",
3375                                             sizeof(struct kvm_pte_chain),
3376                                             0, 0, NULL);
3377         if (!pte_chain_cache)
3378                 goto nomem;
3379         rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
3380                                             sizeof(struct kvm_rmap_desc),
3381                                             0, 0, NULL);
3382         if (!rmap_desc_cache)
3383                 goto nomem;
3384
3385         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3386                                                   sizeof(struct kvm_mmu_page),
3387                                                   0, 0, NULL);
3388         if (!mmu_page_header_cache)
3389                 goto nomem;
3390
3391         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3392                 goto nomem;
3393
3394         register_shrinker(&mmu_shrinker);
3395
3396         return 0;
3397
3398 nomem:
3399         mmu_destroy_caches();
3400         return -ENOMEM;
3401 }
3402
3403 /*
3404  * Caculate mmu pages needed for kvm.
3405  */
3406 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3407 {
3408         int i;
3409         unsigned int nr_mmu_pages;
3410         unsigned int  nr_pages = 0;
3411         struct kvm_memslots *slots;
3412
3413         slots = kvm_memslots(kvm);
3414
3415         for (i = 0; i < slots->nmemslots; i++)
3416                 nr_pages += slots->memslots[i].npages;
3417
3418         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3419         nr_mmu_pages = max(nr_mmu_pages,
3420                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3421
3422         return nr_mmu_pages;
3423 }
3424
3425 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3426                                 unsigned len)
3427 {
3428         if (len > buffer->len)
3429                 return NULL;
3430         return buffer->ptr;
3431 }
3432
3433 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3434                                 unsigned len)
3435 {
3436         void *ret;
3437
3438         ret = pv_mmu_peek_buffer(buffer, len);
3439         if (!ret)
3440                 return ret;
3441         buffer->ptr += len;
3442         buffer->len -= len;
3443         buffer->processed += len;
3444         return ret;
3445 }
3446
3447 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
3448                              gpa_t addr, gpa_t value)
3449 {
3450         int bytes = 8;
3451         int r;
3452
3453         if (!is_long_mode(vcpu) && !is_pae(vcpu))
3454                 bytes = 4;
3455
3456         r = mmu_topup_memory_caches(vcpu);
3457         if (r)
3458                 return r;
3459
3460         if (!emulator_write_phys(vcpu, addr, &value, bytes))
3461                 return -EFAULT;
3462
3463         return 1;
3464 }
3465
3466 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3467 {
3468         (void)kvm_set_cr3(vcpu, vcpu->arch.cr3);
3469         return 1;
3470 }
3471
3472 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
3473 {
3474         spin_lock(&vcpu->kvm->mmu_lock);
3475         mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
3476         spin_unlock(&vcpu->kvm->mmu_lock);
3477         return 1;
3478 }
3479
3480 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
3481                              struct kvm_pv_mmu_op_buffer *buffer)
3482 {
3483         struct kvm_mmu_op_header *header;
3484
3485         header = pv_mmu_peek_buffer(buffer, sizeof *header);
3486         if (!header)
3487                 return 0;
3488         switch (header->op) {
3489         case KVM_MMU_OP_WRITE_PTE: {
3490                 struct kvm_mmu_op_write_pte *wpte;
3491
3492                 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
3493                 if (!wpte)
3494                         return 0;
3495                 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
3496                                         wpte->pte_val);
3497         }
3498         case KVM_MMU_OP_FLUSH_TLB: {
3499                 struct kvm_mmu_op_flush_tlb *ftlb;
3500
3501                 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
3502                 if (!ftlb)
3503                         return 0;
3504                 return kvm_pv_mmu_flush_tlb(vcpu);
3505         }
3506         case KVM_MMU_OP_RELEASE_PT: {
3507                 struct kvm_mmu_op_release_pt *rpt;
3508
3509                 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
3510                 if (!rpt)
3511                         return 0;
3512                 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
3513         }
3514         default: return 0;
3515         }
3516 }
3517
3518 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
3519                   gpa_t addr, unsigned long *ret)
3520 {
3521         int r;
3522         struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
3523
3524         buffer->ptr = buffer->buf;
3525         buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
3526         buffer->processed = 0;
3527
3528         r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
3529         if (r)
3530                 goto out;
3531
3532         while (buffer->len) {
3533                 r = kvm_pv_mmu_op_one(vcpu, buffer);
3534                 if (r < 0)
3535                         goto out;
3536                 if (r == 0)
3537                         break;
3538         }
3539
3540         r = 1;
3541 out:
3542         *ret = buffer->processed;
3543         return r;
3544 }
3545
3546 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
3547 {
3548         struct kvm_shadow_walk_iterator iterator;
3549         int nr_sptes = 0;
3550
3551         spin_lock(&vcpu->kvm->mmu_lock);
3552         for_each_shadow_entry(vcpu, addr, iterator) {
3553                 sptes[iterator.level-1] = *iterator.sptep;
3554                 nr_sptes++;
3555                 if (!is_shadow_present_pte(*iterator.sptep))
3556                         break;
3557         }
3558         spin_unlock(&vcpu->kvm->mmu_lock);
3559
3560         return nr_sptes;
3561 }
3562 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
3563
3564 #ifdef CONFIG_KVM_MMU_AUDIT
3565 #include "mmu_audit.c"
3566 #endif