]> bbs.cooldavid.org Git - net-next-2.6.git/blob - arch/x86/kernel/cpu/perf_event.c
perf: Provide generic perf_sample_data initialization
[net-next-2.6.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/highmem.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27
28 #include <asm/apic.h>
29 #include <asm/stacktrace.h>
30 #include <asm/nmi.h>
31
32 static u64 perf_event_mask __read_mostly;
33
34 /* The maximal number of PEBS events: */
35 #define MAX_PEBS_EVENTS 4
36
37 /* The size of a BTS record in bytes: */
38 #define BTS_RECORD_SIZE         24
39
40 /* The size of a per-cpu BTS buffer in bytes: */
41 #define BTS_BUFFER_SIZE         (BTS_RECORD_SIZE * 2048)
42
43 /* The BTS overflow threshold in bytes from the end of the buffer: */
44 #define BTS_OVFL_TH             (BTS_RECORD_SIZE * 128)
45
46
47 /*
48  * Bits in the debugctlmsr controlling branch tracing.
49  */
50 #define X86_DEBUGCTL_TR                 (1 << 6)
51 #define X86_DEBUGCTL_BTS                (1 << 7)
52 #define X86_DEBUGCTL_BTINT              (1 << 8)
53 #define X86_DEBUGCTL_BTS_OFF_OS         (1 << 9)
54 #define X86_DEBUGCTL_BTS_OFF_USR        (1 << 10)
55
56 /*
57  * A debug store configuration.
58  *
59  * We only support architectures that use 64bit fields.
60  */
61 struct debug_store {
62         u64     bts_buffer_base;
63         u64     bts_index;
64         u64     bts_absolute_maximum;
65         u64     bts_interrupt_threshold;
66         u64     pebs_buffer_base;
67         u64     pebs_index;
68         u64     pebs_absolute_maximum;
69         u64     pebs_interrupt_threshold;
70         u64     pebs_event_reset[MAX_PEBS_EVENTS];
71 };
72
73 struct event_constraint {
74         union {
75                 unsigned long   idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
76                 u64             idxmsk64;
77         };
78         u64     code;
79         u64     cmask;
80         int     weight;
81 };
82
83 struct amd_nb {
84         int nb_id;  /* NorthBridge id */
85         int refcnt; /* reference count */
86         struct perf_event *owners[X86_PMC_IDX_MAX];
87         struct event_constraint event_constraints[X86_PMC_IDX_MAX];
88 };
89
90 struct cpu_hw_events {
91         struct perf_event       *events[X86_PMC_IDX_MAX]; /* in counter order */
92         unsigned long           active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
93         unsigned long           interrupts;
94         int                     enabled;
95         struct debug_store      *ds;
96
97         int                     n_events;
98         int                     n_added;
99         int                     assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
100         u64                     tags[X86_PMC_IDX_MAX];
101         struct perf_event       *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
102         struct amd_nb           *amd_nb;
103 };
104
105 #define __EVENT_CONSTRAINT(c, n, m, w) {\
106         { .idxmsk64 = (n) },            \
107         .code = (c),                    \
108         .cmask = (m),                   \
109         .weight = (w),                  \
110 }
111
112 #define EVENT_CONSTRAINT(c, n, m)       \
113         __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
114
115 #define INTEL_EVENT_CONSTRAINT(c, n)    \
116         EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVTSEL_MASK)
117
118 #define FIXED_EVENT_CONSTRAINT(c, n)    \
119         EVENT_CONSTRAINT(c, (1ULL << (32+n)), INTEL_ARCH_FIXED_MASK)
120
121 #define EVENT_CONSTRAINT_END            \
122         EVENT_CONSTRAINT(0, 0, 0)
123
124 #define for_each_event_constraint(e, c) \
125         for ((e) = (c); (e)->cmask; (e)++)
126
127 /*
128  * struct x86_pmu - generic x86 pmu
129  */
130 struct x86_pmu {
131         const char      *name;
132         int             version;
133         int             (*handle_irq)(struct pt_regs *);
134         void            (*disable_all)(void);
135         void            (*enable_all)(void);
136         void            (*enable)(struct hw_perf_event *, int);
137         void            (*disable)(struct hw_perf_event *, int);
138         unsigned        eventsel;
139         unsigned        perfctr;
140         u64             (*event_map)(int);
141         u64             (*raw_event)(u64);
142         int             max_events;
143         int             num_events;
144         int             num_events_fixed;
145         int             event_bits;
146         u64             event_mask;
147         int             apic;
148         u64             max_period;
149         u64             intel_ctrl;
150         void            (*enable_bts)(u64 config);
151         void            (*disable_bts)(void);
152
153         struct event_constraint *
154                         (*get_event_constraints)(struct cpu_hw_events *cpuc,
155                                                  struct perf_event *event);
156
157         void            (*put_event_constraints)(struct cpu_hw_events *cpuc,
158                                                  struct perf_event *event);
159         struct event_constraint *event_constraints;
160 };
161
162 static struct x86_pmu x86_pmu __read_mostly;
163
164 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
165         .enabled = 1,
166 };
167
168 static int x86_perf_event_set_period(struct perf_event *event,
169                              struct hw_perf_event *hwc, int idx);
170
171 /*
172  * Generalized hw caching related hw_event table, filled
173  * in on a per model basis. A value of 0 means
174  * 'not supported', -1 means 'hw_event makes no sense on
175  * this CPU', any other value means the raw hw_event
176  * ID.
177  */
178
179 #define C(x) PERF_COUNT_HW_CACHE_##x
180
181 static u64 __read_mostly hw_cache_event_ids
182                                 [PERF_COUNT_HW_CACHE_MAX]
183                                 [PERF_COUNT_HW_CACHE_OP_MAX]
184                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
185
186 /*
187  * Propagate event elapsed time into the generic event.
188  * Can only be executed on the CPU where the event is active.
189  * Returns the delta events processed.
190  */
191 static u64
192 x86_perf_event_update(struct perf_event *event,
193                         struct hw_perf_event *hwc, int idx)
194 {
195         int shift = 64 - x86_pmu.event_bits;
196         u64 prev_raw_count, new_raw_count;
197         s64 delta;
198
199         if (idx == X86_PMC_IDX_FIXED_BTS)
200                 return 0;
201
202         /*
203          * Careful: an NMI might modify the previous event value.
204          *
205          * Our tactic to handle this is to first atomically read and
206          * exchange a new raw count - then add that new-prev delta
207          * count to the generic event atomically:
208          */
209 again:
210         prev_raw_count = atomic64_read(&hwc->prev_count);
211         rdmsrl(hwc->event_base + idx, new_raw_count);
212
213         if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
214                                         new_raw_count) != prev_raw_count)
215                 goto again;
216
217         /*
218          * Now we have the new raw value and have updated the prev
219          * timestamp already. We can now calculate the elapsed delta
220          * (event-)time and add that to the generic event.
221          *
222          * Careful, not all hw sign-extends above the physical width
223          * of the count.
224          */
225         delta = (new_raw_count << shift) - (prev_raw_count << shift);
226         delta >>= shift;
227
228         atomic64_add(delta, &event->count);
229         atomic64_sub(delta, &hwc->period_left);
230
231         return new_raw_count;
232 }
233
234 static atomic_t active_events;
235 static DEFINE_MUTEX(pmc_reserve_mutex);
236
237 static bool reserve_pmc_hardware(void)
238 {
239 #ifdef CONFIG_X86_LOCAL_APIC
240         int i;
241
242         if (nmi_watchdog == NMI_LOCAL_APIC)
243                 disable_lapic_nmi_watchdog();
244
245         for (i = 0; i < x86_pmu.num_events; i++) {
246                 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
247                         goto perfctr_fail;
248         }
249
250         for (i = 0; i < x86_pmu.num_events; i++) {
251                 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
252                         goto eventsel_fail;
253         }
254 #endif
255
256         return true;
257
258 #ifdef CONFIG_X86_LOCAL_APIC
259 eventsel_fail:
260         for (i--; i >= 0; i--)
261                 release_evntsel_nmi(x86_pmu.eventsel + i);
262
263         i = x86_pmu.num_events;
264
265 perfctr_fail:
266         for (i--; i >= 0; i--)
267                 release_perfctr_nmi(x86_pmu.perfctr + i);
268
269         if (nmi_watchdog == NMI_LOCAL_APIC)
270                 enable_lapic_nmi_watchdog();
271
272         return false;
273 #endif
274 }
275
276 static void release_pmc_hardware(void)
277 {
278 #ifdef CONFIG_X86_LOCAL_APIC
279         int i;
280
281         for (i = 0; i < x86_pmu.num_events; i++) {
282                 release_perfctr_nmi(x86_pmu.perfctr + i);
283                 release_evntsel_nmi(x86_pmu.eventsel + i);
284         }
285
286         if (nmi_watchdog == NMI_LOCAL_APIC)
287                 enable_lapic_nmi_watchdog();
288 #endif
289 }
290
291 static inline bool bts_available(void)
292 {
293         return x86_pmu.enable_bts != NULL;
294 }
295
296 static inline void init_debug_store_on_cpu(int cpu)
297 {
298         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
299
300         if (!ds)
301                 return;
302
303         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
304                      (u32)((u64)(unsigned long)ds),
305                      (u32)((u64)(unsigned long)ds >> 32));
306 }
307
308 static inline void fini_debug_store_on_cpu(int cpu)
309 {
310         if (!per_cpu(cpu_hw_events, cpu).ds)
311                 return;
312
313         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
314 }
315
316 static void release_bts_hardware(void)
317 {
318         int cpu;
319
320         if (!bts_available())
321                 return;
322
323         get_online_cpus();
324
325         for_each_online_cpu(cpu)
326                 fini_debug_store_on_cpu(cpu);
327
328         for_each_possible_cpu(cpu) {
329                 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
330
331                 if (!ds)
332                         continue;
333
334                 per_cpu(cpu_hw_events, cpu).ds = NULL;
335
336                 kfree((void *)(unsigned long)ds->bts_buffer_base);
337                 kfree(ds);
338         }
339
340         put_online_cpus();
341 }
342
343 static int reserve_bts_hardware(void)
344 {
345         int cpu, err = 0;
346
347         if (!bts_available())
348                 return 0;
349
350         get_online_cpus();
351
352         for_each_possible_cpu(cpu) {
353                 struct debug_store *ds;
354                 void *buffer;
355
356                 err = -ENOMEM;
357                 buffer = kzalloc(BTS_BUFFER_SIZE, GFP_KERNEL);
358                 if (unlikely(!buffer))
359                         break;
360
361                 ds = kzalloc(sizeof(*ds), GFP_KERNEL);
362                 if (unlikely(!ds)) {
363                         kfree(buffer);
364                         break;
365                 }
366
367                 ds->bts_buffer_base = (u64)(unsigned long)buffer;
368                 ds->bts_index = ds->bts_buffer_base;
369                 ds->bts_absolute_maximum =
370                         ds->bts_buffer_base + BTS_BUFFER_SIZE;
371                 ds->bts_interrupt_threshold =
372                         ds->bts_absolute_maximum - BTS_OVFL_TH;
373
374                 per_cpu(cpu_hw_events, cpu).ds = ds;
375                 err = 0;
376         }
377
378         if (err)
379                 release_bts_hardware();
380         else {
381                 for_each_online_cpu(cpu)
382                         init_debug_store_on_cpu(cpu);
383         }
384
385         put_online_cpus();
386
387         return err;
388 }
389
390 static void hw_perf_event_destroy(struct perf_event *event)
391 {
392         if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
393                 release_pmc_hardware();
394                 release_bts_hardware();
395                 mutex_unlock(&pmc_reserve_mutex);
396         }
397 }
398
399 static inline int x86_pmu_initialized(void)
400 {
401         return x86_pmu.handle_irq != NULL;
402 }
403
404 static inline int
405 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
406 {
407         unsigned int cache_type, cache_op, cache_result;
408         u64 config, val;
409
410         config = attr->config;
411
412         cache_type = (config >>  0) & 0xff;
413         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
414                 return -EINVAL;
415
416         cache_op = (config >>  8) & 0xff;
417         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
418                 return -EINVAL;
419
420         cache_result = (config >> 16) & 0xff;
421         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
422                 return -EINVAL;
423
424         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
425
426         if (val == 0)
427                 return -ENOENT;
428
429         if (val == -1)
430                 return -EINVAL;
431
432         hwc->config |= val;
433
434         return 0;
435 }
436
437 /*
438  * Setup the hardware configuration for a given attr_type
439  */
440 static int __hw_perf_event_init(struct perf_event *event)
441 {
442         struct perf_event_attr *attr = &event->attr;
443         struct hw_perf_event *hwc = &event->hw;
444         u64 config;
445         int err;
446
447         if (!x86_pmu_initialized())
448                 return -ENODEV;
449
450         err = 0;
451         if (!atomic_inc_not_zero(&active_events)) {
452                 mutex_lock(&pmc_reserve_mutex);
453                 if (atomic_read(&active_events) == 0) {
454                         if (!reserve_pmc_hardware())
455                                 err = -EBUSY;
456                         else
457                                 err = reserve_bts_hardware();
458                 }
459                 if (!err)
460                         atomic_inc(&active_events);
461                 mutex_unlock(&pmc_reserve_mutex);
462         }
463         if (err)
464                 return err;
465
466         event->destroy = hw_perf_event_destroy;
467
468         /*
469          * Generate PMC IRQs:
470          * (keep 'enabled' bit clear for now)
471          */
472         hwc->config = ARCH_PERFMON_EVENTSEL_INT;
473
474         hwc->idx = -1;
475         hwc->last_cpu = -1;
476         hwc->last_tag = ~0ULL;
477
478         /*
479          * Count user and OS events unless requested not to.
480          */
481         if (!attr->exclude_user)
482                 hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
483         if (!attr->exclude_kernel)
484                 hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
485
486         if (!hwc->sample_period) {
487                 hwc->sample_period = x86_pmu.max_period;
488                 hwc->last_period = hwc->sample_period;
489                 atomic64_set(&hwc->period_left, hwc->sample_period);
490         } else {
491                 /*
492                  * If we have a PMU initialized but no APIC
493                  * interrupts, we cannot sample hardware
494                  * events (user-space has to fall back and
495                  * sample via a hrtimer based software event):
496                  */
497                 if (!x86_pmu.apic)
498                         return -EOPNOTSUPP;
499         }
500
501         /*
502          * Raw hw_event type provide the config in the hw_event structure
503          */
504         if (attr->type == PERF_TYPE_RAW) {
505                 hwc->config |= x86_pmu.raw_event(attr->config);
506                 if ((hwc->config & ARCH_PERFMON_EVENTSEL_ANY) &&
507                     perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
508                         return -EACCES;
509                 return 0;
510         }
511
512         if (attr->type == PERF_TYPE_HW_CACHE)
513                 return set_ext_hw_attr(hwc, attr);
514
515         if (attr->config >= x86_pmu.max_events)
516                 return -EINVAL;
517
518         /*
519          * The generic map:
520          */
521         config = x86_pmu.event_map(attr->config);
522
523         if (config == 0)
524                 return -ENOENT;
525
526         if (config == -1LL)
527                 return -EINVAL;
528
529         /*
530          * Branch tracing:
531          */
532         if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
533             (hwc->sample_period == 1)) {
534                 /* BTS is not supported by this architecture. */
535                 if (!bts_available())
536                         return -EOPNOTSUPP;
537
538                 /* BTS is currently only allowed for user-mode. */
539                 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
540                         return -EOPNOTSUPP;
541         }
542
543         hwc->config |= config;
544
545         return 0;
546 }
547
548 static void x86_pmu_disable_all(void)
549 {
550         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
551         int idx;
552
553         for (idx = 0; idx < x86_pmu.num_events; idx++) {
554                 u64 val;
555
556                 if (!test_bit(idx, cpuc->active_mask))
557                         continue;
558                 rdmsrl(x86_pmu.eventsel + idx, val);
559                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
560                         continue;
561                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
562                 wrmsrl(x86_pmu.eventsel + idx, val);
563         }
564 }
565
566 void hw_perf_disable(void)
567 {
568         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
569
570         if (!x86_pmu_initialized())
571                 return;
572
573         if (!cpuc->enabled)
574                 return;
575
576         cpuc->n_added = 0;
577         cpuc->enabled = 0;
578         barrier();
579
580         x86_pmu.disable_all();
581 }
582
583 static void x86_pmu_enable_all(void)
584 {
585         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
586         int idx;
587
588         for (idx = 0; idx < x86_pmu.num_events; idx++) {
589                 struct perf_event *event = cpuc->events[idx];
590                 u64 val;
591
592                 if (!test_bit(idx, cpuc->active_mask))
593                         continue;
594
595                 val = event->hw.config;
596                 val |= ARCH_PERFMON_EVENTSEL_ENABLE;
597                 wrmsrl(x86_pmu.eventsel + idx, val);
598         }
599 }
600
601 static const struct pmu pmu;
602
603 static inline int is_x86_event(struct perf_event *event)
604 {
605         return event->pmu == &pmu;
606 }
607
608 static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
609 {
610         struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
611         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
612         int i, j, w, wmax, num = 0;
613         struct hw_perf_event *hwc;
614
615         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
616
617         for (i = 0; i < n; i++) {
618                 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
619                 constraints[i] = c;
620         }
621
622         /*
623          * fastpath, try to reuse previous register
624          */
625         for (i = 0; i < n; i++) {
626                 hwc = &cpuc->event_list[i]->hw;
627                 c = constraints[i];
628
629                 /* never assigned */
630                 if (hwc->idx == -1)
631                         break;
632
633                 /* constraint still honored */
634                 if (!test_bit(hwc->idx, c->idxmsk))
635                         break;
636
637                 /* not already used */
638                 if (test_bit(hwc->idx, used_mask))
639                         break;
640
641                 set_bit(hwc->idx, used_mask);
642                 if (assign)
643                         assign[i] = hwc->idx;
644         }
645         if (i == n)
646                 goto done;
647
648         /*
649          * begin slow path
650          */
651
652         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
653
654         /*
655          * weight = number of possible counters
656          *
657          * 1    = most constrained, only works on one counter
658          * wmax = least constrained, works on any counter
659          *
660          * assign events to counters starting with most
661          * constrained events.
662          */
663         wmax = x86_pmu.num_events;
664
665         /*
666          * when fixed event counters are present,
667          * wmax is incremented by 1 to account
668          * for one more choice
669          */
670         if (x86_pmu.num_events_fixed)
671                 wmax++;
672
673         for (w = 1, num = n; num && w <= wmax; w++) {
674                 /* for each event */
675                 for (i = 0; num && i < n; i++) {
676                         c = constraints[i];
677                         hwc = &cpuc->event_list[i]->hw;
678
679                         if (c->weight != w)
680                                 continue;
681
682                         for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
683                                 if (!test_bit(j, used_mask))
684                                         break;
685                         }
686
687                         if (j == X86_PMC_IDX_MAX)
688                                 break;
689
690                         set_bit(j, used_mask);
691
692                         if (assign)
693                                 assign[i] = j;
694                         num--;
695                 }
696         }
697 done:
698         /*
699          * scheduling failed or is just a simulation,
700          * free resources if necessary
701          */
702         if (!assign || num) {
703                 for (i = 0; i < n; i++) {
704                         if (x86_pmu.put_event_constraints)
705                                 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
706                 }
707         }
708         return num ? -ENOSPC : 0;
709 }
710
711 /*
712  * dogrp: true if must collect siblings events (group)
713  * returns total number of events and error code
714  */
715 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
716 {
717         struct perf_event *event;
718         int n, max_count;
719
720         max_count = x86_pmu.num_events + x86_pmu.num_events_fixed;
721
722         /* current number of events already accepted */
723         n = cpuc->n_events;
724
725         if (is_x86_event(leader)) {
726                 if (n >= max_count)
727                         return -ENOSPC;
728                 cpuc->event_list[n] = leader;
729                 n++;
730         }
731         if (!dogrp)
732                 return n;
733
734         list_for_each_entry(event, &leader->sibling_list, group_entry) {
735                 if (!is_x86_event(event) ||
736                     event->state <= PERF_EVENT_STATE_OFF)
737                         continue;
738
739                 if (n >= max_count)
740                         return -ENOSPC;
741
742                 cpuc->event_list[n] = event;
743                 n++;
744         }
745         return n;
746 }
747
748 static inline void x86_assign_hw_event(struct perf_event *event,
749                                 struct cpu_hw_events *cpuc, int i)
750 {
751         struct hw_perf_event *hwc = &event->hw;
752
753         hwc->idx = cpuc->assign[i];
754         hwc->last_cpu = smp_processor_id();
755         hwc->last_tag = ++cpuc->tags[i];
756
757         if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
758                 hwc->config_base = 0;
759                 hwc->event_base = 0;
760         } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
761                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
762                 /*
763                  * We set it so that event_base + idx in wrmsr/rdmsr maps to
764                  * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
765                  */
766                 hwc->event_base =
767                         MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
768         } else {
769                 hwc->config_base = x86_pmu.eventsel;
770                 hwc->event_base  = x86_pmu.perfctr;
771         }
772 }
773
774 static inline int match_prev_assignment(struct hw_perf_event *hwc,
775                                         struct cpu_hw_events *cpuc,
776                                         int i)
777 {
778         return hwc->idx == cpuc->assign[i] &&
779                 hwc->last_cpu == smp_processor_id() &&
780                 hwc->last_tag == cpuc->tags[i];
781 }
782
783 static void x86_pmu_stop(struct perf_event *event);
784
785 void hw_perf_enable(void)
786 {
787         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
788         struct perf_event *event;
789         struct hw_perf_event *hwc;
790         int i;
791
792         if (!x86_pmu_initialized())
793                 return;
794
795         if (cpuc->enabled)
796                 return;
797
798         if (cpuc->n_added) {
799                 /*
800                  * apply assignment obtained either from
801                  * hw_perf_group_sched_in() or x86_pmu_enable()
802                  *
803                  * step1: save events moving to new counters
804                  * step2: reprogram moved events into new counters
805                  */
806                 for (i = 0; i < cpuc->n_events; i++) {
807
808                         event = cpuc->event_list[i];
809                         hwc = &event->hw;
810
811                         /*
812                          * we can avoid reprogramming counter if:
813                          * - assigned same counter as last time
814                          * - running on same CPU as last time
815                          * - no other event has used the counter since
816                          */
817                         if (hwc->idx == -1 ||
818                             match_prev_assignment(hwc, cpuc, i))
819                                 continue;
820
821                         x86_pmu_stop(event);
822
823                         hwc->idx = -1;
824                 }
825
826                 for (i = 0; i < cpuc->n_events; i++) {
827
828                         event = cpuc->event_list[i];
829                         hwc = &event->hw;
830
831                         if (hwc->idx == -1) {
832                                 x86_assign_hw_event(event, cpuc, i);
833                                 x86_perf_event_set_period(event, hwc, hwc->idx);
834                         }
835                         /*
836                          * need to mark as active because x86_pmu_disable()
837                          * clear active_mask and events[] yet it preserves
838                          * idx
839                          */
840                         set_bit(hwc->idx, cpuc->active_mask);
841                         cpuc->events[hwc->idx] = event;
842
843                         x86_pmu.enable(hwc, hwc->idx);
844                         perf_event_update_userpage(event);
845                 }
846                 cpuc->n_added = 0;
847                 perf_events_lapic_init();
848         }
849
850         cpuc->enabled = 1;
851         barrier();
852
853         x86_pmu.enable_all();
854 }
855
856 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc, int idx)
857 {
858         (void)checking_wrmsrl(hwc->config_base + idx,
859                               hwc->config | ARCH_PERFMON_EVENTSEL_ENABLE);
860 }
861
862 static inline void x86_pmu_disable_event(struct hw_perf_event *hwc, int idx)
863 {
864         (void)checking_wrmsrl(hwc->config_base + idx, hwc->config);
865 }
866
867 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
868
869 /*
870  * Set the next IRQ period, based on the hwc->period_left value.
871  * To be called with the event disabled in hw:
872  */
873 static int
874 x86_perf_event_set_period(struct perf_event *event,
875                              struct hw_perf_event *hwc, int idx)
876 {
877         s64 left = atomic64_read(&hwc->period_left);
878         s64 period = hwc->sample_period;
879         int err, ret = 0;
880
881         if (idx == X86_PMC_IDX_FIXED_BTS)
882                 return 0;
883
884         /*
885          * If we are way outside a reasonable range then just skip forward:
886          */
887         if (unlikely(left <= -period)) {
888                 left = period;
889                 atomic64_set(&hwc->period_left, left);
890                 hwc->last_period = period;
891                 ret = 1;
892         }
893
894         if (unlikely(left <= 0)) {
895                 left += period;
896                 atomic64_set(&hwc->period_left, left);
897                 hwc->last_period = period;
898                 ret = 1;
899         }
900         /*
901          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
902          */
903         if (unlikely(left < 2))
904                 left = 2;
905
906         if (left > x86_pmu.max_period)
907                 left = x86_pmu.max_period;
908
909         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
910
911         /*
912          * The hw event starts counting from this event offset,
913          * mark it to be able to extra future deltas:
914          */
915         atomic64_set(&hwc->prev_count, (u64)-left);
916
917         err = checking_wrmsrl(hwc->event_base + idx,
918                              (u64)(-left) & x86_pmu.event_mask);
919
920         perf_event_update_userpage(event);
921
922         return ret;
923 }
924
925 static void x86_pmu_enable_event(struct hw_perf_event *hwc, int idx)
926 {
927         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
928         if (cpuc->enabled)
929                 __x86_pmu_enable_event(hwc, idx);
930 }
931
932 /*
933  * activate a single event
934  *
935  * The event is added to the group of enabled events
936  * but only if it can be scehduled with existing events.
937  *
938  * Called with PMU disabled. If successful and return value 1,
939  * then guaranteed to call perf_enable() and hw_perf_enable()
940  */
941 static int x86_pmu_enable(struct perf_event *event)
942 {
943         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
944         struct hw_perf_event *hwc;
945         int assign[X86_PMC_IDX_MAX];
946         int n, n0, ret;
947
948         hwc = &event->hw;
949
950         n0 = cpuc->n_events;
951         n = collect_events(cpuc, event, false);
952         if (n < 0)
953                 return n;
954
955         ret = x86_schedule_events(cpuc, n, assign);
956         if (ret)
957                 return ret;
958         /*
959          * copy new assignment, now we know it is possible
960          * will be used by hw_perf_enable()
961          */
962         memcpy(cpuc->assign, assign, n*sizeof(int));
963
964         cpuc->n_events = n;
965         cpuc->n_added  = n - n0;
966
967         return 0;
968 }
969
970 static int x86_pmu_start(struct perf_event *event)
971 {
972         struct hw_perf_event *hwc = &event->hw;
973
974         if (hwc->idx == -1)
975                 return -EAGAIN;
976
977         x86_perf_event_set_period(event, hwc, hwc->idx);
978         x86_pmu.enable(hwc, hwc->idx);
979
980         return 0;
981 }
982
983 static void x86_pmu_unthrottle(struct perf_event *event)
984 {
985         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
986         struct hw_perf_event *hwc = &event->hw;
987
988         if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX ||
989                                 cpuc->events[hwc->idx] != event))
990                 return;
991
992         x86_pmu.enable(hwc, hwc->idx);
993 }
994
995 void perf_event_print_debug(void)
996 {
997         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
998         struct cpu_hw_events *cpuc;
999         unsigned long flags;
1000         int cpu, idx;
1001
1002         if (!x86_pmu.num_events)
1003                 return;
1004
1005         local_irq_save(flags);
1006
1007         cpu = smp_processor_id();
1008         cpuc = &per_cpu(cpu_hw_events, cpu);
1009
1010         if (x86_pmu.version >= 2) {
1011                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1012                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1013                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1014                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1015
1016                 pr_info("\n");
1017                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1018                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1019                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1020                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1021         }
1022         pr_info("CPU#%d: active:       %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1023
1024         for (idx = 0; idx < x86_pmu.num_events; idx++) {
1025                 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1026                 rdmsrl(x86_pmu.perfctr  + idx, pmc_count);
1027
1028                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1029
1030                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1031                         cpu, idx, pmc_ctrl);
1032                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1033                         cpu, idx, pmc_count);
1034                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1035                         cpu, idx, prev_left);
1036         }
1037         for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) {
1038                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1039
1040                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1041                         cpu, idx, pmc_count);
1042         }
1043         local_irq_restore(flags);
1044 }
1045
1046 static void x86_pmu_stop(struct perf_event *event)
1047 {
1048         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1049         struct hw_perf_event *hwc = &event->hw;
1050         int idx = hwc->idx;
1051
1052         /*
1053          * Must be done before we disable, otherwise the nmi handler
1054          * could reenable again:
1055          */
1056         clear_bit(idx, cpuc->active_mask);
1057         x86_pmu.disable(hwc, idx);
1058
1059         /*
1060          * Drain the remaining delta count out of a event
1061          * that we are disabling:
1062          */
1063         x86_perf_event_update(event, hwc, idx);
1064
1065         cpuc->events[idx] = NULL;
1066 }
1067
1068 static void x86_pmu_disable(struct perf_event *event)
1069 {
1070         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1071         int i;
1072
1073         x86_pmu_stop(event);
1074
1075         for (i = 0; i < cpuc->n_events; i++) {
1076                 if (event == cpuc->event_list[i]) {
1077
1078                         if (x86_pmu.put_event_constraints)
1079                                 x86_pmu.put_event_constraints(cpuc, event);
1080
1081                         while (++i < cpuc->n_events)
1082                                 cpuc->event_list[i-1] = cpuc->event_list[i];
1083
1084                         --cpuc->n_events;
1085                         break;
1086                 }
1087         }
1088         perf_event_update_userpage(event);
1089 }
1090
1091 static int x86_pmu_handle_irq(struct pt_regs *regs)
1092 {
1093         struct perf_sample_data data;
1094         struct cpu_hw_events *cpuc;
1095         struct perf_event *event;
1096         struct hw_perf_event *hwc;
1097         int idx, handled = 0;
1098         u64 val;
1099
1100         perf_sample_data_init(&data, 0);
1101
1102         cpuc = &__get_cpu_var(cpu_hw_events);
1103
1104         for (idx = 0; idx < x86_pmu.num_events; idx++) {
1105                 if (!test_bit(idx, cpuc->active_mask))
1106                         continue;
1107
1108                 event = cpuc->events[idx];
1109                 hwc = &event->hw;
1110
1111                 val = x86_perf_event_update(event, hwc, idx);
1112                 if (val & (1ULL << (x86_pmu.event_bits - 1)))
1113                         continue;
1114
1115                 /*
1116                  * event overflow
1117                  */
1118                 handled         = 1;
1119                 data.period     = event->hw.last_period;
1120
1121                 if (!x86_perf_event_set_period(event, hwc, idx))
1122                         continue;
1123
1124                 if (perf_event_overflow(event, 1, &data, regs))
1125                         x86_pmu.disable(hwc, idx);
1126         }
1127
1128         if (handled)
1129                 inc_irq_stat(apic_perf_irqs);
1130
1131         return handled;
1132 }
1133
1134 void smp_perf_pending_interrupt(struct pt_regs *regs)
1135 {
1136         irq_enter();
1137         ack_APIC_irq();
1138         inc_irq_stat(apic_pending_irqs);
1139         perf_event_do_pending();
1140         irq_exit();
1141 }
1142
1143 void set_perf_event_pending(void)
1144 {
1145 #ifdef CONFIG_X86_LOCAL_APIC
1146         if (!x86_pmu.apic || !x86_pmu_initialized())
1147                 return;
1148
1149         apic->send_IPI_self(LOCAL_PENDING_VECTOR);
1150 #endif
1151 }
1152
1153 void perf_events_lapic_init(void)
1154 {
1155 #ifdef CONFIG_X86_LOCAL_APIC
1156         if (!x86_pmu.apic || !x86_pmu_initialized())
1157                 return;
1158
1159         /*
1160          * Always use NMI for PMU
1161          */
1162         apic_write(APIC_LVTPC, APIC_DM_NMI);
1163 #endif
1164 }
1165
1166 static int __kprobes
1167 perf_event_nmi_handler(struct notifier_block *self,
1168                          unsigned long cmd, void *__args)
1169 {
1170         struct die_args *args = __args;
1171         struct pt_regs *regs;
1172
1173         if (!atomic_read(&active_events))
1174                 return NOTIFY_DONE;
1175
1176         switch (cmd) {
1177         case DIE_NMI:
1178         case DIE_NMI_IPI:
1179                 break;
1180
1181         default:
1182                 return NOTIFY_DONE;
1183         }
1184
1185         regs = args->regs;
1186
1187 #ifdef CONFIG_X86_LOCAL_APIC
1188         apic_write(APIC_LVTPC, APIC_DM_NMI);
1189 #endif
1190         /*
1191          * Can't rely on the handled return value to say it was our NMI, two
1192          * events could trigger 'simultaneously' raising two back-to-back NMIs.
1193          *
1194          * If the first NMI handles both, the latter will be empty and daze
1195          * the CPU.
1196          */
1197         x86_pmu.handle_irq(regs);
1198
1199         return NOTIFY_STOP;
1200 }
1201
1202 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1203         .notifier_call          = perf_event_nmi_handler,
1204         .next                   = NULL,
1205         .priority               = 1
1206 };
1207
1208 static struct event_constraint unconstrained;
1209 static struct event_constraint emptyconstraint;
1210
1211 static struct event_constraint *
1212 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1213 {
1214         struct event_constraint *c;
1215
1216         if (x86_pmu.event_constraints) {
1217                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1218                         if ((event->hw.config & c->cmask) == c->code)
1219                                 return c;
1220                 }
1221         }
1222
1223         return &unconstrained;
1224 }
1225
1226 static int x86_event_sched_in(struct perf_event *event,
1227                           struct perf_cpu_context *cpuctx)
1228 {
1229         int ret = 0;
1230
1231         event->state = PERF_EVENT_STATE_ACTIVE;
1232         event->oncpu = smp_processor_id();
1233         event->tstamp_running += event->ctx->time - event->tstamp_stopped;
1234
1235         if (!is_x86_event(event))
1236                 ret = event->pmu->enable(event);
1237
1238         if (!ret && !is_software_event(event))
1239                 cpuctx->active_oncpu++;
1240
1241         if (!ret && event->attr.exclusive)
1242                 cpuctx->exclusive = 1;
1243
1244         return ret;
1245 }
1246
1247 static void x86_event_sched_out(struct perf_event *event,
1248                             struct perf_cpu_context *cpuctx)
1249 {
1250         event->state = PERF_EVENT_STATE_INACTIVE;
1251         event->oncpu = -1;
1252
1253         if (!is_x86_event(event))
1254                 event->pmu->disable(event);
1255
1256         event->tstamp_running -= event->ctx->time - event->tstamp_stopped;
1257
1258         if (!is_software_event(event))
1259                 cpuctx->active_oncpu--;
1260
1261         if (event->attr.exclusive || !cpuctx->active_oncpu)
1262                 cpuctx->exclusive = 0;
1263 }
1264
1265 /*
1266  * Called to enable a whole group of events.
1267  * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
1268  * Assumes the caller has disabled interrupts and has
1269  * frozen the PMU with hw_perf_save_disable.
1270  *
1271  * called with PMU disabled. If successful and return value 1,
1272  * then guaranteed to call perf_enable() and hw_perf_enable()
1273  */
1274 int hw_perf_group_sched_in(struct perf_event *leader,
1275                struct perf_cpu_context *cpuctx,
1276                struct perf_event_context *ctx)
1277 {
1278         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1279         struct perf_event *sub;
1280         int assign[X86_PMC_IDX_MAX];
1281         int n0, n1, ret;
1282
1283         /* n0 = total number of events */
1284         n0 = collect_events(cpuc, leader, true);
1285         if (n0 < 0)
1286                 return n0;
1287
1288         ret = x86_schedule_events(cpuc, n0, assign);
1289         if (ret)
1290                 return ret;
1291
1292         ret = x86_event_sched_in(leader, cpuctx);
1293         if (ret)
1294                 return ret;
1295
1296         n1 = 1;
1297         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1298                 if (sub->state > PERF_EVENT_STATE_OFF) {
1299                         ret = x86_event_sched_in(sub, cpuctx);
1300                         if (ret)
1301                                 goto undo;
1302                         ++n1;
1303                 }
1304         }
1305         /*
1306          * copy new assignment, now we know it is possible
1307          * will be used by hw_perf_enable()
1308          */
1309         memcpy(cpuc->assign, assign, n0*sizeof(int));
1310
1311         cpuc->n_events  = n0;
1312         cpuc->n_added   = n1;
1313         ctx->nr_active += n1;
1314
1315         /*
1316          * 1 means successful and events are active
1317          * This is not quite true because we defer
1318          * actual activation until hw_perf_enable() but
1319          * this way we* ensure caller won't try to enable
1320          * individual events
1321          */
1322         return 1;
1323 undo:
1324         x86_event_sched_out(leader, cpuctx);
1325         n0  = 1;
1326         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1327                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
1328                         x86_event_sched_out(sub, cpuctx);
1329                         if (++n0 == n1)
1330                                 break;
1331                 }
1332         }
1333         return ret;
1334 }
1335
1336 #include "perf_event_amd.c"
1337 #include "perf_event_p6.c"
1338 #include "perf_event_intel.c"
1339
1340 static void __init pmu_check_apic(void)
1341 {
1342         if (cpu_has_apic)
1343                 return;
1344
1345         x86_pmu.apic = 0;
1346         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1347         pr_info("no hardware sampling interrupt available.\n");
1348 }
1349
1350 void __init init_hw_perf_events(void)
1351 {
1352         struct event_constraint *c;
1353         int err;
1354
1355         pr_info("Performance Events: ");
1356
1357         switch (boot_cpu_data.x86_vendor) {
1358         case X86_VENDOR_INTEL:
1359                 err = intel_pmu_init();
1360                 break;
1361         case X86_VENDOR_AMD:
1362                 err = amd_pmu_init();
1363                 break;
1364         default:
1365                 return;
1366         }
1367         if (err != 0) {
1368                 pr_cont("no PMU driver, software events only.\n");
1369                 return;
1370         }
1371
1372         pmu_check_apic();
1373
1374         pr_cont("%s PMU driver.\n", x86_pmu.name);
1375
1376         if (x86_pmu.num_events > X86_PMC_MAX_GENERIC) {
1377                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1378                      x86_pmu.num_events, X86_PMC_MAX_GENERIC);
1379                 x86_pmu.num_events = X86_PMC_MAX_GENERIC;
1380         }
1381         perf_event_mask = (1 << x86_pmu.num_events) - 1;
1382         perf_max_events = x86_pmu.num_events;
1383
1384         if (x86_pmu.num_events_fixed > X86_PMC_MAX_FIXED) {
1385                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1386                      x86_pmu.num_events_fixed, X86_PMC_MAX_FIXED);
1387                 x86_pmu.num_events_fixed = X86_PMC_MAX_FIXED;
1388         }
1389
1390         perf_event_mask |=
1391                 ((1LL << x86_pmu.num_events_fixed)-1) << X86_PMC_IDX_FIXED;
1392         x86_pmu.intel_ctrl = perf_event_mask;
1393
1394         perf_events_lapic_init();
1395         register_die_notifier(&perf_event_nmi_notifier);
1396
1397         unconstrained = (struct event_constraint)
1398                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_events) - 1,
1399                                    0, x86_pmu.num_events);
1400
1401         if (x86_pmu.event_constraints) {
1402                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1403                         if (c->cmask != INTEL_ARCH_FIXED_MASK)
1404                                 continue;
1405
1406                         c->idxmsk64 |= (1ULL << x86_pmu.num_events) - 1;
1407                         c->weight += x86_pmu.num_events;
1408                 }
1409         }
1410
1411         pr_info("... version:                %d\n",     x86_pmu.version);
1412         pr_info("... bit width:              %d\n",     x86_pmu.event_bits);
1413         pr_info("... generic registers:      %d\n",     x86_pmu.num_events);
1414         pr_info("... value mask:             %016Lx\n", x86_pmu.event_mask);
1415         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1416         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_events_fixed);
1417         pr_info("... event mask:             %016Lx\n", perf_event_mask);
1418 }
1419
1420 static inline void x86_pmu_read(struct perf_event *event)
1421 {
1422         x86_perf_event_update(event, &event->hw, event->hw.idx);
1423 }
1424
1425 static const struct pmu pmu = {
1426         .enable         = x86_pmu_enable,
1427         .disable        = x86_pmu_disable,
1428         .start          = x86_pmu_start,
1429         .stop           = x86_pmu_stop,
1430         .read           = x86_pmu_read,
1431         .unthrottle     = x86_pmu_unthrottle,
1432 };
1433
1434 /*
1435  * validate a single event group
1436  *
1437  * validation include:
1438  *      - check events are compatible which each other
1439  *      - events do not compete for the same counter
1440  *      - number of events <= number of counters
1441  *
1442  * validation ensures the group can be loaded onto the
1443  * PMU if it was the only group available.
1444  */
1445 static int validate_group(struct perf_event *event)
1446 {
1447         struct perf_event *leader = event->group_leader;
1448         struct cpu_hw_events *fake_cpuc;
1449         int ret, n;
1450
1451         ret = -ENOMEM;
1452         fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1453         if (!fake_cpuc)
1454                 goto out;
1455
1456         /*
1457          * the event is not yet connected with its
1458          * siblings therefore we must first collect
1459          * existing siblings, then add the new event
1460          * before we can simulate the scheduling
1461          */
1462         ret = -ENOSPC;
1463         n = collect_events(fake_cpuc, leader, true);
1464         if (n < 0)
1465                 goto out_free;
1466
1467         fake_cpuc->n_events = n;
1468         n = collect_events(fake_cpuc, event, false);
1469         if (n < 0)
1470                 goto out_free;
1471
1472         fake_cpuc->n_events = n;
1473
1474         ret = x86_schedule_events(fake_cpuc, n, NULL);
1475
1476 out_free:
1477         kfree(fake_cpuc);
1478 out:
1479         return ret;
1480 }
1481
1482 const struct pmu *hw_perf_event_init(struct perf_event *event)
1483 {
1484         const struct pmu *tmp;
1485         int err;
1486
1487         err = __hw_perf_event_init(event);
1488         if (!err) {
1489                 /*
1490                  * we temporarily connect event to its pmu
1491                  * such that validate_group() can classify
1492                  * it as an x86 event using is_x86_event()
1493                  */
1494                 tmp = event->pmu;
1495                 event->pmu = &pmu;
1496
1497                 if (event->group_leader != event)
1498                         err = validate_group(event);
1499
1500                 event->pmu = tmp;
1501         }
1502         if (err) {
1503                 if (event->destroy)
1504                         event->destroy(event);
1505                 return ERR_PTR(err);
1506         }
1507
1508         return &pmu;
1509 }
1510
1511 /*
1512  * callchain support
1513  */
1514
1515 static inline
1516 void callchain_store(struct perf_callchain_entry *entry, u64 ip)
1517 {
1518         if (entry->nr < PERF_MAX_STACK_DEPTH)
1519                 entry->ip[entry->nr++] = ip;
1520 }
1521
1522 static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
1523 static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
1524
1525
1526 static void
1527 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1528 {
1529         /* Ignore warnings */
1530 }
1531
1532 static void backtrace_warning(void *data, char *msg)
1533 {
1534         /* Ignore warnings */
1535 }
1536
1537 static int backtrace_stack(void *data, char *name)
1538 {
1539         return 0;
1540 }
1541
1542 static void backtrace_address(void *data, unsigned long addr, int reliable)
1543 {
1544         struct perf_callchain_entry *entry = data;
1545
1546         if (reliable)
1547                 callchain_store(entry, addr);
1548 }
1549
1550 static const struct stacktrace_ops backtrace_ops = {
1551         .warning                = backtrace_warning,
1552         .warning_symbol         = backtrace_warning_symbol,
1553         .stack                  = backtrace_stack,
1554         .address                = backtrace_address,
1555         .walk_stack             = print_context_stack_bp,
1556 };
1557
1558 #include "../dumpstack.h"
1559
1560 static void
1561 perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
1562 {
1563         callchain_store(entry, PERF_CONTEXT_KERNEL);
1564         callchain_store(entry, regs->ip);
1565
1566         dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
1567 }
1568
1569 /*
1570  * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
1571  */
1572 static unsigned long
1573 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
1574 {
1575         unsigned long offset, addr = (unsigned long)from;
1576         int type = in_nmi() ? KM_NMI : KM_IRQ0;
1577         unsigned long size, len = 0;
1578         struct page *page;
1579         void *map;
1580         int ret;
1581
1582         do {
1583                 ret = __get_user_pages_fast(addr, 1, 0, &page);
1584                 if (!ret)
1585                         break;
1586
1587                 offset = addr & (PAGE_SIZE - 1);
1588                 size = min(PAGE_SIZE - offset, n - len);
1589
1590                 map = kmap_atomic(page, type);
1591                 memcpy(to, map+offset, size);
1592                 kunmap_atomic(map, type);
1593                 put_page(page);
1594
1595                 len  += size;
1596                 to   += size;
1597                 addr += size;
1598
1599         } while (len < n);
1600
1601         return len;
1602 }
1603
1604 static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
1605 {
1606         unsigned long bytes;
1607
1608         bytes = copy_from_user_nmi(frame, fp, sizeof(*frame));
1609
1610         return bytes == sizeof(*frame);
1611 }
1612
1613 static void
1614 perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
1615 {
1616         struct stack_frame frame;
1617         const void __user *fp;
1618
1619         if (!user_mode(regs))
1620                 regs = task_pt_regs(current);
1621
1622         fp = (void __user *)regs->bp;
1623
1624         callchain_store(entry, PERF_CONTEXT_USER);
1625         callchain_store(entry, regs->ip);
1626
1627         while (entry->nr < PERF_MAX_STACK_DEPTH) {
1628                 frame.next_frame             = NULL;
1629                 frame.return_address = 0;
1630
1631                 if (!copy_stack_frame(fp, &frame))
1632                         break;
1633
1634                 if ((unsigned long)fp < regs->sp)
1635                         break;
1636
1637                 callchain_store(entry, frame.return_address);
1638                 fp = frame.next_frame;
1639         }
1640 }
1641
1642 static void
1643 perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
1644 {
1645         int is_user;
1646
1647         if (!regs)
1648                 return;
1649
1650         is_user = user_mode(regs);
1651
1652         if (is_user && current->state != TASK_RUNNING)
1653                 return;
1654
1655         if (!is_user)
1656                 perf_callchain_kernel(regs, entry);
1657
1658         if (current->mm)
1659                 perf_callchain_user(regs, entry);
1660 }
1661
1662 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1663 {
1664         struct perf_callchain_entry *entry;
1665
1666         if (in_nmi())
1667                 entry = &__get_cpu_var(pmc_nmi_entry);
1668         else
1669                 entry = &__get_cpu_var(pmc_irq_entry);
1670
1671         entry->nr = 0;
1672
1673         perf_do_callchain(regs, entry);
1674
1675         return entry;
1676 }
1677
1678 void hw_perf_event_setup_online(int cpu)
1679 {
1680         init_debug_store_on_cpu(cpu);
1681
1682         switch (boot_cpu_data.x86_vendor) {
1683         case X86_VENDOR_AMD:
1684                 amd_pmu_cpu_online(cpu);
1685                 break;
1686         default:
1687                 return;
1688         }
1689 }
1690
1691 void hw_perf_event_setup_offline(int cpu)
1692 {
1693         init_debug_store_on_cpu(cpu);
1694
1695         switch (boot_cpu_data.x86_vendor) {
1696         case X86_VENDOR_AMD:
1697                 amd_pmu_cpu_offline(cpu);
1698                 break;
1699         default:
1700                 return;
1701         }
1702 }