]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - security/selinux/hooks.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[net-next-2.6.git] / security / selinux / hooks.c
... / ...
CommitLineData
1/*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul.moore@hp.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
24 */
25
26#include <linux/init.h>
27#include <linux/kernel.h>
28#include <linux/tracehook.h>
29#include <linux/errno.h>
30#include <linux/sched.h>
31#include <linux/security.h>
32#include <linux/xattr.h>
33#include <linux/capability.h>
34#include <linux/unistd.h>
35#include <linux/mm.h>
36#include <linux/mman.h>
37#include <linux/slab.h>
38#include <linux/pagemap.h>
39#include <linux/swap.h>
40#include <linux/spinlock.h>
41#include <linux/syscalls.h>
42#include <linux/file.h>
43#include <linux/fdtable.h>
44#include <linux/namei.h>
45#include <linux/mount.h>
46#include <linux/proc_fs.h>
47#include <linux/netfilter_ipv4.h>
48#include <linux/netfilter_ipv6.h>
49#include <linux/tty.h>
50#include <net/icmp.h>
51#include <net/ip.h> /* for local_port_range[] */
52#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
53#include <net/net_namespace.h>
54#include <net/netlabel.h>
55#include <linux/uaccess.h>
56#include <asm/ioctls.h>
57#include <asm/atomic.h>
58#include <linux/bitops.h>
59#include <linux/interrupt.h>
60#include <linux/netdevice.h> /* for network interface checks */
61#include <linux/netlink.h>
62#include <linux/tcp.h>
63#include <linux/udp.h>
64#include <linux/dccp.h>
65#include <linux/quota.h>
66#include <linux/un.h> /* for Unix socket types */
67#include <net/af_unix.h> /* for Unix socket types */
68#include <linux/parser.h>
69#include <linux/nfs_mount.h>
70#include <net/ipv6.h>
71#include <linux/hugetlb.h>
72#include <linux/personality.h>
73#include <linux/sysctl.h>
74#include <linux/audit.h>
75#include <linux/string.h>
76#include <linux/selinux.h>
77#include <linux/mutex.h>
78
79#include "avc.h"
80#include "objsec.h"
81#include "netif.h"
82#include "netnode.h"
83#include "netport.h"
84#include "xfrm.h"
85#include "netlabel.h"
86#include "audit.h"
87
88#define XATTR_SELINUX_SUFFIX "selinux"
89#define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
90
91#define NUM_SEL_MNT_OPTS 4
92
93extern unsigned int policydb_loaded_version;
94extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
95extern int selinux_compat_net;
96extern struct security_operations *security_ops;
97
98/* SECMARK reference count */
99atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
100
101#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
102int selinux_enforcing;
103
104static int __init enforcing_setup(char *str)
105{
106 unsigned long enforcing;
107 if (!strict_strtoul(str, 0, &enforcing))
108 selinux_enforcing = enforcing ? 1 : 0;
109 return 1;
110}
111__setup("enforcing=", enforcing_setup);
112#endif
113
114#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
115int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
116
117static int __init selinux_enabled_setup(char *str)
118{
119 unsigned long enabled;
120 if (!strict_strtoul(str, 0, &enabled))
121 selinux_enabled = enabled ? 1 : 0;
122 return 1;
123}
124__setup("selinux=", selinux_enabled_setup);
125#else
126int selinux_enabled = 1;
127#endif
128
129
130/*
131 * Minimal support for a secondary security module,
132 * just to allow the use of the capability module.
133 */
134static struct security_operations *secondary_ops;
135
136/* Lists of inode and superblock security structures initialized
137 before the policy was loaded. */
138static LIST_HEAD(superblock_security_head);
139static DEFINE_SPINLOCK(sb_security_lock);
140
141static struct kmem_cache *sel_inode_cache;
142
143/**
144 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
145 *
146 * Description:
147 * This function checks the SECMARK reference counter to see if any SECMARK
148 * targets are currently configured, if the reference counter is greater than
149 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
150 * enabled, false (0) if SECMARK is disabled.
151 *
152 */
153static int selinux_secmark_enabled(void)
154{
155 return (atomic_read(&selinux_secmark_refcount) > 0);
156}
157
158/* Allocate and free functions for each kind of security blob. */
159
160static int task_alloc_security(struct task_struct *task)
161{
162 struct task_security_struct *tsec;
163
164 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
165 if (!tsec)
166 return -ENOMEM;
167
168 tsec->osid = tsec->sid = SECINITSID_UNLABELED;
169 task->security = tsec;
170
171 return 0;
172}
173
174static void task_free_security(struct task_struct *task)
175{
176 struct task_security_struct *tsec = task->security;
177 task->security = NULL;
178 kfree(tsec);
179}
180
181static int inode_alloc_security(struct inode *inode)
182{
183 struct task_security_struct *tsec = current->security;
184 struct inode_security_struct *isec;
185
186 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
187 if (!isec)
188 return -ENOMEM;
189
190 mutex_init(&isec->lock);
191 INIT_LIST_HEAD(&isec->list);
192 isec->inode = inode;
193 isec->sid = SECINITSID_UNLABELED;
194 isec->sclass = SECCLASS_FILE;
195 isec->task_sid = tsec->sid;
196 inode->i_security = isec;
197
198 return 0;
199}
200
201static void inode_free_security(struct inode *inode)
202{
203 struct inode_security_struct *isec = inode->i_security;
204 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
205
206 spin_lock(&sbsec->isec_lock);
207 if (!list_empty(&isec->list))
208 list_del_init(&isec->list);
209 spin_unlock(&sbsec->isec_lock);
210
211 inode->i_security = NULL;
212 kmem_cache_free(sel_inode_cache, isec);
213}
214
215static int file_alloc_security(struct file *file)
216{
217 struct task_security_struct *tsec = current->security;
218 struct file_security_struct *fsec;
219
220 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
221 if (!fsec)
222 return -ENOMEM;
223
224 fsec->sid = tsec->sid;
225 fsec->fown_sid = tsec->sid;
226 file->f_security = fsec;
227
228 return 0;
229}
230
231static void file_free_security(struct file *file)
232{
233 struct file_security_struct *fsec = file->f_security;
234 file->f_security = NULL;
235 kfree(fsec);
236}
237
238static int superblock_alloc_security(struct super_block *sb)
239{
240 struct superblock_security_struct *sbsec;
241
242 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
243 if (!sbsec)
244 return -ENOMEM;
245
246 mutex_init(&sbsec->lock);
247 INIT_LIST_HEAD(&sbsec->list);
248 INIT_LIST_HEAD(&sbsec->isec_head);
249 spin_lock_init(&sbsec->isec_lock);
250 sbsec->sb = sb;
251 sbsec->sid = SECINITSID_UNLABELED;
252 sbsec->def_sid = SECINITSID_FILE;
253 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
254 sb->s_security = sbsec;
255
256 return 0;
257}
258
259static void superblock_free_security(struct super_block *sb)
260{
261 struct superblock_security_struct *sbsec = sb->s_security;
262
263 spin_lock(&sb_security_lock);
264 if (!list_empty(&sbsec->list))
265 list_del_init(&sbsec->list);
266 spin_unlock(&sb_security_lock);
267
268 sb->s_security = NULL;
269 kfree(sbsec);
270}
271
272static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
273{
274 struct sk_security_struct *ssec;
275
276 ssec = kzalloc(sizeof(*ssec), priority);
277 if (!ssec)
278 return -ENOMEM;
279
280 ssec->peer_sid = SECINITSID_UNLABELED;
281 ssec->sid = SECINITSID_UNLABELED;
282 sk->sk_security = ssec;
283
284 selinux_netlbl_sk_security_reset(ssec, family);
285
286 return 0;
287}
288
289static void sk_free_security(struct sock *sk)
290{
291 struct sk_security_struct *ssec = sk->sk_security;
292
293 sk->sk_security = NULL;
294 kfree(ssec);
295}
296
297/* The security server must be initialized before
298 any labeling or access decisions can be provided. */
299extern int ss_initialized;
300
301/* The file system's label must be initialized prior to use. */
302
303static char *labeling_behaviors[6] = {
304 "uses xattr",
305 "uses transition SIDs",
306 "uses task SIDs",
307 "uses genfs_contexts",
308 "not configured for labeling",
309 "uses mountpoint labeling",
310};
311
312static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
313
314static inline int inode_doinit(struct inode *inode)
315{
316 return inode_doinit_with_dentry(inode, NULL);
317}
318
319enum {
320 Opt_error = -1,
321 Opt_context = 1,
322 Opt_fscontext = 2,
323 Opt_defcontext = 3,
324 Opt_rootcontext = 4,
325};
326
327static match_table_t tokens = {
328 {Opt_context, CONTEXT_STR "%s"},
329 {Opt_fscontext, FSCONTEXT_STR "%s"},
330 {Opt_defcontext, DEFCONTEXT_STR "%s"},
331 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
332 {Opt_error, NULL},
333};
334
335#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
336
337static int may_context_mount_sb_relabel(u32 sid,
338 struct superblock_security_struct *sbsec,
339 struct task_security_struct *tsec)
340{
341 int rc;
342
343 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
344 FILESYSTEM__RELABELFROM, NULL);
345 if (rc)
346 return rc;
347
348 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
349 FILESYSTEM__RELABELTO, NULL);
350 return rc;
351}
352
353static int may_context_mount_inode_relabel(u32 sid,
354 struct superblock_security_struct *sbsec,
355 struct task_security_struct *tsec)
356{
357 int rc;
358 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
359 FILESYSTEM__RELABELFROM, NULL);
360 if (rc)
361 return rc;
362
363 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
364 FILESYSTEM__ASSOCIATE, NULL);
365 return rc;
366}
367
368static int sb_finish_set_opts(struct super_block *sb)
369{
370 struct superblock_security_struct *sbsec = sb->s_security;
371 struct dentry *root = sb->s_root;
372 struct inode *root_inode = root->d_inode;
373 int rc = 0;
374
375 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
376 /* Make sure that the xattr handler exists and that no
377 error other than -ENODATA is returned by getxattr on
378 the root directory. -ENODATA is ok, as this may be
379 the first boot of the SELinux kernel before we have
380 assigned xattr values to the filesystem. */
381 if (!root_inode->i_op->getxattr) {
382 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
383 "xattr support\n", sb->s_id, sb->s_type->name);
384 rc = -EOPNOTSUPP;
385 goto out;
386 }
387 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
388 if (rc < 0 && rc != -ENODATA) {
389 if (rc == -EOPNOTSUPP)
390 printk(KERN_WARNING "SELinux: (dev %s, type "
391 "%s) has no security xattr handler\n",
392 sb->s_id, sb->s_type->name);
393 else
394 printk(KERN_WARNING "SELinux: (dev %s, type "
395 "%s) getxattr errno %d\n", sb->s_id,
396 sb->s_type->name, -rc);
397 goto out;
398 }
399 }
400
401 sbsec->initialized = 1;
402
403 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
404 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
405 sb->s_id, sb->s_type->name);
406 else
407 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
408 sb->s_id, sb->s_type->name,
409 labeling_behaviors[sbsec->behavior-1]);
410
411 /* Initialize the root inode. */
412 rc = inode_doinit_with_dentry(root_inode, root);
413
414 /* Initialize any other inodes associated with the superblock, e.g.
415 inodes created prior to initial policy load or inodes created
416 during get_sb by a pseudo filesystem that directly
417 populates itself. */
418 spin_lock(&sbsec->isec_lock);
419next_inode:
420 if (!list_empty(&sbsec->isec_head)) {
421 struct inode_security_struct *isec =
422 list_entry(sbsec->isec_head.next,
423 struct inode_security_struct, list);
424 struct inode *inode = isec->inode;
425 spin_unlock(&sbsec->isec_lock);
426 inode = igrab(inode);
427 if (inode) {
428 if (!IS_PRIVATE(inode))
429 inode_doinit(inode);
430 iput(inode);
431 }
432 spin_lock(&sbsec->isec_lock);
433 list_del_init(&isec->list);
434 goto next_inode;
435 }
436 spin_unlock(&sbsec->isec_lock);
437out:
438 return rc;
439}
440
441/*
442 * This function should allow an FS to ask what it's mount security
443 * options were so it can use those later for submounts, displaying
444 * mount options, or whatever.
445 */
446static int selinux_get_mnt_opts(const struct super_block *sb,
447 struct security_mnt_opts *opts)
448{
449 int rc = 0, i;
450 struct superblock_security_struct *sbsec = sb->s_security;
451 char *context = NULL;
452 u32 len;
453 char tmp;
454
455 security_init_mnt_opts(opts);
456
457 if (!sbsec->initialized)
458 return -EINVAL;
459
460 if (!ss_initialized)
461 return -EINVAL;
462
463 /*
464 * if we ever use sbsec flags for anything other than tracking mount
465 * settings this is going to need a mask
466 */
467 tmp = sbsec->flags;
468 /* count the number of mount options for this sb */
469 for (i = 0; i < 8; i++) {
470 if (tmp & 0x01)
471 opts->num_mnt_opts++;
472 tmp >>= 1;
473 }
474
475 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
476 if (!opts->mnt_opts) {
477 rc = -ENOMEM;
478 goto out_free;
479 }
480
481 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
482 if (!opts->mnt_opts_flags) {
483 rc = -ENOMEM;
484 goto out_free;
485 }
486
487 i = 0;
488 if (sbsec->flags & FSCONTEXT_MNT) {
489 rc = security_sid_to_context(sbsec->sid, &context, &len);
490 if (rc)
491 goto out_free;
492 opts->mnt_opts[i] = context;
493 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
494 }
495 if (sbsec->flags & CONTEXT_MNT) {
496 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
497 if (rc)
498 goto out_free;
499 opts->mnt_opts[i] = context;
500 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
501 }
502 if (sbsec->flags & DEFCONTEXT_MNT) {
503 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
504 if (rc)
505 goto out_free;
506 opts->mnt_opts[i] = context;
507 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
508 }
509 if (sbsec->flags & ROOTCONTEXT_MNT) {
510 struct inode *root = sbsec->sb->s_root->d_inode;
511 struct inode_security_struct *isec = root->i_security;
512
513 rc = security_sid_to_context(isec->sid, &context, &len);
514 if (rc)
515 goto out_free;
516 opts->mnt_opts[i] = context;
517 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
518 }
519
520 BUG_ON(i != opts->num_mnt_opts);
521
522 return 0;
523
524out_free:
525 security_free_mnt_opts(opts);
526 return rc;
527}
528
529static int bad_option(struct superblock_security_struct *sbsec, char flag,
530 u32 old_sid, u32 new_sid)
531{
532 /* check if the old mount command had the same options */
533 if (sbsec->initialized)
534 if (!(sbsec->flags & flag) ||
535 (old_sid != new_sid))
536 return 1;
537
538 /* check if we were passed the same options twice,
539 * aka someone passed context=a,context=b
540 */
541 if (!sbsec->initialized)
542 if (sbsec->flags & flag)
543 return 1;
544 return 0;
545}
546
547/*
548 * Allow filesystems with binary mount data to explicitly set mount point
549 * labeling information.
550 */
551static int selinux_set_mnt_opts(struct super_block *sb,
552 struct security_mnt_opts *opts)
553{
554 int rc = 0, i;
555 struct task_security_struct *tsec = current->security;
556 struct superblock_security_struct *sbsec = sb->s_security;
557 const char *name = sb->s_type->name;
558 struct inode *inode = sbsec->sb->s_root->d_inode;
559 struct inode_security_struct *root_isec = inode->i_security;
560 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
561 u32 defcontext_sid = 0;
562 char **mount_options = opts->mnt_opts;
563 int *flags = opts->mnt_opts_flags;
564 int num_opts = opts->num_mnt_opts;
565
566 mutex_lock(&sbsec->lock);
567
568 if (!ss_initialized) {
569 if (!num_opts) {
570 /* Defer initialization until selinux_complete_init,
571 after the initial policy is loaded and the security
572 server is ready to handle calls. */
573 spin_lock(&sb_security_lock);
574 if (list_empty(&sbsec->list))
575 list_add(&sbsec->list, &superblock_security_head);
576 spin_unlock(&sb_security_lock);
577 goto out;
578 }
579 rc = -EINVAL;
580 printk(KERN_WARNING "SELinux: Unable to set superblock options "
581 "before the security server is initialized\n");
582 goto out;
583 }
584
585 /*
586 * Binary mount data FS will come through this function twice. Once
587 * from an explicit call and once from the generic calls from the vfs.
588 * Since the generic VFS calls will not contain any security mount data
589 * we need to skip the double mount verification.
590 *
591 * This does open a hole in which we will not notice if the first
592 * mount using this sb set explict options and a second mount using
593 * this sb does not set any security options. (The first options
594 * will be used for both mounts)
595 */
596 if (sbsec->initialized && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
597 && (num_opts == 0))
598 goto out;
599
600 /*
601 * parse the mount options, check if they are valid sids.
602 * also check if someone is trying to mount the same sb more
603 * than once with different security options.
604 */
605 for (i = 0; i < num_opts; i++) {
606 u32 sid;
607 rc = security_context_to_sid(mount_options[i],
608 strlen(mount_options[i]), &sid);
609 if (rc) {
610 printk(KERN_WARNING "SELinux: security_context_to_sid"
611 "(%s) failed for (dev %s, type %s) errno=%d\n",
612 mount_options[i], sb->s_id, name, rc);
613 goto out;
614 }
615 switch (flags[i]) {
616 case FSCONTEXT_MNT:
617 fscontext_sid = sid;
618
619 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
620 fscontext_sid))
621 goto out_double_mount;
622
623 sbsec->flags |= FSCONTEXT_MNT;
624 break;
625 case CONTEXT_MNT:
626 context_sid = sid;
627
628 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
629 context_sid))
630 goto out_double_mount;
631
632 sbsec->flags |= CONTEXT_MNT;
633 break;
634 case ROOTCONTEXT_MNT:
635 rootcontext_sid = sid;
636
637 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
638 rootcontext_sid))
639 goto out_double_mount;
640
641 sbsec->flags |= ROOTCONTEXT_MNT;
642
643 break;
644 case DEFCONTEXT_MNT:
645 defcontext_sid = sid;
646
647 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
648 defcontext_sid))
649 goto out_double_mount;
650
651 sbsec->flags |= DEFCONTEXT_MNT;
652
653 break;
654 default:
655 rc = -EINVAL;
656 goto out;
657 }
658 }
659
660 if (sbsec->initialized) {
661 /* previously mounted with options, but not on this attempt? */
662 if (sbsec->flags && !num_opts)
663 goto out_double_mount;
664 rc = 0;
665 goto out;
666 }
667
668 if (strcmp(sb->s_type->name, "proc") == 0)
669 sbsec->proc = 1;
670
671 /* Determine the labeling behavior to use for this filesystem type. */
672 rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
673 if (rc) {
674 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
675 __func__, sb->s_type->name, rc);
676 goto out;
677 }
678
679 /* sets the context of the superblock for the fs being mounted. */
680 if (fscontext_sid) {
681
682 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, tsec);
683 if (rc)
684 goto out;
685
686 sbsec->sid = fscontext_sid;
687 }
688
689 /*
690 * Switch to using mount point labeling behavior.
691 * sets the label used on all file below the mountpoint, and will set
692 * the superblock context if not already set.
693 */
694 if (context_sid) {
695 if (!fscontext_sid) {
696 rc = may_context_mount_sb_relabel(context_sid, sbsec, tsec);
697 if (rc)
698 goto out;
699 sbsec->sid = context_sid;
700 } else {
701 rc = may_context_mount_inode_relabel(context_sid, sbsec, tsec);
702 if (rc)
703 goto out;
704 }
705 if (!rootcontext_sid)
706 rootcontext_sid = context_sid;
707
708 sbsec->mntpoint_sid = context_sid;
709 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
710 }
711
712 if (rootcontext_sid) {
713 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, tsec);
714 if (rc)
715 goto out;
716
717 root_isec->sid = rootcontext_sid;
718 root_isec->initialized = 1;
719 }
720
721 if (defcontext_sid) {
722 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
723 rc = -EINVAL;
724 printk(KERN_WARNING "SELinux: defcontext option is "
725 "invalid for this filesystem type\n");
726 goto out;
727 }
728
729 if (defcontext_sid != sbsec->def_sid) {
730 rc = may_context_mount_inode_relabel(defcontext_sid,
731 sbsec, tsec);
732 if (rc)
733 goto out;
734 }
735
736 sbsec->def_sid = defcontext_sid;
737 }
738
739 rc = sb_finish_set_opts(sb);
740out:
741 mutex_unlock(&sbsec->lock);
742 return rc;
743out_double_mount:
744 rc = -EINVAL;
745 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
746 "security settings for (dev %s, type %s)\n", sb->s_id, name);
747 goto out;
748}
749
750static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
751 struct super_block *newsb)
752{
753 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
754 struct superblock_security_struct *newsbsec = newsb->s_security;
755
756 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
757 int set_context = (oldsbsec->flags & CONTEXT_MNT);
758 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
759
760 /*
761 * if the parent was able to be mounted it clearly had no special lsm
762 * mount options. thus we can safely put this sb on the list and deal
763 * with it later
764 */
765 if (!ss_initialized) {
766 spin_lock(&sb_security_lock);
767 if (list_empty(&newsbsec->list))
768 list_add(&newsbsec->list, &superblock_security_head);
769 spin_unlock(&sb_security_lock);
770 return;
771 }
772
773 /* how can we clone if the old one wasn't set up?? */
774 BUG_ON(!oldsbsec->initialized);
775
776 /* if fs is reusing a sb, just let its options stand... */
777 if (newsbsec->initialized)
778 return;
779
780 mutex_lock(&newsbsec->lock);
781
782 newsbsec->flags = oldsbsec->flags;
783
784 newsbsec->sid = oldsbsec->sid;
785 newsbsec->def_sid = oldsbsec->def_sid;
786 newsbsec->behavior = oldsbsec->behavior;
787
788 if (set_context) {
789 u32 sid = oldsbsec->mntpoint_sid;
790
791 if (!set_fscontext)
792 newsbsec->sid = sid;
793 if (!set_rootcontext) {
794 struct inode *newinode = newsb->s_root->d_inode;
795 struct inode_security_struct *newisec = newinode->i_security;
796 newisec->sid = sid;
797 }
798 newsbsec->mntpoint_sid = sid;
799 }
800 if (set_rootcontext) {
801 const struct inode *oldinode = oldsb->s_root->d_inode;
802 const struct inode_security_struct *oldisec = oldinode->i_security;
803 struct inode *newinode = newsb->s_root->d_inode;
804 struct inode_security_struct *newisec = newinode->i_security;
805
806 newisec->sid = oldisec->sid;
807 }
808
809 sb_finish_set_opts(newsb);
810 mutex_unlock(&newsbsec->lock);
811}
812
813static int selinux_parse_opts_str(char *options,
814 struct security_mnt_opts *opts)
815{
816 char *p;
817 char *context = NULL, *defcontext = NULL;
818 char *fscontext = NULL, *rootcontext = NULL;
819 int rc, num_mnt_opts = 0;
820
821 opts->num_mnt_opts = 0;
822
823 /* Standard string-based options. */
824 while ((p = strsep(&options, "|")) != NULL) {
825 int token;
826 substring_t args[MAX_OPT_ARGS];
827
828 if (!*p)
829 continue;
830
831 token = match_token(p, tokens, args);
832
833 switch (token) {
834 case Opt_context:
835 if (context || defcontext) {
836 rc = -EINVAL;
837 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
838 goto out_err;
839 }
840 context = match_strdup(&args[0]);
841 if (!context) {
842 rc = -ENOMEM;
843 goto out_err;
844 }
845 break;
846
847 case Opt_fscontext:
848 if (fscontext) {
849 rc = -EINVAL;
850 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
851 goto out_err;
852 }
853 fscontext = match_strdup(&args[0]);
854 if (!fscontext) {
855 rc = -ENOMEM;
856 goto out_err;
857 }
858 break;
859
860 case Opt_rootcontext:
861 if (rootcontext) {
862 rc = -EINVAL;
863 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
864 goto out_err;
865 }
866 rootcontext = match_strdup(&args[0]);
867 if (!rootcontext) {
868 rc = -ENOMEM;
869 goto out_err;
870 }
871 break;
872
873 case Opt_defcontext:
874 if (context || defcontext) {
875 rc = -EINVAL;
876 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
877 goto out_err;
878 }
879 defcontext = match_strdup(&args[0]);
880 if (!defcontext) {
881 rc = -ENOMEM;
882 goto out_err;
883 }
884 break;
885
886 default:
887 rc = -EINVAL;
888 printk(KERN_WARNING "SELinux: unknown mount option\n");
889 goto out_err;
890
891 }
892 }
893
894 rc = -ENOMEM;
895 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
896 if (!opts->mnt_opts)
897 goto out_err;
898
899 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
900 if (!opts->mnt_opts_flags) {
901 kfree(opts->mnt_opts);
902 goto out_err;
903 }
904
905 if (fscontext) {
906 opts->mnt_opts[num_mnt_opts] = fscontext;
907 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
908 }
909 if (context) {
910 opts->mnt_opts[num_mnt_opts] = context;
911 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
912 }
913 if (rootcontext) {
914 opts->mnt_opts[num_mnt_opts] = rootcontext;
915 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
916 }
917 if (defcontext) {
918 opts->mnt_opts[num_mnt_opts] = defcontext;
919 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
920 }
921
922 opts->num_mnt_opts = num_mnt_opts;
923 return 0;
924
925out_err:
926 kfree(context);
927 kfree(defcontext);
928 kfree(fscontext);
929 kfree(rootcontext);
930 return rc;
931}
932/*
933 * string mount options parsing and call set the sbsec
934 */
935static int superblock_doinit(struct super_block *sb, void *data)
936{
937 int rc = 0;
938 char *options = data;
939 struct security_mnt_opts opts;
940
941 security_init_mnt_opts(&opts);
942
943 if (!data)
944 goto out;
945
946 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
947
948 rc = selinux_parse_opts_str(options, &opts);
949 if (rc)
950 goto out_err;
951
952out:
953 rc = selinux_set_mnt_opts(sb, &opts);
954
955out_err:
956 security_free_mnt_opts(&opts);
957 return rc;
958}
959
960void selinux_write_opts(struct seq_file *m, struct security_mnt_opts *opts)
961{
962 int i;
963 char *prefix;
964
965 for (i = 0; i < opts->num_mnt_opts; i++) {
966 char *has_comma = strchr(opts->mnt_opts[i], ',');
967
968 switch (opts->mnt_opts_flags[i]) {
969 case CONTEXT_MNT:
970 prefix = CONTEXT_STR;
971 break;
972 case FSCONTEXT_MNT:
973 prefix = FSCONTEXT_STR;
974 break;
975 case ROOTCONTEXT_MNT:
976 prefix = ROOTCONTEXT_STR;
977 break;
978 case DEFCONTEXT_MNT:
979 prefix = DEFCONTEXT_STR;
980 break;
981 default:
982 BUG();
983 };
984 /* we need a comma before each option */
985 seq_putc(m, ',');
986 seq_puts(m, prefix);
987 if (has_comma)
988 seq_putc(m, '\"');
989 seq_puts(m, opts->mnt_opts[i]);
990 if (has_comma)
991 seq_putc(m, '\"');
992 }
993}
994
995static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
996{
997 struct security_mnt_opts opts;
998 int rc;
999
1000 rc = selinux_get_mnt_opts(sb, &opts);
1001 if (rc) {
1002 /* before policy load we may get EINVAL, don't show anything */
1003 if (rc == -EINVAL)
1004 rc = 0;
1005 return rc;
1006 }
1007
1008 selinux_write_opts(m, &opts);
1009
1010 security_free_mnt_opts(&opts);
1011
1012 return rc;
1013}
1014
1015static inline u16 inode_mode_to_security_class(umode_t mode)
1016{
1017 switch (mode & S_IFMT) {
1018 case S_IFSOCK:
1019 return SECCLASS_SOCK_FILE;
1020 case S_IFLNK:
1021 return SECCLASS_LNK_FILE;
1022 case S_IFREG:
1023 return SECCLASS_FILE;
1024 case S_IFBLK:
1025 return SECCLASS_BLK_FILE;
1026 case S_IFDIR:
1027 return SECCLASS_DIR;
1028 case S_IFCHR:
1029 return SECCLASS_CHR_FILE;
1030 case S_IFIFO:
1031 return SECCLASS_FIFO_FILE;
1032
1033 }
1034
1035 return SECCLASS_FILE;
1036}
1037
1038static inline int default_protocol_stream(int protocol)
1039{
1040 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1041}
1042
1043static inline int default_protocol_dgram(int protocol)
1044{
1045 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1046}
1047
1048static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1049{
1050 switch (family) {
1051 case PF_UNIX:
1052 switch (type) {
1053 case SOCK_STREAM:
1054 case SOCK_SEQPACKET:
1055 return SECCLASS_UNIX_STREAM_SOCKET;
1056 case SOCK_DGRAM:
1057 return SECCLASS_UNIX_DGRAM_SOCKET;
1058 }
1059 break;
1060 case PF_INET:
1061 case PF_INET6:
1062 switch (type) {
1063 case SOCK_STREAM:
1064 if (default_protocol_stream(protocol))
1065 return SECCLASS_TCP_SOCKET;
1066 else
1067 return SECCLASS_RAWIP_SOCKET;
1068 case SOCK_DGRAM:
1069 if (default_protocol_dgram(protocol))
1070 return SECCLASS_UDP_SOCKET;
1071 else
1072 return SECCLASS_RAWIP_SOCKET;
1073 case SOCK_DCCP:
1074 return SECCLASS_DCCP_SOCKET;
1075 default:
1076 return SECCLASS_RAWIP_SOCKET;
1077 }
1078 break;
1079 case PF_NETLINK:
1080 switch (protocol) {
1081 case NETLINK_ROUTE:
1082 return SECCLASS_NETLINK_ROUTE_SOCKET;
1083 case NETLINK_FIREWALL:
1084 return SECCLASS_NETLINK_FIREWALL_SOCKET;
1085 case NETLINK_INET_DIAG:
1086 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1087 case NETLINK_NFLOG:
1088 return SECCLASS_NETLINK_NFLOG_SOCKET;
1089 case NETLINK_XFRM:
1090 return SECCLASS_NETLINK_XFRM_SOCKET;
1091 case NETLINK_SELINUX:
1092 return SECCLASS_NETLINK_SELINUX_SOCKET;
1093 case NETLINK_AUDIT:
1094 return SECCLASS_NETLINK_AUDIT_SOCKET;
1095 case NETLINK_IP6_FW:
1096 return SECCLASS_NETLINK_IP6FW_SOCKET;
1097 case NETLINK_DNRTMSG:
1098 return SECCLASS_NETLINK_DNRT_SOCKET;
1099 case NETLINK_KOBJECT_UEVENT:
1100 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1101 default:
1102 return SECCLASS_NETLINK_SOCKET;
1103 }
1104 case PF_PACKET:
1105 return SECCLASS_PACKET_SOCKET;
1106 case PF_KEY:
1107 return SECCLASS_KEY_SOCKET;
1108 case PF_APPLETALK:
1109 return SECCLASS_APPLETALK_SOCKET;
1110 }
1111
1112 return SECCLASS_SOCKET;
1113}
1114
1115#ifdef CONFIG_PROC_FS
1116static int selinux_proc_get_sid(struct proc_dir_entry *de,
1117 u16 tclass,
1118 u32 *sid)
1119{
1120 int buflen, rc;
1121 char *buffer, *path, *end;
1122
1123 buffer = (char *)__get_free_page(GFP_KERNEL);
1124 if (!buffer)
1125 return -ENOMEM;
1126
1127 buflen = PAGE_SIZE;
1128 end = buffer+buflen;
1129 *--end = '\0';
1130 buflen--;
1131 path = end-1;
1132 *path = '/';
1133 while (de && de != de->parent) {
1134 buflen -= de->namelen + 1;
1135 if (buflen < 0)
1136 break;
1137 end -= de->namelen;
1138 memcpy(end, de->name, de->namelen);
1139 *--end = '/';
1140 path = end;
1141 de = de->parent;
1142 }
1143 rc = security_genfs_sid("proc", path, tclass, sid);
1144 free_page((unsigned long)buffer);
1145 return rc;
1146}
1147#else
1148static int selinux_proc_get_sid(struct proc_dir_entry *de,
1149 u16 tclass,
1150 u32 *sid)
1151{
1152 return -EINVAL;
1153}
1154#endif
1155
1156/* The inode's security attributes must be initialized before first use. */
1157static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1158{
1159 struct superblock_security_struct *sbsec = NULL;
1160 struct inode_security_struct *isec = inode->i_security;
1161 u32 sid;
1162 struct dentry *dentry;
1163#define INITCONTEXTLEN 255
1164 char *context = NULL;
1165 unsigned len = 0;
1166 int rc = 0;
1167
1168 if (isec->initialized)
1169 goto out;
1170
1171 mutex_lock(&isec->lock);
1172 if (isec->initialized)
1173 goto out_unlock;
1174
1175 sbsec = inode->i_sb->s_security;
1176 if (!sbsec->initialized) {
1177 /* Defer initialization until selinux_complete_init,
1178 after the initial policy is loaded and the security
1179 server is ready to handle calls. */
1180 spin_lock(&sbsec->isec_lock);
1181 if (list_empty(&isec->list))
1182 list_add(&isec->list, &sbsec->isec_head);
1183 spin_unlock(&sbsec->isec_lock);
1184 goto out_unlock;
1185 }
1186
1187 switch (sbsec->behavior) {
1188 case SECURITY_FS_USE_XATTR:
1189 if (!inode->i_op->getxattr) {
1190 isec->sid = sbsec->def_sid;
1191 break;
1192 }
1193
1194 /* Need a dentry, since the xattr API requires one.
1195 Life would be simpler if we could just pass the inode. */
1196 if (opt_dentry) {
1197 /* Called from d_instantiate or d_splice_alias. */
1198 dentry = dget(opt_dentry);
1199 } else {
1200 /* Called from selinux_complete_init, try to find a dentry. */
1201 dentry = d_find_alias(inode);
1202 }
1203 if (!dentry) {
1204 printk(KERN_WARNING "SELinux: %s: no dentry for dev=%s "
1205 "ino=%ld\n", __func__, inode->i_sb->s_id,
1206 inode->i_ino);
1207 goto out_unlock;
1208 }
1209
1210 len = INITCONTEXTLEN;
1211 context = kmalloc(len, GFP_NOFS);
1212 if (!context) {
1213 rc = -ENOMEM;
1214 dput(dentry);
1215 goto out_unlock;
1216 }
1217 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1218 context, len);
1219 if (rc == -ERANGE) {
1220 /* Need a larger buffer. Query for the right size. */
1221 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1222 NULL, 0);
1223 if (rc < 0) {
1224 dput(dentry);
1225 goto out_unlock;
1226 }
1227 kfree(context);
1228 len = rc;
1229 context = kmalloc(len, GFP_NOFS);
1230 if (!context) {
1231 rc = -ENOMEM;
1232 dput(dentry);
1233 goto out_unlock;
1234 }
1235 rc = inode->i_op->getxattr(dentry,
1236 XATTR_NAME_SELINUX,
1237 context, len);
1238 }
1239 dput(dentry);
1240 if (rc < 0) {
1241 if (rc != -ENODATA) {
1242 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1243 "%d for dev=%s ino=%ld\n", __func__,
1244 -rc, inode->i_sb->s_id, inode->i_ino);
1245 kfree(context);
1246 goto out_unlock;
1247 }
1248 /* Map ENODATA to the default file SID */
1249 sid = sbsec->def_sid;
1250 rc = 0;
1251 } else {
1252 rc = security_context_to_sid_default(context, rc, &sid,
1253 sbsec->def_sid,
1254 GFP_NOFS);
1255 if (rc) {
1256 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1257 "returned %d for dev=%s ino=%ld\n",
1258 __func__, context, -rc,
1259 inode->i_sb->s_id, inode->i_ino);
1260 kfree(context);
1261 /* Leave with the unlabeled SID */
1262 rc = 0;
1263 break;
1264 }
1265 }
1266 kfree(context);
1267 isec->sid = sid;
1268 break;
1269 case SECURITY_FS_USE_TASK:
1270 isec->sid = isec->task_sid;
1271 break;
1272 case SECURITY_FS_USE_TRANS:
1273 /* Default to the fs SID. */
1274 isec->sid = sbsec->sid;
1275
1276 /* Try to obtain a transition SID. */
1277 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1278 rc = security_transition_sid(isec->task_sid,
1279 sbsec->sid,
1280 isec->sclass,
1281 &sid);
1282 if (rc)
1283 goto out_unlock;
1284 isec->sid = sid;
1285 break;
1286 case SECURITY_FS_USE_MNTPOINT:
1287 isec->sid = sbsec->mntpoint_sid;
1288 break;
1289 default:
1290 /* Default to the fs superblock SID. */
1291 isec->sid = sbsec->sid;
1292
1293 if (sbsec->proc) {
1294 struct proc_inode *proci = PROC_I(inode);
1295 if (proci->pde) {
1296 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1297 rc = selinux_proc_get_sid(proci->pde,
1298 isec->sclass,
1299 &sid);
1300 if (rc)
1301 goto out_unlock;
1302 isec->sid = sid;
1303 }
1304 }
1305 break;
1306 }
1307
1308 isec->initialized = 1;
1309
1310out_unlock:
1311 mutex_unlock(&isec->lock);
1312out:
1313 if (isec->sclass == SECCLASS_FILE)
1314 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1315 return rc;
1316}
1317
1318/* Convert a Linux signal to an access vector. */
1319static inline u32 signal_to_av(int sig)
1320{
1321 u32 perm = 0;
1322
1323 switch (sig) {
1324 case SIGCHLD:
1325 /* Commonly granted from child to parent. */
1326 perm = PROCESS__SIGCHLD;
1327 break;
1328 case SIGKILL:
1329 /* Cannot be caught or ignored */
1330 perm = PROCESS__SIGKILL;
1331 break;
1332 case SIGSTOP:
1333 /* Cannot be caught or ignored */
1334 perm = PROCESS__SIGSTOP;
1335 break;
1336 default:
1337 /* All other signals. */
1338 perm = PROCESS__SIGNAL;
1339 break;
1340 }
1341
1342 return perm;
1343}
1344
1345/* Check permission betweeen a pair of tasks, e.g. signal checks,
1346 fork check, ptrace check, etc. */
1347static int task_has_perm(struct task_struct *tsk1,
1348 struct task_struct *tsk2,
1349 u32 perms)
1350{
1351 struct task_security_struct *tsec1, *tsec2;
1352
1353 tsec1 = tsk1->security;
1354 tsec2 = tsk2->security;
1355 return avc_has_perm(tsec1->sid, tsec2->sid,
1356 SECCLASS_PROCESS, perms, NULL);
1357}
1358
1359#if CAP_LAST_CAP > 63
1360#error Fix SELinux to handle capabilities > 63.
1361#endif
1362
1363/* Check whether a task is allowed to use a capability. */
1364static int task_has_capability(struct task_struct *tsk,
1365 int cap)
1366{
1367 struct task_security_struct *tsec;
1368 struct avc_audit_data ad;
1369 u16 sclass;
1370 u32 av = CAP_TO_MASK(cap);
1371
1372 tsec = tsk->security;
1373
1374 AVC_AUDIT_DATA_INIT(&ad, CAP);
1375 ad.tsk = tsk;
1376 ad.u.cap = cap;
1377
1378 switch (CAP_TO_INDEX(cap)) {
1379 case 0:
1380 sclass = SECCLASS_CAPABILITY;
1381 break;
1382 case 1:
1383 sclass = SECCLASS_CAPABILITY2;
1384 break;
1385 default:
1386 printk(KERN_ERR
1387 "SELinux: out of range capability %d\n", cap);
1388 BUG();
1389 }
1390 return avc_has_perm(tsec->sid, tsec->sid, sclass, av, &ad);
1391}
1392
1393/* Check whether a task is allowed to use a system operation. */
1394static int task_has_system(struct task_struct *tsk,
1395 u32 perms)
1396{
1397 struct task_security_struct *tsec;
1398
1399 tsec = tsk->security;
1400
1401 return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1402 SECCLASS_SYSTEM, perms, NULL);
1403}
1404
1405/* Check whether a task has a particular permission to an inode.
1406 The 'adp' parameter is optional and allows other audit
1407 data to be passed (e.g. the dentry). */
1408static int inode_has_perm(struct task_struct *tsk,
1409 struct inode *inode,
1410 u32 perms,
1411 struct avc_audit_data *adp)
1412{
1413 struct task_security_struct *tsec;
1414 struct inode_security_struct *isec;
1415 struct avc_audit_data ad;
1416
1417 if (unlikely(IS_PRIVATE(inode)))
1418 return 0;
1419
1420 tsec = tsk->security;
1421 isec = inode->i_security;
1422
1423 if (!adp) {
1424 adp = &ad;
1425 AVC_AUDIT_DATA_INIT(&ad, FS);
1426 ad.u.fs.inode = inode;
1427 }
1428
1429 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1430}
1431
1432/* Same as inode_has_perm, but pass explicit audit data containing
1433 the dentry to help the auditing code to more easily generate the
1434 pathname if needed. */
1435static inline int dentry_has_perm(struct task_struct *tsk,
1436 struct vfsmount *mnt,
1437 struct dentry *dentry,
1438 u32 av)
1439{
1440 struct inode *inode = dentry->d_inode;
1441 struct avc_audit_data ad;
1442 AVC_AUDIT_DATA_INIT(&ad, FS);
1443 ad.u.fs.path.mnt = mnt;
1444 ad.u.fs.path.dentry = dentry;
1445 return inode_has_perm(tsk, inode, av, &ad);
1446}
1447
1448/* Check whether a task can use an open file descriptor to
1449 access an inode in a given way. Check access to the
1450 descriptor itself, and then use dentry_has_perm to
1451 check a particular permission to the file.
1452 Access to the descriptor is implicitly granted if it
1453 has the same SID as the process. If av is zero, then
1454 access to the file is not checked, e.g. for cases
1455 where only the descriptor is affected like seek. */
1456static int file_has_perm(struct task_struct *tsk,
1457 struct file *file,
1458 u32 av)
1459{
1460 struct task_security_struct *tsec = tsk->security;
1461 struct file_security_struct *fsec = file->f_security;
1462 struct inode *inode = file->f_path.dentry->d_inode;
1463 struct avc_audit_data ad;
1464 int rc;
1465
1466 AVC_AUDIT_DATA_INIT(&ad, FS);
1467 ad.u.fs.path = file->f_path;
1468
1469 if (tsec->sid != fsec->sid) {
1470 rc = avc_has_perm(tsec->sid, fsec->sid,
1471 SECCLASS_FD,
1472 FD__USE,
1473 &ad);
1474 if (rc)
1475 return rc;
1476 }
1477
1478 /* av is zero if only checking access to the descriptor. */
1479 if (av)
1480 return inode_has_perm(tsk, inode, av, &ad);
1481
1482 return 0;
1483}
1484
1485/* Check whether a task can create a file. */
1486static int may_create(struct inode *dir,
1487 struct dentry *dentry,
1488 u16 tclass)
1489{
1490 struct task_security_struct *tsec;
1491 struct inode_security_struct *dsec;
1492 struct superblock_security_struct *sbsec;
1493 u32 newsid;
1494 struct avc_audit_data ad;
1495 int rc;
1496
1497 tsec = current->security;
1498 dsec = dir->i_security;
1499 sbsec = dir->i_sb->s_security;
1500
1501 AVC_AUDIT_DATA_INIT(&ad, FS);
1502 ad.u.fs.path.dentry = dentry;
1503
1504 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1505 DIR__ADD_NAME | DIR__SEARCH,
1506 &ad);
1507 if (rc)
1508 return rc;
1509
1510 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1511 newsid = tsec->create_sid;
1512 } else {
1513 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1514 &newsid);
1515 if (rc)
1516 return rc;
1517 }
1518
1519 rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1520 if (rc)
1521 return rc;
1522
1523 return avc_has_perm(newsid, sbsec->sid,
1524 SECCLASS_FILESYSTEM,
1525 FILESYSTEM__ASSOCIATE, &ad);
1526}
1527
1528/* Check whether a task can create a key. */
1529static int may_create_key(u32 ksid,
1530 struct task_struct *ctx)
1531{
1532 struct task_security_struct *tsec;
1533
1534 tsec = ctx->security;
1535
1536 return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1537}
1538
1539#define MAY_LINK 0
1540#define MAY_UNLINK 1
1541#define MAY_RMDIR 2
1542
1543/* Check whether a task can link, unlink, or rmdir a file/directory. */
1544static int may_link(struct inode *dir,
1545 struct dentry *dentry,
1546 int kind)
1547
1548{
1549 struct task_security_struct *tsec;
1550 struct inode_security_struct *dsec, *isec;
1551 struct avc_audit_data ad;
1552 u32 av;
1553 int rc;
1554
1555 tsec = current->security;
1556 dsec = dir->i_security;
1557 isec = dentry->d_inode->i_security;
1558
1559 AVC_AUDIT_DATA_INIT(&ad, FS);
1560 ad.u.fs.path.dentry = dentry;
1561
1562 av = DIR__SEARCH;
1563 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1564 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1565 if (rc)
1566 return rc;
1567
1568 switch (kind) {
1569 case MAY_LINK:
1570 av = FILE__LINK;
1571 break;
1572 case MAY_UNLINK:
1573 av = FILE__UNLINK;
1574 break;
1575 case MAY_RMDIR:
1576 av = DIR__RMDIR;
1577 break;
1578 default:
1579 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1580 __func__, kind);
1581 return 0;
1582 }
1583
1584 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1585 return rc;
1586}
1587
1588static inline int may_rename(struct inode *old_dir,
1589 struct dentry *old_dentry,
1590 struct inode *new_dir,
1591 struct dentry *new_dentry)
1592{
1593 struct task_security_struct *tsec;
1594 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1595 struct avc_audit_data ad;
1596 u32 av;
1597 int old_is_dir, new_is_dir;
1598 int rc;
1599
1600 tsec = current->security;
1601 old_dsec = old_dir->i_security;
1602 old_isec = old_dentry->d_inode->i_security;
1603 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1604 new_dsec = new_dir->i_security;
1605
1606 AVC_AUDIT_DATA_INIT(&ad, FS);
1607
1608 ad.u.fs.path.dentry = old_dentry;
1609 rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1610 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1611 if (rc)
1612 return rc;
1613 rc = avc_has_perm(tsec->sid, old_isec->sid,
1614 old_isec->sclass, FILE__RENAME, &ad);
1615 if (rc)
1616 return rc;
1617 if (old_is_dir && new_dir != old_dir) {
1618 rc = avc_has_perm(tsec->sid, old_isec->sid,
1619 old_isec->sclass, DIR__REPARENT, &ad);
1620 if (rc)
1621 return rc;
1622 }
1623
1624 ad.u.fs.path.dentry = new_dentry;
1625 av = DIR__ADD_NAME | DIR__SEARCH;
1626 if (new_dentry->d_inode)
1627 av |= DIR__REMOVE_NAME;
1628 rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1629 if (rc)
1630 return rc;
1631 if (new_dentry->d_inode) {
1632 new_isec = new_dentry->d_inode->i_security;
1633 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1634 rc = avc_has_perm(tsec->sid, new_isec->sid,
1635 new_isec->sclass,
1636 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1637 if (rc)
1638 return rc;
1639 }
1640
1641 return 0;
1642}
1643
1644/* Check whether a task can perform a filesystem operation. */
1645static int superblock_has_perm(struct task_struct *tsk,
1646 struct super_block *sb,
1647 u32 perms,
1648 struct avc_audit_data *ad)
1649{
1650 struct task_security_struct *tsec;
1651 struct superblock_security_struct *sbsec;
1652
1653 tsec = tsk->security;
1654 sbsec = sb->s_security;
1655 return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1656 perms, ad);
1657}
1658
1659/* Convert a Linux mode and permission mask to an access vector. */
1660static inline u32 file_mask_to_av(int mode, int mask)
1661{
1662 u32 av = 0;
1663
1664 if ((mode & S_IFMT) != S_IFDIR) {
1665 if (mask & MAY_EXEC)
1666 av |= FILE__EXECUTE;
1667 if (mask & MAY_READ)
1668 av |= FILE__READ;
1669
1670 if (mask & MAY_APPEND)
1671 av |= FILE__APPEND;
1672 else if (mask & MAY_WRITE)
1673 av |= FILE__WRITE;
1674
1675 } else {
1676 if (mask & MAY_EXEC)
1677 av |= DIR__SEARCH;
1678 if (mask & MAY_WRITE)
1679 av |= DIR__WRITE;
1680 if (mask & MAY_READ)
1681 av |= DIR__READ;
1682 }
1683
1684 return av;
1685}
1686
1687/*
1688 * Convert a file mask to an access vector and include the correct open
1689 * open permission.
1690 */
1691static inline u32 open_file_mask_to_av(int mode, int mask)
1692{
1693 u32 av = file_mask_to_av(mode, mask);
1694
1695 if (selinux_policycap_openperm) {
1696 /*
1697 * lnk files and socks do not really have an 'open'
1698 */
1699 if (S_ISREG(mode))
1700 av |= FILE__OPEN;
1701 else if (S_ISCHR(mode))
1702 av |= CHR_FILE__OPEN;
1703 else if (S_ISBLK(mode))
1704 av |= BLK_FILE__OPEN;
1705 else if (S_ISFIFO(mode))
1706 av |= FIFO_FILE__OPEN;
1707 else if (S_ISDIR(mode))
1708 av |= DIR__OPEN;
1709 else
1710 printk(KERN_ERR "SELinux: WARNING: inside %s with "
1711 "unknown mode:%x\n", __func__, mode);
1712 }
1713 return av;
1714}
1715
1716/* Convert a Linux file to an access vector. */
1717static inline u32 file_to_av(struct file *file)
1718{
1719 u32 av = 0;
1720
1721 if (file->f_mode & FMODE_READ)
1722 av |= FILE__READ;
1723 if (file->f_mode & FMODE_WRITE) {
1724 if (file->f_flags & O_APPEND)
1725 av |= FILE__APPEND;
1726 else
1727 av |= FILE__WRITE;
1728 }
1729 if (!av) {
1730 /*
1731 * Special file opened with flags 3 for ioctl-only use.
1732 */
1733 av = FILE__IOCTL;
1734 }
1735
1736 return av;
1737}
1738
1739/* Hook functions begin here. */
1740
1741static int selinux_ptrace(struct task_struct *parent,
1742 struct task_struct *child,
1743 unsigned int mode)
1744{
1745 int rc;
1746
1747 rc = secondary_ops->ptrace(parent, child, mode);
1748 if (rc)
1749 return rc;
1750
1751 if (mode == PTRACE_MODE_READ) {
1752 struct task_security_struct *tsec = parent->security;
1753 struct task_security_struct *csec = child->security;
1754 return avc_has_perm(tsec->sid, csec->sid,
1755 SECCLASS_FILE, FILE__READ, NULL);
1756 }
1757
1758 return task_has_perm(parent, child, PROCESS__PTRACE);
1759}
1760
1761static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1762 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1763{
1764 int error;
1765
1766 error = task_has_perm(current, target, PROCESS__GETCAP);
1767 if (error)
1768 return error;
1769
1770 return secondary_ops->capget(target, effective, inheritable, permitted);
1771}
1772
1773static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1774 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1775{
1776 int error;
1777
1778 error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1779 if (error)
1780 return error;
1781
1782 return task_has_perm(current, target, PROCESS__SETCAP);
1783}
1784
1785static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1786 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1787{
1788 secondary_ops->capset_set(target, effective, inheritable, permitted);
1789}
1790
1791static int selinux_capable(struct task_struct *tsk, int cap)
1792{
1793 int rc;
1794
1795 rc = secondary_ops->capable(tsk, cap);
1796 if (rc)
1797 return rc;
1798
1799 return task_has_capability(tsk, cap);
1800}
1801
1802static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1803{
1804 int buflen, rc;
1805 char *buffer, *path, *end;
1806
1807 rc = -ENOMEM;
1808 buffer = (char *)__get_free_page(GFP_KERNEL);
1809 if (!buffer)
1810 goto out;
1811
1812 buflen = PAGE_SIZE;
1813 end = buffer+buflen;
1814 *--end = '\0';
1815 buflen--;
1816 path = end-1;
1817 *path = '/';
1818 while (table) {
1819 const char *name = table->procname;
1820 size_t namelen = strlen(name);
1821 buflen -= namelen + 1;
1822 if (buflen < 0)
1823 goto out_free;
1824 end -= namelen;
1825 memcpy(end, name, namelen);
1826 *--end = '/';
1827 path = end;
1828 table = table->parent;
1829 }
1830 buflen -= 4;
1831 if (buflen < 0)
1832 goto out_free;
1833 end -= 4;
1834 memcpy(end, "/sys", 4);
1835 path = end;
1836 rc = security_genfs_sid("proc", path, tclass, sid);
1837out_free:
1838 free_page((unsigned long)buffer);
1839out:
1840 return rc;
1841}
1842
1843static int selinux_sysctl(ctl_table *table, int op)
1844{
1845 int error = 0;
1846 u32 av;
1847 struct task_security_struct *tsec;
1848 u32 tsid;
1849 int rc;
1850
1851 rc = secondary_ops->sysctl(table, op);
1852 if (rc)
1853 return rc;
1854
1855 tsec = current->security;
1856
1857 rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1858 SECCLASS_DIR : SECCLASS_FILE, &tsid);
1859 if (rc) {
1860 /* Default to the well-defined sysctl SID. */
1861 tsid = SECINITSID_SYSCTL;
1862 }
1863
1864 /* The op values are "defined" in sysctl.c, thereby creating
1865 * a bad coupling between this module and sysctl.c */
1866 if (op == 001) {
1867 error = avc_has_perm(tsec->sid, tsid,
1868 SECCLASS_DIR, DIR__SEARCH, NULL);
1869 } else {
1870 av = 0;
1871 if (op & 004)
1872 av |= FILE__READ;
1873 if (op & 002)
1874 av |= FILE__WRITE;
1875 if (av)
1876 error = avc_has_perm(tsec->sid, tsid,
1877 SECCLASS_FILE, av, NULL);
1878 }
1879
1880 return error;
1881}
1882
1883static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1884{
1885 int rc = 0;
1886
1887 if (!sb)
1888 return 0;
1889
1890 switch (cmds) {
1891 case Q_SYNC:
1892 case Q_QUOTAON:
1893 case Q_QUOTAOFF:
1894 case Q_SETINFO:
1895 case Q_SETQUOTA:
1896 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAMOD,
1897 NULL);
1898 break;
1899 case Q_GETFMT:
1900 case Q_GETINFO:
1901 case Q_GETQUOTA:
1902 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAGET,
1903 NULL);
1904 break;
1905 default:
1906 rc = 0; /* let the kernel handle invalid cmds */
1907 break;
1908 }
1909 return rc;
1910}
1911
1912static int selinux_quota_on(struct dentry *dentry)
1913{
1914 return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1915}
1916
1917static int selinux_syslog(int type)
1918{
1919 int rc;
1920
1921 rc = secondary_ops->syslog(type);
1922 if (rc)
1923 return rc;
1924
1925 switch (type) {
1926 case 3: /* Read last kernel messages */
1927 case 10: /* Return size of the log buffer */
1928 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1929 break;
1930 case 6: /* Disable logging to console */
1931 case 7: /* Enable logging to console */
1932 case 8: /* Set level of messages printed to console */
1933 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1934 break;
1935 case 0: /* Close log */
1936 case 1: /* Open log */
1937 case 2: /* Read from log */
1938 case 4: /* Read/clear last kernel messages */
1939 case 5: /* Clear ring buffer */
1940 default:
1941 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1942 break;
1943 }
1944 return rc;
1945}
1946
1947/*
1948 * Check that a process has enough memory to allocate a new virtual
1949 * mapping. 0 means there is enough memory for the allocation to
1950 * succeed and -ENOMEM implies there is not.
1951 *
1952 * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1953 * if the capability is granted, but __vm_enough_memory requires 1 if
1954 * the capability is granted.
1955 *
1956 * Do not audit the selinux permission check, as this is applied to all
1957 * processes that allocate mappings.
1958 */
1959static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1960{
1961 int rc, cap_sys_admin = 0;
1962 struct task_security_struct *tsec = current->security;
1963
1964 rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1965 if (rc == 0)
1966 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1967 SECCLASS_CAPABILITY,
1968 CAP_TO_MASK(CAP_SYS_ADMIN),
1969 0,
1970 NULL);
1971
1972 if (rc == 0)
1973 cap_sys_admin = 1;
1974
1975 return __vm_enough_memory(mm, pages, cap_sys_admin);
1976}
1977
1978/* binprm security operations */
1979
1980static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1981{
1982 struct bprm_security_struct *bsec;
1983
1984 bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1985 if (!bsec)
1986 return -ENOMEM;
1987
1988 bsec->sid = SECINITSID_UNLABELED;
1989 bsec->set = 0;
1990
1991 bprm->security = bsec;
1992 return 0;
1993}
1994
1995static int selinux_bprm_set_security(struct linux_binprm *bprm)
1996{
1997 struct task_security_struct *tsec;
1998 struct inode *inode = bprm->file->f_path.dentry->d_inode;
1999 struct inode_security_struct *isec;
2000 struct bprm_security_struct *bsec;
2001 u32 newsid;
2002 struct avc_audit_data ad;
2003 int rc;
2004
2005 rc = secondary_ops->bprm_set_security(bprm);
2006 if (rc)
2007 return rc;
2008
2009 bsec = bprm->security;
2010
2011 if (bsec->set)
2012 return 0;
2013
2014 tsec = current->security;
2015 isec = inode->i_security;
2016
2017 /* Default to the current task SID. */
2018 bsec->sid = tsec->sid;
2019
2020 /* Reset fs, key, and sock SIDs on execve. */
2021 tsec->create_sid = 0;
2022 tsec->keycreate_sid = 0;
2023 tsec->sockcreate_sid = 0;
2024
2025 if (tsec->exec_sid) {
2026 newsid = tsec->exec_sid;
2027 /* Reset exec SID on execve. */
2028 tsec->exec_sid = 0;
2029 } else {
2030 /* Check for a default transition on this program. */
2031 rc = security_transition_sid(tsec->sid, isec->sid,
2032 SECCLASS_PROCESS, &newsid);
2033 if (rc)
2034 return rc;
2035 }
2036
2037 AVC_AUDIT_DATA_INIT(&ad, FS);
2038 ad.u.fs.path = bprm->file->f_path;
2039
2040 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2041 newsid = tsec->sid;
2042
2043 if (tsec->sid == newsid) {
2044 rc = avc_has_perm(tsec->sid, isec->sid,
2045 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2046 if (rc)
2047 return rc;
2048 } else {
2049 /* Check permissions for the transition. */
2050 rc = avc_has_perm(tsec->sid, newsid,
2051 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2052 if (rc)
2053 return rc;
2054
2055 rc = avc_has_perm(newsid, isec->sid,
2056 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2057 if (rc)
2058 return rc;
2059
2060 /* Clear any possibly unsafe personality bits on exec: */
2061 current->personality &= ~PER_CLEAR_ON_SETID;
2062
2063 /* Set the security field to the new SID. */
2064 bsec->sid = newsid;
2065 }
2066
2067 bsec->set = 1;
2068 return 0;
2069}
2070
2071static int selinux_bprm_check_security(struct linux_binprm *bprm)
2072{
2073 return secondary_ops->bprm_check_security(bprm);
2074}
2075
2076
2077static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2078{
2079 struct task_security_struct *tsec = current->security;
2080 int atsecure = 0;
2081
2082 if (tsec->osid != tsec->sid) {
2083 /* Enable secure mode for SIDs transitions unless
2084 the noatsecure permission is granted between
2085 the two SIDs, i.e. ahp returns 0. */
2086 atsecure = avc_has_perm(tsec->osid, tsec->sid,
2087 SECCLASS_PROCESS,
2088 PROCESS__NOATSECURE, NULL);
2089 }
2090
2091 return (atsecure || secondary_ops->bprm_secureexec(bprm));
2092}
2093
2094static void selinux_bprm_free_security(struct linux_binprm *bprm)
2095{
2096 kfree(bprm->security);
2097 bprm->security = NULL;
2098}
2099
2100extern struct vfsmount *selinuxfs_mount;
2101extern struct dentry *selinux_null;
2102
2103/* Derived from fs/exec.c:flush_old_files. */
2104static inline void flush_unauthorized_files(struct files_struct *files)
2105{
2106 struct avc_audit_data ad;
2107 struct file *file, *devnull = NULL;
2108 struct tty_struct *tty;
2109 struct fdtable *fdt;
2110 long j = -1;
2111 int drop_tty = 0;
2112
2113 mutex_lock(&tty_mutex);
2114 tty = get_current_tty();
2115 if (tty) {
2116 file_list_lock();
2117 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
2118 if (file) {
2119 /* Revalidate access to controlling tty.
2120 Use inode_has_perm on the tty inode directly rather
2121 than using file_has_perm, as this particular open
2122 file may belong to another process and we are only
2123 interested in the inode-based check here. */
2124 struct inode *inode = file->f_path.dentry->d_inode;
2125 if (inode_has_perm(current, inode,
2126 FILE__READ | FILE__WRITE, NULL)) {
2127 drop_tty = 1;
2128 }
2129 }
2130 file_list_unlock();
2131 }
2132 mutex_unlock(&tty_mutex);
2133 /* Reset controlling tty. */
2134 if (drop_tty)
2135 no_tty();
2136
2137 /* Revalidate access to inherited open files. */
2138
2139 AVC_AUDIT_DATA_INIT(&ad, FS);
2140
2141 spin_lock(&files->file_lock);
2142 for (;;) {
2143 unsigned long set, i;
2144 int fd;
2145
2146 j++;
2147 i = j * __NFDBITS;
2148 fdt = files_fdtable(files);
2149 if (i >= fdt->max_fds)
2150 break;
2151 set = fdt->open_fds->fds_bits[j];
2152 if (!set)
2153 continue;
2154 spin_unlock(&files->file_lock);
2155 for ( ; set ; i++, set >>= 1) {
2156 if (set & 1) {
2157 file = fget(i);
2158 if (!file)
2159 continue;
2160 if (file_has_perm(current,
2161 file,
2162 file_to_av(file))) {
2163 sys_close(i);
2164 fd = get_unused_fd();
2165 if (fd != i) {
2166 if (fd >= 0)
2167 put_unused_fd(fd);
2168 fput(file);
2169 continue;
2170 }
2171 if (devnull) {
2172 get_file(devnull);
2173 } else {
2174 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
2175 if (IS_ERR(devnull)) {
2176 devnull = NULL;
2177 put_unused_fd(fd);
2178 fput(file);
2179 continue;
2180 }
2181 }
2182 fd_install(fd, devnull);
2183 }
2184 fput(file);
2185 }
2186 }
2187 spin_lock(&files->file_lock);
2188
2189 }
2190 spin_unlock(&files->file_lock);
2191}
2192
2193static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
2194{
2195 struct task_security_struct *tsec;
2196 struct bprm_security_struct *bsec;
2197 u32 sid;
2198 int rc;
2199
2200 secondary_ops->bprm_apply_creds(bprm, unsafe);
2201
2202 tsec = current->security;
2203
2204 bsec = bprm->security;
2205 sid = bsec->sid;
2206
2207 tsec->osid = tsec->sid;
2208 bsec->unsafe = 0;
2209 if (tsec->sid != sid) {
2210 /* Check for shared state. If not ok, leave SID
2211 unchanged and kill. */
2212 if (unsafe & LSM_UNSAFE_SHARE) {
2213 rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
2214 PROCESS__SHARE, NULL);
2215 if (rc) {
2216 bsec->unsafe = 1;
2217 return;
2218 }
2219 }
2220
2221 /* Check for ptracing, and update the task SID if ok.
2222 Otherwise, leave SID unchanged and kill. */
2223 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2224 struct task_struct *tracer;
2225 struct task_security_struct *sec;
2226 u32 ptsid = 0;
2227
2228 rcu_read_lock();
2229 tracer = tracehook_tracer_task(current);
2230 if (likely(tracer != NULL)) {
2231 sec = tracer->security;
2232 ptsid = sec->sid;
2233 }
2234 rcu_read_unlock();
2235
2236 if (ptsid != 0) {
2237 rc = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
2238 PROCESS__PTRACE, NULL);
2239 if (rc) {
2240 bsec->unsafe = 1;
2241 return;
2242 }
2243 }
2244 }
2245 tsec->sid = sid;
2246 }
2247}
2248
2249/*
2250 * called after apply_creds without the task lock held
2251 */
2252static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
2253{
2254 struct task_security_struct *tsec;
2255 struct rlimit *rlim, *initrlim;
2256 struct itimerval itimer;
2257 struct bprm_security_struct *bsec;
2258 int rc, i;
2259
2260 tsec = current->security;
2261 bsec = bprm->security;
2262
2263 if (bsec->unsafe) {
2264 force_sig_specific(SIGKILL, current);
2265 return;
2266 }
2267 if (tsec->osid == tsec->sid)
2268 return;
2269
2270 /* Close files for which the new task SID is not authorized. */
2271 flush_unauthorized_files(current->files);
2272
2273 /* Check whether the new SID can inherit signal state
2274 from the old SID. If not, clear itimers to avoid
2275 subsequent signal generation and flush and unblock
2276 signals. This must occur _after_ the task SID has
2277 been updated so that any kill done after the flush
2278 will be checked against the new SID. */
2279 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2280 PROCESS__SIGINH, NULL);
2281 if (rc) {
2282 memset(&itimer, 0, sizeof itimer);
2283 for (i = 0; i < 3; i++)
2284 do_setitimer(i, &itimer, NULL);
2285 flush_signals(current);
2286 spin_lock_irq(&current->sighand->siglock);
2287 flush_signal_handlers(current, 1);
2288 sigemptyset(&current->blocked);
2289 recalc_sigpending();
2290 spin_unlock_irq(&current->sighand->siglock);
2291 }
2292
2293 /* Always clear parent death signal on SID transitions. */
2294 current->pdeath_signal = 0;
2295
2296 /* Check whether the new SID can inherit resource limits
2297 from the old SID. If not, reset all soft limits to
2298 the lower of the current task's hard limit and the init
2299 task's soft limit. Note that the setting of hard limits
2300 (even to lower them) can be controlled by the setrlimit
2301 check. The inclusion of the init task's soft limit into
2302 the computation is to avoid resetting soft limits higher
2303 than the default soft limit for cases where the default
2304 is lower than the hard limit, e.g. RLIMIT_CORE or
2305 RLIMIT_STACK.*/
2306 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2307 PROCESS__RLIMITINH, NULL);
2308 if (rc) {
2309 for (i = 0; i < RLIM_NLIMITS; i++) {
2310 rlim = current->signal->rlim + i;
2311 initrlim = init_task.signal->rlim+i;
2312 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2313 }
2314 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
2315 /*
2316 * This will cause RLIMIT_CPU calculations
2317 * to be refigured.
2318 */
2319 current->it_prof_expires = jiffies_to_cputime(1);
2320 }
2321 }
2322
2323 /* Wake up the parent if it is waiting so that it can
2324 recheck wait permission to the new task SID. */
2325 wake_up_interruptible(&current->parent->signal->wait_chldexit);
2326}
2327
2328/* superblock security operations */
2329
2330static int selinux_sb_alloc_security(struct super_block *sb)
2331{
2332 return superblock_alloc_security(sb);
2333}
2334
2335static void selinux_sb_free_security(struct super_block *sb)
2336{
2337 superblock_free_security(sb);
2338}
2339
2340static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2341{
2342 if (plen > olen)
2343 return 0;
2344
2345 return !memcmp(prefix, option, plen);
2346}
2347
2348static inline int selinux_option(char *option, int len)
2349{
2350 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2351 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2352 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2353 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len));
2354}
2355
2356static inline void take_option(char **to, char *from, int *first, int len)
2357{
2358 if (!*first) {
2359 **to = ',';
2360 *to += 1;
2361 } else
2362 *first = 0;
2363 memcpy(*to, from, len);
2364 *to += len;
2365}
2366
2367static inline void take_selinux_option(char **to, char *from, int *first,
2368 int len)
2369{
2370 int current_size = 0;
2371
2372 if (!*first) {
2373 **to = '|';
2374 *to += 1;
2375 } else
2376 *first = 0;
2377
2378 while (current_size < len) {
2379 if (*from != '"') {
2380 **to = *from;
2381 *to += 1;
2382 }
2383 from += 1;
2384 current_size += 1;
2385 }
2386}
2387
2388static int selinux_sb_copy_data(char *orig, char *copy)
2389{
2390 int fnosec, fsec, rc = 0;
2391 char *in_save, *in_curr, *in_end;
2392 char *sec_curr, *nosec_save, *nosec;
2393 int open_quote = 0;
2394
2395 in_curr = orig;
2396 sec_curr = copy;
2397
2398 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2399 if (!nosec) {
2400 rc = -ENOMEM;
2401 goto out;
2402 }
2403
2404 nosec_save = nosec;
2405 fnosec = fsec = 1;
2406 in_save = in_end = orig;
2407
2408 do {
2409 if (*in_end == '"')
2410 open_quote = !open_quote;
2411 if ((*in_end == ',' && open_quote == 0) ||
2412 *in_end == '\0') {
2413 int len = in_end - in_curr;
2414
2415 if (selinux_option(in_curr, len))
2416 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2417 else
2418 take_option(&nosec, in_curr, &fnosec, len);
2419
2420 in_curr = in_end + 1;
2421 }
2422 } while (*in_end++);
2423
2424 strcpy(in_save, nosec_save);
2425 free_page((unsigned long)nosec_save);
2426out:
2427 return rc;
2428}
2429
2430static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2431{
2432 struct avc_audit_data ad;
2433 int rc;
2434
2435 rc = superblock_doinit(sb, data);
2436 if (rc)
2437 return rc;
2438
2439 AVC_AUDIT_DATA_INIT(&ad, FS);
2440 ad.u.fs.path.dentry = sb->s_root;
2441 return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2442}
2443
2444static int selinux_sb_statfs(struct dentry *dentry)
2445{
2446 struct avc_audit_data ad;
2447
2448 AVC_AUDIT_DATA_INIT(&ad, FS);
2449 ad.u.fs.path.dentry = dentry->d_sb->s_root;
2450 return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2451}
2452
2453static int selinux_mount(char *dev_name,
2454 struct path *path,
2455 char *type,
2456 unsigned long flags,
2457 void *data)
2458{
2459 int rc;
2460
2461 rc = secondary_ops->sb_mount(dev_name, path, type, flags, data);
2462 if (rc)
2463 return rc;
2464
2465 if (flags & MS_REMOUNT)
2466 return superblock_has_perm(current, path->mnt->mnt_sb,
2467 FILESYSTEM__REMOUNT, NULL);
2468 else
2469 return dentry_has_perm(current, path->mnt, path->dentry,
2470 FILE__MOUNTON);
2471}
2472
2473static int selinux_umount(struct vfsmount *mnt, int flags)
2474{
2475 int rc;
2476
2477 rc = secondary_ops->sb_umount(mnt, flags);
2478 if (rc)
2479 return rc;
2480
2481 return superblock_has_perm(current, mnt->mnt_sb,
2482 FILESYSTEM__UNMOUNT, NULL);
2483}
2484
2485/* inode security operations */
2486
2487static int selinux_inode_alloc_security(struct inode *inode)
2488{
2489 return inode_alloc_security(inode);
2490}
2491
2492static void selinux_inode_free_security(struct inode *inode)
2493{
2494 inode_free_security(inode);
2495}
2496
2497static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2498 char **name, void **value,
2499 size_t *len)
2500{
2501 struct task_security_struct *tsec;
2502 struct inode_security_struct *dsec;
2503 struct superblock_security_struct *sbsec;
2504 u32 newsid, clen;
2505 int rc;
2506 char *namep = NULL, *context;
2507
2508 tsec = current->security;
2509 dsec = dir->i_security;
2510 sbsec = dir->i_sb->s_security;
2511
2512 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2513 newsid = tsec->create_sid;
2514 } else {
2515 rc = security_transition_sid(tsec->sid, dsec->sid,
2516 inode_mode_to_security_class(inode->i_mode),
2517 &newsid);
2518 if (rc) {
2519 printk(KERN_WARNING "%s: "
2520 "security_transition_sid failed, rc=%d (dev=%s "
2521 "ino=%ld)\n",
2522 __func__,
2523 -rc, inode->i_sb->s_id, inode->i_ino);
2524 return rc;
2525 }
2526 }
2527
2528 /* Possibly defer initialization to selinux_complete_init. */
2529 if (sbsec->initialized) {
2530 struct inode_security_struct *isec = inode->i_security;
2531 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2532 isec->sid = newsid;
2533 isec->initialized = 1;
2534 }
2535
2536 if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2537 return -EOPNOTSUPP;
2538
2539 if (name) {
2540 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2541 if (!namep)
2542 return -ENOMEM;
2543 *name = namep;
2544 }
2545
2546 if (value && len) {
2547 rc = security_sid_to_context_force(newsid, &context, &clen);
2548 if (rc) {
2549 kfree(namep);
2550 return rc;
2551 }
2552 *value = context;
2553 *len = clen;
2554 }
2555
2556 return 0;
2557}
2558
2559static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2560{
2561 return may_create(dir, dentry, SECCLASS_FILE);
2562}
2563
2564static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2565{
2566 int rc;
2567
2568 rc = secondary_ops->inode_link(old_dentry, dir, new_dentry);
2569 if (rc)
2570 return rc;
2571 return may_link(dir, old_dentry, MAY_LINK);
2572}
2573
2574static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2575{
2576 int rc;
2577
2578 rc = secondary_ops->inode_unlink(dir, dentry);
2579 if (rc)
2580 return rc;
2581 return may_link(dir, dentry, MAY_UNLINK);
2582}
2583
2584static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2585{
2586 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2587}
2588
2589static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2590{
2591 return may_create(dir, dentry, SECCLASS_DIR);
2592}
2593
2594static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2595{
2596 return may_link(dir, dentry, MAY_RMDIR);
2597}
2598
2599static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2600{
2601 int rc;
2602
2603 rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2604 if (rc)
2605 return rc;
2606
2607 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2608}
2609
2610static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2611 struct inode *new_inode, struct dentry *new_dentry)
2612{
2613 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2614}
2615
2616static int selinux_inode_readlink(struct dentry *dentry)
2617{
2618 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2619}
2620
2621static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2622{
2623 int rc;
2624
2625 rc = secondary_ops->inode_follow_link(dentry, nameidata);
2626 if (rc)
2627 return rc;
2628 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2629}
2630
2631static int selinux_inode_permission(struct inode *inode, int mask)
2632{
2633 int rc;
2634
2635 rc = secondary_ops->inode_permission(inode, mask);
2636 if (rc)
2637 return rc;
2638
2639 if (!mask) {
2640 /* No permission to check. Existence test. */
2641 return 0;
2642 }
2643
2644 return inode_has_perm(current, inode,
2645 open_file_mask_to_av(inode->i_mode, mask), NULL);
2646}
2647
2648static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2649{
2650 int rc;
2651
2652 rc = secondary_ops->inode_setattr(dentry, iattr);
2653 if (rc)
2654 return rc;
2655
2656 if (iattr->ia_valid & ATTR_FORCE)
2657 return 0;
2658
2659 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2660 ATTR_ATIME_SET | ATTR_MTIME_SET))
2661 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2662
2663 return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2664}
2665
2666static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2667{
2668 return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2669}
2670
2671static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2672{
2673 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2674 sizeof XATTR_SECURITY_PREFIX - 1)) {
2675 if (!strcmp(name, XATTR_NAME_CAPS)) {
2676 if (!capable(CAP_SETFCAP))
2677 return -EPERM;
2678 } else if (!capable(CAP_SYS_ADMIN)) {
2679 /* A different attribute in the security namespace.
2680 Restrict to administrator. */
2681 return -EPERM;
2682 }
2683 }
2684
2685 /* Not an attribute we recognize, so just check the
2686 ordinary setattr permission. */
2687 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2688}
2689
2690static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2691 const void *value, size_t size, int flags)
2692{
2693 struct task_security_struct *tsec = current->security;
2694 struct inode *inode = dentry->d_inode;
2695 struct inode_security_struct *isec = inode->i_security;
2696 struct superblock_security_struct *sbsec;
2697 struct avc_audit_data ad;
2698 u32 newsid;
2699 int rc = 0;
2700
2701 if (strcmp(name, XATTR_NAME_SELINUX))
2702 return selinux_inode_setotherxattr(dentry, name);
2703
2704 sbsec = inode->i_sb->s_security;
2705 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2706 return -EOPNOTSUPP;
2707
2708 if (!is_owner_or_cap(inode))
2709 return -EPERM;
2710
2711 AVC_AUDIT_DATA_INIT(&ad, FS);
2712 ad.u.fs.path.dentry = dentry;
2713
2714 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2715 FILE__RELABELFROM, &ad);
2716 if (rc)
2717 return rc;
2718
2719 rc = security_context_to_sid(value, size, &newsid);
2720 if (rc == -EINVAL) {
2721 if (!capable(CAP_MAC_ADMIN))
2722 return rc;
2723 rc = security_context_to_sid_force(value, size, &newsid);
2724 }
2725 if (rc)
2726 return rc;
2727
2728 rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2729 FILE__RELABELTO, &ad);
2730 if (rc)
2731 return rc;
2732
2733 rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2734 isec->sclass);
2735 if (rc)
2736 return rc;
2737
2738 return avc_has_perm(newsid,
2739 sbsec->sid,
2740 SECCLASS_FILESYSTEM,
2741 FILESYSTEM__ASSOCIATE,
2742 &ad);
2743}
2744
2745static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2746 const void *value, size_t size,
2747 int flags)
2748{
2749 struct inode *inode = dentry->d_inode;
2750 struct inode_security_struct *isec = inode->i_security;
2751 u32 newsid;
2752 int rc;
2753
2754 if (strcmp(name, XATTR_NAME_SELINUX)) {
2755 /* Not an attribute we recognize, so nothing to do. */
2756 return;
2757 }
2758
2759 rc = security_context_to_sid_force(value, size, &newsid);
2760 if (rc) {
2761 printk(KERN_ERR "SELinux: unable to map context to SID"
2762 "for (%s, %lu), rc=%d\n",
2763 inode->i_sb->s_id, inode->i_ino, -rc);
2764 return;
2765 }
2766
2767 isec->sid = newsid;
2768 return;
2769}
2770
2771static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2772{
2773 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2774}
2775
2776static int selinux_inode_listxattr(struct dentry *dentry)
2777{
2778 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2779}
2780
2781static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2782{
2783 if (strcmp(name, XATTR_NAME_SELINUX))
2784 return selinux_inode_setotherxattr(dentry, name);
2785
2786 /* No one is allowed to remove a SELinux security label.
2787 You can change the label, but all data must be labeled. */
2788 return -EACCES;
2789}
2790
2791/*
2792 * Copy the inode security context value to the user.
2793 *
2794 * Permission check is handled by selinux_inode_getxattr hook.
2795 */
2796static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2797{
2798 u32 size;
2799 int error;
2800 char *context = NULL;
2801 struct task_security_struct *tsec = current->security;
2802 struct inode_security_struct *isec = inode->i_security;
2803
2804 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2805 return -EOPNOTSUPP;
2806
2807 /*
2808 * If the caller has CAP_MAC_ADMIN, then get the raw context
2809 * value even if it is not defined by current policy; otherwise,
2810 * use the in-core value under current policy.
2811 * Use the non-auditing forms of the permission checks since
2812 * getxattr may be called by unprivileged processes commonly
2813 * and lack of permission just means that we fall back to the
2814 * in-core context value, not a denial.
2815 */
2816 error = secondary_ops->capable(current, CAP_MAC_ADMIN);
2817 if (!error)
2818 error = avc_has_perm_noaudit(tsec->sid, tsec->sid,
2819 SECCLASS_CAPABILITY2,
2820 CAPABILITY2__MAC_ADMIN,
2821 0,
2822 NULL);
2823 if (!error)
2824 error = security_sid_to_context_force(isec->sid, &context,
2825 &size);
2826 else
2827 error = security_sid_to_context(isec->sid, &context, &size);
2828 if (error)
2829 return error;
2830 error = size;
2831 if (alloc) {
2832 *buffer = context;
2833 goto out_nofree;
2834 }
2835 kfree(context);
2836out_nofree:
2837 return error;
2838}
2839
2840static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2841 const void *value, size_t size, int flags)
2842{
2843 struct inode_security_struct *isec = inode->i_security;
2844 u32 newsid;
2845 int rc;
2846
2847 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2848 return -EOPNOTSUPP;
2849
2850 if (!value || !size)
2851 return -EACCES;
2852
2853 rc = security_context_to_sid((void *)value, size, &newsid);
2854 if (rc)
2855 return rc;
2856
2857 isec->sid = newsid;
2858 return 0;
2859}
2860
2861static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2862{
2863 const int len = sizeof(XATTR_NAME_SELINUX);
2864 if (buffer && len <= buffer_size)
2865 memcpy(buffer, XATTR_NAME_SELINUX, len);
2866 return len;
2867}
2868
2869static int selinux_inode_need_killpriv(struct dentry *dentry)
2870{
2871 return secondary_ops->inode_need_killpriv(dentry);
2872}
2873
2874static int selinux_inode_killpriv(struct dentry *dentry)
2875{
2876 return secondary_ops->inode_killpriv(dentry);
2877}
2878
2879static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2880{
2881 struct inode_security_struct *isec = inode->i_security;
2882 *secid = isec->sid;
2883}
2884
2885/* file security operations */
2886
2887static int selinux_revalidate_file_permission(struct file *file, int mask)
2888{
2889 int rc;
2890 struct inode *inode = file->f_path.dentry->d_inode;
2891
2892 if (!mask) {
2893 /* No permission to check. Existence test. */
2894 return 0;
2895 }
2896
2897 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2898 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2899 mask |= MAY_APPEND;
2900
2901 rc = file_has_perm(current, file,
2902 file_mask_to_av(inode->i_mode, mask));
2903 if (rc)
2904 return rc;
2905
2906 return selinux_netlbl_inode_permission(inode, mask);
2907}
2908
2909static int selinux_file_permission(struct file *file, int mask)
2910{
2911 struct inode *inode = file->f_path.dentry->d_inode;
2912 struct task_security_struct *tsec = current->security;
2913 struct file_security_struct *fsec = file->f_security;
2914 struct inode_security_struct *isec = inode->i_security;
2915
2916 if (!mask) {
2917 /* No permission to check. Existence test. */
2918 return 0;
2919 }
2920
2921 if (tsec->sid == fsec->sid && fsec->isid == isec->sid
2922 && fsec->pseqno == avc_policy_seqno())
2923 return selinux_netlbl_inode_permission(inode, mask);
2924
2925 return selinux_revalidate_file_permission(file, mask);
2926}
2927
2928static int selinux_file_alloc_security(struct file *file)
2929{
2930 return file_alloc_security(file);
2931}
2932
2933static void selinux_file_free_security(struct file *file)
2934{
2935 file_free_security(file);
2936}
2937
2938static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2939 unsigned long arg)
2940{
2941 u32 av = 0;
2942
2943 if (_IOC_DIR(cmd) & _IOC_WRITE)
2944 av |= FILE__WRITE;
2945 if (_IOC_DIR(cmd) & _IOC_READ)
2946 av |= FILE__READ;
2947 if (!av)
2948 av = FILE__IOCTL;
2949
2950 return file_has_perm(current, file, av);
2951}
2952
2953static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2954{
2955#ifndef CONFIG_PPC32
2956 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2957 /*
2958 * We are making executable an anonymous mapping or a
2959 * private file mapping that will also be writable.
2960 * This has an additional check.
2961 */
2962 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2963 if (rc)
2964 return rc;
2965 }
2966#endif
2967
2968 if (file) {
2969 /* read access is always possible with a mapping */
2970 u32 av = FILE__READ;
2971
2972 /* write access only matters if the mapping is shared */
2973 if (shared && (prot & PROT_WRITE))
2974 av |= FILE__WRITE;
2975
2976 if (prot & PROT_EXEC)
2977 av |= FILE__EXECUTE;
2978
2979 return file_has_perm(current, file, av);
2980 }
2981 return 0;
2982}
2983
2984static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2985 unsigned long prot, unsigned long flags,
2986 unsigned long addr, unsigned long addr_only)
2987{
2988 int rc = 0;
2989 u32 sid = ((struct task_security_struct *)(current->security))->sid;
2990
2991 if (addr < mmap_min_addr)
2992 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
2993 MEMPROTECT__MMAP_ZERO, NULL);
2994 if (rc || addr_only)
2995 return rc;
2996
2997 if (selinux_checkreqprot)
2998 prot = reqprot;
2999
3000 return file_map_prot_check(file, prot,
3001 (flags & MAP_TYPE) == MAP_SHARED);
3002}
3003
3004static int selinux_file_mprotect(struct vm_area_struct *vma,
3005 unsigned long reqprot,
3006 unsigned long prot)
3007{
3008 int rc;
3009
3010 rc = secondary_ops->file_mprotect(vma, reqprot, prot);
3011 if (rc)
3012 return rc;
3013
3014 if (selinux_checkreqprot)
3015 prot = reqprot;
3016
3017#ifndef CONFIG_PPC32
3018 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3019 rc = 0;
3020 if (vma->vm_start >= vma->vm_mm->start_brk &&
3021 vma->vm_end <= vma->vm_mm->brk) {
3022 rc = task_has_perm(current, current,
3023 PROCESS__EXECHEAP);
3024 } else if (!vma->vm_file &&
3025 vma->vm_start <= vma->vm_mm->start_stack &&
3026 vma->vm_end >= vma->vm_mm->start_stack) {
3027 rc = task_has_perm(current, current, PROCESS__EXECSTACK);
3028 } else if (vma->vm_file && vma->anon_vma) {
3029 /*
3030 * We are making executable a file mapping that has
3031 * had some COW done. Since pages might have been
3032 * written, check ability to execute the possibly
3033 * modified content. This typically should only
3034 * occur for text relocations.
3035 */
3036 rc = file_has_perm(current, vma->vm_file,
3037 FILE__EXECMOD);
3038 }
3039 if (rc)
3040 return rc;
3041 }
3042#endif
3043
3044 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3045}
3046
3047static int selinux_file_lock(struct file *file, unsigned int cmd)
3048{
3049 return file_has_perm(current, file, FILE__LOCK);
3050}
3051
3052static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3053 unsigned long arg)
3054{
3055 int err = 0;
3056
3057 switch (cmd) {
3058 case F_SETFL:
3059 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3060 err = -EINVAL;
3061 break;
3062 }
3063
3064 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3065 err = file_has_perm(current, file, FILE__WRITE);
3066 break;
3067 }
3068 /* fall through */
3069 case F_SETOWN:
3070 case F_SETSIG:
3071 case F_GETFL:
3072 case F_GETOWN:
3073 case F_GETSIG:
3074 /* Just check FD__USE permission */
3075 err = file_has_perm(current, file, 0);
3076 break;
3077 case F_GETLK:
3078 case F_SETLK:
3079 case F_SETLKW:
3080#if BITS_PER_LONG == 32
3081 case F_GETLK64:
3082 case F_SETLK64:
3083 case F_SETLKW64:
3084#endif
3085 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3086 err = -EINVAL;
3087 break;
3088 }
3089 err = file_has_perm(current, file, FILE__LOCK);
3090 break;
3091 }
3092
3093 return err;
3094}
3095
3096static int selinux_file_set_fowner(struct file *file)
3097{
3098 struct task_security_struct *tsec;
3099 struct file_security_struct *fsec;
3100
3101 tsec = current->security;
3102 fsec = file->f_security;
3103 fsec->fown_sid = tsec->sid;
3104
3105 return 0;
3106}
3107
3108static int selinux_file_send_sigiotask(struct task_struct *tsk,
3109 struct fown_struct *fown, int signum)
3110{
3111 struct file *file;
3112 u32 perm;
3113 struct task_security_struct *tsec;
3114 struct file_security_struct *fsec;
3115
3116 /* struct fown_struct is never outside the context of a struct file */
3117 file = container_of(fown, struct file, f_owner);
3118
3119 tsec = tsk->security;
3120 fsec = file->f_security;
3121
3122 if (!signum)
3123 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3124 else
3125 perm = signal_to_av(signum);
3126
3127 return avc_has_perm(fsec->fown_sid, tsec->sid,
3128 SECCLASS_PROCESS, perm, NULL);
3129}
3130
3131static int selinux_file_receive(struct file *file)
3132{
3133 return file_has_perm(current, file, file_to_av(file));
3134}
3135
3136static int selinux_dentry_open(struct file *file)
3137{
3138 struct file_security_struct *fsec;
3139 struct inode *inode;
3140 struct inode_security_struct *isec;
3141 inode = file->f_path.dentry->d_inode;
3142 fsec = file->f_security;
3143 isec = inode->i_security;
3144 /*
3145 * Save inode label and policy sequence number
3146 * at open-time so that selinux_file_permission
3147 * can determine whether revalidation is necessary.
3148 * Task label is already saved in the file security
3149 * struct as its SID.
3150 */
3151 fsec->isid = isec->sid;
3152 fsec->pseqno = avc_policy_seqno();
3153 /*
3154 * Since the inode label or policy seqno may have changed
3155 * between the selinux_inode_permission check and the saving
3156 * of state above, recheck that access is still permitted.
3157 * Otherwise, access might never be revalidated against the
3158 * new inode label or new policy.
3159 * This check is not redundant - do not remove.
3160 */
3161 return inode_has_perm(current, inode, file_to_av(file), NULL);
3162}
3163
3164/* task security operations */
3165
3166static int selinux_task_create(unsigned long clone_flags)
3167{
3168 int rc;
3169
3170 rc = secondary_ops->task_create(clone_flags);
3171 if (rc)
3172 return rc;
3173
3174 return task_has_perm(current, current, PROCESS__FORK);
3175}
3176
3177static int selinux_task_alloc_security(struct task_struct *tsk)
3178{
3179 struct task_security_struct *tsec1, *tsec2;
3180 int rc;
3181
3182 tsec1 = current->security;
3183
3184 rc = task_alloc_security(tsk);
3185 if (rc)
3186 return rc;
3187 tsec2 = tsk->security;
3188
3189 tsec2->osid = tsec1->osid;
3190 tsec2->sid = tsec1->sid;
3191
3192 /* Retain the exec, fs, key, and sock SIDs across fork */
3193 tsec2->exec_sid = tsec1->exec_sid;
3194 tsec2->create_sid = tsec1->create_sid;
3195 tsec2->keycreate_sid = tsec1->keycreate_sid;
3196 tsec2->sockcreate_sid = tsec1->sockcreate_sid;
3197
3198 return 0;
3199}
3200
3201static void selinux_task_free_security(struct task_struct *tsk)
3202{
3203 task_free_security(tsk);
3204}
3205
3206static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3207{
3208 /* Since setuid only affects the current process, and
3209 since the SELinux controls are not based on the Linux
3210 identity attributes, SELinux does not need to control
3211 this operation. However, SELinux does control the use
3212 of the CAP_SETUID and CAP_SETGID capabilities using the
3213 capable hook. */
3214 return 0;
3215}
3216
3217static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3218{
3219 return secondary_ops->task_post_setuid(id0, id1, id2, flags);
3220}
3221
3222static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
3223{
3224 /* See the comment for setuid above. */
3225 return 0;
3226}
3227
3228static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3229{
3230 return task_has_perm(current, p, PROCESS__SETPGID);
3231}
3232
3233static int selinux_task_getpgid(struct task_struct *p)
3234{
3235 return task_has_perm(current, p, PROCESS__GETPGID);
3236}
3237
3238static int selinux_task_getsid(struct task_struct *p)
3239{
3240 return task_has_perm(current, p, PROCESS__GETSESSION);
3241}
3242
3243static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3244{
3245 struct task_security_struct *tsec = p->security;
3246 *secid = tsec->sid;
3247}
3248
3249static int selinux_task_setgroups(struct group_info *group_info)
3250{
3251 /* See the comment for setuid above. */
3252 return 0;
3253}
3254
3255static int selinux_task_setnice(struct task_struct *p, int nice)
3256{
3257 int rc;
3258
3259 rc = secondary_ops->task_setnice(p, nice);
3260 if (rc)
3261 return rc;
3262
3263 return task_has_perm(current, p, PROCESS__SETSCHED);
3264}
3265
3266static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3267{
3268 int rc;
3269
3270 rc = secondary_ops->task_setioprio(p, ioprio);
3271 if (rc)
3272 return rc;
3273
3274 return task_has_perm(current, p, PROCESS__SETSCHED);
3275}
3276
3277static int selinux_task_getioprio(struct task_struct *p)
3278{
3279 return task_has_perm(current, p, PROCESS__GETSCHED);
3280}
3281
3282static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3283{
3284 struct rlimit *old_rlim = current->signal->rlim + resource;
3285 int rc;
3286
3287 rc = secondary_ops->task_setrlimit(resource, new_rlim);
3288 if (rc)
3289 return rc;
3290
3291 /* Control the ability to change the hard limit (whether
3292 lowering or raising it), so that the hard limit can
3293 later be used as a safe reset point for the soft limit
3294 upon context transitions. See selinux_bprm_apply_creds. */
3295 if (old_rlim->rlim_max != new_rlim->rlim_max)
3296 return task_has_perm(current, current, PROCESS__SETRLIMIT);
3297
3298 return 0;
3299}
3300
3301static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3302{
3303 int rc;
3304
3305 rc = secondary_ops->task_setscheduler(p, policy, lp);
3306 if (rc)
3307 return rc;
3308
3309 return task_has_perm(current, p, PROCESS__SETSCHED);
3310}
3311
3312static int selinux_task_getscheduler(struct task_struct *p)
3313{
3314 return task_has_perm(current, p, PROCESS__GETSCHED);
3315}
3316
3317static int selinux_task_movememory(struct task_struct *p)
3318{
3319 return task_has_perm(current, p, PROCESS__SETSCHED);
3320}
3321
3322static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3323 int sig, u32 secid)
3324{
3325 u32 perm;
3326 int rc;
3327 struct task_security_struct *tsec;
3328
3329 rc = secondary_ops->task_kill(p, info, sig, secid);
3330 if (rc)
3331 return rc;
3332
3333 if (!sig)
3334 perm = PROCESS__SIGNULL; /* null signal; existence test */
3335 else
3336 perm = signal_to_av(sig);
3337 tsec = p->security;
3338 if (secid)
3339 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
3340 else
3341 rc = task_has_perm(current, p, perm);
3342 return rc;
3343}
3344
3345static int selinux_task_prctl(int option,
3346 unsigned long arg2,
3347 unsigned long arg3,
3348 unsigned long arg4,
3349 unsigned long arg5,
3350 long *rc_p)
3351{
3352 /* The current prctl operations do not appear to require
3353 any SELinux controls since they merely observe or modify
3354 the state of the current process. */
3355 return secondary_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
3356}
3357
3358static int selinux_task_wait(struct task_struct *p)
3359{
3360 return task_has_perm(p, current, PROCESS__SIGCHLD);
3361}
3362
3363static void selinux_task_reparent_to_init(struct task_struct *p)
3364{
3365 struct task_security_struct *tsec;
3366
3367 secondary_ops->task_reparent_to_init(p);
3368
3369 tsec = p->security;
3370 tsec->osid = tsec->sid;
3371 tsec->sid = SECINITSID_KERNEL;
3372 return;
3373}
3374
3375static void selinux_task_to_inode(struct task_struct *p,
3376 struct inode *inode)
3377{
3378 struct task_security_struct *tsec = p->security;
3379 struct inode_security_struct *isec = inode->i_security;
3380
3381 isec->sid = tsec->sid;
3382 isec->initialized = 1;
3383 return;
3384}
3385
3386/* Returns error only if unable to parse addresses */
3387static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3388 struct avc_audit_data *ad, u8 *proto)
3389{
3390 int offset, ihlen, ret = -EINVAL;
3391 struct iphdr _iph, *ih;
3392
3393 offset = skb_network_offset(skb);
3394 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3395 if (ih == NULL)
3396 goto out;
3397
3398 ihlen = ih->ihl * 4;
3399 if (ihlen < sizeof(_iph))
3400 goto out;
3401
3402 ad->u.net.v4info.saddr = ih->saddr;
3403 ad->u.net.v4info.daddr = ih->daddr;
3404 ret = 0;
3405
3406 if (proto)
3407 *proto = ih->protocol;
3408
3409 switch (ih->protocol) {
3410 case IPPROTO_TCP: {
3411 struct tcphdr _tcph, *th;
3412
3413 if (ntohs(ih->frag_off) & IP_OFFSET)
3414 break;
3415
3416 offset += ihlen;
3417 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3418 if (th == NULL)
3419 break;
3420
3421 ad->u.net.sport = th->source;
3422 ad->u.net.dport = th->dest;
3423 break;
3424 }
3425
3426 case IPPROTO_UDP: {
3427 struct udphdr _udph, *uh;
3428
3429 if (ntohs(ih->frag_off) & IP_OFFSET)
3430 break;
3431
3432 offset += ihlen;
3433 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3434 if (uh == NULL)
3435 break;
3436
3437 ad->u.net.sport = uh->source;
3438 ad->u.net.dport = uh->dest;
3439 break;
3440 }
3441
3442 case IPPROTO_DCCP: {
3443 struct dccp_hdr _dccph, *dh;
3444
3445 if (ntohs(ih->frag_off) & IP_OFFSET)
3446 break;
3447
3448 offset += ihlen;
3449 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3450 if (dh == NULL)
3451 break;
3452
3453 ad->u.net.sport = dh->dccph_sport;
3454 ad->u.net.dport = dh->dccph_dport;
3455 break;
3456 }
3457
3458 default:
3459 break;
3460 }
3461out:
3462 return ret;
3463}
3464
3465#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3466
3467/* Returns error only if unable to parse addresses */
3468static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3469 struct avc_audit_data *ad, u8 *proto)
3470{
3471 u8 nexthdr;
3472 int ret = -EINVAL, offset;
3473 struct ipv6hdr _ipv6h, *ip6;
3474
3475 offset = skb_network_offset(skb);
3476 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3477 if (ip6 == NULL)
3478 goto out;
3479
3480 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3481 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3482 ret = 0;
3483
3484 nexthdr = ip6->nexthdr;
3485 offset += sizeof(_ipv6h);
3486 offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3487 if (offset < 0)
3488 goto out;
3489
3490 if (proto)
3491 *proto = nexthdr;
3492
3493 switch (nexthdr) {
3494 case IPPROTO_TCP: {
3495 struct tcphdr _tcph, *th;
3496
3497 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3498 if (th == NULL)
3499 break;
3500
3501 ad->u.net.sport = th->source;
3502 ad->u.net.dport = th->dest;
3503 break;
3504 }
3505
3506 case IPPROTO_UDP: {
3507 struct udphdr _udph, *uh;
3508
3509 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3510 if (uh == NULL)
3511 break;
3512
3513 ad->u.net.sport = uh->source;
3514 ad->u.net.dport = uh->dest;
3515 break;
3516 }
3517
3518 case IPPROTO_DCCP: {
3519 struct dccp_hdr _dccph, *dh;
3520
3521 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3522 if (dh == NULL)
3523 break;
3524
3525 ad->u.net.sport = dh->dccph_sport;
3526 ad->u.net.dport = dh->dccph_dport;
3527 break;
3528 }
3529
3530 /* includes fragments */
3531 default:
3532 break;
3533 }
3534out:
3535 return ret;
3536}
3537
3538#endif /* IPV6 */
3539
3540static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3541 char **addrp, int src, u8 *proto)
3542{
3543 int ret = 0;
3544
3545 switch (ad->u.net.family) {
3546 case PF_INET:
3547 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3548 if (ret || !addrp)
3549 break;
3550 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3551 &ad->u.net.v4info.daddr);
3552 break;
3553
3554#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3555 case PF_INET6:
3556 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3557 if (ret || !addrp)
3558 break;
3559 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3560 &ad->u.net.v6info.daddr);
3561 break;
3562#endif /* IPV6 */
3563 default:
3564 break;
3565 }
3566
3567 if (unlikely(ret))
3568 printk(KERN_WARNING
3569 "SELinux: failure in selinux_parse_skb(),"
3570 " unable to parse packet\n");
3571
3572 return ret;
3573}
3574
3575/**
3576 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3577 * @skb: the packet
3578 * @family: protocol family
3579 * @sid: the packet's peer label SID
3580 *
3581 * Description:
3582 * Check the various different forms of network peer labeling and determine
3583 * the peer label/SID for the packet; most of the magic actually occurs in
3584 * the security server function security_net_peersid_cmp(). The function
3585 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3586 * or -EACCES if @sid is invalid due to inconsistencies with the different
3587 * peer labels.
3588 *
3589 */
3590static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3591{
3592 int err;
3593 u32 xfrm_sid;
3594 u32 nlbl_sid;
3595 u32 nlbl_type;
3596
3597 selinux_skb_xfrm_sid(skb, &xfrm_sid);
3598 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3599
3600 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3601 if (unlikely(err)) {
3602 printk(KERN_WARNING
3603 "SELinux: failure in selinux_skb_peerlbl_sid(),"
3604 " unable to determine packet's peer label\n");
3605 return -EACCES;
3606 }
3607
3608 return 0;
3609}
3610
3611/* socket security operations */
3612static int socket_has_perm(struct task_struct *task, struct socket *sock,
3613 u32 perms)
3614{
3615 struct inode_security_struct *isec;
3616 struct task_security_struct *tsec;
3617 struct avc_audit_data ad;
3618 int err = 0;
3619
3620 tsec = task->security;
3621 isec = SOCK_INODE(sock)->i_security;
3622
3623 if (isec->sid == SECINITSID_KERNEL)
3624 goto out;
3625
3626 AVC_AUDIT_DATA_INIT(&ad, NET);
3627 ad.u.net.sk = sock->sk;
3628 err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3629
3630out:
3631 return err;
3632}
3633
3634static int selinux_socket_create(int family, int type,
3635 int protocol, int kern)
3636{
3637 int err = 0;
3638 struct task_security_struct *tsec;
3639 u32 newsid;
3640
3641 if (kern)
3642 goto out;
3643
3644 tsec = current->security;
3645 newsid = tsec->sockcreate_sid ? : tsec->sid;
3646 err = avc_has_perm(tsec->sid, newsid,
3647 socket_type_to_security_class(family, type,
3648 protocol), SOCKET__CREATE, NULL);
3649
3650out:
3651 return err;
3652}
3653
3654static int selinux_socket_post_create(struct socket *sock, int family,
3655 int type, int protocol, int kern)
3656{
3657 int err = 0;
3658 struct inode_security_struct *isec;
3659 struct task_security_struct *tsec;
3660 struct sk_security_struct *sksec;
3661 u32 newsid;
3662
3663 isec = SOCK_INODE(sock)->i_security;
3664
3665 tsec = current->security;
3666 newsid = tsec->sockcreate_sid ? : tsec->sid;
3667 isec->sclass = socket_type_to_security_class(family, type, protocol);
3668 isec->sid = kern ? SECINITSID_KERNEL : newsid;
3669 isec->initialized = 1;
3670
3671 if (sock->sk) {
3672 sksec = sock->sk->sk_security;
3673 sksec->sid = isec->sid;
3674 sksec->sclass = isec->sclass;
3675 err = selinux_netlbl_socket_post_create(sock);
3676 }
3677
3678 return err;
3679}
3680
3681/* Range of port numbers used to automatically bind.
3682 Need to determine whether we should perform a name_bind
3683 permission check between the socket and the port number. */
3684
3685static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3686{
3687 u16 family;
3688 int err;
3689
3690 err = socket_has_perm(current, sock, SOCKET__BIND);
3691 if (err)
3692 goto out;
3693
3694 /*
3695 * If PF_INET or PF_INET6, check name_bind permission for the port.
3696 * Multiple address binding for SCTP is not supported yet: we just
3697 * check the first address now.
3698 */
3699 family = sock->sk->sk_family;
3700 if (family == PF_INET || family == PF_INET6) {
3701 char *addrp;
3702 struct inode_security_struct *isec;
3703 struct task_security_struct *tsec;
3704 struct avc_audit_data ad;
3705 struct sockaddr_in *addr4 = NULL;
3706 struct sockaddr_in6 *addr6 = NULL;
3707 unsigned short snum;
3708 struct sock *sk = sock->sk;
3709 u32 sid, node_perm;
3710
3711 tsec = current->security;
3712 isec = SOCK_INODE(sock)->i_security;
3713
3714 if (family == PF_INET) {
3715 addr4 = (struct sockaddr_in *)address;
3716 snum = ntohs(addr4->sin_port);
3717 addrp = (char *)&addr4->sin_addr.s_addr;
3718 } else {
3719 addr6 = (struct sockaddr_in6 *)address;
3720 snum = ntohs(addr6->sin6_port);
3721 addrp = (char *)&addr6->sin6_addr.s6_addr;
3722 }
3723
3724 if (snum) {
3725 int low, high;
3726
3727 inet_get_local_port_range(&low, &high);
3728
3729 if (snum < max(PROT_SOCK, low) || snum > high) {
3730 err = sel_netport_sid(sk->sk_protocol,
3731 snum, &sid);
3732 if (err)
3733 goto out;
3734 AVC_AUDIT_DATA_INIT(&ad, NET);
3735 ad.u.net.sport = htons(snum);
3736 ad.u.net.family = family;
3737 err = avc_has_perm(isec->sid, sid,
3738 isec->sclass,
3739 SOCKET__NAME_BIND, &ad);
3740 if (err)
3741 goto out;
3742 }
3743 }
3744
3745 switch (isec->sclass) {
3746 case SECCLASS_TCP_SOCKET:
3747 node_perm = TCP_SOCKET__NODE_BIND;
3748 break;
3749
3750 case SECCLASS_UDP_SOCKET:
3751 node_perm = UDP_SOCKET__NODE_BIND;
3752 break;
3753
3754 case SECCLASS_DCCP_SOCKET:
3755 node_perm = DCCP_SOCKET__NODE_BIND;
3756 break;
3757
3758 default:
3759 node_perm = RAWIP_SOCKET__NODE_BIND;
3760 break;
3761 }
3762
3763 err = sel_netnode_sid(addrp, family, &sid);
3764 if (err)
3765 goto out;
3766
3767 AVC_AUDIT_DATA_INIT(&ad, NET);
3768 ad.u.net.sport = htons(snum);
3769 ad.u.net.family = family;
3770
3771 if (family == PF_INET)
3772 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3773 else
3774 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3775
3776 err = avc_has_perm(isec->sid, sid,
3777 isec->sclass, node_perm, &ad);
3778 if (err)
3779 goto out;
3780 }
3781out:
3782 return err;
3783}
3784
3785static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3786{
3787 struct inode_security_struct *isec;
3788 int err;
3789
3790 err = socket_has_perm(current, sock, SOCKET__CONNECT);
3791 if (err)
3792 return err;
3793
3794 /*
3795 * If a TCP or DCCP socket, check name_connect permission for the port.
3796 */
3797 isec = SOCK_INODE(sock)->i_security;
3798 if (isec->sclass == SECCLASS_TCP_SOCKET ||
3799 isec->sclass == SECCLASS_DCCP_SOCKET) {
3800 struct sock *sk = sock->sk;
3801 struct avc_audit_data ad;
3802 struct sockaddr_in *addr4 = NULL;
3803 struct sockaddr_in6 *addr6 = NULL;
3804 unsigned short snum;
3805 u32 sid, perm;
3806
3807 if (sk->sk_family == PF_INET) {
3808 addr4 = (struct sockaddr_in *)address;
3809 if (addrlen < sizeof(struct sockaddr_in))
3810 return -EINVAL;
3811 snum = ntohs(addr4->sin_port);
3812 } else {
3813 addr6 = (struct sockaddr_in6 *)address;
3814 if (addrlen < SIN6_LEN_RFC2133)
3815 return -EINVAL;
3816 snum = ntohs(addr6->sin6_port);
3817 }
3818
3819 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3820 if (err)
3821 goto out;
3822
3823 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3824 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3825
3826 AVC_AUDIT_DATA_INIT(&ad, NET);
3827 ad.u.net.dport = htons(snum);
3828 ad.u.net.family = sk->sk_family;
3829 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3830 if (err)
3831 goto out;
3832 }
3833
3834out:
3835 return err;
3836}
3837
3838static int selinux_socket_listen(struct socket *sock, int backlog)
3839{
3840 return socket_has_perm(current, sock, SOCKET__LISTEN);
3841}
3842
3843static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3844{
3845 int err;
3846 struct inode_security_struct *isec;
3847 struct inode_security_struct *newisec;
3848
3849 err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3850 if (err)
3851 return err;
3852
3853 newisec = SOCK_INODE(newsock)->i_security;
3854
3855 isec = SOCK_INODE(sock)->i_security;
3856 newisec->sclass = isec->sclass;
3857 newisec->sid = isec->sid;
3858 newisec->initialized = 1;
3859
3860 return 0;
3861}
3862
3863static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3864 int size)
3865{
3866 int rc;
3867
3868 rc = socket_has_perm(current, sock, SOCKET__WRITE);
3869 if (rc)
3870 return rc;
3871
3872 return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3873}
3874
3875static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3876 int size, int flags)
3877{
3878 return socket_has_perm(current, sock, SOCKET__READ);
3879}
3880
3881static int selinux_socket_getsockname(struct socket *sock)
3882{
3883 return socket_has_perm(current, sock, SOCKET__GETATTR);
3884}
3885
3886static int selinux_socket_getpeername(struct socket *sock)
3887{
3888 return socket_has_perm(current, sock, SOCKET__GETATTR);
3889}
3890
3891static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3892{
3893 int err;
3894
3895 err = socket_has_perm(current, sock, SOCKET__SETOPT);
3896 if (err)
3897 return err;
3898
3899 return selinux_netlbl_socket_setsockopt(sock, level, optname);
3900}
3901
3902static int selinux_socket_getsockopt(struct socket *sock, int level,
3903 int optname)
3904{
3905 return socket_has_perm(current, sock, SOCKET__GETOPT);
3906}
3907
3908static int selinux_socket_shutdown(struct socket *sock, int how)
3909{
3910 return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3911}
3912
3913static int selinux_socket_unix_stream_connect(struct socket *sock,
3914 struct socket *other,
3915 struct sock *newsk)
3916{
3917 struct sk_security_struct *ssec;
3918 struct inode_security_struct *isec;
3919 struct inode_security_struct *other_isec;
3920 struct avc_audit_data ad;
3921 int err;
3922
3923 err = secondary_ops->unix_stream_connect(sock, other, newsk);
3924 if (err)
3925 return err;
3926
3927 isec = SOCK_INODE(sock)->i_security;
3928 other_isec = SOCK_INODE(other)->i_security;
3929
3930 AVC_AUDIT_DATA_INIT(&ad, NET);
3931 ad.u.net.sk = other->sk;
3932
3933 err = avc_has_perm(isec->sid, other_isec->sid,
3934 isec->sclass,
3935 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3936 if (err)
3937 return err;
3938
3939 /* connecting socket */
3940 ssec = sock->sk->sk_security;
3941 ssec->peer_sid = other_isec->sid;
3942
3943 /* server child socket */
3944 ssec = newsk->sk_security;
3945 ssec->peer_sid = isec->sid;
3946 err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3947
3948 return err;
3949}
3950
3951static int selinux_socket_unix_may_send(struct socket *sock,
3952 struct socket *other)
3953{
3954 struct inode_security_struct *isec;
3955 struct inode_security_struct *other_isec;
3956 struct avc_audit_data ad;
3957 int err;
3958
3959 isec = SOCK_INODE(sock)->i_security;
3960 other_isec = SOCK_INODE(other)->i_security;
3961
3962 AVC_AUDIT_DATA_INIT(&ad, NET);
3963 ad.u.net.sk = other->sk;
3964
3965 err = avc_has_perm(isec->sid, other_isec->sid,
3966 isec->sclass, SOCKET__SENDTO, &ad);
3967 if (err)
3968 return err;
3969
3970 return 0;
3971}
3972
3973static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
3974 u32 peer_sid,
3975 struct avc_audit_data *ad)
3976{
3977 int err;
3978 u32 if_sid;
3979 u32 node_sid;
3980
3981 err = sel_netif_sid(ifindex, &if_sid);
3982 if (err)
3983 return err;
3984 err = avc_has_perm(peer_sid, if_sid,
3985 SECCLASS_NETIF, NETIF__INGRESS, ad);
3986 if (err)
3987 return err;
3988
3989 err = sel_netnode_sid(addrp, family, &node_sid);
3990 if (err)
3991 return err;
3992 return avc_has_perm(peer_sid, node_sid,
3993 SECCLASS_NODE, NODE__RECVFROM, ad);
3994}
3995
3996static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk,
3997 struct sk_buff *skb,
3998 struct avc_audit_data *ad,
3999 u16 family,
4000 char *addrp)
4001{
4002 int err;
4003 struct sk_security_struct *sksec = sk->sk_security;
4004 u16 sk_class;
4005 u32 netif_perm, node_perm, recv_perm;
4006 u32 port_sid, node_sid, if_sid, sk_sid;
4007
4008 sk_sid = sksec->sid;
4009 sk_class = sksec->sclass;
4010
4011 switch (sk_class) {
4012 case SECCLASS_UDP_SOCKET:
4013 netif_perm = NETIF__UDP_RECV;
4014 node_perm = NODE__UDP_RECV;
4015 recv_perm = UDP_SOCKET__RECV_MSG;
4016 break;
4017 case SECCLASS_TCP_SOCKET:
4018 netif_perm = NETIF__TCP_RECV;
4019 node_perm = NODE__TCP_RECV;
4020 recv_perm = TCP_SOCKET__RECV_MSG;
4021 break;
4022 case SECCLASS_DCCP_SOCKET:
4023 netif_perm = NETIF__DCCP_RECV;
4024 node_perm = NODE__DCCP_RECV;
4025 recv_perm = DCCP_SOCKET__RECV_MSG;
4026 break;
4027 default:
4028 netif_perm = NETIF__RAWIP_RECV;
4029 node_perm = NODE__RAWIP_RECV;
4030 recv_perm = 0;
4031 break;
4032 }
4033
4034 err = sel_netif_sid(skb->iif, &if_sid);
4035 if (err)
4036 return err;
4037 err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4038 if (err)
4039 return err;
4040
4041 err = sel_netnode_sid(addrp, family, &node_sid);
4042 if (err)
4043 return err;
4044 err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4045 if (err)
4046 return err;
4047
4048 if (!recv_perm)
4049 return 0;
4050 err = sel_netport_sid(sk->sk_protocol,
4051 ntohs(ad->u.net.sport), &port_sid);
4052 if (unlikely(err)) {
4053 printk(KERN_WARNING
4054 "SELinux: failure in"
4055 " selinux_sock_rcv_skb_iptables_compat(),"
4056 " network port label not found\n");
4057 return err;
4058 }
4059 return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad);
4060}
4061
4062static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4063 struct avc_audit_data *ad,
4064 u16 family, char *addrp)
4065{
4066 int err;
4067 struct sk_security_struct *sksec = sk->sk_security;
4068 u32 peer_sid;
4069 u32 sk_sid = sksec->sid;
4070
4071 if (selinux_compat_net)
4072 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, ad,
4073 family, addrp);
4074 else
4075 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4076 PACKET__RECV, ad);
4077 if (err)
4078 return err;
4079
4080 if (selinux_policycap_netpeer) {
4081 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4082 if (err)
4083 return err;
4084 err = avc_has_perm(sk_sid, peer_sid,
4085 SECCLASS_PEER, PEER__RECV, ad);
4086 } else {
4087 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, ad);
4088 if (err)
4089 return err;
4090 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, ad);
4091 }
4092
4093 return err;
4094}
4095
4096static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4097{
4098 int err;
4099 struct sk_security_struct *sksec = sk->sk_security;
4100 u16 family = sk->sk_family;
4101 u32 sk_sid = sksec->sid;
4102 struct avc_audit_data ad;
4103 char *addrp;
4104
4105 if (family != PF_INET && family != PF_INET6)
4106 return 0;
4107
4108 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4109 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4110 family = PF_INET;
4111
4112 AVC_AUDIT_DATA_INIT(&ad, NET);
4113 ad.u.net.netif = skb->iif;
4114 ad.u.net.family = family;
4115 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4116 if (err)
4117 return err;
4118
4119 /* If any sort of compatibility mode is enabled then handoff processing
4120 * to the selinux_sock_rcv_skb_compat() function to deal with the
4121 * special handling. We do this in an attempt to keep this function
4122 * as fast and as clean as possible. */
4123 if (selinux_compat_net || !selinux_policycap_netpeer)
4124 return selinux_sock_rcv_skb_compat(sk, skb, &ad,
4125 family, addrp);
4126
4127 if (netlbl_enabled() || selinux_xfrm_enabled()) {
4128 u32 peer_sid;
4129
4130 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4131 if (err)
4132 return err;
4133 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4134 peer_sid, &ad);
4135 if (err)
4136 return err;
4137 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4138 PEER__RECV, &ad);
4139 }
4140
4141 if (selinux_secmark_enabled()) {
4142 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4143 PACKET__RECV, &ad);
4144 if (err)
4145 return err;
4146 }
4147
4148 return err;
4149}
4150
4151static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4152 int __user *optlen, unsigned len)
4153{
4154 int err = 0;
4155 char *scontext;
4156 u32 scontext_len;
4157 struct sk_security_struct *ssec;
4158 struct inode_security_struct *isec;
4159 u32 peer_sid = SECSID_NULL;
4160
4161 isec = SOCK_INODE(sock)->i_security;
4162
4163 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4164 isec->sclass == SECCLASS_TCP_SOCKET) {
4165 ssec = sock->sk->sk_security;
4166 peer_sid = ssec->peer_sid;
4167 }
4168 if (peer_sid == SECSID_NULL) {
4169 err = -ENOPROTOOPT;
4170 goto out;
4171 }
4172
4173 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4174
4175 if (err)
4176 goto out;
4177
4178 if (scontext_len > len) {
4179 err = -ERANGE;
4180 goto out_len;
4181 }
4182
4183 if (copy_to_user(optval, scontext, scontext_len))
4184 err = -EFAULT;
4185
4186out_len:
4187 if (put_user(scontext_len, optlen))
4188 err = -EFAULT;
4189
4190 kfree(scontext);
4191out:
4192 return err;
4193}
4194
4195static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4196{
4197 u32 peer_secid = SECSID_NULL;
4198 u16 family;
4199
4200 if (sock)
4201 family = sock->sk->sk_family;
4202 else if (skb && skb->sk)
4203 family = skb->sk->sk_family;
4204 else
4205 goto out;
4206
4207 if (sock && family == PF_UNIX)
4208 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4209 else if (skb)
4210 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4211
4212out:
4213 *secid = peer_secid;
4214 if (peer_secid == SECSID_NULL)
4215 return -EINVAL;
4216 return 0;
4217}
4218
4219static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4220{
4221 return sk_alloc_security(sk, family, priority);
4222}
4223
4224static void selinux_sk_free_security(struct sock *sk)
4225{
4226 sk_free_security(sk);
4227}
4228
4229static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4230{
4231 struct sk_security_struct *ssec = sk->sk_security;
4232 struct sk_security_struct *newssec = newsk->sk_security;
4233
4234 newssec->sid = ssec->sid;
4235 newssec->peer_sid = ssec->peer_sid;
4236 newssec->sclass = ssec->sclass;
4237
4238 selinux_netlbl_sk_security_reset(newssec, newsk->sk_family);
4239}
4240
4241static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4242{
4243 if (!sk)
4244 *secid = SECINITSID_ANY_SOCKET;
4245 else {
4246 struct sk_security_struct *sksec = sk->sk_security;
4247
4248 *secid = sksec->sid;
4249 }
4250}
4251
4252static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4253{
4254 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4255 struct sk_security_struct *sksec = sk->sk_security;
4256
4257 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4258 sk->sk_family == PF_UNIX)
4259 isec->sid = sksec->sid;
4260 sksec->sclass = isec->sclass;
4261
4262 selinux_netlbl_sock_graft(sk, parent);
4263}
4264
4265static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4266 struct request_sock *req)
4267{
4268 struct sk_security_struct *sksec = sk->sk_security;
4269 int err;
4270 u32 newsid;
4271 u32 peersid;
4272
4273 err = selinux_skb_peerlbl_sid(skb, sk->sk_family, &peersid);
4274 if (err)
4275 return err;
4276 if (peersid == SECSID_NULL) {
4277 req->secid = sksec->sid;
4278 req->peer_secid = SECSID_NULL;
4279 return 0;
4280 }
4281
4282 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4283 if (err)
4284 return err;
4285
4286 req->secid = newsid;
4287 req->peer_secid = peersid;
4288 return 0;
4289}
4290
4291static void selinux_inet_csk_clone(struct sock *newsk,
4292 const struct request_sock *req)
4293{
4294 struct sk_security_struct *newsksec = newsk->sk_security;
4295
4296 newsksec->sid = req->secid;
4297 newsksec->peer_sid = req->peer_secid;
4298 /* NOTE: Ideally, we should also get the isec->sid for the
4299 new socket in sync, but we don't have the isec available yet.
4300 So we will wait until sock_graft to do it, by which
4301 time it will have been created and available. */
4302
4303 /* We don't need to take any sort of lock here as we are the only
4304 * thread with access to newsksec */
4305 selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
4306}
4307
4308static void selinux_inet_conn_established(struct sock *sk,
4309 struct sk_buff *skb)
4310{
4311 struct sk_security_struct *sksec = sk->sk_security;
4312
4313 selinux_skb_peerlbl_sid(skb, sk->sk_family, &sksec->peer_sid);
4314}
4315
4316static void selinux_req_classify_flow(const struct request_sock *req,
4317 struct flowi *fl)
4318{
4319 fl->secid = req->secid;
4320}
4321
4322static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4323{
4324 int err = 0;
4325 u32 perm;
4326 struct nlmsghdr *nlh;
4327 struct socket *sock = sk->sk_socket;
4328 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4329
4330 if (skb->len < NLMSG_SPACE(0)) {
4331 err = -EINVAL;
4332 goto out;
4333 }
4334 nlh = nlmsg_hdr(skb);
4335
4336 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4337 if (err) {
4338 if (err == -EINVAL) {
4339 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4340 "SELinux: unrecognized netlink message"
4341 " type=%hu for sclass=%hu\n",
4342 nlh->nlmsg_type, isec->sclass);
4343 if (!selinux_enforcing)
4344 err = 0;
4345 }
4346
4347 /* Ignore */
4348 if (err == -ENOENT)
4349 err = 0;
4350 goto out;
4351 }
4352
4353 err = socket_has_perm(current, sock, perm);
4354out:
4355 return err;
4356}
4357
4358#ifdef CONFIG_NETFILTER
4359
4360static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4361 u16 family)
4362{
4363 char *addrp;
4364 u32 peer_sid;
4365 struct avc_audit_data ad;
4366 u8 secmark_active;
4367 u8 peerlbl_active;
4368
4369 if (!selinux_policycap_netpeer)
4370 return NF_ACCEPT;
4371
4372 secmark_active = selinux_secmark_enabled();
4373 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4374 if (!secmark_active && !peerlbl_active)
4375 return NF_ACCEPT;
4376
4377 AVC_AUDIT_DATA_INIT(&ad, NET);
4378 ad.u.net.netif = ifindex;
4379 ad.u.net.family = family;
4380 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4381 return NF_DROP;
4382
4383 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4384 return NF_DROP;
4385
4386 if (peerlbl_active)
4387 if (selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4388 peer_sid, &ad) != 0)
4389 return NF_DROP;
4390
4391 if (secmark_active)
4392 if (avc_has_perm(peer_sid, skb->secmark,
4393 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4394 return NF_DROP;
4395
4396 return NF_ACCEPT;
4397}
4398
4399static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4400 struct sk_buff *skb,
4401 const struct net_device *in,
4402 const struct net_device *out,
4403 int (*okfn)(struct sk_buff *))
4404{
4405 return selinux_ip_forward(skb, in->ifindex, PF_INET);
4406}
4407
4408#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4409static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4410 struct sk_buff *skb,
4411 const struct net_device *in,
4412 const struct net_device *out,
4413 int (*okfn)(struct sk_buff *))
4414{
4415 return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4416}
4417#endif /* IPV6 */
4418
4419static int selinux_ip_postroute_iptables_compat(struct sock *sk,
4420 int ifindex,
4421 struct avc_audit_data *ad,
4422 u16 family, char *addrp)
4423{
4424 int err;
4425 struct sk_security_struct *sksec = sk->sk_security;
4426 u16 sk_class;
4427 u32 netif_perm, node_perm, send_perm;
4428 u32 port_sid, node_sid, if_sid, sk_sid;
4429
4430 sk_sid = sksec->sid;
4431 sk_class = sksec->sclass;
4432
4433 switch (sk_class) {
4434 case SECCLASS_UDP_SOCKET:
4435 netif_perm = NETIF__UDP_SEND;
4436 node_perm = NODE__UDP_SEND;
4437 send_perm = UDP_SOCKET__SEND_MSG;
4438 break;
4439 case SECCLASS_TCP_SOCKET:
4440 netif_perm = NETIF__TCP_SEND;
4441 node_perm = NODE__TCP_SEND;
4442 send_perm = TCP_SOCKET__SEND_MSG;
4443 break;
4444 case SECCLASS_DCCP_SOCKET:
4445 netif_perm = NETIF__DCCP_SEND;
4446 node_perm = NODE__DCCP_SEND;
4447 send_perm = DCCP_SOCKET__SEND_MSG;
4448 break;
4449 default:
4450 netif_perm = NETIF__RAWIP_SEND;
4451 node_perm = NODE__RAWIP_SEND;
4452 send_perm = 0;
4453 break;
4454 }
4455
4456 err = sel_netif_sid(ifindex, &if_sid);
4457 if (err)
4458 return err;
4459 err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4460 return err;
4461
4462 err = sel_netnode_sid(addrp, family, &node_sid);
4463 if (err)
4464 return err;
4465 err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4466 if (err)
4467 return err;
4468
4469 if (send_perm != 0)
4470 return 0;
4471
4472 err = sel_netport_sid(sk->sk_protocol,
4473 ntohs(ad->u.net.dport), &port_sid);
4474 if (unlikely(err)) {
4475 printk(KERN_WARNING
4476 "SELinux: failure in"
4477 " selinux_ip_postroute_iptables_compat(),"
4478 " network port label not found\n");
4479 return err;
4480 }
4481 return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad);
4482}
4483
4484static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4485 int ifindex,
4486 struct avc_audit_data *ad,
4487 u16 family,
4488 char *addrp,
4489 u8 proto)
4490{
4491 struct sock *sk = skb->sk;
4492 struct sk_security_struct *sksec;
4493
4494 if (sk == NULL)
4495 return NF_ACCEPT;
4496 sksec = sk->sk_security;
4497
4498 if (selinux_compat_net) {
4499 if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex,
4500 ad, family, addrp))
4501 return NF_DROP;
4502 } else {
4503 if (avc_has_perm(sksec->sid, skb->secmark,
4504 SECCLASS_PACKET, PACKET__SEND, ad))
4505 return NF_DROP;
4506 }
4507
4508 if (selinux_policycap_netpeer)
4509 if (selinux_xfrm_postroute_last(sksec->sid, skb, ad, proto))
4510 return NF_DROP;
4511
4512 return NF_ACCEPT;
4513}
4514
4515static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4516 u16 family)
4517{
4518 u32 secmark_perm;
4519 u32 peer_sid;
4520 struct sock *sk;
4521 struct avc_audit_data ad;
4522 char *addrp;
4523 u8 proto;
4524 u8 secmark_active;
4525 u8 peerlbl_active;
4526
4527 AVC_AUDIT_DATA_INIT(&ad, NET);
4528 ad.u.net.netif = ifindex;
4529 ad.u.net.family = family;
4530 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4531 return NF_DROP;
4532
4533 /* If any sort of compatibility mode is enabled then handoff processing
4534 * to the selinux_ip_postroute_compat() function to deal with the
4535 * special handling. We do this in an attempt to keep this function
4536 * as fast and as clean as possible. */
4537 if (selinux_compat_net || !selinux_policycap_netpeer)
4538 return selinux_ip_postroute_compat(skb, ifindex, &ad,
4539 family, addrp, proto);
4540
4541 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4542 * packet transformation so allow the packet to pass without any checks
4543 * since we'll have another chance to perform access control checks
4544 * when the packet is on it's final way out.
4545 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4546 * is NULL, in this case go ahead and apply access control. */
4547 if (skb->dst != NULL && skb->dst->xfrm != NULL)
4548 return NF_ACCEPT;
4549
4550 secmark_active = selinux_secmark_enabled();
4551 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4552 if (!secmark_active && !peerlbl_active)
4553 return NF_ACCEPT;
4554
4555 /* if the packet is locally generated (skb->sk != NULL) then use the
4556 * socket's label as the peer label, otherwise the packet is being
4557 * forwarded through this system and we need to fetch the peer label
4558 * directly from the packet */
4559 sk = skb->sk;
4560 if (sk) {
4561 struct sk_security_struct *sksec = sk->sk_security;
4562 peer_sid = sksec->sid;
4563 secmark_perm = PACKET__SEND;
4564 } else {
4565 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4566 return NF_DROP;
4567 secmark_perm = PACKET__FORWARD_OUT;
4568 }
4569
4570 if (secmark_active)
4571 if (avc_has_perm(peer_sid, skb->secmark,
4572 SECCLASS_PACKET, secmark_perm, &ad))
4573 return NF_DROP;
4574
4575 if (peerlbl_active) {
4576 u32 if_sid;
4577 u32 node_sid;
4578
4579 if (sel_netif_sid(ifindex, &if_sid))
4580 return NF_DROP;
4581 if (avc_has_perm(peer_sid, if_sid,
4582 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4583 return NF_DROP;
4584
4585 if (sel_netnode_sid(addrp, family, &node_sid))
4586 return NF_DROP;
4587 if (avc_has_perm(peer_sid, node_sid,
4588 SECCLASS_NODE, NODE__SENDTO, &ad))
4589 return NF_DROP;
4590 }
4591
4592 return NF_ACCEPT;
4593}
4594
4595static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4596 struct sk_buff *skb,
4597 const struct net_device *in,
4598 const struct net_device *out,
4599 int (*okfn)(struct sk_buff *))
4600{
4601 return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4602}
4603
4604#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4605static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4606 struct sk_buff *skb,
4607 const struct net_device *in,
4608 const struct net_device *out,
4609 int (*okfn)(struct sk_buff *))
4610{
4611 return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4612}
4613#endif /* IPV6 */
4614
4615#endif /* CONFIG_NETFILTER */
4616
4617static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4618{
4619 int err;
4620
4621 err = secondary_ops->netlink_send(sk, skb);
4622 if (err)
4623 return err;
4624
4625 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4626 err = selinux_nlmsg_perm(sk, skb);
4627
4628 return err;
4629}
4630
4631static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4632{
4633 int err;
4634 struct avc_audit_data ad;
4635
4636 err = secondary_ops->netlink_recv(skb, capability);
4637 if (err)
4638 return err;
4639
4640 AVC_AUDIT_DATA_INIT(&ad, CAP);
4641 ad.u.cap = capability;
4642
4643 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4644 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4645}
4646
4647static int ipc_alloc_security(struct task_struct *task,
4648 struct kern_ipc_perm *perm,
4649 u16 sclass)
4650{
4651 struct task_security_struct *tsec = task->security;
4652 struct ipc_security_struct *isec;
4653
4654 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4655 if (!isec)
4656 return -ENOMEM;
4657
4658 isec->sclass = sclass;
4659 isec->sid = tsec->sid;
4660 perm->security = isec;
4661
4662 return 0;
4663}
4664
4665static void ipc_free_security(struct kern_ipc_perm *perm)
4666{
4667 struct ipc_security_struct *isec = perm->security;
4668 perm->security = NULL;
4669 kfree(isec);
4670}
4671
4672static int msg_msg_alloc_security(struct msg_msg *msg)
4673{
4674 struct msg_security_struct *msec;
4675
4676 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4677 if (!msec)
4678 return -ENOMEM;
4679
4680 msec->sid = SECINITSID_UNLABELED;
4681 msg->security = msec;
4682
4683 return 0;
4684}
4685
4686static void msg_msg_free_security(struct msg_msg *msg)
4687{
4688 struct msg_security_struct *msec = msg->security;
4689
4690 msg->security = NULL;
4691 kfree(msec);
4692}
4693
4694static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4695 u32 perms)
4696{
4697 struct task_security_struct *tsec;
4698 struct ipc_security_struct *isec;
4699 struct avc_audit_data ad;
4700
4701 tsec = current->security;
4702 isec = ipc_perms->security;
4703
4704 AVC_AUDIT_DATA_INIT(&ad, IPC);
4705 ad.u.ipc_id = ipc_perms->key;
4706
4707 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4708}
4709
4710static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4711{
4712 return msg_msg_alloc_security(msg);
4713}
4714
4715static void selinux_msg_msg_free_security(struct msg_msg *msg)
4716{
4717 msg_msg_free_security(msg);
4718}
4719
4720/* message queue security operations */
4721static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4722{
4723 struct task_security_struct *tsec;
4724 struct ipc_security_struct *isec;
4725 struct avc_audit_data ad;
4726 int rc;
4727
4728 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4729 if (rc)
4730 return rc;
4731
4732 tsec = current->security;
4733 isec = msq->q_perm.security;
4734
4735 AVC_AUDIT_DATA_INIT(&ad, IPC);
4736 ad.u.ipc_id = msq->q_perm.key;
4737
4738 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4739 MSGQ__CREATE, &ad);
4740 if (rc) {
4741 ipc_free_security(&msq->q_perm);
4742 return rc;
4743 }
4744 return 0;
4745}
4746
4747static void selinux_msg_queue_free_security(struct msg_queue *msq)
4748{
4749 ipc_free_security(&msq->q_perm);
4750}
4751
4752static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4753{
4754 struct task_security_struct *tsec;
4755 struct ipc_security_struct *isec;
4756 struct avc_audit_data ad;
4757
4758 tsec = current->security;
4759 isec = msq->q_perm.security;
4760
4761 AVC_AUDIT_DATA_INIT(&ad, IPC);
4762 ad.u.ipc_id = msq->q_perm.key;
4763
4764 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4765 MSGQ__ASSOCIATE, &ad);
4766}
4767
4768static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4769{
4770 int err;
4771 int perms;
4772
4773 switch (cmd) {
4774 case IPC_INFO:
4775 case MSG_INFO:
4776 /* No specific object, just general system-wide information. */
4777 return task_has_system(current, SYSTEM__IPC_INFO);
4778 case IPC_STAT:
4779 case MSG_STAT:
4780 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4781 break;
4782 case IPC_SET:
4783 perms = MSGQ__SETATTR;
4784 break;
4785 case IPC_RMID:
4786 perms = MSGQ__DESTROY;
4787 break;
4788 default:
4789 return 0;
4790 }
4791
4792 err = ipc_has_perm(&msq->q_perm, perms);
4793 return err;
4794}
4795
4796static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4797{
4798 struct task_security_struct *tsec;
4799 struct ipc_security_struct *isec;
4800 struct msg_security_struct *msec;
4801 struct avc_audit_data ad;
4802 int rc;
4803
4804 tsec = current->security;
4805 isec = msq->q_perm.security;
4806 msec = msg->security;
4807
4808 /*
4809 * First time through, need to assign label to the message
4810 */
4811 if (msec->sid == SECINITSID_UNLABELED) {
4812 /*
4813 * Compute new sid based on current process and
4814 * message queue this message will be stored in
4815 */
4816 rc = security_transition_sid(tsec->sid,
4817 isec->sid,
4818 SECCLASS_MSG,
4819 &msec->sid);
4820 if (rc)
4821 return rc;
4822 }
4823
4824 AVC_AUDIT_DATA_INIT(&ad, IPC);
4825 ad.u.ipc_id = msq->q_perm.key;
4826
4827 /* Can this process write to the queue? */
4828 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4829 MSGQ__WRITE, &ad);
4830 if (!rc)
4831 /* Can this process send the message */
4832 rc = avc_has_perm(tsec->sid, msec->sid,
4833 SECCLASS_MSG, MSG__SEND, &ad);
4834 if (!rc)
4835 /* Can the message be put in the queue? */
4836 rc = avc_has_perm(msec->sid, isec->sid,
4837 SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4838
4839 return rc;
4840}
4841
4842static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4843 struct task_struct *target,
4844 long type, int mode)
4845{
4846 struct task_security_struct *tsec;
4847 struct ipc_security_struct *isec;
4848 struct msg_security_struct *msec;
4849 struct avc_audit_data ad;
4850 int rc;
4851
4852 tsec = target->security;
4853 isec = msq->q_perm.security;
4854 msec = msg->security;
4855
4856 AVC_AUDIT_DATA_INIT(&ad, IPC);
4857 ad.u.ipc_id = msq->q_perm.key;
4858
4859 rc = avc_has_perm(tsec->sid, isec->sid,
4860 SECCLASS_MSGQ, MSGQ__READ, &ad);
4861 if (!rc)
4862 rc = avc_has_perm(tsec->sid, msec->sid,
4863 SECCLASS_MSG, MSG__RECEIVE, &ad);
4864 return rc;
4865}
4866
4867/* Shared Memory security operations */
4868static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4869{
4870 struct task_security_struct *tsec;
4871 struct ipc_security_struct *isec;
4872 struct avc_audit_data ad;
4873 int rc;
4874
4875 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4876 if (rc)
4877 return rc;
4878
4879 tsec = current->security;
4880 isec = shp->shm_perm.security;
4881
4882 AVC_AUDIT_DATA_INIT(&ad, IPC);
4883 ad.u.ipc_id = shp->shm_perm.key;
4884
4885 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4886 SHM__CREATE, &ad);
4887 if (rc) {
4888 ipc_free_security(&shp->shm_perm);
4889 return rc;
4890 }
4891 return 0;
4892}
4893
4894static void selinux_shm_free_security(struct shmid_kernel *shp)
4895{
4896 ipc_free_security(&shp->shm_perm);
4897}
4898
4899static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4900{
4901 struct task_security_struct *tsec;
4902 struct ipc_security_struct *isec;
4903 struct avc_audit_data ad;
4904
4905 tsec = current->security;
4906 isec = shp->shm_perm.security;
4907
4908 AVC_AUDIT_DATA_INIT(&ad, IPC);
4909 ad.u.ipc_id = shp->shm_perm.key;
4910
4911 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4912 SHM__ASSOCIATE, &ad);
4913}
4914
4915/* Note, at this point, shp is locked down */
4916static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4917{
4918 int perms;
4919 int err;
4920
4921 switch (cmd) {
4922 case IPC_INFO:
4923 case SHM_INFO:
4924 /* No specific object, just general system-wide information. */
4925 return task_has_system(current, SYSTEM__IPC_INFO);
4926 case IPC_STAT:
4927 case SHM_STAT:
4928 perms = SHM__GETATTR | SHM__ASSOCIATE;
4929 break;
4930 case IPC_SET:
4931 perms = SHM__SETATTR;
4932 break;
4933 case SHM_LOCK:
4934 case SHM_UNLOCK:
4935 perms = SHM__LOCK;
4936 break;
4937 case IPC_RMID:
4938 perms = SHM__DESTROY;
4939 break;
4940 default:
4941 return 0;
4942 }
4943
4944 err = ipc_has_perm(&shp->shm_perm, perms);
4945 return err;
4946}
4947
4948static int selinux_shm_shmat(struct shmid_kernel *shp,
4949 char __user *shmaddr, int shmflg)
4950{
4951 u32 perms;
4952 int rc;
4953
4954 rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4955 if (rc)
4956 return rc;
4957
4958 if (shmflg & SHM_RDONLY)
4959 perms = SHM__READ;
4960 else
4961 perms = SHM__READ | SHM__WRITE;
4962
4963 return ipc_has_perm(&shp->shm_perm, perms);
4964}
4965
4966/* Semaphore security operations */
4967static int selinux_sem_alloc_security(struct sem_array *sma)
4968{
4969 struct task_security_struct *tsec;
4970 struct ipc_security_struct *isec;
4971 struct avc_audit_data ad;
4972 int rc;
4973
4974 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4975 if (rc)
4976 return rc;
4977
4978 tsec = current->security;
4979 isec = sma->sem_perm.security;
4980
4981 AVC_AUDIT_DATA_INIT(&ad, IPC);
4982 ad.u.ipc_id = sma->sem_perm.key;
4983
4984 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4985 SEM__CREATE, &ad);
4986 if (rc) {
4987 ipc_free_security(&sma->sem_perm);
4988 return rc;
4989 }
4990 return 0;
4991}
4992
4993static void selinux_sem_free_security(struct sem_array *sma)
4994{
4995 ipc_free_security(&sma->sem_perm);
4996}
4997
4998static int selinux_sem_associate(struct sem_array *sma, int semflg)
4999{
5000 struct task_security_struct *tsec;
5001 struct ipc_security_struct *isec;
5002 struct avc_audit_data ad;
5003
5004 tsec = current->security;
5005 isec = sma->sem_perm.security;
5006
5007 AVC_AUDIT_DATA_INIT(&ad, IPC);
5008 ad.u.ipc_id = sma->sem_perm.key;
5009
5010 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
5011 SEM__ASSOCIATE, &ad);
5012}
5013
5014/* Note, at this point, sma is locked down */
5015static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5016{
5017 int err;
5018 u32 perms;
5019
5020 switch (cmd) {
5021 case IPC_INFO:
5022 case SEM_INFO:
5023 /* No specific object, just general system-wide information. */
5024 return task_has_system(current, SYSTEM__IPC_INFO);
5025 case GETPID:
5026 case GETNCNT:
5027 case GETZCNT:
5028 perms = SEM__GETATTR;
5029 break;
5030 case GETVAL:
5031 case GETALL:
5032 perms = SEM__READ;
5033 break;
5034 case SETVAL:
5035 case SETALL:
5036 perms = SEM__WRITE;
5037 break;
5038 case IPC_RMID:
5039 perms = SEM__DESTROY;
5040 break;
5041 case IPC_SET:
5042 perms = SEM__SETATTR;
5043 break;
5044 case IPC_STAT:
5045 case SEM_STAT:
5046 perms = SEM__GETATTR | SEM__ASSOCIATE;
5047 break;
5048 default:
5049 return 0;
5050 }
5051
5052 err = ipc_has_perm(&sma->sem_perm, perms);
5053 return err;
5054}
5055
5056static int selinux_sem_semop(struct sem_array *sma,
5057 struct sembuf *sops, unsigned nsops, int alter)
5058{
5059 u32 perms;
5060
5061 if (alter)
5062 perms = SEM__READ | SEM__WRITE;
5063 else
5064 perms = SEM__READ;
5065
5066 return ipc_has_perm(&sma->sem_perm, perms);
5067}
5068
5069static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5070{
5071 u32 av = 0;
5072
5073 av = 0;
5074 if (flag & S_IRUGO)
5075 av |= IPC__UNIX_READ;
5076 if (flag & S_IWUGO)
5077 av |= IPC__UNIX_WRITE;
5078
5079 if (av == 0)
5080 return 0;
5081
5082 return ipc_has_perm(ipcp, av);
5083}
5084
5085static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5086{
5087 struct ipc_security_struct *isec = ipcp->security;
5088 *secid = isec->sid;
5089}
5090
5091static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5092{
5093 if (inode)
5094 inode_doinit_with_dentry(inode, dentry);
5095}
5096
5097static int selinux_getprocattr(struct task_struct *p,
5098 char *name, char **value)
5099{
5100 struct task_security_struct *tsec;
5101 u32 sid;
5102 int error;
5103 unsigned len;
5104
5105 if (current != p) {
5106 error = task_has_perm(current, p, PROCESS__GETATTR);
5107 if (error)
5108 return error;
5109 }
5110
5111 tsec = p->security;
5112
5113 if (!strcmp(name, "current"))
5114 sid = tsec->sid;
5115 else if (!strcmp(name, "prev"))
5116 sid = tsec->osid;
5117 else if (!strcmp(name, "exec"))
5118 sid = tsec->exec_sid;
5119 else if (!strcmp(name, "fscreate"))
5120 sid = tsec->create_sid;
5121 else if (!strcmp(name, "keycreate"))
5122 sid = tsec->keycreate_sid;
5123 else if (!strcmp(name, "sockcreate"))
5124 sid = tsec->sockcreate_sid;
5125 else
5126 return -EINVAL;
5127
5128 if (!sid)
5129 return 0;
5130
5131 error = security_sid_to_context(sid, value, &len);
5132 if (error)
5133 return error;
5134 return len;
5135}
5136
5137static int selinux_setprocattr(struct task_struct *p,
5138 char *name, void *value, size_t size)
5139{
5140 struct task_security_struct *tsec;
5141 struct task_struct *tracer;
5142 u32 sid = 0;
5143 int error;
5144 char *str = value;
5145
5146 if (current != p) {
5147 /* SELinux only allows a process to change its own
5148 security attributes. */
5149 return -EACCES;
5150 }
5151
5152 /*
5153 * Basic control over ability to set these attributes at all.
5154 * current == p, but we'll pass them separately in case the
5155 * above restriction is ever removed.
5156 */
5157 if (!strcmp(name, "exec"))
5158 error = task_has_perm(current, p, PROCESS__SETEXEC);
5159 else if (!strcmp(name, "fscreate"))
5160 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
5161 else if (!strcmp(name, "keycreate"))
5162 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
5163 else if (!strcmp(name, "sockcreate"))
5164 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
5165 else if (!strcmp(name, "current"))
5166 error = task_has_perm(current, p, PROCESS__SETCURRENT);
5167 else
5168 error = -EINVAL;
5169 if (error)
5170 return error;
5171
5172 /* Obtain a SID for the context, if one was specified. */
5173 if (size && str[1] && str[1] != '\n') {
5174 if (str[size-1] == '\n') {
5175 str[size-1] = 0;
5176 size--;
5177 }
5178 error = security_context_to_sid(value, size, &sid);
5179 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5180 if (!capable(CAP_MAC_ADMIN))
5181 return error;
5182 error = security_context_to_sid_force(value, size,
5183 &sid);
5184 }
5185 if (error)
5186 return error;
5187 }
5188
5189 /* Permission checking based on the specified context is
5190 performed during the actual operation (execve,
5191 open/mkdir/...), when we know the full context of the
5192 operation. See selinux_bprm_set_security for the execve
5193 checks and may_create for the file creation checks. The
5194 operation will then fail if the context is not permitted. */
5195 tsec = p->security;
5196 if (!strcmp(name, "exec"))
5197 tsec->exec_sid = sid;
5198 else if (!strcmp(name, "fscreate"))
5199 tsec->create_sid = sid;
5200 else if (!strcmp(name, "keycreate")) {
5201 error = may_create_key(sid, p);
5202 if (error)
5203 return error;
5204 tsec->keycreate_sid = sid;
5205 } else if (!strcmp(name, "sockcreate"))
5206 tsec->sockcreate_sid = sid;
5207 else if (!strcmp(name, "current")) {
5208 struct av_decision avd;
5209
5210 if (sid == 0)
5211 return -EINVAL;
5212
5213 /* Only allow single threaded processes to change context */
5214 if (atomic_read(&p->mm->mm_users) != 1) {
5215 struct task_struct *g, *t;
5216 struct mm_struct *mm = p->mm;
5217 read_lock(&tasklist_lock);
5218 do_each_thread(g, t) {
5219 if (t->mm == mm && t != p) {
5220 read_unlock(&tasklist_lock);
5221 return -EPERM;
5222 }
5223 } while_each_thread(g, t);
5224 read_unlock(&tasklist_lock);
5225 }
5226
5227 /* Check permissions for the transition. */
5228 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5229 PROCESS__DYNTRANSITION, NULL);
5230 if (error)
5231 return error;
5232
5233 /* Check for ptracing, and update the task SID if ok.
5234 Otherwise, leave SID unchanged and fail. */
5235 task_lock(p);
5236 rcu_read_lock();
5237 tracer = tracehook_tracer_task(p);
5238 if (tracer != NULL) {
5239 struct task_security_struct *ptsec = tracer->security;
5240 u32 ptsid = ptsec->sid;
5241 rcu_read_unlock();
5242 error = avc_has_perm_noaudit(ptsid, sid,
5243 SECCLASS_PROCESS,
5244 PROCESS__PTRACE, 0, &avd);
5245 if (!error)
5246 tsec->sid = sid;
5247 task_unlock(p);
5248 avc_audit(ptsid, sid, SECCLASS_PROCESS,
5249 PROCESS__PTRACE, &avd, error, NULL);
5250 if (error)
5251 return error;
5252 } else {
5253 rcu_read_unlock();
5254 tsec->sid = sid;
5255 task_unlock(p);
5256 }
5257 } else
5258 return -EINVAL;
5259
5260 return size;
5261}
5262
5263static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5264{
5265 return security_sid_to_context(secid, secdata, seclen);
5266}
5267
5268static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5269{
5270 return security_context_to_sid(secdata, seclen, secid);
5271}
5272
5273static void selinux_release_secctx(char *secdata, u32 seclen)
5274{
5275 kfree(secdata);
5276}
5277
5278#ifdef CONFIG_KEYS
5279
5280static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
5281 unsigned long flags)
5282{
5283 struct task_security_struct *tsec = tsk->security;
5284 struct key_security_struct *ksec;
5285
5286 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5287 if (!ksec)
5288 return -ENOMEM;
5289
5290 if (tsec->keycreate_sid)
5291 ksec->sid = tsec->keycreate_sid;
5292 else
5293 ksec->sid = tsec->sid;
5294 k->security = ksec;
5295
5296 return 0;
5297}
5298
5299static void selinux_key_free(struct key *k)
5300{
5301 struct key_security_struct *ksec = k->security;
5302
5303 k->security = NULL;
5304 kfree(ksec);
5305}
5306
5307static int selinux_key_permission(key_ref_t key_ref,
5308 struct task_struct *ctx,
5309 key_perm_t perm)
5310{
5311 struct key *key;
5312 struct task_security_struct *tsec;
5313 struct key_security_struct *ksec;
5314
5315 key = key_ref_to_ptr(key_ref);
5316
5317 tsec = ctx->security;
5318 ksec = key->security;
5319
5320 /* if no specific permissions are requested, we skip the
5321 permission check. No serious, additional covert channels
5322 appear to be created. */
5323 if (perm == 0)
5324 return 0;
5325
5326 return avc_has_perm(tsec->sid, ksec->sid,
5327 SECCLASS_KEY, perm, NULL);
5328}
5329
5330static int selinux_key_getsecurity(struct key *key, char **_buffer)
5331{
5332 struct key_security_struct *ksec = key->security;
5333 char *context = NULL;
5334 unsigned len;
5335 int rc;
5336
5337 rc = security_sid_to_context(ksec->sid, &context, &len);
5338 if (!rc)
5339 rc = len;
5340 *_buffer = context;
5341 return rc;
5342}
5343
5344#endif
5345
5346static struct security_operations selinux_ops = {
5347 .name = "selinux",
5348
5349 .ptrace = selinux_ptrace,
5350 .capget = selinux_capget,
5351 .capset_check = selinux_capset_check,
5352 .capset_set = selinux_capset_set,
5353 .sysctl = selinux_sysctl,
5354 .capable = selinux_capable,
5355 .quotactl = selinux_quotactl,
5356 .quota_on = selinux_quota_on,
5357 .syslog = selinux_syslog,
5358 .vm_enough_memory = selinux_vm_enough_memory,
5359
5360 .netlink_send = selinux_netlink_send,
5361 .netlink_recv = selinux_netlink_recv,
5362
5363 .bprm_alloc_security = selinux_bprm_alloc_security,
5364 .bprm_free_security = selinux_bprm_free_security,
5365 .bprm_apply_creds = selinux_bprm_apply_creds,
5366 .bprm_post_apply_creds = selinux_bprm_post_apply_creds,
5367 .bprm_set_security = selinux_bprm_set_security,
5368 .bprm_check_security = selinux_bprm_check_security,
5369 .bprm_secureexec = selinux_bprm_secureexec,
5370
5371 .sb_alloc_security = selinux_sb_alloc_security,
5372 .sb_free_security = selinux_sb_free_security,
5373 .sb_copy_data = selinux_sb_copy_data,
5374 .sb_kern_mount = selinux_sb_kern_mount,
5375 .sb_show_options = selinux_sb_show_options,
5376 .sb_statfs = selinux_sb_statfs,
5377 .sb_mount = selinux_mount,
5378 .sb_umount = selinux_umount,
5379 .sb_set_mnt_opts = selinux_set_mnt_opts,
5380 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts,
5381 .sb_parse_opts_str = selinux_parse_opts_str,
5382
5383
5384 .inode_alloc_security = selinux_inode_alloc_security,
5385 .inode_free_security = selinux_inode_free_security,
5386 .inode_init_security = selinux_inode_init_security,
5387 .inode_create = selinux_inode_create,
5388 .inode_link = selinux_inode_link,
5389 .inode_unlink = selinux_inode_unlink,
5390 .inode_symlink = selinux_inode_symlink,
5391 .inode_mkdir = selinux_inode_mkdir,
5392 .inode_rmdir = selinux_inode_rmdir,
5393 .inode_mknod = selinux_inode_mknod,
5394 .inode_rename = selinux_inode_rename,
5395 .inode_readlink = selinux_inode_readlink,
5396 .inode_follow_link = selinux_inode_follow_link,
5397 .inode_permission = selinux_inode_permission,
5398 .inode_setattr = selinux_inode_setattr,
5399 .inode_getattr = selinux_inode_getattr,
5400 .inode_setxattr = selinux_inode_setxattr,
5401 .inode_post_setxattr = selinux_inode_post_setxattr,
5402 .inode_getxattr = selinux_inode_getxattr,
5403 .inode_listxattr = selinux_inode_listxattr,
5404 .inode_removexattr = selinux_inode_removexattr,
5405 .inode_getsecurity = selinux_inode_getsecurity,
5406 .inode_setsecurity = selinux_inode_setsecurity,
5407 .inode_listsecurity = selinux_inode_listsecurity,
5408 .inode_need_killpriv = selinux_inode_need_killpriv,
5409 .inode_killpriv = selinux_inode_killpriv,
5410 .inode_getsecid = selinux_inode_getsecid,
5411
5412 .file_permission = selinux_file_permission,
5413 .file_alloc_security = selinux_file_alloc_security,
5414 .file_free_security = selinux_file_free_security,
5415 .file_ioctl = selinux_file_ioctl,
5416 .file_mmap = selinux_file_mmap,
5417 .file_mprotect = selinux_file_mprotect,
5418 .file_lock = selinux_file_lock,
5419 .file_fcntl = selinux_file_fcntl,
5420 .file_set_fowner = selinux_file_set_fowner,
5421 .file_send_sigiotask = selinux_file_send_sigiotask,
5422 .file_receive = selinux_file_receive,
5423
5424 .dentry_open = selinux_dentry_open,
5425
5426 .task_create = selinux_task_create,
5427 .task_alloc_security = selinux_task_alloc_security,
5428 .task_free_security = selinux_task_free_security,
5429 .task_setuid = selinux_task_setuid,
5430 .task_post_setuid = selinux_task_post_setuid,
5431 .task_setgid = selinux_task_setgid,
5432 .task_setpgid = selinux_task_setpgid,
5433 .task_getpgid = selinux_task_getpgid,
5434 .task_getsid = selinux_task_getsid,
5435 .task_getsecid = selinux_task_getsecid,
5436 .task_setgroups = selinux_task_setgroups,
5437 .task_setnice = selinux_task_setnice,
5438 .task_setioprio = selinux_task_setioprio,
5439 .task_getioprio = selinux_task_getioprio,
5440 .task_setrlimit = selinux_task_setrlimit,
5441 .task_setscheduler = selinux_task_setscheduler,
5442 .task_getscheduler = selinux_task_getscheduler,
5443 .task_movememory = selinux_task_movememory,
5444 .task_kill = selinux_task_kill,
5445 .task_wait = selinux_task_wait,
5446 .task_prctl = selinux_task_prctl,
5447 .task_reparent_to_init = selinux_task_reparent_to_init,
5448 .task_to_inode = selinux_task_to_inode,
5449
5450 .ipc_permission = selinux_ipc_permission,
5451 .ipc_getsecid = selinux_ipc_getsecid,
5452
5453 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
5454 .msg_msg_free_security = selinux_msg_msg_free_security,
5455
5456 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
5457 .msg_queue_free_security = selinux_msg_queue_free_security,
5458 .msg_queue_associate = selinux_msg_queue_associate,
5459 .msg_queue_msgctl = selinux_msg_queue_msgctl,
5460 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
5461 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
5462
5463 .shm_alloc_security = selinux_shm_alloc_security,
5464 .shm_free_security = selinux_shm_free_security,
5465 .shm_associate = selinux_shm_associate,
5466 .shm_shmctl = selinux_shm_shmctl,
5467 .shm_shmat = selinux_shm_shmat,
5468
5469 .sem_alloc_security = selinux_sem_alloc_security,
5470 .sem_free_security = selinux_sem_free_security,
5471 .sem_associate = selinux_sem_associate,
5472 .sem_semctl = selinux_sem_semctl,
5473 .sem_semop = selinux_sem_semop,
5474
5475 .d_instantiate = selinux_d_instantiate,
5476
5477 .getprocattr = selinux_getprocattr,
5478 .setprocattr = selinux_setprocattr,
5479
5480 .secid_to_secctx = selinux_secid_to_secctx,
5481 .secctx_to_secid = selinux_secctx_to_secid,
5482 .release_secctx = selinux_release_secctx,
5483
5484 .unix_stream_connect = selinux_socket_unix_stream_connect,
5485 .unix_may_send = selinux_socket_unix_may_send,
5486
5487 .socket_create = selinux_socket_create,
5488 .socket_post_create = selinux_socket_post_create,
5489 .socket_bind = selinux_socket_bind,
5490 .socket_connect = selinux_socket_connect,
5491 .socket_listen = selinux_socket_listen,
5492 .socket_accept = selinux_socket_accept,
5493 .socket_sendmsg = selinux_socket_sendmsg,
5494 .socket_recvmsg = selinux_socket_recvmsg,
5495 .socket_getsockname = selinux_socket_getsockname,
5496 .socket_getpeername = selinux_socket_getpeername,
5497 .socket_getsockopt = selinux_socket_getsockopt,
5498 .socket_setsockopt = selinux_socket_setsockopt,
5499 .socket_shutdown = selinux_socket_shutdown,
5500 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
5501 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
5502 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
5503 .sk_alloc_security = selinux_sk_alloc_security,
5504 .sk_free_security = selinux_sk_free_security,
5505 .sk_clone_security = selinux_sk_clone_security,
5506 .sk_getsecid = selinux_sk_getsecid,
5507 .sock_graft = selinux_sock_graft,
5508 .inet_conn_request = selinux_inet_conn_request,
5509 .inet_csk_clone = selinux_inet_csk_clone,
5510 .inet_conn_established = selinux_inet_conn_established,
5511 .req_classify_flow = selinux_req_classify_flow,
5512
5513#ifdef CONFIG_SECURITY_NETWORK_XFRM
5514 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
5515 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
5516 .xfrm_policy_free_security = selinux_xfrm_policy_free,
5517 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
5518 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
5519 .xfrm_state_free_security = selinux_xfrm_state_free,
5520 .xfrm_state_delete_security = selinux_xfrm_state_delete,
5521 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
5522 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
5523 .xfrm_decode_session = selinux_xfrm_decode_session,
5524#endif
5525
5526#ifdef CONFIG_KEYS
5527 .key_alloc = selinux_key_alloc,
5528 .key_free = selinux_key_free,
5529 .key_permission = selinux_key_permission,
5530 .key_getsecurity = selinux_key_getsecurity,
5531#endif
5532
5533#ifdef CONFIG_AUDIT
5534 .audit_rule_init = selinux_audit_rule_init,
5535 .audit_rule_known = selinux_audit_rule_known,
5536 .audit_rule_match = selinux_audit_rule_match,
5537 .audit_rule_free = selinux_audit_rule_free,
5538#endif
5539};
5540
5541static __init int selinux_init(void)
5542{
5543 struct task_security_struct *tsec;
5544
5545 if (!security_module_enable(&selinux_ops)) {
5546 selinux_enabled = 0;
5547 return 0;
5548 }
5549
5550 if (!selinux_enabled) {
5551 printk(KERN_INFO "SELinux: Disabled at boot.\n");
5552 return 0;
5553 }
5554
5555 printk(KERN_INFO "SELinux: Initializing.\n");
5556
5557 /* Set the security state for the initial task. */
5558 if (task_alloc_security(current))
5559 panic("SELinux: Failed to initialize initial task.\n");
5560 tsec = current->security;
5561 tsec->osid = tsec->sid = SECINITSID_KERNEL;
5562
5563 sel_inode_cache = kmem_cache_create("selinux_inode_security",
5564 sizeof(struct inode_security_struct),
5565 0, SLAB_PANIC, NULL);
5566 avc_init();
5567
5568 secondary_ops = security_ops;
5569 if (!secondary_ops)
5570 panic("SELinux: No initial security operations\n");
5571 if (register_security(&selinux_ops))
5572 panic("SELinux: Unable to register with kernel.\n");
5573
5574 if (selinux_enforcing)
5575 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
5576 else
5577 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
5578
5579 return 0;
5580}
5581
5582void selinux_complete_init(void)
5583{
5584 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
5585
5586 /* Set up any superblocks initialized prior to the policy load. */
5587 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
5588 spin_lock(&sb_lock);
5589 spin_lock(&sb_security_lock);
5590next_sb:
5591 if (!list_empty(&superblock_security_head)) {
5592 struct superblock_security_struct *sbsec =
5593 list_entry(superblock_security_head.next,
5594 struct superblock_security_struct,
5595 list);
5596 struct super_block *sb = sbsec->sb;
5597 sb->s_count++;
5598 spin_unlock(&sb_security_lock);
5599 spin_unlock(&sb_lock);
5600 down_read(&sb->s_umount);
5601 if (sb->s_root)
5602 superblock_doinit(sb, NULL);
5603 drop_super(sb);
5604 spin_lock(&sb_lock);
5605 spin_lock(&sb_security_lock);
5606 list_del_init(&sbsec->list);
5607 goto next_sb;
5608 }
5609 spin_unlock(&sb_security_lock);
5610 spin_unlock(&sb_lock);
5611}
5612
5613/* SELinux requires early initialization in order to label
5614 all processes and objects when they are created. */
5615security_initcall(selinux_init);
5616
5617#if defined(CONFIG_NETFILTER)
5618
5619static struct nf_hook_ops selinux_ipv4_ops[] = {
5620 {
5621 .hook = selinux_ipv4_postroute,
5622 .owner = THIS_MODULE,
5623 .pf = PF_INET,
5624 .hooknum = NF_INET_POST_ROUTING,
5625 .priority = NF_IP_PRI_SELINUX_LAST,
5626 },
5627 {
5628 .hook = selinux_ipv4_forward,
5629 .owner = THIS_MODULE,
5630 .pf = PF_INET,
5631 .hooknum = NF_INET_FORWARD,
5632 .priority = NF_IP_PRI_SELINUX_FIRST,
5633 }
5634};
5635
5636#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5637
5638static struct nf_hook_ops selinux_ipv6_ops[] = {
5639 {
5640 .hook = selinux_ipv6_postroute,
5641 .owner = THIS_MODULE,
5642 .pf = PF_INET6,
5643 .hooknum = NF_INET_POST_ROUTING,
5644 .priority = NF_IP6_PRI_SELINUX_LAST,
5645 },
5646 {
5647 .hook = selinux_ipv6_forward,
5648 .owner = THIS_MODULE,
5649 .pf = PF_INET6,
5650 .hooknum = NF_INET_FORWARD,
5651 .priority = NF_IP6_PRI_SELINUX_FIRST,
5652 }
5653};
5654
5655#endif /* IPV6 */
5656
5657static int __init selinux_nf_ip_init(void)
5658{
5659 int err = 0;
5660
5661 if (!selinux_enabled)
5662 goto out;
5663
5664 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
5665
5666 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5667 if (err)
5668 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5669
5670#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5671 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5672 if (err)
5673 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5674#endif /* IPV6 */
5675
5676out:
5677 return err;
5678}
5679
5680__initcall(selinux_nf_ip_init);
5681
5682#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5683static void selinux_nf_ip_exit(void)
5684{
5685 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
5686
5687 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5688#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5689 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5690#endif /* IPV6 */
5691}
5692#endif
5693
5694#else /* CONFIG_NETFILTER */
5695
5696#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5697#define selinux_nf_ip_exit()
5698#endif
5699
5700#endif /* CONFIG_NETFILTER */
5701
5702#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5703static int selinux_disabled;
5704
5705int selinux_disable(void)
5706{
5707 extern void exit_sel_fs(void);
5708
5709 if (ss_initialized) {
5710 /* Not permitted after initial policy load. */
5711 return -EINVAL;
5712 }
5713
5714 if (selinux_disabled) {
5715 /* Only do this once. */
5716 return -EINVAL;
5717 }
5718
5719 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
5720
5721 selinux_disabled = 1;
5722 selinux_enabled = 0;
5723
5724 /* Reset security_ops to the secondary module, dummy or capability. */
5725 security_ops = secondary_ops;
5726
5727 /* Unregister netfilter hooks. */
5728 selinux_nf_ip_exit();
5729
5730 /* Unregister selinuxfs. */
5731 exit_sel_fs();
5732
5733 return 0;
5734}
5735#endif