]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - security/selinux/hooks.c
vfs: remove lives_below_in_same_fs()
[net-next-2.6.git] / security / selinux / hooks.c
... / ...
CommitLineData
1/*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14 * <dgoeddel@trustedcs.com>
15 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
16 * Paul Moore <paul.moore@hp.com>
17 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
18 * Yuichi Nakamura <ynakam@hitachisoft.jp>
19 *
20 * This program is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License version 2,
22 * as published by the Free Software Foundation.
23 */
24
25#include <linux/init.h>
26#include <linux/kernel.h>
27#include <linux/ptrace.h>
28#include <linux/errno.h>
29#include <linux/sched.h>
30#include <linux/security.h>
31#include <linux/xattr.h>
32#include <linux/capability.h>
33#include <linux/unistd.h>
34#include <linux/mm.h>
35#include <linux/mman.h>
36#include <linux/slab.h>
37#include <linux/pagemap.h>
38#include <linux/swap.h>
39#include <linux/spinlock.h>
40#include <linux/syscalls.h>
41#include <linux/file.h>
42#include <linux/namei.h>
43#include <linux/mount.h>
44#include <linux/ext2_fs.h>
45#include <linux/proc_fs.h>
46#include <linux/kd.h>
47#include <linux/netfilter_ipv4.h>
48#include <linux/netfilter_ipv6.h>
49#include <linux/tty.h>
50#include <net/icmp.h>
51#include <net/ip.h> /* for local_port_range[] */
52#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
53#include <net/net_namespace.h>
54#include <net/netlabel.h>
55#include <asm/uaccess.h>
56#include <asm/ioctls.h>
57#include <asm/atomic.h>
58#include <linux/bitops.h>
59#include <linux/interrupt.h>
60#include <linux/netdevice.h> /* for network interface checks */
61#include <linux/netlink.h>
62#include <linux/tcp.h>
63#include <linux/udp.h>
64#include <linux/dccp.h>
65#include <linux/quota.h>
66#include <linux/un.h> /* for Unix socket types */
67#include <net/af_unix.h> /* for Unix socket types */
68#include <linux/parser.h>
69#include <linux/nfs_mount.h>
70#include <net/ipv6.h>
71#include <linux/hugetlb.h>
72#include <linux/personality.h>
73#include <linux/sysctl.h>
74#include <linux/audit.h>
75#include <linux/string.h>
76#include <linux/selinux.h>
77#include <linux/mutex.h>
78
79#include "avc.h"
80#include "objsec.h"
81#include "netif.h"
82#include "netnode.h"
83#include "netport.h"
84#include "xfrm.h"
85#include "netlabel.h"
86#include "audit.h"
87
88#define XATTR_SELINUX_SUFFIX "selinux"
89#define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
90
91#define NUM_SEL_MNT_OPTS 4
92
93extern unsigned int policydb_loaded_version;
94extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
95extern int selinux_compat_net;
96extern struct security_operations *security_ops;
97
98/* SECMARK reference count */
99atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
100
101#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
102int selinux_enforcing;
103
104static int __init enforcing_setup(char *str)
105{
106 selinux_enforcing = simple_strtol(str, NULL, 0);
107 return 1;
108}
109__setup("enforcing=", enforcing_setup);
110#endif
111
112#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
113int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
114
115static int __init selinux_enabled_setup(char *str)
116{
117 selinux_enabled = simple_strtol(str, NULL, 0);
118 return 1;
119}
120__setup("selinux=", selinux_enabled_setup);
121#else
122int selinux_enabled = 1;
123#endif
124
125/* Original (dummy) security module. */
126static struct security_operations *original_ops;
127
128/* Minimal support for a secondary security module,
129 just to allow the use of the dummy or capability modules.
130 The owlsm module can alternatively be used as a secondary
131 module as long as CONFIG_OWLSM_FD is not enabled. */
132static struct security_operations *secondary_ops;
133
134/* Lists of inode and superblock security structures initialized
135 before the policy was loaded. */
136static LIST_HEAD(superblock_security_head);
137static DEFINE_SPINLOCK(sb_security_lock);
138
139static struct kmem_cache *sel_inode_cache;
140
141/**
142 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
143 *
144 * Description:
145 * This function checks the SECMARK reference counter to see if any SECMARK
146 * targets are currently configured, if the reference counter is greater than
147 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
148 * enabled, false (0) if SECMARK is disabled.
149 *
150 */
151static int selinux_secmark_enabled(void)
152{
153 return (atomic_read(&selinux_secmark_refcount) > 0);
154}
155
156/* Allocate and free functions for each kind of security blob. */
157
158static int task_alloc_security(struct task_struct *task)
159{
160 struct task_security_struct *tsec;
161
162 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
163 if (!tsec)
164 return -ENOMEM;
165
166 tsec->osid = tsec->sid = SECINITSID_UNLABELED;
167 task->security = tsec;
168
169 return 0;
170}
171
172static void task_free_security(struct task_struct *task)
173{
174 struct task_security_struct *tsec = task->security;
175 task->security = NULL;
176 kfree(tsec);
177}
178
179static int inode_alloc_security(struct inode *inode)
180{
181 struct task_security_struct *tsec = current->security;
182 struct inode_security_struct *isec;
183
184 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
185 if (!isec)
186 return -ENOMEM;
187
188 mutex_init(&isec->lock);
189 INIT_LIST_HEAD(&isec->list);
190 isec->inode = inode;
191 isec->sid = SECINITSID_UNLABELED;
192 isec->sclass = SECCLASS_FILE;
193 isec->task_sid = tsec->sid;
194 inode->i_security = isec;
195
196 return 0;
197}
198
199static void inode_free_security(struct inode *inode)
200{
201 struct inode_security_struct *isec = inode->i_security;
202 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
203
204 spin_lock(&sbsec->isec_lock);
205 if (!list_empty(&isec->list))
206 list_del_init(&isec->list);
207 spin_unlock(&sbsec->isec_lock);
208
209 inode->i_security = NULL;
210 kmem_cache_free(sel_inode_cache, isec);
211}
212
213static int file_alloc_security(struct file *file)
214{
215 struct task_security_struct *tsec = current->security;
216 struct file_security_struct *fsec;
217
218 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
219 if (!fsec)
220 return -ENOMEM;
221
222 fsec->sid = tsec->sid;
223 fsec->fown_sid = tsec->sid;
224 file->f_security = fsec;
225
226 return 0;
227}
228
229static void file_free_security(struct file *file)
230{
231 struct file_security_struct *fsec = file->f_security;
232 file->f_security = NULL;
233 kfree(fsec);
234}
235
236static int superblock_alloc_security(struct super_block *sb)
237{
238 struct superblock_security_struct *sbsec;
239
240 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
241 if (!sbsec)
242 return -ENOMEM;
243
244 mutex_init(&sbsec->lock);
245 INIT_LIST_HEAD(&sbsec->list);
246 INIT_LIST_HEAD(&sbsec->isec_head);
247 spin_lock_init(&sbsec->isec_lock);
248 sbsec->sb = sb;
249 sbsec->sid = SECINITSID_UNLABELED;
250 sbsec->def_sid = SECINITSID_FILE;
251 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
252 sb->s_security = sbsec;
253
254 return 0;
255}
256
257static void superblock_free_security(struct super_block *sb)
258{
259 struct superblock_security_struct *sbsec = sb->s_security;
260
261 spin_lock(&sb_security_lock);
262 if (!list_empty(&sbsec->list))
263 list_del_init(&sbsec->list);
264 spin_unlock(&sb_security_lock);
265
266 sb->s_security = NULL;
267 kfree(sbsec);
268}
269
270static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
271{
272 struct sk_security_struct *ssec;
273
274 ssec = kzalloc(sizeof(*ssec), priority);
275 if (!ssec)
276 return -ENOMEM;
277
278 ssec->peer_sid = SECINITSID_UNLABELED;
279 ssec->sid = SECINITSID_UNLABELED;
280 sk->sk_security = ssec;
281
282 selinux_netlbl_sk_security_reset(ssec, family);
283
284 return 0;
285}
286
287static void sk_free_security(struct sock *sk)
288{
289 struct sk_security_struct *ssec = sk->sk_security;
290
291 sk->sk_security = NULL;
292 kfree(ssec);
293}
294
295/* The security server must be initialized before
296 any labeling or access decisions can be provided. */
297extern int ss_initialized;
298
299/* The file system's label must be initialized prior to use. */
300
301static char *labeling_behaviors[6] = {
302 "uses xattr",
303 "uses transition SIDs",
304 "uses task SIDs",
305 "uses genfs_contexts",
306 "not configured for labeling",
307 "uses mountpoint labeling",
308};
309
310static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
311
312static inline int inode_doinit(struct inode *inode)
313{
314 return inode_doinit_with_dentry(inode, NULL);
315}
316
317enum {
318 Opt_error = -1,
319 Opt_context = 1,
320 Opt_fscontext = 2,
321 Opt_defcontext = 3,
322 Opt_rootcontext = 4,
323};
324
325static match_table_t tokens = {
326 {Opt_context, CONTEXT_STR "%s"},
327 {Opt_fscontext, FSCONTEXT_STR "%s"},
328 {Opt_defcontext, DEFCONTEXT_STR "%s"},
329 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
330 {Opt_error, NULL},
331};
332
333#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
334
335static int may_context_mount_sb_relabel(u32 sid,
336 struct superblock_security_struct *sbsec,
337 struct task_security_struct *tsec)
338{
339 int rc;
340
341 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
342 FILESYSTEM__RELABELFROM, NULL);
343 if (rc)
344 return rc;
345
346 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
347 FILESYSTEM__RELABELTO, NULL);
348 return rc;
349}
350
351static int may_context_mount_inode_relabel(u32 sid,
352 struct superblock_security_struct *sbsec,
353 struct task_security_struct *tsec)
354{
355 int rc;
356 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
357 FILESYSTEM__RELABELFROM, NULL);
358 if (rc)
359 return rc;
360
361 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
362 FILESYSTEM__ASSOCIATE, NULL);
363 return rc;
364}
365
366static int sb_finish_set_opts(struct super_block *sb)
367{
368 struct superblock_security_struct *sbsec = sb->s_security;
369 struct dentry *root = sb->s_root;
370 struct inode *root_inode = root->d_inode;
371 int rc = 0;
372
373 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
374 /* Make sure that the xattr handler exists and that no
375 error other than -ENODATA is returned by getxattr on
376 the root directory. -ENODATA is ok, as this may be
377 the first boot of the SELinux kernel before we have
378 assigned xattr values to the filesystem. */
379 if (!root_inode->i_op->getxattr) {
380 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
381 "xattr support\n", sb->s_id, sb->s_type->name);
382 rc = -EOPNOTSUPP;
383 goto out;
384 }
385 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
386 if (rc < 0 && rc != -ENODATA) {
387 if (rc == -EOPNOTSUPP)
388 printk(KERN_WARNING "SELinux: (dev %s, type "
389 "%s) has no security xattr handler\n",
390 sb->s_id, sb->s_type->name);
391 else
392 printk(KERN_WARNING "SELinux: (dev %s, type "
393 "%s) getxattr errno %d\n", sb->s_id,
394 sb->s_type->name, -rc);
395 goto out;
396 }
397 }
398
399 sbsec->initialized = 1;
400
401 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
402 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
403 sb->s_id, sb->s_type->name);
404 else
405 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
406 sb->s_id, sb->s_type->name,
407 labeling_behaviors[sbsec->behavior-1]);
408
409 /* Initialize the root inode. */
410 rc = inode_doinit_with_dentry(root_inode, root);
411
412 /* Initialize any other inodes associated with the superblock, e.g.
413 inodes created prior to initial policy load or inodes created
414 during get_sb by a pseudo filesystem that directly
415 populates itself. */
416 spin_lock(&sbsec->isec_lock);
417next_inode:
418 if (!list_empty(&sbsec->isec_head)) {
419 struct inode_security_struct *isec =
420 list_entry(sbsec->isec_head.next,
421 struct inode_security_struct, list);
422 struct inode *inode = isec->inode;
423 spin_unlock(&sbsec->isec_lock);
424 inode = igrab(inode);
425 if (inode) {
426 if (!IS_PRIVATE(inode))
427 inode_doinit(inode);
428 iput(inode);
429 }
430 spin_lock(&sbsec->isec_lock);
431 list_del_init(&isec->list);
432 goto next_inode;
433 }
434 spin_unlock(&sbsec->isec_lock);
435out:
436 return rc;
437}
438
439/*
440 * This function should allow an FS to ask what it's mount security
441 * options were so it can use those later for submounts, displaying
442 * mount options, or whatever.
443 */
444static int selinux_get_mnt_opts(const struct super_block *sb,
445 struct security_mnt_opts *opts)
446{
447 int rc = 0, i;
448 struct superblock_security_struct *sbsec = sb->s_security;
449 char *context = NULL;
450 u32 len;
451 char tmp;
452
453 security_init_mnt_opts(opts);
454
455 if (!sbsec->initialized)
456 return -EINVAL;
457
458 if (!ss_initialized)
459 return -EINVAL;
460
461 /*
462 * if we ever use sbsec flags for anything other than tracking mount
463 * settings this is going to need a mask
464 */
465 tmp = sbsec->flags;
466 /* count the number of mount options for this sb */
467 for (i = 0; i < 8; i++) {
468 if (tmp & 0x01)
469 opts->num_mnt_opts++;
470 tmp >>= 1;
471 }
472
473 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
474 if (!opts->mnt_opts) {
475 rc = -ENOMEM;
476 goto out_free;
477 }
478
479 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
480 if (!opts->mnt_opts_flags) {
481 rc = -ENOMEM;
482 goto out_free;
483 }
484
485 i = 0;
486 if (sbsec->flags & FSCONTEXT_MNT) {
487 rc = security_sid_to_context(sbsec->sid, &context, &len);
488 if (rc)
489 goto out_free;
490 opts->mnt_opts[i] = context;
491 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
492 }
493 if (sbsec->flags & CONTEXT_MNT) {
494 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
495 if (rc)
496 goto out_free;
497 opts->mnt_opts[i] = context;
498 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
499 }
500 if (sbsec->flags & DEFCONTEXT_MNT) {
501 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
502 if (rc)
503 goto out_free;
504 opts->mnt_opts[i] = context;
505 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
506 }
507 if (sbsec->flags & ROOTCONTEXT_MNT) {
508 struct inode *root = sbsec->sb->s_root->d_inode;
509 struct inode_security_struct *isec = root->i_security;
510
511 rc = security_sid_to_context(isec->sid, &context, &len);
512 if (rc)
513 goto out_free;
514 opts->mnt_opts[i] = context;
515 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
516 }
517
518 BUG_ON(i != opts->num_mnt_opts);
519
520 return 0;
521
522out_free:
523 security_free_mnt_opts(opts);
524 return rc;
525}
526
527static int bad_option(struct superblock_security_struct *sbsec, char flag,
528 u32 old_sid, u32 new_sid)
529{
530 /* check if the old mount command had the same options */
531 if (sbsec->initialized)
532 if (!(sbsec->flags & flag) ||
533 (old_sid != new_sid))
534 return 1;
535
536 /* check if we were passed the same options twice,
537 * aka someone passed context=a,context=b
538 */
539 if (!sbsec->initialized)
540 if (sbsec->flags & flag)
541 return 1;
542 return 0;
543}
544
545/*
546 * Allow filesystems with binary mount data to explicitly set mount point
547 * labeling information.
548 */
549static int selinux_set_mnt_opts(struct super_block *sb,
550 struct security_mnt_opts *opts)
551{
552 int rc = 0, i;
553 struct task_security_struct *tsec = current->security;
554 struct superblock_security_struct *sbsec = sb->s_security;
555 const char *name = sb->s_type->name;
556 struct inode *inode = sbsec->sb->s_root->d_inode;
557 struct inode_security_struct *root_isec = inode->i_security;
558 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
559 u32 defcontext_sid = 0;
560 char **mount_options = opts->mnt_opts;
561 int *flags = opts->mnt_opts_flags;
562 int num_opts = opts->num_mnt_opts;
563
564 mutex_lock(&sbsec->lock);
565
566 if (!ss_initialized) {
567 if (!num_opts) {
568 /* Defer initialization until selinux_complete_init,
569 after the initial policy is loaded and the security
570 server is ready to handle calls. */
571 spin_lock(&sb_security_lock);
572 if (list_empty(&sbsec->list))
573 list_add(&sbsec->list, &superblock_security_head);
574 spin_unlock(&sb_security_lock);
575 goto out;
576 }
577 rc = -EINVAL;
578 printk(KERN_WARNING "SELinux: Unable to set superblock options "
579 "before the security server is initialized\n");
580 goto out;
581 }
582
583 /*
584 * Binary mount data FS will come through this function twice. Once
585 * from an explicit call and once from the generic calls from the vfs.
586 * Since the generic VFS calls will not contain any security mount data
587 * we need to skip the double mount verification.
588 *
589 * This does open a hole in which we will not notice if the first
590 * mount using this sb set explict options and a second mount using
591 * this sb does not set any security options. (The first options
592 * will be used for both mounts)
593 */
594 if (sbsec->initialized && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
595 && (num_opts == 0))
596 goto out;
597
598 /*
599 * parse the mount options, check if they are valid sids.
600 * also check if someone is trying to mount the same sb more
601 * than once with different security options.
602 */
603 for (i = 0; i < num_opts; i++) {
604 u32 sid;
605 rc = security_context_to_sid(mount_options[i],
606 strlen(mount_options[i]), &sid);
607 if (rc) {
608 printk(KERN_WARNING "SELinux: security_context_to_sid"
609 "(%s) failed for (dev %s, type %s) errno=%d\n",
610 mount_options[i], sb->s_id, name, rc);
611 goto out;
612 }
613 switch (flags[i]) {
614 case FSCONTEXT_MNT:
615 fscontext_sid = sid;
616
617 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
618 fscontext_sid))
619 goto out_double_mount;
620
621 sbsec->flags |= FSCONTEXT_MNT;
622 break;
623 case CONTEXT_MNT:
624 context_sid = sid;
625
626 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
627 context_sid))
628 goto out_double_mount;
629
630 sbsec->flags |= CONTEXT_MNT;
631 break;
632 case ROOTCONTEXT_MNT:
633 rootcontext_sid = sid;
634
635 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
636 rootcontext_sid))
637 goto out_double_mount;
638
639 sbsec->flags |= ROOTCONTEXT_MNT;
640
641 break;
642 case DEFCONTEXT_MNT:
643 defcontext_sid = sid;
644
645 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
646 defcontext_sid))
647 goto out_double_mount;
648
649 sbsec->flags |= DEFCONTEXT_MNT;
650
651 break;
652 default:
653 rc = -EINVAL;
654 goto out;
655 }
656 }
657
658 if (sbsec->initialized) {
659 /* previously mounted with options, but not on this attempt? */
660 if (sbsec->flags && !num_opts)
661 goto out_double_mount;
662 rc = 0;
663 goto out;
664 }
665
666 if (strcmp(sb->s_type->name, "proc") == 0)
667 sbsec->proc = 1;
668
669 /* Determine the labeling behavior to use for this filesystem type. */
670 rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
671 if (rc) {
672 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
673 __func__, sb->s_type->name, rc);
674 goto out;
675 }
676
677 /* sets the context of the superblock for the fs being mounted. */
678 if (fscontext_sid) {
679
680 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, tsec);
681 if (rc)
682 goto out;
683
684 sbsec->sid = fscontext_sid;
685 }
686
687 /*
688 * Switch to using mount point labeling behavior.
689 * sets the label used on all file below the mountpoint, and will set
690 * the superblock context if not already set.
691 */
692 if (context_sid) {
693 if (!fscontext_sid) {
694 rc = may_context_mount_sb_relabel(context_sid, sbsec, tsec);
695 if (rc)
696 goto out;
697 sbsec->sid = context_sid;
698 } else {
699 rc = may_context_mount_inode_relabel(context_sid, sbsec, tsec);
700 if (rc)
701 goto out;
702 }
703 if (!rootcontext_sid)
704 rootcontext_sid = context_sid;
705
706 sbsec->mntpoint_sid = context_sid;
707 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
708 }
709
710 if (rootcontext_sid) {
711 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, tsec);
712 if (rc)
713 goto out;
714
715 root_isec->sid = rootcontext_sid;
716 root_isec->initialized = 1;
717 }
718
719 if (defcontext_sid) {
720 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
721 rc = -EINVAL;
722 printk(KERN_WARNING "SELinux: defcontext option is "
723 "invalid for this filesystem type\n");
724 goto out;
725 }
726
727 if (defcontext_sid != sbsec->def_sid) {
728 rc = may_context_mount_inode_relabel(defcontext_sid,
729 sbsec, tsec);
730 if (rc)
731 goto out;
732 }
733
734 sbsec->def_sid = defcontext_sid;
735 }
736
737 rc = sb_finish_set_opts(sb);
738out:
739 mutex_unlock(&sbsec->lock);
740 return rc;
741out_double_mount:
742 rc = -EINVAL;
743 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
744 "security settings for (dev %s, type %s)\n", sb->s_id, name);
745 goto out;
746}
747
748static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
749 struct super_block *newsb)
750{
751 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
752 struct superblock_security_struct *newsbsec = newsb->s_security;
753
754 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
755 int set_context = (oldsbsec->flags & CONTEXT_MNT);
756 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
757
758 /*
759 * if the parent was able to be mounted it clearly had no special lsm
760 * mount options. thus we can safely put this sb on the list and deal
761 * with it later
762 */
763 if (!ss_initialized) {
764 spin_lock(&sb_security_lock);
765 if (list_empty(&newsbsec->list))
766 list_add(&newsbsec->list, &superblock_security_head);
767 spin_unlock(&sb_security_lock);
768 return;
769 }
770
771 /* how can we clone if the old one wasn't set up?? */
772 BUG_ON(!oldsbsec->initialized);
773
774 /* if fs is reusing a sb, just let its options stand... */
775 if (newsbsec->initialized)
776 return;
777
778 mutex_lock(&newsbsec->lock);
779
780 newsbsec->flags = oldsbsec->flags;
781
782 newsbsec->sid = oldsbsec->sid;
783 newsbsec->def_sid = oldsbsec->def_sid;
784 newsbsec->behavior = oldsbsec->behavior;
785
786 if (set_context) {
787 u32 sid = oldsbsec->mntpoint_sid;
788
789 if (!set_fscontext)
790 newsbsec->sid = sid;
791 if (!set_rootcontext) {
792 struct inode *newinode = newsb->s_root->d_inode;
793 struct inode_security_struct *newisec = newinode->i_security;
794 newisec->sid = sid;
795 }
796 newsbsec->mntpoint_sid = sid;
797 }
798 if (set_rootcontext) {
799 const struct inode *oldinode = oldsb->s_root->d_inode;
800 const struct inode_security_struct *oldisec = oldinode->i_security;
801 struct inode *newinode = newsb->s_root->d_inode;
802 struct inode_security_struct *newisec = newinode->i_security;
803
804 newisec->sid = oldisec->sid;
805 }
806
807 sb_finish_set_opts(newsb);
808 mutex_unlock(&newsbsec->lock);
809}
810
811static int selinux_parse_opts_str(char *options,
812 struct security_mnt_opts *opts)
813{
814 char *p;
815 char *context = NULL, *defcontext = NULL;
816 char *fscontext = NULL, *rootcontext = NULL;
817 int rc, num_mnt_opts = 0;
818
819 opts->num_mnt_opts = 0;
820
821 /* Standard string-based options. */
822 while ((p = strsep(&options, "|")) != NULL) {
823 int token;
824 substring_t args[MAX_OPT_ARGS];
825
826 if (!*p)
827 continue;
828
829 token = match_token(p, tokens, args);
830
831 switch (token) {
832 case Opt_context:
833 if (context || defcontext) {
834 rc = -EINVAL;
835 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
836 goto out_err;
837 }
838 context = match_strdup(&args[0]);
839 if (!context) {
840 rc = -ENOMEM;
841 goto out_err;
842 }
843 break;
844
845 case Opt_fscontext:
846 if (fscontext) {
847 rc = -EINVAL;
848 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
849 goto out_err;
850 }
851 fscontext = match_strdup(&args[0]);
852 if (!fscontext) {
853 rc = -ENOMEM;
854 goto out_err;
855 }
856 break;
857
858 case Opt_rootcontext:
859 if (rootcontext) {
860 rc = -EINVAL;
861 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
862 goto out_err;
863 }
864 rootcontext = match_strdup(&args[0]);
865 if (!rootcontext) {
866 rc = -ENOMEM;
867 goto out_err;
868 }
869 break;
870
871 case Opt_defcontext:
872 if (context || defcontext) {
873 rc = -EINVAL;
874 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
875 goto out_err;
876 }
877 defcontext = match_strdup(&args[0]);
878 if (!defcontext) {
879 rc = -ENOMEM;
880 goto out_err;
881 }
882 break;
883
884 default:
885 rc = -EINVAL;
886 printk(KERN_WARNING "SELinux: unknown mount option\n");
887 goto out_err;
888
889 }
890 }
891
892 rc = -ENOMEM;
893 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
894 if (!opts->mnt_opts)
895 goto out_err;
896
897 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
898 if (!opts->mnt_opts_flags) {
899 kfree(opts->mnt_opts);
900 goto out_err;
901 }
902
903 if (fscontext) {
904 opts->mnt_opts[num_mnt_opts] = fscontext;
905 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
906 }
907 if (context) {
908 opts->mnt_opts[num_mnt_opts] = context;
909 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
910 }
911 if (rootcontext) {
912 opts->mnt_opts[num_mnt_opts] = rootcontext;
913 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
914 }
915 if (defcontext) {
916 opts->mnt_opts[num_mnt_opts] = defcontext;
917 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
918 }
919
920 opts->num_mnt_opts = num_mnt_opts;
921 return 0;
922
923out_err:
924 kfree(context);
925 kfree(defcontext);
926 kfree(fscontext);
927 kfree(rootcontext);
928 return rc;
929}
930/*
931 * string mount options parsing and call set the sbsec
932 */
933static int superblock_doinit(struct super_block *sb, void *data)
934{
935 int rc = 0;
936 char *options = data;
937 struct security_mnt_opts opts;
938
939 security_init_mnt_opts(&opts);
940
941 if (!data)
942 goto out;
943
944 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
945
946 rc = selinux_parse_opts_str(options, &opts);
947 if (rc)
948 goto out_err;
949
950out:
951 rc = selinux_set_mnt_opts(sb, &opts);
952
953out_err:
954 security_free_mnt_opts(&opts);
955 return rc;
956}
957
958static inline u16 inode_mode_to_security_class(umode_t mode)
959{
960 switch (mode & S_IFMT) {
961 case S_IFSOCK:
962 return SECCLASS_SOCK_FILE;
963 case S_IFLNK:
964 return SECCLASS_LNK_FILE;
965 case S_IFREG:
966 return SECCLASS_FILE;
967 case S_IFBLK:
968 return SECCLASS_BLK_FILE;
969 case S_IFDIR:
970 return SECCLASS_DIR;
971 case S_IFCHR:
972 return SECCLASS_CHR_FILE;
973 case S_IFIFO:
974 return SECCLASS_FIFO_FILE;
975
976 }
977
978 return SECCLASS_FILE;
979}
980
981static inline int default_protocol_stream(int protocol)
982{
983 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
984}
985
986static inline int default_protocol_dgram(int protocol)
987{
988 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
989}
990
991static inline u16 socket_type_to_security_class(int family, int type, int protocol)
992{
993 switch (family) {
994 case PF_UNIX:
995 switch (type) {
996 case SOCK_STREAM:
997 case SOCK_SEQPACKET:
998 return SECCLASS_UNIX_STREAM_SOCKET;
999 case SOCK_DGRAM:
1000 return SECCLASS_UNIX_DGRAM_SOCKET;
1001 }
1002 break;
1003 case PF_INET:
1004 case PF_INET6:
1005 switch (type) {
1006 case SOCK_STREAM:
1007 if (default_protocol_stream(protocol))
1008 return SECCLASS_TCP_SOCKET;
1009 else
1010 return SECCLASS_RAWIP_SOCKET;
1011 case SOCK_DGRAM:
1012 if (default_protocol_dgram(protocol))
1013 return SECCLASS_UDP_SOCKET;
1014 else
1015 return SECCLASS_RAWIP_SOCKET;
1016 case SOCK_DCCP:
1017 return SECCLASS_DCCP_SOCKET;
1018 default:
1019 return SECCLASS_RAWIP_SOCKET;
1020 }
1021 break;
1022 case PF_NETLINK:
1023 switch (protocol) {
1024 case NETLINK_ROUTE:
1025 return SECCLASS_NETLINK_ROUTE_SOCKET;
1026 case NETLINK_FIREWALL:
1027 return SECCLASS_NETLINK_FIREWALL_SOCKET;
1028 case NETLINK_INET_DIAG:
1029 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1030 case NETLINK_NFLOG:
1031 return SECCLASS_NETLINK_NFLOG_SOCKET;
1032 case NETLINK_XFRM:
1033 return SECCLASS_NETLINK_XFRM_SOCKET;
1034 case NETLINK_SELINUX:
1035 return SECCLASS_NETLINK_SELINUX_SOCKET;
1036 case NETLINK_AUDIT:
1037 return SECCLASS_NETLINK_AUDIT_SOCKET;
1038 case NETLINK_IP6_FW:
1039 return SECCLASS_NETLINK_IP6FW_SOCKET;
1040 case NETLINK_DNRTMSG:
1041 return SECCLASS_NETLINK_DNRT_SOCKET;
1042 case NETLINK_KOBJECT_UEVENT:
1043 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1044 default:
1045 return SECCLASS_NETLINK_SOCKET;
1046 }
1047 case PF_PACKET:
1048 return SECCLASS_PACKET_SOCKET;
1049 case PF_KEY:
1050 return SECCLASS_KEY_SOCKET;
1051 case PF_APPLETALK:
1052 return SECCLASS_APPLETALK_SOCKET;
1053 }
1054
1055 return SECCLASS_SOCKET;
1056}
1057
1058#ifdef CONFIG_PROC_FS
1059static int selinux_proc_get_sid(struct proc_dir_entry *de,
1060 u16 tclass,
1061 u32 *sid)
1062{
1063 int buflen, rc;
1064 char *buffer, *path, *end;
1065
1066 buffer = (char *)__get_free_page(GFP_KERNEL);
1067 if (!buffer)
1068 return -ENOMEM;
1069
1070 buflen = PAGE_SIZE;
1071 end = buffer+buflen;
1072 *--end = '\0';
1073 buflen--;
1074 path = end-1;
1075 *path = '/';
1076 while (de && de != de->parent) {
1077 buflen -= de->namelen + 1;
1078 if (buflen < 0)
1079 break;
1080 end -= de->namelen;
1081 memcpy(end, de->name, de->namelen);
1082 *--end = '/';
1083 path = end;
1084 de = de->parent;
1085 }
1086 rc = security_genfs_sid("proc", path, tclass, sid);
1087 free_page((unsigned long)buffer);
1088 return rc;
1089}
1090#else
1091static int selinux_proc_get_sid(struct proc_dir_entry *de,
1092 u16 tclass,
1093 u32 *sid)
1094{
1095 return -EINVAL;
1096}
1097#endif
1098
1099/* The inode's security attributes must be initialized before first use. */
1100static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1101{
1102 struct superblock_security_struct *sbsec = NULL;
1103 struct inode_security_struct *isec = inode->i_security;
1104 u32 sid;
1105 struct dentry *dentry;
1106#define INITCONTEXTLEN 255
1107 char *context = NULL;
1108 unsigned len = 0;
1109 int rc = 0;
1110
1111 if (isec->initialized)
1112 goto out;
1113
1114 mutex_lock(&isec->lock);
1115 if (isec->initialized)
1116 goto out_unlock;
1117
1118 sbsec = inode->i_sb->s_security;
1119 if (!sbsec->initialized) {
1120 /* Defer initialization until selinux_complete_init,
1121 after the initial policy is loaded and the security
1122 server is ready to handle calls. */
1123 spin_lock(&sbsec->isec_lock);
1124 if (list_empty(&isec->list))
1125 list_add(&isec->list, &sbsec->isec_head);
1126 spin_unlock(&sbsec->isec_lock);
1127 goto out_unlock;
1128 }
1129
1130 switch (sbsec->behavior) {
1131 case SECURITY_FS_USE_XATTR:
1132 if (!inode->i_op->getxattr) {
1133 isec->sid = sbsec->def_sid;
1134 break;
1135 }
1136
1137 /* Need a dentry, since the xattr API requires one.
1138 Life would be simpler if we could just pass the inode. */
1139 if (opt_dentry) {
1140 /* Called from d_instantiate or d_splice_alias. */
1141 dentry = dget(opt_dentry);
1142 } else {
1143 /* Called from selinux_complete_init, try to find a dentry. */
1144 dentry = d_find_alias(inode);
1145 }
1146 if (!dentry) {
1147 printk(KERN_WARNING "SELinux: %s: no dentry for dev=%s "
1148 "ino=%ld\n", __func__, inode->i_sb->s_id,
1149 inode->i_ino);
1150 goto out_unlock;
1151 }
1152
1153 len = INITCONTEXTLEN;
1154 context = kmalloc(len, GFP_NOFS);
1155 if (!context) {
1156 rc = -ENOMEM;
1157 dput(dentry);
1158 goto out_unlock;
1159 }
1160 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1161 context, len);
1162 if (rc == -ERANGE) {
1163 /* Need a larger buffer. Query for the right size. */
1164 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1165 NULL, 0);
1166 if (rc < 0) {
1167 dput(dentry);
1168 goto out_unlock;
1169 }
1170 kfree(context);
1171 len = rc;
1172 context = kmalloc(len, GFP_NOFS);
1173 if (!context) {
1174 rc = -ENOMEM;
1175 dput(dentry);
1176 goto out_unlock;
1177 }
1178 rc = inode->i_op->getxattr(dentry,
1179 XATTR_NAME_SELINUX,
1180 context, len);
1181 }
1182 dput(dentry);
1183 if (rc < 0) {
1184 if (rc != -ENODATA) {
1185 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1186 "%d for dev=%s ino=%ld\n", __func__,
1187 -rc, inode->i_sb->s_id, inode->i_ino);
1188 kfree(context);
1189 goto out_unlock;
1190 }
1191 /* Map ENODATA to the default file SID */
1192 sid = sbsec->def_sid;
1193 rc = 0;
1194 } else {
1195 rc = security_context_to_sid_default(context, rc, &sid,
1196 sbsec->def_sid,
1197 GFP_NOFS);
1198 if (rc) {
1199 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1200 "returned %d for dev=%s ino=%ld\n",
1201 __func__, context, -rc,
1202 inode->i_sb->s_id, inode->i_ino);
1203 kfree(context);
1204 /* Leave with the unlabeled SID */
1205 rc = 0;
1206 break;
1207 }
1208 }
1209 kfree(context);
1210 isec->sid = sid;
1211 break;
1212 case SECURITY_FS_USE_TASK:
1213 isec->sid = isec->task_sid;
1214 break;
1215 case SECURITY_FS_USE_TRANS:
1216 /* Default to the fs SID. */
1217 isec->sid = sbsec->sid;
1218
1219 /* Try to obtain a transition SID. */
1220 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1221 rc = security_transition_sid(isec->task_sid,
1222 sbsec->sid,
1223 isec->sclass,
1224 &sid);
1225 if (rc)
1226 goto out_unlock;
1227 isec->sid = sid;
1228 break;
1229 case SECURITY_FS_USE_MNTPOINT:
1230 isec->sid = sbsec->mntpoint_sid;
1231 break;
1232 default:
1233 /* Default to the fs superblock SID. */
1234 isec->sid = sbsec->sid;
1235
1236 if (sbsec->proc) {
1237 struct proc_inode *proci = PROC_I(inode);
1238 if (proci->pde) {
1239 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1240 rc = selinux_proc_get_sid(proci->pde,
1241 isec->sclass,
1242 &sid);
1243 if (rc)
1244 goto out_unlock;
1245 isec->sid = sid;
1246 }
1247 }
1248 break;
1249 }
1250
1251 isec->initialized = 1;
1252
1253out_unlock:
1254 mutex_unlock(&isec->lock);
1255out:
1256 if (isec->sclass == SECCLASS_FILE)
1257 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1258 return rc;
1259}
1260
1261/* Convert a Linux signal to an access vector. */
1262static inline u32 signal_to_av(int sig)
1263{
1264 u32 perm = 0;
1265
1266 switch (sig) {
1267 case SIGCHLD:
1268 /* Commonly granted from child to parent. */
1269 perm = PROCESS__SIGCHLD;
1270 break;
1271 case SIGKILL:
1272 /* Cannot be caught or ignored */
1273 perm = PROCESS__SIGKILL;
1274 break;
1275 case SIGSTOP:
1276 /* Cannot be caught or ignored */
1277 perm = PROCESS__SIGSTOP;
1278 break;
1279 default:
1280 /* All other signals. */
1281 perm = PROCESS__SIGNAL;
1282 break;
1283 }
1284
1285 return perm;
1286}
1287
1288/* Check permission betweeen a pair of tasks, e.g. signal checks,
1289 fork check, ptrace check, etc. */
1290static int task_has_perm(struct task_struct *tsk1,
1291 struct task_struct *tsk2,
1292 u32 perms)
1293{
1294 struct task_security_struct *tsec1, *tsec2;
1295
1296 tsec1 = tsk1->security;
1297 tsec2 = tsk2->security;
1298 return avc_has_perm(tsec1->sid, tsec2->sid,
1299 SECCLASS_PROCESS, perms, NULL);
1300}
1301
1302#if CAP_LAST_CAP > 63
1303#error Fix SELinux to handle capabilities > 63.
1304#endif
1305
1306/* Check whether a task is allowed to use a capability. */
1307static int task_has_capability(struct task_struct *tsk,
1308 int cap)
1309{
1310 struct task_security_struct *tsec;
1311 struct avc_audit_data ad;
1312 u16 sclass;
1313 u32 av = CAP_TO_MASK(cap);
1314
1315 tsec = tsk->security;
1316
1317 AVC_AUDIT_DATA_INIT(&ad, CAP);
1318 ad.tsk = tsk;
1319 ad.u.cap = cap;
1320
1321 switch (CAP_TO_INDEX(cap)) {
1322 case 0:
1323 sclass = SECCLASS_CAPABILITY;
1324 break;
1325 case 1:
1326 sclass = SECCLASS_CAPABILITY2;
1327 break;
1328 default:
1329 printk(KERN_ERR
1330 "SELinux: out of range capability %d\n", cap);
1331 BUG();
1332 }
1333 return avc_has_perm(tsec->sid, tsec->sid, sclass, av, &ad);
1334}
1335
1336/* Check whether a task is allowed to use a system operation. */
1337static int task_has_system(struct task_struct *tsk,
1338 u32 perms)
1339{
1340 struct task_security_struct *tsec;
1341
1342 tsec = tsk->security;
1343
1344 return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1345 SECCLASS_SYSTEM, perms, NULL);
1346}
1347
1348/* Check whether a task has a particular permission to an inode.
1349 The 'adp' parameter is optional and allows other audit
1350 data to be passed (e.g. the dentry). */
1351static int inode_has_perm(struct task_struct *tsk,
1352 struct inode *inode,
1353 u32 perms,
1354 struct avc_audit_data *adp)
1355{
1356 struct task_security_struct *tsec;
1357 struct inode_security_struct *isec;
1358 struct avc_audit_data ad;
1359
1360 if (unlikely(IS_PRIVATE(inode)))
1361 return 0;
1362
1363 tsec = tsk->security;
1364 isec = inode->i_security;
1365
1366 if (!adp) {
1367 adp = &ad;
1368 AVC_AUDIT_DATA_INIT(&ad, FS);
1369 ad.u.fs.inode = inode;
1370 }
1371
1372 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1373}
1374
1375/* Same as inode_has_perm, but pass explicit audit data containing
1376 the dentry to help the auditing code to more easily generate the
1377 pathname if needed. */
1378static inline int dentry_has_perm(struct task_struct *tsk,
1379 struct vfsmount *mnt,
1380 struct dentry *dentry,
1381 u32 av)
1382{
1383 struct inode *inode = dentry->d_inode;
1384 struct avc_audit_data ad;
1385 AVC_AUDIT_DATA_INIT(&ad, FS);
1386 ad.u.fs.path.mnt = mnt;
1387 ad.u.fs.path.dentry = dentry;
1388 return inode_has_perm(tsk, inode, av, &ad);
1389}
1390
1391/* Check whether a task can use an open file descriptor to
1392 access an inode in a given way. Check access to the
1393 descriptor itself, and then use dentry_has_perm to
1394 check a particular permission to the file.
1395 Access to the descriptor is implicitly granted if it
1396 has the same SID as the process. If av is zero, then
1397 access to the file is not checked, e.g. for cases
1398 where only the descriptor is affected like seek. */
1399static int file_has_perm(struct task_struct *tsk,
1400 struct file *file,
1401 u32 av)
1402{
1403 struct task_security_struct *tsec = tsk->security;
1404 struct file_security_struct *fsec = file->f_security;
1405 struct inode *inode = file->f_path.dentry->d_inode;
1406 struct avc_audit_data ad;
1407 int rc;
1408
1409 AVC_AUDIT_DATA_INIT(&ad, FS);
1410 ad.u.fs.path = file->f_path;
1411
1412 if (tsec->sid != fsec->sid) {
1413 rc = avc_has_perm(tsec->sid, fsec->sid,
1414 SECCLASS_FD,
1415 FD__USE,
1416 &ad);
1417 if (rc)
1418 return rc;
1419 }
1420
1421 /* av is zero if only checking access to the descriptor. */
1422 if (av)
1423 return inode_has_perm(tsk, inode, av, &ad);
1424
1425 return 0;
1426}
1427
1428/* Check whether a task can create a file. */
1429static int may_create(struct inode *dir,
1430 struct dentry *dentry,
1431 u16 tclass)
1432{
1433 struct task_security_struct *tsec;
1434 struct inode_security_struct *dsec;
1435 struct superblock_security_struct *sbsec;
1436 u32 newsid;
1437 struct avc_audit_data ad;
1438 int rc;
1439
1440 tsec = current->security;
1441 dsec = dir->i_security;
1442 sbsec = dir->i_sb->s_security;
1443
1444 AVC_AUDIT_DATA_INIT(&ad, FS);
1445 ad.u.fs.path.dentry = dentry;
1446
1447 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1448 DIR__ADD_NAME | DIR__SEARCH,
1449 &ad);
1450 if (rc)
1451 return rc;
1452
1453 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1454 newsid = tsec->create_sid;
1455 } else {
1456 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1457 &newsid);
1458 if (rc)
1459 return rc;
1460 }
1461
1462 rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1463 if (rc)
1464 return rc;
1465
1466 return avc_has_perm(newsid, sbsec->sid,
1467 SECCLASS_FILESYSTEM,
1468 FILESYSTEM__ASSOCIATE, &ad);
1469}
1470
1471/* Check whether a task can create a key. */
1472static int may_create_key(u32 ksid,
1473 struct task_struct *ctx)
1474{
1475 struct task_security_struct *tsec;
1476
1477 tsec = ctx->security;
1478
1479 return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1480}
1481
1482#define MAY_LINK 0
1483#define MAY_UNLINK 1
1484#define MAY_RMDIR 2
1485
1486/* Check whether a task can link, unlink, or rmdir a file/directory. */
1487static int may_link(struct inode *dir,
1488 struct dentry *dentry,
1489 int kind)
1490
1491{
1492 struct task_security_struct *tsec;
1493 struct inode_security_struct *dsec, *isec;
1494 struct avc_audit_data ad;
1495 u32 av;
1496 int rc;
1497
1498 tsec = current->security;
1499 dsec = dir->i_security;
1500 isec = dentry->d_inode->i_security;
1501
1502 AVC_AUDIT_DATA_INIT(&ad, FS);
1503 ad.u.fs.path.dentry = dentry;
1504
1505 av = DIR__SEARCH;
1506 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1507 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1508 if (rc)
1509 return rc;
1510
1511 switch (kind) {
1512 case MAY_LINK:
1513 av = FILE__LINK;
1514 break;
1515 case MAY_UNLINK:
1516 av = FILE__UNLINK;
1517 break;
1518 case MAY_RMDIR:
1519 av = DIR__RMDIR;
1520 break;
1521 default:
1522 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1523 __func__, kind);
1524 return 0;
1525 }
1526
1527 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1528 return rc;
1529}
1530
1531static inline int may_rename(struct inode *old_dir,
1532 struct dentry *old_dentry,
1533 struct inode *new_dir,
1534 struct dentry *new_dentry)
1535{
1536 struct task_security_struct *tsec;
1537 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1538 struct avc_audit_data ad;
1539 u32 av;
1540 int old_is_dir, new_is_dir;
1541 int rc;
1542
1543 tsec = current->security;
1544 old_dsec = old_dir->i_security;
1545 old_isec = old_dentry->d_inode->i_security;
1546 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1547 new_dsec = new_dir->i_security;
1548
1549 AVC_AUDIT_DATA_INIT(&ad, FS);
1550
1551 ad.u.fs.path.dentry = old_dentry;
1552 rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1553 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1554 if (rc)
1555 return rc;
1556 rc = avc_has_perm(tsec->sid, old_isec->sid,
1557 old_isec->sclass, FILE__RENAME, &ad);
1558 if (rc)
1559 return rc;
1560 if (old_is_dir && new_dir != old_dir) {
1561 rc = avc_has_perm(tsec->sid, old_isec->sid,
1562 old_isec->sclass, DIR__REPARENT, &ad);
1563 if (rc)
1564 return rc;
1565 }
1566
1567 ad.u.fs.path.dentry = new_dentry;
1568 av = DIR__ADD_NAME | DIR__SEARCH;
1569 if (new_dentry->d_inode)
1570 av |= DIR__REMOVE_NAME;
1571 rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1572 if (rc)
1573 return rc;
1574 if (new_dentry->d_inode) {
1575 new_isec = new_dentry->d_inode->i_security;
1576 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1577 rc = avc_has_perm(tsec->sid, new_isec->sid,
1578 new_isec->sclass,
1579 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1580 if (rc)
1581 return rc;
1582 }
1583
1584 return 0;
1585}
1586
1587/* Check whether a task can perform a filesystem operation. */
1588static int superblock_has_perm(struct task_struct *tsk,
1589 struct super_block *sb,
1590 u32 perms,
1591 struct avc_audit_data *ad)
1592{
1593 struct task_security_struct *tsec;
1594 struct superblock_security_struct *sbsec;
1595
1596 tsec = tsk->security;
1597 sbsec = sb->s_security;
1598 return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1599 perms, ad);
1600}
1601
1602/* Convert a Linux mode and permission mask to an access vector. */
1603static inline u32 file_mask_to_av(int mode, int mask)
1604{
1605 u32 av = 0;
1606
1607 if ((mode & S_IFMT) != S_IFDIR) {
1608 if (mask & MAY_EXEC)
1609 av |= FILE__EXECUTE;
1610 if (mask & MAY_READ)
1611 av |= FILE__READ;
1612
1613 if (mask & MAY_APPEND)
1614 av |= FILE__APPEND;
1615 else if (mask & MAY_WRITE)
1616 av |= FILE__WRITE;
1617
1618 } else {
1619 if (mask & MAY_EXEC)
1620 av |= DIR__SEARCH;
1621 if (mask & MAY_WRITE)
1622 av |= DIR__WRITE;
1623 if (mask & MAY_READ)
1624 av |= DIR__READ;
1625 }
1626
1627 return av;
1628}
1629
1630/*
1631 * Convert a file mask to an access vector and include the correct open
1632 * open permission.
1633 */
1634static inline u32 open_file_mask_to_av(int mode, int mask)
1635{
1636 u32 av = file_mask_to_av(mode, mask);
1637
1638 if (selinux_policycap_openperm) {
1639 /*
1640 * lnk files and socks do not really have an 'open'
1641 */
1642 if (S_ISREG(mode))
1643 av |= FILE__OPEN;
1644 else if (S_ISCHR(mode))
1645 av |= CHR_FILE__OPEN;
1646 else if (S_ISBLK(mode))
1647 av |= BLK_FILE__OPEN;
1648 else if (S_ISFIFO(mode))
1649 av |= FIFO_FILE__OPEN;
1650 else if (S_ISDIR(mode))
1651 av |= DIR__OPEN;
1652 else
1653 printk(KERN_ERR "SELinux: WARNING: inside %s with "
1654 "unknown mode:%x\n", __func__, mode);
1655 }
1656 return av;
1657}
1658
1659/* Convert a Linux file to an access vector. */
1660static inline u32 file_to_av(struct file *file)
1661{
1662 u32 av = 0;
1663
1664 if (file->f_mode & FMODE_READ)
1665 av |= FILE__READ;
1666 if (file->f_mode & FMODE_WRITE) {
1667 if (file->f_flags & O_APPEND)
1668 av |= FILE__APPEND;
1669 else
1670 av |= FILE__WRITE;
1671 }
1672 if (!av) {
1673 /*
1674 * Special file opened with flags 3 for ioctl-only use.
1675 */
1676 av = FILE__IOCTL;
1677 }
1678
1679 return av;
1680}
1681
1682/* Hook functions begin here. */
1683
1684static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1685{
1686 int rc;
1687
1688 rc = secondary_ops->ptrace(parent, child);
1689 if (rc)
1690 return rc;
1691
1692 return task_has_perm(parent, child, PROCESS__PTRACE);
1693}
1694
1695static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1696 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1697{
1698 int error;
1699
1700 error = task_has_perm(current, target, PROCESS__GETCAP);
1701 if (error)
1702 return error;
1703
1704 return secondary_ops->capget(target, effective, inheritable, permitted);
1705}
1706
1707static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1708 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1709{
1710 int error;
1711
1712 error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1713 if (error)
1714 return error;
1715
1716 return task_has_perm(current, target, PROCESS__SETCAP);
1717}
1718
1719static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1720 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1721{
1722 secondary_ops->capset_set(target, effective, inheritable, permitted);
1723}
1724
1725static int selinux_capable(struct task_struct *tsk, int cap)
1726{
1727 int rc;
1728
1729 rc = secondary_ops->capable(tsk, cap);
1730 if (rc)
1731 return rc;
1732
1733 return task_has_capability(tsk, cap);
1734}
1735
1736static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1737{
1738 int buflen, rc;
1739 char *buffer, *path, *end;
1740
1741 rc = -ENOMEM;
1742 buffer = (char *)__get_free_page(GFP_KERNEL);
1743 if (!buffer)
1744 goto out;
1745
1746 buflen = PAGE_SIZE;
1747 end = buffer+buflen;
1748 *--end = '\0';
1749 buflen--;
1750 path = end-1;
1751 *path = '/';
1752 while (table) {
1753 const char *name = table->procname;
1754 size_t namelen = strlen(name);
1755 buflen -= namelen + 1;
1756 if (buflen < 0)
1757 goto out_free;
1758 end -= namelen;
1759 memcpy(end, name, namelen);
1760 *--end = '/';
1761 path = end;
1762 table = table->parent;
1763 }
1764 buflen -= 4;
1765 if (buflen < 0)
1766 goto out_free;
1767 end -= 4;
1768 memcpy(end, "/sys", 4);
1769 path = end;
1770 rc = security_genfs_sid("proc", path, tclass, sid);
1771out_free:
1772 free_page((unsigned long)buffer);
1773out:
1774 return rc;
1775}
1776
1777static int selinux_sysctl(ctl_table *table, int op)
1778{
1779 int error = 0;
1780 u32 av;
1781 struct task_security_struct *tsec;
1782 u32 tsid;
1783 int rc;
1784
1785 rc = secondary_ops->sysctl(table, op);
1786 if (rc)
1787 return rc;
1788
1789 tsec = current->security;
1790
1791 rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1792 SECCLASS_DIR : SECCLASS_FILE, &tsid);
1793 if (rc) {
1794 /* Default to the well-defined sysctl SID. */
1795 tsid = SECINITSID_SYSCTL;
1796 }
1797
1798 /* The op values are "defined" in sysctl.c, thereby creating
1799 * a bad coupling between this module and sysctl.c */
1800 if (op == 001) {
1801 error = avc_has_perm(tsec->sid, tsid,
1802 SECCLASS_DIR, DIR__SEARCH, NULL);
1803 } else {
1804 av = 0;
1805 if (op & 004)
1806 av |= FILE__READ;
1807 if (op & 002)
1808 av |= FILE__WRITE;
1809 if (av)
1810 error = avc_has_perm(tsec->sid, tsid,
1811 SECCLASS_FILE, av, NULL);
1812 }
1813
1814 return error;
1815}
1816
1817static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1818{
1819 int rc = 0;
1820
1821 if (!sb)
1822 return 0;
1823
1824 switch (cmds) {
1825 case Q_SYNC:
1826 case Q_QUOTAON:
1827 case Q_QUOTAOFF:
1828 case Q_SETINFO:
1829 case Q_SETQUOTA:
1830 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAMOD,
1831 NULL);
1832 break;
1833 case Q_GETFMT:
1834 case Q_GETINFO:
1835 case Q_GETQUOTA:
1836 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAGET,
1837 NULL);
1838 break;
1839 default:
1840 rc = 0; /* let the kernel handle invalid cmds */
1841 break;
1842 }
1843 return rc;
1844}
1845
1846static int selinux_quota_on(struct dentry *dentry)
1847{
1848 return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1849}
1850
1851static int selinux_syslog(int type)
1852{
1853 int rc;
1854
1855 rc = secondary_ops->syslog(type);
1856 if (rc)
1857 return rc;
1858
1859 switch (type) {
1860 case 3: /* Read last kernel messages */
1861 case 10: /* Return size of the log buffer */
1862 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1863 break;
1864 case 6: /* Disable logging to console */
1865 case 7: /* Enable logging to console */
1866 case 8: /* Set level of messages printed to console */
1867 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1868 break;
1869 case 0: /* Close log */
1870 case 1: /* Open log */
1871 case 2: /* Read from log */
1872 case 4: /* Read/clear last kernel messages */
1873 case 5: /* Clear ring buffer */
1874 default:
1875 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1876 break;
1877 }
1878 return rc;
1879}
1880
1881/*
1882 * Check that a process has enough memory to allocate a new virtual
1883 * mapping. 0 means there is enough memory for the allocation to
1884 * succeed and -ENOMEM implies there is not.
1885 *
1886 * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1887 * if the capability is granted, but __vm_enough_memory requires 1 if
1888 * the capability is granted.
1889 *
1890 * Do not audit the selinux permission check, as this is applied to all
1891 * processes that allocate mappings.
1892 */
1893static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1894{
1895 int rc, cap_sys_admin = 0;
1896 struct task_security_struct *tsec = current->security;
1897
1898 rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1899 if (rc == 0)
1900 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1901 SECCLASS_CAPABILITY,
1902 CAP_TO_MASK(CAP_SYS_ADMIN),
1903 0,
1904 NULL);
1905
1906 if (rc == 0)
1907 cap_sys_admin = 1;
1908
1909 return __vm_enough_memory(mm, pages, cap_sys_admin);
1910}
1911
1912/**
1913 * task_tracer_task - return the task that is tracing the given task
1914 * @task: task to consider
1915 *
1916 * Returns NULL if noone is tracing @task, or the &struct task_struct
1917 * pointer to its tracer.
1918 *
1919 * Must be called under rcu_read_lock().
1920 */
1921static struct task_struct *task_tracer_task(struct task_struct *task)
1922{
1923 if (task->ptrace & PT_PTRACED)
1924 return rcu_dereference(task->parent);
1925 return NULL;
1926}
1927
1928/* binprm security operations */
1929
1930static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1931{
1932 struct bprm_security_struct *bsec;
1933
1934 bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1935 if (!bsec)
1936 return -ENOMEM;
1937
1938 bsec->sid = SECINITSID_UNLABELED;
1939 bsec->set = 0;
1940
1941 bprm->security = bsec;
1942 return 0;
1943}
1944
1945static int selinux_bprm_set_security(struct linux_binprm *bprm)
1946{
1947 struct task_security_struct *tsec;
1948 struct inode *inode = bprm->file->f_path.dentry->d_inode;
1949 struct inode_security_struct *isec;
1950 struct bprm_security_struct *bsec;
1951 u32 newsid;
1952 struct avc_audit_data ad;
1953 int rc;
1954
1955 rc = secondary_ops->bprm_set_security(bprm);
1956 if (rc)
1957 return rc;
1958
1959 bsec = bprm->security;
1960
1961 if (bsec->set)
1962 return 0;
1963
1964 tsec = current->security;
1965 isec = inode->i_security;
1966
1967 /* Default to the current task SID. */
1968 bsec->sid = tsec->sid;
1969
1970 /* Reset fs, key, and sock SIDs on execve. */
1971 tsec->create_sid = 0;
1972 tsec->keycreate_sid = 0;
1973 tsec->sockcreate_sid = 0;
1974
1975 if (tsec->exec_sid) {
1976 newsid = tsec->exec_sid;
1977 /* Reset exec SID on execve. */
1978 tsec->exec_sid = 0;
1979 } else {
1980 /* Check for a default transition on this program. */
1981 rc = security_transition_sid(tsec->sid, isec->sid,
1982 SECCLASS_PROCESS, &newsid);
1983 if (rc)
1984 return rc;
1985 }
1986
1987 AVC_AUDIT_DATA_INIT(&ad, FS);
1988 ad.u.fs.path = bprm->file->f_path;
1989
1990 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1991 newsid = tsec->sid;
1992
1993 if (tsec->sid == newsid) {
1994 rc = avc_has_perm(tsec->sid, isec->sid,
1995 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1996 if (rc)
1997 return rc;
1998 } else {
1999 /* Check permissions for the transition. */
2000 rc = avc_has_perm(tsec->sid, newsid,
2001 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2002 if (rc)
2003 return rc;
2004
2005 rc = avc_has_perm(newsid, isec->sid,
2006 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2007 if (rc)
2008 return rc;
2009
2010 /* Clear any possibly unsafe personality bits on exec: */
2011 current->personality &= ~PER_CLEAR_ON_SETID;
2012
2013 /* Set the security field to the new SID. */
2014 bsec->sid = newsid;
2015 }
2016
2017 bsec->set = 1;
2018 return 0;
2019}
2020
2021static int selinux_bprm_check_security(struct linux_binprm *bprm)
2022{
2023 return secondary_ops->bprm_check_security(bprm);
2024}
2025
2026
2027static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2028{
2029 struct task_security_struct *tsec = current->security;
2030 int atsecure = 0;
2031
2032 if (tsec->osid != tsec->sid) {
2033 /* Enable secure mode for SIDs transitions unless
2034 the noatsecure permission is granted between
2035 the two SIDs, i.e. ahp returns 0. */
2036 atsecure = avc_has_perm(tsec->osid, tsec->sid,
2037 SECCLASS_PROCESS,
2038 PROCESS__NOATSECURE, NULL);
2039 }
2040
2041 return (atsecure || secondary_ops->bprm_secureexec(bprm));
2042}
2043
2044static void selinux_bprm_free_security(struct linux_binprm *bprm)
2045{
2046 kfree(bprm->security);
2047 bprm->security = NULL;
2048}
2049
2050extern struct vfsmount *selinuxfs_mount;
2051extern struct dentry *selinux_null;
2052
2053/* Derived from fs/exec.c:flush_old_files. */
2054static inline void flush_unauthorized_files(struct files_struct *files)
2055{
2056 struct avc_audit_data ad;
2057 struct file *file, *devnull = NULL;
2058 struct tty_struct *tty;
2059 struct fdtable *fdt;
2060 long j = -1;
2061 int drop_tty = 0;
2062
2063 mutex_lock(&tty_mutex);
2064 tty = get_current_tty();
2065 if (tty) {
2066 file_list_lock();
2067 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
2068 if (file) {
2069 /* Revalidate access to controlling tty.
2070 Use inode_has_perm on the tty inode directly rather
2071 than using file_has_perm, as this particular open
2072 file may belong to another process and we are only
2073 interested in the inode-based check here. */
2074 struct inode *inode = file->f_path.dentry->d_inode;
2075 if (inode_has_perm(current, inode,
2076 FILE__READ | FILE__WRITE, NULL)) {
2077 drop_tty = 1;
2078 }
2079 }
2080 file_list_unlock();
2081 }
2082 mutex_unlock(&tty_mutex);
2083 /* Reset controlling tty. */
2084 if (drop_tty)
2085 no_tty();
2086
2087 /* Revalidate access to inherited open files. */
2088
2089 AVC_AUDIT_DATA_INIT(&ad, FS);
2090
2091 spin_lock(&files->file_lock);
2092 for (;;) {
2093 unsigned long set, i;
2094 int fd;
2095
2096 j++;
2097 i = j * __NFDBITS;
2098 fdt = files_fdtable(files);
2099 if (i >= fdt->max_fds)
2100 break;
2101 set = fdt->open_fds->fds_bits[j];
2102 if (!set)
2103 continue;
2104 spin_unlock(&files->file_lock);
2105 for ( ; set ; i++, set >>= 1) {
2106 if (set & 1) {
2107 file = fget(i);
2108 if (!file)
2109 continue;
2110 if (file_has_perm(current,
2111 file,
2112 file_to_av(file))) {
2113 sys_close(i);
2114 fd = get_unused_fd();
2115 if (fd != i) {
2116 if (fd >= 0)
2117 put_unused_fd(fd);
2118 fput(file);
2119 continue;
2120 }
2121 if (devnull) {
2122 get_file(devnull);
2123 } else {
2124 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
2125 if (IS_ERR(devnull)) {
2126 devnull = NULL;
2127 put_unused_fd(fd);
2128 fput(file);
2129 continue;
2130 }
2131 }
2132 fd_install(fd, devnull);
2133 }
2134 fput(file);
2135 }
2136 }
2137 spin_lock(&files->file_lock);
2138
2139 }
2140 spin_unlock(&files->file_lock);
2141}
2142
2143static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
2144{
2145 struct task_security_struct *tsec;
2146 struct bprm_security_struct *bsec;
2147 u32 sid;
2148 int rc;
2149
2150 secondary_ops->bprm_apply_creds(bprm, unsafe);
2151
2152 tsec = current->security;
2153
2154 bsec = bprm->security;
2155 sid = bsec->sid;
2156
2157 tsec->osid = tsec->sid;
2158 bsec->unsafe = 0;
2159 if (tsec->sid != sid) {
2160 /* Check for shared state. If not ok, leave SID
2161 unchanged and kill. */
2162 if (unsafe & LSM_UNSAFE_SHARE) {
2163 rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
2164 PROCESS__SHARE, NULL);
2165 if (rc) {
2166 bsec->unsafe = 1;
2167 return;
2168 }
2169 }
2170
2171 /* Check for ptracing, and update the task SID if ok.
2172 Otherwise, leave SID unchanged and kill. */
2173 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2174 struct task_struct *tracer;
2175 struct task_security_struct *sec;
2176 u32 ptsid = 0;
2177
2178 rcu_read_lock();
2179 tracer = task_tracer_task(current);
2180 if (likely(tracer != NULL)) {
2181 sec = tracer->security;
2182 ptsid = sec->sid;
2183 }
2184 rcu_read_unlock();
2185
2186 if (ptsid != 0) {
2187 rc = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
2188 PROCESS__PTRACE, NULL);
2189 if (rc) {
2190 bsec->unsafe = 1;
2191 return;
2192 }
2193 }
2194 }
2195 tsec->sid = sid;
2196 }
2197}
2198
2199/*
2200 * called after apply_creds without the task lock held
2201 */
2202static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
2203{
2204 struct task_security_struct *tsec;
2205 struct rlimit *rlim, *initrlim;
2206 struct itimerval itimer;
2207 struct bprm_security_struct *bsec;
2208 int rc, i;
2209
2210 tsec = current->security;
2211 bsec = bprm->security;
2212
2213 if (bsec->unsafe) {
2214 force_sig_specific(SIGKILL, current);
2215 return;
2216 }
2217 if (tsec->osid == tsec->sid)
2218 return;
2219
2220 /* Close files for which the new task SID is not authorized. */
2221 flush_unauthorized_files(current->files);
2222
2223 /* Check whether the new SID can inherit signal state
2224 from the old SID. If not, clear itimers to avoid
2225 subsequent signal generation and flush and unblock
2226 signals. This must occur _after_ the task SID has
2227 been updated so that any kill done after the flush
2228 will be checked against the new SID. */
2229 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2230 PROCESS__SIGINH, NULL);
2231 if (rc) {
2232 memset(&itimer, 0, sizeof itimer);
2233 for (i = 0; i < 3; i++)
2234 do_setitimer(i, &itimer, NULL);
2235 flush_signals(current);
2236 spin_lock_irq(&current->sighand->siglock);
2237 flush_signal_handlers(current, 1);
2238 sigemptyset(&current->blocked);
2239 recalc_sigpending();
2240 spin_unlock_irq(&current->sighand->siglock);
2241 }
2242
2243 /* Always clear parent death signal on SID transitions. */
2244 current->pdeath_signal = 0;
2245
2246 /* Check whether the new SID can inherit resource limits
2247 from the old SID. If not, reset all soft limits to
2248 the lower of the current task's hard limit and the init
2249 task's soft limit. Note that the setting of hard limits
2250 (even to lower them) can be controlled by the setrlimit
2251 check. The inclusion of the init task's soft limit into
2252 the computation is to avoid resetting soft limits higher
2253 than the default soft limit for cases where the default
2254 is lower than the hard limit, e.g. RLIMIT_CORE or
2255 RLIMIT_STACK.*/
2256 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2257 PROCESS__RLIMITINH, NULL);
2258 if (rc) {
2259 for (i = 0; i < RLIM_NLIMITS; i++) {
2260 rlim = current->signal->rlim + i;
2261 initrlim = init_task.signal->rlim+i;
2262 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2263 }
2264 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
2265 /*
2266 * This will cause RLIMIT_CPU calculations
2267 * to be refigured.
2268 */
2269 current->it_prof_expires = jiffies_to_cputime(1);
2270 }
2271 }
2272
2273 /* Wake up the parent if it is waiting so that it can
2274 recheck wait permission to the new task SID. */
2275 wake_up_interruptible(&current->parent->signal->wait_chldexit);
2276}
2277
2278/* superblock security operations */
2279
2280static int selinux_sb_alloc_security(struct super_block *sb)
2281{
2282 return superblock_alloc_security(sb);
2283}
2284
2285static void selinux_sb_free_security(struct super_block *sb)
2286{
2287 superblock_free_security(sb);
2288}
2289
2290static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2291{
2292 if (plen > olen)
2293 return 0;
2294
2295 return !memcmp(prefix, option, plen);
2296}
2297
2298static inline int selinux_option(char *option, int len)
2299{
2300 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2301 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2302 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2303 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len));
2304}
2305
2306static inline void take_option(char **to, char *from, int *first, int len)
2307{
2308 if (!*first) {
2309 **to = ',';
2310 *to += 1;
2311 } else
2312 *first = 0;
2313 memcpy(*to, from, len);
2314 *to += len;
2315}
2316
2317static inline void take_selinux_option(char **to, char *from, int *first,
2318 int len)
2319{
2320 int current_size = 0;
2321
2322 if (!*first) {
2323 **to = '|';
2324 *to += 1;
2325 } else
2326 *first = 0;
2327
2328 while (current_size < len) {
2329 if (*from != '"') {
2330 **to = *from;
2331 *to += 1;
2332 }
2333 from += 1;
2334 current_size += 1;
2335 }
2336}
2337
2338static int selinux_sb_copy_data(char *orig, char *copy)
2339{
2340 int fnosec, fsec, rc = 0;
2341 char *in_save, *in_curr, *in_end;
2342 char *sec_curr, *nosec_save, *nosec;
2343 int open_quote = 0;
2344
2345 in_curr = orig;
2346 sec_curr = copy;
2347
2348 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2349 if (!nosec) {
2350 rc = -ENOMEM;
2351 goto out;
2352 }
2353
2354 nosec_save = nosec;
2355 fnosec = fsec = 1;
2356 in_save = in_end = orig;
2357
2358 do {
2359 if (*in_end == '"')
2360 open_quote = !open_quote;
2361 if ((*in_end == ',' && open_quote == 0) ||
2362 *in_end == '\0') {
2363 int len = in_end - in_curr;
2364
2365 if (selinux_option(in_curr, len))
2366 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2367 else
2368 take_option(&nosec, in_curr, &fnosec, len);
2369
2370 in_curr = in_end + 1;
2371 }
2372 } while (*in_end++);
2373
2374 strcpy(in_save, nosec_save);
2375 free_page((unsigned long)nosec_save);
2376out:
2377 return rc;
2378}
2379
2380static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2381{
2382 struct avc_audit_data ad;
2383 int rc;
2384
2385 rc = superblock_doinit(sb, data);
2386 if (rc)
2387 return rc;
2388
2389 AVC_AUDIT_DATA_INIT(&ad, FS);
2390 ad.u.fs.path.dentry = sb->s_root;
2391 return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2392}
2393
2394static int selinux_sb_statfs(struct dentry *dentry)
2395{
2396 struct avc_audit_data ad;
2397
2398 AVC_AUDIT_DATA_INIT(&ad, FS);
2399 ad.u.fs.path.dentry = dentry->d_sb->s_root;
2400 return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2401}
2402
2403static int selinux_mount(char *dev_name,
2404 struct path *path,
2405 char *type,
2406 unsigned long flags,
2407 void *data)
2408{
2409 int rc;
2410
2411 rc = secondary_ops->sb_mount(dev_name, path, type, flags, data);
2412 if (rc)
2413 return rc;
2414
2415 if (flags & MS_REMOUNT)
2416 return superblock_has_perm(current, path->mnt->mnt_sb,
2417 FILESYSTEM__REMOUNT, NULL);
2418 else
2419 return dentry_has_perm(current, path->mnt, path->dentry,
2420 FILE__MOUNTON);
2421}
2422
2423static int selinux_umount(struct vfsmount *mnt, int flags)
2424{
2425 int rc;
2426
2427 rc = secondary_ops->sb_umount(mnt, flags);
2428 if (rc)
2429 return rc;
2430
2431 return superblock_has_perm(current, mnt->mnt_sb,
2432 FILESYSTEM__UNMOUNT, NULL);
2433}
2434
2435/* inode security operations */
2436
2437static int selinux_inode_alloc_security(struct inode *inode)
2438{
2439 return inode_alloc_security(inode);
2440}
2441
2442static void selinux_inode_free_security(struct inode *inode)
2443{
2444 inode_free_security(inode);
2445}
2446
2447static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2448 char **name, void **value,
2449 size_t *len)
2450{
2451 struct task_security_struct *tsec;
2452 struct inode_security_struct *dsec;
2453 struct superblock_security_struct *sbsec;
2454 u32 newsid, clen;
2455 int rc;
2456 char *namep = NULL, *context;
2457
2458 tsec = current->security;
2459 dsec = dir->i_security;
2460 sbsec = dir->i_sb->s_security;
2461
2462 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2463 newsid = tsec->create_sid;
2464 } else {
2465 rc = security_transition_sid(tsec->sid, dsec->sid,
2466 inode_mode_to_security_class(inode->i_mode),
2467 &newsid);
2468 if (rc) {
2469 printk(KERN_WARNING "%s: "
2470 "security_transition_sid failed, rc=%d (dev=%s "
2471 "ino=%ld)\n",
2472 __func__,
2473 -rc, inode->i_sb->s_id, inode->i_ino);
2474 return rc;
2475 }
2476 }
2477
2478 /* Possibly defer initialization to selinux_complete_init. */
2479 if (sbsec->initialized) {
2480 struct inode_security_struct *isec = inode->i_security;
2481 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2482 isec->sid = newsid;
2483 isec->initialized = 1;
2484 }
2485
2486 if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2487 return -EOPNOTSUPP;
2488
2489 if (name) {
2490 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2491 if (!namep)
2492 return -ENOMEM;
2493 *name = namep;
2494 }
2495
2496 if (value && len) {
2497 rc = security_sid_to_context(newsid, &context, &clen);
2498 if (rc) {
2499 kfree(namep);
2500 return rc;
2501 }
2502 *value = context;
2503 *len = clen;
2504 }
2505
2506 return 0;
2507}
2508
2509static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2510{
2511 return may_create(dir, dentry, SECCLASS_FILE);
2512}
2513
2514static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2515{
2516 int rc;
2517
2518 rc = secondary_ops->inode_link(old_dentry, dir, new_dentry);
2519 if (rc)
2520 return rc;
2521 return may_link(dir, old_dentry, MAY_LINK);
2522}
2523
2524static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2525{
2526 int rc;
2527
2528 rc = secondary_ops->inode_unlink(dir, dentry);
2529 if (rc)
2530 return rc;
2531 return may_link(dir, dentry, MAY_UNLINK);
2532}
2533
2534static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2535{
2536 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2537}
2538
2539static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2540{
2541 return may_create(dir, dentry, SECCLASS_DIR);
2542}
2543
2544static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2545{
2546 return may_link(dir, dentry, MAY_RMDIR);
2547}
2548
2549static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2550{
2551 int rc;
2552
2553 rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2554 if (rc)
2555 return rc;
2556
2557 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2558}
2559
2560static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2561 struct inode *new_inode, struct dentry *new_dentry)
2562{
2563 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2564}
2565
2566static int selinux_inode_readlink(struct dentry *dentry)
2567{
2568 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2569}
2570
2571static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2572{
2573 int rc;
2574
2575 rc = secondary_ops->inode_follow_link(dentry, nameidata);
2576 if (rc)
2577 return rc;
2578 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2579}
2580
2581static int selinux_inode_permission(struct inode *inode, int mask,
2582 struct nameidata *nd)
2583{
2584 int rc;
2585
2586 rc = secondary_ops->inode_permission(inode, mask, nd);
2587 if (rc)
2588 return rc;
2589
2590 if (!mask) {
2591 /* No permission to check. Existence test. */
2592 return 0;
2593 }
2594
2595 return inode_has_perm(current, inode,
2596 open_file_mask_to_av(inode->i_mode, mask), NULL);
2597}
2598
2599static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2600{
2601 int rc;
2602
2603 rc = secondary_ops->inode_setattr(dentry, iattr);
2604 if (rc)
2605 return rc;
2606
2607 if (iattr->ia_valid & ATTR_FORCE)
2608 return 0;
2609
2610 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2611 ATTR_ATIME_SET | ATTR_MTIME_SET))
2612 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2613
2614 return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2615}
2616
2617static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2618{
2619 return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2620}
2621
2622static int selinux_inode_setotherxattr(struct dentry *dentry, char *name)
2623{
2624 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2625 sizeof XATTR_SECURITY_PREFIX - 1)) {
2626 if (!strcmp(name, XATTR_NAME_CAPS)) {
2627 if (!capable(CAP_SETFCAP))
2628 return -EPERM;
2629 } else if (!capable(CAP_SYS_ADMIN)) {
2630 /* A different attribute in the security namespace.
2631 Restrict to administrator. */
2632 return -EPERM;
2633 }
2634 }
2635
2636 /* Not an attribute we recognize, so just check the
2637 ordinary setattr permission. */
2638 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2639}
2640
2641static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2642{
2643 struct task_security_struct *tsec = current->security;
2644 struct inode *inode = dentry->d_inode;
2645 struct inode_security_struct *isec = inode->i_security;
2646 struct superblock_security_struct *sbsec;
2647 struct avc_audit_data ad;
2648 u32 newsid;
2649 int rc = 0;
2650
2651 if (strcmp(name, XATTR_NAME_SELINUX))
2652 return selinux_inode_setotherxattr(dentry, name);
2653
2654 sbsec = inode->i_sb->s_security;
2655 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2656 return -EOPNOTSUPP;
2657
2658 if (!is_owner_or_cap(inode))
2659 return -EPERM;
2660
2661 AVC_AUDIT_DATA_INIT(&ad, FS);
2662 ad.u.fs.path.dentry = dentry;
2663
2664 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2665 FILE__RELABELFROM, &ad);
2666 if (rc)
2667 return rc;
2668
2669 rc = security_context_to_sid(value, size, &newsid);
2670 if (rc)
2671 return rc;
2672
2673 rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2674 FILE__RELABELTO, &ad);
2675 if (rc)
2676 return rc;
2677
2678 rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2679 isec->sclass);
2680 if (rc)
2681 return rc;
2682
2683 return avc_has_perm(newsid,
2684 sbsec->sid,
2685 SECCLASS_FILESYSTEM,
2686 FILESYSTEM__ASSOCIATE,
2687 &ad);
2688}
2689
2690static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2691 void *value, size_t size, int flags)
2692{
2693 struct inode *inode = dentry->d_inode;
2694 struct inode_security_struct *isec = inode->i_security;
2695 u32 newsid;
2696 int rc;
2697
2698 if (strcmp(name, XATTR_NAME_SELINUX)) {
2699 /* Not an attribute we recognize, so nothing to do. */
2700 return;
2701 }
2702
2703 rc = security_context_to_sid(value, size, &newsid);
2704 if (rc) {
2705 printk(KERN_WARNING "%s: unable to obtain SID for context "
2706 "%s, rc=%d\n", __func__, (char *)value, -rc);
2707 return;
2708 }
2709
2710 isec->sid = newsid;
2711 return;
2712}
2713
2714static int selinux_inode_getxattr(struct dentry *dentry, char *name)
2715{
2716 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2717}
2718
2719static int selinux_inode_listxattr(struct dentry *dentry)
2720{
2721 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2722}
2723
2724static int selinux_inode_removexattr(struct dentry *dentry, char *name)
2725{
2726 if (strcmp(name, XATTR_NAME_SELINUX))
2727 return selinux_inode_setotherxattr(dentry, name);
2728
2729 /* No one is allowed to remove a SELinux security label.
2730 You can change the label, but all data must be labeled. */
2731 return -EACCES;
2732}
2733
2734/*
2735 * Copy the in-core inode security context value to the user. If the
2736 * getxattr() prior to this succeeded, check to see if we need to
2737 * canonicalize the value to be finally returned to the user.
2738 *
2739 * Permission check is handled by selinux_inode_getxattr hook.
2740 */
2741static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2742{
2743 u32 size;
2744 int error;
2745 char *context = NULL;
2746 struct inode_security_struct *isec = inode->i_security;
2747
2748 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2749 return -EOPNOTSUPP;
2750
2751 error = security_sid_to_context(isec->sid, &context, &size);
2752 if (error)
2753 return error;
2754 error = size;
2755 if (alloc) {
2756 *buffer = context;
2757 goto out_nofree;
2758 }
2759 kfree(context);
2760out_nofree:
2761 return error;
2762}
2763
2764static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2765 const void *value, size_t size, int flags)
2766{
2767 struct inode_security_struct *isec = inode->i_security;
2768 u32 newsid;
2769 int rc;
2770
2771 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2772 return -EOPNOTSUPP;
2773
2774 if (!value || !size)
2775 return -EACCES;
2776
2777 rc = security_context_to_sid((void *)value, size, &newsid);
2778 if (rc)
2779 return rc;
2780
2781 isec->sid = newsid;
2782 return 0;
2783}
2784
2785static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2786{
2787 const int len = sizeof(XATTR_NAME_SELINUX);
2788 if (buffer && len <= buffer_size)
2789 memcpy(buffer, XATTR_NAME_SELINUX, len);
2790 return len;
2791}
2792
2793static int selinux_inode_need_killpriv(struct dentry *dentry)
2794{
2795 return secondary_ops->inode_need_killpriv(dentry);
2796}
2797
2798static int selinux_inode_killpriv(struct dentry *dentry)
2799{
2800 return secondary_ops->inode_killpriv(dentry);
2801}
2802
2803static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2804{
2805 struct inode_security_struct *isec = inode->i_security;
2806 *secid = isec->sid;
2807}
2808
2809/* file security operations */
2810
2811static int selinux_revalidate_file_permission(struct file *file, int mask)
2812{
2813 int rc;
2814 struct inode *inode = file->f_path.dentry->d_inode;
2815
2816 if (!mask) {
2817 /* No permission to check. Existence test. */
2818 return 0;
2819 }
2820
2821 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2822 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2823 mask |= MAY_APPEND;
2824
2825 rc = file_has_perm(current, file,
2826 file_mask_to_av(inode->i_mode, mask));
2827 if (rc)
2828 return rc;
2829
2830 return selinux_netlbl_inode_permission(inode, mask);
2831}
2832
2833static int selinux_file_permission(struct file *file, int mask)
2834{
2835 struct inode *inode = file->f_path.dentry->d_inode;
2836 struct task_security_struct *tsec = current->security;
2837 struct file_security_struct *fsec = file->f_security;
2838 struct inode_security_struct *isec = inode->i_security;
2839
2840 if (!mask) {
2841 /* No permission to check. Existence test. */
2842 return 0;
2843 }
2844
2845 if (tsec->sid == fsec->sid && fsec->isid == isec->sid
2846 && fsec->pseqno == avc_policy_seqno())
2847 return selinux_netlbl_inode_permission(inode, mask);
2848
2849 return selinux_revalidate_file_permission(file, mask);
2850}
2851
2852static int selinux_file_alloc_security(struct file *file)
2853{
2854 return file_alloc_security(file);
2855}
2856
2857static void selinux_file_free_security(struct file *file)
2858{
2859 file_free_security(file);
2860}
2861
2862static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2863 unsigned long arg)
2864{
2865 int error = 0;
2866
2867 switch (cmd) {
2868 case FIONREAD:
2869 /* fall through */
2870 case FIBMAP:
2871 /* fall through */
2872 case FIGETBSZ:
2873 /* fall through */
2874 case EXT2_IOC_GETFLAGS:
2875 /* fall through */
2876 case EXT2_IOC_GETVERSION:
2877 error = file_has_perm(current, file, FILE__GETATTR);
2878 break;
2879
2880 case EXT2_IOC_SETFLAGS:
2881 /* fall through */
2882 case EXT2_IOC_SETVERSION:
2883 error = file_has_perm(current, file, FILE__SETATTR);
2884 break;
2885
2886 /* sys_ioctl() checks */
2887 case FIONBIO:
2888 /* fall through */
2889 case FIOASYNC:
2890 error = file_has_perm(current, file, 0);
2891 break;
2892
2893 case KDSKBENT:
2894 case KDSKBSENT:
2895 error = task_has_capability(current, CAP_SYS_TTY_CONFIG);
2896 break;
2897
2898 /* default case assumes that the command will go
2899 * to the file's ioctl() function.
2900 */
2901 default:
2902 error = file_has_perm(current, file, FILE__IOCTL);
2903 }
2904 return error;
2905}
2906
2907static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2908{
2909#ifndef CONFIG_PPC32
2910 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2911 /*
2912 * We are making executable an anonymous mapping or a
2913 * private file mapping that will also be writable.
2914 * This has an additional check.
2915 */
2916 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2917 if (rc)
2918 return rc;
2919 }
2920#endif
2921
2922 if (file) {
2923 /* read access is always possible with a mapping */
2924 u32 av = FILE__READ;
2925
2926 /* write access only matters if the mapping is shared */
2927 if (shared && (prot & PROT_WRITE))
2928 av |= FILE__WRITE;
2929
2930 if (prot & PROT_EXEC)
2931 av |= FILE__EXECUTE;
2932
2933 return file_has_perm(current, file, av);
2934 }
2935 return 0;
2936}
2937
2938static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2939 unsigned long prot, unsigned long flags,
2940 unsigned long addr, unsigned long addr_only)
2941{
2942 int rc = 0;
2943 u32 sid = ((struct task_security_struct *)(current->security))->sid;
2944
2945 if (addr < mmap_min_addr)
2946 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
2947 MEMPROTECT__MMAP_ZERO, NULL);
2948 if (rc || addr_only)
2949 return rc;
2950
2951 if (selinux_checkreqprot)
2952 prot = reqprot;
2953
2954 return file_map_prot_check(file, prot,
2955 (flags & MAP_TYPE) == MAP_SHARED);
2956}
2957
2958static int selinux_file_mprotect(struct vm_area_struct *vma,
2959 unsigned long reqprot,
2960 unsigned long prot)
2961{
2962 int rc;
2963
2964 rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2965 if (rc)
2966 return rc;
2967
2968 if (selinux_checkreqprot)
2969 prot = reqprot;
2970
2971#ifndef CONFIG_PPC32
2972 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2973 rc = 0;
2974 if (vma->vm_start >= vma->vm_mm->start_brk &&
2975 vma->vm_end <= vma->vm_mm->brk) {
2976 rc = task_has_perm(current, current,
2977 PROCESS__EXECHEAP);
2978 } else if (!vma->vm_file &&
2979 vma->vm_start <= vma->vm_mm->start_stack &&
2980 vma->vm_end >= vma->vm_mm->start_stack) {
2981 rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2982 } else if (vma->vm_file && vma->anon_vma) {
2983 /*
2984 * We are making executable a file mapping that has
2985 * had some COW done. Since pages might have been
2986 * written, check ability to execute the possibly
2987 * modified content. This typically should only
2988 * occur for text relocations.
2989 */
2990 rc = file_has_perm(current, vma->vm_file,
2991 FILE__EXECMOD);
2992 }
2993 if (rc)
2994 return rc;
2995 }
2996#endif
2997
2998 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2999}
3000
3001static int selinux_file_lock(struct file *file, unsigned int cmd)
3002{
3003 return file_has_perm(current, file, FILE__LOCK);
3004}
3005
3006static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3007 unsigned long arg)
3008{
3009 int err = 0;
3010
3011 switch (cmd) {
3012 case F_SETFL:
3013 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3014 err = -EINVAL;
3015 break;
3016 }
3017
3018 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3019 err = file_has_perm(current, file, FILE__WRITE);
3020 break;
3021 }
3022 /* fall through */
3023 case F_SETOWN:
3024 case F_SETSIG:
3025 case F_GETFL:
3026 case F_GETOWN:
3027 case F_GETSIG:
3028 /* Just check FD__USE permission */
3029 err = file_has_perm(current, file, 0);
3030 break;
3031 case F_GETLK:
3032 case F_SETLK:
3033 case F_SETLKW:
3034#if BITS_PER_LONG == 32
3035 case F_GETLK64:
3036 case F_SETLK64:
3037 case F_SETLKW64:
3038#endif
3039 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3040 err = -EINVAL;
3041 break;
3042 }
3043 err = file_has_perm(current, file, FILE__LOCK);
3044 break;
3045 }
3046
3047 return err;
3048}
3049
3050static int selinux_file_set_fowner(struct file *file)
3051{
3052 struct task_security_struct *tsec;
3053 struct file_security_struct *fsec;
3054
3055 tsec = current->security;
3056 fsec = file->f_security;
3057 fsec->fown_sid = tsec->sid;
3058
3059 return 0;
3060}
3061
3062static int selinux_file_send_sigiotask(struct task_struct *tsk,
3063 struct fown_struct *fown, int signum)
3064{
3065 struct file *file;
3066 u32 perm;
3067 struct task_security_struct *tsec;
3068 struct file_security_struct *fsec;
3069
3070 /* struct fown_struct is never outside the context of a struct file */
3071 file = container_of(fown, struct file, f_owner);
3072
3073 tsec = tsk->security;
3074 fsec = file->f_security;
3075
3076 if (!signum)
3077 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3078 else
3079 perm = signal_to_av(signum);
3080
3081 return avc_has_perm(fsec->fown_sid, tsec->sid,
3082 SECCLASS_PROCESS, perm, NULL);
3083}
3084
3085static int selinux_file_receive(struct file *file)
3086{
3087 return file_has_perm(current, file, file_to_av(file));
3088}
3089
3090static int selinux_dentry_open(struct file *file)
3091{
3092 struct file_security_struct *fsec;
3093 struct inode *inode;
3094 struct inode_security_struct *isec;
3095 inode = file->f_path.dentry->d_inode;
3096 fsec = file->f_security;
3097 isec = inode->i_security;
3098 /*
3099 * Save inode label and policy sequence number
3100 * at open-time so that selinux_file_permission
3101 * can determine whether revalidation is necessary.
3102 * Task label is already saved in the file security
3103 * struct as its SID.
3104 */
3105 fsec->isid = isec->sid;
3106 fsec->pseqno = avc_policy_seqno();
3107 /*
3108 * Since the inode label or policy seqno may have changed
3109 * between the selinux_inode_permission check and the saving
3110 * of state above, recheck that access is still permitted.
3111 * Otherwise, access might never be revalidated against the
3112 * new inode label or new policy.
3113 * This check is not redundant - do not remove.
3114 */
3115 return inode_has_perm(current, inode, file_to_av(file), NULL);
3116}
3117
3118/* task security operations */
3119
3120static int selinux_task_create(unsigned long clone_flags)
3121{
3122 int rc;
3123
3124 rc = secondary_ops->task_create(clone_flags);
3125 if (rc)
3126 return rc;
3127
3128 return task_has_perm(current, current, PROCESS__FORK);
3129}
3130
3131static int selinux_task_alloc_security(struct task_struct *tsk)
3132{
3133 struct task_security_struct *tsec1, *tsec2;
3134 int rc;
3135
3136 tsec1 = current->security;
3137
3138 rc = task_alloc_security(tsk);
3139 if (rc)
3140 return rc;
3141 tsec2 = tsk->security;
3142
3143 tsec2->osid = tsec1->osid;
3144 tsec2->sid = tsec1->sid;
3145
3146 /* Retain the exec, fs, key, and sock SIDs across fork */
3147 tsec2->exec_sid = tsec1->exec_sid;
3148 tsec2->create_sid = tsec1->create_sid;
3149 tsec2->keycreate_sid = tsec1->keycreate_sid;
3150 tsec2->sockcreate_sid = tsec1->sockcreate_sid;
3151
3152 return 0;
3153}
3154
3155static void selinux_task_free_security(struct task_struct *tsk)
3156{
3157 task_free_security(tsk);
3158}
3159
3160static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3161{
3162 /* Since setuid only affects the current process, and
3163 since the SELinux controls are not based on the Linux
3164 identity attributes, SELinux does not need to control
3165 this operation. However, SELinux does control the use
3166 of the CAP_SETUID and CAP_SETGID capabilities using the
3167 capable hook. */
3168 return 0;
3169}
3170
3171static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3172{
3173 return secondary_ops->task_post_setuid(id0, id1, id2, flags);
3174}
3175
3176static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
3177{
3178 /* See the comment for setuid above. */
3179 return 0;
3180}
3181
3182static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3183{
3184 return task_has_perm(current, p, PROCESS__SETPGID);
3185}
3186
3187static int selinux_task_getpgid(struct task_struct *p)
3188{
3189 return task_has_perm(current, p, PROCESS__GETPGID);
3190}
3191
3192static int selinux_task_getsid(struct task_struct *p)
3193{
3194 return task_has_perm(current, p, PROCESS__GETSESSION);
3195}
3196
3197static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3198{
3199 struct task_security_struct *tsec = p->security;
3200 *secid = tsec->sid;
3201}
3202
3203static int selinux_task_setgroups(struct group_info *group_info)
3204{
3205 /* See the comment for setuid above. */
3206 return 0;
3207}
3208
3209static int selinux_task_setnice(struct task_struct *p, int nice)
3210{
3211 int rc;
3212
3213 rc = secondary_ops->task_setnice(p, nice);
3214 if (rc)
3215 return rc;
3216
3217 return task_has_perm(current, p, PROCESS__SETSCHED);
3218}
3219
3220static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3221{
3222 int rc;
3223
3224 rc = secondary_ops->task_setioprio(p, ioprio);
3225 if (rc)
3226 return rc;
3227
3228 return task_has_perm(current, p, PROCESS__SETSCHED);
3229}
3230
3231static int selinux_task_getioprio(struct task_struct *p)
3232{
3233 return task_has_perm(current, p, PROCESS__GETSCHED);
3234}
3235
3236static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3237{
3238 struct rlimit *old_rlim = current->signal->rlim + resource;
3239 int rc;
3240
3241 rc = secondary_ops->task_setrlimit(resource, new_rlim);
3242 if (rc)
3243 return rc;
3244
3245 /* Control the ability to change the hard limit (whether
3246 lowering or raising it), so that the hard limit can
3247 later be used as a safe reset point for the soft limit
3248 upon context transitions. See selinux_bprm_apply_creds. */
3249 if (old_rlim->rlim_max != new_rlim->rlim_max)
3250 return task_has_perm(current, current, PROCESS__SETRLIMIT);
3251
3252 return 0;
3253}
3254
3255static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3256{
3257 int rc;
3258
3259 rc = secondary_ops->task_setscheduler(p, policy, lp);
3260 if (rc)
3261 return rc;
3262
3263 return task_has_perm(current, p, PROCESS__SETSCHED);
3264}
3265
3266static int selinux_task_getscheduler(struct task_struct *p)
3267{
3268 return task_has_perm(current, p, PROCESS__GETSCHED);
3269}
3270
3271static int selinux_task_movememory(struct task_struct *p)
3272{
3273 return task_has_perm(current, p, PROCESS__SETSCHED);
3274}
3275
3276static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3277 int sig, u32 secid)
3278{
3279 u32 perm;
3280 int rc;
3281 struct task_security_struct *tsec;
3282
3283 rc = secondary_ops->task_kill(p, info, sig, secid);
3284 if (rc)
3285 return rc;
3286
3287 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
3288 return 0;
3289
3290 if (!sig)
3291 perm = PROCESS__SIGNULL; /* null signal; existence test */
3292 else
3293 perm = signal_to_av(sig);
3294 tsec = p->security;
3295 if (secid)
3296 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
3297 else
3298 rc = task_has_perm(current, p, perm);
3299 return rc;
3300}
3301
3302static int selinux_task_prctl(int option,
3303 unsigned long arg2,
3304 unsigned long arg3,
3305 unsigned long arg4,
3306 unsigned long arg5,
3307 long *rc_p)
3308{
3309 /* The current prctl operations do not appear to require
3310 any SELinux controls since they merely observe or modify
3311 the state of the current process. */
3312 return secondary_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
3313}
3314
3315static int selinux_task_wait(struct task_struct *p)
3316{
3317 return task_has_perm(p, current, PROCESS__SIGCHLD);
3318}
3319
3320static void selinux_task_reparent_to_init(struct task_struct *p)
3321{
3322 struct task_security_struct *tsec;
3323
3324 secondary_ops->task_reparent_to_init(p);
3325
3326 tsec = p->security;
3327 tsec->osid = tsec->sid;
3328 tsec->sid = SECINITSID_KERNEL;
3329 return;
3330}
3331
3332static void selinux_task_to_inode(struct task_struct *p,
3333 struct inode *inode)
3334{
3335 struct task_security_struct *tsec = p->security;
3336 struct inode_security_struct *isec = inode->i_security;
3337
3338 isec->sid = tsec->sid;
3339 isec->initialized = 1;
3340 return;
3341}
3342
3343/* Returns error only if unable to parse addresses */
3344static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3345 struct avc_audit_data *ad, u8 *proto)
3346{
3347 int offset, ihlen, ret = -EINVAL;
3348 struct iphdr _iph, *ih;
3349
3350 offset = skb_network_offset(skb);
3351 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3352 if (ih == NULL)
3353 goto out;
3354
3355 ihlen = ih->ihl * 4;
3356 if (ihlen < sizeof(_iph))
3357 goto out;
3358
3359 ad->u.net.v4info.saddr = ih->saddr;
3360 ad->u.net.v4info.daddr = ih->daddr;
3361 ret = 0;
3362
3363 if (proto)
3364 *proto = ih->protocol;
3365
3366 switch (ih->protocol) {
3367 case IPPROTO_TCP: {
3368 struct tcphdr _tcph, *th;
3369
3370 if (ntohs(ih->frag_off) & IP_OFFSET)
3371 break;
3372
3373 offset += ihlen;
3374 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3375 if (th == NULL)
3376 break;
3377
3378 ad->u.net.sport = th->source;
3379 ad->u.net.dport = th->dest;
3380 break;
3381 }
3382
3383 case IPPROTO_UDP: {
3384 struct udphdr _udph, *uh;
3385
3386 if (ntohs(ih->frag_off) & IP_OFFSET)
3387 break;
3388
3389 offset += ihlen;
3390 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3391 if (uh == NULL)
3392 break;
3393
3394 ad->u.net.sport = uh->source;
3395 ad->u.net.dport = uh->dest;
3396 break;
3397 }
3398
3399 case IPPROTO_DCCP: {
3400 struct dccp_hdr _dccph, *dh;
3401
3402 if (ntohs(ih->frag_off) & IP_OFFSET)
3403 break;
3404
3405 offset += ihlen;
3406 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3407 if (dh == NULL)
3408 break;
3409
3410 ad->u.net.sport = dh->dccph_sport;
3411 ad->u.net.dport = dh->dccph_dport;
3412 break;
3413 }
3414
3415 default:
3416 break;
3417 }
3418out:
3419 return ret;
3420}
3421
3422#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3423
3424/* Returns error only if unable to parse addresses */
3425static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3426 struct avc_audit_data *ad, u8 *proto)
3427{
3428 u8 nexthdr;
3429 int ret = -EINVAL, offset;
3430 struct ipv6hdr _ipv6h, *ip6;
3431
3432 offset = skb_network_offset(skb);
3433 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3434 if (ip6 == NULL)
3435 goto out;
3436
3437 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3438 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3439 ret = 0;
3440
3441 nexthdr = ip6->nexthdr;
3442 offset += sizeof(_ipv6h);
3443 offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3444 if (offset < 0)
3445 goto out;
3446
3447 if (proto)
3448 *proto = nexthdr;
3449
3450 switch (nexthdr) {
3451 case IPPROTO_TCP: {
3452 struct tcphdr _tcph, *th;
3453
3454 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3455 if (th == NULL)
3456 break;
3457
3458 ad->u.net.sport = th->source;
3459 ad->u.net.dport = th->dest;
3460 break;
3461 }
3462
3463 case IPPROTO_UDP: {
3464 struct udphdr _udph, *uh;
3465
3466 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3467 if (uh == NULL)
3468 break;
3469
3470 ad->u.net.sport = uh->source;
3471 ad->u.net.dport = uh->dest;
3472 break;
3473 }
3474
3475 case IPPROTO_DCCP: {
3476 struct dccp_hdr _dccph, *dh;
3477
3478 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3479 if (dh == NULL)
3480 break;
3481
3482 ad->u.net.sport = dh->dccph_sport;
3483 ad->u.net.dport = dh->dccph_dport;
3484 break;
3485 }
3486
3487 /* includes fragments */
3488 default:
3489 break;
3490 }
3491out:
3492 return ret;
3493}
3494
3495#endif /* IPV6 */
3496
3497static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3498 char **addrp, int src, u8 *proto)
3499{
3500 int ret = 0;
3501
3502 switch (ad->u.net.family) {
3503 case PF_INET:
3504 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3505 if (ret || !addrp)
3506 break;
3507 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3508 &ad->u.net.v4info.daddr);
3509 break;
3510
3511#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3512 case PF_INET6:
3513 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3514 if (ret || !addrp)
3515 break;
3516 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3517 &ad->u.net.v6info.daddr);
3518 break;
3519#endif /* IPV6 */
3520 default:
3521 break;
3522 }
3523
3524 if (unlikely(ret))
3525 printk(KERN_WARNING
3526 "SELinux: failure in selinux_parse_skb(),"
3527 " unable to parse packet\n");
3528
3529 return ret;
3530}
3531
3532/**
3533 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3534 * @skb: the packet
3535 * @family: protocol family
3536 * @sid: the packet's peer label SID
3537 *
3538 * Description:
3539 * Check the various different forms of network peer labeling and determine
3540 * the peer label/SID for the packet; most of the magic actually occurs in
3541 * the security server function security_net_peersid_cmp(). The function
3542 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3543 * or -EACCES if @sid is invalid due to inconsistencies with the different
3544 * peer labels.
3545 *
3546 */
3547static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3548{
3549 int err;
3550 u32 xfrm_sid;
3551 u32 nlbl_sid;
3552 u32 nlbl_type;
3553
3554 selinux_skb_xfrm_sid(skb, &xfrm_sid);
3555 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3556
3557 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3558 if (unlikely(err)) {
3559 printk(KERN_WARNING
3560 "SELinux: failure in selinux_skb_peerlbl_sid(),"
3561 " unable to determine packet's peer label\n");
3562 return -EACCES;
3563 }
3564
3565 return 0;
3566}
3567
3568/* socket security operations */
3569static int socket_has_perm(struct task_struct *task, struct socket *sock,
3570 u32 perms)
3571{
3572 struct inode_security_struct *isec;
3573 struct task_security_struct *tsec;
3574 struct avc_audit_data ad;
3575 int err = 0;
3576
3577 tsec = task->security;
3578 isec = SOCK_INODE(sock)->i_security;
3579
3580 if (isec->sid == SECINITSID_KERNEL)
3581 goto out;
3582
3583 AVC_AUDIT_DATA_INIT(&ad, NET);
3584 ad.u.net.sk = sock->sk;
3585 err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3586
3587out:
3588 return err;
3589}
3590
3591static int selinux_socket_create(int family, int type,
3592 int protocol, int kern)
3593{
3594 int err = 0;
3595 struct task_security_struct *tsec;
3596 u32 newsid;
3597
3598 if (kern)
3599 goto out;
3600
3601 tsec = current->security;
3602 newsid = tsec->sockcreate_sid ? : tsec->sid;
3603 err = avc_has_perm(tsec->sid, newsid,
3604 socket_type_to_security_class(family, type,
3605 protocol), SOCKET__CREATE, NULL);
3606
3607out:
3608 return err;
3609}
3610
3611static int selinux_socket_post_create(struct socket *sock, int family,
3612 int type, int protocol, int kern)
3613{
3614 int err = 0;
3615 struct inode_security_struct *isec;
3616 struct task_security_struct *tsec;
3617 struct sk_security_struct *sksec;
3618 u32 newsid;
3619
3620 isec = SOCK_INODE(sock)->i_security;
3621
3622 tsec = current->security;
3623 newsid = tsec->sockcreate_sid ? : tsec->sid;
3624 isec->sclass = socket_type_to_security_class(family, type, protocol);
3625 isec->sid = kern ? SECINITSID_KERNEL : newsid;
3626 isec->initialized = 1;
3627
3628 if (sock->sk) {
3629 sksec = sock->sk->sk_security;
3630 sksec->sid = isec->sid;
3631 sksec->sclass = isec->sclass;
3632 err = selinux_netlbl_socket_post_create(sock);
3633 }
3634
3635 return err;
3636}
3637
3638/* Range of port numbers used to automatically bind.
3639 Need to determine whether we should perform a name_bind
3640 permission check between the socket and the port number. */
3641
3642static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3643{
3644 u16 family;
3645 int err;
3646
3647 err = socket_has_perm(current, sock, SOCKET__BIND);
3648 if (err)
3649 goto out;
3650
3651 /*
3652 * If PF_INET or PF_INET6, check name_bind permission for the port.
3653 * Multiple address binding for SCTP is not supported yet: we just
3654 * check the first address now.
3655 */
3656 family = sock->sk->sk_family;
3657 if (family == PF_INET || family == PF_INET6) {
3658 char *addrp;
3659 struct inode_security_struct *isec;
3660 struct task_security_struct *tsec;
3661 struct avc_audit_data ad;
3662 struct sockaddr_in *addr4 = NULL;
3663 struct sockaddr_in6 *addr6 = NULL;
3664 unsigned short snum;
3665 struct sock *sk = sock->sk;
3666 u32 sid, node_perm, addrlen;
3667
3668 tsec = current->security;
3669 isec = SOCK_INODE(sock)->i_security;
3670
3671 if (family == PF_INET) {
3672 addr4 = (struct sockaddr_in *)address;
3673 snum = ntohs(addr4->sin_port);
3674 addrlen = sizeof(addr4->sin_addr.s_addr);
3675 addrp = (char *)&addr4->sin_addr.s_addr;
3676 } else {
3677 addr6 = (struct sockaddr_in6 *)address;
3678 snum = ntohs(addr6->sin6_port);
3679 addrlen = sizeof(addr6->sin6_addr.s6_addr);
3680 addrp = (char *)&addr6->sin6_addr.s6_addr;
3681 }
3682
3683 if (snum) {
3684 int low, high;
3685
3686 inet_get_local_port_range(&low, &high);
3687
3688 if (snum < max(PROT_SOCK, low) || snum > high) {
3689 err = sel_netport_sid(sk->sk_protocol,
3690 snum, &sid);
3691 if (err)
3692 goto out;
3693 AVC_AUDIT_DATA_INIT(&ad, NET);
3694 ad.u.net.sport = htons(snum);
3695 ad.u.net.family = family;
3696 err = avc_has_perm(isec->sid, sid,
3697 isec->sclass,
3698 SOCKET__NAME_BIND, &ad);
3699 if (err)
3700 goto out;
3701 }
3702 }
3703
3704 switch (isec->sclass) {
3705 case SECCLASS_TCP_SOCKET:
3706 node_perm = TCP_SOCKET__NODE_BIND;
3707 break;
3708
3709 case SECCLASS_UDP_SOCKET:
3710 node_perm = UDP_SOCKET__NODE_BIND;
3711 break;
3712
3713 case SECCLASS_DCCP_SOCKET:
3714 node_perm = DCCP_SOCKET__NODE_BIND;
3715 break;
3716
3717 default:
3718 node_perm = RAWIP_SOCKET__NODE_BIND;
3719 break;
3720 }
3721
3722 err = sel_netnode_sid(addrp, family, &sid);
3723 if (err)
3724 goto out;
3725
3726 AVC_AUDIT_DATA_INIT(&ad, NET);
3727 ad.u.net.sport = htons(snum);
3728 ad.u.net.family = family;
3729
3730 if (family == PF_INET)
3731 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3732 else
3733 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3734
3735 err = avc_has_perm(isec->sid, sid,
3736 isec->sclass, node_perm, &ad);
3737 if (err)
3738 goto out;
3739 }
3740out:
3741 return err;
3742}
3743
3744static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3745{
3746 struct inode_security_struct *isec;
3747 int err;
3748
3749 err = socket_has_perm(current, sock, SOCKET__CONNECT);
3750 if (err)
3751 return err;
3752
3753 /*
3754 * If a TCP or DCCP socket, check name_connect permission for the port.
3755 */
3756 isec = SOCK_INODE(sock)->i_security;
3757 if (isec->sclass == SECCLASS_TCP_SOCKET ||
3758 isec->sclass == SECCLASS_DCCP_SOCKET) {
3759 struct sock *sk = sock->sk;
3760 struct avc_audit_data ad;
3761 struct sockaddr_in *addr4 = NULL;
3762 struct sockaddr_in6 *addr6 = NULL;
3763 unsigned short snum;
3764 u32 sid, perm;
3765
3766 if (sk->sk_family == PF_INET) {
3767 addr4 = (struct sockaddr_in *)address;
3768 if (addrlen < sizeof(struct sockaddr_in))
3769 return -EINVAL;
3770 snum = ntohs(addr4->sin_port);
3771 } else {
3772 addr6 = (struct sockaddr_in6 *)address;
3773 if (addrlen < SIN6_LEN_RFC2133)
3774 return -EINVAL;
3775 snum = ntohs(addr6->sin6_port);
3776 }
3777
3778 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3779 if (err)
3780 goto out;
3781
3782 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3783 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3784
3785 AVC_AUDIT_DATA_INIT(&ad, NET);
3786 ad.u.net.dport = htons(snum);
3787 ad.u.net.family = sk->sk_family;
3788 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3789 if (err)
3790 goto out;
3791 }
3792
3793out:
3794 return err;
3795}
3796
3797static int selinux_socket_listen(struct socket *sock, int backlog)
3798{
3799 return socket_has_perm(current, sock, SOCKET__LISTEN);
3800}
3801
3802static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3803{
3804 int err;
3805 struct inode_security_struct *isec;
3806 struct inode_security_struct *newisec;
3807
3808 err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3809 if (err)
3810 return err;
3811
3812 newisec = SOCK_INODE(newsock)->i_security;
3813
3814 isec = SOCK_INODE(sock)->i_security;
3815 newisec->sclass = isec->sclass;
3816 newisec->sid = isec->sid;
3817 newisec->initialized = 1;
3818
3819 return 0;
3820}
3821
3822static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3823 int size)
3824{
3825 int rc;
3826
3827 rc = socket_has_perm(current, sock, SOCKET__WRITE);
3828 if (rc)
3829 return rc;
3830
3831 return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3832}
3833
3834static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3835 int size, int flags)
3836{
3837 return socket_has_perm(current, sock, SOCKET__READ);
3838}
3839
3840static int selinux_socket_getsockname(struct socket *sock)
3841{
3842 return socket_has_perm(current, sock, SOCKET__GETATTR);
3843}
3844
3845static int selinux_socket_getpeername(struct socket *sock)
3846{
3847 return socket_has_perm(current, sock, SOCKET__GETATTR);
3848}
3849
3850static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3851{
3852 int err;
3853
3854 err = socket_has_perm(current, sock, SOCKET__SETOPT);
3855 if (err)
3856 return err;
3857
3858 return selinux_netlbl_socket_setsockopt(sock, level, optname);
3859}
3860
3861static int selinux_socket_getsockopt(struct socket *sock, int level,
3862 int optname)
3863{
3864 return socket_has_perm(current, sock, SOCKET__GETOPT);
3865}
3866
3867static int selinux_socket_shutdown(struct socket *sock, int how)
3868{
3869 return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3870}
3871
3872static int selinux_socket_unix_stream_connect(struct socket *sock,
3873 struct socket *other,
3874 struct sock *newsk)
3875{
3876 struct sk_security_struct *ssec;
3877 struct inode_security_struct *isec;
3878 struct inode_security_struct *other_isec;
3879 struct avc_audit_data ad;
3880 int err;
3881
3882 err = secondary_ops->unix_stream_connect(sock, other, newsk);
3883 if (err)
3884 return err;
3885
3886 isec = SOCK_INODE(sock)->i_security;
3887 other_isec = SOCK_INODE(other)->i_security;
3888
3889 AVC_AUDIT_DATA_INIT(&ad, NET);
3890 ad.u.net.sk = other->sk;
3891
3892 err = avc_has_perm(isec->sid, other_isec->sid,
3893 isec->sclass,
3894 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3895 if (err)
3896 return err;
3897
3898 /* connecting socket */
3899 ssec = sock->sk->sk_security;
3900 ssec->peer_sid = other_isec->sid;
3901
3902 /* server child socket */
3903 ssec = newsk->sk_security;
3904 ssec->peer_sid = isec->sid;
3905 err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3906
3907 return err;
3908}
3909
3910static int selinux_socket_unix_may_send(struct socket *sock,
3911 struct socket *other)
3912{
3913 struct inode_security_struct *isec;
3914 struct inode_security_struct *other_isec;
3915 struct avc_audit_data ad;
3916 int err;
3917
3918 isec = SOCK_INODE(sock)->i_security;
3919 other_isec = SOCK_INODE(other)->i_security;
3920
3921 AVC_AUDIT_DATA_INIT(&ad, NET);
3922 ad.u.net.sk = other->sk;
3923
3924 err = avc_has_perm(isec->sid, other_isec->sid,
3925 isec->sclass, SOCKET__SENDTO, &ad);
3926 if (err)
3927 return err;
3928
3929 return 0;
3930}
3931
3932static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
3933 u32 peer_sid,
3934 struct avc_audit_data *ad)
3935{
3936 int err;
3937 u32 if_sid;
3938 u32 node_sid;
3939
3940 err = sel_netif_sid(ifindex, &if_sid);
3941 if (err)
3942 return err;
3943 err = avc_has_perm(peer_sid, if_sid,
3944 SECCLASS_NETIF, NETIF__INGRESS, ad);
3945 if (err)
3946 return err;
3947
3948 err = sel_netnode_sid(addrp, family, &node_sid);
3949 if (err)
3950 return err;
3951 return avc_has_perm(peer_sid, node_sid,
3952 SECCLASS_NODE, NODE__RECVFROM, ad);
3953}
3954
3955static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk,
3956 struct sk_buff *skb,
3957 struct avc_audit_data *ad,
3958 u16 family,
3959 char *addrp)
3960{
3961 int err;
3962 struct sk_security_struct *sksec = sk->sk_security;
3963 u16 sk_class;
3964 u32 netif_perm, node_perm, recv_perm;
3965 u32 port_sid, node_sid, if_sid, sk_sid;
3966
3967 sk_sid = sksec->sid;
3968 sk_class = sksec->sclass;
3969
3970 switch (sk_class) {
3971 case SECCLASS_UDP_SOCKET:
3972 netif_perm = NETIF__UDP_RECV;
3973 node_perm = NODE__UDP_RECV;
3974 recv_perm = UDP_SOCKET__RECV_MSG;
3975 break;
3976 case SECCLASS_TCP_SOCKET:
3977 netif_perm = NETIF__TCP_RECV;
3978 node_perm = NODE__TCP_RECV;
3979 recv_perm = TCP_SOCKET__RECV_MSG;
3980 break;
3981 case SECCLASS_DCCP_SOCKET:
3982 netif_perm = NETIF__DCCP_RECV;
3983 node_perm = NODE__DCCP_RECV;
3984 recv_perm = DCCP_SOCKET__RECV_MSG;
3985 break;
3986 default:
3987 netif_perm = NETIF__RAWIP_RECV;
3988 node_perm = NODE__RAWIP_RECV;
3989 recv_perm = 0;
3990 break;
3991 }
3992
3993 err = sel_netif_sid(skb->iif, &if_sid);
3994 if (err)
3995 return err;
3996 err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3997 if (err)
3998 return err;
3999
4000 err = sel_netnode_sid(addrp, family, &node_sid);
4001 if (err)
4002 return err;
4003 err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4004 if (err)
4005 return err;
4006
4007 if (!recv_perm)
4008 return 0;
4009 err = sel_netport_sid(sk->sk_protocol,
4010 ntohs(ad->u.net.sport), &port_sid);
4011 if (unlikely(err)) {
4012 printk(KERN_WARNING
4013 "SELinux: failure in"
4014 " selinux_sock_rcv_skb_iptables_compat(),"
4015 " network port label not found\n");
4016 return err;
4017 }
4018 return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad);
4019}
4020
4021static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4022 struct avc_audit_data *ad,
4023 u16 family, char *addrp)
4024{
4025 int err;
4026 struct sk_security_struct *sksec = sk->sk_security;
4027 u32 peer_sid;
4028 u32 sk_sid = sksec->sid;
4029
4030 if (selinux_compat_net)
4031 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, ad,
4032 family, addrp);
4033 else
4034 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4035 PACKET__RECV, ad);
4036 if (err)
4037 return err;
4038
4039 if (selinux_policycap_netpeer) {
4040 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4041 if (err)
4042 return err;
4043 err = avc_has_perm(sk_sid, peer_sid,
4044 SECCLASS_PEER, PEER__RECV, ad);
4045 } else {
4046 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, ad);
4047 if (err)
4048 return err;
4049 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, ad);
4050 }
4051
4052 return err;
4053}
4054
4055static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4056{
4057 int err;
4058 struct sk_security_struct *sksec = sk->sk_security;
4059 u16 family = sk->sk_family;
4060 u32 sk_sid = sksec->sid;
4061 struct avc_audit_data ad;
4062 char *addrp;
4063
4064 if (family != PF_INET && family != PF_INET6)
4065 return 0;
4066
4067 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4068 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4069 family = PF_INET;
4070
4071 AVC_AUDIT_DATA_INIT(&ad, NET);
4072 ad.u.net.netif = skb->iif;
4073 ad.u.net.family = family;
4074 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4075 if (err)
4076 return err;
4077
4078 /* If any sort of compatibility mode is enabled then handoff processing
4079 * to the selinux_sock_rcv_skb_compat() function to deal with the
4080 * special handling. We do this in an attempt to keep this function
4081 * as fast and as clean as possible. */
4082 if (selinux_compat_net || !selinux_policycap_netpeer)
4083 return selinux_sock_rcv_skb_compat(sk, skb, &ad,
4084 family, addrp);
4085
4086 if (netlbl_enabled() || selinux_xfrm_enabled()) {
4087 u32 peer_sid;
4088
4089 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4090 if (err)
4091 return err;
4092 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4093 peer_sid, &ad);
4094 if (err)
4095 return err;
4096 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4097 PEER__RECV, &ad);
4098 }
4099
4100 if (selinux_secmark_enabled()) {
4101 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4102 PACKET__RECV, &ad);
4103 if (err)
4104 return err;
4105 }
4106
4107 return err;
4108}
4109
4110static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4111 int __user *optlen, unsigned len)
4112{
4113 int err = 0;
4114 char *scontext;
4115 u32 scontext_len;
4116 struct sk_security_struct *ssec;
4117 struct inode_security_struct *isec;
4118 u32 peer_sid = SECSID_NULL;
4119
4120 isec = SOCK_INODE(sock)->i_security;
4121
4122 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4123 isec->sclass == SECCLASS_TCP_SOCKET) {
4124 ssec = sock->sk->sk_security;
4125 peer_sid = ssec->peer_sid;
4126 }
4127 if (peer_sid == SECSID_NULL) {
4128 err = -ENOPROTOOPT;
4129 goto out;
4130 }
4131
4132 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4133
4134 if (err)
4135 goto out;
4136
4137 if (scontext_len > len) {
4138 err = -ERANGE;
4139 goto out_len;
4140 }
4141
4142 if (copy_to_user(optval, scontext, scontext_len))
4143 err = -EFAULT;
4144
4145out_len:
4146 if (put_user(scontext_len, optlen))
4147 err = -EFAULT;
4148
4149 kfree(scontext);
4150out:
4151 return err;
4152}
4153
4154static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4155{
4156 u32 peer_secid = SECSID_NULL;
4157 u16 family;
4158
4159 if (sock)
4160 family = sock->sk->sk_family;
4161 else if (skb && skb->sk)
4162 family = skb->sk->sk_family;
4163 else
4164 goto out;
4165
4166 if (sock && family == PF_UNIX)
4167 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4168 else if (skb)
4169 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4170
4171out:
4172 *secid = peer_secid;
4173 if (peer_secid == SECSID_NULL)
4174 return -EINVAL;
4175 return 0;
4176}
4177
4178static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4179{
4180 return sk_alloc_security(sk, family, priority);
4181}
4182
4183static void selinux_sk_free_security(struct sock *sk)
4184{
4185 sk_free_security(sk);
4186}
4187
4188static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4189{
4190 struct sk_security_struct *ssec = sk->sk_security;
4191 struct sk_security_struct *newssec = newsk->sk_security;
4192
4193 newssec->sid = ssec->sid;
4194 newssec->peer_sid = ssec->peer_sid;
4195 newssec->sclass = ssec->sclass;
4196
4197 selinux_netlbl_sk_security_reset(newssec, newsk->sk_family);
4198}
4199
4200static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4201{
4202 if (!sk)
4203 *secid = SECINITSID_ANY_SOCKET;
4204 else {
4205 struct sk_security_struct *sksec = sk->sk_security;
4206
4207 *secid = sksec->sid;
4208 }
4209}
4210
4211static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4212{
4213 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4214 struct sk_security_struct *sksec = sk->sk_security;
4215
4216 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4217 sk->sk_family == PF_UNIX)
4218 isec->sid = sksec->sid;
4219 sksec->sclass = isec->sclass;
4220
4221 selinux_netlbl_sock_graft(sk, parent);
4222}
4223
4224static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4225 struct request_sock *req)
4226{
4227 struct sk_security_struct *sksec = sk->sk_security;
4228 int err;
4229 u32 newsid;
4230 u32 peersid;
4231
4232 err = selinux_skb_peerlbl_sid(skb, sk->sk_family, &peersid);
4233 if (err)
4234 return err;
4235 if (peersid == SECSID_NULL) {
4236 req->secid = sksec->sid;
4237 req->peer_secid = SECSID_NULL;
4238 return 0;
4239 }
4240
4241 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4242 if (err)
4243 return err;
4244
4245 req->secid = newsid;
4246 req->peer_secid = peersid;
4247 return 0;
4248}
4249
4250static void selinux_inet_csk_clone(struct sock *newsk,
4251 const struct request_sock *req)
4252{
4253 struct sk_security_struct *newsksec = newsk->sk_security;
4254
4255 newsksec->sid = req->secid;
4256 newsksec->peer_sid = req->peer_secid;
4257 /* NOTE: Ideally, we should also get the isec->sid for the
4258 new socket in sync, but we don't have the isec available yet.
4259 So we will wait until sock_graft to do it, by which
4260 time it will have been created and available. */
4261
4262 /* We don't need to take any sort of lock here as we are the only
4263 * thread with access to newsksec */
4264 selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
4265}
4266
4267static void selinux_inet_conn_established(struct sock *sk,
4268 struct sk_buff *skb)
4269{
4270 struct sk_security_struct *sksec = sk->sk_security;
4271
4272 selinux_skb_peerlbl_sid(skb, sk->sk_family, &sksec->peer_sid);
4273}
4274
4275static void selinux_req_classify_flow(const struct request_sock *req,
4276 struct flowi *fl)
4277{
4278 fl->secid = req->secid;
4279}
4280
4281static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4282{
4283 int err = 0;
4284 u32 perm;
4285 struct nlmsghdr *nlh;
4286 struct socket *sock = sk->sk_socket;
4287 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4288
4289 if (skb->len < NLMSG_SPACE(0)) {
4290 err = -EINVAL;
4291 goto out;
4292 }
4293 nlh = nlmsg_hdr(skb);
4294
4295 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4296 if (err) {
4297 if (err == -EINVAL) {
4298 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4299 "SELinux: unrecognized netlink message"
4300 " type=%hu for sclass=%hu\n",
4301 nlh->nlmsg_type, isec->sclass);
4302 if (!selinux_enforcing)
4303 err = 0;
4304 }
4305
4306 /* Ignore */
4307 if (err == -ENOENT)
4308 err = 0;
4309 goto out;
4310 }
4311
4312 err = socket_has_perm(current, sock, perm);
4313out:
4314 return err;
4315}
4316
4317#ifdef CONFIG_NETFILTER
4318
4319static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4320 u16 family)
4321{
4322 char *addrp;
4323 u32 peer_sid;
4324 struct avc_audit_data ad;
4325 u8 secmark_active;
4326 u8 peerlbl_active;
4327
4328 if (!selinux_policycap_netpeer)
4329 return NF_ACCEPT;
4330
4331 secmark_active = selinux_secmark_enabled();
4332 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4333 if (!secmark_active && !peerlbl_active)
4334 return NF_ACCEPT;
4335
4336 AVC_AUDIT_DATA_INIT(&ad, NET);
4337 ad.u.net.netif = ifindex;
4338 ad.u.net.family = family;
4339 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4340 return NF_DROP;
4341
4342 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4343 return NF_DROP;
4344
4345 if (peerlbl_active)
4346 if (selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4347 peer_sid, &ad) != 0)
4348 return NF_DROP;
4349
4350 if (secmark_active)
4351 if (avc_has_perm(peer_sid, skb->secmark,
4352 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4353 return NF_DROP;
4354
4355 return NF_ACCEPT;
4356}
4357
4358static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4359 struct sk_buff *skb,
4360 const struct net_device *in,
4361 const struct net_device *out,
4362 int (*okfn)(struct sk_buff *))
4363{
4364 return selinux_ip_forward(skb, in->ifindex, PF_INET);
4365}
4366
4367#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4368static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4369 struct sk_buff *skb,
4370 const struct net_device *in,
4371 const struct net_device *out,
4372 int (*okfn)(struct sk_buff *))
4373{
4374 return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4375}
4376#endif /* IPV6 */
4377
4378static int selinux_ip_postroute_iptables_compat(struct sock *sk,
4379 int ifindex,
4380 struct avc_audit_data *ad,
4381 u16 family, char *addrp)
4382{
4383 int err;
4384 struct sk_security_struct *sksec = sk->sk_security;
4385 u16 sk_class;
4386 u32 netif_perm, node_perm, send_perm;
4387 u32 port_sid, node_sid, if_sid, sk_sid;
4388
4389 sk_sid = sksec->sid;
4390 sk_class = sksec->sclass;
4391
4392 switch (sk_class) {
4393 case SECCLASS_UDP_SOCKET:
4394 netif_perm = NETIF__UDP_SEND;
4395 node_perm = NODE__UDP_SEND;
4396 send_perm = UDP_SOCKET__SEND_MSG;
4397 break;
4398 case SECCLASS_TCP_SOCKET:
4399 netif_perm = NETIF__TCP_SEND;
4400 node_perm = NODE__TCP_SEND;
4401 send_perm = TCP_SOCKET__SEND_MSG;
4402 break;
4403 case SECCLASS_DCCP_SOCKET:
4404 netif_perm = NETIF__DCCP_SEND;
4405 node_perm = NODE__DCCP_SEND;
4406 send_perm = DCCP_SOCKET__SEND_MSG;
4407 break;
4408 default:
4409 netif_perm = NETIF__RAWIP_SEND;
4410 node_perm = NODE__RAWIP_SEND;
4411 send_perm = 0;
4412 break;
4413 }
4414
4415 err = sel_netif_sid(ifindex, &if_sid);
4416 if (err)
4417 return err;
4418 err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4419 return err;
4420
4421 err = sel_netnode_sid(addrp, family, &node_sid);
4422 if (err)
4423 return err;
4424 err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4425 if (err)
4426 return err;
4427
4428 if (send_perm != 0)
4429 return 0;
4430
4431 err = sel_netport_sid(sk->sk_protocol,
4432 ntohs(ad->u.net.dport), &port_sid);
4433 if (unlikely(err)) {
4434 printk(KERN_WARNING
4435 "SELinux: failure in"
4436 " selinux_ip_postroute_iptables_compat(),"
4437 " network port label not found\n");
4438 return err;
4439 }
4440 return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad);
4441}
4442
4443static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4444 int ifindex,
4445 struct avc_audit_data *ad,
4446 u16 family,
4447 char *addrp,
4448 u8 proto)
4449{
4450 struct sock *sk = skb->sk;
4451 struct sk_security_struct *sksec;
4452
4453 if (sk == NULL)
4454 return NF_ACCEPT;
4455 sksec = sk->sk_security;
4456
4457 if (selinux_compat_net) {
4458 if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex,
4459 ad, family, addrp))
4460 return NF_DROP;
4461 } else {
4462 if (avc_has_perm(sksec->sid, skb->secmark,
4463 SECCLASS_PACKET, PACKET__SEND, ad))
4464 return NF_DROP;
4465 }
4466
4467 if (selinux_policycap_netpeer)
4468 if (selinux_xfrm_postroute_last(sksec->sid, skb, ad, proto))
4469 return NF_DROP;
4470
4471 return NF_ACCEPT;
4472}
4473
4474static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4475 u16 family)
4476{
4477 u32 secmark_perm;
4478 u32 peer_sid;
4479 struct sock *sk;
4480 struct avc_audit_data ad;
4481 char *addrp;
4482 u8 proto;
4483 u8 secmark_active;
4484 u8 peerlbl_active;
4485
4486 AVC_AUDIT_DATA_INIT(&ad, NET);
4487 ad.u.net.netif = ifindex;
4488 ad.u.net.family = family;
4489 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4490 return NF_DROP;
4491
4492 /* If any sort of compatibility mode is enabled then handoff processing
4493 * to the selinux_ip_postroute_compat() function to deal with the
4494 * special handling. We do this in an attempt to keep this function
4495 * as fast and as clean as possible. */
4496 if (selinux_compat_net || !selinux_policycap_netpeer)
4497 return selinux_ip_postroute_compat(skb, ifindex, &ad,
4498 family, addrp, proto);
4499
4500 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4501 * packet transformation so allow the packet to pass without any checks
4502 * since we'll have another chance to perform access control checks
4503 * when the packet is on it's final way out.
4504 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4505 * is NULL, in this case go ahead and apply access control. */
4506 if (skb->dst != NULL && skb->dst->xfrm != NULL)
4507 return NF_ACCEPT;
4508
4509 secmark_active = selinux_secmark_enabled();
4510 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4511 if (!secmark_active && !peerlbl_active)
4512 return NF_ACCEPT;
4513
4514 /* if the packet is locally generated (skb->sk != NULL) then use the
4515 * socket's label as the peer label, otherwise the packet is being
4516 * forwarded through this system and we need to fetch the peer label
4517 * directly from the packet */
4518 sk = skb->sk;
4519 if (sk) {
4520 struct sk_security_struct *sksec = sk->sk_security;
4521 peer_sid = sksec->sid;
4522 secmark_perm = PACKET__SEND;
4523 } else {
4524 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4525 return NF_DROP;
4526 secmark_perm = PACKET__FORWARD_OUT;
4527 }
4528
4529 if (secmark_active)
4530 if (avc_has_perm(peer_sid, skb->secmark,
4531 SECCLASS_PACKET, secmark_perm, &ad))
4532 return NF_DROP;
4533
4534 if (peerlbl_active) {
4535 u32 if_sid;
4536 u32 node_sid;
4537
4538 if (sel_netif_sid(ifindex, &if_sid))
4539 return NF_DROP;
4540 if (avc_has_perm(peer_sid, if_sid,
4541 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4542 return NF_DROP;
4543
4544 if (sel_netnode_sid(addrp, family, &node_sid))
4545 return NF_DROP;
4546 if (avc_has_perm(peer_sid, node_sid,
4547 SECCLASS_NODE, NODE__SENDTO, &ad))
4548 return NF_DROP;
4549 }
4550
4551 return NF_ACCEPT;
4552}
4553
4554static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4555 struct sk_buff *skb,
4556 const struct net_device *in,
4557 const struct net_device *out,
4558 int (*okfn)(struct sk_buff *))
4559{
4560 return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4561}
4562
4563#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4564static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4565 struct sk_buff *skb,
4566 const struct net_device *in,
4567 const struct net_device *out,
4568 int (*okfn)(struct sk_buff *))
4569{
4570 return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4571}
4572#endif /* IPV6 */
4573
4574#endif /* CONFIG_NETFILTER */
4575
4576static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4577{
4578 int err;
4579
4580 err = secondary_ops->netlink_send(sk, skb);
4581 if (err)
4582 return err;
4583
4584 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4585 err = selinux_nlmsg_perm(sk, skb);
4586
4587 return err;
4588}
4589
4590static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4591{
4592 int err;
4593 struct avc_audit_data ad;
4594
4595 err = secondary_ops->netlink_recv(skb, capability);
4596 if (err)
4597 return err;
4598
4599 AVC_AUDIT_DATA_INIT(&ad, CAP);
4600 ad.u.cap = capability;
4601
4602 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4603 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4604}
4605
4606static int ipc_alloc_security(struct task_struct *task,
4607 struct kern_ipc_perm *perm,
4608 u16 sclass)
4609{
4610 struct task_security_struct *tsec = task->security;
4611 struct ipc_security_struct *isec;
4612
4613 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4614 if (!isec)
4615 return -ENOMEM;
4616
4617 isec->sclass = sclass;
4618 isec->sid = tsec->sid;
4619 perm->security = isec;
4620
4621 return 0;
4622}
4623
4624static void ipc_free_security(struct kern_ipc_perm *perm)
4625{
4626 struct ipc_security_struct *isec = perm->security;
4627 perm->security = NULL;
4628 kfree(isec);
4629}
4630
4631static int msg_msg_alloc_security(struct msg_msg *msg)
4632{
4633 struct msg_security_struct *msec;
4634
4635 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4636 if (!msec)
4637 return -ENOMEM;
4638
4639 msec->sid = SECINITSID_UNLABELED;
4640 msg->security = msec;
4641
4642 return 0;
4643}
4644
4645static void msg_msg_free_security(struct msg_msg *msg)
4646{
4647 struct msg_security_struct *msec = msg->security;
4648
4649 msg->security = NULL;
4650 kfree(msec);
4651}
4652
4653static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4654 u32 perms)
4655{
4656 struct task_security_struct *tsec;
4657 struct ipc_security_struct *isec;
4658 struct avc_audit_data ad;
4659
4660 tsec = current->security;
4661 isec = ipc_perms->security;
4662
4663 AVC_AUDIT_DATA_INIT(&ad, IPC);
4664 ad.u.ipc_id = ipc_perms->key;
4665
4666 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4667}
4668
4669static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4670{
4671 return msg_msg_alloc_security(msg);
4672}
4673
4674static void selinux_msg_msg_free_security(struct msg_msg *msg)
4675{
4676 msg_msg_free_security(msg);
4677}
4678
4679/* message queue security operations */
4680static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4681{
4682 struct task_security_struct *tsec;
4683 struct ipc_security_struct *isec;
4684 struct avc_audit_data ad;
4685 int rc;
4686
4687 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4688 if (rc)
4689 return rc;
4690
4691 tsec = current->security;
4692 isec = msq->q_perm.security;
4693
4694 AVC_AUDIT_DATA_INIT(&ad, IPC);
4695 ad.u.ipc_id = msq->q_perm.key;
4696
4697 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4698 MSGQ__CREATE, &ad);
4699 if (rc) {
4700 ipc_free_security(&msq->q_perm);
4701 return rc;
4702 }
4703 return 0;
4704}
4705
4706static void selinux_msg_queue_free_security(struct msg_queue *msq)
4707{
4708 ipc_free_security(&msq->q_perm);
4709}
4710
4711static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4712{
4713 struct task_security_struct *tsec;
4714 struct ipc_security_struct *isec;
4715 struct avc_audit_data ad;
4716
4717 tsec = current->security;
4718 isec = msq->q_perm.security;
4719
4720 AVC_AUDIT_DATA_INIT(&ad, IPC);
4721 ad.u.ipc_id = msq->q_perm.key;
4722
4723 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4724 MSGQ__ASSOCIATE, &ad);
4725}
4726
4727static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4728{
4729 int err;
4730 int perms;
4731
4732 switch (cmd) {
4733 case IPC_INFO:
4734 case MSG_INFO:
4735 /* No specific object, just general system-wide information. */
4736 return task_has_system(current, SYSTEM__IPC_INFO);
4737 case IPC_STAT:
4738 case MSG_STAT:
4739 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4740 break;
4741 case IPC_SET:
4742 perms = MSGQ__SETATTR;
4743 break;
4744 case IPC_RMID:
4745 perms = MSGQ__DESTROY;
4746 break;
4747 default:
4748 return 0;
4749 }
4750
4751 err = ipc_has_perm(&msq->q_perm, perms);
4752 return err;
4753}
4754
4755static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4756{
4757 struct task_security_struct *tsec;
4758 struct ipc_security_struct *isec;
4759 struct msg_security_struct *msec;
4760 struct avc_audit_data ad;
4761 int rc;
4762
4763 tsec = current->security;
4764 isec = msq->q_perm.security;
4765 msec = msg->security;
4766
4767 /*
4768 * First time through, need to assign label to the message
4769 */
4770 if (msec->sid == SECINITSID_UNLABELED) {
4771 /*
4772 * Compute new sid based on current process and
4773 * message queue this message will be stored in
4774 */
4775 rc = security_transition_sid(tsec->sid,
4776 isec->sid,
4777 SECCLASS_MSG,
4778 &msec->sid);
4779 if (rc)
4780 return rc;
4781 }
4782
4783 AVC_AUDIT_DATA_INIT(&ad, IPC);
4784 ad.u.ipc_id = msq->q_perm.key;
4785
4786 /* Can this process write to the queue? */
4787 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4788 MSGQ__WRITE, &ad);
4789 if (!rc)
4790 /* Can this process send the message */
4791 rc = avc_has_perm(tsec->sid, msec->sid,
4792 SECCLASS_MSG, MSG__SEND, &ad);
4793 if (!rc)
4794 /* Can the message be put in the queue? */
4795 rc = avc_has_perm(msec->sid, isec->sid,
4796 SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4797
4798 return rc;
4799}
4800
4801static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4802 struct task_struct *target,
4803 long type, int mode)
4804{
4805 struct task_security_struct *tsec;
4806 struct ipc_security_struct *isec;
4807 struct msg_security_struct *msec;
4808 struct avc_audit_data ad;
4809 int rc;
4810
4811 tsec = target->security;
4812 isec = msq->q_perm.security;
4813 msec = msg->security;
4814
4815 AVC_AUDIT_DATA_INIT(&ad, IPC);
4816 ad.u.ipc_id = msq->q_perm.key;
4817
4818 rc = avc_has_perm(tsec->sid, isec->sid,
4819 SECCLASS_MSGQ, MSGQ__READ, &ad);
4820 if (!rc)
4821 rc = avc_has_perm(tsec->sid, msec->sid,
4822 SECCLASS_MSG, MSG__RECEIVE, &ad);
4823 return rc;
4824}
4825
4826/* Shared Memory security operations */
4827static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4828{
4829 struct task_security_struct *tsec;
4830 struct ipc_security_struct *isec;
4831 struct avc_audit_data ad;
4832 int rc;
4833
4834 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4835 if (rc)
4836 return rc;
4837
4838 tsec = current->security;
4839 isec = shp->shm_perm.security;
4840
4841 AVC_AUDIT_DATA_INIT(&ad, IPC);
4842 ad.u.ipc_id = shp->shm_perm.key;
4843
4844 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4845 SHM__CREATE, &ad);
4846 if (rc) {
4847 ipc_free_security(&shp->shm_perm);
4848 return rc;
4849 }
4850 return 0;
4851}
4852
4853static void selinux_shm_free_security(struct shmid_kernel *shp)
4854{
4855 ipc_free_security(&shp->shm_perm);
4856}
4857
4858static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4859{
4860 struct task_security_struct *tsec;
4861 struct ipc_security_struct *isec;
4862 struct avc_audit_data ad;
4863
4864 tsec = current->security;
4865 isec = shp->shm_perm.security;
4866
4867 AVC_AUDIT_DATA_INIT(&ad, IPC);
4868 ad.u.ipc_id = shp->shm_perm.key;
4869
4870 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4871 SHM__ASSOCIATE, &ad);
4872}
4873
4874/* Note, at this point, shp is locked down */
4875static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4876{
4877 int perms;
4878 int err;
4879
4880 switch (cmd) {
4881 case IPC_INFO:
4882 case SHM_INFO:
4883 /* No specific object, just general system-wide information. */
4884 return task_has_system(current, SYSTEM__IPC_INFO);
4885 case IPC_STAT:
4886 case SHM_STAT:
4887 perms = SHM__GETATTR | SHM__ASSOCIATE;
4888 break;
4889 case IPC_SET:
4890 perms = SHM__SETATTR;
4891 break;
4892 case SHM_LOCK:
4893 case SHM_UNLOCK:
4894 perms = SHM__LOCK;
4895 break;
4896 case IPC_RMID:
4897 perms = SHM__DESTROY;
4898 break;
4899 default:
4900 return 0;
4901 }
4902
4903 err = ipc_has_perm(&shp->shm_perm, perms);
4904 return err;
4905}
4906
4907static int selinux_shm_shmat(struct shmid_kernel *shp,
4908 char __user *shmaddr, int shmflg)
4909{
4910 u32 perms;
4911 int rc;
4912
4913 rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4914 if (rc)
4915 return rc;
4916
4917 if (shmflg & SHM_RDONLY)
4918 perms = SHM__READ;
4919 else
4920 perms = SHM__READ | SHM__WRITE;
4921
4922 return ipc_has_perm(&shp->shm_perm, perms);
4923}
4924
4925/* Semaphore security operations */
4926static int selinux_sem_alloc_security(struct sem_array *sma)
4927{
4928 struct task_security_struct *tsec;
4929 struct ipc_security_struct *isec;
4930 struct avc_audit_data ad;
4931 int rc;
4932
4933 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4934 if (rc)
4935 return rc;
4936
4937 tsec = current->security;
4938 isec = sma->sem_perm.security;
4939
4940 AVC_AUDIT_DATA_INIT(&ad, IPC);
4941 ad.u.ipc_id = sma->sem_perm.key;
4942
4943 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4944 SEM__CREATE, &ad);
4945 if (rc) {
4946 ipc_free_security(&sma->sem_perm);
4947 return rc;
4948 }
4949 return 0;
4950}
4951
4952static void selinux_sem_free_security(struct sem_array *sma)
4953{
4954 ipc_free_security(&sma->sem_perm);
4955}
4956
4957static int selinux_sem_associate(struct sem_array *sma, int semflg)
4958{
4959 struct task_security_struct *tsec;
4960 struct ipc_security_struct *isec;
4961 struct avc_audit_data ad;
4962
4963 tsec = current->security;
4964 isec = sma->sem_perm.security;
4965
4966 AVC_AUDIT_DATA_INIT(&ad, IPC);
4967 ad.u.ipc_id = sma->sem_perm.key;
4968
4969 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4970 SEM__ASSOCIATE, &ad);
4971}
4972
4973/* Note, at this point, sma is locked down */
4974static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4975{
4976 int err;
4977 u32 perms;
4978
4979 switch (cmd) {
4980 case IPC_INFO:
4981 case SEM_INFO:
4982 /* No specific object, just general system-wide information. */
4983 return task_has_system(current, SYSTEM__IPC_INFO);
4984 case GETPID:
4985 case GETNCNT:
4986 case GETZCNT:
4987 perms = SEM__GETATTR;
4988 break;
4989 case GETVAL:
4990 case GETALL:
4991 perms = SEM__READ;
4992 break;
4993 case SETVAL:
4994 case SETALL:
4995 perms = SEM__WRITE;
4996 break;
4997 case IPC_RMID:
4998 perms = SEM__DESTROY;
4999 break;
5000 case IPC_SET:
5001 perms = SEM__SETATTR;
5002 break;
5003 case IPC_STAT:
5004 case SEM_STAT:
5005 perms = SEM__GETATTR | SEM__ASSOCIATE;
5006 break;
5007 default:
5008 return 0;
5009 }
5010
5011 err = ipc_has_perm(&sma->sem_perm, perms);
5012 return err;
5013}
5014
5015static int selinux_sem_semop(struct sem_array *sma,
5016 struct sembuf *sops, unsigned nsops, int alter)
5017{
5018 u32 perms;
5019
5020 if (alter)
5021 perms = SEM__READ | SEM__WRITE;
5022 else
5023 perms = SEM__READ;
5024
5025 return ipc_has_perm(&sma->sem_perm, perms);
5026}
5027
5028static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5029{
5030 u32 av = 0;
5031
5032 av = 0;
5033 if (flag & S_IRUGO)
5034 av |= IPC__UNIX_READ;
5035 if (flag & S_IWUGO)
5036 av |= IPC__UNIX_WRITE;
5037
5038 if (av == 0)
5039 return 0;
5040
5041 return ipc_has_perm(ipcp, av);
5042}
5043
5044static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5045{
5046 struct ipc_security_struct *isec = ipcp->security;
5047 *secid = isec->sid;
5048}
5049
5050/* module stacking operations */
5051static int selinux_register_security(const char *name, struct security_operations *ops)
5052{
5053 if (secondary_ops != original_ops) {
5054 printk(KERN_ERR "%s: There is already a secondary security "
5055 "module registered.\n", __func__);
5056 return -EINVAL;
5057 }
5058
5059 secondary_ops = ops;
5060
5061 printk(KERN_INFO "%s: Registering secondary module %s\n",
5062 __func__,
5063 name);
5064
5065 return 0;
5066}
5067
5068static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5069{
5070 if (inode)
5071 inode_doinit_with_dentry(inode, dentry);
5072}
5073
5074static int selinux_getprocattr(struct task_struct *p,
5075 char *name, char **value)
5076{
5077 struct task_security_struct *tsec;
5078 u32 sid;
5079 int error;
5080 unsigned len;
5081
5082 if (current != p) {
5083 error = task_has_perm(current, p, PROCESS__GETATTR);
5084 if (error)
5085 return error;
5086 }
5087
5088 tsec = p->security;
5089
5090 if (!strcmp(name, "current"))
5091 sid = tsec->sid;
5092 else if (!strcmp(name, "prev"))
5093 sid = tsec->osid;
5094 else if (!strcmp(name, "exec"))
5095 sid = tsec->exec_sid;
5096 else if (!strcmp(name, "fscreate"))
5097 sid = tsec->create_sid;
5098 else if (!strcmp(name, "keycreate"))
5099 sid = tsec->keycreate_sid;
5100 else if (!strcmp(name, "sockcreate"))
5101 sid = tsec->sockcreate_sid;
5102 else
5103 return -EINVAL;
5104
5105 if (!sid)
5106 return 0;
5107
5108 error = security_sid_to_context(sid, value, &len);
5109 if (error)
5110 return error;
5111 return len;
5112}
5113
5114static int selinux_setprocattr(struct task_struct *p,
5115 char *name, void *value, size_t size)
5116{
5117 struct task_security_struct *tsec;
5118 struct task_struct *tracer;
5119 u32 sid = 0;
5120 int error;
5121 char *str = value;
5122
5123 if (current != p) {
5124 /* SELinux only allows a process to change its own
5125 security attributes. */
5126 return -EACCES;
5127 }
5128
5129 /*
5130 * Basic control over ability to set these attributes at all.
5131 * current == p, but we'll pass them separately in case the
5132 * above restriction is ever removed.
5133 */
5134 if (!strcmp(name, "exec"))
5135 error = task_has_perm(current, p, PROCESS__SETEXEC);
5136 else if (!strcmp(name, "fscreate"))
5137 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
5138 else if (!strcmp(name, "keycreate"))
5139 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
5140 else if (!strcmp(name, "sockcreate"))
5141 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
5142 else if (!strcmp(name, "current"))
5143 error = task_has_perm(current, p, PROCESS__SETCURRENT);
5144 else
5145 error = -EINVAL;
5146 if (error)
5147 return error;
5148
5149 /* Obtain a SID for the context, if one was specified. */
5150 if (size && str[1] && str[1] != '\n') {
5151 if (str[size-1] == '\n') {
5152 str[size-1] = 0;
5153 size--;
5154 }
5155 error = security_context_to_sid(value, size, &sid);
5156 if (error)
5157 return error;
5158 }
5159
5160 /* Permission checking based on the specified context is
5161 performed during the actual operation (execve,
5162 open/mkdir/...), when we know the full context of the
5163 operation. See selinux_bprm_set_security for the execve
5164 checks and may_create for the file creation checks. The
5165 operation will then fail if the context is not permitted. */
5166 tsec = p->security;
5167 if (!strcmp(name, "exec"))
5168 tsec->exec_sid = sid;
5169 else if (!strcmp(name, "fscreate"))
5170 tsec->create_sid = sid;
5171 else if (!strcmp(name, "keycreate")) {
5172 error = may_create_key(sid, p);
5173 if (error)
5174 return error;
5175 tsec->keycreate_sid = sid;
5176 } else if (!strcmp(name, "sockcreate"))
5177 tsec->sockcreate_sid = sid;
5178 else if (!strcmp(name, "current")) {
5179 struct av_decision avd;
5180
5181 if (sid == 0)
5182 return -EINVAL;
5183
5184 /* Only allow single threaded processes to change context */
5185 if (atomic_read(&p->mm->mm_users) != 1) {
5186 struct task_struct *g, *t;
5187 struct mm_struct *mm = p->mm;
5188 read_lock(&tasklist_lock);
5189 do_each_thread(g, t)
5190 if (t->mm == mm && t != p) {
5191 read_unlock(&tasklist_lock);
5192 return -EPERM;
5193 }
5194 while_each_thread(g, t);
5195 read_unlock(&tasklist_lock);
5196 }
5197
5198 /* Check permissions for the transition. */
5199 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5200 PROCESS__DYNTRANSITION, NULL);
5201 if (error)
5202 return error;
5203
5204 /* Check for ptracing, and update the task SID if ok.
5205 Otherwise, leave SID unchanged and fail. */
5206 task_lock(p);
5207 rcu_read_lock();
5208 tracer = task_tracer_task(p);
5209 if (tracer != NULL) {
5210 struct task_security_struct *ptsec = tracer->security;
5211 u32 ptsid = ptsec->sid;
5212 rcu_read_unlock();
5213 error = avc_has_perm_noaudit(ptsid, sid,
5214 SECCLASS_PROCESS,
5215 PROCESS__PTRACE, 0, &avd);
5216 if (!error)
5217 tsec->sid = sid;
5218 task_unlock(p);
5219 avc_audit(ptsid, sid, SECCLASS_PROCESS,
5220 PROCESS__PTRACE, &avd, error, NULL);
5221 if (error)
5222 return error;
5223 } else {
5224 rcu_read_unlock();
5225 tsec->sid = sid;
5226 task_unlock(p);
5227 }
5228 } else
5229 return -EINVAL;
5230
5231 return size;
5232}
5233
5234static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5235{
5236 return security_sid_to_context(secid, secdata, seclen);
5237}
5238
5239static int selinux_secctx_to_secid(char *secdata, u32 seclen, u32 *secid)
5240{
5241 return security_context_to_sid(secdata, seclen, secid);
5242}
5243
5244static void selinux_release_secctx(char *secdata, u32 seclen)
5245{
5246 kfree(secdata);
5247}
5248
5249#ifdef CONFIG_KEYS
5250
5251static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
5252 unsigned long flags)
5253{
5254 struct task_security_struct *tsec = tsk->security;
5255 struct key_security_struct *ksec;
5256
5257 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5258 if (!ksec)
5259 return -ENOMEM;
5260
5261 if (tsec->keycreate_sid)
5262 ksec->sid = tsec->keycreate_sid;
5263 else
5264 ksec->sid = tsec->sid;
5265 k->security = ksec;
5266
5267 return 0;
5268}
5269
5270static void selinux_key_free(struct key *k)
5271{
5272 struct key_security_struct *ksec = k->security;
5273
5274 k->security = NULL;
5275 kfree(ksec);
5276}
5277
5278static int selinux_key_permission(key_ref_t key_ref,
5279 struct task_struct *ctx,
5280 key_perm_t perm)
5281{
5282 struct key *key;
5283 struct task_security_struct *tsec;
5284 struct key_security_struct *ksec;
5285
5286 key = key_ref_to_ptr(key_ref);
5287
5288 tsec = ctx->security;
5289 ksec = key->security;
5290
5291 /* if no specific permissions are requested, we skip the
5292 permission check. No serious, additional covert channels
5293 appear to be created. */
5294 if (perm == 0)
5295 return 0;
5296
5297 return avc_has_perm(tsec->sid, ksec->sid,
5298 SECCLASS_KEY, perm, NULL);
5299}
5300
5301#endif
5302
5303static struct security_operations selinux_ops = {
5304 .name = "selinux",
5305
5306 .ptrace = selinux_ptrace,
5307 .capget = selinux_capget,
5308 .capset_check = selinux_capset_check,
5309 .capset_set = selinux_capset_set,
5310 .sysctl = selinux_sysctl,
5311 .capable = selinux_capable,
5312 .quotactl = selinux_quotactl,
5313 .quota_on = selinux_quota_on,
5314 .syslog = selinux_syslog,
5315 .vm_enough_memory = selinux_vm_enough_memory,
5316
5317 .netlink_send = selinux_netlink_send,
5318 .netlink_recv = selinux_netlink_recv,
5319
5320 .bprm_alloc_security = selinux_bprm_alloc_security,
5321 .bprm_free_security = selinux_bprm_free_security,
5322 .bprm_apply_creds = selinux_bprm_apply_creds,
5323 .bprm_post_apply_creds = selinux_bprm_post_apply_creds,
5324 .bprm_set_security = selinux_bprm_set_security,
5325 .bprm_check_security = selinux_bprm_check_security,
5326 .bprm_secureexec = selinux_bprm_secureexec,
5327
5328 .sb_alloc_security = selinux_sb_alloc_security,
5329 .sb_free_security = selinux_sb_free_security,
5330 .sb_copy_data = selinux_sb_copy_data,
5331 .sb_kern_mount = selinux_sb_kern_mount,
5332 .sb_statfs = selinux_sb_statfs,
5333 .sb_mount = selinux_mount,
5334 .sb_umount = selinux_umount,
5335 .sb_get_mnt_opts = selinux_get_mnt_opts,
5336 .sb_set_mnt_opts = selinux_set_mnt_opts,
5337 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts,
5338 .sb_parse_opts_str = selinux_parse_opts_str,
5339
5340
5341 .inode_alloc_security = selinux_inode_alloc_security,
5342 .inode_free_security = selinux_inode_free_security,
5343 .inode_init_security = selinux_inode_init_security,
5344 .inode_create = selinux_inode_create,
5345 .inode_link = selinux_inode_link,
5346 .inode_unlink = selinux_inode_unlink,
5347 .inode_symlink = selinux_inode_symlink,
5348 .inode_mkdir = selinux_inode_mkdir,
5349 .inode_rmdir = selinux_inode_rmdir,
5350 .inode_mknod = selinux_inode_mknod,
5351 .inode_rename = selinux_inode_rename,
5352 .inode_readlink = selinux_inode_readlink,
5353 .inode_follow_link = selinux_inode_follow_link,
5354 .inode_permission = selinux_inode_permission,
5355 .inode_setattr = selinux_inode_setattr,
5356 .inode_getattr = selinux_inode_getattr,
5357 .inode_setxattr = selinux_inode_setxattr,
5358 .inode_post_setxattr = selinux_inode_post_setxattr,
5359 .inode_getxattr = selinux_inode_getxattr,
5360 .inode_listxattr = selinux_inode_listxattr,
5361 .inode_removexattr = selinux_inode_removexattr,
5362 .inode_getsecurity = selinux_inode_getsecurity,
5363 .inode_setsecurity = selinux_inode_setsecurity,
5364 .inode_listsecurity = selinux_inode_listsecurity,
5365 .inode_need_killpriv = selinux_inode_need_killpriv,
5366 .inode_killpriv = selinux_inode_killpriv,
5367 .inode_getsecid = selinux_inode_getsecid,
5368
5369 .file_permission = selinux_file_permission,
5370 .file_alloc_security = selinux_file_alloc_security,
5371 .file_free_security = selinux_file_free_security,
5372 .file_ioctl = selinux_file_ioctl,
5373 .file_mmap = selinux_file_mmap,
5374 .file_mprotect = selinux_file_mprotect,
5375 .file_lock = selinux_file_lock,
5376 .file_fcntl = selinux_file_fcntl,
5377 .file_set_fowner = selinux_file_set_fowner,
5378 .file_send_sigiotask = selinux_file_send_sigiotask,
5379 .file_receive = selinux_file_receive,
5380
5381 .dentry_open = selinux_dentry_open,
5382
5383 .task_create = selinux_task_create,
5384 .task_alloc_security = selinux_task_alloc_security,
5385 .task_free_security = selinux_task_free_security,
5386 .task_setuid = selinux_task_setuid,
5387 .task_post_setuid = selinux_task_post_setuid,
5388 .task_setgid = selinux_task_setgid,
5389 .task_setpgid = selinux_task_setpgid,
5390 .task_getpgid = selinux_task_getpgid,
5391 .task_getsid = selinux_task_getsid,
5392 .task_getsecid = selinux_task_getsecid,
5393 .task_setgroups = selinux_task_setgroups,
5394 .task_setnice = selinux_task_setnice,
5395 .task_setioprio = selinux_task_setioprio,
5396 .task_getioprio = selinux_task_getioprio,
5397 .task_setrlimit = selinux_task_setrlimit,
5398 .task_setscheduler = selinux_task_setscheduler,
5399 .task_getscheduler = selinux_task_getscheduler,
5400 .task_movememory = selinux_task_movememory,
5401 .task_kill = selinux_task_kill,
5402 .task_wait = selinux_task_wait,
5403 .task_prctl = selinux_task_prctl,
5404 .task_reparent_to_init = selinux_task_reparent_to_init,
5405 .task_to_inode = selinux_task_to_inode,
5406
5407 .ipc_permission = selinux_ipc_permission,
5408 .ipc_getsecid = selinux_ipc_getsecid,
5409
5410 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
5411 .msg_msg_free_security = selinux_msg_msg_free_security,
5412
5413 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
5414 .msg_queue_free_security = selinux_msg_queue_free_security,
5415 .msg_queue_associate = selinux_msg_queue_associate,
5416 .msg_queue_msgctl = selinux_msg_queue_msgctl,
5417 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
5418 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
5419
5420 .shm_alloc_security = selinux_shm_alloc_security,
5421 .shm_free_security = selinux_shm_free_security,
5422 .shm_associate = selinux_shm_associate,
5423 .shm_shmctl = selinux_shm_shmctl,
5424 .shm_shmat = selinux_shm_shmat,
5425
5426 .sem_alloc_security = selinux_sem_alloc_security,
5427 .sem_free_security = selinux_sem_free_security,
5428 .sem_associate = selinux_sem_associate,
5429 .sem_semctl = selinux_sem_semctl,
5430 .sem_semop = selinux_sem_semop,
5431
5432 .register_security = selinux_register_security,
5433
5434 .d_instantiate = selinux_d_instantiate,
5435
5436 .getprocattr = selinux_getprocattr,
5437 .setprocattr = selinux_setprocattr,
5438
5439 .secid_to_secctx = selinux_secid_to_secctx,
5440 .secctx_to_secid = selinux_secctx_to_secid,
5441 .release_secctx = selinux_release_secctx,
5442
5443 .unix_stream_connect = selinux_socket_unix_stream_connect,
5444 .unix_may_send = selinux_socket_unix_may_send,
5445
5446 .socket_create = selinux_socket_create,
5447 .socket_post_create = selinux_socket_post_create,
5448 .socket_bind = selinux_socket_bind,
5449 .socket_connect = selinux_socket_connect,
5450 .socket_listen = selinux_socket_listen,
5451 .socket_accept = selinux_socket_accept,
5452 .socket_sendmsg = selinux_socket_sendmsg,
5453 .socket_recvmsg = selinux_socket_recvmsg,
5454 .socket_getsockname = selinux_socket_getsockname,
5455 .socket_getpeername = selinux_socket_getpeername,
5456 .socket_getsockopt = selinux_socket_getsockopt,
5457 .socket_setsockopt = selinux_socket_setsockopt,
5458 .socket_shutdown = selinux_socket_shutdown,
5459 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
5460 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
5461 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
5462 .sk_alloc_security = selinux_sk_alloc_security,
5463 .sk_free_security = selinux_sk_free_security,
5464 .sk_clone_security = selinux_sk_clone_security,
5465 .sk_getsecid = selinux_sk_getsecid,
5466 .sock_graft = selinux_sock_graft,
5467 .inet_conn_request = selinux_inet_conn_request,
5468 .inet_csk_clone = selinux_inet_csk_clone,
5469 .inet_conn_established = selinux_inet_conn_established,
5470 .req_classify_flow = selinux_req_classify_flow,
5471
5472#ifdef CONFIG_SECURITY_NETWORK_XFRM
5473 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
5474 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
5475 .xfrm_policy_free_security = selinux_xfrm_policy_free,
5476 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
5477 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
5478 .xfrm_state_free_security = selinux_xfrm_state_free,
5479 .xfrm_state_delete_security = selinux_xfrm_state_delete,
5480 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
5481 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
5482 .xfrm_decode_session = selinux_xfrm_decode_session,
5483#endif
5484
5485#ifdef CONFIG_KEYS
5486 .key_alloc = selinux_key_alloc,
5487 .key_free = selinux_key_free,
5488 .key_permission = selinux_key_permission,
5489#endif
5490
5491#ifdef CONFIG_AUDIT
5492 .audit_rule_init = selinux_audit_rule_init,
5493 .audit_rule_known = selinux_audit_rule_known,
5494 .audit_rule_match = selinux_audit_rule_match,
5495 .audit_rule_free = selinux_audit_rule_free,
5496#endif
5497};
5498
5499static __init int selinux_init(void)
5500{
5501 struct task_security_struct *tsec;
5502
5503 if (!security_module_enable(&selinux_ops)) {
5504 selinux_enabled = 0;
5505 return 0;
5506 }
5507
5508 if (!selinux_enabled) {
5509 printk(KERN_INFO "SELinux: Disabled at boot.\n");
5510 return 0;
5511 }
5512
5513 printk(KERN_INFO "SELinux: Initializing.\n");
5514
5515 /* Set the security state for the initial task. */
5516 if (task_alloc_security(current))
5517 panic("SELinux: Failed to initialize initial task.\n");
5518 tsec = current->security;
5519 tsec->osid = tsec->sid = SECINITSID_KERNEL;
5520
5521 sel_inode_cache = kmem_cache_create("selinux_inode_security",
5522 sizeof(struct inode_security_struct),
5523 0, SLAB_PANIC, NULL);
5524 avc_init();
5525
5526 original_ops = secondary_ops = security_ops;
5527 if (!secondary_ops)
5528 panic("SELinux: No initial security operations\n");
5529 if (register_security(&selinux_ops))
5530 panic("SELinux: Unable to register with kernel.\n");
5531
5532 if (selinux_enforcing)
5533 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
5534 else
5535 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
5536
5537#ifdef CONFIG_KEYS
5538 /* Add security information to initial keyrings */
5539 selinux_key_alloc(&root_user_keyring, current,
5540 KEY_ALLOC_NOT_IN_QUOTA);
5541 selinux_key_alloc(&root_session_keyring, current,
5542 KEY_ALLOC_NOT_IN_QUOTA);
5543#endif
5544
5545 return 0;
5546}
5547
5548void selinux_complete_init(void)
5549{
5550 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
5551
5552 /* Set up any superblocks initialized prior to the policy load. */
5553 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
5554 spin_lock(&sb_lock);
5555 spin_lock(&sb_security_lock);
5556next_sb:
5557 if (!list_empty(&superblock_security_head)) {
5558 struct superblock_security_struct *sbsec =
5559 list_entry(superblock_security_head.next,
5560 struct superblock_security_struct,
5561 list);
5562 struct super_block *sb = sbsec->sb;
5563 sb->s_count++;
5564 spin_unlock(&sb_security_lock);
5565 spin_unlock(&sb_lock);
5566 down_read(&sb->s_umount);
5567 if (sb->s_root)
5568 superblock_doinit(sb, NULL);
5569 drop_super(sb);
5570 spin_lock(&sb_lock);
5571 spin_lock(&sb_security_lock);
5572 list_del_init(&sbsec->list);
5573 goto next_sb;
5574 }
5575 spin_unlock(&sb_security_lock);
5576 spin_unlock(&sb_lock);
5577}
5578
5579/* SELinux requires early initialization in order to label
5580 all processes and objects when they are created. */
5581security_initcall(selinux_init);
5582
5583#if defined(CONFIG_NETFILTER)
5584
5585static struct nf_hook_ops selinux_ipv4_ops[] = {
5586 {
5587 .hook = selinux_ipv4_postroute,
5588 .owner = THIS_MODULE,
5589 .pf = PF_INET,
5590 .hooknum = NF_INET_POST_ROUTING,
5591 .priority = NF_IP_PRI_SELINUX_LAST,
5592 },
5593 {
5594 .hook = selinux_ipv4_forward,
5595 .owner = THIS_MODULE,
5596 .pf = PF_INET,
5597 .hooknum = NF_INET_FORWARD,
5598 .priority = NF_IP_PRI_SELINUX_FIRST,
5599 }
5600};
5601
5602#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5603
5604static struct nf_hook_ops selinux_ipv6_ops[] = {
5605 {
5606 .hook = selinux_ipv6_postroute,
5607 .owner = THIS_MODULE,
5608 .pf = PF_INET6,
5609 .hooknum = NF_INET_POST_ROUTING,
5610 .priority = NF_IP6_PRI_SELINUX_LAST,
5611 },
5612 {
5613 .hook = selinux_ipv6_forward,
5614 .owner = THIS_MODULE,
5615 .pf = PF_INET6,
5616 .hooknum = NF_INET_FORWARD,
5617 .priority = NF_IP6_PRI_SELINUX_FIRST,
5618 }
5619};
5620
5621#endif /* IPV6 */
5622
5623static int __init selinux_nf_ip_init(void)
5624{
5625 int err = 0;
5626 u32 iter;
5627
5628 if (!selinux_enabled)
5629 goto out;
5630
5631 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
5632
5633 for (iter = 0; iter < ARRAY_SIZE(selinux_ipv4_ops); iter++) {
5634 err = nf_register_hook(&selinux_ipv4_ops[iter]);
5635 if (err)
5636 panic("SELinux: nf_register_hook for IPv4: error %d\n",
5637 err);
5638 }
5639
5640#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5641 for (iter = 0; iter < ARRAY_SIZE(selinux_ipv6_ops); iter++) {
5642 err = nf_register_hook(&selinux_ipv6_ops[iter]);
5643 if (err)
5644 panic("SELinux: nf_register_hook for IPv6: error %d\n",
5645 err);
5646 }
5647#endif /* IPV6 */
5648
5649out:
5650 return err;
5651}
5652
5653__initcall(selinux_nf_ip_init);
5654
5655#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5656static void selinux_nf_ip_exit(void)
5657{
5658 u32 iter;
5659
5660 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
5661
5662 for (iter = 0; iter < ARRAY_SIZE(selinux_ipv4_ops); iter++)
5663 nf_unregister_hook(&selinux_ipv4_ops[iter]);
5664#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5665 for (iter = 0; iter < ARRAY_SIZE(selinux_ipv6_ops); iter++)
5666 nf_unregister_hook(&selinux_ipv6_ops[iter]);
5667#endif /* IPV6 */
5668}
5669#endif
5670
5671#else /* CONFIG_NETFILTER */
5672
5673#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5674#define selinux_nf_ip_exit()
5675#endif
5676
5677#endif /* CONFIG_NETFILTER */
5678
5679#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5680static int selinux_disabled;
5681
5682int selinux_disable(void)
5683{
5684 extern void exit_sel_fs(void);
5685
5686 if (ss_initialized) {
5687 /* Not permitted after initial policy load. */
5688 return -EINVAL;
5689 }
5690
5691 if (selinux_disabled) {
5692 /* Only do this once. */
5693 return -EINVAL;
5694 }
5695
5696 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
5697
5698 selinux_disabled = 1;
5699 selinux_enabled = 0;
5700
5701 /* Reset security_ops to the secondary module, dummy or capability. */
5702 security_ops = secondary_ops;
5703
5704 /* Unregister netfilter hooks. */
5705 selinux_nf_ip_exit();
5706
5707 /* Unregister selinuxfs. */
5708 exit_sel_fs();
5709
5710 return 0;
5711}
5712#endif