]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - security/keys/key.c
xps: Transmit Packet Steering
[net-next-2.6.git] / security / keys / key.c
... / ...
CommitLineData
1/* Basic authentication token and access key management
2 *
3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/poison.h>
15#include <linux/sched.h>
16#include <linux/slab.h>
17#include <linux/security.h>
18#include <linux/workqueue.h>
19#include <linux/random.h>
20#include <linux/err.h>
21#include <linux/user_namespace.h>
22#include "internal.h"
23
24static struct kmem_cache *key_jar;
25struct rb_root key_serial_tree; /* tree of keys indexed by serial */
26DEFINE_SPINLOCK(key_serial_lock);
27
28struct rb_root key_user_tree; /* tree of quota records indexed by UID */
29DEFINE_SPINLOCK(key_user_lock);
30
31unsigned int key_quota_root_maxkeys = 200; /* root's key count quota */
32unsigned int key_quota_root_maxbytes = 20000; /* root's key space quota */
33unsigned int key_quota_maxkeys = 200; /* general key count quota */
34unsigned int key_quota_maxbytes = 20000; /* general key space quota */
35
36static LIST_HEAD(key_types_list);
37static DECLARE_RWSEM(key_types_sem);
38
39static void key_cleanup(struct work_struct *work);
40static DECLARE_WORK(key_cleanup_task, key_cleanup);
41
42/* we serialise key instantiation and link */
43DEFINE_MUTEX(key_construction_mutex);
44
45/* any key who's type gets unegistered will be re-typed to this */
46static struct key_type key_type_dead = {
47 .name = "dead",
48};
49
50#ifdef KEY_DEBUGGING
51void __key_check(const struct key *key)
52{
53 printk("__key_check: key %p {%08x} should be {%08x}\n",
54 key, key->magic, KEY_DEBUG_MAGIC);
55 BUG();
56}
57#endif
58
59/*****************************************************************************/
60/*
61 * get the key quota record for a user, allocating a new record if one doesn't
62 * already exist
63 */
64struct key_user *key_user_lookup(uid_t uid, struct user_namespace *user_ns)
65{
66 struct key_user *candidate = NULL, *user;
67 struct rb_node *parent = NULL;
68 struct rb_node **p;
69
70 try_again:
71 p = &key_user_tree.rb_node;
72 spin_lock(&key_user_lock);
73
74 /* search the tree for a user record with a matching UID */
75 while (*p) {
76 parent = *p;
77 user = rb_entry(parent, struct key_user, node);
78
79 if (uid < user->uid)
80 p = &(*p)->rb_left;
81 else if (uid > user->uid)
82 p = &(*p)->rb_right;
83 else if (user_ns < user->user_ns)
84 p = &(*p)->rb_left;
85 else if (user_ns > user->user_ns)
86 p = &(*p)->rb_right;
87 else
88 goto found;
89 }
90
91 /* if we get here, we failed to find a match in the tree */
92 if (!candidate) {
93 /* allocate a candidate user record if we don't already have
94 * one */
95 spin_unlock(&key_user_lock);
96
97 user = NULL;
98 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
99 if (unlikely(!candidate))
100 goto out;
101
102 /* the allocation may have scheduled, so we need to repeat the
103 * search lest someone else added the record whilst we were
104 * asleep */
105 goto try_again;
106 }
107
108 /* if we get here, then the user record still hadn't appeared on the
109 * second pass - so we use the candidate record */
110 atomic_set(&candidate->usage, 1);
111 atomic_set(&candidate->nkeys, 0);
112 atomic_set(&candidate->nikeys, 0);
113 candidate->uid = uid;
114 candidate->user_ns = get_user_ns(user_ns);
115 candidate->qnkeys = 0;
116 candidate->qnbytes = 0;
117 spin_lock_init(&candidate->lock);
118 mutex_init(&candidate->cons_lock);
119
120 rb_link_node(&candidate->node, parent, p);
121 rb_insert_color(&candidate->node, &key_user_tree);
122 spin_unlock(&key_user_lock);
123 user = candidate;
124 goto out;
125
126 /* okay - we found a user record for this UID */
127 found:
128 atomic_inc(&user->usage);
129 spin_unlock(&key_user_lock);
130 kfree(candidate);
131 out:
132 return user;
133
134} /* end key_user_lookup() */
135
136/*****************************************************************************/
137/*
138 * dispose of a user structure
139 */
140void key_user_put(struct key_user *user)
141{
142 if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
143 rb_erase(&user->node, &key_user_tree);
144 spin_unlock(&key_user_lock);
145 put_user_ns(user->user_ns);
146
147 kfree(user);
148 }
149
150} /* end key_user_put() */
151
152/*****************************************************************************/
153/*
154 * assign a key the next unique serial number
155 * - these are assigned randomly to avoid security issues through covert
156 * channel problems
157 */
158static inline void key_alloc_serial(struct key *key)
159{
160 struct rb_node *parent, **p;
161 struct key *xkey;
162
163 /* propose a random serial number and look for a hole for it in the
164 * serial number tree */
165 do {
166 get_random_bytes(&key->serial, sizeof(key->serial));
167
168 key->serial >>= 1; /* negative numbers are not permitted */
169 } while (key->serial < 3);
170
171 spin_lock(&key_serial_lock);
172
173attempt_insertion:
174 parent = NULL;
175 p = &key_serial_tree.rb_node;
176
177 while (*p) {
178 parent = *p;
179 xkey = rb_entry(parent, struct key, serial_node);
180
181 if (key->serial < xkey->serial)
182 p = &(*p)->rb_left;
183 else if (key->serial > xkey->serial)
184 p = &(*p)->rb_right;
185 else
186 goto serial_exists;
187 }
188
189 /* we've found a suitable hole - arrange for this key to occupy it */
190 rb_link_node(&key->serial_node, parent, p);
191 rb_insert_color(&key->serial_node, &key_serial_tree);
192
193 spin_unlock(&key_serial_lock);
194 return;
195
196 /* we found a key with the proposed serial number - walk the tree from
197 * that point looking for the next unused serial number */
198serial_exists:
199 for (;;) {
200 key->serial++;
201 if (key->serial < 3) {
202 key->serial = 3;
203 goto attempt_insertion;
204 }
205
206 parent = rb_next(parent);
207 if (!parent)
208 goto attempt_insertion;
209
210 xkey = rb_entry(parent, struct key, serial_node);
211 if (key->serial < xkey->serial)
212 goto attempt_insertion;
213 }
214
215} /* end key_alloc_serial() */
216
217/*****************************************************************************/
218/*
219 * allocate a key of the specified type
220 * - update the user's quota to reflect the existence of the key
221 * - called from a key-type operation with key_types_sem read-locked by
222 * key_create_or_update()
223 * - this prevents unregistration of the key type
224 * - upon return the key is as yet uninstantiated; the caller needs to either
225 * instantiate the key or discard it before returning
226 */
227struct key *key_alloc(struct key_type *type, const char *desc,
228 uid_t uid, gid_t gid, const struct cred *cred,
229 key_perm_t perm, unsigned long flags)
230{
231 struct key_user *user = NULL;
232 struct key *key;
233 size_t desclen, quotalen;
234 int ret;
235
236 key = ERR_PTR(-EINVAL);
237 if (!desc || !*desc)
238 goto error;
239
240 desclen = strlen(desc) + 1;
241 quotalen = desclen + type->def_datalen;
242
243 /* get hold of the key tracking for this user */
244 user = key_user_lookup(uid, cred->user->user_ns);
245 if (!user)
246 goto no_memory_1;
247
248 /* check that the user's quota permits allocation of another key and
249 * its description */
250 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
251 unsigned maxkeys = (uid == 0) ?
252 key_quota_root_maxkeys : key_quota_maxkeys;
253 unsigned maxbytes = (uid == 0) ?
254 key_quota_root_maxbytes : key_quota_maxbytes;
255
256 spin_lock(&user->lock);
257 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
258 if (user->qnkeys + 1 >= maxkeys ||
259 user->qnbytes + quotalen >= maxbytes ||
260 user->qnbytes + quotalen < user->qnbytes)
261 goto no_quota;
262 }
263
264 user->qnkeys++;
265 user->qnbytes += quotalen;
266 spin_unlock(&user->lock);
267 }
268
269 /* allocate and initialise the key and its description */
270 key = kmem_cache_alloc(key_jar, GFP_KERNEL);
271 if (!key)
272 goto no_memory_2;
273
274 if (desc) {
275 key->description = kmemdup(desc, desclen, GFP_KERNEL);
276 if (!key->description)
277 goto no_memory_3;
278 }
279
280 atomic_set(&key->usage, 1);
281 init_rwsem(&key->sem);
282 key->type = type;
283 key->user = user;
284 key->quotalen = quotalen;
285 key->datalen = type->def_datalen;
286 key->uid = uid;
287 key->gid = gid;
288 key->perm = perm;
289 key->flags = 0;
290 key->expiry = 0;
291 key->payload.data = NULL;
292 key->security = NULL;
293
294 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
295 key->flags |= 1 << KEY_FLAG_IN_QUOTA;
296
297 memset(&key->type_data, 0, sizeof(key->type_data));
298
299#ifdef KEY_DEBUGGING
300 key->magic = KEY_DEBUG_MAGIC;
301#endif
302
303 /* let the security module know about the key */
304 ret = security_key_alloc(key, cred, flags);
305 if (ret < 0)
306 goto security_error;
307
308 /* publish the key by giving it a serial number */
309 atomic_inc(&user->nkeys);
310 key_alloc_serial(key);
311
312error:
313 return key;
314
315security_error:
316 kfree(key->description);
317 kmem_cache_free(key_jar, key);
318 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
319 spin_lock(&user->lock);
320 user->qnkeys--;
321 user->qnbytes -= quotalen;
322 spin_unlock(&user->lock);
323 }
324 key_user_put(user);
325 key = ERR_PTR(ret);
326 goto error;
327
328no_memory_3:
329 kmem_cache_free(key_jar, key);
330no_memory_2:
331 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
332 spin_lock(&user->lock);
333 user->qnkeys--;
334 user->qnbytes -= quotalen;
335 spin_unlock(&user->lock);
336 }
337 key_user_put(user);
338no_memory_1:
339 key = ERR_PTR(-ENOMEM);
340 goto error;
341
342no_quota:
343 spin_unlock(&user->lock);
344 key_user_put(user);
345 key = ERR_PTR(-EDQUOT);
346 goto error;
347
348} /* end key_alloc() */
349
350EXPORT_SYMBOL(key_alloc);
351
352/*****************************************************************************/
353/*
354 * reserve an amount of quota for the key's payload
355 */
356int key_payload_reserve(struct key *key, size_t datalen)
357{
358 int delta = (int)datalen - key->datalen;
359 int ret = 0;
360
361 key_check(key);
362
363 /* contemplate the quota adjustment */
364 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
365 unsigned maxbytes = (key->user->uid == 0) ?
366 key_quota_root_maxbytes : key_quota_maxbytes;
367
368 spin_lock(&key->user->lock);
369
370 if (delta > 0 &&
371 (key->user->qnbytes + delta >= maxbytes ||
372 key->user->qnbytes + delta < key->user->qnbytes)) {
373 ret = -EDQUOT;
374 }
375 else {
376 key->user->qnbytes += delta;
377 key->quotalen += delta;
378 }
379 spin_unlock(&key->user->lock);
380 }
381
382 /* change the recorded data length if that didn't generate an error */
383 if (ret == 0)
384 key->datalen = datalen;
385
386 return ret;
387
388} /* end key_payload_reserve() */
389
390EXPORT_SYMBOL(key_payload_reserve);
391
392/*****************************************************************************/
393/*
394 * instantiate a key and link it into the target keyring atomically
395 * - called with the target keyring's semaphore writelocked
396 */
397static int __key_instantiate_and_link(struct key *key,
398 const void *data,
399 size_t datalen,
400 struct key *keyring,
401 struct key *authkey,
402 struct keyring_list **_prealloc)
403{
404 int ret, awaken;
405
406 key_check(key);
407 key_check(keyring);
408
409 awaken = 0;
410 ret = -EBUSY;
411
412 mutex_lock(&key_construction_mutex);
413
414 /* can't instantiate twice */
415 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
416 /* instantiate the key */
417 ret = key->type->instantiate(key, data, datalen);
418
419 if (ret == 0) {
420 /* mark the key as being instantiated */
421 atomic_inc(&key->user->nikeys);
422 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
423
424 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
425 awaken = 1;
426
427 /* and link it into the destination keyring */
428 if (keyring)
429 __key_link(keyring, key, _prealloc);
430
431 /* disable the authorisation key */
432 if (authkey)
433 key_revoke(authkey);
434 }
435 }
436
437 mutex_unlock(&key_construction_mutex);
438
439 /* wake up anyone waiting for a key to be constructed */
440 if (awaken)
441 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
442
443 return ret;
444
445} /* end __key_instantiate_and_link() */
446
447/*****************************************************************************/
448/*
449 * instantiate a key and link it into the target keyring atomically
450 */
451int key_instantiate_and_link(struct key *key,
452 const void *data,
453 size_t datalen,
454 struct key *keyring,
455 struct key *authkey)
456{
457 struct keyring_list *prealloc;
458 int ret;
459
460 if (keyring) {
461 ret = __key_link_begin(keyring, key->type, key->description,
462 &prealloc);
463 if (ret < 0)
464 return ret;
465 }
466
467 ret = __key_instantiate_and_link(key, data, datalen, keyring, authkey,
468 &prealloc);
469
470 if (keyring)
471 __key_link_end(keyring, key->type, prealloc);
472
473 return ret;
474
475} /* end key_instantiate_and_link() */
476
477EXPORT_SYMBOL(key_instantiate_and_link);
478
479/*****************************************************************************/
480/*
481 * negatively instantiate a key and link it into the target keyring atomically
482 */
483int key_negate_and_link(struct key *key,
484 unsigned timeout,
485 struct key *keyring,
486 struct key *authkey)
487{
488 struct keyring_list *prealloc;
489 struct timespec now;
490 int ret, awaken, link_ret = 0;
491
492 key_check(key);
493 key_check(keyring);
494
495 awaken = 0;
496 ret = -EBUSY;
497
498 if (keyring)
499 link_ret = __key_link_begin(keyring, key->type,
500 key->description, &prealloc);
501
502 mutex_lock(&key_construction_mutex);
503
504 /* can't instantiate twice */
505 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
506 /* mark the key as being negatively instantiated */
507 atomic_inc(&key->user->nikeys);
508 set_bit(KEY_FLAG_NEGATIVE, &key->flags);
509 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
510 now = current_kernel_time();
511 key->expiry = now.tv_sec + timeout;
512 key_schedule_gc(key->expiry + key_gc_delay);
513
514 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
515 awaken = 1;
516
517 ret = 0;
518
519 /* and link it into the destination keyring */
520 if (keyring && link_ret == 0)
521 __key_link(keyring, key, &prealloc);
522
523 /* disable the authorisation key */
524 if (authkey)
525 key_revoke(authkey);
526 }
527
528 mutex_unlock(&key_construction_mutex);
529
530 if (keyring)
531 __key_link_end(keyring, key->type, prealloc);
532
533 /* wake up anyone waiting for a key to be constructed */
534 if (awaken)
535 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
536
537 return ret == 0 ? link_ret : ret;
538
539} /* end key_negate_and_link() */
540
541EXPORT_SYMBOL(key_negate_and_link);
542
543/*****************************************************************************/
544/*
545 * do cleaning up in process context so that we don't have to disable
546 * interrupts all over the place
547 */
548static void key_cleanup(struct work_struct *work)
549{
550 struct rb_node *_n;
551 struct key *key;
552
553 go_again:
554 /* look for a dead key in the tree */
555 spin_lock(&key_serial_lock);
556
557 for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
558 key = rb_entry(_n, struct key, serial_node);
559
560 if (atomic_read(&key->usage) == 0)
561 goto found_dead_key;
562 }
563
564 spin_unlock(&key_serial_lock);
565 return;
566
567 found_dead_key:
568 /* we found a dead key - once we've removed it from the tree, we can
569 * drop the lock */
570 rb_erase(&key->serial_node, &key_serial_tree);
571 spin_unlock(&key_serial_lock);
572
573 key_check(key);
574
575 security_key_free(key);
576
577 /* deal with the user's key tracking and quota */
578 if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
579 spin_lock(&key->user->lock);
580 key->user->qnkeys--;
581 key->user->qnbytes -= key->quotalen;
582 spin_unlock(&key->user->lock);
583 }
584
585 atomic_dec(&key->user->nkeys);
586 if (test_bit(KEY_FLAG_INSTANTIATED, &key->flags))
587 atomic_dec(&key->user->nikeys);
588
589 key_user_put(key->user);
590
591 /* now throw away the key memory */
592 if (key->type->destroy)
593 key->type->destroy(key);
594
595 kfree(key->description);
596
597#ifdef KEY_DEBUGGING
598 key->magic = KEY_DEBUG_MAGIC_X;
599#endif
600 kmem_cache_free(key_jar, key);
601
602 /* there may, of course, be more than one key to destroy */
603 goto go_again;
604
605} /* end key_cleanup() */
606
607/*****************************************************************************/
608/*
609 * dispose of a reference to a key
610 * - when all the references are gone, we schedule the cleanup task to come and
611 * pull it out of the tree in definite process context
612 */
613void key_put(struct key *key)
614{
615 if (key) {
616 key_check(key);
617
618 if (atomic_dec_and_test(&key->usage))
619 schedule_work(&key_cleanup_task);
620 }
621
622} /* end key_put() */
623
624EXPORT_SYMBOL(key_put);
625
626/*****************************************************************************/
627/*
628 * find a key by its serial number
629 */
630struct key *key_lookup(key_serial_t id)
631{
632 struct rb_node *n;
633 struct key *key;
634
635 spin_lock(&key_serial_lock);
636
637 /* search the tree for the specified key */
638 n = key_serial_tree.rb_node;
639 while (n) {
640 key = rb_entry(n, struct key, serial_node);
641
642 if (id < key->serial)
643 n = n->rb_left;
644 else if (id > key->serial)
645 n = n->rb_right;
646 else
647 goto found;
648 }
649
650 not_found:
651 key = ERR_PTR(-ENOKEY);
652 goto error;
653
654 found:
655 /* pretend it doesn't exist if it is awaiting deletion */
656 if (atomic_read(&key->usage) == 0)
657 goto not_found;
658
659 /* this races with key_put(), but that doesn't matter since key_put()
660 * doesn't actually change the key
661 */
662 atomic_inc(&key->usage);
663
664 error:
665 spin_unlock(&key_serial_lock);
666 return key;
667
668} /* end key_lookup() */
669
670/*****************************************************************************/
671/*
672 * find and lock the specified key type against removal
673 * - we return with the sem readlocked
674 */
675struct key_type *key_type_lookup(const char *type)
676{
677 struct key_type *ktype;
678
679 down_read(&key_types_sem);
680
681 /* look up the key type to see if it's one of the registered kernel
682 * types */
683 list_for_each_entry(ktype, &key_types_list, link) {
684 if (strcmp(ktype->name, type) == 0)
685 goto found_kernel_type;
686 }
687
688 up_read(&key_types_sem);
689 ktype = ERR_PTR(-ENOKEY);
690
691 found_kernel_type:
692 return ktype;
693
694} /* end key_type_lookup() */
695
696/*****************************************************************************/
697/*
698 * unlock a key type
699 */
700void key_type_put(struct key_type *ktype)
701{
702 up_read(&key_types_sem);
703
704} /* end key_type_put() */
705
706/*****************************************************************************/
707/*
708 * attempt to update an existing key
709 * - the key has an incremented refcount
710 * - we need to put the key if we get an error
711 */
712static inline key_ref_t __key_update(key_ref_t key_ref,
713 const void *payload, size_t plen)
714{
715 struct key *key = key_ref_to_ptr(key_ref);
716 int ret;
717
718 /* need write permission on the key to update it */
719 ret = key_permission(key_ref, KEY_WRITE);
720 if (ret < 0)
721 goto error;
722
723 ret = -EEXIST;
724 if (!key->type->update)
725 goto error;
726
727 down_write(&key->sem);
728
729 ret = key->type->update(key, payload, plen);
730 if (ret == 0)
731 /* updating a negative key instantiates it */
732 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
733
734 up_write(&key->sem);
735
736 if (ret < 0)
737 goto error;
738out:
739 return key_ref;
740
741error:
742 key_put(key);
743 key_ref = ERR_PTR(ret);
744 goto out;
745
746} /* end __key_update() */
747
748/*****************************************************************************/
749/*
750 * search the specified keyring for a key of the same description; if one is
751 * found, update it, otherwise add a new one
752 */
753key_ref_t key_create_or_update(key_ref_t keyring_ref,
754 const char *type,
755 const char *description,
756 const void *payload,
757 size_t plen,
758 key_perm_t perm,
759 unsigned long flags)
760{
761 struct keyring_list *prealloc;
762 const struct cred *cred = current_cred();
763 struct key_type *ktype;
764 struct key *keyring, *key = NULL;
765 key_ref_t key_ref;
766 int ret;
767
768 /* look up the key type to see if it's one of the registered kernel
769 * types */
770 ktype = key_type_lookup(type);
771 if (IS_ERR(ktype)) {
772 key_ref = ERR_PTR(-ENODEV);
773 goto error;
774 }
775
776 key_ref = ERR_PTR(-EINVAL);
777 if (!ktype->match || !ktype->instantiate)
778 goto error_2;
779
780 keyring = key_ref_to_ptr(keyring_ref);
781
782 key_check(keyring);
783
784 key_ref = ERR_PTR(-ENOTDIR);
785 if (keyring->type != &key_type_keyring)
786 goto error_2;
787
788 ret = __key_link_begin(keyring, ktype, description, &prealloc);
789 if (ret < 0)
790 goto error_2;
791
792 /* if we're going to allocate a new key, we're going to have
793 * to modify the keyring */
794 ret = key_permission(keyring_ref, KEY_WRITE);
795 if (ret < 0) {
796 key_ref = ERR_PTR(ret);
797 goto error_3;
798 }
799
800 /* if it's possible to update this type of key, search for an existing
801 * key of the same type and description in the destination keyring and
802 * update that instead if possible
803 */
804 if (ktype->update) {
805 key_ref = __keyring_search_one(keyring_ref, ktype, description,
806 0);
807 if (!IS_ERR(key_ref))
808 goto found_matching_key;
809 }
810
811 /* if the client doesn't provide, decide on the permissions we want */
812 if (perm == KEY_PERM_UNDEF) {
813 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
814 perm |= KEY_USR_VIEW | KEY_USR_SEARCH | KEY_USR_LINK | KEY_USR_SETATTR;
815
816 if (ktype->read)
817 perm |= KEY_POS_READ | KEY_USR_READ;
818
819 if (ktype == &key_type_keyring || ktype->update)
820 perm |= KEY_USR_WRITE;
821 }
822
823 /* allocate a new key */
824 key = key_alloc(ktype, description, cred->fsuid, cred->fsgid, cred,
825 perm, flags);
826 if (IS_ERR(key)) {
827 key_ref = ERR_CAST(key);
828 goto error_3;
829 }
830
831 /* instantiate it and link it into the target keyring */
832 ret = __key_instantiate_and_link(key, payload, plen, keyring, NULL,
833 &prealloc);
834 if (ret < 0) {
835 key_put(key);
836 key_ref = ERR_PTR(ret);
837 goto error_3;
838 }
839
840 key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
841
842 error_3:
843 __key_link_end(keyring, ktype, prealloc);
844 error_2:
845 key_type_put(ktype);
846 error:
847 return key_ref;
848
849 found_matching_key:
850 /* we found a matching key, so we're going to try to update it
851 * - we can drop the locks first as we have the key pinned
852 */
853 __key_link_end(keyring, ktype, prealloc);
854 key_type_put(ktype);
855
856 key_ref = __key_update(key_ref, payload, plen);
857 goto error;
858
859} /* end key_create_or_update() */
860
861EXPORT_SYMBOL(key_create_or_update);
862
863/*****************************************************************************/
864/*
865 * update a key
866 */
867int key_update(key_ref_t key_ref, const void *payload, size_t plen)
868{
869 struct key *key = key_ref_to_ptr(key_ref);
870 int ret;
871
872 key_check(key);
873
874 /* the key must be writable */
875 ret = key_permission(key_ref, KEY_WRITE);
876 if (ret < 0)
877 goto error;
878
879 /* attempt to update it if supported */
880 ret = -EOPNOTSUPP;
881 if (key->type->update) {
882 down_write(&key->sem);
883
884 ret = key->type->update(key, payload, plen);
885 if (ret == 0)
886 /* updating a negative key instantiates it */
887 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
888
889 up_write(&key->sem);
890 }
891
892 error:
893 return ret;
894
895} /* end key_update() */
896
897EXPORT_SYMBOL(key_update);
898
899/*****************************************************************************/
900/*
901 * revoke a key
902 */
903void key_revoke(struct key *key)
904{
905 struct timespec now;
906 time_t time;
907
908 key_check(key);
909
910 /* make sure no one's trying to change or use the key when we mark it
911 * - we tell lockdep that we might nest because we might be revoking an
912 * authorisation key whilst holding the sem on a key we've just
913 * instantiated
914 */
915 down_write_nested(&key->sem, 1);
916 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
917 key->type->revoke)
918 key->type->revoke(key);
919
920 /* set the death time to no more than the expiry time */
921 now = current_kernel_time();
922 time = now.tv_sec;
923 if (key->revoked_at == 0 || key->revoked_at > time) {
924 key->revoked_at = time;
925 key_schedule_gc(key->revoked_at + key_gc_delay);
926 }
927
928 up_write(&key->sem);
929
930} /* end key_revoke() */
931
932EXPORT_SYMBOL(key_revoke);
933
934/*****************************************************************************/
935/*
936 * register a type of key
937 */
938int register_key_type(struct key_type *ktype)
939{
940 struct key_type *p;
941 int ret;
942
943 ret = -EEXIST;
944 down_write(&key_types_sem);
945
946 /* disallow key types with the same name */
947 list_for_each_entry(p, &key_types_list, link) {
948 if (strcmp(p->name, ktype->name) == 0)
949 goto out;
950 }
951
952 /* store the type */
953 list_add(&ktype->link, &key_types_list);
954 ret = 0;
955
956 out:
957 up_write(&key_types_sem);
958 return ret;
959
960} /* end register_key_type() */
961
962EXPORT_SYMBOL(register_key_type);
963
964/*****************************************************************************/
965/*
966 * unregister a type of key
967 */
968void unregister_key_type(struct key_type *ktype)
969{
970 struct rb_node *_n;
971 struct key *key;
972
973 down_write(&key_types_sem);
974
975 /* withdraw the key type */
976 list_del_init(&ktype->link);
977
978 /* mark all the keys of this type dead */
979 spin_lock(&key_serial_lock);
980
981 for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
982 key = rb_entry(_n, struct key, serial_node);
983
984 if (key->type == ktype) {
985 key->type = &key_type_dead;
986 set_bit(KEY_FLAG_DEAD, &key->flags);
987 }
988 }
989
990 spin_unlock(&key_serial_lock);
991
992 /* make sure everyone revalidates their keys */
993 synchronize_rcu();
994
995 /* we should now be able to destroy the payloads of all the keys of
996 * this type with impunity */
997 spin_lock(&key_serial_lock);
998
999 for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
1000 key = rb_entry(_n, struct key, serial_node);
1001
1002 if (key->type == ktype) {
1003 if (ktype->destroy)
1004 ktype->destroy(key);
1005 memset(&key->payload, KEY_DESTROY, sizeof(key->payload));
1006 }
1007 }
1008
1009 spin_unlock(&key_serial_lock);
1010 up_write(&key_types_sem);
1011
1012 key_schedule_gc(0);
1013
1014} /* end unregister_key_type() */
1015
1016EXPORT_SYMBOL(unregister_key_type);
1017
1018/*****************************************************************************/
1019/*
1020 * initialise the key management stuff
1021 */
1022void __init key_init(void)
1023{
1024 /* allocate a slab in which we can store keys */
1025 key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1026 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1027
1028 /* add the special key types */
1029 list_add_tail(&key_type_keyring.link, &key_types_list);
1030 list_add_tail(&key_type_dead.link, &key_types_list);
1031 list_add_tail(&key_type_user.link, &key_types_list);
1032
1033 /* record the root user tracking */
1034 rb_link_node(&root_key_user.node,
1035 NULL,
1036 &key_user_tree.rb_node);
1037
1038 rb_insert_color(&root_key_user.node,
1039 &key_user_tree);
1040
1041} /* end key_init() */