]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - net/socket.c
reorder alloc_fd/attach_fd in socketpair()
[net-next-2.6.git] / net / socket.c
... / ...
CommitLineData
1/*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61#include <linux/mm.h>
62#include <linux/socket.h>
63#include <linux/file.h>
64#include <linux/net.h>
65#include <linux/interrupt.h>
66#include <linux/thread_info.h>
67#include <linux/rcupdate.h>
68#include <linux/netdevice.h>
69#include <linux/proc_fs.h>
70#include <linux/seq_file.h>
71#include <linux/mutex.h>
72#include <linux/wanrouter.h>
73#include <linux/if_bridge.h>
74#include <linux/if_frad.h>
75#include <linux/if_vlan.h>
76#include <linux/init.h>
77#include <linux/poll.h>
78#include <linux/cache.h>
79#include <linux/module.h>
80#include <linux/highmem.h>
81#include <linux/mount.h>
82#include <linux/security.h>
83#include <linux/syscalls.h>
84#include <linux/compat.h>
85#include <linux/kmod.h>
86#include <linux/audit.h>
87#include <linux/wireless.h>
88#include <linux/nsproxy.h>
89#include <linux/magic.h>
90
91#include <asm/uaccess.h>
92#include <asm/unistd.h>
93
94#include <net/compat.h>
95#include <net/wext.h>
96
97#include <net/sock.h>
98#include <linux/netfilter.h>
99
100#include <linux/if_tun.h>
101#include <linux/ipv6_route.h>
102#include <linux/route.h>
103#include <linux/sockios.h>
104#include <linux/atalk.h>
105
106static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
107static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
108 unsigned long nr_segs, loff_t pos);
109static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
110 unsigned long nr_segs, loff_t pos);
111static int sock_mmap(struct file *file, struct vm_area_struct *vma);
112
113static int sock_close(struct inode *inode, struct file *file);
114static unsigned int sock_poll(struct file *file,
115 struct poll_table_struct *wait);
116static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
117#ifdef CONFIG_COMPAT
118static long compat_sock_ioctl(struct file *file,
119 unsigned int cmd, unsigned long arg);
120#endif
121static int sock_fasync(int fd, struct file *filp, int on);
122static ssize_t sock_sendpage(struct file *file, struct page *page,
123 int offset, size_t size, loff_t *ppos, int more);
124static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
125 struct pipe_inode_info *pipe, size_t len,
126 unsigned int flags);
127
128/*
129 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
130 * in the operation structures but are done directly via the socketcall() multiplexor.
131 */
132
133static const struct file_operations socket_file_ops = {
134 .owner = THIS_MODULE,
135 .llseek = no_llseek,
136 .aio_read = sock_aio_read,
137 .aio_write = sock_aio_write,
138 .poll = sock_poll,
139 .unlocked_ioctl = sock_ioctl,
140#ifdef CONFIG_COMPAT
141 .compat_ioctl = compat_sock_ioctl,
142#endif
143 .mmap = sock_mmap,
144 .open = sock_no_open, /* special open code to disallow open via /proc */
145 .release = sock_close,
146 .fasync = sock_fasync,
147 .sendpage = sock_sendpage,
148 .splice_write = generic_splice_sendpage,
149 .splice_read = sock_splice_read,
150};
151
152/*
153 * The protocol list. Each protocol is registered in here.
154 */
155
156static DEFINE_SPINLOCK(net_family_lock);
157static const struct net_proto_family *net_families[NPROTO] __read_mostly;
158
159/*
160 * Statistics counters of the socket lists
161 */
162
163static DEFINE_PER_CPU(int, sockets_in_use) = 0;
164
165/*
166 * Support routines.
167 * Move socket addresses back and forth across the kernel/user
168 * divide and look after the messy bits.
169 */
170
171#define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
172 16 for IP, 16 for IPX,
173 24 for IPv6,
174 about 80 for AX.25
175 must be at least one bigger than
176 the AF_UNIX size (see net/unix/af_unix.c
177 :unix_mkname()).
178 */
179
180/**
181 * move_addr_to_kernel - copy a socket address into kernel space
182 * @uaddr: Address in user space
183 * @kaddr: Address in kernel space
184 * @ulen: Length in user space
185 *
186 * The address is copied into kernel space. If the provided address is
187 * too long an error code of -EINVAL is returned. If the copy gives
188 * invalid addresses -EFAULT is returned. On a success 0 is returned.
189 */
190
191int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
192{
193 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
194 return -EINVAL;
195 if (ulen == 0)
196 return 0;
197 if (copy_from_user(kaddr, uaddr, ulen))
198 return -EFAULT;
199 return audit_sockaddr(ulen, kaddr);
200}
201
202/**
203 * move_addr_to_user - copy an address to user space
204 * @kaddr: kernel space address
205 * @klen: length of address in kernel
206 * @uaddr: user space address
207 * @ulen: pointer to user length field
208 *
209 * The value pointed to by ulen on entry is the buffer length available.
210 * This is overwritten with the buffer space used. -EINVAL is returned
211 * if an overlong buffer is specified or a negative buffer size. -EFAULT
212 * is returned if either the buffer or the length field are not
213 * accessible.
214 * After copying the data up to the limit the user specifies, the true
215 * length of the data is written over the length limit the user
216 * specified. Zero is returned for a success.
217 */
218
219int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
220 int __user *ulen)
221{
222 int err;
223 int len;
224
225 err = get_user(len, ulen);
226 if (err)
227 return err;
228 if (len > klen)
229 len = klen;
230 if (len < 0 || len > sizeof(struct sockaddr_storage))
231 return -EINVAL;
232 if (len) {
233 if (audit_sockaddr(klen, kaddr))
234 return -ENOMEM;
235 if (copy_to_user(uaddr, kaddr, len))
236 return -EFAULT;
237 }
238 /*
239 * "fromlen shall refer to the value before truncation.."
240 * 1003.1g
241 */
242 return __put_user(klen, ulen);
243}
244
245static struct kmem_cache *sock_inode_cachep __read_mostly;
246
247static struct inode *sock_alloc_inode(struct super_block *sb)
248{
249 struct socket_alloc *ei;
250
251 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
252 if (!ei)
253 return NULL;
254 init_waitqueue_head(&ei->socket.wait);
255
256 ei->socket.fasync_list = NULL;
257 ei->socket.state = SS_UNCONNECTED;
258 ei->socket.flags = 0;
259 ei->socket.ops = NULL;
260 ei->socket.sk = NULL;
261 ei->socket.file = NULL;
262
263 return &ei->vfs_inode;
264}
265
266static void sock_destroy_inode(struct inode *inode)
267{
268 kmem_cache_free(sock_inode_cachep,
269 container_of(inode, struct socket_alloc, vfs_inode));
270}
271
272static void init_once(void *foo)
273{
274 struct socket_alloc *ei = (struct socket_alloc *)foo;
275
276 inode_init_once(&ei->vfs_inode);
277}
278
279static int init_inodecache(void)
280{
281 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
282 sizeof(struct socket_alloc),
283 0,
284 (SLAB_HWCACHE_ALIGN |
285 SLAB_RECLAIM_ACCOUNT |
286 SLAB_MEM_SPREAD),
287 init_once);
288 if (sock_inode_cachep == NULL)
289 return -ENOMEM;
290 return 0;
291}
292
293static const struct super_operations sockfs_ops = {
294 .alloc_inode = sock_alloc_inode,
295 .destroy_inode =sock_destroy_inode,
296 .statfs = simple_statfs,
297};
298
299static int sockfs_get_sb(struct file_system_type *fs_type,
300 int flags, const char *dev_name, void *data,
301 struct vfsmount *mnt)
302{
303 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
304 mnt);
305}
306
307static struct vfsmount *sock_mnt __read_mostly;
308
309static struct file_system_type sock_fs_type = {
310 .name = "sockfs",
311 .get_sb = sockfs_get_sb,
312 .kill_sb = kill_anon_super,
313};
314
315static int sockfs_delete_dentry(struct dentry *dentry)
316{
317 /*
318 * At creation time, we pretended this dentry was hashed
319 * (by clearing DCACHE_UNHASHED bit in d_flags)
320 * At delete time, we restore the truth : not hashed.
321 * (so that dput() can proceed correctly)
322 */
323 dentry->d_flags |= DCACHE_UNHASHED;
324 return 0;
325}
326
327/*
328 * sockfs_dname() is called from d_path().
329 */
330static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
331{
332 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
333 dentry->d_inode->i_ino);
334}
335
336static const struct dentry_operations sockfs_dentry_operations = {
337 .d_delete = sockfs_delete_dentry,
338 .d_dname = sockfs_dname,
339};
340
341/*
342 * Obtains the first available file descriptor and sets it up for use.
343 *
344 * These functions create file structures and maps them to fd space
345 * of the current process. On success it returns file descriptor
346 * and file struct implicitly stored in sock->file.
347 * Note that another thread may close file descriptor before we return
348 * from this function. We use the fact that now we do not refer
349 * to socket after mapping. If one day we will need it, this
350 * function will increment ref. count on file by 1.
351 *
352 * In any case returned fd MAY BE not valid!
353 * This race condition is unavoidable
354 * with shared fd spaces, we cannot solve it inside kernel,
355 * but we take care of internal coherence yet.
356 */
357
358static int sock_alloc_fd(struct file **filep, int flags)
359{
360 int fd;
361
362 fd = get_unused_fd_flags(flags);
363 if (likely(fd >= 0)) {
364 struct file *file = get_empty_filp();
365
366 *filep = file;
367 if (unlikely(!file)) {
368 put_unused_fd(fd);
369 return -ENFILE;
370 }
371 } else
372 *filep = NULL;
373 return fd;
374}
375
376static int sock_attach_fd(struct socket *sock, struct file *file, int flags)
377{
378 struct dentry *dentry;
379 struct qstr name = { .name = "" };
380
381 dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
382 if (unlikely(!dentry))
383 return -ENOMEM;
384
385 dentry->d_op = &sockfs_dentry_operations;
386 /*
387 * We dont want to push this dentry into global dentry hash table.
388 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
389 * This permits a working /proc/$pid/fd/XXX on sockets
390 */
391 dentry->d_flags &= ~DCACHE_UNHASHED;
392 d_instantiate(dentry, SOCK_INODE(sock));
393
394 sock->file = file;
395 init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE,
396 &socket_file_ops);
397 SOCK_INODE(sock)->i_fop = &socket_file_ops;
398 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
399 file->f_pos = 0;
400 file->private_data = sock;
401
402 return 0;
403}
404
405int sock_map_fd(struct socket *sock, int flags)
406{
407 struct file *newfile;
408 int fd = sock_alloc_fd(&newfile, flags);
409
410 if (likely(fd >= 0)) {
411 int err = sock_attach_fd(sock, newfile, flags);
412
413 if (unlikely(err < 0)) {
414 put_filp(newfile);
415 put_unused_fd(fd);
416 return err;
417 }
418 fd_install(fd, newfile);
419 }
420 return fd;
421}
422
423static struct socket *sock_from_file(struct file *file, int *err)
424{
425 if (file->f_op == &socket_file_ops)
426 return file->private_data; /* set in sock_map_fd */
427
428 *err = -ENOTSOCK;
429 return NULL;
430}
431
432/**
433 * sockfd_lookup - Go from a file number to its socket slot
434 * @fd: file handle
435 * @err: pointer to an error code return
436 *
437 * The file handle passed in is locked and the socket it is bound
438 * too is returned. If an error occurs the err pointer is overwritten
439 * with a negative errno code and NULL is returned. The function checks
440 * for both invalid handles and passing a handle which is not a socket.
441 *
442 * On a success the socket object pointer is returned.
443 */
444
445struct socket *sockfd_lookup(int fd, int *err)
446{
447 struct file *file;
448 struct socket *sock;
449
450 file = fget(fd);
451 if (!file) {
452 *err = -EBADF;
453 return NULL;
454 }
455
456 sock = sock_from_file(file, err);
457 if (!sock)
458 fput(file);
459 return sock;
460}
461
462static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
463{
464 struct file *file;
465 struct socket *sock;
466
467 *err = -EBADF;
468 file = fget_light(fd, fput_needed);
469 if (file) {
470 sock = sock_from_file(file, err);
471 if (sock)
472 return sock;
473 fput_light(file, *fput_needed);
474 }
475 return NULL;
476}
477
478/**
479 * sock_alloc - allocate a socket
480 *
481 * Allocate a new inode and socket object. The two are bound together
482 * and initialised. The socket is then returned. If we are out of inodes
483 * NULL is returned.
484 */
485
486static struct socket *sock_alloc(void)
487{
488 struct inode *inode;
489 struct socket *sock;
490
491 inode = new_inode(sock_mnt->mnt_sb);
492 if (!inode)
493 return NULL;
494
495 sock = SOCKET_I(inode);
496
497 kmemcheck_annotate_bitfield(sock, type);
498 inode->i_mode = S_IFSOCK | S_IRWXUGO;
499 inode->i_uid = current_fsuid();
500 inode->i_gid = current_fsgid();
501
502 percpu_add(sockets_in_use, 1);
503 return sock;
504}
505
506/*
507 * In theory you can't get an open on this inode, but /proc provides
508 * a back door. Remember to keep it shut otherwise you'll let the
509 * creepy crawlies in.
510 */
511
512static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
513{
514 return -ENXIO;
515}
516
517const struct file_operations bad_sock_fops = {
518 .owner = THIS_MODULE,
519 .open = sock_no_open,
520};
521
522/**
523 * sock_release - close a socket
524 * @sock: socket to close
525 *
526 * The socket is released from the protocol stack if it has a release
527 * callback, and the inode is then released if the socket is bound to
528 * an inode not a file.
529 */
530
531void sock_release(struct socket *sock)
532{
533 if (sock->ops) {
534 struct module *owner = sock->ops->owner;
535
536 sock->ops->release(sock);
537 sock->ops = NULL;
538 module_put(owner);
539 }
540
541 if (sock->fasync_list)
542 printk(KERN_ERR "sock_release: fasync list not empty!\n");
543
544 percpu_sub(sockets_in_use, 1);
545 if (!sock->file) {
546 iput(SOCK_INODE(sock));
547 return;
548 }
549 sock->file = NULL;
550}
551
552int sock_tx_timestamp(struct msghdr *msg, struct sock *sk,
553 union skb_shared_tx *shtx)
554{
555 shtx->flags = 0;
556 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
557 shtx->hardware = 1;
558 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
559 shtx->software = 1;
560 return 0;
561}
562EXPORT_SYMBOL(sock_tx_timestamp);
563
564static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
565 struct msghdr *msg, size_t size)
566{
567 struct sock_iocb *si = kiocb_to_siocb(iocb);
568 int err;
569
570 si->sock = sock;
571 si->scm = NULL;
572 si->msg = msg;
573 si->size = size;
574
575 err = security_socket_sendmsg(sock, msg, size);
576 if (err)
577 return err;
578
579 return sock->ops->sendmsg(iocb, sock, msg, size);
580}
581
582int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
583{
584 struct kiocb iocb;
585 struct sock_iocb siocb;
586 int ret;
587
588 init_sync_kiocb(&iocb, NULL);
589 iocb.private = &siocb;
590 ret = __sock_sendmsg(&iocb, sock, msg, size);
591 if (-EIOCBQUEUED == ret)
592 ret = wait_on_sync_kiocb(&iocb);
593 return ret;
594}
595
596int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
597 struct kvec *vec, size_t num, size_t size)
598{
599 mm_segment_t oldfs = get_fs();
600 int result;
601
602 set_fs(KERNEL_DS);
603 /*
604 * the following is safe, since for compiler definitions of kvec and
605 * iovec are identical, yielding the same in-core layout and alignment
606 */
607 msg->msg_iov = (struct iovec *)vec;
608 msg->msg_iovlen = num;
609 result = sock_sendmsg(sock, msg, size);
610 set_fs(oldfs);
611 return result;
612}
613
614static int ktime2ts(ktime_t kt, struct timespec *ts)
615{
616 if (kt.tv64) {
617 *ts = ktime_to_timespec(kt);
618 return 1;
619 } else {
620 return 0;
621 }
622}
623
624/*
625 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
626 */
627void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
628 struct sk_buff *skb)
629{
630 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
631 struct timespec ts[3];
632 int empty = 1;
633 struct skb_shared_hwtstamps *shhwtstamps =
634 skb_hwtstamps(skb);
635
636 /* Race occurred between timestamp enabling and packet
637 receiving. Fill in the current time for now. */
638 if (need_software_tstamp && skb->tstamp.tv64 == 0)
639 __net_timestamp(skb);
640
641 if (need_software_tstamp) {
642 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
643 struct timeval tv;
644 skb_get_timestamp(skb, &tv);
645 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
646 sizeof(tv), &tv);
647 } else {
648 struct timespec ts;
649 skb_get_timestampns(skb, &ts);
650 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
651 sizeof(ts), &ts);
652 }
653 }
654
655
656 memset(ts, 0, sizeof(ts));
657 if (skb->tstamp.tv64 &&
658 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
659 skb_get_timestampns(skb, ts + 0);
660 empty = 0;
661 }
662 if (shhwtstamps) {
663 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
664 ktime2ts(shhwtstamps->syststamp, ts + 1))
665 empty = 0;
666 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
667 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
668 empty = 0;
669 }
670 if (!empty)
671 put_cmsg(msg, SOL_SOCKET,
672 SCM_TIMESTAMPING, sizeof(ts), &ts);
673}
674
675EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
676
677inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
678{
679 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
680 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
681 sizeof(__u32), &skb->dropcount);
682}
683
684void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
685 struct sk_buff *skb)
686{
687 sock_recv_timestamp(msg, sk, skb);
688 sock_recv_drops(msg, sk, skb);
689}
690EXPORT_SYMBOL_GPL(sock_recv_ts_and_drops);
691
692static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
693 struct msghdr *msg, size_t size, int flags)
694{
695 struct sock_iocb *si = kiocb_to_siocb(iocb);
696
697 si->sock = sock;
698 si->scm = NULL;
699 si->msg = msg;
700 si->size = size;
701 si->flags = flags;
702
703 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
704}
705
706static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
707 struct msghdr *msg, size_t size, int flags)
708{
709 int err = security_socket_recvmsg(sock, msg, size, flags);
710
711 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
712}
713
714int sock_recvmsg(struct socket *sock, struct msghdr *msg,
715 size_t size, int flags)
716{
717 struct kiocb iocb;
718 struct sock_iocb siocb;
719 int ret;
720
721 init_sync_kiocb(&iocb, NULL);
722 iocb.private = &siocb;
723 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
724 if (-EIOCBQUEUED == ret)
725 ret = wait_on_sync_kiocb(&iocb);
726 return ret;
727}
728
729static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
730 size_t size, int flags)
731{
732 struct kiocb iocb;
733 struct sock_iocb siocb;
734 int ret;
735
736 init_sync_kiocb(&iocb, NULL);
737 iocb.private = &siocb;
738 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
739 if (-EIOCBQUEUED == ret)
740 ret = wait_on_sync_kiocb(&iocb);
741 return ret;
742}
743
744int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
745 struct kvec *vec, size_t num, size_t size, int flags)
746{
747 mm_segment_t oldfs = get_fs();
748 int result;
749
750 set_fs(KERNEL_DS);
751 /*
752 * the following is safe, since for compiler definitions of kvec and
753 * iovec are identical, yielding the same in-core layout and alignment
754 */
755 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
756 result = sock_recvmsg(sock, msg, size, flags);
757 set_fs(oldfs);
758 return result;
759}
760
761static void sock_aio_dtor(struct kiocb *iocb)
762{
763 kfree(iocb->private);
764}
765
766static ssize_t sock_sendpage(struct file *file, struct page *page,
767 int offset, size_t size, loff_t *ppos, int more)
768{
769 struct socket *sock;
770 int flags;
771
772 sock = file->private_data;
773
774 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
775 if (more)
776 flags |= MSG_MORE;
777
778 return kernel_sendpage(sock, page, offset, size, flags);
779}
780
781static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
782 struct pipe_inode_info *pipe, size_t len,
783 unsigned int flags)
784{
785 struct socket *sock = file->private_data;
786
787 if (unlikely(!sock->ops->splice_read))
788 return -EINVAL;
789
790 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
791}
792
793static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
794 struct sock_iocb *siocb)
795{
796 if (!is_sync_kiocb(iocb)) {
797 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
798 if (!siocb)
799 return NULL;
800 iocb->ki_dtor = sock_aio_dtor;
801 }
802
803 siocb->kiocb = iocb;
804 iocb->private = siocb;
805 return siocb;
806}
807
808static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
809 struct file *file, const struct iovec *iov,
810 unsigned long nr_segs)
811{
812 struct socket *sock = file->private_data;
813 size_t size = 0;
814 int i;
815
816 for (i = 0; i < nr_segs; i++)
817 size += iov[i].iov_len;
818
819 msg->msg_name = NULL;
820 msg->msg_namelen = 0;
821 msg->msg_control = NULL;
822 msg->msg_controllen = 0;
823 msg->msg_iov = (struct iovec *)iov;
824 msg->msg_iovlen = nr_segs;
825 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
826
827 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
828}
829
830static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
831 unsigned long nr_segs, loff_t pos)
832{
833 struct sock_iocb siocb, *x;
834
835 if (pos != 0)
836 return -ESPIPE;
837
838 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
839 return 0;
840
841
842 x = alloc_sock_iocb(iocb, &siocb);
843 if (!x)
844 return -ENOMEM;
845 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
846}
847
848static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
849 struct file *file, const struct iovec *iov,
850 unsigned long nr_segs)
851{
852 struct socket *sock = file->private_data;
853 size_t size = 0;
854 int i;
855
856 for (i = 0; i < nr_segs; i++)
857 size += iov[i].iov_len;
858
859 msg->msg_name = NULL;
860 msg->msg_namelen = 0;
861 msg->msg_control = NULL;
862 msg->msg_controllen = 0;
863 msg->msg_iov = (struct iovec *)iov;
864 msg->msg_iovlen = nr_segs;
865 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
866 if (sock->type == SOCK_SEQPACKET)
867 msg->msg_flags |= MSG_EOR;
868
869 return __sock_sendmsg(iocb, sock, msg, size);
870}
871
872static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
873 unsigned long nr_segs, loff_t pos)
874{
875 struct sock_iocb siocb, *x;
876
877 if (pos != 0)
878 return -ESPIPE;
879
880 x = alloc_sock_iocb(iocb, &siocb);
881 if (!x)
882 return -ENOMEM;
883
884 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
885}
886
887/*
888 * Atomic setting of ioctl hooks to avoid race
889 * with module unload.
890 */
891
892static DEFINE_MUTEX(br_ioctl_mutex);
893static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
894
895void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
896{
897 mutex_lock(&br_ioctl_mutex);
898 br_ioctl_hook = hook;
899 mutex_unlock(&br_ioctl_mutex);
900}
901
902EXPORT_SYMBOL(brioctl_set);
903
904static DEFINE_MUTEX(vlan_ioctl_mutex);
905static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
906
907void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
908{
909 mutex_lock(&vlan_ioctl_mutex);
910 vlan_ioctl_hook = hook;
911 mutex_unlock(&vlan_ioctl_mutex);
912}
913
914EXPORT_SYMBOL(vlan_ioctl_set);
915
916static DEFINE_MUTEX(dlci_ioctl_mutex);
917static int (*dlci_ioctl_hook) (unsigned int, void __user *);
918
919void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
920{
921 mutex_lock(&dlci_ioctl_mutex);
922 dlci_ioctl_hook = hook;
923 mutex_unlock(&dlci_ioctl_mutex);
924}
925
926EXPORT_SYMBOL(dlci_ioctl_set);
927
928static long sock_do_ioctl(struct net *net, struct socket *sock,
929 unsigned int cmd, unsigned long arg)
930{
931 int err;
932 void __user *argp = (void __user *)arg;
933
934 err = sock->ops->ioctl(sock, cmd, arg);
935
936 /*
937 * If this ioctl is unknown try to hand it down
938 * to the NIC driver.
939 */
940 if (err == -ENOIOCTLCMD)
941 err = dev_ioctl(net, cmd, argp);
942
943 return err;
944}
945
946/*
947 * With an ioctl, arg may well be a user mode pointer, but we don't know
948 * what to do with it - that's up to the protocol still.
949 */
950
951static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
952{
953 struct socket *sock;
954 struct sock *sk;
955 void __user *argp = (void __user *)arg;
956 int pid, err;
957 struct net *net;
958
959 sock = file->private_data;
960 sk = sock->sk;
961 net = sock_net(sk);
962 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
963 err = dev_ioctl(net, cmd, argp);
964 } else
965#ifdef CONFIG_WEXT_CORE
966 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
967 err = dev_ioctl(net, cmd, argp);
968 } else
969#endif
970 switch (cmd) {
971 case FIOSETOWN:
972 case SIOCSPGRP:
973 err = -EFAULT;
974 if (get_user(pid, (int __user *)argp))
975 break;
976 err = f_setown(sock->file, pid, 1);
977 break;
978 case FIOGETOWN:
979 case SIOCGPGRP:
980 err = put_user(f_getown(sock->file),
981 (int __user *)argp);
982 break;
983 case SIOCGIFBR:
984 case SIOCSIFBR:
985 case SIOCBRADDBR:
986 case SIOCBRDELBR:
987 err = -ENOPKG;
988 if (!br_ioctl_hook)
989 request_module("bridge");
990
991 mutex_lock(&br_ioctl_mutex);
992 if (br_ioctl_hook)
993 err = br_ioctl_hook(net, cmd, argp);
994 mutex_unlock(&br_ioctl_mutex);
995 break;
996 case SIOCGIFVLAN:
997 case SIOCSIFVLAN:
998 err = -ENOPKG;
999 if (!vlan_ioctl_hook)
1000 request_module("8021q");
1001
1002 mutex_lock(&vlan_ioctl_mutex);
1003 if (vlan_ioctl_hook)
1004 err = vlan_ioctl_hook(net, argp);
1005 mutex_unlock(&vlan_ioctl_mutex);
1006 break;
1007 case SIOCADDDLCI:
1008 case SIOCDELDLCI:
1009 err = -ENOPKG;
1010 if (!dlci_ioctl_hook)
1011 request_module("dlci");
1012
1013 mutex_lock(&dlci_ioctl_mutex);
1014 if (dlci_ioctl_hook)
1015 err = dlci_ioctl_hook(cmd, argp);
1016 mutex_unlock(&dlci_ioctl_mutex);
1017 break;
1018 default:
1019 err = sock_do_ioctl(net, sock, cmd, arg);
1020 break;
1021 }
1022 return err;
1023}
1024
1025int sock_create_lite(int family, int type, int protocol, struct socket **res)
1026{
1027 int err;
1028 struct socket *sock = NULL;
1029
1030 err = security_socket_create(family, type, protocol, 1);
1031 if (err)
1032 goto out;
1033
1034 sock = sock_alloc();
1035 if (!sock) {
1036 err = -ENOMEM;
1037 goto out;
1038 }
1039
1040 sock->type = type;
1041 err = security_socket_post_create(sock, family, type, protocol, 1);
1042 if (err)
1043 goto out_release;
1044
1045out:
1046 *res = sock;
1047 return err;
1048out_release:
1049 sock_release(sock);
1050 sock = NULL;
1051 goto out;
1052}
1053
1054/* No kernel lock held - perfect */
1055static unsigned int sock_poll(struct file *file, poll_table *wait)
1056{
1057 struct socket *sock;
1058
1059 /*
1060 * We can't return errors to poll, so it's either yes or no.
1061 */
1062 sock = file->private_data;
1063 return sock->ops->poll(file, sock, wait);
1064}
1065
1066static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1067{
1068 struct socket *sock = file->private_data;
1069
1070 return sock->ops->mmap(file, sock, vma);
1071}
1072
1073static int sock_close(struct inode *inode, struct file *filp)
1074{
1075 /*
1076 * It was possible the inode is NULL we were
1077 * closing an unfinished socket.
1078 */
1079
1080 if (!inode) {
1081 printk(KERN_DEBUG "sock_close: NULL inode\n");
1082 return 0;
1083 }
1084 sock_release(SOCKET_I(inode));
1085 return 0;
1086}
1087
1088/*
1089 * Update the socket async list
1090 *
1091 * Fasync_list locking strategy.
1092 *
1093 * 1. fasync_list is modified only under process context socket lock
1094 * i.e. under semaphore.
1095 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1096 * or under socket lock.
1097 * 3. fasync_list can be used from softirq context, so that
1098 * modification under socket lock have to be enhanced with
1099 * write_lock_bh(&sk->sk_callback_lock).
1100 * --ANK (990710)
1101 */
1102
1103static int sock_fasync(int fd, struct file *filp, int on)
1104{
1105 struct fasync_struct *fa, *fna = NULL, **prev;
1106 struct socket *sock;
1107 struct sock *sk;
1108
1109 if (on) {
1110 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1111 if (fna == NULL)
1112 return -ENOMEM;
1113 }
1114
1115 sock = filp->private_data;
1116
1117 sk = sock->sk;
1118 if (sk == NULL) {
1119 kfree(fna);
1120 return -EINVAL;
1121 }
1122
1123 lock_sock(sk);
1124
1125 spin_lock(&filp->f_lock);
1126 if (on)
1127 filp->f_flags |= FASYNC;
1128 else
1129 filp->f_flags &= ~FASYNC;
1130 spin_unlock(&filp->f_lock);
1131
1132 prev = &(sock->fasync_list);
1133
1134 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1135 if (fa->fa_file == filp)
1136 break;
1137
1138 if (on) {
1139 if (fa != NULL) {
1140 write_lock_bh(&sk->sk_callback_lock);
1141 fa->fa_fd = fd;
1142 write_unlock_bh(&sk->sk_callback_lock);
1143
1144 kfree(fna);
1145 goto out;
1146 }
1147 fna->fa_file = filp;
1148 fna->fa_fd = fd;
1149 fna->magic = FASYNC_MAGIC;
1150 fna->fa_next = sock->fasync_list;
1151 write_lock_bh(&sk->sk_callback_lock);
1152 sock->fasync_list = fna;
1153 sock_set_flag(sk, SOCK_FASYNC);
1154 write_unlock_bh(&sk->sk_callback_lock);
1155 } else {
1156 if (fa != NULL) {
1157 write_lock_bh(&sk->sk_callback_lock);
1158 *prev = fa->fa_next;
1159 if (!sock->fasync_list)
1160 sock_reset_flag(sk, SOCK_FASYNC);
1161 write_unlock_bh(&sk->sk_callback_lock);
1162 kfree(fa);
1163 }
1164 }
1165
1166out:
1167 release_sock(sock->sk);
1168 return 0;
1169}
1170
1171/* This function may be called only under socket lock or callback_lock */
1172
1173int sock_wake_async(struct socket *sock, int how, int band)
1174{
1175 if (!sock || !sock->fasync_list)
1176 return -1;
1177 switch (how) {
1178 case SOCK_WAKE_WAITD:
1179 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1180 break;
1181 goto call_kill;
1182 case SOCK_WAKE_SPACE:
1183 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1184 break;
1185 /* fall through */
1186 case SOCK_WAKE_IO:
1187call_kill:
1188 __kill_fasync(sock->fasync_list, SIGIO, band);
1189 break;
1190 case SOCK_WAKE_URG:
1191 __kill_fasync(sock->fasync_list, SIGURG, band);
1192 }
1193 return 0;
1194}
1195
1196static int __sock_create(struct net *net, int family, int type, int protocol,
1197 struct socket **res, int kern)
1198{
1199 int err;
1200 struct socket *sock;
1201 const struct net_proto_family *pf;
1202
1203 /*
1204 * Check protocol is in range
1205 */
1206 if (family < 0 || family >= NPROTO)
1207 return -EAFNOSUPPORT;
1208 if (type < 0 || type >= SOCK_MAX)
1209 return -EINVAL;
1210
1211 /* Compatibility.
1212
1213 This uglymoron is moved from INET layer to here to avoid
1214 deadlock in module load.
1215 */
1216 if (family == PF_INET && type == SOCK_PACKET) {
1217 static int warned;
1218 if (!warned) {
1219 warned = 1;
1220 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1221 current->comm);
1222 }
1223 family = PF_PACKET;
1224 }
1225
1226 err = security_socket_create(family, type, protocol, kern);
1227 if (err)
1228 return err;
1229
1230 /*
1231 * Allocate the socket and allow the family to set things up. if
1232 * the protocol is 0, the family is instructed to select an appropriate
1233 * default.
1234 */
1235 sock = sock_alloc();
1236 if (!sock) {
1237 if (net_ratelimit())
1238 printk(KERN_WARNING "socket: no more sockets\n");
1239 return -ENFILE; /* Not exactly a match, but its the
1240 closest posix thing */
1241 }
1242
1243 sock->type = type;
1244
1245#ifdef CONFIG_MODULES
1246 /* Attempt to load a protocol module if the find failed.
1247 *
1248 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1249 * requested real, full-featured networking support upon configuration.
1250 * Otherwise module support will break!
1251 */
1252 if (net_families[family] == NULL)
1253 request_module("net-pf-%d", family);
1254#endif
1255
1256 rcu_read_lock();
1257 pf = rcu_dereference(net_families[family]);
1258 err = -EAFNOSUPPORT;
1259 if (!pf)
1260 goto out_release;
1261
1262 /*
1263 * We will call the ->create function, that possibly is in a loadable
1264 * module, so we have to bump that loadable module refcnt first.
1265 */
1266 if (!try_module_get(pf->owner))
1267 goto out_release;
1268
1269 /* Now protected by module ref count */
1270 rcu_read_unlock();
1271
1272 err = pf->create(net, sock, protocol, kern);
1273 if (err < 0)
1274 goto out_module_put;
1275
1276 /*
1277 * Now to bump the refcnt of the [loadable] module that owns this
1278 * socket at sock_release time we decrement its refcnt.
1279 */
1280 if (!try_module_get(sock->ops->owner))
1281 goto out_module_busy;
1282
1283 /*
1284 * Now that we're done with the ->create function, the [loadable]
1285 * module can have its refcnt decremented
1286 */
1287 module_put(pf->owner);
1288 err = security_socket_post_create(sock, family, type, protocol, kern);
1289 if (err)
1290 goto out_sock_release;
1291 *res = sock;
1292
1293 return 0;
1294
1295out_module_busy:
1296 err = -EAFNOSUPPORT;
1297out_module_put:
1298 sock->ops = NULL;
1299 module_put(pf->owner);
1300out_sock_release:
1301 sock_release(sock);
1302 return err;
1303
1304out_release:
1305 rcu_read_unlock();
1306 goto out_sock_release;
1307}
1308
1309int sock_create(int family, int type, int protocol, struct socket **res)
1310{
1311 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1312}
1313
1314int sock_create_kern(int family, int type, int protocol, struct socket **res)
1315{
1316 return __sock_create(&init_net, family, type, protocol, res, 1);
1317}
1318
1319SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1320{
1321 int retval;
1322 struct socket *sock;
1323 int flags;
1324
1325 /* Check the SOCK_* constants for consistency. */
1326 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1327 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1328 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1329 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1330
1331 flags = type & ~SOCK_TYPE_MASK;
1332 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1333 return -EINVAL;
1334 type &= SOCK_TYPE_MASK;
1335
1336 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1337 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1338
1339 retval = sock_create(family, type, protocol, &sock);
1340 if (retval < 0)
1341 goto out;
1342
1343 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1344 if (retval < 0)
1345 goto out_release;
1346
1347out:
1348 /* It may be already another descriptor 8) Not kernel problem. */
1349 return retval;
1350
1351out_release:
1352 sock_release(sock);
1353 return retval;
1354}
1355
1356/*
1357 * Create a pair of connected sockets.
1358 */
1359
1360SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1361 int __user *, usockvec)
1362{
1363 struct socket *sock1, *sock2;
1364 int fd1, fd2, err;
1365 struct file *newfile1, *newfile2;
1366 int flags;
1367
1368 flags = type & ~SOCK_TYPE_MASK;
1369 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1370 return -EINVAL;
1371 type &= SOCK_TYPE_MASK;
1372
1373 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1374 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1375
1376 /*
1377 * Obtain the first socket and check if the underlying protocol
1378 * supports the socketpair call.
1379 */
1380
1381 err = sock_create(family, type, protocol, &sock1);
1382 if (err < 0)
1383 goto out;
1384
1385 err = sock_create(family, type, protocol, &sock2);
1386 if (err < 0)
1387 goto out_release_1;
1388
1389 err = sock1->ops->socketpair(sock1, sock2);
1390 if (err < 0)
1391 goto out_release_both;
1392
1393 fd1 = sock_alloc_fd(&newfile1, flags & O_CLOEXEC);
1394 if (unlikely(fd1 < 0)) {
1395 err = fd1;
1396 goto out_release_both;
1397 }
1398
1399 err = sock_attach_fd(sock1, newfile1, flags & O_NONBLOCK);
1400 if (unlikely(err < 0)) {
1401 put_filp(newfile1);
1402 put_unused_fd(fd1);
1403 goto out_release_both;
1404 }
1405
1406 fd2 = sock_alloc_fd(&newfile2, flags & O_CLOEXEC);
1407 if (unlikely(fd2 < 0)) {
1408 err = fd2;
1409 fput(newfile1);
1410 put_unused_fd(fd1);
1411 sock_release(sock2);
1412 goto out;
1413 }
1414
1415 err = sock_attach_fd(sock2, newfile2, flags & O_NONBLOCK);
1416 if (unlikely(err < 0)) {
1417 put_filp(newfile2);
1418 put_unused_fd(fd2);
1419 fput(newfile1);
1420 put_unused_fd(fd1);
1421 sock_release(sock2);
1422 goto out;
1423 }
1424
1425 audit_fd_pair(fd1, fd2);
1426 fd_install(fd1, newfile1);
1427 fd_install(fd2, newfile2);
1428 /* fd1 and fd2 may be already another descriptors.
1429 * Not kernel problem.
1430 */
1431
1432 err = put_user(fd1, &usockvec[0]);
1433 if (!err)
1434 err = put_user(fd2, &usockvec[1]);
1435 if (!err)
1436 return 0;
1437
1438 sys_close(fd2);
1439 sys_close(fd1);
1440 return err;
1441
1442out_release_both:
1443 sock_release(sock2);
1444out_release_1:
1445 sock_release(sock1);
1446out:
1447 return err;
1448}
1449
1450/*
1451 * Bind a name to a socket. Nothing much to do here since it's
1452 * the protocol's responsibility to handle the local address.
1453 *
1454 * We move the socket address to kernel space before we call
1455 * the protocol layer (having also checked the address is ok).
1456 */
1457
1458SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1459{
1460 struct socket *sock;
1461 struct sockaddr_storage address;
1462 int err, fput_needed;
1463
1464 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1465 if (sock) {
1466 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1467 if (err >= 0) {
1468 err = security_socket_bind(sock,
1469 (struct sockaddr *)&address,
1470 addrlen);
1471 if (!err)
1472 err = sock->ops->bind(sock,
1473 (struct sockaddr *)
1474 &address, addrlen);
1475 }
1476 fput_light(sock->file, fput_needed);
1477 }
1478 return err;
1479}
1480
1481/*
1482 * Perform a listen. Basically, we allow the protocol to do anything
1483 * necessary for a listen, and if that works, we mark the socket as
1484 * ready for listening.
1485 */
1486
1487SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1488{
1489 struct socket *sock;
1490 int err, fput_needed;
1491 int somaxconn;
1492
1493 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1494 if (sock) {
1495 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1496 if ((unsigned)backlog > somaxconn)
1497 backlog = somaxconn;
1498
1499 err = security_socket_listen(sock, backlog);
1500 if (!err)
1501 err = sock->ops->listen(sock, backlog);
1502
1503 fput_light(sock->file, fput_needed);
1504 }
1505 return err;
1506}
1507
1508/*
1509 * For accept, we attempt to create a new socket, set up the link
1510 * with the client, wake up the client, then return the new
1511 * connected fd. We collect the address of the connector in kernel
1512 * space and move it to user at the very end. This is unclean because
1513 * we open the socket then return an error.
1514 *
1515 * 1003.1g adds the ability to recvmsg() to query connection pending
1516 * status to recvmsg. We need to add that support in a way thats
1517 * clean when we restucture accept also.
1518 */
1519
1520SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1521 int __user *, upeer_addrlen, int, flags)
1522{
1523 struct socket *sock, *newsock;
1524 struct file *newfile;
1525 int err, len, newfd, fput_needed;
1526 struct sockaddr_storage address;
1527
1528 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1529 return -EINVAL;
1530
1531 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1532 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1533
1534 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1535 if (!sock)
1536 goto out;
1537
1538 err = -ENFILE;
1539 if (!(newsock = sock_alloc()))
1540 goto out_put;
1541
1542 newsock->type = sock->type;
1543 newsock->ops = sock->ops;
1544
1545 /*
1546 * We don't need try_module_get here, as the listening socket (sock)
1547 * has the protocol module (sock->ops->owner) held.
1548 */
1549 __module_get(newsock->ops->owner);
1550
1551 newfd = sock_alloc_fd(&newfile, flags & O_CLOEXEC);
1552 if (unlikely(newfd < 0)) {
1553 err = newfd;
1554 sock_release(newsock);
1555 goto out_put;
1556 }
1557
1558 err = sock_attach_fd(newsock, newfile, flags & O_NONBLOCK);
1559 if (err < 0)
1560 goto out_fd_simple;
1561
1562 err = security_socket_accept(sock, newsock);
1563 if (err)
1564 goto out_fd;
1565
1566 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1567 if (err < 0)
1568 goto out_fd;
1569
1570 if (upeer_sockaddr) {
1571 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1572 &len, 2) < 0) {
1573 err = -ECONNABORTED;
1574 goto out_fd;
1575 }
1576 err = move_addr_to_user((struct sockaddr *)&address,
1577 len, upeer_sockaddr, upeer_addrlen);
1578 if (err < 0)
1579 goto out_fd;
1580 }
1581
1582 /* File flags are not inherited via accept() unlike another OSes. */
1583
1584 fd_install(newfd, newfile);
1585 err = newfd;
1586
1587out_put:
1588 fput_light(sock->file, fput_needed);
1589out:
1590 return err;
1591out_fd_simple:
1592 sock_release(newsock);
1593 put_filp(newfile);
1594 put_unused_fd(newfd);
1595 goto out_put;
1596out_fd:
1597 fput(newfile);
1598 put_unused_fd(newfd);
1599 goto out_put;
1600}
1601
1602SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1603 int __user *, upeer_addrlen)
1604{
1605 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1606}
1607
1608/*
1609 * Attempt to connect to a socket with the server address. The address
1610 * is in user space so we verify it is OK and move it to kernel space.
1611 *
1612 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1613 * break bindings
1614 *
1615 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1616 * other SEQPACKET protocols that take time to connect() as it doesn't
1617 * include the -EINPROGRESS status for such sockets.
1618 */
1619
1620SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1621 int, addrlen)
1622{
1623 struct socket *sock;
1624 struct sockaddr_storage address;
1625 int err, fput_needed;
1626
1627 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1628 if (!sock)
1629 goto out;
1630 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1631 if (err < 0)
1632 goto out_put;
1633
1634 err =
1635 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1636 if (err)
1637 goto out_put;
1638
1639 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1640 sock->file->f_flags);
1641out_put:
1642 fput_light(sock->file, fput_needed);
1643out:
1644 return err;
1645}
1646
1647/*
1648 * Get the local address ('name') of a socket object. Move the obtained
1649 * name to user space.
1650 */
1651
1652SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1653 int __user *, usockaddr_len)
1654{
1655 struct socket *sock;
1656 struct sockaddr_storage address;
1657 int len, err, fput_needed;
1658
1659 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1660 if (!sock)
1661 goto out;
1662
1663 err = security_socket_getsockname(sock);
1664 if (err)
1665 goto out_put;
1666
1667 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1668 if (err)
1669 goto out_put;
1670 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1671
1672out_put:
1673 fput_light(sock->file, fput_needed);
1674out:
1675 return err;
1676}
1677
1678/*
1679 * Get the remote address ('name') of a socket object. Move the obtained
1680 * name to user space.
1681 */
1682
1683SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1684 int __user *, usockaddr_len)
1685{
1686 struct socket *sock;
1687 struct sockaddr_storage address;
1688 int len, err, fput_needed;
1689
1690 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1691 if (sock != NULL) {
1692 err = security_socket_getpeername(sock);
1693 if (err) {
1694 fput_light(sock->file, fput_needed);
1695 return err;
1696 }
1697
1698 err =
1699 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1700 1);
1701 if (!err)
1702 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1703 usockaddr_len);
1704 fput_light(sock->file, fput_needed);
1705 }
1706 return err;
1707}
1708
1709/*
1710 * Send a datagram to a given address. We move the address into kernel
1711 * space and check the user space data area is readable before invoking
1712 * the protocol.
1713 */
1714
1715SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1716 unsigned, flags, struct sockaddr __user *, addr,
1717 int, addr_len)
1718{
1719 struct socket *sock;
1720 struct sockaddr_storage address;
1721 int err;
1722 struct msghdr msg;
1723 struct iovec iov;
1724 int fput_needed;
1725
1726 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1727 if (!sock)
1728 goto out;
1729
1730 iov.iov_base = buff;
1731 iov.iov_len = len;
1732 msg.msg_name = NULL;
1733 msg.msg_iov = &iov;
1734 msg.msg_iovlen = 1;
1735 msg.msg_control = NULL;
1736 msg.msg_controllen = 0;
1737 msg.msg_namelen = 0;
1738 if (addr) {
1739 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1740 if (err < 0)
1741 goto out_put;
1742 msg.msg_name = (struct sockaddr *)&address;
1743 msg.msg_namelen = addr_len;
1744 }
1745 if (sock->file->f_flags & O_NONBLOCK)
1746 flags |= MSG_DONTWAIT;
1747 msg.msg_flags = flags;
1748 err = sock_sendmsg(sock, &msg, len);
1749
1750out_put:
1751 fput_light(sock->file, fput_needed);
1752out:
1753 return err;
1754}
1755
1756/*
1757 * Send a datagram down a socket.
1758 */
1759
1760SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1761 unsigned, flags)
1762{
1763 return sys_sendto(fd, buff, len, flags, NULL, 0);
1764}
1765
1766/*
1767 * Receive a frame from the socket and optionally record the address of the
1768 * sender. We verify the buffers are writable and if needed move the
1769 * sender address from kernel to user space.
1770 */
1771
1772SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1773 unsigned, flags, struct sockaddr __user *, addr,
1774 int __user *, addr_len)
1775{
1776 struct socket *sock;
1777 struct iovec iov;
1778 struct msghdr msg;
1779 struct sockaddr_storage address;
1780 int err, err2;
1781 int fput_needed;
1782
1783 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1784 if (!sock)
1785 goto out;
1786
1787 msg.msg_control = NULL;
1788 msg.msg_controllen = 0;
1789 msg.msg_iovlen = 1;
1790 msg.msg_iov = &iov;
1791 iov.iov_len = size;
1792 iov.iov_base = ubuf;
1793 msg.msg_name = (struct sockaddr *)&address;
1794 msg.msg_namelen = sizeof(address);
1795 if (sock->file->f_flags & O_NONBLOCK)
1796 flags |= MSG_DONTWAIT;
1797 err = sock_recvmsg(sock, &msg, size, flags);
1798
1799 if (err >= 0 && addr != NULL) {
1800 err2 = move_addr_to_user((struct sockaddr *)&address,
1801 msg.msg_namelen, addr, addr_len);
1802 if (err2 < 0)
1803 err = err2;
1804 }
1805
1806 fput_light(sock->file, fput_needed);
1807out:
1808 return err;
1809}
1810
1811/*
1812 * Receive a datagram from a socket.
1813 */
1814
1815asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1816 unsigned flags)
1817{
1818 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1819}
1820
1821/*
1822 * Set a socket option. Because we don't know the option lengths we have
1823 * to pass the user mode parameter for the protocols to sort out.
1824 */
1825
1826SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1827 char __user *, optval, int, optlen)
1828{
1829 int err, fput_needed;
1830 struct socket *sock;
1831
1832 if (optlen < 0)
1833 return -EINVAL;
1834
1835 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1836 if (sock != NULL) {
1837 err = security_socket_setsockopt(sock, level, optname);
1838 if (err)
1839 goto out_put;
1840
1841 if (level == SOL_SOCKET)
1842 err =
1843 sock_setsockopt(sock, level, optname, optval,
1844 optlen);
1845 else
1846 err =
1847 sock->ops->setsockopt(sock, level, optname, optval,
1848 optlen);
1849out_put:
1850 fput_light(sock->file, fput_needed);
1851 }
1852 return err;
1853}
1854
1855/*
1856 * Get a socket option. Because we don't know the option lengths we have
1857 * to pass a user mode parameter for the protocols to sort out.
1858 */
1859
1860SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1861 char __user *, optval, int __user *, optlen)
1862{
1863 int err, fput_needed;
1864 struct socket *sock;
1865
1866 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1867 if (sock != NULL) {
1868 err = security_socket_getsockopt(sock, level, optname);
1869 if (err)
1870 goto out_put;
1871
1872 if (level == SOL_SOCKET)
1873 err =
1874 sock_getsockopt(sock, level, optname, optval,
1875 optlen);
1876 else
1877 err =
1878 sock->ops->getsockopt(sock, level, optname, optval,
1879 optlen);
1880out_put:
1881 fput_light(sock->file, fput_needed);
1882 }
1883 return err;
1884}
1885
1886/*
1887 * Shutdown a socket.
1888 */
1889
1890SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1891{
1892 int err, fput_needed;
1893 struct socket *sock;
1894
1895 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1896 if (sock != NULL) {
1897 err = security_socket_shutdown(sock, how);
1898 if (!err)
1899 err = sock->ops->shutdown(sock, how);
1900 fput_light(sock->file, fput_needed);
1901 }
1902 return err;
1903}
1904
1905/* A couple of helpful macros for getting the address of the 32/64 bit
1906 * fields which are the same type (int / unsigned) on our platforms.
1907 */
1908#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1909#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1910#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1911
1912/*
1913 * BSD sendmsg interface
1914 */
1915
1916SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1917{
1918 struct compat_msghdr __user *msg_compat =
1919 (struct compat_msghdr __user *)msg;
1920 struct socket *sock;
1921 struct sockaddr_storage address;
1922 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1923 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1924 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1925 /* 20 is size of ipv6_pktinfo */
1926 unsigned char *ctl_buf = ctl;
1927 struct msghdr msg_sys;
1928 int err, ctl_len, iov_size, total_len;
1929 int fput_needed;
1930
1931 err = -EFAULT;
1932 if (MSG_CMSG_COMPAT & flags) {
1933 if (get_compat_msghdr(&msg_sys, msg_compat))
1934 return -EFAULT;
1935 }
1936 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1937 return -EFAULT;
1938
1939 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1940 if (!sock)
1941 goto out;
1942
1943 /* do not move before msg_sys is valid */
1944 err = -EMSGSIZE;
1945 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1946 goto out_put;
1947
1948 /* Check whether to allocate the iovec area */
1949 err = -ENOMEM;
1950 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1951 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1952 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1953 if (!iov)
1954 goto out_put;
1955 }
1956
1957 /* This will also move the address data into kernel space */
1958 if (MSG_CMSG_COMPAT & flags) {
1959 err = verify_compat_iovec(&msg_sys, iov,
1960 (struct sockaddr *)&address,
1961 VERIFY_READ);
1962 } else
1963 err = verify_iovec(&msg_sys, iov,
1964 (struct sockaddr *)&address,
1965 VERIFY_READ);
1966 if (err < 0)
1967 goto out_freeiov;
1968 total_len = err;
1969
1970 err = -ENOBUFS;
1971
1972 if (msg_sys.msg_controllen > INT_MAX)
1973 goto out_freeiov;
1974 ctl_len = msg_sys.msg_controllen;
1975 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1976 err =
1977 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1978 sizeof(ctl));
1979 if (err)
1980 goto out_freeiov;
1981 ctl_buf = msg_sys.msg_control;
1982 ctl_len = msg_sys.msg_controllen;
1983 } else if (ctl_len) {
1984 if (ctl_len > sizeof(ctl)) {
1985 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1986 if (ctl_buf == NULL)
1987 goto out_freeiov;
1988 }
1989 err = -EFAULT;
1990 /*
1991 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1992 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1993 * checking falls down on this.
1994 */
1995 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1996 ctl_len))
1997 goto out_freectl;
1998 msg_sys.msg_control = ctl_buf;
1999 }
2000 msg_sys.msg_flags = flags;
2001
2002 if (sock->file->f_flags & O_NONBLOCK)
2003 msg_sys.msg_flags |= MSG_DONTWAIT;
2004 err = sock_sendmsg(sock, &msg_sys, total_len);
2005
2006out_freectl:
2007 if (ctl_buf != ctl)
2008 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2009out_freeiov:
2010 if (iov != iovstack)
2011 sock_kfree_s(sock->sk, iov, iov_size);
2012out_put:
2013 fput_light(sock->file, fput_needed);
2014out:
2015 return err;
2016}
2017
2018static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2019 struct msghdr *msg_sys, unsigned flags, int nosec)
2020{
2021 struct compat_msghdr __user *msg_compat =
2022 (struct compat_msghdr __user *)msg;
2023 struct iovec iovstack[UIO_FASTIOV];
2024 struct iovec *iov = iovstack;
2025 unsigned long cmsg_ptr;
2026 int err, iov_size, total_len, len;
2027
2028 /* kernel mode address */
2029 struct sockaddr_storage addr;
2030
2031 /* user mode address pointers */
2032 struct sockaddr __user *uaddr;
2033 int __user *uaddr_len;
2034
2035 if (MSG_CMSG_COMPAT & flags) {
2036 if (get_compat_msghdr(msg_sys, msg_compat))
2037 return -EFAULT;
2038 }
2039 else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2040 return -EFAULT;
2041
2042 err = -EMSGSIZE;
2043 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2044 goto out;
2045
2046 /* Check whether to allocate the iovec area */
2047 err = -ENOMEM;
2048 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
2049 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2050 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
2051 if (!iov)
2052 goto out;
2053 }
2054
2055 /*
2056 * Save the user-mode address (verify_iovec will change the
2057 * kernel msghdr to use the kernel address space)
2058 */
2059
2060 uaddr = (__force void __user *)msg_sys->msg_name;
2061 uaddr_len = COMPAT_NAMELEN(msg);
2062 if (MSG_CMSG_COMPAT & flags) {
2063 err = verify_compat_iovec(msg_sys, iov,
2064 (struct sockaddr *)&addr,
2065 VERIFY_WRITE);
2066 } else
2067 err = verify_iovec(msg_sys, iov,
2068 (struct sockaddr *)&addr,
2069 VERIFY_WRITE);
2070 if (err < 0)
2071 goto out_freeiov;
2072 total_len = err;
2073
2074 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2075 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2076
2077 if (sock->file->f_flags & O_NONBLOCK)
2078 flags |= MSG_DONTWAIT;
2079 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2080 total_len, flags);
2081 if (err < 0)
2082 goto out_freeiov;
2083 len = err;
2084
2085 if (uaddr != NULL) {
2086 err = move_addr_to_user((struct sockaddr *)&addr,
2087 msg_sys->msg_namelen, uaddr,
2088 uaddr_len);
2089 if (err < 0)
2090 goto out_freeiov;
2091 }
2092 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2093 COMPAT_FLAGS(msg));
2094 if (err)
2095 goto out_freeiov;
2096 if (MSG_CMSG_COMPAT & flags)
2097 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2098 &msg_compat->msg_controllen);
2099 else
2100 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2101 &msg->msg_controllen);
2102 if (err)
2103 goto out_freeiov;
2104 err = len;
2105
2106out_freeiov:
2107 if (iov != iovstack)
2108 sock_kfree_s(sock->sk, iov, iov_size);
2109out:
2110 return err;
2111}
2112
2113/*
2114 * BSD recvmsg interface
2115 */
2116
2117SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2118 unsigned int, flags)
2119{
2120 int fput_needed, err;
2121 struct msghdr msg_sys;
2122 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2123
2124 if (!sock)
2125 goto out;
2126
2127 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2128
2129 fput_light(sock->file, fput_needed);
2130out:
2131 return err;
2132}
2133
2134/*
2135 * Linux recvmmsg interface
2136 */
2137
2138int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2139 unsigned int flags, struct timespec *timeout)
2140{
2141 int fput_needed, err, datagrams;
2142 struct socket *sock;
2143 struct mmsghdr __user *entry;
2144 struct compat_mmsghdr __user *compat_entry;
2145 struct msghdr msg_sys;
2146 struct timespec end_time;
2147
2148 if (timeout &&
2149 poll_select_set_timeout(&end_time, timeout->tv_sec,
2150 timeout->tv_nsec))
2151 return -EINVAL;
2152
2153 datagrams = 0;
2154
2155 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2156 if (!sock)
2157 return err;
2158
2159 err = sock_error(sock->sk);
2160 if (err)
2161 goto out_put;
2162
2163 entry = mmsg;
2164 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2165
2166 while (datagrams < vlen) {
2167 /*
2168 * No need to ask LSM for more than the first datagram.
2169 */
2170 if (MSG_CMSG_COMPAT & flags) {
2171 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2172 &msg_sys, flags, datagrams);
2173 if (err < 0)
2174 break;
2175 err = __put_user(err, &compat_entry->msg_len);
2176 ++compat_entry;
2177 } else {
2178 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2179 &msg_sys, flags, datagrams);
2180 if (err < 0)
2181 break;
2182 err = put_user(err, &entry->msg_len);
2183 ++entry;
2184 }
2185
2186 if (err)
2187 break;
2188 ++datagrams;
2189
2190 if (timeout) {
2191 ktime_get_ts(timeout);
2192 *timeout = timespec_sub(end_time, *timeout);
2193 if (timeout->tv_sec < 0) {
2194 timeout->tv_sec = timeout->tv_nsec = 0;
2195 break;
2196 }
2197
2198 /* Timeout, return less than vlen datagrams */
2199 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2200 break;
2201 }
2202
2203 /* Out of band data, return right away */
2204 if (msg_sys.msg_flags & MSG_OOB)
2205 break;
2206 }
2207
2208out_put:
2209 fput_light(sock->file, fput_needed);
2210
2211 if (err == 0)
2212 return datagrams;
2213
2214 if (datagrams != 0) {
2215 /*
2216 * We may return less entries than requested (vlen) if the
2217 * sock is non block and there aren't enough datagrams...
2218 */
2219 if (err != -EAGAIN) {
2220 /*
2221 * ... or if recvmsg returns an error after we
2222 * received some datagrams, where we record the
2223 * error to return on the next call or if the
2224 * app asks about it using getsockopt(SO_ERROR).
2225 */
2226 sock->sk->sk_err = -err;
2227 }
2228
2229 return datagrams;
2230 }
2231
2232 return err;
2233}
2234
2235SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2236 unsigned int, vlen, unsigned int, flags,
2237 struct timespec __user *, timeout)
2238{
2239 int datagrams;
2240 struct timespec timeout_sys;
2241
2242 if (!timeout)
2243 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2244
2245 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2246 return -EFAULT;
2247
2248 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2249
2250 if (datagrams > 0 &&
2251 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2252 datagrams = -EFAULT;
2253
2254 return datagrams;
2255}
2256
2257#ifdef __ARCH_WANT_SYS_SOCKETCALL
2258/* Argument list sizes for sys_socketcall */
2259#define AL(x) ((x) * sizeof(unsigned long))
2260static const unsigned char nargs[20] = {
2261 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2262 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2263 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2264 AL(4),AL(5)
2265};
2266
2267#undef AL
2268
2269/*
2270 * System call vectors.
2271 *
2272 * Argument checking cleaned up. Saved 20% in size.
2273 * This function doesn't need to set the kernel lock because
2274 * it is set by the callees.
2275 */
2276
2277SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2278{
2279 unsigned long a[6];
2280 unsigned long a0, a1;
2281 int err;
2282 unsigned int len;
2283
2284 if (call < 1 || call > SYS_RECVMMSG)
2285 return -EINVAL;
2286
2287 len = nargs[call];
2288 if (len > sizeof(a))
2289 return -EINVAL;
2290
2291 /* copy_from_user should be SMP safe. */
2292 if (copy_from_user(a, args, len))
2293 return -EFAULT;
2294
2295 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2296
2297 a0 = a[0];
2298 a1 = a[1];
2299
2300 switch (call) {
2301 case SYS_SOCKET:
2302 err = sys_socket(a0, a1, a[2]);
2303 break;
2304 case SYS_BIND:
2305 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2306 break;
2307 case SYS_CONNECT:
2308 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2309 break;
2310 case SYS_LISTEN:
2311 err = sys_listen(a0, a1);
2312 break;
2313 case SYS_ACCEPT:
2314 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2315 (int __user *)a[2], 0);
2316 break;
2317 case SYS_GETSOCKNAME:
2318 err =
2319 sys_getsockname(a0, (struct sockaddr __user *)a1,
2320 (int __user *)a[2]);
2321 break;
2322 case SYS_GETPEERNAME:
2323 err =
2324 sys_getpeername(a0, (struct sockaddr __user *)a1,
2325 (int __user *)a[2]);
2326 break;
2327 case SYS_SOCKETPAIR:
2328 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2329 break;
2330 case SYS_SEND:
2331 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2332 break;
2333 case SYS_SENDTO:
2334 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2335 (struct sockaddr __user *)a[4], a[5]);
2336 break;
2337 case SYS_RECV:
2338 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2339 break;
2340 case SYS_RECVFROM:
2341 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2342 (struct sockaddr __user *)a[4],
2343 (int __user *)a[5]);
2344 break;
2345 case SYS_SHUTDOWN:
2346 err = sys_shutdown(a0, a1);
2347 break;
2348 case SYS_SETSOCKOPT:
2349 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2350 break;
2351 case SYS_GETSOCKOPT:
2352 err =
2353 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2354 (int __user *)a[4]);
2355 break;
2356 case SYS_SENDMSG:
2357 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2358 break;
2359 case SYS_RECVMSG:
2360 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2361 break;
2362 case SYS_RECVMMSG:
2363 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2364 (struct timespec __user *)a[4]);
2365 break;
2366 case SYS_ACCEPT4:
2367 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2368 (int __user *)a[2], a[3]);
2369 break;
2370 default:
2371 err = -EINVAL;
2372 break;
2373 }
2374 return err;
2375}
2376
2377#endif /* __ARCH_WANT_SYS_SOCKETCALL */
2378
2379/**
2380 * sock_register - add a socket protocol handler
2381 * @ops: description of protocol
2382 *
2383 * This function is called by a protocol handler that wants to
2384 * advertise its address family, and have it linked into the
2385 * socket interface. The value ops->family coresponds to the
2386 * socket system call protocol family.
2387 */
2388int sock_register(const struct net_proto_family *ops)
2389{
2390 int err;
2391
2392 if (ops->family >= NPROTO) {
2393 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2394 NPROTO);
2395 return -ENOBUFS;
2396 }
2397
2398 spin_lock(&net_family_lock);
2399 if (net_families[ops->family])
2400 err = -EEXIST;
2401 else {
2402 net_families[ops->family] = ops;
2403 err = 0;
2404 }
2405 spin_unlock(&net_family_lock);
2406
2407 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2408 return err;
2409}
2410
2411/**
2412 * sock_unregister - remove a protocol handler
2413 * @family: protocol family to remove
2414 *
2415 * This function is called by a protocol handler that wants to
2416 * remove its address family, and have it unlinked from the
2417 * new socket creation.
2418 *
2419 * If protocol handler is a module, then it can use module reference
2420 * counts to protect against new references. If protocol handler is not
2421 * a module then it needs to provide its own protection in
2422 * the ops->create routine.
2423 */
2424void sock_unregister(int family)
2425{
2426 BUG_ON(family < 0 || family >= NPROTO);
2427
2428 spin_lock(&net_family_lock);
2429 net_families[family] = NULL;
2430 spin_unlock(&net_family_lock);
2431
2432 synchronize_rcu();
2433
2434 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2435}
2436
2437static int __init sock_init(void)
2438{
2439 /*
2440 * Initialize sock SLAB cache.
2441 */
2442
2443 sk_init();
2444
2445 /*
2446 * Initialize skbuff SLAB cache
2447 */
2448 skb_init();
2449
2450 /*
2451 * Initialize the protocols module.
2452 */
2453
2454 init_inodecache();
2455 register_filesystem(&sock_fs_type);
2456 sock_mnt = kern_mount(&sock_fs_type);
2457
2458 /* The real protocol initialization is performed in later initcalls.
2459 */
2460
2461#ifdef CONFIG_NETFILTER
2462 netfilter_init();
2463#endif
2464
2465 return 0;
2466}
2467
2468core_initcall(sock_init); /* early initcall */
2469
2470#ifdef CONFIG_PROC_FS
2471void socket_seq_show(struct seq_file *seq)
2472{
2473 int cpu;
2474 int counter = 0;
2475
2476 for_each_possible_cpu(cpu)
2477 counter += per_cpu(sockets_in_use, cpu);
2478
2479 /* It can be negative, by the way. 8) */
2480 if (counter < 0)
2481 counter = 0;
2482
2483 seq_printf(seq, "sockets: used %d\n", counter);
2484}
2485#endif /* CONFIG_PROC_FS */
2486
2487#ifdef CONFIG_COMPAT
2488static int do_siocgstamp(struct net *net, struct socket *sock,
2489 unsigned int cmd, struct compat_timeval __user *up)
2490{
2491 mm_segment_t old_fs = get_fs();
2492 struct timeval ktv;
2493 int err;
2494
2495 set_fs(KERNEL_DS);
2496 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2497 set_fs(old_fs);
2498 if (!err) {
2499 err = put_user(ktv.tv_sec, &up->tv_sec);
2500 err |= __put_user(ktv.tv_usec, &up->tv_usec);
2501 }
2502 return err;
2503}
2504
2505static int do_siocgstampns(struct net *net, struct socket *sock,
2506 unsigned int cmd, struct compat_timespec __user *up)
2507{
2508 mm_segment_t old_fs = get_fs();
2509 struct timespec kts;
2510 int err;
2511
2512 set_fs(KERNEL_DS);
2513 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2514 set_fs(old_fs);
2515 if (!err) {
2516 err = put_user(kts.tv_sec, &up->tv_sec);
2517 err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2518 }
2519 return err;
2520}
2521
2522static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2523{
2524 struct ifreq __user *uifr;
2525 int err;
2526
2527 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2528 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2529 return -EFAULT;
2530
2531 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2532 if (err)
2533 return err;
2534
2535 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2536 return -EFAULT;
2537
2538 return 0;
2539}
2540
2541static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2542{
2543 struct compat_ifconf ifc32;
2544 struct ifconf ifc;
2545 struct ifconf __user *uifc;
2546 struct compat_ifreq __user *ifr32;
2547 struct ifreq __user *ifr;
2548 unsigned int i, j;
2549 int err;
2550
2551 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2552 return -EFAULT;
2553
2554 if (ifc32.ifcbuf == 0) {
2555 ifc32.ifc_len = 0;
2556 ifc.ifc_len = 0;
2557 ifc.ifc_req = NULL;
2558 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2559 } else {
2560 size_t len =((ifc32.ifc_len / sizeof (struct compat_ifreq)) + 1) *
2561 sizeof (struct ifreq);
2562 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2563 ifc.ifc_len = len;
2564 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2565 ifr32 = compat_ptr(ifc32.ifcbuf);
2566 for (i = 0; i < ifc32.ifc_len; i += sizeof (struct compat_ifreq)) {
2567 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2568 return -EFAULT;
2569 ifr++;
2570 ifr32++;
2571 }
2572 }
2573 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2574 return -EFAULT;
2575
2576 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2577 if (err)
2578 return err;
2579
2580 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2581 return -EFAULT;
2582
2583 ifr = ifc.ifc_req;
2584 ifr32 = compat_ptr(ifc32.ifcbuf);
2585 for (i = 0, j = 0;
2586 i + sizeof (struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2587 i += sizeof (struct compat_ifreq), j += sizeof (struct ifreq)) {
2588 if (copy_in_user(ifr32, ifr, sizeof (struct compat_ifreq)))
2589 return -EFAULT;
2590 ifr32++;
2591 ifr++;
2592 }
2593
2594 if (ifc32.ifcbuf == 0) {
2595 /* Translate from 64-bit structure multiple to
2596 * a 32-bit one.
2597 */
2598 i = ifc.ifc_len;
2599 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2600 ifc32.ifc_len = i;
2601 } else {
2602 ifc32.ifc_len = i;
2603 }
2604 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2605 return -EFAULT;
2606
2607 return 0;
2608}
2609
2610static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2611{
2612 struct ifreq __user *ifr;
2613 u32 data;
2614 void __user *datap;
2615
2616 ifr = compat_alloc_user_space(sizeof(*ifr));
2617
2618 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2619 return -EFAULT;
2620
2621 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2622 return -EFAULT;
2623
2624 datap = compat_ptr(data);
2625 if (put_user(datap, &ifr->ifr_ifru.ifru_data))
2626 return -EFAULT;
2627
2628 return dev_ioctl(net, SIOCETHTOOL, ifr);
2629}
2630
2631static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2632{
2633 void __user *uptr;
2634 compat_uptr_t uptr32;
2635 struct ifreq __user *uifr;
2636
2637 uifr = compat_alloc_user_space(sizeof (*uifr));
2638 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2639 return -EFAULT;
2640
2641 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2642 return -EFAULT;
2643
2644 uptr = compat_ptr(uptr32);
2645
2646 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2647 return -EFAULT;
2648
2649 return dev_ioctl(net, SIOCWANDEV, uifr);
2650}
2651
2652static int bond_ioctl(struct net *net, unsigned int cmd,
2653 struct compat_ifreq __user *ifr32)
2654{
2655 struct ifreq kifr;
2656 struct ifreq __user *uifr;
2657 mm_segment_t old_fs;
2658 int err;
2659 u32 data;
2660 void __user *datap;
2661
2662 switch (cmd) {
2663 case SIOCBONDENSLAVE:
2664 case SIOCBONDRELEASE:
2665 case SIOCBONDSETHWADDR:
2666 case SIOCBONDCHANGEACTIVE:
2667 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2668 return -EFAULT;
2669
2670 old_fs = get_fs();
2671 set_fs (KERNEL_DS);
2672 err = dev_ioctl(net, cmd, &kifr);
2673 set_fs (old_fs);
2674
2675 return err;
2676 case SIOCBONDSLAVEINFOQUERY:
2677 case SIOCBONDINFOQUERY:
2678 uifr = compat_alloc_user_space(sizeof(*uifr));
2679 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2680 return -EFAULT;
2681
2682 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2683 return -EFAULT;
2684
2685 datap = compat_ptr(data);
2686 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2687 return -EFAULT;
2688
2689 return dev_ioctl(net, cmd, uifr);
2690 default:
2691 return -EINVAL;
2692 };
2693}
2694
2695static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2696 struct compat_ifreq __user *u_ifreq32)
2697{
2698 struct ifreq __user *u_ifreq64;
2699 char tmp_buf[IFNAMSIZ];
2700 void __user *data64;
2701 u32 data32;
2702
2703 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2704 IFNAMSIZ))
2705 return -EFAULT;
2706 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2707 return -EFAULT;
2708 data64 = compat_ptr(data32);
2709
2710 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2711
2712 /* Don't check these user accesses, just let that get trapped
2713 * in the ioctl handler instead.
2714 */
2715 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2716 IFNAMSIZ))
2717 return -EFAULT;
2718 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2719 return -EFAULT;
2720
2721 return dev_ioctl(net, cmd, u_ifreq64);
2722}
2723
2724static int dev_ifsioc(struct net *net, struct socket *sock,
2725 unsigned int cmd, struct compat_ifreq __user *uifr32)
2726{
2727 struct ifreq __user *uifr;
2728 int err;
2729
2730 uifr = compat_alloc_user_space(sizeof(*uifr));
2731 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2732 return -EFAULT;
2733
2734 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2735
2736 if (!err) {
2737 switch (cmd) {
2738 case SIOCGIFFLAGS:
2739 case SIOCGIFMETRIC:
2740 case SIOCGIFMTU:
2741 case SIOCGIFMEM:
2742 case SIOCGIFHWADDR:
2743 case SIOCGIFINDEX:
2744 case SIOCGIFADDR:
2745 case SIOCGIFBRDADDR:
2746 case SIOCGIFDSTADDR:
2747 case SIOCGIFNETMASK:
2748 case SIOCGIFPFLAGS:
2749 case SIOCGIFTXQLEN:
2750 case SIOCGMIIPHY:
2751 case SIOCGMIIREG:
2752 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2753 err = -EFAULT;
2754 break;
2755 }
2756 }
2757 return err;
2758}
2759
2760static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2761 struct compat_ifreq __user *uifr32)
2762{
2763 struct ifreq ifr;
2764 struct compat_ifmap __user *uifmap32;
2765 mm_segment_t old_fs;
2766 int err;
2767
2768 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2769 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2770 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2771 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2772 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2773 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2774 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2775 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2776 if (err)
2777 return -EFAULT;
2778
2779 old_fs = get_fs();
2780 set_fs (KERNEL_DS);
2781 err = dev_ioctl(net, cmd, (void __user *)&ifr);
2782 set_fs (old_fs);
2783
2784 if (cmd == SIOCGIFMAP && !err) {
2785 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2786 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2787 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2788 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2789 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2790 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2791 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2792 if (err)
2793 err = -EFAULT;
2794 }
2795 return err;
2796}
2797
2798static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2799{
2800 void __user *uptr;
2801 compat_uptr_t uptr32;
2802 struct ifreq __user *uifr;
2803
2804 uifr = compat_alloc_user_space(sizeof (*uifr));
2805 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2806 return -EFAULT;
2807
2808 if (get_user(uptr32, &uifr32->ifr_data))
2809 return -EFAULT;
2810
2811 uptr = compat_ptr(uptr32);
2812
2813 if (put_user(uptr, &uifr->ifr_data))
2814 return -EFAULT;
2815
2816 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
2817}
2818
2819struct rtentry32 {
2820 u32 rt_pad1;
2821 struct sockaddr rt_dst; /* target address */
2822 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2823 struct sockaddr rt_genmask; /* target network mask (IP) */
2824 unsigned short rt_flags;
2825 short rt_pad2;
2826 u32 rt_pad3;
2827 unsigned char rt_tos;
2828 unsigned char rt_class;
2829 short rt_pad4;
2830 short rt_metric; /* +1 for binary compatibility! */
2831 /* char * */ u32 rt_dev; /* forcing the device at add */
2832 u32 rt_mtu; /* per route MTU/Window */
2833 u32 rt_window; /* Window clamping */
2834 unsigned short rt_irtt; /* Initial RTT */
2835};
2836
2837struct in6_rtmsg32 {
2838 struct in6_addr rtmsg_dst;
2839 struct in6_addr rtmsg_src;
2840 struct in6_addr rtmsg_gateway;
2841 u32 rtmsg_type;
2842 u16 rtmsg_dst_len;
2843 u16 rtmsg_src_len;
2844 u32 rtmsg_metric;
2845 u32 rtmsg_info;
2846 u32 rtmsg_flags;
2847 s32 rtmsg_ifindex;
2848};
2849
2850static int routing_ioctl(struct net *net, struct socket *sock,
2851 unsigned int cmd, void __user *argp)
2852{
2853 int ret;
2854 void *r = NULL;
2855 struct in6_rtmsg r6;
2856 struct rtentry r4;
2857 char devname[16];
2858 u32 rtdev;
2859 mm_segment_t old_fs = get_fs();
2860
2861 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2862 struct in6_rtmsg32 __user *ur6 = argp;
2863 ret = copy_from_user (&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2864 3 * sizeof(struct in6_addr));
2865 ret |= __get_user (r6.rtmsg_type, &(ur6->rtmsg_type));
2866 ret |= __get_user (r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2867 ret |= __get_user (r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2868 ret |= __get_user (r6.rtmsg_metric, &(ur6->rtmsg_metric));
2869 ret |= __get_user (r6.rtmsg_info, &(ur6->rtmsg_info));
2870 ret |= __get_user (r6.rtmsg_flags, &(ur6->rtmsg_flags));
2871 ret |= __get_user (r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2872
2873 r = (void *) &r6;
2874 } else { /* ipv4 */
2875 struct rtentry32 __user *ur4 = argp;
2876 ret = copy_from_user (&r4.rt_dst, &(ur4->rt_dst),
2877 3 * sizeof(struct sockaddr));
2878 ret |= __get_user (r4.rt_flags, &(ur4->rt_flags));
2879 ret |= __get_user (r4.rt_metric, &(ur4->rt_metric));
2880 ret |= __get_user (r4.rt_mtu, &(ur4->rt_mtu));
2881 ret |= __get_user (r4.rt_window, &(ur4->rt_window));
2882 ret |= __get_user (r4.rt_irtt, &(ur4->rt_irtt));
2883 ret |= __get_user (rtdev, &(ur4->rt_dev));
2884 if (rtdev) {
2885 ret |= copy_from_user (devname, compat_ptr(rtdev), 15);
2886 r4.rt_dev = devname; devname[15] = 0;
2887 } else
2888 r4.rt_dev = NULL;
2889
2890 r = (void *) &r4;
2891 }
2892
2893 if (ret) {
2894 ret = -EFAULT;
2895 goto out;
2896 }
2897
2898 set_fs (KERNEL_DS);
2899 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2900 set_fs (old_fs);
2901
2902out:
2903 return ret;
2904}
2905
2906/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2907 * for some operations; this forces use of the newer bridge-utils that
2908 * use compatiable ioctls
2909 */
2910static int old_bridge_ioctl(compat_ulong_t __user *argp)
2911{
2912 compat_ulong_t tmp;
2913
2914 if (get_user(tmp, argp))
2915 return -EFAULT;
2916 if (tmp == BRCTL_GET_VERSION)
2917 return BRCTL_VERSION + 1;
2918 return -EINVAL;
2919}
2920
2921static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
2922 unsigned int cmd, unsigned long arg)
2923{
2924 void __user *argp = compat_ptr(arg);
2925 struct sock *sk = sock->sk;
2926 struct net *net = sock_net(sk);
2927
2928 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
2929 return siocdevprivate_ioctl(net, cmd, argp);
2930
2931 switch (cmd) {
2932 case SIOCSIFBR:
2933 case SIOCGIFBR:
2934 return old_bridge_ioctl(argp);
2935 case SIOCGIFNAME:
2936 return dev_ifname32(net, argp);
2937 case SIOCGIFCONF:
2938 return dev_ifconf(net, argp);
2939 case SIOCETHTOOL:
2940 return ethtool_ioctl(net, argp);
2941 case SIOCWANDEV:
2942 return compat_siocwandev(net, argp);
2943 case SIOCGIFMAP:
2944 case SIOCSIFMAP:
2945 return compat_sioc_ifmap(net, cmd, argp);
2946 case SIOCBONDENSLAVE:
2947 case SIOCBONDRELEASE:
2948 case SIOCBONDSETHWADDR:
2949 case SIOCBONDSLAVEINFOQUERY:
2950 case SIOCBONDINFOQUERY:
2951 case SIOCBONDCHANGEACTIVE:
2952 return bond_ioctl(net, cmd, argp);
2953 case SIOCADDRT:
2954 case SIOCDELRT:
2955 return routing_ioctl(net, sock, cmd, argp);
2956 case SIOCGSTAMP:
2957 return do_siocgstamp(net, sock, cmd, argp);
2958 case SIOCGSTAMPNS:
2959 return do_siocgstampns(net, sock, cmd, argp);
2960 case SIOCSHWTSTAMP:
2961 return compat_siocshwtstamp(net, argp);
2962
2963 case FIOSETOWN:
2964 case SIOCSPGRP:
2965 case FIOGETOWN:
2966 case SIOCGPGRP:
2967 case SIOCBRADDBR:
2968 case SIOCBRDELBR:
2969 case SIOCGIFVLAN:
2970 case SIOCSIFVLAN:
2971 case SIOCADDDLCI:
2972 case SIOCDELDLCI:
2973 return sock_ioctl(file, cmd, arg);
2974
2975 case SIOCGIFFLAGS:
2976 case SIOCSIFFLAGS:
2977 case SIOCGIFMETRIC:
2978 case SIOCSIFMETRIC:
2979 case SIOCGIFMTU:
2980 case SIOCSIFMTU:
2981 case SIOCGIFMEM:
2982 case SIOCSIFMEM:
2983 case SIOCGIFHWADDR:
2984 case SIOCSIFHWADDR:
2985 case SIOCADDMULTI:
2986 case SIOCDELMULTI:
2987 case SIOCGIFINDEX:
2988 case SIOCGIFADDR:
2989 case SIOCSIFADDR:
2990 case SIOCSIFHWBROADCAST:
2991 case SIOCDIFADDR:
2992 case SIOCGIFBRDADDR:
2993 case SIOCSIFBRDADDR:
2994 case SIOCGIFDSTADDR:
2995 case SIOCSIFDSTADDR:
2996 case SIOCGIFNETMASK:
2997 case SIOCSIFNETMASK:
2998 case SIOCSIFPFLAGS:
2999 case SIOCGIFPFLAGS:
3000 case SIOCGIFTXQLEN:
3001 case SIOCSIFTXQLEN:
3002 case SIOCBRADDIF:
3003 case SIOCBRDELIF:
3004 case SIOCSIFNAME:
3005 case SIOCGMIIPHY:
3006 case SIOCGMIIREG:
3007 case SIOCSMIIREG:
3008 return dev_ifsioc(net, sock, cmd, argp);
3009
3010 case SIOCSARP:
3011 case SIOCGARP:
3012 case SIOCDARP:
3013 case SIOCATMARK:
3014 return sock_do_ioctl(net, sock, cmd, arg);
3015 }
3016
3017 /* Prevent warning from compat_sys_ioctl, these always
3018 * result in -EINVAL in the native case anyway. */
3019 switch (cmd) {
3020 case SIOCRTMSG:
3021 case SIOCGIFCOUNT:
3022 case SIOCSRARP:
3023 case SIOCGRARP:
3024 case SIOCDRARP:
3025 case SIOCSIFLINK:
3026 case SIOCGIFSLAVE:
3027 case SIOCSIFSLAVE:
3028 return -EINVAL;
3029 }
3030
3031 return -ENOIOCTLCMD;
3032}
3033
3034static long compat_sock_ioctl(struct file *file, unsigned cmd,
3035 unsigned long arg)
3036{
3037 struct socket *sock = file->private_data;
3038 int ret = -ENOIOCTLCMD;
3039 struct sock *sk;
3040 struct net *net;
3041
3042 sk = sock->sk;
3043 net = sock_net(sk);
3044
3045 if (sock->ops->compat_ioctl)
3046 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3047
3048 if (ret == -ENOIOCTLCMD &&
3049 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3050 ret = compat_wext_handle_ioctl(net, cmd, arg);
3051
3052 if (ret == -ENOIOCTLCMD)
3053 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3054
3055 return ret;
3056}
3057#endif
3058
3059int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3060{
3061 return sock->ops->bind(sock, addr, addrlen);
3062}
3063
3064int kernel_listen(struct socket *sock, int backlog)
3065{
3066 return sock->ops->listen(sock, backlog);
3067}
3068
3069int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3070{
3071 struct sock *sk = sock->sk;
3072 int err;
3073
3074 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3075 newsock);
3076 if (err < 0)
3077 goto done;
3078
3079 err = sock->ops->accept(sock, *newsock, flags);
3080 if (err < 0) {
3081 sock_release(*newsock);
3082 *newsock = NULL;
3083 goto done;
3084 }
3085
3086 (*newsock)->ops = sock->ops;
3087 __module_get((*newsock)->ops->owner);
3088
3089done:
3090 return err;
3091}
3092
3093int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3094 int flags)
3095{
3096 return sock->ops->connect(sock, addr, addrlen, flags);
3097}
3098
3099int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3100 int *addrlen)
3101{
3102 return sock->ops->getname(sock, addr, addrlen, 0);
3103}
3104
3105int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3106 int *addrlen)
3107{
3108 return sock->ops->getname(sock, addr, addrlen, 1);
3109}
3110
3111int kernel_getsockopt(struct socket *sock, int level, int optname,
3112 char *optval, int *optlen)
3113{
3114 mm_segment_t oldfs = get_fs();
3115 int err;
3116
3117 set_fs(KERNEL_DS);
3118 if (level == SOL_SOCKET)
3119 err = sock_getsockopt(sock, level, optname, optval, optlen);
3120 else
3121 err = sock->ops->getsockopt(sock, level, optname, optval,
3122 optlen);
3123 set_fs(oldfs);
3124 return err;
3125}
3126
3127int kernel_setsockopt(struct socket *sock, int level, int optname,
3128 char *optval, unsigned int optlen)
3129{
3130 mm_segment_t oldfs = get_fs();
3131 int err;
3132
3133 set_fs(KERNEL_DS);
3134 if (level == SOL_SOCKET)
3135 err = sock_setsockopt(sock, level, optname, optval, optlen);
3136 else
3137 err = sock->ops->setsockopt(sock, level, optname, optval,
3138 optlen);
3139 set_fs(oldfs);
3140 return err;
3141}
3142
3143int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3144 size_t size, int flags)
3145{
3146 if (sock->ops->sendpage)
3147 return sock->ops->sendpage(sock, page, offset, size, flags);
3148
3149 return sock_no_sendpage(sock, page, offset, size, flags);
3150}
3151
3152int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3153{
3154 mm_segment_t oldfs = get_fs();
3155 int err;
3156
3157 set_fs(KERNEL_DS);
3158 err = sock->ops->ioctl(sock, cmd, arg);
3159 set_fs(oldfs);
3160
3161 return err;
3162}
3163
3164int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3165{
3166 return sock->ops->shutdown(sock, how);
3167}
3168
3169EXPORT_SYMBOL(sock_create);
3170EXPORT_SYMBOL(sock_create_kern);
3171EXPORT_SYMBOL(sock_create_lite);
3172EXPORT_SYMBOL(sock_map_fd);
3173EXPORT_SYMBOL(sock_recvmsg);
3174EXPORT_SYMBOL(sock_register);
3175EXPORT_SYMBOL(sock_release);
3176EXPORT_SYMBOL(sock_sendmsg);
3177EXPORT_SYMBOL(sock_unregister);
3178EXPORT_SYMBOL(sock_wake_async);
3179EXPORT_SYMBOL(sockfd_lookup);
3180EXPORT_SYMBOL(kernel_sendmsg);
3181EXPORT_SYMBOL(kernel_recvmsg);
3182EXPORT_SYMBOL(kernel_bind);
3183EXPORT_SYMBOL(kernel_listen);
3184EXPORT_SYMBOL(kernel_accept);
3185EXPORT_SYMBOL(kernel_connect);
3186EXPORT_SYMBOL(kernel_getsockname);
3187EXPORT_SYMBOL(kernel_getpeername);
3188EXPORT_SYMBOL(kernel_getsockopt);
3189EXPORT_SYMBOL(kernel_setsockopt);
3190EXPORT_SYMBOL(kernel_sendpage);
3191EXPORT_SYMBOL(kernel_sock_ioctl);
3192EXPORT_SYMBOL(kernel_sock_shutdown);