]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - net/sctp/socket.c
ipv6: AF_INET6 link address family
[net-next-2.6.git] / net / sctp / socket.c
... / ...
CommitLineData
1/* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, write to
32 * the Free Software Foundation, 59 Temple Place - Suite 330,
33 * Boston, MA 02111-1307, USA.
34 *
35 * Please send any bug reports or fixes you make to the
36 * email address(es):
37 * lksctp developers <lksctp-developers@lists.sourceforge.net>
38 *
39 * Or submit a bug report through the following website:
40 * http://www.sf.net/projects/lksctp
41 *
42 * Written or modified by:
43 * La Monte H.P. Yarroll <piggy@acm.org>
44 * Narasimha Budihal <narsi@refcode.org>
45 * Karl Knutson <karl@athena.chicago.il.us>
46 * Jon Grimm <jgrimm@us.ibm.com>
47 * Xingang Guo <xingang.guo@intel.com>
48 * Daisy Chang <daisyc@us.ibm.com>
49 * Sridhar Samudrala <samudrala@us.ibm.com>
50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
51 * Ardelle Fan <ardelle.fan@intel.com>
52 * Ryan Layer <rmlayer@us.ibm.com>
53 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
54 * Kevin Gao <kevin.gao@intel.com>
55 *
56 * Any bugs reported given to us we will try to fix... any fixes shared will
57 * be incorporated into the next SCTP release.
58 */
59
60#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61
62#include <linux/types.h>
63#include <linux/kernel.h>
64#include <linux/wait.h>
65#include <linux/time.h>
66#include <linux/ip.h>
67#include <linux/capability.h>
68#include <linux/fcntl.h>
69#include <linux/poll.h>
70#include <linux/init.h>
71#include <linux/crypto.h>
72#include <linux/slab.h>
73
74#include <net/ip.h>
75#include <net/icmp.h>
76#include <net/route.h>
77#include <net/ipv6.h>
78#include <net/inet_common.h>
79
80#include <linux/socket.h> /* for sa_family_t */
81#include <net/sock.h>
82#include <net/sctp/sctp.h>
83#include <net/sctp/sm.h>
84
85/* WARNING: Please do not remove the SCTP_STATIC attribute to
86 * any of the functions below as they are used to export functions
87 * used by a project regression testsuite.
88 */
89
90/* Forward declarations for internal helper functions. */
91static int sctp_writeable(struct sock *sk);
92static void sctp_wfree(struct sk_buff *skb);
93static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
94 size_t msg_len);
95static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
96static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
97static int sctp_wait_for_accept(struct sock *sk, long timeo);
98static void sctp_wait_for_close(struct sock *sk, long timeo);
99static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
100 union sctp_addr *addr, int len);
101static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
102static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
103static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
104static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
105static int sctp_send_asconf(struct sctp_association *asoc,
106 struct sctp_chunk *chunk);
107static int sctp_do_bind(struct sock *, union sctp_addr *, int);
108static int sctp_autobind(struct sock *sk);
109static void sctp_sock_migrate(struct sock *, struct sock *,
110 struct sctp_association *, sctp_socket_type_t);
111static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
112
113extern struct kmem_cache *sctp_bucket_cachep;
114extern long sysctl_sctp_mem[3];
115extern int sysctl_sctp_rmem[3];
116extern int sysctl_sctp_wmem[3];
117
118static int sctp_memory_pressure;
119static atomic_long_t sctp_memory_allocated;
120struct percpu_counter sctp_sockets_allocated;
121
122static void sctp_enter_memory_pressure(struct sock *sk)
123{
124 sctp_memory_pressure = 1;
125}
126
127
128/* Get the sndbuf space available at the time on the association. */
129static inline int sctp_wspace(struct sctp_association *asoc)
130{
131 int amt;
132
133 if (asoc->ep->sndbuf_policy)
134 amt = asoc->sndbuf_used;
135 else
136 amt = sk_wmem_alloc_get(asoc->base.sk);
137
138 if (amt >= asoc->base.sk->sk_sndbuf) {
139 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
140 amt = 0;
141 else {
142 amt = sk_stream_wspace(asoc->base.sk);
143 if (amt < 0)
144 amt = 0;
145 }
146 } else {
147 amt = asoc->base.sk->sk_sndbuf - amt;
148 }
149 return amt;
150}
151
152/* Increment the used sndbuf space count of the corresponding association by
153 * the size of the outgoing data chunk.
154 * Also, set the skb destructor for sndbuf accounting later.
155 *
156 * Since it is always 1-1 between chunk and skb, and also a new skb is always
157 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
158 * destructor in the data chunk skb for the purpose of the sndbuf space
159 * tracking.
160 */
161static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
162{
163 struct sctp_association *asoc = chunk->asoc;
164 struct sock *sk = asoc->base.sk;
165
166 /* The sndbuf space is tracked per association. */
167 sctp_association_hold(asoc);
168
169 skb_set_owner_w(chunk->skb, sk);
170
171 chunk->skb->destructor = sctp_wfree;
172 /* Save the chunk pointer in skb for sctp_wfree to use later. */
173 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
174
175 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
176 sizeof(struct sk_buff) +
177 sizeof(struct sctp_chunk);
178
179 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
180 sk->sk_wmem_queued += chunk->skb->truesize;
181 sk_mem_charge(sk, chunk->skb->truesize);
182}
183
184/* Verify that this is a valid address. */
185static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
186 int len)
187{
188 struct sctp_af *af;
189
190 /* Verify basic sockaddr. */
191 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
192 if (!af)
193 return -EINVAL;
194
195 /* Is this a valid SCTP address? */
196 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
197 return -EINVAL;
198
199 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
200 return -EINVAL;
201
202 return 0;
203}
204
205/* Look up the association by its id. If this is not a UDP-style
206 * socket, the ID field is always ignored.
207 */
208struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
209{
210 struct sctp_association *asoc = NULL;
211
212 /* If this is not a UDP-style socket, assoc id should be ignored. */
213 if (!sctp_style(sk, UDP)) {
214 /* Return NULL if the socket state is not ESTABLISHED. It
215 * could be a TCP-style listening socket or a socket which
216 * hasn't yet called connect() to establish an association.
217 */
218 if (!sctp_sstate(sk, ESTABLISHED))
219 return NULL;
220
221 /* Get the first and the only association from the list. */
222 if (!list_empty(&sctp_sk(sk)->ep->asocs))
223 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
224 struct sctp_association, asocs);
225 return asoc;
226 }
227
228 /* Otherwise this is a UDP-style socket. */
229 if (!id || (id == (sctp_assoc_t)-1))
230 return NULL;
231
232 spin_lock_bh(&sctp_assocs_id_lock);
233 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
234 spin_unlock_bh(&sctp_assocs_id_lock);
235
236 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
237 return NULL;
238
239 return asoc;
240}
241
242/* Look up the transport from an address and an assoc id. If both address and
243 * id are specified, the associations matching the address and the id should be
244 * the same.
245 */
246static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
247 struct sockaddr_storage *addr,
248 sctp_assoc_t id)
249{
250 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
251 struct sctp_transport *transport;
252 union sctp_addr *laddr = (union sctp_addr *)addr;
253
254 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
255 laddr,
256 &transport);
257
258 if (!addr_asoc)
259 return NULL;
260
261 id_asoc = sctp_id2assoc(sk, id);
262 if (id_asoc && (id_asoc != addr_asoc))
263 return NULL;
264
265 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
266 (union sctp_addr *)addr);
267
268 return transport;
269}
270
271/* API 3.1.2 bind() - UDP Style Syntax
272 * The syntax of bind() is,
273 *
274 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
275 *
276 * sd - the socket descriptor returned by socket().
277 * addr - the address structure (struct sockaddr_in or struct
278 * sockaddr_in6 [RFC 2553]),
279 * addr_len - the size of the address structure.
280 */
281SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
282{
283 int retval = 0;
284
285 sctp_lock_sock(sk);
286
287 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
288 sk, addr, addr_len);
289
290 /* Disallow binding twice. */
291 if (!sctp_sk(sk)->ep->base.bind_addr.port)
292 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
293 addr_len);
294 else
295 retval = -EINVAL;
296
297 sctp_release_sock(sk);
298
299 return retval;
300}
301
302static long sctp_get_port_local(struct sock *, union sctp_addr *);
303
304/* Verify this is a valid sockaddr. */
305static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
306 union sctp_addr *addr, int len)
307{
308 struct sctp_af *af;
309
310 /* Check minimum size. */
311 if (len < sizeof (struct sockaddr))
312 return NULL;
313
314 /* V4 mapped address are really of AF_INET family */
315 if (addr->sa.sa_family == AF_INET6 &&
316 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
317 if (!opt->pf->af_supported(AF_INET, opt))
318 return NULL;
319 } else {
320 /* Does this PF support this AF? */
321 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
322 return NULL;
323 }
324
325 /* If we get this far, af is valid. */
326 af = sctp_get_af_specific(addr->sa.sa_family);
327
328 if (len < af->sockaddr_len)
329 return NULL;
330
331 return af;
332}
333
334/* Bind a local address either to an endpoint or to an association. */
335SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
336{
337 struct sctp_sock *sp = sctp_sk(sk);
338 struct sctp_endpoint *ep = sp->ep;
339 struct sctp_bind_addr *bp = &ep->base.bind_addr;
340 struct sctp_af *af;
341 unsigned short snum;
342 int ret = 0;
343
344 /* Common sockaddr verification. */
345 af = sctp_sockaddr_af(sp, addr, len);
346 if (!af) {
347 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
348 sk, addr, len);
349 return -EINVAL;
350 }
351
352 snum = ntohs(addr->v4.sin_port);
353
354 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
355 ", port: %d, new port: %d, len: %d)\n",
356 sk,
357 addr,
358 bp->port, snum,
359 len);
360
361 /* PF specific bind() address verification. */
362 if (!sp->pf->bind_verify(sp, addr))
363 return -EADDRNOTAVAIL;
364
365 /* We must either be unbound, or bind to the same port.
366 * It's OK to allow 0 ports if we are already bound.
367 * We'll just inhert an already bound port in this case
368 */
369 if (bp->port) {
370 if (!snum)
371 snum = bp->port;
372 else if (snum != bp->port) {
373 SCTP_DEBUG_PRINTK("sctp_do_bind:"
374 " New port %d does not match existing port "
375 "%d.\n", snum, bp->port);
376 return -EINVAL;
377 }
378 }
379
380 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
381 return -EACCES;
382
383 /* See if the address matches any of the addresses we may have
384 * already bound before checking against other endpoints.
385 */
386 if (sctp_bind_addr_match(bp, addr, sp))
387 return -EINVAL;
388
389 /* Make sure we are allowed to bind here.
390 * The function sctp_get_port_local() does duplicate address
391 * detection.
392 */
393 addr->v4.sin_port = htons(snum);
394 if ((ret = sctp_get_port_local(sk, addr))) {
395 return -EADDRINUSE;
396 }
397
398 /* Refresh ephemeral port. */
399 if (!bp->port)
400 bp->port = inet_sk(sk)->inet_num;
401
402 /* Add the address to the bind address list.
403 * Use GFP_ATOMIC since BHs will be disabled.
404 */
405 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
406
407 /* Copy back into socket for getsockname() use. */
408 if (!ret) {
409 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
410 af->to_sk_saddr(addr, sk);
411 }
412
413 return ret;
414}
415
416 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
417 *
418 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
419 * at any one time. If a sender, after sending an ASCONF chunk, decides
420 * it needs to transfer another ASCONF Chunk, it MUST wait until the
421 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
422 * subsequent ASCONF. Note this restriction binds each side, so at any
423 * time two ASCONF may be in-transit on any given association (one sent
424 * from each endpoint).
425 */
426static int sctp_send_asconf(struct sctp_association *asoc,
427 struct sctp_chunk *chunk)
428{
429 int retval = 0;
430
431 /* If there is an outstanding ASCONF chunk, queue it for later
432 * transmission.
433 */
434 if (asoc->addip_last_asconf) {
435 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
436 goto out;
437 }
438
439 /* Hold the chunk until an ASCONF_ACK is received. */
440 sctp_chunk_hold(chunk);
441 retval = sctp_primitive_ASCONF(asoc, chunk);
442 if (retval)
443 sctp_chunk_free(chunk);
444 else
445 asoc->addip_last_asconf = chunk;
446
447out:
448 return retval;
449}
450
451/* Add a list of addresses as bind addresses to local endpoint or
452 * association.
453 *
454 * Basically run through each address specified in the addrs/addrcnt
455 * array/length pair, determine if it is IPv6 or IPv4 and call
456 * sctp_do_bind() on it.
457 *
458 * If any of them fails, then the operation will be reversed and the
459 * ones that were added will be removed.
460 *
461 * Only sctp_setsockopt_bindx() is supposed to call this function.
462 */
463static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
464{
465 int cnt;
466 int retval = 0;
467 void *addr_buf;
468 struct sockaddr *sa_addr;
469 struct sctp_af *af;
470
471 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
472 sk, addrs, addrcnt);
473
474 addr_buf = addrs;
475 for (cnt = 0; cnt < addrcnt; cnt++) {
476 /* The list may contain either IPv4 or IPv6 address;
477 * determine the address length for walking thru the list.
478 */
479 sa_addr = (struct sockaddr *)addr_buf;
480 af = sctp_get_af_specific(sa_addr->sa_family);
481 if (!af) {
482 retval = -EINVAL;
483 goto err_bindx_add;
484 }
485
486 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
487 af->sockaddr_len);
488
489 addr_buf += af->sockaddr_len;
490
491err_bindx_add:
492 if (retval < 0) {
493 /* Failed. Cleanup the ones that have been added */
494 if (cnt > 0)
495 sctp_bindx_rem(sk, addrs, cnt);
496 return retval;
497 }
498 }
499
500 return retval;
501}
502
503/* Send an ASCONF chunk with Add IP address parameters to all the peers of the
504 * associations that are part of the endpoint indicating that a list of local
505 * addresses are added to the endpoint.
506 *
507 * If any of the addresses is already in the bind address list of the
508 * association, we do not send the chunk for that association. But it will not
509 * affect other associations.
510 *
511 * Only sctp_setsockopt_bindx() is supposed to call this function.
512 */
513static int sctp_send_asconf_add_ip(struct sock *sk,
514 struct sockaddr *addrs,
515 int addrcnt)
516{
517 struct sctp_sock *sp;
518 struct sctp_endpoint *ep;
519 struct sctp_association *asoc;
520 struct sctp_bind_addr *bp;
521 struct sctp_chunk *chunk;
522 struct sctp_sockaddr_entry *laddr;
523 union sctp_addr *addr;
524 union sctp_addr saveaddr;
525 void *addr_buf;
526 struct sctp_af *af;
527 struct list_head *p;
528 int i;
529 int retval = 0;
530
531 if (!sctp_addip_enable)
532 return retval;
533
534 sp = sctp_sk(sk);
535 ep = sp->ep;
536
537 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
538 __func__, sk, addrs, addrcnt);
539
540 list_for_each_entry(asoc, &ep->asocs, asocs) {
541
542 if (!asoc->peer.asconf_capable)
543 continue;
544
545 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
546 continue;
547
548 if (!sctp_state(asoc, ESTABLISHED))
549 continue;
550
551 /* Check if any address in the packed array of addresses is
552 * in the bind address list of the association. If so,
553 * do not send the asconf chunk to its peer, but continue with
554 * other associations.
555 */
556 addr_buf = addrs;
557 for (i = 0; i < addrcnt; i++) {
558 addr = (union sctp_addr *)addr_buf;
559 af = sctp_get_af_specific(addr->v4.sin_family);
560 if (!af) {
561 retval = -EINVAL;
562 goto out;
563 }
564
565 if (sctp_assoc_lookup_laddr(asoc, addr))
566 break;
567
568 addr_buf += af->sockaddr_len;
569 }
570 if (i < addrcnt)
571 continue;
572
573 /* Use the first valid address in bind addr list of
574 * association as Address Parameter of ASCONF CHUNK.
575 */
576 bp = &asoc->base.bind_addr;
577 p = bp->address_list.next;
578 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
579 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
580 addrcnt, SCTP_PARAM_ADD_IP);
581 if (!chunk) {
582 retval = -ENOMEM;
583 goto out;
584 }
585
586 retval = sctp_send_asconf(asoc, chunk);
587 if (retval)
588 goto out;
589
590 /* Add the new addresses to the bind address list with
591 * use_as_src set to 0.
592 */
593 addr_buf = addrs;
594 for (i = 0; i < addrcnt; i++) {
595 addr = (union sctp_addr *)addr_buf;
596 af = sctp_get_af_specific(addr->v4.sin_family);
597 memcpy(&saveaddr, addr, af->sockaddr_len);
598 retval = sctp_add_bind_addr(bp, &saveaddr,
599 SCTP_ADDR_NEW, GFP_ATOMIC);
600 addr_buf += af->sockaddr_len;
601 }
602 }
603
604out:
605 return retval;
606}
607
608/* Remove a list of addresses from bind addresses list. Do not remove the
609 * last address.
610 *
611 * Basically run through each address specified in the addrs/addrcnt
612 * array/length pair, determine if it is IPv6 or IPv4 and call
613 * sctp_del_bind() on it.
614 *
615 * If any of them fails, then the operation will be reversed and the
616 * ones that were removed will be added back.
617 *
618 * At least one address has to be left; if only one address is
619 * available, the operation will return -EBUSY.
620 *
621 * Only sctp_setsockopt_bindx() is supposed to call this function.
622 */
623static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
624{
625 struct sctp_sock *sp = sctp_sk(sk);
626 struct sctp_endpoint *ep = sp->ep;
627 int cnt;
628 struct sctp_bind_addr *bp = &ep->base.bind_addr;
629 int retval = 0;
630 void *addr_buf;
631 union sctp_addr *sa_addr;
632 struct sctp_af *af;
633
634 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
635 sk, addrs, addrcnt);
636
637 addr_buf = addrs;
638 for (cnt = 0; cnt < addrcnt; cnt++) {
639 /* If the bind address list is empty or if there is only one
640 * bind address, there is nothing more to be removed (we need
641 * at least one address here).
642 */
643 if (list_empty(&bp->address_list) ||
644 (sctp_list_single_entry(&bp->address_list))) {
645 retval = -EBUSY;
646 goto err_bindx_rem;
647 }
648
649 sa_addr = (union sctp_addr *)addr_buf;
650 af = sctp_get_af_specific(sa_addr->sa.sa_family);
651 if (!af) {
652 retval = -EINVAL;
653 goto err_bindx_rem;
654 }
655
656 if (!af->addr_valid(sa_addr, sp, NULL)) {
657 retval = -EADDRNOTAVAIL;
658 goto err_bindx_rem;
659 }
660
661 if (sa_addr->v4.sin_port != htons(bp->port)) {
662 retval = -EINVAL;
663 goto err_bindx_rem;
664 }
665
666 /* FIXME - There is probably a need to check if sk->sk_saddr and
667 * sk->sk_rcv_addr are currently set to one of the addresses to
668 * be removed. This is something which needs to be looked into
669 * when we are fixing the outstanding issues with multi-homing
670 * socket routing and failover schemes. Refer to comments in
671 * sctp_do_bind(). -daisy
672 */
673 retval = sctp_del_bind_addr(bp, sa_addr);
674
675 addr_buf += af->sockaddr_len;
676err_bindx_rem:
677 if (retval < 0) {
678 /* Failed. Add the ones that has been removed back */
679 if (cnt > 0)
680 sctp_bindx_add(sk, addrs, cnt);
681 return retval;
682 }
683 }
684
685 return retval;
686}
687
688/* Send an ASCONF chunk with Delete IP address parameters to all the peers of
689 * the associations that are part of the endpoint indicating that a list of
690 * local addresses are removed from the endpoint.
691 *
692 * If any of the addresses is already in the bind address list of the
693 * association, we do not send the chunk for that association. But it will not
694 * affect other associations.
695 *
696 * Only sctp_setsockopt_bindx() is supposed to call this function.
697 */
698static int sctp_send_asconf_del_ip(struct sock *sk,
699 struct sockaddr *addrs,
700 int addrcnt)
701{
702 struct sctp_sock *sp;
703 struct sctp_endpoint *ep;
704 struct sctp_association *asoc;
705 struct sctp_transport *transport;
706 struct sctp_bind_addr *bp;
707 struct sctp_chunk *chunk;
708 union sctp_addr *laddr;
709 void *addr_buf;
710 struct sctp_af *af;
711 struct sctp_sockaddr_entry *saddr;
712 int i;
713 int retval = 0;
714
715 if (!sctp_addip_enable)
716 return retval;
717
718 sp = sctp_sk(sk);
719 ep = sp->ep;
720
721 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
722 __func__, sk, addrs, addrcnt);
723
724 list_for_each_entry(asoc, &ep->asocs, asocs) {
725
726 if (!asoc->peer.asconf_capable)
727 continue;
728
729 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
730 continue;
731
732 if (!sctp_state(asoc, ESTABLISHED))
733 continue;
734
735 /* Check if any address in the packed array of addresses is
736 * not present in the bind address list of the association.
737 * If so, do not send the asconf chunk to its peer, but
738 * continue with other associations.
739 */
740 addr_buf = addrs;
741 for (i = 0; i < addrcnt; i++) {
742 laddr = (union sctp_addr *)addr_buf;
743 af = sctp_get_af_specific(laddr->v4.sin_family);
744 if (!af) {
745 retval = -EINVAL;
746 goto out;
747 }
748
749 if (!sctp_assoc_lookup_laddr(asoc, laddr))
750 break;
751
752 addr_buf += af->sockaddr_len;
753 }
754 if (i < addrcnt)
755 continue;
756
757 /* Find one address in the association's bind address list
758 * that is not in the packed array of addresses. This is to
759 * make sure that we do not delete all the addresses in the
760 * association.
761 */
762 bp = &asoc->base.bind_addr;
763 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
764 addrcnt, sp);
765 if (!laddr)
766 continue;
767
768 /* We do not need RCU protection throughout this loop
769 * because this is done under a socket lock from the
770 * setsockopt call.
771 */
772 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
773 SCTP_PARAM_DEL_IP);
774 if (!chunk) {
775 retval = -ENOMEM;
776 goto out;
777 }
778
779 /* Reset use_as_src flag for the addresses in the bind address
780 * list that are to be deleted.
781 */
782 addr_buf = addrs;
783 for (i = 0; i < addrcnt; i++) {
784 laddr = (union sctp_addr *)addr_buf;
785 af = sctp_get_af_specific(laddr->v4.sin_family);
786 list_for_each_entry(saddr, &bp->address_list, list) {
787 if (sctp_cmp_addr_exact(&saddr->a, laddr))
788 saddr->state = SCTP_ADDR_DEL;
789 }
790 addr_buf += af->sockaddr_len;
791 }
792
793 /* Update the route and saddr entries for all the transports
794 * as some of the addresses in the bind address list are
795 * about to be deleted and cannot be used as source addresses.
796 */
797 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
798 transports) {
799 dst_release(transport->dst);
800 sctp_transport_route(transport, NULL,
801 sctp_sk(asoc->base.sk));
802 }
803
804 retval = sctp_send_asconf(asoc, chunk);
805 }
806out:
807 return retval;
808}
809
810/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
811 *
812 * API 8.1
813 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
814 * int flags);
815 *
816 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
817 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
818 * or IPv6 addresses.
819 *
820 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
821 * Section 3.1.2 for this usage.
822 *
823 * addrs is a pointer to an array of one or more socket addresses. Each
824 * address is contained in its appropriate structure (i.e. struct
825 * sockaddr_in or struct sockaddr_in6) the family of the address type
826 * must be used to distinguish the address length (note that this
827 * representation is termed a "packed array" of addresses). The caller
828 * specifies the number of addresses in the array with addrcnt.
829 *
830 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
831 * -1, and sets errno to the appropriate error code.
832 *
833 * For SCTP, the port given in each socket address must be the same, or
834 * sctp_bindx() will fail, setting errno to EINVAL.
835 *
836 * The flags parameter is formed from the bitwise OR of zero or more of
837 * the following currently defined flags:
838 *
839 * SCTP_BINDX_ADD_ADDR
840 *
841 * SCTP_BINDX_REM_ADDR
842 *
843 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
844 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
845 * addresses from the association. The two flags are mutually exclusive;
846 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
847 * not remove all addresses from an association; sctp_bindx() will
848 * reject such an attempt with EINVAL.
849 *
850 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
851 * additional addresses with an endpoint after calling bind(). Or use
852 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
853 * socket is associated with so that no new association accepted will be
854 * associated with those addresses. If the endpoint supports dynamic
855 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
856 * endpoint to send the appropriate message to the peer to change the
857 * peers address lists.
858 *
859 * Adding and removing addresses from a connected association is
860 * optional functionality. Implementations that do not support this
861 * functionality should return EOPNOTSUPP.
862 *
863 * Basically do nothing but copying the addresses from user to kernel
864 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
865 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
866 * from userspace.
867 *
868 * We don't use copy_from_user() for optimization: we first do the
869 * sanity checks (buffer size -fast- and access check-healthy
870 * pointer); if all of those succeed, then we can alloc the memory
871 * (expensive operation) needed to copy the data to kernel. Then we do
872 * the copying without checking the user space area
873 * (__copy_from_user()).
874 *
875 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
876 * it.
877 *
878 * sk The sk of the socket
879 * addrs The pointer to the addresses in user land
880 * addrssize Size of the addrs buffer
881 * op Operation to perform (add or remove, see the flags of
882 * sctp_bindx)
883 *
884 * Returns 0 if ok, <0 errno code on error.
885 */
886SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
887 struct sockaddr __user *addrs,
888 int addrs_size, int op)
889{
890 struct sockaddr *kaddrs;
891 int err;
892 int addrcnt = 0;
893 int walk_size = 0;
894 struct sockaddr *sa_addr;
895 void *addr_buf;
896 struct sctp_af *af;
897
898 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
899 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
900
901 if (unlikely(addrs_size <= 0))
902 return -EINVAL;
903
904 /* Check the user passed a healthy pointer. */
905 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
906 return -EFAULT;
907
908 /* Alloc space for the address array in kernel memory. */
909 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
910 if (unlikely(!kaddrs))
911 return -ENOMEM;
912
913 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
914 kfree(kaddrs);
915 return -EFAULT;
916 }
917
918 /* Walk through the addrs buffer and count the number of addresses. */
919 addr_buf = kaddrs;
920 while (walk_size < addrs_size) {
921 if (walk_size + sizeof(sa_family_t) > addrs_size) {
922 kfree(kaddrs);
923 return -EINVAL;
924 }
925
926 sa_addr = (struct sockaddr *)addr_buf;
927 af = sctp_get_af_specific(sa_addr->sa_family);
928
929 /* If the address family is not supported or if this address
930 * causes the address buffer to overflow return EINVAL.
931 */
932 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
933 kfree(kaddrs);
934 return -EINVAL;
935 }
936 addrcnt++;
937 addr_buf += af->sockaddr_len;
938 walk_size += af->sockaddr_len;
939 }
940
941 /* Do the work. */
942 switch (op) {
943 case SCTP_BINDX_ADD_ADDR:
944 err = sctp_bindx_add(sk, kaddrs, addrcnt);
945 if (err)
946 goto out;
947 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
948 break;
949
950 case SCTP_BINDX_REM_ADDR:
951 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
952 if (err)
953 goto out;
954 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
955 break;
956
957 default:
958 err = -EINVAL;
959 break;
960 }
961
962out:
963 kfree(kaddrs);
964
965 return err;
966}
967
968/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
969 *
970 * Common routine for handling connect() and sctp_connectx().
971 * Connect will come in with just a single address.
972 */
973static int __sctp_connect(struct sock* sk,
974 struct sockaddr *kaddrs,
975 int addrs_size,
976 sctp_assoc_t *assoc_id)
977{
978 struct sctp_sock *sp;
979 struct sctp_endpoint *ep;
980 struct sctp_association *asoc = NULL;
981 struct sctp_association *asoc2;
982 struct sctp_transport *transport;
983 union sctp_addr to;
984 struct sctp_af *af;
985 sctp_scope_t scope;
986 long timeo;
987 int err = 0;
988 int addrcnt = 0;
989 int walk_size = 0;
990 union sctp_addr *sa_addr = NULL;
991 void *addr_buf;
992 unsigned short port;
993 unsigned int f_flags = 0;
994
995 sp = sctp_sk(sk);
996 ep = sp->ep;
997
998 /* connect() cannot be done on a socket that is already in ESTABLISHED
999 * state - UDP-style peeled off socket or a TCP-style socket that
1000 * is already connected.
1001 * It cannot be done even on a TCP-style listening socket.
1002 */
1003 if (sctp_sstate(sk, ESTABLISHED) ||
1004 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1005 err = -EISCONN;
1006 goto out_free;
1007 }
1008
1009 /* Walk through the addrs buffer and count the number of addresses. */
1010 addr_buf = kaddrs;
1011 while (walk_size < addrs_size) {
1012 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1013 err = -EINVAL;
1014 goto out_free;
1015 }
1016
1017 sa_addr = (union sctp_addr *)addr_buf;
1018 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1019
1020 /* If the address family is not supported or if this address
1021 * causes the address buffer to overflow return EINVAL.
1022 */
1023 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1024 err = -EINVAL;
1025 goto out_free;
1026 }
1027
1028 port = ntohs(sa_addr->v4.sin_port);
1029
1030 /* Save current address so we can work with it */
1031 memcpy(&to, sa_addr, af->sockaddr_len);
1032
1033 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1034 if (err)
1035 goto out_free;
1036
1037 /* Make sure the destination port is correctly set
1038 * in all addresses.
1039 */
1040 if (asoc && asoc->peer.port && asoc->peer.port != port)
1041 goto out_free;
1042
1043
1044 /* Check if there already is a matching association on the
1045 * endpoint (other than the one created here).
1046 */
1047 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1048 if (asoc2 && asoc2 != asoc) {
1049 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1050 err = -EISCONN;
1051 else
1052 err = -EALREADY;
1053 goto out_free;
1054 }
1055
1056 /* If we could not find a matching association on the endpoint,
1057 * make sure that there is no peeled-off association matching
1058 * the peer address even on another socket.
1059 */
1060 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1061 err = -EADDRNOTAVAIL;
1062 goto out_free;
1063 }
1064
1065 if (!asoc) {
1066 /* If a bind() or sctp_bindx() is not called prior to
1067 * an sctp_connectx() call, the system picks an
1068 * ephemeral port and will choose an address set
1069 * equivalent to binding with a wildcard address.
1070 */
1071 if (!ep->base.bind_addr.port) {
1072 if (sctp_autobind(sk)) {
1073 err = -EAGAIN;
1074 goto out_free;
1075 }
1076 } else {
1077 /*
1078 * If an unprivileged user inherits a 1-many
1079 * style socket with open associations on a
1080 * privileged port, it MAY be permitted to
1081 * accept new associations, but it SHOULD NOT
1082 * be permitted to open new associations.
1083 */
1084 if (ep->base.bind_addr.port < PROT_SOCK &&
1085 !capable(CAP_NET_BIND_SERVICE)) {
1086 err = -EACCES;
1087 goto out_free;
1088 }
1089 }
1090
1091 scope = sctp_scope(&to);
1092 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1093 if (!asoc) {
1094 err = -ENOMEM;
1095 goto out_free;
1096 }
1097
1098 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1099 GFP_KERNEL);
1100 if (err < 0) {
1101 goto out_free;
1102 }
1103
1104 }
1105
1106 /* Prime the peer's transport structures. */
1107 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1108 SCTP_UNKNOWN);
1109 if (!transport) {
1110 err = -ENOMEM;
1111 goto out_free;
1112 }
1113
1114 addrcnt++;
1115 addr_buf += af->sockaddr_len;
1116 walk_size += af->sockaddr_len;
1117 }
1118
1119 /* In case the user of sctp_connectx() wants an association
1120 * id back, assign one now.
1121 */
1122 if (assoc_id) {
1123 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1124 if (err < 0)
1125 goto out_free;
1126 }
1127
1128 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1129 if (err < 0) {
1130 goto out_free;
1131 }
1132
1133 /* Initialize sk's dport and daddr for getpeername() */
1134 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1135 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1136 af->to_sk_daddr(sa_addr, sk);
1137 sk->sk_err = 0;
1138
1139 /* in-kernel sockets don't generally have a file allocated to them
1140 * if all they do is call sock_create_kern().
1141 */
1142 if (sk->sk_socket->file)
1143 f_flags = sk->sk_socket->file->f_flags;
1144
1145 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1146
1147 err = sctp_wait_for_connect(asoc, &timeo);
1148 if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1149 *assoc_id = asoc->assoc_id;
1150
1151 /* Don't free association on exit. */
1152 asoc = NULL;
1153
1154out_free:
1155
1156 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1157 " kaddrs: %p err: %d\n",
1158 asoc, kaddrs, err);
1159 if (asoc)
1160 sctp_association_free(asoc);
1161 return err;
1162}
1163
1164/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1165 *
1166 * API 8.9
1167 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1168 * sctp_assoc_t *asoc);
1169 *
1170 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1171 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1172 * or IPv6 addresses.
1173 *
1174 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1175 * Section 3.1.2 for this usage.
1176 *
1177 * addrs is a pointer to an array of one or more socket addresses. Each
1178 * address is contained in its appropriate structure (i.e. struct
1179 * sockaddr_in or struct sockaddr_in6) the family of the address type
1180 * must be used to distengish the address length (note that this
1181 * representation is termed a "packed array" of addresses). The caller
1182 * specifies the number of addresses in the array with addrcnt.
1183 *
1184 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1185 * the association id of the new association. On failure, sctp_connectx()
1186 * returns -1, and sets errno to the appropriate error code. The assoc_id
1187 * is not touched by the kernel.
1188 *
1189 * For SCTP, the port given in each socket address must be the same, or
1190 * sctp_connectx() will fail, setting errno to EINVAL.
1191 *
1192 * An application can use sctp_connectx to initiate an association with
1193 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1194 * allows a caller to specify multiple addresses at which a peer can be
1195 * reached. The way the SCTP stack uses the list of addresses to set up
1196 * the association is implementation dependant. This function only
1197 * specifies that the stack will try to make use of all the addresses in
1198 * the list when needed.
1199 *
1200 * Note that the list of addresses passed in is only used for setting up
1201 * the association. It does not necessarily equal the set of addresses
1202 * the peer uses for the resulting association. If the caller wants to
1203 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1204 * retrieve them after the association has been set up.
1205 *
1206 * Basically do nothing but copying the addresses from user to kernel
1207 * land and invoking either sctp_connectx(). This is used for tunneling
1208 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1209 *
1210 * We don't use copy_from_user() for optimization: we first do the
1211 * sanity checks (buffer size -fast- and access check-healthy
1212 * pointer); if all of those succeed, then we can alloc the memory
1213 * (expensive operation) needed to copy the data to kernel. Then we do
1214 * the copying without checking the user space area
1215 * (__copy_from_user()).
1216 *
1217 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1218 * it.
1219 *
1220 * sk The sk of the socket
1221 * addrs The pointer to the addresses in user land
1222 * addrssize Size of the addrs buffer
1223 *
1224 * Returns >=0 if ok, <0 errno code on error.
1225 */
1226SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk,
1227 struct sockaddr __user *addrs,
1228 int addrs_size,
1229 sctp_assoc_t *assoc_id)
1230{
1231 int err = 0;
1232 struct sockaddr *kaddrs;
1233
1234 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1235 __func__, sk, addrs, addrs_size);
1236
1237 if (unlikely(addrs_size <= 0))
1238 return -EINVAL;
1239
1240 /* Check the user passed a healthy pointer. */
1241 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1242 return -EFAULT;
1243
1244 /* Alloc space for the address array in kernel memory. */
1245 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1246 if (unlikely(!kaddrs))
1247 return -ENOMEM;
1248
1249 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1250 err = -EFAULT;
1251 } else {
1252 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1253 }
1254
1255 kfree(kaddrs);
1256
1257 return err;
1258}
1259
1260/*
1261 * This is an older interface. It's kept for backward compatibility
1262 * to the option that doesn't provide association id.
1263 */
1264SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk,
1265 struct sockaddr __user *addrs,
1266 int addrs_size)
1267{
1268 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1269}
1270
1271/*
1272 * New interface for the API. The since the API is done with a socket
1273 * option, to make it simple we feed back the association id is as a return
1274 * indication to the call. Error is always negative and association id is
1275 * always positive.
1276 */
1277SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1278 struct sockaddr __user *addrs,
1279 int addrs_size)
1280{
1281 sctp_assoc_t assoc_id = 0;
1282 int err = 0;
1283
1284 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1285
1286 if (err)
1287 return err;
1288 else
1289 return assoc_id;
1290}
1291
1292/*
1293 * New (hopefully final) interface for the API.
1294 * We use the sctp_getaddrs_old structure so that use-space library
1295 * can avoid any unnecessary allocations. The only defferent part
1296 * is that we store the actual length of the address buffer into the
1297 * addrs_num structure member. That way we can re-use the existing
1298 * code.
1299 */
1300SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len,
1301 char __user *optval,
1302 int __user *optlen)
1303{
1304 struct sctp_getaddrs_old param;
1305 sctp_assoc_t assoc_id = 0;
1306 int err = 0;
1307
1308 if (len < sizeof(param))
1309 return -EINVAL;
1310
1311 if (copy_from_user(&param, optval, sizeof(param)))
1312 return -EFAULT;
1313
1314 err = __sctp_setsockopt_connectx(sk,
1315 (struct sockaddr __user *)param.addrs,
1316 param.addr_num, &assoc_id);
1317
1318 if (err == 0 || err == -EINPROGRESS) {
1319 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1320 return -EFAULT;
1321 if (put_user(sizeof(assoc_id), optlen))
1322 return -EFAULT;
1323 }
1324
1325 return err;
1326}
1327
1328/* API 3.1.4 close() - UDP Style Syntax
1329 * Applications use close() to perform graceful shutdown (as described in
1330 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1331 * by a UDP-style socket.
1332 *
1333 * The syntax is
1334 *
1335 * ret = close(int sd);
1336 *
1337 * sd - the socket descriptor of the associations to be closed.
1338 *
1339 * To gracefully shutdown a specific association represented by the
1340 * UDP-style socket, an application should use the sendmsg() call,
1341 * passing no user data, but including the appropriate flag in the
1342 * ancillary data (see Section xxxx).
1343 *
1344 * If sd in the close() call is a branched-off socket representing only
1345 * one association, the shutdown is performed on that association only.
1346 *
1347 * 4.1.6 close() - TCP Style Syntax
1348 *
1349 * Applications use close() to gracefully close down an association.
1350 *
1351 * The syntax is:
1352 *
1353 * int close(int sd);
1354 *
1355 * sd - the socket descriptor of the association to be closed.
1356 *
1357 * After an application calls close() on a socket descriptor, no further
1358 * socket operations will succeed on that descriptor.
1359 *
1360 * API 7.1.4 SO_LINGER
1361 *
1362 * An application using the TCP-style socket can use this option to
1363 * perform the SCTP ABORT primitive. The linger option structure is:
1364 *
1365 * struct linger {
1366 * int l_onoff; // option on/off
1367 * int l_linger; // linger time
1368 * };
1369 *
1370 * To enable the option, set l_onoff to 1. If the l_linger value is set
1371 * to 0, calling close() is the same as the ABORT primitive. If the
1372 * value is set to a negative value, the setsockopt() call will return
1373 * an error. If the value is set to a positive value linger_time, the
1374 * close() can be blocked for at most linger_time ms. If the graceful
1375 * shutdown phase does not finish during this period, close() will
1376 * return but the graceful shutdown phase continues in the system.
1377 */
1378SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1379{
1380 struct sctp_endpoint *ep;
1381 struct sctp_association *asoc;
1382 struct list_head *pos, *temp;
1383
1384 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1385
1386 sctp_lock_sock(sk);
1387 sk->sk_shutdown = SHUTDOWN_MASK;
1388 sk->sk_state = SCTP_SS_CLOSING;
1389
1390 ep = sctp_sk(sk)->ep;
1391
1392 /* Walk all associations on an endpoint. */
1393 list_for_each_safe(pos, temp, &ep->asocs) {
1394 asoc = list_entry(pos, struct sctp_association, asocs);
1395
1396 if (sctp_style(sk, TCP)) {
1397 /* A closed association can still be in the list if
1398 * it belongs to a TCP-style listening socket that is
1399 * not yet accepted. If so, free it. If not, send an
1400 * ABORT or SHUTDOWN based on the linger options.
1401 */
1402 if (sctp_state(asoc, CLOSED)) {
1403 sctp_unhash_established(asoc);
1404 sctp_association_free(asoc);
1405 continue;
1406 }
1407 }
1408
1409 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1410 struct sctp_chunk *chunk;
1411
1412 chunk = sctp_make_abort_user(asoc, NULL, 0);
1413 if (chunk)
1414 sctp_primitive_ABORT(asoc, chunk);
1415 } else
1416 sctp_primitive_SHUTDOWN(asoc, NULL);
1417 }
1418
1419 /* Clean up any skbs sitting on the receive queue. */
1420 sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1421 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1422
1423 /* On a TCP-style socket, block for at most linger_time if set. */
1424 if (sctp_style(sk, TCP) && timeout)
1425 sctp_wait_for_close(sk, timeout);
1426
1427 /* This will run the backlog queue. */
1428 sctp_release_sock(sk);
1429
1430 /* Supposedly, no process has access to the socket, but
1431 * the net layers still may.
1432 */
1433 sctp_local_bh_disable();
1434 sctp_bh_lock_sock(sk);
1435
1436 /* Hold the sock, since sk_common_release() will put sock_put()
1437 * and we have just a little more cleanup.
1438 */
1439 sock_hold(sk);
1440 sk_common_release(sk);
1441
1442 sctp_bh_unlock_sock(sk);
1443 sctp_local_bh_enable();
1444
1445 sock_put(sk);
1446
1447 SCTP_DBG_OBJCNT_DEC(sock);
1448}
1449
1450/* Handle EPIPE error. */
1451static int sctp_error(struct sock *sk, int flags, int err)
1452{
1453 if (err == -EPIPE)
1454 err = sock_error(sk) ? : -EPIPE;
1455 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1456 send_sig(SIGPIPE, current, 0);
1457 return err;
1458}
1459
1460/* API 3.1.3 sendmsg() - UDP Style Syntax
1461 *
1462 * An application uses sendmsg() and recvmsg() calls to transmit data to
1463 * and receive data from its peer.
1464 *
1465 * ssize_t sendmsg(int socket, const struct msghdr *message,
1466 * int flags);
1467 *
1468 * socket - the socket descriptor of the endpoint.
1469 * message - pointer to the msghdr structure which contains a single
1470 * user message and possibly some ancillary data.
1471 *
1472 * See Section 5 for complete description of the data
1473 * structures.
1474 *
1475 * flags - flags sent or received with the user message, see Section
1476 * 5 for complete description of the flags.
1477 *
1478 * Note: This function could use a rewrite especially when explicit
1479 * connect support comes in.
1480 */
1481/* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1482
1483SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1484
1485SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1486 struct msghdr *msg, size_t msg_len)
1487{
1488 struct sctp_sock *sp;
1489 struct sctp_endpoint *ep;
1490 struct sctp_association *new_asoc=NULL, *asoc=NULL;
1491 struct sctp_transport *transport, *chunk_tp;
1492 struct sctp_chunk *chunk;
1493 union sctp_addr to;
1494 struct sockaddr *msg_name = NULL;
1495 struct sctp_sndrcvinfo default_sinfo = { 0 };
1496 struct sctp_sndrcvinfo *sinfo;
1497 struct sctp_initmsg *sinit;
1498 sctp_assoc_t associd = 0;
1499 sctp_cmsgs_t cmsgs = { NULL };
1500 int err;
1501 sctp_scope_t scope;
1502 long timeo;
1503 __u16 sinfo_flags = 0;
1504 struct sctp_datamsg *datamsg;
1505 int msg_flags = msg->msg_flags;
1506
1507 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1508 sk, msg, msg_len);
1509
1510 err = 0;
1511 sp = sctp_sk(sk);
1512 ep = sp->ep;
1513
1514 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1515
1516 /* We cannot send a message over a TCP-style listening socket. */
1517 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1518 err = -EPIPE;
1519 goto out_nounlock;
1520 }
1521
1522 /* Parse out the SCTP CMSGs. */
1523 err = sctp_msghdr_parse(msg, &cmsgs);
1524
1525 if (err) {
1526 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1527 goto out_nounlock;
1528 }
1529
1530 /* Fetch the destination address for this packet. This
1531 * address only selects the association--it is not necessarily
1532 * the address we will send to.
1533 * For a peeled-off socket, msg_name is ignored.
1534 */
1535 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1536 int msg_namelen = msg->msg_namelen;
1537
1538 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1539 msg_namelen);
1540 if (err)
1541 return err;
1542
1543 if (msg_namelen > sizeof(to))
1544 msg_namelen = sizeof(to);
1545 memcpy(&to, msg->msg_name, msg_namelen);
1546 msg_name = msg->msg_name;
1547 }
1548
1549 sinfo = cmsgs.info;
1550 sinit = cmsgs.init;
1551
1552 /* Did the user specify SNDRCVINFO? */
1553 if (sinfo) {
1554 sinfo_flags = sinfo->sinfo_flags;
1555 associd = sinfo->sinfo_assoc_id;
1556 }
1557
1558 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1559 msg_len, sinfo_flags);
1560
1561 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1562 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1563 err = -EINVAL;
1564 goto out_nounlock;
1565 }
1566
1567 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1568 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1569 * If SCTP_ABORT is set, the message length could be non zero with
1570 * the msg_iov set to the user abort reason.
1571 */
1572 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1573 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1574 err = -EINVAL;
1575 goto out_nounlock;
1576 }
1577
1578 /* If SCTP_ADDR_OVER is set, there must be an address
1579 * specified in msg_name.
1580 */
1581 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1582 err = -EINVAL;
1583 goto out_nounlock;
1584 }
1585
1586 transport = NULL;
1587
1588 SCTP_DEBUG_PRINTK("About to look up association.\n");
1589
1590 sctp_lock_sock(sk);
1591
1592 /* If a msg_name has been specified, assume this is to be used. */
1593 if (msg_name) {
1594 /* Look for a matching association on the endpoint. */
1595 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1596 if (!asoc) {
1597 /* If we could not find a matching association on the
1598 * endpoint, make sure that it is not a TCP-style
1599 * socket that already has an association or there is
1600 * no peeled-off association on another socket.
1601 */
1602 if ((sctp_style(sk, TCP) &&
1603 sctp_sstate(sk, ESTABLISHED)) ||
1604 sctp_endpoint_is_peeled_off(ep, &to)) {
1605 err = -EADDRNOTAVAIL;
1606 goto out_unlock;
1607 }
1608 }
1609 } else {
1610 asoc = sctp_id2assoc(sk, associd);
1611 if (!asoc) {
1612 err = -EPIPE;
1613 goto out_unlock;
1614 }
1615 }
1616
1617 if (asoc) {
1618 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1619
1620 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1621 * socket that has an association in CLOSED state. This can
1622 * happen when an accepted socket has an association that is
1623 * already CLOSED.
1624 */
1625 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1626 err = -EPIPE;
1627 goto out_unlock;
1628 }
1629
1630 if (sinfo_flags & SCTP_EOF) {
1631 SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1632 asoc);
1633 sctp_primitive_SHUTDOWN(asoc, NULL);
1634 err = 0;
1635 goto out_unlock;
1636 }
1637 if (sinfo_flags & SCTP_ABORT) {
1638
1639 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1640 if (!chunk) {
1641 err = -ENOMEM;
1642 goto out_unlock;
1643 }
1644
1645 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1646 sctp_primitive_ABORT(asoc, chunk);
1647 err = 0;
1648 goto out_unlock;
1649 }
1650 }
1651
1652 /* Do we need to create the association? */
1653 if (!asoc) {
1654 SCTP_DEBUG_PRINTK("There is no association yet.\n");
1655
1656 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1657 err = -EINVAL;
1658 goto out_unlock;
1659 }
1660
1661 /* Check for invalid stream against the stream counts,
1662 * either the default or the user specified stream counts.
1663 */
1664 if (sinfo) {
1665 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1666 /* Check against the defaults. */
1667 if (sinfo->sinfo_stream >=
1668 sp->initmsg.sinit_num_ostreams) {
1669 err = -EINVAL;
1670 goto out_unlock;
1671 }
1672 } else {
1673 /* Check against the requested. */
1674 if (sinfo->sinfo_stream >=
1675 sinit->sinit_num_ostreams) {
1676 err = -EINVAL;
1677 goto out_unlock;
1678 }
1679 }
1680 }
1681
1682 /*
1683 * API 3.1.2 bind() - UDP Style Syntax
1684 * If a bind() or sctp_bindx() is not called prior to a
1685 * sendmsg() call that initiates a new association, the
1686 * system picks an ephemeral port and will choose an address
1687 * set equivalent to binding with a wildcard address.
1688 */
1689 if (!ep->base.bind_addr.port) {
1690 if (sctp_autobind(sk)) {
1691 err = -EAGAIN;
1692 goto out_unlock;
1693 }
1694 } else {
1695 /*
1696 * If an unprivileged user inherits a one-to-many
1697 * style socket with open associations on a privileged
1698 * port, it MAY be permitted to accept new associations,
1699 * but it SHOULD NOT be permitted to open new
1700 * associations.
1701 */
1702 if (ep->base.bind_addr.port < PROT_SOCK &&
1703 !capable(CAP_NET_BIND_SERVICE)) {
1704 err = -EACCES;
1705 goto out_unlock;
1706 }
1707 }
1708
1709 scope = sctp_scope(&to);
1710 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1711 if (!new_asoc) {
1712 err = -ENOMEM;
1713 goto out_unlock;
1714 }
1715 asoc = new_asoc;
1716 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1717 if (err < 0) {
1718 err = -ENOMEM;
1719 goto out_free;
1720 }
1721
1722 /* If the SCTP_INIT ancillary data is specified, set all
1723 * the association init values accordingly.
1724 */
1725 if (sinit) {
1726 if (sinit->sinit_num_ostreams) {
1727 asoc->c.sinit_num_ostreams =
1728 sinit->sinit_num_ostreams;
1729 }
1730 if (sinit->sinit_max_instreams) {
1731 asoc->c.sinit_max_instreams =
1732 sinit->sinit_max_instreams;
1733 }
1734 if (sinit->sinit_max_attempts) {
1735 asoc->max_init_attempts
1736 = sinit->sinit_max_attempts;
1737 }
1738 if (sinit->sinit_max_init_timeo) {
1739 asoc->max_init_timeo =
1740 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1741 }
1742 }
1743
1744 /* Prime the peer's transport structures. */
1745 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1746 if (!transport) {
1747 err = -ENOMEM;
1748 goto out_free;
1749 }
1750 }
1751
1752 /* ASSERT: we have a valid association at this point. */
1753 SCTP_DEBUG_PRINTK("We have a valid association.\n");
1754
1755 if (!sinfo) {
1756 /* If the user didn't specify SNDRCVINFO, make up one with
1757 * some defaults.
1758 */
1759 default_sinfo.sinfo_stream = asoc->default_stream;
1760 default_sinfo.sinfo_flags = asoc->default_flags;
1761 default_sinfo.sinfo_ppid = asoc->default_ppid;
1762 default_sinfo.sinfo_context = asoc->default_context;
1763 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1764 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1765 sinfo = &default_sinfo;
1766 }
1767
1768 /* API 7.1.7, the sndbuf size per association bounds the
1769 * maximum size of data that can be sent in a single send call.
1770 */
1771 if (msg_len > sk->sk_sndbuf) {
1772 err = -EMSGSIZE;
1773 goto out_free;
1774 }
1775
1776 if (asoc->pmtu_pending)
1777 sctp_assoc_pending_pmtu(asoc);
1778
1779 /* If fragmentation is disabled and the message length exceeds the
1780 * association fragmentation point, return EMSGSIZE. The I-D
1781 * does not specify what this error is, but this looks like
1782 * a great fit.
1783 */
1784 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1785 err = -EMSGSIZE;
1786 goto out_free;
1787 }
1788
1789 if (sinfo) {
1790 /* Check for invalid stream. */
1791 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1792 err = -EINVAL;
1793 goto out_free;
1794 }
1795 }
1796
1797 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1798 if (!sctp_wspace(asoc)) {
1799 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1800 if (err)
1801 goto out_free;
1802 }
1803
1804 /* If an address is passed with the sendto/sendmsg call, it is used
1805 * to override the primary destination address in the TCP model, or
1806 * when SCTP_ADDR_OVER flag is set in the UDP model.
1807 */
1808 if ((sctp_style(sk, TCP) && msg_name) ||
1809 (sinfo_flags & SCTP_ADDR_OVER)) {
1810 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1811 if (!chunk_tp) {
1812 err = -EINVAL;
1813 goto out_free;
1814 }
1815 } else
1816 chunk_tp = NULL;
1817
1818 /* Auto-connect, if we aren't connected already. */
1819 if (sctp_state(asoc, CLOSED)) {
1820 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1821 if (err < 0)
1822 goto out_free;
1823 SCTP_DEBUG_PRINTK("We associated primitively.\n");
1824 }
1825
1826 /* Break the message into multiple chunks of maximum size. */
1827 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1828 if (!datamsg) {
1829 err = -ENOMEM;
1830 goto out_free;
1831 }
1832
1833 /* Now send the (possibly) fragmented message. */
1834 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1835 sctp_chunk_hold(chunk);
1836
1837 /* Do accounting for the write space. */
1838 sctp_set_owner_w(chunk);
1839
1840 chunk->transport = chunk_tp;
1841 }
1842
1843 /* Send it to the lower layers. Note: all chunks
1844 * must either fail or succeed. The lower layer
1845 * works that way today. Keep it that way or this
1846 * breaks.
1847 */
1848 err = sctp_primitive_SEND(asoc, datamsg);
1849 /* Did the lower layer accept the chunk? */
1850 if (err)
1851 sctp_datamsg_free(datamsg);
1852 else
1853 sctp_datamsg_put(datamsg);
1854
1855 SCTP_DEBUG_PRINTK("We sent primitively.\n");
1856
1857 if (err)
1858 goto out_free;
1859 else
1860 err = msg_len;
1861
1862 /* If we are already past ASSOCIATE, the lower
1863 * layers are responsible for association cleanup.
1864 */
1865 goto out_unlock;
1866
1867out_free:
1868 if (new_asoc)
1869 sctp_association_free(asoc);
1870out_unlock:
1871 sctp_release_sock(sk);
1872
1873out_nounlock:
1874 return sctp_error(sk, msg_flags, err);
1875
1876#if 0
1877do_sock_err:
1878 if (msg_len)
1879 err = msg_len;
1880 else
1881 err = sock_error(sk);
1882 goto out;
1883
1884do_interrupted:
1885 if (msg_len)
1886 err = msg_len;
1887 goto out;
1888#endif /* 0 */
1889}
1890
1891/* This is an extended version of skb_pull() that removes the data from the
1892 * start of a skb even when data is spread across the list of skb's in the
1893 * frag_list. len specifies the total amount of data that needs to be removed.
1894 * when 'len' bytes could be removed from the skb, it returns 0.
1895 * If 'len' exceeds the total skb length, it returns the no. of bytes that
1896 * could not be removed.
1897 */
1898static int sctp_skb_pull(struct sk_buff *skb, int len)
1899{
1900 struct sk_buff *list;
1901 int skb_len = skb_headlen(skb);
1902 int rlen;
1903
1904 if (len <= skb_len) {
1905 __skb_pull(skb, len);
1906 return 0;
1907 }
1908 len -= skb_len;
1909 __skb_pull(skb, skb_len);
1910
1911 skb_walk_frags(skb, list) {
1912 rlen = sctp_skb_pull(list, len);
1913 skb->len -= (len-rlen);
1914 skb->data_len -= (len-rlen);
1915
1916 if (!rlen)
1917 return 0;
1918
1919 len = rlen;
1920 }
1921
1922 return len;
1923}
1924
1925/* API 3.1.3 recvmsg() - UDP Style Syntax
1926 *
1927 * ssize_t recvmsg(int socket, struct msghdr *message,
1928 * int flags);
1929 *
1930 * socket - the socket descriptor of the endpoint.
1931 * message - pointer to the msghdr structure which contains a single
1932 * user message and possibly some ancillary data.
1933 *
1934 * See Section 5 for complete description of the data
1935 * structures.
1936 *
1937 * flags - flags sent or received with the user message, see Section
1938 * 5 for complete description of the flags.
1939 */
1940static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1941
1942SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1943 struct msghdr *msg, size_t len, int noblock,
1944 int flags, int *addr_len)
1945{
1946 struct sctp_ulpevent *event = NULL;
1947 struct sctp_sock *sp = sctp_sk(sk);
1948 struct sk_buff *skb;
1949 int copied;
1950 int err = 0;
1951 int skb_len;
1952
1953 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1954 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1955 "len", len, "knoblauch", noblock,
1956 "flags", flags, "addr_len", addr_len);
1957
1958 sctp_lock_sock(sk);
1959
1960 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1961 err = -ENOTCONN;
1962 goto out;
1963 }
1964
1965 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1966 if (!skb)
1967 goto out;
1968
1969 /* Get the total length of the skb including any skb's in the
1970 * frag_list.
1971 */
1972 skb_len = skb->len;
1973
1974 copied = skb_len;
1975 if (copied > len)
1976 copied = len;
1977
1978 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1979
1980 event = sctp_skb2event(skb);
1981
1982 if (err)
1983 goto out_free;
1984
1985 sock_recv_ts_and_drops(msg, sk, skb);
1986 if (sctp_ulpevent_is_notification(event)) {
1987 msg->msg_flags |= MSG_NOTIFICATION;
1988 sp->pf->event_msgname(event, msg->msg_name, addr_len);
1989 } else {
1990 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1991 }
1992
1993 /* Check if we allow SCTP_SNDRCVINFO. */
1994 if (sp->subscribe.sctp_data_io_event)
1995 sctp_ulpevent_read_sndrcvinfo(event, msg);
1996#if 0
1997 /* FIXME: we should be calling IP/IPv6 layers. */
1998 if (sk->sk_protinfo.af_inet.cmsg_flags)
1999 ip_cmsg_recv(msg, skb);
2000#endif
2001
2002 err = copied;
2003
2004 /* If skb's length exceeds the user's buffer, update the skb and
2005 * push it back to the receive_queue so that the next call to
2006 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2007 */
2008 if (skb_len > copied) {
2009 msg->msg_flags &= ~MSG_EOR;
2010 if (flags & MSG_PEEK)
2011 goto out_free;
2012 sctp_skb_pull(skb, copied);
2013 skb_queue_head(&sk->sk_receive_queue, skb);
2014
2015 /* When only partial message is copied to the user, increase
2016 * rwnd by that amount. If all the data in the skb is read,
2017 * rwnd is updated when the event is freed.
2018 */
2019 if (!sctp_ulpevent_is_notification(event))
2020 sctp_assoc_rwnd_increase(event->asoc, copied);
2021 goto out;
2022 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2023 (event->msg_flags & MSG_EOR))
2024 msg->msg_flags |= MSG_EOR;
2025 else
2026 msg->msg_flags &= ~MSG_EOR;
2027
2028out_free:
2029 if (flags & MSG_PEEK) {
2030 /* Release the skb reference acquired after peeking the skb in
2031 * sctp_skb_recv_datagram().
2032 */
2033 kfree_skb(skb);
2034 } else {
2035 /* Free the event which includes releasing the reference to
2036 * the owner of the skb, freeing the skb and updating the
2037 * rwnd.
2038 */
2039 sctp_ulpevent_free(event);
2040 }
2041out:
2042 sctp_release_sock(sk);
2043 return err;
2044}
2045
2046/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2047 *
2048 * This option is a on/off flag. If enabled no SCTP message
2049 * fragmentation will be performed. Instead if a message being sent
2050 * exceeds the current PMTU size, the message will NOT be sent and
2051 * instead a error will be indicated to the user.
2052 */
2053static int sctp_setsockopt_disable_fragments(struct sock *sk,
2054 char __user *optval,
2055 unsigned int optlen)
2056{
2057 int val;
2058
2059 if (optlen < sizeof(int))
2060 return -EINVAL;
2061
2062 if (get_user(val, (int __user *)optval))
2063 return -EFAULT;
2064
2065 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2066
2067 return 0;
2068}
2069
2070static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2071 unsigned int optlen)
2072{
2073 if (optlen > sizeof(struct sctp_event_subscribe))
2074 return -EINVAL;
2075 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2076 return -EFAULT;
2077 return 0;
2078}
2079
2080/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2081 *
2082 * This socket option is applicable to the UDP-style socket only. When
2083 * set it will cause associations that are idle for more than the
2084 * specified number of seconds to automatically close. An association
2085 * being idle is defined an association that has NOT sent or received
2086 * user data. The special value of '0' indicates that no automatic
2087 * close of any associations should be performed. The option expects an
2088 * integer defining the number of seconds of idle time before an
2089 * association is closed.
2090 */
2091static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2092 unsigned int optlen)
2093{
2094 struct sctp_sock *sp = sctp_sk(sk);
2095
2096 /* Applicable to UDP-style socket only */
2097 if (sctp_style(sk, TCP))
2098 return -EOPNOTSUPP;
2099 if (optlen != sizeof(int))
2100 return -EINVAL;
2101 if (copy_from_user(&sp->autoclose, optval, optlen))
2102 return -EFAULT;
2103 /* make sure it won't exceed MAX_SCHEDULE_TIMEOUT */
2104 sp->autoclose = min_t(long, sp->autoclose, MAX_SCHEDULE_TIMEOUT / HZ);
2105
2106 return 0;
2107}
2108
2109/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2110 *
2111 * Applications can enable or disable heartbeats for any peer address of
2112 * an association, modify an address's heartbeat interval, force a
2113 * heartbeat to be sent immediately, and adjust the address's maximum
2114 * number of retransmissions sent before an address is considered
2115 * unreachable. The following structure is used to access and modify an
2116 * address's parameters:
2117 *
2118 * struct sctp_paddrparams {
2119 * sctp_assoc_t spp_assoc_id;
2120 * struct sockaddr_storage spp_address;
2121 * uint32_t spp_hbinterval;
2122 * uint16_t spp_pathmaxrxt;
2123 * uint32_t spp_pathmtu;
2124 * uint32_t spp_sackdelay;
2125 * uint32_t spp_flags;
2126 * };
2127 *
2128 * spp_assoc_id - (one-to-many style socket) This is filled in the
2129 * application, and identifies the association for
2130 * this query.
2131 * spp_address - This specifies which address is of interest.
2132 * spp_hbinterval - This contains the value of the heartbeat interval,
2133 * in milliseconds. If a value of zero
2134 * is present in this field then no changes are to
2135 * be made to this parameter.
2136 * spp_pathmaxrxt - This contains the maximum number of
2137 * retransmissions before this address shall be
2138 * considered unreachable. If a value of zero
2139 * is present in this field then no changes are to
2140 * be made to this parameter.
2141 * spp_pathmtu - When Path MTU discovery is disabled the value
2142 * specified here will be the "fixed" path mtu.
2143 * Note that if the spp_address field is empty
2144 * then all associations on this address will
2145 * have this fixed path mtu set upon them.
2146 *
2147 * spp_sackdelay - When delayed sack is enabled, this value specifies
2148 * the number of milliseconds that sacks will be delayed
2149 * for. This value will apply to all addresses of an
2150 * association if the spp_address field is empty. Note
2151 * also, that if delayed sack is enabled and this
2152 * value is set to 0, no change is made to the last
2153 * recorded delayed sack timer value.
2154 *
2155 * spp_flags - These flags are used to control various features
2156 * on an association. The flag field may contain
2157 * zero or more of the following options.
2158 *
2159 * SPP_HB_ENABLE - Enable heartbeats on the
2160 * specified address. Note that if the address
2161 * field is empty all addresses for the association
2162 * have heartbeats enabled upon them.
2163 *
2164 * SPP_HB_DISABLE - Disable heartbeats on the
2165 * speicifed address. Note that if the address
2166 * field is empty all addresses for the association
2167 * will have their heartbeats disabled. Note also
2168 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2169 * mutually exclusive, only one of these two should
2170 * be specified. Enabling both fields will have
2171 * undetermined results.
2172 *
2173 * SPP_HB_DEMAND - Request a user initiated heartbeat
2174 * to be made immediately.
2175 *
2176 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2177 * heartbeat delayis to be set to the value of 0
2178 * milliseconds.
2179 *
2180 * SPP_PMTUD_ENABLE - This field will enable PMTU
2181 * discovery upon the specified address. Note that
2182 * if the address feild is empty then all addresses
2183 * on the association are effected.
2184 *
2185 * SPP_PMTUD_DISABLE - This field will disable PMTU
2186 * discovery upon the specified address. Note that
2187 * if the address feild is empty then all addresses
2188 * on the association are effected. Not also that
2189 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2190 * exclusive. Enabling both will have undetermined
2191 * results.
2192 *
2193 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2194 * on delayed sack. The time specified in spp_sackdelay
2195 * is used to specify the sack delay for this address. Note
2196 * that if spp_address is empty then all addresses will
2197 * enable delayed sack and take on the sack delay
2198 * value specified in spp_sackdelay.
2199 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2200 * off delayed sack. If the spp_address field is blank then
2201 * delayed sack is disabled for the entire association. Note
2202 * also that this field is mutually exclusive to
2203 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2204 * results.
2205 */
2206static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2207 struct sctp_transport *trans,
2208 struct sctp_association *asoc,
2209 struct sctp_sock *sp,
2210 int hb_change,
2211 int pmtud_change,
2212 int sackdelay_change)
2213{
2214 int error;
2215
2216 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2217 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2218 if (error)
2219 return error;
2220 }
2221
2222 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2223 * this field is ignored. Note also that a value of zero indicates
2224 * the current setting should be left unchanged.
2225 */
2226 if (params->spp_flags & SPP_HB_ENABLE) {
2227
2228 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2229 * set. This lets us use 0 value when this flag
2230 * is set.
2231 */
2232 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2233 params->spp_hbinterval = 0;
2234
2235 if (params->spp_hbinterval ||
2236 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2237 if (trans) {
2238 trans->hbinterval =
2239 msecs_to_jiffies(params->spp_hbinterval);
2240 } else if (asoc) {
2241 asoc->hbinterval =
2242 msecs_to_jiffies(params->spp_hbinterval);
2243 } else {
2244 sp->hbinterval = params->spp_hbinterval;
2245 }
2246 }
2247 }
2248
2249 if (hb_change) {
2250 if (trans) {
2251 trans->param_flags =
2252 (trans->param_flags & ~SPP_HB) | hb_change;
2253 } else if (asoc) {
2254 asoc->param_flags =
2255 (asoc->param_flags & ~SPP_HB) | hb_change;
2256 } else {
2257 sp->param_flags =
2258 (sp->param_flags & ~SPP_HB) | hb_change;
2259 }
2260 }
2261
2262 /* When Path MTU discovery is disabled the value specified here will
2263 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2264 * include the flag SPP_PMTUD_DISABLE for this field to have any
2265 * effect).
2266 */
2267 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2268 if (trans) {
2269 trans->pathmtu = params->spp_pathmtu;
2270 sctp_assoc_sync_pmtu(asoc);
2271 } else if (asoc) {
2272 asoc->pathmtu = params->spp_pathmtu;
2273 sctp_frag_point(asoc, params->spp_pathmtu);
2274 } else {
2275 sp->pathmtu = params->spp_pathmtu;
2276 }
2277 }
2278
2279 if (pmtud_change) {
2280 if (trans) {
2281 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2282 (params->spp_flags & SPP_PMTUD_ENABLE);
2283 trans->param_flags =
2284 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2285 if (update) {
2286 sctp_transport_pmtu(trans);
2287 sctp_assoc_sync_pmtu(asoc);
2288 }
2289 } else if (asoc) {
2290 asoc->param_flags =
2291 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2292 } else {
2293 sp->param_flags =
2294 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2295 }
2296 }
2297
2298 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2299 * value of this field is ignored. Note also that a value of zero
2300 * indicates the current setting should be left unchanged.
2301 */
2302 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2303 if (trans) {
2304 trans->sackdelay =
2305 msecs_to_jiffies(params->spp_sackdelay);
2306 } else if (asoc) {
2307 asoc->sackdelay =
2308 msecs_to_jiffies(params->spp_sackdelay);
2309 } else {
2310 sp->sackdelay = params->spp_sackdelay;
2311 }
2312 }
2313
2314 if (sackdelay_change) {
2315 if (trans) {
2316 trans->param_flags =
2317 (trans->param_flags & ~SPP_SACKDELAY) |
2318 sackdelay_change;
2319 } else if (asoc) {
2320 asoc->param_flags =
2321 (asoc->param_flags & ~SPP_SACKDELAY) |
2322 sackdelay_change;
2323 } else {
2324 sp->param_flags =
2325 (sp->param_flags & ~SPP_SACKDELAY) |
2326 sackdelay_change;
2327 }
2328 }
2329
2330 /* Note that a value of zero indicates the current setting should be
2331 left unchanged.
2332 */
2333 if (params->spp_pathmaxrxt) {
2334 if (trans) {
2335 trans->pathmaxrxt = params->spp_pathmaxrxt;
2336 } else if (asoc) {
2337 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2338 } else {
2339 sp->pathmaxrxt = params->spp_pathmaxrxt;
2340 }
2341 }
2342
2343 return 0;
2344}
2345
2346static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2347 char __user *optval,
2348 unsigned int optlen)
2349{
2350 struct sctp_paddrparams params;
2351 struct sctp_transport *trans = NULL;
2352 struct sctp_association *asoc = NULL;
2353 struct sctp_sock *sp = sctp_sk(sk);
2354 int error;
2355 int hb_change, pmtud_change, sackdelay_change;
2356
2357 if (optlen != sizeof(struct sctp_paddrparams))
2358 return - EINVAL;
2359
2360 if (copy_from_user(&params, optval, optlen))
2361 return -EFAULT;
2362
2363 /* Validate flags and value parameters. */
2364 hb_change = params.spp_flags & SPP_HB;
2365 pmtud_change = params.spp_flags & SPP_PMTUD;
2366 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2367
2368 if (hb_change == SPP_HB ||
2369 pmtud_change == SPP_PMTUD ||
2370 sackdelay_change == SPP_SACKDELAY ||
2371 params.spp_sackdelay > 500 ||
2372 (params.spp_pathmtu &&
2373 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2374 return -EINVAL;
2375
2376 /* If an address other than INADDR_ANY is specified, and
2377 * no transport is found, then the request is invalid.
2378 */
2379 if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
2380 trans = sctp_addr_id2transport(sk, &params.spp_address,
2381 params.spp_assoc_id);
2382 if (!trans)
2383 return -EINVAL;
2384 }
2385
2386 /* Get association, if assoc_id != 0 and the socket is a one
2387 * to many style socket, and an association was not found, then
2388 * the id was invalid.
2389 */
2390 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2391 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2392 return -EINVAL;
2393
2394 /* Heartbeat demand can only be sent on a transport or
2395 * association, but not a socket.
2396 */
2397 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2398 return -EINVAL;
2399
2400 /* Process parameters. */
2401 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2402 hb_change, pmtud_change,
2403 sackdelay_change);
2404
2405 if (error)
2406 return error;
2407
2408 /* If changes are for association, also apply parameters to each
2409 * transport.
2410 */
2411 if (!trans && asoc) {
2412 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2413 transports) {
2414 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2415 hb_change, pmtud_change,
2416 sackdelay_change);
2417 }
2418 }
2419
2420 return 0;
2421}
2422
2423/*
2424 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2425 *
2426 * This option will effect the way delayed acks are performed. This
2427 * option allows you to get or set the delayed ack time, in
2428 * milliseconds. It also allows changing the delayed ack frequency.
2429 * Changing the frequency to 1 disables the delayed sack algorithm. If
2430 * the assoc_id is 0, then this sets or gets the endpoints default
2431 * values. If the assoc_id field is non-zero, then the set or get
2432 * effects the specified association for the one to many model (the
2433 * assoc_id field is ignored by the one to one model). Note that if
2434 * sack_delay or sack_freq are 0 when setting this option, then the
2435 * current values will remain unchanged.
2436 *
2437 * struct sctp_sack_info {
2438 * sctp_assoc_t sack_assoc_id;
2439 * uint32_t sack_delay;
2440 * uint32_t sack_freq;
2441 * };
2442 *
2443 * sack_assoc_id - This parameter, indicates which association the user
2444 * is performing an action upon. Note that if this field's value is
2445 * zero then the endpoints default value is changed (effecting future
2446 * associations only).
2447 *
2448 * sack_delay - This parameter contains the number of milliseconds that
2449 * the user is requesting the delayed ACK timer be set to. Note that
2450 * this value is defined in the standard to be between 200 and 500
2451 * milliseconds.
2452 *
2453 * sack_freq - This parameter contains the number of packets that must
2454 * be received before a sack is sent without waiting for the delay
2455 * timer to expire. The default value for this is 2, setting this
2456 * value to 1 will disable the delayed sack algorithm.
2457 */
2458
2459static int sctp_setsockopt_delayed_ack(struct sock *sk,
2460 char __user *optval, unsigned int optlen)
2461{
2462 struct sctp_sack_info params;
2463 struct sctp_transport *trans = NULL;
2464 struct sctp_association *asoc = NULL;
2465 struct sctp_sock *sp = sctp_sk(sk);
2466
2467 if (optlen == sizeof(struct sctp_sack_info)) {
2468 if (copy_from_user(&params, optval, optlen))
2469 return -EFAULT;
2470
2471 if (params.sack_delay == 0 && params.sack_freq == 0)
2472 return 0;
2473 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2474 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
2475 pr_warn("Use struct sctp_sack_info instead\n");
2476 if (copy_from_user(&params, optval, optlen))
2477 return -EFAULT;
2478
2479 if (params.sack_delay == 0)
2480 params.sack_freq = 1;
2481 else
2482 params.sack_freq = 0;
2483 } else
2484 return - EINVAL;
2485
2486 /* Validate value parameter. */
2487 if (params.sack_delay > 500)
2488 return -EINVAL;
2489
2490 /* Get association, if sack_assoc_id != 0 and the socket is a one
2491 * to many style socket, and an association was not found, then
2492 * the id was invalid.
2493 */
2494 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2495 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2496 return -EINVAL;
2497
2498 if (params.sack_delay) {
2499 if (asoc) {
2500 asoc->sackdelay =
2501 msecs_to_jiffies(params.sack_delay);
2502 asoc->param_flags =
2503 (asoc->param_flags & ~SPP_SACKDELAY) |
2504 SPP_SACKDELAY_ENABLE;
2505 } else {
2506 sp->sackdelay = params.sack_delay;
2507 sp->param_flags =
2508 (sp->param_flags & ~SPP_SACKDELAY) |
2509 SPP_SACKDELAY_ENABLE;
2510 }
2511 }
2512
2513 if (params.sack_freq == 1) {
2514 if (asoc) {
2515 asoc->param_flags =
2516 (asoc->param_flags & ~SPP_SACKDELAY) |
2517 SPP_SACKDELAY_DISABLE;
2518 } else {
2519 sp->param_flags =
2520 (sp->param_flags & ~SPP_SACKDELAY) |
2521 SPP_SACKDELAY_DISABLE;
2522 }
2523 } else if (params.sack_freq > 1) {
2524 if (asoc) {
2525 asoc->sackfreq = params.sack_freq;
2526 asoc->param_flags =
2527 (asoc->param_flags & ~SPP_SACKDELAY) |
2528 SPP_SACKDELAY_ENABLE;
2529 } else {
2530 sp->sackfreq = params.sack_freq;
2531 sp->param_flags =
2532 (sp->param_flags & ~SPP_SACKDELAY) |
2533 SPP_SACKDELAY_ENABLE;
2534 }
2535 }
2536
2537 /* If change is for association, also apply to each transport. */
2538 if (asoc) {
2539 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2540 transports) {
2541 if (params.sack_delay) {
2542 trans->sackdelay =
2543 msecs_to_jiffies(params.sack_delay);
2544 trans->param_flags =
2545 (trans->param_flags & ~SPP_SACKDELAY) |
2546 SPP_SACKDELAY_ENABLE;
2547 }
2548 if (params.sack_freq == 1) {
2549 trans->param_flags =
2550 (trans->param_flags & ~SPP_SACKDELAY) |
2551 SPP_SACKDELAY_DISABLE;
2552 } else if (params.sack_freq > 1) {
2553 trans->sackfreq = params.sack_freq;
2554 trans->param_flags =
2555 (trans->param_flags & ~SPP_SACKDELAY) |
2556 SPP_SACKDELAY_ENABLE;
2557 }
2558 }
2559 }
2560
2561 return 0;
2562}
2563
2564/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2565 *
2566 * Applications can specify protocol parameters for the default association
2567 * initialization. The option name argument to setsockopt() and getsockopt()
2568 * is SCTP_INITMSG.
2569 *
2570 * Setting initialization parameters is effective only on an unconnected
2571 * socket (for UDP-style sockets only future associations are effected
2572 * by the change). With TCP-style sockets, this option is inherited by
2573 * sockets derived from a listener socket.
2574 */
2575static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2576{
2577 struct sctp_initmsg sinit;
2578 struct sctp_sock *sp = sctp_sk(sk);
2579
2580 if (optlen != sizeof(struct sctp_initmsg))
2581 return -EINVAL;
2582 if (copy_from_user(&sinit, optval, optlen))
2583 return -EFAULT;
2584
2585 if (sinit.sinit_num_ostreams)
2586 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2587 if (sinit.sinit_max_instreams)
2588 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2589 if (sinit.sinit_max_attempts)
2590 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2591 if (sinit.sinit_max_init_timeo)
2592 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2593
2594 return 0;
2595}
2596
2597/*
2598 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2599 *
2600 * Applications that wish to use the sendto() system call may wish to
2601 * specify a default set of parameters that would normally be supplied
2602 * through the inclusion of ancillary data. This socket option allows
2603 * such an application to set the default sctp_sndrcvinfo structure.
2604 * The application that wishes to use this socket option simply passes
2605 * in to this call the sctp_sndrcvinfo structure defined in Section
2606 * 5.2.2) The input parameters accepted by this call include
2607 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2608 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2609 * to this call if the caller is using the UDP model.
2610 */
2611static int sctp_setsockopt_default_send_param(struct sock *sk,
2612 char __user *optval,
2613 unsigned int optlen)
2614{
2615 struct sctp_sndrcvinfo info;
2616 struct sctp_association *asoc;
2617 struct sctp_sock *sp = sctp_sk(sk);
2618
2619 if (optlen != sizeof(struct sctp_sndrcvinfo))
2620 return -EINVAL;
2621 if (copy_from_user(&info, optval, optlen))
2622 return -EFAULT;
2623
2624 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2625 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2626 return -EINVAL;
2627
2628 if (asoc) {
2629 asoc->default_stream = info.sinfo_stream;
2630 asoc->default_flags = info.sinfo_flags;
2631 asoc->default_ppid = info.sinfo_ppid;
2632 asoc->default_context = info.sinfo_context;
2633 asoc->default_timetolive = info.sinfo_timetolive;
2634 } else {
2635 sp->default_stream = info.sinfo_stream;
2636 sp->default_flags = info.sinfo_flags;
2637 sp->default_ppid = info.sinfo_ppid;
2638 sp->default_context = info.sinfo_context;
2639 sp->default_timetolive = info.sinfo_timetolive;
2640 }
2641
2642 return 0;
2643}
2644
2645/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2646 *
2647 * Requests that the local SCTP stack use the enclosed peer address as
2648 * the association primary. The enclosed address must be one of the
2649 * association peer's addresses.
2650 */
2651static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2652 unsigned int optlen)
2653{
2654 struct sctp_prim prim;
2655 struct sctp_transport *trans;
2656
2657 if (optlen != sizeof(struct sctp_prim))
2658 return -EINVAL;
2659
2660 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2661 return -EFAULT;
2662
2663 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2664 if (!trans)
2665 return -EINVAL;
2666
2667 sctp_assoc_set_primary(trans->asoc, trans);
2668
2669 return 0;
2670}
2671
2672/*
2673 * 7.1.5 SCTP_NODELAY
2674 *
2675 * Turn on/off any Nagle-like algorithm. This means that packets are
2676 * generally sent as soon as possible and no unnecessary delays are
2677 * introduced, at the cost of more packets in the network. Expects an
2678 * integer boolean flag.
2679 */
2680static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2681 unsigned int optlen)
2682{
2683 int val;
2684
2685 if (optlen < sizeof(int))
2686 return -EINVAL;
2687 if (get_user(val, (int __user *)optval))
2688 return -EFAULT;
2689
2690 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2691 return 0;
2692}
2693
2694/*
2695 *
2696 * 7.1.1 SCTP_RTOINFO
2697 *
2698 * The protocol parameters used to initialize and bound retransmission
2699 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2700 * and modify these parameters.
2701 * All parameters are time values, in milliseconds. A value of 0, when
2702 * modifying the parameters, indicates that the current value should not
2703 * be changed.
2704 *
2705 */
2706static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2707{
2708 struct sctp_rtoinfo rtoinfo;
2709 struct sctp_association *asoc;
2710
2711 if (optlen != sizeof (struct sctp_rtoinfo))
2712 return -EINVAL;
2713
2714 if (copy_from_user(&rtoinfo, optval, optlen))
2715 return -EFAULT;
2716
2717 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2718
2719 /* Set the values to the specific association */
2720 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2721 return -EINVAL;
2722
2723 if (asoc) {
2724 if (rtoinfo.srto_initial != 0)
2725 asoc->rto_initial =
2726 msecs_to_jiffies(rtoinfo.srto_initial);
2727 if (rtoinfo.srto_max != 0)
2728 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2729 if (rtoinfo.srto_min != 0)
2730 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2731 } else {
2732 /* If there is no association or the association-id = 0
2733 * set the values to the endpoint.
2734 */
2735 struct sctp_sock *sp = sctp_sk(sk);
2736
2737 if (rtoinfo.srto_initial != 0)
2738 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2739 if (rtoinfo.srto_max != 0)
2740 sp->rtoinfo.srto_max = rtoinfo.srto_max;
2741 if (rtoinfo.srto_min != 0)
2742 sp->rtoinfo.srto_min = rtoinfo.srto_min;
2743 }
2744
2745 return 0;
2746}
2747
2748/*
2749 *
2750 * 7.1.2 SCTP_ASSOCINFO
2751 *
2752 * This option is used to tune the maximum retransmission attempts
2753 * of the association.
2754 * Returns an error if the new association retransmission value is
2755 * greater than the sum of the retransmission value of the peer.
2756 * See [SCTP] for more information.
2757 *
2758 */
2759static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2760{
2761
2762 struct sctp_assocparams assocparams;
2763 struct sctp_association *asoc;
2764
2765 if (optlen != sizeof(struct sctp_assocparams))
2766 return -EINVAL;
2767 if (copy_from_user(&assocparams, optval, optlen))
2768 return -EFAULT;
2769
2770 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2771
2772 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2773 return -EINVAL;
2774
2775 /* Set the values to the specific association */
2776 if (asoc) {
2777 if (assocparams.sasoc_asocmaxrxt != 0) {
2778 __u32 path_sum = 0;
2779 int paths = 0;
2780 struct sctp_transport *peer_addr;
2781
2782 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2783 transports) {
2784 path_sum += peer_addr->pathmaxrxt;
2785 paths++;
2786 }
2787
2788 /* Only validate asocmaxrxt if we have more than
2789 * one path/transport. We do this because path
2790 * retransmissions are only counted when we have more
2791 * then one path.
2792 */
2793 if (paths > 1 &&
2794 assocparams.sasoc_asocmaxrxt > path_sum)
2795 return -EINVAL;
2796
2797 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2798 }
2799
2800 if (assocparams.sasoc_cookie_life != 0) {
2801 asoc->cookie_life.tv_sec =
2802 assocparams.sasoc_cookie_life / 1000;
2803 asoc->cookie_life.tv_usec =
2804 (assocparams.sasoc_cookie_life % 1000)
2805 * 1000;
2806 }
2807 } else {
2808 /* Set the values to the endpoint */
2809 struct sctp_sock *sp = sctp_sk(sk);
2810
2811 if (assocparams.sasoc_asocmaxrxt != 0)
2812 sp->assocparams.sasoc_asocmaxrxt =
2813 assocparams.sasoc_asocmaxrxt;
2814 if (assocparams.sasoc_cookie_life != 0)
2815 sp->assocparams.sasoc_cookie_life =
2816 assocparams.sasoc_cookie_life;
2817 }
2818 return 0;
2819}
2820
2821/*
2822 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2823 *
2824 * This socket option is a boolean flag which turns on or off mapped V4
2825 * addresses. If this option is turned on and the socket is type
2826 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2827 * If this option is turned off, then no mapping will be done of V4
2828 * addresses and a user will receive both PF_INET6 and PF_INET type
2829 * addresses on the socket.
2830 */
2831static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2832{
2833 int val;
2834 struct sctp_sock *sp = sctp_sk(sk);
2835
2836 if (optlen < sizeof(int))
2837 return -EINVAL;
2838 if (get_user(val, (int __user *)optval))
2839 return -EFAULT;
2840 if (val)
2841 sp->v4mapped = 1;
2842 else
2843 sp->v4mapped = 0;
2844
2845 return 0;
2846}
2847
2848/*
2849 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2850 * This option will get or set the maximum size to put in any outgoing
2851 * SCTP DATA chunk. If a message is larger than this size it will be
2852 * fragmented by SCTP into the specified size. Note that the underlying
2853 * SCTP implementation may fragment into smaller sized chunks when the
2854 * PMTU of the underlying association is smaller than the value set by
2855 * the user. The default value for this option is '0' which indicates
2856 * the user is NOT limiting fragmentation and only the PMTU will effect
2857 * SCTP's choice of DATA chunk size. Note also that values set larger
2858 * than the maximum size of an IP datagram will effectively let SCTP
2859 * control fragmentation (i.e. the same as setting this option to 0).
2860 *
2861 * The following structure is used to access and modify this parameter:
2862 *
2863 * struct sctp_assoc_value {
2864 * sctp_assoc_t assoc_id;
2865 * uint32_t assoc_value;
2866 * };
2867 *
2868 * assoc_id: This parameter is ignored for one-to-one style sockets.
2869 * For one-to-many style sockets this parameter indicates which
2870 * association the user is performing an action upon. Note that if
2871 * this field's value is zero then the endpoints default value is
2872 * changed (effecting future associations only).
2873 * assoc_value: This parameter specifies the maximum size in bytes.
2874 */
2875static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
2876{
2877 struct sctp_assoc_value params;
2878 struct sctp_association *asoc;
2879 struct sctp_sock *sp = sctp_sk(sk);
2880 int val;
2881
2882 if (optlen == sizeof(int)) {
2883 pr_warn("Use of int in maxseg socket option deprecated\n");
2884 pr_warn("Use struct sctp_assoc_value instead\n");
2885 if (copy_from_user(&val, optval, optlen))
2886 return -EFAULT;
2887 params.assoc_id = 0;
2888 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2889 if (copy_from_user(&params, optval, optlen))
2890 return -EFAULT;
2891 val = params.assoc_value;
2892 } else
2893 return -EINVAL;
2894
2895 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2896 return -EINVAL;
2897
2898 asoc = sctp_id2assoc(sk, params.assoc_id);
2899 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2900 return -EINVAL;
2901
2902 if (asoc) {
2903 if (val == 0) {
2904 val = asoc->pathmtu;
2905 val -= sp->pf->af->net_header_len;
2906 val -= sizeof(struct sctphdr) +
2907 sizeof(struct sctp_data_chunk);
2908 }
2909 asoc->user_frag = val;
2910 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
2911 } else {
2912 sp->user_frag = val;
2913 }
2914
2915 return 0;
2916}
2917
2918
2919/*
2920 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2921 *
2922 * Requests that the peer mark the enclosed address as the association
2923 * primary. The enclosed address must be one of the association's
2924 * locally bound addresses. The following structure is used to make a
2925 * set primary request:
2926 */
2927static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2928 unsigned int optlen)
2929{
2930 struct sctp_sock *sp;
2931 struct sctp_endpoint *ep;
2932 struct sctp_association *asoc = NULL;
2933 struct sctp_setpeerprim prim;
2934 struct sctp_chunk *chunk;
2935 int err;
2936
2937 sp = sctp_sk(sk);
2938 ep = sp->ep;
2939
2940 if (!sctp_addip_enable)
2941 return -EPERM;
2942
2943 if (optlen != sizeof(struct sctp_setpeerprim))
2944 return -EINVAL;
2945
2946 if (copy_from_user(&prim, optval, optlen))
2947 return -EFAULT;
2948
2949 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2950 if (!asoc)
2951 return -EINVAL;
2952
2953 if (!asoc->peer.asconf_capable)
2954 return -EPERM;
2955
2956 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2957 return -EPERM;
2958
2959 if (!sctp_state(asoc, ESTABLISHED))
2960 return -ENOTCONN;
2961
2962 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2963 return -EADDRNOTAVAIL;
2964
2965 /* Create an ASCONF chunk with SET_PRIMARY parameter */
2966 chunk = sctp_make_asconf_set_prim(asoc,
2967 (union sctp_addr *)&prim.sspp_addr);
2968 if (!chunk)
2969 return -ENOMEM;
2970
2971 err = sctp_send_asconf(asoc, chunk);
2972
2973 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2974
2975 return err;
2976}
2977
2978static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
2979 unsigned int optlen)
2980{
2981 struct sctp_setadaptation adaptation;
2982
2983 if (optlen != sizeof(struct sctp_setadaptation))
2984 return -EINVAL;
2985 if (copy_from_user(&adaptation, optval, optlen))
2986 return -EFAULT;
2987
2988 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
2989
2990 return 0;
2991}
2992
2993/*
2994 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
2995 *
2996 * The context field in the sctp_sndrcvinfo structure is normally only
2997 * used when a failed message is retrieved holding the value that was
2998 * sent down on the actual send call. This option allows the setting of
2999 * a default context on an association basis that will be received on
3000 * reading messages from the peer. This is especially helpful in the
3001 * one-2-many model for an application to keep some reference to an
3002 * internal state machine that is processing messages on the
3003 * association. Note that the setting of this value only effects
3004 * received messages from the peer and does not effect the value that is
3005 * saved with outbound messages.
3006 */
3007static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3008 unsigned int optlen)
3009{
3010 struct sctp_assoc_value params;
3011 struct sctp_sock *sp;
3012 struct sctp_association *asoc;
3013
3014 if (optlen != sizeof(struct sctp_assoc_value))
3015 return -EINVAL;
3016 if (copy_from_user(&params, optval, optlen))
3017 return -EFAULT;
3018
3019 sp = sctp_sk(sk);
3020
3021 if (params.assoc_id != 0) {
3022 asoc = sctp_id2assoc(sk, params.assoc_id);
3023 if (!asoc)
3024 return -EINVAL;
3025 asoc->default_rcv_context = params.assoc_value;
3026 } else {
3027 sp->default_rcv_context = params.assoc_value;
3028 }
3029
3030 return 0;
3031}
3032
3033/*
3034 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3035 *
3036 * This options will at a minimum specify if the implementation is doing
3037 * fragmented interleave. Fragmented interleave, for a one to many
3038 * socket, is when subsequent calls to receive a message may return
3039 * parts of messages from different associations. Some implementations
3040 * may allow you to turn this value on or off. If so, when turned off,
3041 * no fragment interleave will occur (which will cause a head of line
3042 * blocking amongst multiple associations sharing the same one to many
3043 * socket). When this option is turned on, then each receive call may
3044 * come from a different association (thus the user must receive data
3045 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3046 * association each receive belongs to.
3047 *
3048 * This option takes a boolean value. A non-zero value indicates that
3049 * fragmented interleave is on. A value of zero indicates that
3050 * fragmented interleave is off.
3051 *
3052 * Note that it is important that an implementation that allows this
3053 * option to be turned on, have it off by default. Otherwise an unaware
3054 * application using the one to many model may become confused and act
3055 * incorrectly.
3056 */
3057static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3058 char __user *optval,
3059 unsigned int optlen)
3060{
3061 int val;
3062
3063 if (optlen != sizeof(int))
3064 return -EINVAL;
3065 if (get_user(val, (int __user *)optval))
3066 return -EFAULT;
3067
3068 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3069
3070 return 0;
3071}
3072
3073/*
3074 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3075 * (SCTP_PARTIAL_DELIVERY_POINT)
3076 *
3077 * This option will set or get the SCTP partial delivery point. This
3078 * point is the size of a message where the partial delivery API will be
3079 * invoked to help free up rwnd space for the peer. Setting this to a
3080 * lower value will cause partial deliveries to happen more often. The
3081 * calls argument is an integer that sets or gets the partial delivery
3082 * point. Note also that the call will fail if the user attempts to set
3083 * this value larger than the socket receive buffer size.
3084 *
3085 * Note that any single message having a length smaller than or equal to
3086 * the SCTP partial delivery point will be delivered in one single read
3087 * call as long as the user provided buffer is large enough to hold the
3088 * message.
3089 */
3090static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3091 char __user *optval,
3092 unsigned int optlen)
3093{
3094 u32 val;
3095
3096 if (optlen != sizeof(u32))
3097 return -EINVAL;
3098 if (get_user(val, (int __user *)optval))
3099 return -EFAULT;
3100
3101 /* Note: We double the receive buffer from what the user sets
3102 * it to be, also initial rwnd is based on rcvbuf/2.
3103 */
3104 if (val > (sk->sk_rcvbuf >> 1))
3105 return -EINVAL;
3106
3107 sctp_sk(sk)->pd_point = val;
3108
3109 return 0; /* is this the right error code? */
3110}
3111
3112/*
3113 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3114 *
3115 * This option will allow a user to change the maximum burst of packets
3116 * that can be emitted by this association. Note that the default value
3117 * is 4, and some implementations may restrict this setting so that it
3118 * can only be lowered.
3119 *
3120 * NOTE: This text doesn't seem right. Do this on a socket basis with
3121 * future associations inheriting the socket value.
3122 */
3123static int sctp_setsockopt_maxburst(struct sock *sk,
3124 char __user *optval,
3125 unsigned int optlen)
3126{
3127 struct sctp_assoc_value params;
3128 struct sctp_sock *sp;
3129 struct sctp_association *asoc;
3130 int val;
3131 int assoc_id = 0;
3132
3133 if (optlen == sizeof(int)) {
3134 pr_warn("Use of int in max_burst socket option deprecated\n");
3135 pr_warn("Use struct sctp_assoc_value instead\n");
3136 if (copy_from_user(&val, optval, optlen))
3137 return -EFAULT;
3138 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3139 if (copy_from_user(&params, optval, optlen))
3140 return -EFAULT;
3141 val = params.assoc_value;
3142 assoc_id = params.assoc_id;
3143 } else
3144 return -EINVAL;
3145
3146 sp = sctp_sk(sk);
3147
3148 if (assoc_id != 0) {
3149 asoc = sctp_id2assoc(sk, assoc_id);
3150 if (!asoc)
3151 return -EINVAL;
3152 asoc->max_burst = val;
3153 } else
3154 sp->max_burst = val;
3155
3156 return 0;
3157}
3158
3159/*
3160 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3161 *
3162 * This set option adds a chunk type that the user is requesting to be
3163 * received only in an authenticated way. Changes to the list of chunks
3164 * will only effect future associations on the socket.
3165 */
3166static int sctp_setsockopt_auth_chunk(struct sock *sk,
3167 char __user *optval,
3168 unsigned int optlen)
3169{
3170 struct sctp_authchunk val;
3171
3172 if (!sctp_auth_enable)
3173 return -EACCES;
3174
3175 if (optlen != sizeof(struct sctp_authchunk))
3176 return -EINVAL;
3177 if (copy_from_user(&val, optval, optlen))
3178 return -EFAULT;
3179
3180 switch (val.sauth_chunk) {
3181 case SCTP_CID_INIT:
3182 case SCTP_CID_INIT_ACK:
3183 case SCTP_CID_SHUTDOWN_COMPLETE:
3184 case SCTP_CID_AUTH:
3185 return -EINVAL;
3186 }
3187
3188 /* add this chunk id to the endpoint */
3189 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3190}
3191
3192/*
3193 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3194 *
3195 * This option gets or sets the list of HMAC algorithms that the local
3196 * endpoint requires the peer to use.
3197 */
3198static int sctp_setsockopt_hmac_ident(struct sock *sk,
3199 char __user *optval,
3200 unsigned int optlen)
3201{
3202 struct sctp_hmacalgo *hmacs;
3203 u32 idents;
3204 int err;
3205
3206 if (!sctp_auth_enable)
3207 return -EACCES;
3208
3209 if (optlen < sizeof(struct sctp_hmacalgo))
3210 return -EINVAL;
3211
3212 hmacs = kmalloc(optlen, GFP_KERNEL);
3213 if (!hmacs)
3214 return -ENOMEM;
3215
3216 if (copy_from_user(hmacs, optval, optlen)) {
3217 err = -EFAULT;
3218 goto out;
3219 }
3220
3221 idents = hmacs->shmac_num_idents;
3222 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3223 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3224 err = -EINVAL;
3225 goto out;
3226 }
3227
3228 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3229out:
3230 kfree(hmacs);
3231 return err;
3232}
3233
3234/*
3235 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3236 *
3237 * This option will set a shared secret key which is used to build an
3238 * association shared key.
3239 */
3240static int sctp_setsockopt_auth_key(struct sock *sk,
3241 char __user *optval,
3242 unsigned int optlen)
3243{
3244 struct sctp_authkey *authkey;
3245 struct sctp_association *asoc;
3246 int ret;
3247
3248 if (!sctp_auth_enable)
3249 return -EACCES;
3250
3251 if (optlen <= sizeof(struct sctp_authkey))
3252 return -EINVAL;
3253
3254 authkey = kmalloc(optlen, GFP_KERNEL);
3255 if (!authkey)
3256 return -ENOMEM;
3257
3258 if (copy_from_user(authkey, optval, optlen)) {
3259 ret = -EFAULT;
3260 goto out;
3261 }
3262
3263 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3264 ret = -EINVAL;
3265 goto out;
3266 }
3267
3268 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3269 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3270 ret = -EINVAL;
3271 goto out;
3272 }
3273
3274 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3275out:
3276 kfree(authkey);
3277 return ret;
3278}
3279
3280/*
3281 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3282 *
3283 * This option will get or set the active shared key to be used to build
3284 * the association shared key.
3285 */
3286static int sctp_setsockopt_active_key(struct sock *sk,
3287 char __user *optval,
3288 unsigned int optlen)
3289{
3290 struct sctp_authkeyid val;
3291 struct sctp_association *asoc;
3292
3293 if (!sctp_auth_enable)
3294 return -EACCES;
3295
3296 if (optlen != sizeof(struct sctp_authkeyid))
3297 return -EINVAL;
3298 if (copy_from_user(&val, optval, optlen))
3299 return -EFAULT;
3300
3301 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3302 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3303 return -EINVAL;
3304
3305 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3306 val.scact_keynumber);
3307}
3308
3309/*
3310 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3311 *
3312 * This set option will delete a shared secret key from use.
3313 */
3314static int sctp_setsockopt_del_key(struct sock *sk,
3315 char __user *optval,
3316 unsigned int optlen)
3317{
3318 struct sctp_authkeyid val;
3319 struct sctp_association *asoc;
3320
3321 if (!sctp_auth_enable)
3322 return -EACCES;
3323
3324 if (optlen != sizeof(struct sctp_authkeyid))
3325 return -EINVAL;
3326 if (copy_from_user(&val, optval, optlen))
3327 return -EFAULT;
3328
3329 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3330 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3331 return -EINVAL;
3332
3333 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3334 val.scact_keynumber);
3335
3336}
3337
3338
3339/* API 6.2 setsockopt(), getsockopt()
3340 *
3341 * Applications use setsockopt() and getsockopt() to set or retrieve
3342 * socket options. Socket options are used to change the default
3343 * behavior of sockets calls. They are described in Section 7.
3344 *
3345 * The syntax is:
3346 *
3347 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3348 * int __user *optlen);
3349 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3350 * int optlen);
3351 *
3352 * sd - the socket descript.
3353 * level - set to IPPROTO_SCTP for all SCTP options.
3354 * optname - the option name.
3355 * optval - the buffer to store the value of the option.
3356 * optlen - the size of the buffer.
3357 */
3358SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3359 char __user *optval, unsigned int optlen)
3360{
3361 int retval = 0;
3362
3363 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3364 sk, optname);
3365
3366 /* I can hardly begin to describe how wrong this is. This is
3367 * so broken as to be worse than useless. The API draft
3368 * REALLY is NOT helpful here... I am not convinced that the
3369 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3370 * are at all well-founded.
3371 */
3372 if (level != SOL_SCTP) {
3373 struct sctp_af *af = sctp_sk(sk)->pf->af;
3374 retval = af->setsockopt(sk, level, optname, optval, optlen);
3375 goto out_nounlock;
3376 }
3377
3378 sctp_lock_sock(sk);
3379
3380 switch (optname) {
3381 case SCTP_SOCKOPT_BINDX_ADD:
3382 /* 'optlen' is the size of the addresses buffer. */
3383 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3384 optlen, SCTP_BINDX_ADD_ADDR);
3385 break;
3386
3387 case SCTP_SOCKOPT_BINDX_REM:
3388 /* 'optlen' is the size of the addresses buffer. */
3389 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3390 optlen, SCTP_BINDX_REM_ADDR);
3391 break;
3392
3393 case SCTP_SOCKOPT_CONNECTX_OLD:
3394 /* 'optlen' is the size of the addresses buffer. */
3395 retval = sctp_setsockopt_connectx_old(sk,
3396 (struct sockaddr __user *)optval,
3397 optlen);
3398 break;
3399
3400 case SCTP_SOCKOPT_CONNECTX:
3401 /* 'optlen' is the size of the addresses buffer. */
3402 retval = sctp_setsockopt_connectx(sk,
3403 (struct sockaddr __user *)optval,
3404 optlen);
3405 break;
3406
3407 case SCTP_DISABLE_FRAGMENTS:
3408 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3409 break;
3410
3411 case SCTP_EVENTS:
3412 retval = sctp_setsockopt_events(sk, optval, optlen);
3413 break;
3414
3415 case SCTP_AUTOCLOSE:
3416 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3417 break;
3418
3419 case SCTP_PEER_ADDR_PARAMS:
3420 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3421 break;
3422
3423 case SCTP_DELAYED_ACK:
3424 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3425 break;
3426 case SCTP_PARTIAL_DELIVERY_POINT:
3427 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3428 break;
3429
3430 case SCTP_INITMSG:
3431 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3432 break;
3433 case SCTP_DEFAULT_SEND_PARAM:
3434 retval = sctp_setsockopt_default_send_param(sk, optval,
3435 optlen);
3436 break;
3437 case SCTP_PRIMARY_ADDR:
3438 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3439 break;
3440 case SCTP_SET_PEER_PRIMARY_ADDR:
3441 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3442 break;
3443 case SCTP_NODELAY:
3444 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3445 break;
3446 case SCTP_RTOINFO:
3447 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3448 break;
3449 case SCTP_ASSOCINFO:
3450 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3451 break;
3452 case SCTP_I_WANT_MAPPED_V4_ADDR:
3453 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3454 break;
3455 case SCTP_MAXSEG:
3456 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3457 break;
3458 case SCTP_ADAPTATION_LAYER:
3459 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3460 break;
3461 case SCTP_CONTEXT:
3462 retval = sctp_setsockopt_context(sk, optval, optlen);
3463 break;
3464 case SCTP_FRAGMENT_INTERLEAVE:
3465 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3466 break;
3467 case SCTP_MAX_BURST:
3468 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3469 break;
3470 case SCTP_AUTH_CHUNK:
3471 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3472 break;
3473 case SCTP_HMAC_IDENT:
3474 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3475 break;
3476 case SCTP_AUTH_KEY:
3477 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3478 break;
3479 case SCTP_AUTH_ACTIVE_KEY:
3480 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3481 break;
3482 case SCTP_AUTH_DELETE_KEY:
3483 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3484 break;
3485 default:
3486 retval = -ENOPROTOOPT;
3487 break;
3488 }
3489
3490 sctp_release_sock(sk);
3491
3492out_nounlock:
3493 return retval;
3494}
3495
3496/* API 3.1.6 connect() - UDP Style Syntax
3497 *
3498 * An application may use the connect() call in the UDP model to initiate an
3499 * association without sending data.
3500 *
3501 * The syntax is:
3502 *
3503 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3504 *
3505 * sd: the socket descriptor to have a new association added to.
3506 *
3507 * nam: the address structure (either struct sockaddr_in or struct
3508 * sockaddr_in6 defined in RFC2553 [7]).
3509 *
3510 * len: the size of the address.
3511 */
3512SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3513 int addr_len)
3514{
3515 int err = 0;
3516 struct sctp_af *af;
3517
3518 sctp_lock_sock(sk);
3519
3520 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3521 __func__, sk, addr, addr_len);
3522
3523 /* Validate addr_len before calling common connect/connectx routine. */
3524 af = sctp_get_af_specific(addr->sa_family);
3525 if (!af || addr_len < af->sockaddr_len) {
3526 err = -EINVAL;
3527 } else {
3528 /* Pass correct addr len to common routine (so it knows there
3529 * is only one address being passed.
3530 */
3531 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3532 }
3533
3534 sctp_release_sock(sk);
3535 return err;
3536}
3537
3538/* FIXME: Write comments. */
3539SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3540{
3541 return -EOPNOTSUPP; /* STUB */
3542}
3543
3544/* 4.1.4 accept() - TCP Style Syntax
3545 *
3546 * Applications use accept() call to remove an established SCTP
3547 * association from the accept queue of the endpoint. A new socket
3548 * descriptor will be returned from accept() to represent the newly
3549 * formed association.
3550 */
3551SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3552{
3553 struct sctp_sock *sp;
3554 struct sctp_endpoint *ep;
3555 struct sock *newsk = NULL;
3556 struct sctp_association *asoc;
3557 long timeo;
3558 int error = 0;
3559
3560 sctp_lock_sock(sk);
3561
3562 sp = sctp_sk(sk);
3563 ep = sp->ep;
3564
3565 if (!sctp_style(sk, TCP)) {
3566 error = -EOPNOTSUPP;
3567 goto out;
3568 }
3569
3570 if (!sctp_sstate(sk, LISTENING)) {
3571 error = -EINVAL;
3572 goto out;
3573 }
3574
3575 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3576
3577 error = sctp_wait_for_accept(sk, timeo);
3578 if (error)
3579 goto out;
3580
3581 /* We treat the list of associations on the endpoint as the accept
3582 * queue and pick the first association on the list.
3583 */
3584 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3585
3586 newsk = sp->pf->create_accept_sk(sk, asoc);
3587 if (!newsk) {
3588 error = -ENOMEM;
3589 goto out;
3590 }
3591
3592 /* Populate the fields of the newsk from the oldsk and migrate the
3593 * asoc to the newsk.
3594 */
3595 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3596
3597out:
3598 sctp_release_sock(sk);
3599 *err = error;
3600 return newsk;
3601}
3602
3603/* The SCTP ioctl handler. */
3604SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3605{
3606 int rc = -ENOTCONN;
3607
3608 sctp_lock_sock(sk);
3609
3610 /*
3611 * SEQPACKET-style sockets in LISTENING state are valid, for
3612 * SCTP, so only discard TCP-style sockets in LISTENING state.
3613 */
3614 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3615 goto out;
3616
3617 switch (cmd) {
3618 case SIOCINQ: {
3619 struct sk_buff *skb;
3620 unsigned int amount = 0;
3621
3622 skb = skb_peek(&sk->sk_receive_queue);
3623 if (skb != NULL) {
3624 /*
3625 * We will only return the amount of this packet since
3626 * that is all that will be read.
3627 */
3628 amount = skb->len;
3629 }
3630 rc = put_user(amount, (int __user *)arg);
3631 break;
3632 }
3633 default:
3634 rc = -ENOIOCTLCMD;
3635 break;
3636 }
3637out:
3638 sctp_release_sock(sk);
3639 return rc;
3640}
3641
3642/* This is the function which gets called during socket creation to
3643 * initialized the SCTP-specific portion of the sock.
3644 * The sock structure should already be zero-filled memory.
3645 */
3646SCTP_STATIC int sctp_init_sock(struct sock *sk)
3647{
3648 struct sctp_endpoint *ep;
3649 struct sctp_sock *sp;
3650
3651 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3652
3653 sp = sctp_sk(sk);
3654
3655 /* Initialize the SCTP per socket area. */
3656 switch (sk->sk_type) {
3657 case SOCK_SEQPACKET:
3658 sp->type = SCTP_SOCKET_UDP;
3659 break;
3660 case SOCK_STREAM:
3661 sp->type = SCTP_SOCKET_TCP;
3662 break;
3663 default:
3664 return -ESOCKTNOSUPPORT;
3665 }
3666
3667 /* Initialize default send parameters. These parameters can be
3668 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3669 */
3670 sp->default_stream = 0;
3671 sp->default_ppid = 0;
3672 sp->default_flags = 0;
3673 sp->default_context = 0;
3674 sp->default_timetolive = 0;
3675
3676 sp->default_rcv_context = 0;
3677 sp->max_burst = sctp_max_burst;
3678
3679 /* Initialize default setup parameters. These parameters
3680 * can be modified with the SCTP_INITMSG socket option or
3681 * overridden by the SCTP_INIT CMSG.
3682 */
3683 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
3684 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
3685 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init;
3686 sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3687
3688 /* Initialize default RTO related parameters. These parameters can
3689 * be modified for with the SCTP_RTOINFO socket option.
3690 */
3691 sp->rtoinfo.srto_initial = sctp_rto_initial;
3692 sp->rtoinfo.srto_max = sctp_rto_max;
3693 sp->rtoinfo.srto_min = sctp_rto_min;
3694
3695 /* Initialize default association related parameters. These parameters
3696 * can be modified with the SCTP_ASSOCINFO socket option.
3697 */
3698 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3699 sp->assocparams.sasoc_number_peer_destinations = 0;
3700 sp->assocparams.sasoc_peer_rwnd = 0;
3701 sp->assocparams.sasoc_local_rwnd = 0;
3702 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3703
3704 /* Initialize default event subscriptions. By default, all the
3705 * options are off.
3706 */
3707 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3708
3709 /* Default Peer Address Parameters. These defaults can
3710 * be modified via SCTP_PEER_ADDR_PARAMS
3711 */
3712 sp->hbinterval = sctp_hb_interval;
3713 sp->pathmaxrxt = sctp_max_retrans_path;
3714 sp->pathmtu = 0; // allow default discovery
3715 sp->sackdelay = sctp_sack_timeout;
3716 sp->sackfreq = 2;
3717 sp->param_flags = SPP_HB_ENABLE |
3718 SPP_PMTUD_ENABLE |
3719 SPP_SACKDELAY_ENABLE;
3720
3721 /* If enabled no SCTP message fragmentation will be performed.
3722 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3723 */
3724 sp->disable_fragments = 0;
3725
3726 /* Enable Nagle algorithm by default. */
3727 sp->nodelay = 0;
3728
3729 /* Enable by default. */
3730 sp->v4mapped = 1;
3731
3732 /* Auto-close idle associations after the configured
3733 * number of seconds. A value of 0 disables this
3734 * feature. Configure through the SCTP_AUTOCLOSE socket option,
3735 * for UDP-style sockets only.
3736 */
3737 sp->autoclose = 0;
3738
3739 /* User specified fragmentation limit. */
3740 sp->user_frag = 0;
3741
3742 sp->adaptation_ind = 0;
3743
3744 sp->pf = sctp_get_pf_specific(sk->sk_family);
3745
3746 /* Control variables for partial data delivery. */
3747 atomic_set(&sp->pd_mode, 0);
3748 skb_queue_head_init(&sp->pd_lobby);
3749 sp->frag_interleave = 0;
3750
3751 /* Create a per socket endpoint structure. Even if we
3752 * change the data structure relationships, this may still
3753 * be useful for storing pre-connect address information.
3754 */
3755 ep = sctp_endpoint_new(sk, GFP_KERNEL);
3756 if (!ep)
3757 return -ENOMEM;
3758
3759 sp->ep = ep;
3760 sp->hmac = NULL;
3761
3762 SCTP_DBG_OBJCNT_INC(sock);
3763
3764 local_bh_disable();
3765 percpu_counter_inc(&sctp_sockets_allocated);
3766 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3767 local_bh_enable();
3768
3769 return 0;
3770}
3771
3772/* Cleanup any SCTP per socket resources. */
3773SCTP_STATIC void sctp_destroy_sock(struct sock *sk)
3774{
3775 struct sctp_endpoint *ep;
3776
3777 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3778
3779 /* Release our hold on the endpoint. */
3780 ep = sctp_sk(sk)->ep;
3781 sctp_endpoint_free(ep);
3782 local_bh_disable();
3783 percpu_counter_dec(&sctp_sockets_allocated);
3784 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3785 local_bh_enable();
3786}
3787
3788/* API 4.1.7 shutdown() - TCP Style Syntax
3789 * int shutdown(int socket, int how);
3790 *
3791 * sd - the socket descriptor of the association to be closed.
3792 * how - Specifies the type of shutdown. The values are
3793 * as follows:
3794 * SHUT_RD
3795 * Disables further receive operations. No SCTP
3796 * protocol action is taken.
3797 * SHUT_WR
3798 * Disables further send operations, and initiates
3799 * the SCTP shutdown sequence.
3800 * SHUT_RDWR
3801 * Disables further send and receive operations
3802 * and initiates the SCTP shutdown sequence.
3803 */
3804SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3805{
3806 struct sctp_endpoint *ep;
3807 struct sctp_association *asoc;
3808
3809 if (!sctp_style(sk, TCP))
3810 return;
3811
3812 if (how & SEND_SHUTDOWN) {
3813 ep = sctp_sk(sk)->ep;
3814 if (!list_empty(&ep->asocs)) {
3815 asoc = list_entry(ep->asocs.next,
3816 struct sctp_association, asocs);
3817 sctp_primitive_SHUTDOWN(asoc, NULL);
3818 }
3819 }
3820}
3821
3822/* 7.2.1 Association Status (SCTP_STATUS)
3823
3824 * Applications can retrieve current status information about an
3825 * association, including association state, peer receiver window size,
3826 * number of unacked data chunks, and number of data chunks pending
3827 * receipt. This information is read-only.
3828 */
3829static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3830 char __user *optval,
3831 int __user *optlen)
3832{
3833 struct sctp_status status;
3834 struct sctp_association *asoc = NULL;
3835 struct sctp_transport *transport;
3836 sctp_assoc_t associd;
3837 int retval = 0;
3838
3839 if (len < sizeof(status)) {
3840 retval = -EINVAL;
3841 goto out;
3842 }
3843
3844 len = sizeof(status);
3845 if (copy_from_user(&status, optval, len)) {
3846 retval = -EFAULT;
3847 goto out;
3848 }
3849
3850 associd = status.sstat_assoc_id;
3851 asoc = sctp_id2assoc(sk, associd);
3852 if (!asoc) {
3853 retval = -EINVAL;
3854 goto out;
3855 }
3856
3857 transport = asoc->peer.primary_path;
3858
3859 status.sstat_assoc_id = sctp_assoc2id(asoc);
3860 status.sstat_state = asoc->state;
3861 status.sstat_rwnd = asoc->peer.rwnd;
3862 status.sstat_unackdata = asoc->unack_data;
3863
3864 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3865 status.sstat_instrms = asoc->c.sinit_max_instreams;
3866 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3867 status.sstat_fragmentation_point = asoc->frag_point;
3868 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3869 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
3870 transport->af_specific->sockaddr_len);
3871 /* Map ipv4 address into v4-mapped-on-v6 address. */
3872 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3873 (union sctp_addr *)&status.sstat_primary.spinfo_address);
3874 status.sstat_primary.spinfo_state = transport->state;
3875 status.sstat_primary.spinfo_cwnd = transport->cwnd;
3876 status.sstat_primary.spinfo_srtt = transport->srtt;
3877 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3878 status.sstat_primary.spinfo_mtu = transport->pathmtu;
3879
3880 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3881 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3882
3883 if (put_user(len, optlen)) {
3884 retval = -EFAULT;
3885 goto out;
3886 }
3887
3888 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3889 len, status.sstat_state, status.sstat_rwnd,
3890 status.sstat_assoc_id);
3891
3892 if (copy_to_user(optval, &status, len)) {
3893 retval = -EFAULT;
3894 goto out;
3895 }
3896
3897out:
3898 return retval;
3899}
3900
3901
3902/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3903 *
3904 * Applications can retrieve information about a specific peer address
3905 * of an association, including its reachability state, congestion
3906 * window, and retransmission timer values. This information is
3907 * read-only.
3908 */
3909static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3910 char __user *optval,
3911 int __user *optlen)
3912{
3913 struct sctp_paddrinfo pinfo;
3914 struct sctp_transport *transport;
3915 int retval = 0;
3916
3917 if (len < sizeof(pinfo)) {
3918 retval = -EINVAL;
3919 goto out;
3920 }
3921
3922 len = sizeof(pinfo);
3923 if (copy_from_user(&pinfo, optval, len)) {
3924 retval = -EFAULT;
3925 goto out;
3926 }
3927
3928 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3929 pinfo.spinfo_assoc_id);
3930 if (!transport)
3931 return -EINVAL;
3932
3933 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3934 pinfo.spinfo_state = transport->state;
3935 pinfo.spinfo_cwnd = transport->cwnd;
3936 pinfo.spinfo_srtt = transport->srtt;
3937 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3938 pinfo.spinfo_mtu = transport->pathmtu;
3939
3940 if (pinfo.spinfo_state == SCTP_UNKNOWN)
3941 pinfo.spinfo_state = SCTP_ACTIVE;
3942
3943 if (put_user(len, optlen)) {
3944 retval = -EFAULT;
3945 goto out;
3946 }
3947
3948 if (copy_to_user(optval, &pinfo, len)) {
3949 retval = -EFAULT;
3950 goto out;
3951 }
3952
3953out:
3954 return retval;
3955}
3956
3957/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3958 *
3959 * This option is a on/off flag. If enabled no SCTP message
3960 * fragmentation will be performed. Instead if a message being sent
3961 * exceeds the current PMTU size, the message will NOT be sent and
3962 * instead a error will be indicated to the user.
3963 */
3964static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3965 char __user *optval, int __user *optlen)
3966{
3967 int val;
3968
3969 if (len < sizeof(int))
3970 return -EINVAL;
3971
3972 len = sizeof(int);
3973 val = (sctp_sk(sk)->disable_fragments == 1);
3974 if (put_user(len, optlen))
3975 return -EFAULT;
3976 if (copy_to_user(optval, &val, len))
3977 return -EFAULT;
3978 return 0;
3979}
3980
3981/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3982 *
3983 * This socket option is used to specify various notifications and
3984 * ancillary data the user wishes to receive.
3985 */
3986static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3987 int __user *optlen)
3988{
3989 if (len < sizeof(struct sctp_event_subscribe))
3990 return -EINVAL;
3991 len = sizeof(struct sctp_event_subscribe);
3992 if (put_user(len, optlen))
3993 return -EFAULT;
3994 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3995 return -EFAULT;
3996 return 0;
3997}
3998
3999/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4000 *
4001 * This socket option is applicable to the UDP-style socket only. When
4002 * set it will cause associations that are idle for more than the
4003 * specified number of seconds to automatically close. An association
4004 * being idle is defined an association that has NOT sent or received
4005 * user data. The special value of '0' indicates that no automatic
4006 * close of any associations should be performed. The option expects an
4007 * integer defining the number of seconds of idle time before an
4008 * association is closed.
4009 */
4010static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4011{
4012 /* Applicable to UDP-style socket only */
4013 if (sctp_style(sk, TCP))
4014 return -EOPNOTSUPP;
4015 if (len < sizeof(int))
4016 return -EINVAL;
4017 len = sizeof(int);
4018 if (put_user(len, optlen))
4019 return -EFAULT;
4020 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4021 return -EFAULT;
4022 return 0;
4023}
4024
4025/* Helper routine to branch off an association to a new socket. */
4026SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
4027 struct socket **sockp)
4028{
4029 struct sock *sk = asoc->base.sk;
4030 struct socket *sock;
4031 struct sctp_af *af;
4032 int err = 0;
4033
4034 /* An association cannot be branched off from an already peeled-off
4035 * socket, nor is this supported for tcp style sockets.
4036 */
4037 if (!sctp_style(sk, UDP))
4038 return -EINVAL;
4039
4040 /* Create a new socket. */
4041 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4042 if (err < 0)
4043 return err;
4044
4045 sctp_copy_sock(sock->sk, sk, asoc);
4046
4047 /* Make peeled-off sockets more like 1-1 accepted sockets.
4048 * Set the daddr and initialize id to something more random
4049 */
4050 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4051 af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4052
4053 /* Populate the fields of the newsk from the oldsk and migrate the
4054 * asoc to the newsk.
4055 */
4056 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4057
4058 *sockp = sock;
4059
4060 return err;
4061}
4062
4063static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4064{
4065 sctp_peeloff_arg_t peeloff;
4066 struct socket *newsock;
4067 int retval = 0;
4068 struct sctp_association *asoc;
4069
4070 if (len < sizeof(sctp_peeloff_arg_t))
4071 return -EINVAL;
4072 len = sizeof(sctp_peeloff_arg_t);
4073 if (copy_from_user(&peeloff, optval, len))
4074 return -EFAULT;
4075
4076 asoc = sctp_id2assoc(sk, peeloff.associd);
4077 if (!asoc) {
4078 retval = -EINVAL;
4079 goto out;
4080 }
4081
4082 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc);
4083
4084 retval = sctp_do_peeloff(asoc, &newsock);
4085 if (retval < 0)
4086 goto out;
4087
4088 /* Map the socket to an unused fd that can be returned to the user. */
4089 retval = sock_map_fd(newsock, 0);
4090 if (retval < 0) {
4091 sock_release(newsock);
4092 goto out;
4093 }
4094
4095 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
4096 __func__, sk, asoc, newsock->sk, retval);
4097
4098 /* Return the fd mapped to the new socket. */
4099 peeloff.sd = retval;
4100 if (put_user(len, optlen))
4101 return -EFAULT;
4102 if (copy_to_user(optval, &peeloff, len))
4103 retval = -EFAULT;
4104
4105out:
4106 return retval;
4107}
4108
4109/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4110 *
4111 * Applications can enable or disable heartbeats for any peer address of
4112 * an association, modify an address's heartbeat interval, force a
4113 * heartbeat to be sent immediately, and adjust the address's maximum
4114 * number of retransmissions sent before an address is considered
4115 * unreachable. The following structure is used to access and modify an
4116 * address's parameters:
4117 *
4118 * struct sctp_paddrparams {
4119 * sctp_assoc_t spp_assoc_id;
4120 * struct sockaddr_storage spp_address;
4121 * uint32_t spp_hbinterval;
4122 * uint16_t spp_pathmaxrxt;
4123 * uint32_t spp_pathmtu;
4124 * uint32_t spp_sackdelay;
4125 * uint32_t spp_flags;
4126 * };
4127 *
4128 * spp_assoc_id - (one-to-many style socket) This is filled in the
4129 * application, and identifies the association for
4130 * this query.
4131 * spp_address - This specifies which address is of interest.
4132 * spp_hbinterval - This contains the value of the heartbeat interval,
4133 * in milliseconds. If a value of zero
4134 * is present in this field then no changes are to
4135 * be made to this parameter.
4136 * spp_pathmaxrxt - This contains the maximum number of
4137 * retransmissions before this address shall be
4138 * considered unreachable. If a value of zero
4139 * is present in this field then no changes are to
4140 * be made to this parameter.
4141 * spp_pathmtu - When Path MTU discovery is disabled the value
4142 * specified here will be the "fixed" path mtu.
4143 * Note that if the spp_address field is empty
4144 * then all associations on this address will
4145 * have this fixed path mtu set upon them.
4146 *
4147 * spp_sackdelay - When delayed sack is enabled, this value specifies
4148 * the number of milliseconds that sacks will be delayed
4149 * for. This value will apply to all addresses of an
4150 * association if the spp_address field is empty. Note
4151 * also, that if delayed sack is enabled and this
4152 * value is set to 0, no change is made to the last
4153 * recorded delayed sack timer value.
4154 *
4155 * spp_flags - These flags are used to control various features
4156 * on an association. The flag field may contain
4157 * zero or more of the following options.
4158 *
4159 * SPP_HB_ENABLE - Enable heartbeats on the
4160 * specified address. Note that if the address
4161 * field is empty all addresses for the association
4162 * have heartbeats enabled upon them.
4163 *
4164 * SPP_HB_DISABLE - Disable heartbeats on the
4165 * speicifed address. Note that if the address
4166 * field is empty all addresses for the association
4167 * will have their heartbeats disabled. Note also
4168 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
4169 * mutually exclusive, only one of these two should
4170 * be specified. Enabling both fields will have
4171 * undetermined results.
4172 *
4173 * SPP_HB_DEMAND - Request a user initiated heartbeat
4174 * to be made immediately.
4175 *
4176 * SPP_PMTUD_ENABLE - This field will enable PMTU
4177 * discovery upon the specified address. Note that
4178 * if the address feild is empty then all addresses
4179 * on the association are effected.
4180 *
4181 * SPP_PMTUD_DISABLE - This field will disable PMTU
4182 * discovery upon the specified address. Note that
4183 * if the address feild is empty then all addresses
4184 * on the association are effected. Not also that
4185 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4186 * exclusive. Enabling both will have undetermined
4187 * results.
4188 *
4189 * SPP_SACKDELAY_ENABLE - Setting this flag turns
4190 * on delayed sack. The time specified in spp_sackdelay
4191 * is used to specify the sack delay for this address. Note
4192 * that if spp_address is empty then all addresses will
4193 * enable delayed sack and take on the sack delay
4194 * value specified in spp_sackdelay.
4195 * SPP_SACKDELAY_DISABLE - Setting this flag turns
4196 * off delayed sack. If the spp_address field is blank then
4197 * delayed sack is disabled for the entire association. Note
4198 * also that this field is mutually exclusive to
4199 * SPP_SACKDELAY_ENABLE, setting both will have undefined
4200 * results.
4201 */
4202static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4203 char __user *optval, int __user *optlen)
4204{
4205 struct sctp_paddrparams params;
4206 struct sctp_transport *trans = NULL;
4207 struct sctp_association *asoc = NULL;
4208 struct sctp_sock *sp = sctp_sk(sk);
4209
4210 if (len < sizeof(struct sctp_paddrparams))
4211 return -EINVAL;
4212 len = sizeof(struct sctp_paddrparams);
4213 if (copy_from_user(&params, optval, len))
4214 return -EFAULT;
4215
4216 /* If an address other than INADDR_ANY is specified, and
4217 * no transport is found, then the request is invalid.
4218 */
4219 if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
4220 trans = sctp_addr_id2transport(sk, &params.spp_address,
4221 params.spp_assoc_id);
4222 if (!trans) {
4223 SCTP_DEBUG_PRINTK("Failed no transport\n");
4224 return -EINVAL;
4225 }
4226 }
4227
4228 /* Get association, if assoc_id != 0 and the socket is a one
4229 * to many style socket, and an association was not found, then
4230 * the id was invalid.
4231 */
4232 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4233 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4234 SCTP_DEBUG_PRINTK("Failed no association\n");
4235 return -EINVAL;
4236 }
4237
4238 if (trans) {
4239 /* Fetch transport values. */
4240 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4241 params.spp_pathmtu = trans->pathmtu;
4242 params.spp_pathmaxrxt = trans->pathmaxrxt;
4243 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
4244
4245 /*draft-11 doesn't say what to return in spp_flags*/
4246 params.spp_flags = trans->param_flags;
4247 } else if (asoc) {
4248 /* Fetch association values. */
4249 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4250 params.spp_pathmtu = asoc->pathmtu;
4251 params.spp_pathmaxrxt = asoc->pathmaxrxt;
4252 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
4253
4254 /*draft-11 doesn't say what to return in spp_flags*/
4255 params.spp_flags = asoc->param_flags;
4256 } else {
4257 /* Fetch socket values. */
4258 params.spp_hbinterval = sp->hbinterval;
4259 params.spp_pathmtu = sp->pathmtu;
4260 params.spp_sackdelay = sp->sackdelay;
4261 params.spp_pathmaxrxt = sp->pathmaxrxt;
4262
4263 /*draft-11 doesn't say what to return in spp_flags*/
4264 params.spp_flags = sp->param_flags;
4265 }
4266
4267 if (copy_to_user(optval, &params, len))
4268 return -EFAULT;
4269
4270 if (put_user(len, optlen))
4271 return -EFAULT;
4272
4273 return 0;
4274}
4275
4276/*
4277 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
4278 *
4279 * This option will effect the way delayed acks are performed. This
4280 * option allows you to get or set the delayed ack time, in
4281 * milliseconds. It also allows changing the delayed ack frequency.
4282 * Changing the frequency to 1 disables the delayed sack algorithm. If
4283 * the assoc_id is 0, then this sets or gets the endpoints default
4284 * values. If the assoc_id field is non-zero, then the set or get
4285 * effects the specified association for the one to many model (the
4286 * assoc_id field is ignored by the one to one model). Note that if
4287 * sack_delay or sack_freq are 0 when setting this option, then the
4288 * current values will remain unchanged.
4289 *
4290 * struct sctp_sack_info {
4291 * sctp_assoc_t sack_assoc_id;
4292 * uint32_t sack_delay;
4293 * uint32_t sack_freq;
4294 * };
4295 *
4296 * sack_assoc_id - This parameter, indicates which association the user
4297 * is performing an action upon. Note that if this field's value is
4298 * zero then the endpoints default value is changed (effecting future
4299 * associations only).
4300 *
4301 * sack_delay - This parameter contains the number of milliseconds that
4302 * the user is requesting the delayed ACK timer be set to. Note that
4303 * this value is defined in the standard to be between 200 and 500
4304 * milliseconds.
4305 *
4306 * sack_freq - This parameter contains the number of packets that must
4307 * be received before a sack is sent without waiting for the delay
4308 * timer to expire. The default value for this is 2, setting this
4309 * value to 1 will disable the delayed sack algorithm.
4310 */
4311static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4312 char __user *optval,
4313 int __user *optlen)
4314{
4315 struct sctp_sack_info params;
4316 struct sctp_association *asoc = NULL;
4317 struct sctp_sock *sp = sctp_sk(sk);
4318
4319 if (len >= sizeof(struct sctp_sack_info)) {
4320 len = sizeof(struct sctp_sack_info);
4321
4322 if (copy_from_user(&params, optval, len))
4323 return -EFAULT;
4324 } else if (len == sizeof(struct sctp_assoc_value)) {
4325 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
4326 pr_warn("Use struct sctp_sack_info instead\n");
4327 if (copy_from_user(&params, optval, len))
4328 return -EFAULT;
4329 } else
4330 return - EINVAL;
4331
4332 /* Get association, if sack_assoc_id != 0 and the socket is a one
4333 * to many style socket, and an association was not found, then
4334 * the id was invalid.
4335 */
4336 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4337 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4338 return -EINVAL;
4339
4340 if (asoc) {
4341 /* Fetch association values. */
4342 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4343 params.sack_delay = jiffies_to_msecs(
4344 asoc->sackdelay);
4345 params.sack_freq = asoc->sackfreq;
4346
4347 } else {
4348 params.sack_delay = 0;
4349 params.sack_freq = 1;
4350 }
4351 } else {
4352 /* Fetch socket values. */
4353 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4354 params.sack_delay = sp->sackdelay;
4355 params.sack_freq = sp->sackfreq;
4356 } else {
4357 params.sack_delay = 0;
4358 params.sack_freq = 1;
4359 }
4360 }
4361
4362 if (copy_to_user(optval, &params, len))
4363 return -EFAULT;
4364
4365 if (put_user(len, optlen))
4366 return -EFAULT;
4367
4368 return 0;
4369}
4370
4371/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4372 *
4373 * Applications can specify protocol parameters for the default association
4374 * initialization. The option name argument to setsockopt() and getsockopt()
4375 * is SCTP_INITMSG.
4376 *
4377 * Setting initialization parameters is effective only on an unconnected
4378 * socket (for UDP-style sockets only future associations are effected
4379 * by the change). With TCP-style sockets, this option is inherited by
4380 * sockets derived from a listener socket.
4381 */
4382static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4383{
4384 if (len < sizeof(struct sctp_initmsg))
4385 return -EINVAL;
4386 len = sizeof(struct sctp_initmsg);
4387 if (put_user(len, optlen))
4388 return -EFAULT;
4389 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4390 return -EFAULT;
4391 return 0;
4392}
4393
4394
4395static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4396 char __user *optval, int __user *optlen)
4397{
4398 struct sctp_association *asoc;
4399 int cnt = 0;
4400 struct sctp_getaddrs getaddrs;
4401 struct sctp_transport *from;
4402 void __user *to;
4403 union sctp_addr temp;
4404 struct sctp_sock *sp = sctp_sk(sk);
4405 int addrlen;
4406 size_t space_left;
4407 int bytes_copied;
4408
4409 if (len < sizeof(struct sctp_getaddrs))
4410 return -EINVAL;
4411
4412 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4413 return -EFAULT;
4414
4415 /* For UDP-style sockets, id specifies the association to query. */
4416 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4417 if (!asoc)
4418 return -EINVAL;
4419
4420 to = optval + offsetof(struct sctp_getaddrs,addrs);
4421 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4422
4423 list_for_each_entry(from, &asoc->peer.transport_addr_list,
4424 transports) {
4425 memcpy(&temp, &from->ipaddr, sizeof(temp));
4426 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4427 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4428 if (space_left < addrlen)
4429 return -ENOMEM;
4430 if (copy_to_user(to, &temp, addrlen))
4431 return -EFAULT;
4432 to += addrlen;
4433 cnt++;
4434 space_left -= addrlen;
4435 }
4436
4437 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4438 return -EFAULT;
4439 bytes_copied = ((char __user *)to) - optval;
4440 if (put_user(bytes_copied, optlen))
4441 return -EFAULT;
4442
4443 return 0;
4444}
4445
4446static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4447 size_t space_left, int *bytes_copied)
4448{
4449 struct sctp_sockaddr_entry *addr;
4450 union sctp_addr temp;
4451 int cnt = 0;
4452 int addrlen;
4453
4454 rcu_read_lock();
4455 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4456 if (!addr->valid)
4457 continue;
4458
4459 if ((PF_INET == sk->sk_family) &&
4460 (AF_INET6 == addr->a.sa.sa_family))
4461 continue;
4462 if ((PF_INET6 == sk->sk_family) &&
4463 inet_v6_ipv6only(sk) &&
4464 (AF_INET == addr->a.sa.sa_family))
4465 continue;
4466 memcpy(&temp, &addr->a, sizeof(temp));
4467 if (!temp.v4.sin_port)
4468 temp.v4.sin_port = htons(port);
4469
4470 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4471 &temp);
4472 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4473 if (space_left < addrlen) {
4474 cnt = -ENOMEM;
4475 break;
4476 }
4477 memcpy(to, &temp, addrlen);
4478
4479 to += addrlen;
4480 cnt ++;
4481 space_left -= addrlen;
4482 *bytes_copied += addrlen;
4483 }
4484 rcu_read_unlock();
4485
4486 return cnt;
4487}
4488
4489
4490static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4491 char __user *optval, int __user *optlen)
4492{
4493 struct sctp_bind_addr *bp;
4494 struct sctp_association *asoc;
4495 int cnt = 0;
4496 struct sctp_getaddrs getaddrs;
4497 struct sctp_sockaddr_entry *addr;
4498 void __user *to;
4499 union sctp_addr temp;
4500 struct sctp_sock *sp = sctp_sk(sk);
4501 int addrlen;
4502 int err = 0;
4503 size_t space_left;
4504 int bytes_copied = 0;
4505 void *addrs;
4506 void *buf;
4507
4508 if (len < sizeof(struct sctp_getaddrs))
4509 return -EINVAL;
4510
4511 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4512 return -EFAULT;
4513
4514 /*
4515 * For UDP-style sockets, id specifies the association to query.
4516 * If the id field is set to the value '0' then the locally bound
4517 * addresses are returned without regard to any particular
4518 * association.
4519 */
4520 if (0 == getaddrs.assoc_id) {
4521 bp = &sctp_sk(sk)->ep->base.bind_addr;
4522 } else {
4523 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4524 if (!asoc)
4525 return -EINVAL;
4526 bp = &asoc->base.bind_addr;
4527 }
4528
4529 to = optval + offsetof(struct sctp_getaddrs,addrs);
4530 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4531
4532 addrs = kmalloc(space_left, GFP_KERNEL);
4533 if (!addrs)
4534 return -ENOMEM;
4535
4536 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4537 * addresses from the global local address list.
4538 */
4539 if (sctp_list_single_entry(&bp->address_list)) {
4540 addr = list_entry(bp->address_list.next,
4541 struct sctp_sockaddr_entry, list);
4542 if (sctp_is_any(sk, &addr->a)) {
4543 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4544 space_left, &bytes_copied);
4545 if (cnt < 0) {
4546 err = cnt;
4547 goto out;
4548 }
4549 goto copy_getaddrs;
4550 }
4551 }
4552
4553 buf = addrs;
4554 /* Protection on the bound address list is not needed since
4555 * in the socket option context we hold a socket lock and
4556 * thus the bound address list can't change.
4557 */
4558 list_for_each_entry(addr, &bp->address_list, list) {
4559 memcpy(&temp, &addr->a, sizeof(temp));
4560 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4561 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4562 if (space_left < addrlen) {
4563 err = -ENOMEM; /*fixme: right error?*/
4564 goto out;
4565 }
4566 memcpy(buf, &temp, addrlen);
4567 buf += addrlen;
4568 bytes_copied += addrlen;
4569 cnt ++;
4570 space_left -= addrlen;
4571 }
4572
4573copy_getaddrs:
4574 if (copy_to_user(to, addrs, bytes_copied)) {
4575 err = -EFAULT;
4576 goto out;
4577 }
4578 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4579 err = -EFAULT;
4580 goto out;
4581 }
4582 if (put_user(bytes_copied, optlen))
4583 err = -EFAULT;
4584out:
4585 kfree(addrs);
4586 return err;
4587}
4588
4589/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4590 *
4591 * Requests that the local SCTP stack use the enclosed peer address as
4592 * the association primary. The enclosed address must be one of the
4593 * association peer's addresses.
4594 */
4595static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4596 char __user *optval, int __user *optlen)
4597{
4598 struct sctp_prim prim;
4599 struct sctp_association *asoc;
4600 struct sctp_sock *sp = sctp_sk(sk);
4601
4602 if (len < sizeof(struct sctp_prim))
4603 return -EINVAL;
4604
4605 len = sizeof(struct sctp_prim);
4606
4607 if (copy_from_user(&prim, optval, len))
4608 return -EFAULT;
4609
4610 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4611 if (!asoc)
4612 return -EINVAL;
4613
4614 if (!asoc->peer.primary_path)
4615 return -ENOTCONN;
4616
4617 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4618 asoc->peer.primary_path->af_specific->sockaddr_len);
4619
4620 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4621 (union sctp_addr *)&prim.ssp_addr);
4622
4623 if (put_user(len, optlen))
4624 return -EFAULT;
4625 if (copy_to_user(optval, &prim, len))
4626 return -EFAULT;
4627
4628 return 0;
4629}
4630
4631/*
4632 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4633 *
4634 * Requests that the local endpoint set the specified Adaptation Layer
4635 * Indication parameter for all future INIT and INIT-ACK exchanges.
4636 */
4637static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4638 char __user *optval, int __user *optlen)
4639{
4640 struct sctp_setadaptation adaptation;
4641
4642 if (len < sizeof(struct sctp_setadaptation))
4643 return -EINVAL;
4644
4645 len = sizeof(struct sctp_setadaptation);
4646
4647 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4648
4649 if (put_user(len, optlen))
4650 return -EFAULT;
4651 if (copy_to_user(optval, &adaptation, len))
4652 return -EFAULT;
4653
4654 return 0;
4655}
4656
4657/*
4658 *
4659 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4660 *
4661 * Applications that wish to use the sendto() system call may wish to
4662 * specify a default set of parameters that would normally be supplied
4663 * through the inclusion of ancillary data. This socket option allows
4664 * such an application to set the default sctp_sndrcvinfo structure.
4665
4666
4667 * The application that wishes to use this socket option simply passes
4668 * in to this call the sctp_sndrcvinfo structure defined in Section
4669 * 5.2.2) The input parameters accepted by this call include
4670 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4671 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
4672 * to this call if the caller is using the UDP model.
4673 *
4674 * For getsockopt, it get the default sctp_sndrcvinfo structure.
4675 */
4676static int sctp_getsockopt_default_send_param(struct sock *sk,
4677 int len, char __user *optval,
4678 int __user *optlen)
4679{
4680 struct sctp_sndrcvinfo info;
4681 struct sctp_association *asoc;
4682 struct sctp_sock *sp = sctp_sk(sk);
4683
4684 if (len < sizeof(struct sctp_sndrcvinfo))
4685 return -EINVAL;
4686
4687 len = sizeof(struct sctp_sndrcvinfo);
4688
4689 if (copy_from_user(&info, optval, len))
4690 return -EFAULT;
4691
4692 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4693 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4694 return -EINVAL;
4695
4696 if (asoc) {
4697 info.sinfo_stream = asoc->default_stream;
4698 info.sinfo_flags = asoc->default_flags;
4699 info.sinfo_ppid = asoc->default_ppid;
4700 info.sinfo_context = asoc->default_context;
4701 info.sinfo_timetolive = asoc->default_timetolive;
4702 } else {
4703 info.sinfo_stream = sp->default_stream;
4704 info.sinfo_flags = sp->default_flags;
4705 info.sinfo_ppid = sp->default_ppid;
4706 info.sinfo_context = sp->default_context;
4707 info.sinfo_timetolive = sp->default_timetolive;
4708 }
4709
4710 if (put_user(len, optlen))
4711 return -EFAULT;
4712 if (copy_to_user(optval, &info, len))
4713 return -EFAULT;
4714
4715 return 0;
4716}
4717
4718/*
4719 *
4720 * 7.1.5 SCTP_NODELAY
4721 *
4722 * Turn on/off any Nagle-like algorithm. This means that packets are
4723 * generally sent as soon as possible and no unnecessary delays are
4724 * introduced, at the cost of more packets in the network. Expects an
4725 * integer boolean flag.
4726 */
4727
4728static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4729 char __user *optval, int __user *optlen)
4730{
4731 int val;
4732
4733 if (len < sizeof(int))
4734 return -EINVAL;
4735
4736 len = sizeof(int);
4737 val = (sctp_sk(sk)->nodelay == 1);
4738 if (put_user(len, optlen))
4739 return -EFAULT;
4740 if (copy_to_user(optval, &val, len))
4741 return -EFAULT;
4742 return 0;
4743}
4744
4745/*
4746 *
4747 * 7.1.1 SCTP_RTOINFO
4748 *
4749 * The protocol parameters used to initialize and bound retransmission
4750 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4751 * and modify these parameters.
4752 * All parameters are time values, in milliseconds. A value of 0, when
4753 * modifying the parameters, indicates that the current value should not
4754 * be changed.
4755 *
4756 */
4757static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4758 char __user *optval,
4759 int __user *optlen) {
4760 struct sctp_rtoinfo rtoinfo;
4761 struct sctp_association *asoc;
4762
4763 if (len < sizeof (struct sctp_rtoinfo))
4764 return -EINVAL;
4765
4766 len = sizeof(struct sctp_rtoinfo);
4767
4768 if (copy_from_user(&rtoinfo, optval, len))
4769 return -EFAULT;
4770
4771 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4772
4773 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4774 return -EINVAL;
4775
4776 /* Values corresponding to the specific association. */
4777 if (asoc) {
4778 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4779 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4780 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4781 } else {
4782 /* Values corresponding to the endpoint. */
4783 struct sctp_sock *sp = sctp_sk(sk);
4784
4785 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4786 rtoinfo.srto_max = sp->rtoinfo.srto_max;
4787 rtoinfo.srto_min = sp->rtoinfo.srto_min;
4788 }
4789
4790 if (put_user(len, optlen))
4791 return -EFAULT;
4792
4793 if (copy_to_user(optval, &rtoinfo, len))
4794 return -EFAULT;
4795
4796 return 0;
4797}
4798
4799/*
4800 *
4801 * 7.1.2 SCTP_ASSOCINFO
4802 *
4803 * This option is used to tune the maximum retransmission attempts
4804 * of the association.
4805 * Returns an error if the new association retransmission value is
4806 * greater than the sum of the retransmission value of the peer.
4807 * See [SCTP] for more information.
4808 *
4809 */
4810static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4811 char __user *optval,
4812 int __user *optlen)
4813{
4814
4815 struct sctp_assocparams assocparams;
4816 struct sctp_association *asoc;
4817 struct list_head *pos;
4818 int cnt = 0;
4819
4820 if (len < sizeof (struct sctp_assocparams))
4821 return -EINVAL;
4822
4823 len = sizeof(struct sctp_assocparams);
4824
4825 if (copy_from_user(&assocparams, optval, len))
4826 return -EFAULT;
4827
4828 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4829
4830 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4831 return -EINVAL;
4832
4833 /* Values correspoinding to the specific association */
4834 if (asoc) {
4835 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4836 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4837 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4838 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4839 * 1000) +
4840 (asoc->cookie_life.tv_usec
4841 / 1000);
4842
4843 list_for_each(pos, &asoc->peer.transport_addr_list) {
4844 cnt ++;
4845 }
4846
4847 assocparams.sasoc_number_peer_destinations = cnt;
4848 } else {
4849 /* Values corresponding to the endpoint */
4850 struct sctp_sock *sp = sctp_sk(sk);
4851
4852 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
4853 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
4854 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
4855 assocparams.sasoc_cookie_life =
4856 sp->assocparams.sasoc_cookie_life;
4857 assocparams.sasoc_number_peer_destinations =
4858 sp->assocparams.
4859 sasoc_number_peer_destinations;
4860 }
4861
4862 if (put_user(len, optlen))
4863 return -EFAULT;
4864
4865 if (copy_to_user(optval, &assocparams, len))
4866 return -EFAULT;
4867
4868 return 0;
4869}
4870
4871/*
4872 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
4873 *
4874 * This socket option is a boolean flag which turns on or off mapped V4
4875 * addresses. If this option is turned on and the socket is type
4876 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
4877 * If this option is turned off, then no mapping will be done of V4
4878 * addresses and a user will receive both PF_INET6 and PF_INET type
4879 * addresses on the socket.
4880 */
4881static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
4882 char __user *optval, int __user *optlen)
4883{
4884 int val;
4885 struct sctp_sock *sp = sctp_sk(sk);
4886
4887 if (len < sizeof(int))
4888 return -EINVAL;
4889
4890 len = sizeof(int);
4891 val = sp->v4mapped;
4892 if (put_user(len, optlen))
4893 return -EFAULT;
4894 if (copy_to_user(optval, &val, len))
4895 return -EFAULT;
4896
4897 return 0;
4898}
4899
4900/*
4901 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
4902 * (chapter and verse is quoted at sctp_setsockopt_context())
4903 */
4904static int sctp_getsockopt_context(struct sock *sk, int len,
4905 char __user *optval, int __user *optlen)
4906{
4907 struct sctp_assoc_value params;
4908 struct sctp_sock *sp;
4909 struct sctp_association *asoc;
4910
4911 if (len < sizeof(struct sctp_assoc_value))
4912 return -EINVAL;
4913
4914 len = sizeof(struct sctp_assoc_value);
4915
4916 if (copy_from_user(&params, optval, len))
4917 return -EFAULT;
4918
4919 sp = sctp_sk(sk);
4920
4921 if (params.assoc_id != 0) {
4922 asoc = sctp_id2assoc(sk, params.assoc_id);
4923 if (!asoc)
4924 return -EINVAL;
4925 params.assoc_value = asoc->default_rcv_context;
4926 } else {
4927 params.assoc_value = sp->default_rcv_context;
4928 }
4929
4930 if (put_user(len, optlen))
4931 return -EFAULT;
4932 if (copy_to_user(optval, &params, len))
4933 return -EFAULT;
4934
4935 return 0;
4936}
4937
4938/*
4939 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
4940 * This option will get or set the maximum size to put in any outgoing
4941 * SCTP DATA chunk. If a message is larger than this size it will be
4942 * fragmented by SCTP into the specified size. Note that the underlying
4943 * SCTP implementation may fragment into smaller sized chunks when the
4944 * PMTU of the underlying association is smaller than the value set by
4945 * the user. The default value for this option is '0' which indicates
4946 * the user is NOT limiting fragmentation and only the PMTU will effect
4947 * SCTP's choice of DATA chunk size. Note also that values set larger
4948 * than the maximum size of an IP datagram will effectively let SCTP
4949 * control fragmentation (i.e. the same as setting this option to 0).
4950 *
4951 * The following structure is used to access and modify this parameter:
4952 *
4953 * struct sctp_assoc_value {
4954 * sctp_assoc_t assoc_id;
4955 * uint32_t assoc_value;
4956 * };
4957 *
4958 * assoc_id: This parameter is ignored for one-to-one style sockets.
4959 * For one-to-many style sockets this parameter indicates which
4960 * association the user is performing an action upon. Note that if
4961 * this field's value is zero then the endpoints default value is
4962 * changed (effecting future associations only).
4963 * assoc_value: This parameter specifies the maximum size in bytes.
4964 */
4965static int sctp_getsockopt_maxseg(struct sock *sk, int len,
4966 char __user *optval, int __user *optlen)
4967{
4968 struct sctp_assoc_value params;
4969 struct sctp_association *asoc;
4970
4971 if (len == sizeof(int)) {
4972 pr_warn("Use of int in maxseg socket option deprecated\n");
4973 pr_warn("Use struct sctp_assoc_value instead\n");
4974 params.assoc_id = 0;
4975 } else if (len >= sizeof(struct sctp_assoc_value)) {
4976 len = sizeof(struct sctp_assoc_value);
4977 if (copy_from_user(&params, optval, sizeof(params)))
4978 return -EFAULT;
4979 } else
4980 return -EINVAL;
4981
4982 asoc = sctp_id2assoc(sk, params.assoc_id);
4983 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
4984 return -EINVAL;
4985
4986 if (asoc)
4987 params.assoc_value = asoc->frag_point;
4988 else
4989 params.assoc_value = sctp_sk(sk)->user_frag;
4990
4991 if (put_user(len, optlen))
4992 return -EFAULT;
4993 if (len == sizeof(int)) {
4994 if (copy_to_user(optval, &params.assoc_value, len))
4995 return -EFAULT;
4996 } else {
4997 if (copy_to_user(optval, &params, len))
4998 return -EFAULT;
4999 }
5000
5001 return 0;
5002}
5003
5004/*
5005 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5006 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5007 */
5008static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5009 char __user *optval, int __user *optlen)
5010{
5011 int val;
5012
5013 if (len < sizeof(int))
5014 return -EINVAL;
5015
5016 len = sizeof(int);
5017
5018 val = sctp_sk(sk)->frag_interleave;
5019 if (put_user(len, optlen))
5020 return -EFAULT;
5021 if (copy_to_user(optval, &val, len))
5022 return -EFAULT;
5023
5024 return 0;
5025}
5026
5027/*
5028 * 7.1.25. Set or Get the sctp partial delivery point
5029 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5030 */
5031static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5032 char __user *optval,
5033 int __user *optlen)
5034{
5035 u32 val;
5036
5037 if (len < sizeof(u32))
5038 return -EINVAL;
5039
5040 len = sizeof(u32);
5041
5042 val = sctp_sk(sk)->pd_point;
5043 if (put_user(len, optlen))
5044 return -EFAULT;
5045 if (copy_to_user(optval, &val, len))
5046 return -EFAULT;
5047
5048 return -ENOTSUPP;
5049}
5050
5051/*
5052 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5053 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5054 */
5055static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5056 char __user *optval,
5057 int __user *optlen)
5058{
5059 struct sctp_assoc_value params;
5060 struct sctp_sock *sp;
5061 struct sctp_association *asoc;
5062
5063 if (len == sizeof(int)) {
5064 pr_warn("Use of int in max_burst socket option deprecated\n");
5065 pr_warn("Use struct sctp_assoc_value instead\n");
5066 params.assoc_id = 0;
5067 } else if (len >= sizeof(struct sctp_assoc_value)) {
5068 len = sizeof(struct sctp_assoc_value);
5069 if (copy_from_user(&params, optval, len))
5070 return -EFAULT;
5071 } else
5072 return -EINVAL;
5073
5074 sp = sctp_sk(sk);
5075
5076 if (params.assoc_id != 0) {
5077 asoc = sctp_id2assoc(sk, params.assoc_id);
5078 if (!asoc)
5079 return -EINVAL;
5080 params.assoc_value = asoc->max_burst;
5081 } else
5082 params.assoc_value = sp->max_burst;
5083
5084 if (len == sizeof(int)) {
5085 if (copy_to_user(optval, &params.assoc_value, len))
5086 return -EFAULT;
5087 } else {
5088 if (copy_to_user(optval, &params, len))
5089 return -EFAULT;
5090 }
5091
5092 return 0;
5093
5094}
5095
5096static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5097 char __user *optval, int __user *optlen)
5098{
5099 struct sctp_hmacalgo __user *p = (void __user *)optval;
5100 struct sctp_hmac_algo_param *hmacs;
5101 __u16 data_len = 0;
5102 u32 num_idents;
5103
5104 if (!sctp_auth_enable)
5105 return -EACCES;
5106
5107 hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5108 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5109
5110 if (len < sizeof(struct sctp_hmacalgo) + data_len)
5111 return -EINVAL;
5112
5113 len = sizeof(struct sctp_hmacalgo) + data_len;
5114 num_idents = data_len / sizeof(u16);
5115
5116 if (put_user(len, optlen))
5117 return -EFAULT;
5118 if (put_user(num_idents, &p->shmac_num_idents))
5119 return -EFAULT;
5120 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5121 return -EFAULT;
5122 return 0;
5123}
5124
5125static int sctp_getsockopt_active_key(struct sock *sk, int len,
5126 char __user *optval, int __user *optlen)
5127{
5128 struct sctp_authkeyid val;
5129 struct sctp_association *asoc;
5130
5131 if (!sctp_auth_enable)
5132 return -EACCES;
5133
5134 if (len < sizeof(struct sctp_authkeyid))
5135 return -EINVAL;
5136 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5137 return -EFAULT;
5138
5139 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5140 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5141 return -EINVAL;
5142
5143 if (asoc)
5144 val.scact_keynumber = asoc->active_key_id;
5145 else
5146 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5147
5148 len = sizeof(struct sctp_authkeyid);
5149 if (put_user(len, optlen))
5150 return -EFAULT;
5151 if (copy_to_user(optval, &val, len))
5152 return -EFAULT;
5153
5154 return 0;
5155}
5156
5157static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5158 char __user *optval, int __user *optlen)
5159{
5160 struct sctp_authchunks __user *p = (void __user *)optval;
5161 struct sctp_authchunks val;
5162 struct sctp_association *asoc;
5163 struct sctp_chunks_param *ch;
5164 u32 num_chunks = 0;
5165 char __user *to;
5166
5167 if (!sctp_auth_enable)
5168 return -EACCES;
5169
5170 if (len < sizeof(struct sctp_authchunks))
5171 return -EINVAL;
5172
5173 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5174 return -EFAULT;
5175
5176 to = p->gauth_chunks;
5177 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5178 if (!asoc)
5179 return -EINVAL;
5180
5181 ch = asoc->peer.peer_chunks;
5182 if (!ch)
5183 goto num;
5184
5185 /* See if the user provided enough room for all the data */
5186 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5187 if (len < num_chunks)
5188 return -EINVAL;
5189
5190 if (copy_to_user(to, ch->chunks, num_chunks))
5191 return -EFAULT;
5192num:
5193 len = sizeof(struct sctp_authchunks) + num_chunks;
5194 if (put_user(len, optlen)) return -EFAULT;
5195 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5196 return -EFAULT;
5197 return 0;
5198}
5199
5200static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5201 char __user *optval, int __user *optlen)
5202{
5203 struct sctp_authchunks __user *p = (void __user *)optval;
5204 struct sctp_authchunks val;
5205 struct sctp_association *asoc;
5206 struct sctp_chunks_param *ch;
5207 u32 num_chunks = 0;
5208 char __user *to;
5209
5210 if (!sctp_auth_enable)
5211 return -EACCES;
5212
5213 if (len < sizeof(struct sctp_authchunks))
5214 return -EINVAL;
5215
5216 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5217 return -EFAULT;
5218
5219 to = p->gauth_chunks;
5220 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5221 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5222 return -EINVAL;
5223
5224 if (asoc)
5225 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5226 else
5227 ch = sctp_sk(sk)->ep->auth_chunk_list;
5228
5229 if (!ch)
5230 goto num;
5231
5232 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5233 if (len < sizeof(struct sctp_authchunks) + num_chunks)
5234 return -EINVAL;
5235
5236 if (copy_to_user(to, ch->chunks, num_chunks))
5237 return -EFAULT;
5238num:
5239 len = sizeof(struct sctp_authchunks) + num_chunks;
5240 if (put_user(len, optlen))
5241 return -EFAULT;
5242 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5243 return -EFAULT;
5244
5245 return 0;
5246}
5247
5248/*
5249 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5250 * This option gets the current number of associations that are attached
5251 * to a one-to-many style socket. The option value is an uint32_t.
5252 */
5253static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5254 char __user *optval, int __user *optlen)
5255{
5256 struct sctp_sock *sp = sctp_sk(sk);
5257 struct sctp_association *asoc;
5258 u32 val = 0;
5259
5260 if (sctp_style(sk, TCP))
5261 return -EOPNOTSUPP;
5262
5263 if (len < sizeof(u32))
5264 return -EINVAL;
5265
5266 len = sizeof(u32);
5267
5268 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5269 val++;
5270 }
5271
5272 if (put_user(len, optlen))
5273 return -EFAULT;
5274 if (copy_to_user(optval, &val, len))
5275 return -EFAULT;
5276
5277 return 0;
5278}
5279
5280SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5281 char __user *optval, int __user *optlen)
5282{
5283 int retval = 0;
5284 int len;
5285
5286 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5287 sk, optname);
5288
5289 /* I can hardly begin to describe how wrong this is. This is
5290 * so broken as to be worse than useless. The API draft
5291 * REALLY is NOT helpful here... I am not convinced that the
5292 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5293 * are at all well-founded.
5294 */
5295 if (level != SOL_SCTP) {
5296 struct sctp_af *af = sctp_sk(sk)->pf->af;
5297
5298 retval = af->getsockopt(sk, level, optname, optval, optlen);
5299 return retval;
5300 }
5301
5302 if (get_user(len, optlen))
5303 return -EFAULT;
5304
5305 sctp_lock_sock(sk);
5306
5307 switch (optname) {
5308 case SCTP_STATUS:
5309 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5310 break;
5311 case SCTP_DISABLE_FRAGMENTS:
5312 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5313 optlen);
5314 break;
5315 case SCTP_EVENTS:
5316 retval = sctp_getsockopt_events(sk, len, optval, optlen);
5317 break;
5318 case SCTP_AUTOCLOSE:
5319 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5320 break;
5321 case SCTP_SOCKOPT_PEELOFF:
5322 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5323 break;
5324 case SCTP_PEER_ADDR_PARAMS:
5325 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5326 optlen);
5327 break;
5328 case SCTP_DELAYED_ACK:
5329 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5330 optlen);
5331 break;
5332 case SCTP_INITMSG:
5333 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5334 break;
5335 case SCTP_GET_PEER_ADDRS:
5336 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5337 optlen);
5338 break;
5339 case SCTP_GET_LOCAL_ADDRS:
5340 retval = sctp_getsockopt_local_addrs(sk, len, optval,
5341 optlen);
5342 break;
5343 case SCTP_SOCKOPT_CONNECTX3:
5344 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5345 break;
5346 case SCTP_DEFAULT_SEND_PARAM:
5347 retval = sctp_getsockopt_default_send_param(sk, len,
5348 optval, optlen);
5349 break;
5350 case SCTP_PRIMARY_ADDR:
5351 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5352 break;
5353 case SCTP_NODELAY:
5354 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5355 break;
5356 case SCTP_RTOINFO:
5357 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5358 break;
5359 case SCTP_ASSOCINFO:
5360 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5361 break;
5362 case SCTP_I_WANT_MAPPED_V4_ADDR:
5363 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5364 break;
5365 case SCTP_MAXSEG:
5366 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5367 break;
5368 case SCTP_GET_PEER_ADDR_INFO:
5369 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5370 optlen);
5371 break;
5372 case SCTP_ADAPTATION_LAYER:
5373 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5374 optlen);
5375 break;
5376 case SCTP_CONTEXT:
5377 retval = sctp_getsockopt_context(sk, len, optval, optlen);
5378 break;
5379 case SCTP_FRAGMENT_INTERLEAVE:
5380 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5381 optlen);
5382 break;
5383 case SCTP_PARTIAL_DELIVERY_POINT:
5384 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5385 optlen);
5386 break;
5387 case SCTP_MAX_BURST:
5388 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5389 break;
5390 case SCTP_AUTH_KEY:
5391 case SCTP_AUTH_CHUNK:
5392 case SCTP_AUTH_DELETE_KEY:
5393 retval = -EOPNOTSUPP;
5394 break;
5395 case SCTP_HMAC_IDENT:
5396 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5397 break;
5398 case SCTP_AUTH_ACTIVE_KEY:
5399 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5400 break;
5401 case SCTP_PEER_AUTH_CHUNKS:
5402 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5403 optlen);
5404 break;
5405 case SCTP_LOCAL_AUTH_CHUNKS:
5406 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5407 optlen);
5408 break;
5409 case SCTP_GET_ASSOC_NUMBER:
5410 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5411 break;
5412 default:
5413 retval = -ENOPROTOOPT;
5414 break;
5415 }
5416
5417 sctp_release_sock(sk);
5418 return retval;
5419}
5420
5421static void sctp_hash(struct sock *sk)
5422{
5423 /* STUB */
5424}
5425
5426static void sctp_unhash(struct sock *sk)
5427{
5428 /* STUB */
5429}
5430
5431/* Check if port is acceptable. Possibly find first available port.
5432 *
5433 * The port hash table (contained in the 'global' SCTP protocol storage
5434 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5435 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5436 * list (the list number is the port number hashed out, so as you
5437 * would expect from a hash function, all the ports in a given list have
5438 * such a number that hashes out to the same list number; you were
5439 * expecting that, right?); so each list has a set of ports, with a
5440 * link to the socket (struct sock) that uses it, the port number and
5441 * a fastreuse flag (FIXME: NPI ipg).
5442 */
5443static struct sctp_bind_bucket *sctp_bucket_create(
5444 struct sctp_bind_hashbucket *head, unsigned short snum);
5445
5446static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5447{
5448 struct sctp_bind_hashbucket *head; /* hash list */
5449 struct sctp_bind_bucket *pp; /* hash list port iterator */
5450 struct hlist_node *node;
5451 unsigned short snum;
5452 int ret;
5453
5454 snum = ntohs(addr->v4.sin_port);
5455
5456 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5457 sctp_local_bh_disable();
5458
5459 if (snum == 0) {
5460 /* Search for an available port. */
5461 int low, high, remaining, index;
5462 unsigned int rover;
5463
5464 inet_get_local_port_range(&low, &high);
5465 remaining = (high - low) + 1;
5466 rover = net_random() % remaining + low;
5467
5468 do {
5469 rover++;
5470 if ((rover < low) || (rover > high))
5471 rover = low;
5472 if (inet_is_reserved_local_port(rover))
5473 continue;
5474 index = sctp_phashfn(rover);
5475 head = &sctp_port_hashtable[index];
5476 sctp_spin_lock(&head->lock);
5477 sctp_for_each_hentry(pp, node, &head->chain)
5478 if (pp->port == rover)
5479 goto next;
5480 break;
5481 next:
5482 sctp_spin_unlock(&head->lock);
5483 } while (--remaining > 0);
5484
5485 /* Exhausted local port range during search? */
5486 ret = 1;
5487 if (remaining <= 0)
5488 goto fail;
5489
5490 /* OK, here is the one we will use. HEAD (the port
5491 * hash table list entry) is non-NULL and we hold it's
5492 * mutex.
5493 */
5494 snum = rover;
5495 } else {
5496 /* We are given an specific port number; we verify
5497 * that it is not being used. If it is used, we will
5498 * exahust the search in the hash list corresponding
5499 * to the port number (snum) - we detect that with the
5500 * port iterator, pp being NULL.
5501 */
5502 head = &sctp_port_hashtable[sctp_phashfn(snum)];
5503 sctp_spin_lock(&head->lock);
5504 sctp_for_each_hentry(pp, node, &head->chain) {
5505 if (pp->port == snum)
5506 goto pp_found;
5507 }
5508 }
5509 pp = NULL;
5510 goto pp_not_found;
5511pp_found:
5512 if (!hlist_empty(&pp->owner)) {
5513 /* We had a port hash table hit - there is an
5514 * available port (pp != NULL) and it is being
5515 * used by other socket (pp->owner not empty); that other
5516 * socket is going to be sk2.
5517 */
5518 int reuse = sk->sk_reuse;
5519 struct sock *sk2;
5520
5521 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5522 if (pp->fastreuse && sk->sk_reuse &&
5523 sk->sk_state != SCTP_SS_LISTENING)
5524 goto success;
5525
5526 /* Run through the list of sockets bound to the port
5527 * (pp->port) [via the pointers bind_next and
5528 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5529 * we get the endpoint they describe and run through
5530 * the endpoint's list of IP (v4 or v6) addresses,
5531 * comparing each of the addresses with the address of
5532 * the socket sk. If we find a match, then that means
5533 * that this port/socket (sk) combination are already
5534 * in an endpoint.
5535 */
5536 sk_for_each_bound(sk2, node, &pp->owner) {
5537 struct sctp_endpoint *ep2;
5538 ep2 = sctp_sk(sk2)->ep;
5539
5540 if (sk == sk2 ||
5541 (reuse && sk2->sk_reuse &&
5542 sk2->sk_state != SCTP_SS_LISTENING))
5543 continue;
5544
5545 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5546 sctp_sk(sk2), sctp_sk(sk))) {
5547 ret = (long)sk2;
5548 goto fail_unlock;
5549 }
5550 }
5551 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5552 }
5553pp_not_found:
5554 /* If there was a hash table miss, create a new port. */
5555 ret = 1;
5556 if (!pp && !(pp = sctp_bucket_create(head, snum)))
5557 goto fail_unlock;
5558
5559 /* In either case (hit or miss), make sure fastreuse is 1 only
5560 * if sk->sk_reuse is too (that is, if the caller requested
5561 * SO_REUSEADDR on this socket -sk-).
5562 */
5563 if (hlist_empty(&pp->owner)) {
5564 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5565 pp->fastreuse = 1;
5566 else
5567 pp->fastreuse = 0;
5568 } else if (pp->fastreuse &&
5569 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5570 pp->fastreuse = 0;
5571
5572 /* We are set, so fill up all the data in the hash table
5573 * entry, tie the socket list information with the rest of the
5574 * sockets FIXME: Blurry, NPI (ipg).
5575 */
5576success:
5577 if (!sctp_sk(sk)->bind_hash) {
5578 inet_sk(sk)->inet_num = snum;
5579 sk_add_bind_node(sk, &pp->owner);
5580 sctp_sk(sk)->bind_hash = pp;
5581 }
5582 ret = 0;
5583
5584fail_unlock:
5585 sctp_spin_unlock(&head->lock);
5586
5587fail:
5588 sctp_local_bh_enable();
5589 return ret;
5590}
5591
5592/* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
5593 * port is requested.
5594 */
5595static int sctp_get_port(struct sock *sk, unsigned short snum)
5596{
5597 long ret;
5598 union sctp_addr addr;
5599 struct sctp_af *af = sctp_sk(sk)->pf->af;
5600
5601 /* Set up a dummy address struct from the sk. */
5602 af->from_sk(&addr, sk);
5603 addr.v4.sin_port = htons(snum);
5604
5605 /* Note: sk->sk_num gets filled in if ephemeral port request. */
5606 ret = sctp_get_port_local(sk, &addr);
5607
5608 return ret ? 1 : 0;
5609}
5610
5611/*
5612 * Move a socket to LISTENING state.
5613 */
5614SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog)
5615{
5616 struct sctp_sock *sp = sctp_sk(sk);
5617 struct sctp_endpoint *ep = sp->ep;
5618 struct crypto_hash *tfm = NULL;
5619
5620 /* Allocate HMAC for generating cookie. */
5621 if (!sctp_sk(sk)->hmac && sctp_hmac_alg) {
5622 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5623 if (IS_ERR(tfm)) {
5624 if (net_ratelimit()) {
5625 pr_info("failed to load transform for %s: %ld\n",
5626 sctp_hmac_alg, PTR_ERR(tfm));
5627 }
5628 return -ENOSYS;
5629 }
5630 sctp_sk(sk)->hmac = tfm;
5631 }
5632
5633 /*
5634 * If a bind() or sctp_bindx() is not called prior to a listen()
5635 * call that allows new associations to be accepted, the system
5636 * picks an ephemeral port and will choose an address set equivalent
5637 * to binding with a wildcard address.
5638 *
5639 * This is not currently spelled out in the SCTP sockets
5640 * extensions draft, but follows the practice as seen in TCP
5641 * sockets.
5642 *
5643 */
5644 sk->sk_state = SCTP_SS_LISTENING;
5645 if (!ep->base.bind_addr.port) {
5646 if (sctp_autobind(sk))
5647 return -EAGAIN;
5648 } else {
5649 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
5650 sk->sk_state = SCTP_SS_CLOSED;
5651 return -EADDRINUSE;
5652 }
5653 }
5654
5655 sk->sk_max_ack_backlog = backlog;
5656 sctp_hash_endpoint(ep);
5657 return 0;
5658}
5659
5660/*
5661 * 4.1.3 / 5.1.3 listen()
5662 *
5663 * By default, new associations are not accepted for UDP style sockets.
5664 * An application uses listen() to mark a socket as being able to
5665 * accept new associations.
5666 *
5667 * On TCP style sockets, applications use listen() to ready the SCTP
5668 * endpoint for accepting inbound associations.
5669 *
5670 * On both types of endpoints a backlog of '0' disables listening.
5671 *
5672 * Move a socket to LISTENING state.
5673 */
5674int sctp_inet_listen(struct socket *sock, int backlog)
5675{
5676 struct sock *sk = sock->sk;
5677 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5678 int err = -EINVAL;
5679
5680 if (unlikely(backlog < 0))
5681 return err;
5682
5683 sctp_lock_sock(sk);
5684
5685 /* Peeled-off sockets are not allowed to listen(). */
5686 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
5687 goto out;
5688
5689 if (sock->state != SS_UNCONNECTED)
5690 goto out;
5691
5692 /* If backlog is zero, disable listening. */
5693 if (!backlog) {
5694 if (sctp_sstate(sk, CLOSED))
5695 goto out;
5696
5697 err = 0;
5698 sctp_unhash_endpoint(ep);
5699 sk->sk_state = SCTP_SS_CLOSED;
5700 if (sk->sk_reuse)
5701 sctp_sk(sk)->bind_hash->fastreuse = 1;
5702 goto out;
5703 }
5704
5705 /* If we are already listening, just update the backlog */
5706 if (sctp_sstate(sk, LISTENING))
5707 sk->sk_max_ack_backlog = backlog;
5708 else {
5709 err = sctp_listen_start(sk, backlog);
5710 if (err)
5711 goto out;
5712 }
5713
5714 err = 0;
5715out:
5716 sctp_release_sock(sk);
5717 return err;
5718}
5719
5720/*
5721 * This function is done by modeling the current datagram_poll() and the
5722 * tcp_poll(). Note that, based on these implementations, we don't
5723 * lock the socket in this function, even though it seems that,
5724 * ideally, locking or some other mechanisms can be used to ensure
5725 * the integrity of the counters (sndbuf and wmem_alloc) used
5726 * in this place. We assume that we don't need locks either until proven
5727 * otherwise.
5728 *
5729 * Another thing to note is that we include the Async I/O support
5730 * here, again, by modeling the current TCP/UDP code. We don't have
5731 * a good way to test with it yet.
5732 */
5733unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5734{
5735 struct sock *sk = sock->sk;
5736 struct sctp_sock *sp = sctp_sk(sk);
5737 unsigned int mask;
5738
5739 poll_wait(file, sk_sleep(sk), wait);
5740
5741 /* A TCP-style listening socket becomes readable when the accept queue
5742 * is not empty.
5743 */
5744 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5745 return (!list_empty(&sp->ep->asocs)) ?
5746 (POLLIN | POLLRDNORM) : 0;
5747
5748 mask = 0;
5749
5750 /* Is there any exceptional events? */
5751 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5752 mask |= POLLERR;
5753 if (sk->sk_shutdown & RCV_SHUTDOWN)
5754 mask |= POLLRDHUP | POLLIN | POLLRDNORM;
5755 if (sk->sk_shutdown == SHUTDOWN_MASK)
5756 mask |= POLLHUP;
5757
5758 /* Is it readable? Reconsider this code with TCP-style support. */
5759 if (!skb_queue_empty(&sk->sk_receive_queue))
5760 mask |= POLLIN | POLLRDNORM;
5761
5762 /* The association is either gone or not ready. */
5763 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5764 return mask;
5765
5766 /* Is it writable? */
5767 if (sctp_writeable(sk)) {
5768 mask |= POLLOUT | POLLWRNORM;
5769 } else {
5770 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5771 /*
5772 * Since the socket is not locked, the buffer
5773 * might be made available after the writeable check and
5774 * before the bit is set. This could cause a lost I/O
5775 * signal. tcp_poll() has a race breaker for this race
5776 * condition. Based on their implementation, we put
5777 * in the following code to cover it as well.
5778 */
5779 if (sctp_writeable(sk))
5780 mask |= POLLOUT | POLLWRNORM;
5781 }
5782 return mask;
5783}
5784
5785/********************************************************************
5786 * 2nd Level Abstractions
5787 ********************************************************************/
5788
5789static struct sctp_bind_bucket *sctp_bucket_create(
5790 struct sctp_bind_hashbucket *head, unsigned short snum)
5791{
5792 struct sctp_bind_bucket *pp;
5793
5794 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
5795 if (pp) {
5796 SCTP_DBG_OBJCNT_INC(bind_bucket);
5797 pp->port = snum;
5798 pp->fastreuse = 0;
5799 INIT_HLIST_HEAD(&pp->owner);
5800 hlist_add_head(&pp->node, &head->chain);
5801 }
5802 return pp;
5803}
5804
5805/* Caller must hold hashbucket lock for this tb with local BH disabled */
5806static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
5807{
5808 if (pp && hlist_empty(&pp->owner)) {
5809 __hlist_del(&pp->node);
5810 kmem_cache_free(sctp_bucket_cachep, pp);
5811 SCTP_DBG_OBJCNT_DEC(bind_bucket);
5812 }
5813}
5814
5815/* Release this socket's reference to a local port. */
5816static inline void __sctp_put_port(struct sock *sk)
5817{
5818 struct sctp_bind_hashbucket *head =
5819 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->inet_num)];
5820 struct sctp_bind_bucket *pp;
5821
5822 sctp_spin_lock(&head->lock);
5823 pp = sctp_sk(sk)->bind_hash;
5824 __sk_del_bind_node(sk);
5825 sctp_sk(sk)->bind_hash = NULL;
5826 inet_sk(sk)->inet_num = 0;
5827 sctp_bucket_destroy(pp);
5828 sctp_spin_unlock(&head->lock);
5829}
5830
5831void sctp_put_port(struct sock *sk)
5832{
5833 sctp_local_bh_disable();
5834 __sctp_put_port(sk);
5835 sctp_local_bh_enable();
5836}
5837
5838/*
5839 * The system picks an ephemeral port and choose an address set equivalent
5840 * to binding with a wildcard address.
5841 * One of those addresses will be the primary address for the association.
5842 * This automatically enables the multihoming capability of SCTP.
5843 */
5844static int sctp_autobind(struct sock *sk)
5845{
5846 union sctp_addr autoaddr;
5847 struct sctp_af *af;
5848 __be16 port;
5849
5850 /* Initialize a local sockaddr structure to INADDR_ANY. */
5851 af = sctp_sk(sk)->pf->af;
5852
5853 port = htons(inet_sk(sk)->inet_num);
5854 af->inaddr_any(&autoaddr, port);
5855
5856 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
5857}
5858
5859/* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
5860 *
5861 * From RFC 2292
5862 * 4.2 The cmsghdr Structure *
5863 *
5864 * When ancillary data is sent or received, any number of ancillary data
5865 * objects can be specified by the msg_control and msg_controllen members of
5866 * the msghdr structure, because each object is preceded by
5867 * a cmsghdr structure defining the object's length (the cmsg_len member).
5868 * Historically Berkeley-derived implementations have passed only one object
5869 * at a time, but this API allows multiple objects to be
5870 * passed in a single call to sendmsg() or recvmsg(). The following example
5871 * shows two ancillary data objects in a control buffer.
5872 *
5873 * |<--------------------------- msg_controllen -------------------------->|
5874 * | |
5875 *
5876 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
5877 *
5878 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
5879 * | | |
5880 *
5881 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
5882 *
5883 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
5884 * | | | | |
5885 *
5886 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5887 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
5888 *
5889 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
5890 *
5891 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5892 * ^
5893 * |
5894 *
5895 * msg_control
5896 * points here
5897 */
5898SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
5899 sctp_cmsgs_t *cmsgs)
5900{
5901 struct cmsghdr *cmsg;
5902 struct msghdr *my_msg = (struct msghdr *)msg;
5903
5904 for (cmsg = CMSG_FIRSTHDR(msg);
5905 cmsg != NULL;
5906 cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
5907 if (!CMSG_OK(my_msg, cmsg))
5908 return -EINVAL;
5909
5910 /* Should we parse this header or ignore? */
5911 if (cmsg->cmsg_level != IPPROTO_SCTP)
5912 continue;
5913
5914 /* Strictly check lengths following example in SCM code. */
5915 switch (cmsg->cmsg_type) {
5916 case SCTP_INIT:
5917 /* SCTP Socket API Extension
5918 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
5919 *
5920 * This cmsghdr structure provides information for
5921 * initializing new SCTP associations with sendmsg().
5922 * The SCTP_INITMSG socket option uses this same data
5923 * structure. This structure is not used for
5924 * recvmsg().
5925 *
5926 * cmsg_level cmsg_type cmsg_data[]
5927 * ------------ ------------ ----------------------
5928 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
5929 */
5930 if (cmsg->cmsg_len !=
5931 CMSG_LEN(sizeof(struct sctp_initmsg)))
5932 return -EINVAL;
5933 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
5934 break;
5935
5936 case SCTP_SNDRCV:
5937 /* SCTP Socket API Extension
5938 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
5939 *
5940 * This cmsghdr structure specifies SCTP options for
5941 * sendmsg() and describes SCTP header information
5942 * about a received message through recvmsg().
5943 *
5944 * cmsg_level cmsg_type cmsg_data[]
5945 * ------------ ------------ ----------------------
5946 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
5947 */
5948 if (cmsg->cmsg_len !=
5949 CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
5950 return -EINVAL;
5951
5952 cmsgs->info =
5953 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
5954
5955 /* Minimally, validate the sinfo_flags. */
5956 if (cmsgs->info->sinfo_flags &
5957 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
5958 SCTP_ABORT | SCTP_EOF))
5959 return -EINVAL;
5960 break;
5961
5962 default:
5963 return -EINVAL;
5964 }
5965 }
5966 return 0;
5967}
5968
5969/*
5970 * Wait for a packet..
5971 * Note: This function is the same function as in core/datagram.c
5972 * with a few modifications to make lksctp work.
5973 */
5974static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
5975{
5976 int error;
5977 DEFINE_WAIT(wait);
5978
5979 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
5980
5981 /* Socket errors? */
5982 error = sock_error(sk);
5983 if (error)
5984 goto out;
5985
5986 if (!skb_queue_empty(&sk->sk_receive_queue))
5987 goto ready;
5988
5989 /* Socket shut down? */
5990 if (sk->sk_shutdown & RCV_SHUTDOWN)
5991 goto out;
5992
5993 /* Sequenced packets can come disconnected. If so we report the
5994 * problem.
5995 */
5996 error = -ENOTCONN;
5997
5998 /* Is there a good reason to think that we may receive some data? */
5999 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6000 goto out;
6001
6002 /* Handle signals. */
6003 if (signal_pending(current))
6004 goto interrupted;
6005
6006 /* Let another process have a go. Since we are going to sleep
6007 * anyway. Note: This may cause odd behaviors if the message
6008 * does not fit in the user's buffer, but this seems to be the
6009 * only way to honor MSG_DONTWAIT realistically.
6010 */
6011 sctp_release_sock(sk);
6012 *timeo_p = schedule_timeout(*timeo_p);
6013 sctp_lock_sock(sk);
6014
6015ready:
6016 finish_wait(sk_sleep(sk), &wait);
6017 return 0;
6018
6019interrupted:
6020 error = sock_intr_errno(*timeo_p);
6021
6022out:
6023 finish_wait(sk_sleep(sk), &wait);
6024 *err = error;
6025 return error;
6026}
6027
6028/* Receive a datagram.
6029 * Note: This is pretty much the same routine as in core/datagram.c
6030 * with a few changes to make lksctp work.
6031 */
6032static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6033 int noblock, int *err)
6034{
6035 int error;
6036 struct sk_buff *skb;
6037 long timeo;
6038
6039 timeo = sock_rcvtimeo(sk, noblock);
6040
6041 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6042 timeo, MAX_SCHEDULE_TIMEOUT);
6043
6044 do {
6045 /* Again only user level code calls this function,
6046 * so nothing interrupt level
6047 * will suddenly eat the receive_queue.
6048 *
6049 * Look at current nfs client by the way...
6050 * However, this function was corrent in any case. 8)
6051 */
6052 if (flags & MSG_PEEK) {
6053 spin_lock_bh(&sk->sk_receive_queue.lock);
6054 skb = skb_peek(&sk->sk_receive_queue);
6055 if (skb)
6056 atomic_inc(&skb->users);
6057 spin_unlock_bh(&sk->sk_receive_queue.lock);
6058 } else {
6059 skb = skb_dequeue(&sk->sk_receive_queue);
6060 }
6061
6062 if (skb)
6063 return skb;
6064
6065 /* Caller is allowed not to check sk->sk_err before calling. */
6066 error = sock_error(sk);
6067 if (error)
6068 goto no_packet;
6069
6070 if (sk->sk_shutdown & RCV_SHUTDOWN)
6071 break;
6072
6073 /* User doesn't want to wait. */
6074 error = -EAGAIN;
6075 if (!timeo)
6076 goto no_packet;
6077 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6078
6079 return NULL;
6080
6081no_packet:
6082 *err = error;
6083 return NULL;
6084}
6085
6086/* If sndbuf has changed, wake up per association sndbuf waiters. */
6087static void __sctp_write_space(struct sctp_association *asoc)
6088{
6089 struct sock *sk = asoc->base.sk;
6090 struct socket *sock = sk->sk_socket;
6091
6092 if ((sctp_wspace(asoc) > 0) && sock) {
6093 if (waitqueue_active(&asoc->wait))
6094 wake_up_interruptible(&asoc->wait);
6095
6096 if (sctp_writeable(sk)) {
6097 if (sk_sleep(sk) && waitqueue_active(sk_sleep(sk)))
6098 wake_up_interruptible(sk_sleep(sk));
6099
6100 /* Note that we try to include the Async I/O support
6101 * here by modeling from the current TCP/UDP code.
6102 * We have not tested with it yet.
6103 */
6104 if (sock->wq->fasync_list &&
6105 !(sk->sk_shutdown & SEND_SHUTDOWN))
6106 sock_wake_async(sock,
6107 SOCK_WAKE_SPACE, POLL_OUT);
6108 }
6109 }
6110}
6111
6112/* Do accounting for the sndbuf space.
6113 * Decrement the used sndbuf space of the corresponding association by the
6114 * data size which was just transmitted(freed).
6115 */
6116static void sctp_wfree(struct sk_buff *skb)
6117{
6118 struct sctp_association *asoc;
6119 struct sctp_chunk *chunk;
6120 struct sock *sk;
6121
6122 /* Get the saved chunk pointer. */
6123 chunk = *((struct sctp_chunk **)(skb->cb));
6124 asoc = chunk->asoc;
6125 sk = asoc->base.sk;
6126 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6127 sizeof(struct sk_buff) +
6128 sizeof(struct sctp_chunk);
6129
6130 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6131
6132 /*
6133 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6134 */
6135 sk->sk_wmem_queued -= skb->truesize;
6136 sk_mem_uncharge(sk, skb->truesize);
6137
6138 sock_wfree(skb);
6139 __sctp_write_space(asoc);
6140
6141 sctp_association_put(asoc);
6142}
6143
6144/* Do accounting for the receive space on the socket.
6145 * Accounting for the association is done in ulpevent.c
6146 * We set this as a destructor for the cloned data skbs so that
6147 * accounting is done at the correct time.
6148 */
6149void sctp_sock_rfree(struct sk_buff *skb)
6150{
6151 struct sock *sk = skb->sk;
6152 struct sctp_ulpevent *event = sctp_skb2event(skb);
6153
6154 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6155
6156 /*
6157 * Mimic the behavior of sock_rfree
6158 */
6159 sk_mem_uncharge(sk, event->rmem_len);
6160}
6161
6162
6163/* Helper function to wait for space in the sndbuf. */
6164static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6165 size_t msg_len)
6166{
6167 struct sock *sk = asoc->base.sk;
6168 int err = 0;
6169 long current_timeo = *timeo_p;
6170 DEFINE_WAIT(wait);
6171
6172 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6173 asoc, (long)(*timeo_p), msg_len);
6174
6175 /* Increment the association's refcnt. */
6176 sctp_association_hold(asoc);
6177
6178 /* Wait on the association specific sndbuf space. */
6179 for (;;) {
6180 prepare_to_wait_exclusive(&asoc->wait, &wait,
6181 TASK_INTERRUPTIBLE);
6182 if (!*timeo_p)
6183 goto do_nonblock;
6184 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6185 asoc->base.dead)
6186 goto do_error;
6187 if (signal_pending(current))
6188 goto do_interrupted;
6189 if (msg_len <= sctp_wspace(asoc))
6190 break;
6191
6192 /* Let another process have a go. Since we are going
6193 * to sleep anyway.
6194 */
6195 sctp_release_sock(sk);
6196 current_timeo = schedule_timeout(current_timeo);
6197 BUG_ON(sk != asoc->base.sk);
6198 sctp_lock_sock(sk);
6199
6200 *timeo_p = current_timeo;
6201 }
6202
6203out:
6204 finish_wait(&asoc->wait, &wait);
6205
6206 /* Release the association's refcnt. */
6207 sctp_association_put(asoc);
6208
6209 return err;
6210
6211do_error:
6212 err = -EPIPE;
6213 goto out;
6214
6215do_interrupted:
6216 err = sock_intr_errno(*timeo_p);
6217 goto out;
6218
6219do_nonblock:
6220 err = -EAGAIN;
6221 goto out;
6222}
6223
6224void sctp_data_ready(struct sock *sk, int len)
6225{
6226 struct socket_wq *wq;
6227
6228 rcu_read_lock();
6229 wq = rcu_dereference(sk->sk_wq);
6230 if (wq_has_sleeper(wq))
6231 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6232 POLLRDNORM | POLLRDBAND);
6233 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6234 rcu_read_unlock();
6235}
6236
6237/* If socket sndbuf has changed, wake up all per association waiters. */
6238void sctp_write_space(struct sock *sk)
6239{
6240 struct sctp_association *asoc;
6241
6242 /* Wake up the tasks in each wait queue. */
6243 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6244 __sctp_write_space(asoc);
6245 }
6246}
6247
6248/* Is there any sndbuf space available on the socket?
6249 *
6250 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6251 * associations on the same socket. For a UDP-style socket with
6252 * multiple associations, it is possible for it to be "unwriteable"
6253 * prematurely. I assume that this is acceptable because
6254 * a premature "unwriteable" is better than an accidental "writeable" which
6255 * would cause an unwanted block under certain circumstances. For the 1-1
6256 * UDP-style sockets or TCP-style sockets, this code should work.
6257 * - Daisy
6258 */
6259static int sctp_writeable(struct sock *sk)
6260{
6261 int amt = 0;
6262
6263 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6264 if (amt < 0)
6265 amt = 0;
6266 return amt;
6267}
6268
6269/* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6270 * returns immediately with EINPROGRESS.
6271 */
6272static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6273{
6274 struct sock *sk = asoc->base.sk;
6275 int err = 0;
6276 long current_timeo = *timeo_p;
6277 DEFINE_WAIT(wait);
6278
6279 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6280 (long)(*timeo_p));
6281
6282 /* Increment the association's refcnt. */
6283 sctp_association_hold(asoc);
6284
6285 for (;;) {
6286 prepare_to_wait_exclusive(&asoc->wait, &wait,
6287 TASK_INTERRUPTIBLE);
6288 if (!*timeo_p)
6289 goto do_nonblock;
6290 if (sk->sk_shutdown & RCV_SHUTDOWN)
6291 break;
6292 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6293 asoc->base.dead)
6294 goto do_error;
6295 if (signal_pending(current))
6296 goto do_interrupted;
6297
6298 if (sctp_state(asoc, ESTABLISHED))
6299 break;
6300
6301 /* Let another process have a go. Since we are going
6302 * to sleep anyway.
6303 */
6304 sctp_release_sock(sk);
6305 current_timeo = schedule_timeout(current_timeo);
6306 sctp_lock_sock(sk);
6307
6308 *timeo_p = current_timeo;
6309 }
6310
6311out:
6312 finish_wait(&asoc->wait, &wait);
6313
6314 /* Release the association's refcnt. */
6315 sctp_association_put(asoc);
6316
6317 return err;
6318
6319do_error:
6320 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6321 err = -ETIMEDOUT;
6322 else
6323 err = -ECONNREFUSED;
6324 goto out;
6325
6326do_interrupted:
6327 err = sock_intr_errno(*timeo_p);
6328 goto out;
6329
6330do_nonblock:
6331 err = -EINPROGRESS;
6332 goto out;
6333}
6334
6335static int sctp_wait_for_accept(struct sock *sk, long timeo)
6336{
6337 struct sctp_endpoint *ep;
6338 int err = 0;
6339 DEFINE_WAIT(wait);
6340
6341 ep = sctp_sk(sk)->ep;
6342
6343
6344 for (;;) {
6345 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6346 TASK_INTERRUPTIBLE);
6347
6348 if (list_empty(&ep->asocs)) {
6349 sctp_release_sock(sk);
6350 timeo = schedule_timeout(timeo);
6351 sctp_lock_sock(sk);
6352 }
6353
6354 err = -EINVAL;
6355 if (!sctp_sstate(sk, LISTENING))
6356 break;
6357
6358 err = 0;
6359 if (!list_empty(&ep->asocs))
6360 break;
6361
6362 err = sock_intr_errno(timeo);
6363 if (signal_pending(current))
6364 break;
6365
6366 err = -EAGAIN;
6367 if (!timeo)
6368 break;
6369 }
6370
6371 finish_wait(sk_sleep(sk), &wait);
6372
6373 return err;
6374}
6375
6376static void sctp_wait_for_close(struct sock *sk, long timeout)
6377{
6378 DEFINE_WAIT(wait);
6379
6380 do {
6381 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6382 if (list_empty(&sctp_sk(sk)->ep->asocs))
6383 break;
6384 sctp_release_sock(sk);
6385 timeout = schedule_timeout(timeout);
6386 sctp_lock_sock(sk);
6387 } while (!signal_pending(current) && timeout);
6388
6389 finish_wait(sk_sleep(sk), &wait);
6390}
6391
6392static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6393{
6394 struct sk_buff *frag;
6395
6396 if (!skb->data_len)
6397 goto done;
6398
6399 /* Don't forget the fragments. */
6400 skb_walk_frags(skb, frag)
6401 sctp_skb_set_owner_r_frag(frag, sk);
6402
6403done:
6404 sctp_skb_set_owner_r(skb, sk);
6405}
6406
6407void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6408 struct sctp_association *asoc)
6409{
6410 struct inet_sock *inet = inet_sk(sk);
6411 struct inet_sock *newinet;
6412
6413 newsk->sk_type = sk->sk_type;
6414 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6415 newsk->sk_flags = sk->sk_flags;
6416 newsk->sk_no_check = sk->sk_no_check;
6417 newsk->sk_reuse = sk->sk_reuse;
6418
6419 newsk->sk_shutdown = sk->sk_shutdown;
6420 newsk->sk_destruct = inet_sock_destruct;
6421 newsk->sk_family = sk->sk_family;
6422 newsk->sk_protocol = IPPROTO_SCTP;
6423 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6424 newsk->sk_sndbuf = sk->sk_sndbuf;
6425 newsk->sk_rcvbuf = sk->sk_rcvbuf;
6426 newsk->sk_lingertime = sk->sk_lingertime;
6427 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6428 newsk->sk_sndtimeo = sk->sk_sndtimeo;
6429
6430 newinet = inet_sk(newsk);
6431
6432 /* Initialize sk's sport, dport, rcv_saddr and daddr for
6433 * getsockname() and getpeername()
6434 */
6435 newinet->inet_sport = inet->inet_sport;
6436 newinet->inet_saddr = inet->inet_saddr;
6437 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6438 newinet->inet_dport = htons(asoc->peer.port);
6439 newinet->pmtudisc = inet->pmtudisc;
6440 newinet->inet_id = asoc->next_tsn ^ jiffies;
6441
6442 newinet->uc_ttl = inet->uc_ttl;
6443 newinet->mc_loop = 1;
6444 newinet->mc_ttl = 1;
6445 newinet->mc_index = 0;
6446 newinet->mc_list = NULL;
6447}
6448
6449/* Populate the fields of the newsk from the oldsk and migrate the assoc
6450 * and its messages to the newsk.
6451 */
6452static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6453 struct sctp_association *assoc,
6454 sctp_socket_type_t type)
6455{
6456 struct sctp_sock *oldsp = sctp_sk(oldsk);
6457 struct sctp_sock *newsp = sctp_sk(newsk);
6458 struct sctp_bind_bucket *pp; /* hash list port iterator */
6459 struct sctp_endpoint *newep = newsp->ep;
6460 struct sk_buff *skb, *tmp;
6461 struct sctp_ulpevent *event;
6462 struct sctp_bind_hashbucket *head;
6463
6464 /* Migrate socket buffer sizes and all the socket level options to the
6465 * new socket.
6466 */
6467 newsk->sk_sndbuf = oldsk->sk_sndbuf;
6468 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6469 /* Brute force copy old sctp opt. */
6470 inet_sk_copy_descendant(newsk, oldsk);
6471
6472 /* Restore the ep value that was overwritten with the above structure
6473 * copy.
6474 */
6475 newsp->ep = newep;
6476 newsp->hmac = NULL;
6477
6478 /* Hook this new socket in to the bind_hash list. */
6479 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->inet_num)];
6480 sctp_local_bh_disable();
6481 sctp_spin_lock(&head->lock);
6482 pp = sctp_sk(oldsk)->bind_hash;
6483 sk_add_bind_node(newsk, &pp->owner);
6484 sctp_sk(newsk)->bind_hash = pp;
6485 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
6486 sctp_spin_unlock(&head->lock);
6487 sctp_local_bh_enable();
6488
6489 /* Copy the bind_addr list from the original endpoint to the new
6490 * endpoint so that we can handle restarts properly
6491 */
6492 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6493 &oldsp->ep->base.bind_addr, GFP_KERNEL);
6494
6495 /* Move any messages in the old socket's receive queue that are for the
6496 * peeled off association to the new socket's receive queue.
6497 */
6498 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6499 event = sctp_skb2event(skb);
6500 if (event->asoc == assoc) {
6501 __skb_unlink(skb, &oldsk->sk_receive_queue);
6502 __skb_queue_tail(&newsk->sk_receive_queue, skb);
6503 sctp_skb_set_owner_r_frag(skb, newsk);
6504 }
6505 }
6506
6507 /* Clean up any messages pending delivery due to partial
6508 * delivery. Three cases:
6509 * 1) No partial deliver; no work.
6510 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6511 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6512 */
6513 skb_queue_head_init(&newsp->pd_lobby);
6514 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6515
6516 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6517 struct sk_buff_head *queue;
6518
6519 /* Decide which queue to move pd_lobby skbs to. */
6520 if (assoc->ulpq.pd_mode) {
6521 queue = &newsp->pd_lobby;
6522 } else
6523 queue = &newsk->sk_receive_queue;
6524
6525 /* Walk through the pd_lobby, looking for skbs that
6526 * need moved to the new socket.
6527 */
6528 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6529 event = sctp_skb2event(skb);
6530 if (event->asoc == assoc) {
6531 __skb_unlink(skb, &oldsp->pd_lobby);
6532 __skb_queue_tail(queue, skb);
6533 sctp_skb_set_owner_r_frag(skb, newsk);
6534 }
6535 }
6536
6537 /* Clear up any skbs waiting for the partial
6538 * delivery to finish.
6539 */
6540 if (assoc->ulpq.pd_mode)
6541 sctp_clear_pd(oldsk, NULL);
6542
6543 }
6544
6545 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
6546 sctp_skb_set_owner_r_frag(skb, newsk);
6547
6548 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
6549 sctp_skb_set_owner_r_frag(skb, newsk);
6550
6551 /* Set the type of socket to indicate that it is peeled off from the
6552 * original UDP-style socket or created with the accept() call on a
6553 * TCP-style socket..
6554 */
6555 newsp->type = type;
6556
6557 /* Mark the new socket "in-use" by the user so that any packets
6558 * that may arrive on the association after we've moved it are
6559 * queued to the backlog. This prevents a potential race between
6560 * backlog processing on the old socket and new-packet processing
6561 * on the new socket.
6562 *
6563 * The caller has just allocated newsk so we can guarantee that other
6564 * paths won't try to lock it and then oldsk.
6565 */
6566 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6567 sctp_assoc_migrate(assoc, newsk);
6568
6569 /* If the association on the newsk is already closed before accept()
6570 * is called, set RCV_SHUTDOWN flag.
6571 */
6572 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6573 newsk->sk_shutdown |= RCV_SHUTDOWN;
6574
6575 newsk->sk_state = SCTP_SS_ESTABLISHED;
6576 sctp_release_sock(newsk);
6577}
6578
6579
6580/* This proto struct describes the ULP interface for SCTP. */
6581struct proto sctp_prot = {
6582 .name = "SCTP",
6583 .owner = THIS_MODULE,
6584 .close = sctp_close,
6585 .connect = sctp_connect,
6586 .disconnect = sctp_disconnect,
6587 .accept = sctp_accept,
6588 .ioctl = sctp_ioctl,
6589 .init = sctp_init_sock,
6590 .destroy = sctp_destroy_sock,
6591 .shutdown = sctp_shutdown,
6592 .setsockopt = sctp_setsockopt,
6593 .getsockopt = sctp_getsockopt,
6594 .sendmsg = sctp_sendmsg,
6595 .recvmsg = sctp_recvmsg,
6596 .bind = sctp_bind,
6597 .backlog_rcv = sctp_backlog_rcv,
6598 .hash = sctp_hash,
6599 .unhash = sctp_unhash,
6600 .get_port = sctp_get_port,
6601 .obj_size = sizeof(struct sctp_sock),
6602 .sysctl_mem = sysctl_sctp_mem,
6603 .sysctl_rmem = sysctl_sctp_rmem,
6604 .sysctl_wmem = sysctl_sctp_wmem,
6605 .memory_pressure = &sctp_memory_pressure,
6606 .enter_memory_pressure = sctp_enter_memory_pressure,
6607 .memory_allocated = &sctp_memory_allocated,
6608 .sockets_allocated = &sctp_sockets_allocated,
6609};
6610
6611#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6612
6613struct proto sctpv6_prot = {
6614 .name = "SCTPv6",
6615 .owner = THIS_MODULE,
6616 .close = sctp_close,
6617 .connect = sctp_connect,
6618 .disconnect = sctp_disconnect,
6619 .accept = sctp_accept,
6620 .ioctl = sctp_ioctl,
6621 .init = sctp_init_sock,
6622 .destroy = sctp_destroy_sock,
6623 .shutdown = sctp_shutdown,
6624 .setsockopt = sctp_setsockopt,
6625 .getsockopt = sctp_getsockopt,
6626 .sendmsg = sctp_sendmsg,
6627 .recvmsg = sctp_recvmsg,
6628 .bind = sctp_bind,
6629 .backlog_rcv = sctp_backlog_rcv,
6630 .hash = sctp_hash,
6631 .unhash = sctp_unhash,
6632 .get_port = sctp_get_port,
6633 .obj_size = sizeof(struct sctp6_sock),
6634 .sysctl_mem = sysctl_sctp_mem,
6635 .sysctl_rmem = sysctl_sctp_rmem,
6636 .sysctl_wmem = sysctl_sctp_wmem,
6637 .memory_pressure = &sctp_memory_pressure,
6638 .enter_memory_pressure = sctp_enter_memory_pressure,
6639 .memory_allocated = &sctp_memory_allocated,
6640 .sockets_allocated = &sctp_sockets_allocated,
6641};
6642#endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */