]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - net/sched/sch_sfq.c
3c59x: fix build failure on !CONFIG_PCI
[net-next-2.6.git] / net / sched / sch_sfq.c
... / ...
CommitLineData
1/*
2 * net/sched/sch_sfq.c Stochastic Fairness Queueing discipline.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 */
11
12#include <linux/module.h>
13#include <linux/types.h>
14#include <linux/kernel.h>
15#include <linux/jiffies.h>
16#include <linux/string.h>
17#include <linux/in.h>
18#include <linux/errno.h>
19#include <linux/init.h>
20#include <linux/ipv6.h>
21#include <linux/skbuff.h>
22#include <linux/jhash.h>
23#include <linux/slab.h>
24#include <net/ip.h>
25#include <net/netlink.h>
26#include <net/pkt_sched.h>
27
28
29/* Stochastic Fairness Queuing algorithm.
30 =======================================
31
32 Source:
33 Paul E. McKenney "Stochastic Fairness Queuing",
34 IEEE INFOCOMM'90 Proceedings, San Francisco, 1990.
35
36 Paul E. McKenney "Stochastic Fairness Queuing",
37 "Interworking: Research and Experience", v.2, 1991, p.113-131.
38
39
40 See also:
41 M. Shreedhar and George Varghese "Efficient Fair
42 Queuing using Deficit Round Robin", Proc. SIGCOMM 95.
43
44
45 This is not the thing that is usually called (W)FQ nowadays.
46 It does not use any timestamp mechanism, but instead
47 processes queues in round-robin order.
48
49 ADVANTAGE:
50
51 - It is very cheap. Both CPU and memory requirements are minimal.
52
53 DRAWBACKS:
54
55 - "Stochastic" -> It is not 100% fair.
56 When hash collisions occur, several flows are considered as one.
57
58 - "Round-robin" -> It introduces larger delays than virtual clock
59 based schemes, and should not be used for isolating interactive
60 traffic from non-interactive. It means, that this scheduler
61 should be used as leaf of CBQ or P3, which put interactive traffic
62 to higher priority band.
63
64 We still need true WFQ for top level CSZ, but using WFQ
65 for the best effort traffic is absolutely pointless:
66 SFQ is superior for this purpose.
67
68 IMPLEMENTATION:
69 This implementation limits maximal queue length to 128;
70 maximal mtu to 2^15-1; number of hash buckets to 1024.
71 The only goal of this restrictions was that all data
72 fit into one 4K page :-). Struct sfq_sched_data is
73 organized in anti-cache manner: all the data for a bucket
74 are scattered over different locations. This is not good,
75 but it allowed me to put it into 4K.
76
77 It is easy to increase these values, but not in flight. */
78
79#define SFQ_DEPTH 128
80#define SFQ_HASH_DIVISOR 1024
81
82/* This type should contain at least SFQ_DEPTH*2 values */
83typedef unsigned char sfq_index;
84
85struct sfq_head
86{
87 sfq_index next;
88 sfq_index prev;
89};
90
91struct sfq_sched_data
92{
93/* Parameters */
94 int perturb_period;
95 unsigned quantum; /* Allotment per round: MUST BE >= MTU */
96 int limit;
97
98/* Variables */
99 struct tcf_proto *filter_list;
100 struct timer_list perturb_timer;
101 u32 perturbation;
102 sfq_index tail; /* Index of current slot in round */
103 sfq_index max_depth; /* Maximal depth */
104
105 sfq_index ht[SFQ_HASH_DIVISOR]; /* Hash table */
106 sfq_index next[SFQ_DEPTH]; /* Active slots link */
107 short allot[SFQ_DEPTH]; /* Current allotment per slot */
108 unsigned short hash[SFQ_DEPTH]; /* Hash value indexed by slots */
109 struct sk_buff_head qs[SFQ_DEPTH]; /* Slot queue */
110 struct sfq_head dep[SFQ_DEPTH*2]; /* Linked list of slots, indexed by depth */
111};
112
113static __inline__ unsigned sfq_fold_hash(struct sfq_sched_data *q, u32 h, u32 h1)
114{
115 return jhash_2words(h, h1, q->perturbation) & (SFQ_HASH_DIVISOR - 1);
116}
117
118static unsigned sfq_hash(struct sfq_sched_data *q, struct sk_buff *skb)
119{
120 u32 h, h2;
121
122 switch (skb->protocol) {
123 case htons(ETH_P_IP):
124 {
125 const struct iphdr *iph;
126 int poff;
127
128 if (!pskb_network_may_pull(skb, sizeof(*iph)))
129 goto err;
130 iph = ip_hdr(skb);
131 h = (__force u32)iph->daddr;
132 h2 = (__force u32)iph->saddr ^ iph->protocol;
133 if (iph->frag_off & htons(IP_MF|IP_OFFSET))
134 break;
135 poff = proto_ports_offset(iph->protocol);
136 if (poff >= 0 &&
137 pskb_network_may_pull(skb, iph->ihl * 4 + 4 + poff)) {
138 iph = ip_hdr(skb);
139 h2 ^= *(u32*)((void *)iph + iph->ihl * 4 + poff);
140 }
141 break;
142 }
143 case htons(ETH_P_IPV6):
144 {
145 struct ipv6hdr *iph;
146 int poff;
147
148 if (!pskb_network_may_pull(skb, sizeof(*iph)))
149 goto err;
150 iph = ipv6_hdr(skb);
151 h = (__force u32)iph->daddr.s6_addr32[3];
152 h2 = (__force u32)iph->saddr.s6_addr32[3] ^ iph->nexthdr;
153 poff = proto_ports_offset(iph->nexthdr);
154 if (poff >= 0 &&
155 pskb_network_may_pull(skb, sizeof(*iph) + 4 + poff)) {
156 iph = ipv6_hdr(skb);
157 h2 ^= *(u32*)((void *)iph + sizeof(*iph) + poff);
158 }
159 break;
160 }
161 default:
162err:
163 h = (unsigned long)skb_dst(skb) ^ (__force u32)skb->protocol;
164 h2 = (unsigned long)skb->sk;
165 }
166
167 return sfq_fold_hash(q, h, h2);
168}
169
170static unsigned int sfq_classify(struct sk_buff *skb, struct Qdisc *sch,
171 int *qerr)
172{
173 struct sfq_sched_data *q = qdisc_priv(sch);
174 struct tcf_result res;
175 int result;
176
177 if (TC_H_MAJ(skb->priority) == sch->handle &&
178 TC_H_MIN(skb->priority) > 0 &&
179 TC_H_MIN(skb->priority) <= SFQ_HASH_DIVISOR)
180 return TC_H_MIN(skb->priority);
181
182 if (!q->filter_list)
183 return sfq_hash(q, skb) + 1;
184
185 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
186 result = tc_classify(skb, q->filter_list, &res);
187 if (result >= 0) {
188#ifdef CONFIG_NET_CLS_ACT
189 switch (result) {
190 case TC_ACT_STOLEN:
191 case TC_ACT_QUEUED:
192 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
193 case TC_ACT_SHOT:
194 return 0;
195 }
196#endif
197 if (TC_H_MIN(res.classid) <= SFQ_HASH_DIVISOR)
198 return TC_H_MIN(res.classid);
199 }
200 return 0;
201}
202
203static inline void sfq_link(struct sfq_sched_data *q, sfq_index x)
204{
205 sfq_index p, n;
206 int d = q->qs[x].qlen + SFQ_DEPTH;
207
208 p = d;
209 n = q->dep[d].next;
210 q->dep[x].next = n;
211 q->dep[x].prev = p;
212 q->dep[p].next = q->dep[n].prev = x;
213}
214
215static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x)
216{
217 sfq_index p, n;
218
219 n = q->dep[x].next;
220 p = q->dep[x].prev;
221 q->dep[p].next = n;
222 q->dep[n].prev = p;
223
224 if (n == p && q->max_depth == q->qs[x].qlen + 1)
225 q->max_depth--;
226
227 sfq_link(q, x);
228}
229
230static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x)
231{
232 sfq_index p, n;
233 int d;
234
235 n = q->dep[x].next;
236 p = q->dep[x].prev;
237 q->dep[p].next = n;
238 q->dep[n].prev = p;
239 d = q->qs[x].qlen;
240 if (q->max_depth < d)
241 q->max_depth = d;
242
243 sfq_link(q, x);
244}
245
246static unsigned int sfq_drop(struct Qdisc *sch)
247{
248 struct sfq_sched_data *q = qdisc_priv(sch);
249 sfq_index d = q->max_depth;
250 struct sk_buff *skb;
251 unsigned int len;
252
253 /* Queue is full! Find the longest slot and
254 drop a packet from it */
255
256 if (d > 1) {
257 sfq_index x = q->dep[d + SFQ_DEPTH].next;
258 skb = q->qs[x].prev;
259 len = qdisc_pkt_len(skb);
260 __skb_unlink(skb, &q->qs[x]);
261 kfree_skb(skb);
262 sfq_dec(q, x);
263 sch->q.qlen--;
264 sch->qstats.drops++;
265 sch->qstats.backlog -= len;
266 return len;
267 }
268
269 if (d == 1) {
270 /* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */
271 d = q->next[q->tail];
272 q->next[q->tail] = q->next[d];
273 q->allot[q->next[d]] += q->quantum;
274 skb = q->qs[d].prev;
275 len = qdisc_pkt_len(skb);
276 __skb_unlink(skb, &q->qs[d]);
277 kfree_skb(skb);
278 sfq_dec(q, d);
279 sch->q.qlen--;
280 q->ht[q->hash[d]] = SFQ_DEPTH;
281 sch->qstats.drops++;
282 sch->qstats.backlog -= len;
283 return len;
284 }
285
286 return 0;
287}
288
289static int
290sfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
291{
292 struct sfq_sched_data *q = qdisc_priv(sch);
293 unsigned int hash;
294 sfq_index x;
295 int uninitialized_var(ret);
296
297 hash = sfq_classify(skb, sch, &ret);
298 if (hash == 0) {
299 if (ret & __NET_XMIT_BYPASS)
300 sch->qstats.drops++;
301 kfree_skb(skb);
302 return ret;
303 }
304 hash--;
305
306 x = q->ht[hash];
307 if (x == SFQ_DEPTH) {
308 q->ht[hash] = x = q->dep[SFQ_DEPTH].next;
309 q->hash[x] = hash;
310 }
311
312 /* If selected queue has length q->limit, this means that
313 * all another queues are empty and that we do simple tail drop,
314 * i.e. drop _this_ packet.
315 */
316 if (q->qs[x].qlen >= q->limit)
317 return qdisc_drop(skb, sch);
318
319 sch->qstats.backlog += qdisc_pkt_len(skb);
320 __skb_queue_tail(&q->qs[x], skb);
321 sfq_inc(q, x);
322 if (q->qs[x].qlen == 1) { /* The flow is new */
323 if (q->tail == SFQ_DEPTH) { /* It is the first flow */
324 q->tail = x;
325 q->next[x] = x;
326 q->allot[x] = q->quantum;
327 } else {
328 q->next[x] = q->next[q->tail];
329 q->next[q->tail] = x;
330 q->tail = x;
331 }
332 }
333 if (++sch->q.qlen <= q->limit) {
334 sch->bstats.bytes += qdisc_pkt_len(skb);
335 sch->bstats.packets++;
336 return NET_XMIT_SUCCESS;
337 }
338
339 sfq_drop(sch);
340 return NET_XMIT_CN;
341}
342
343static struct sk_buff *
344sfq_peek(struct Qdisc *sch)
345{
346 struct sfq_sched_data *q = qdisc_priv(sch);
347 sfq_index a;
348
349 /* No active slots */
350 if (q->tail == SFQ_DEPTH)
351 return NULL;
352
353 a = q->next[q->tail];
354 return skb_peek(&q->qs[a]);
355}
356
357static struct sk_buff *
358sfq_dequeue(struct Qdisc *sch)
359{
360 struct sfq_sched_data *q = qdisc_priv(sch);
361 struct sk_buff *skb;
362 sfq_index a, old_a;
363
364 /* No active slots */
365 if (q->tail == SFQ_DEPTH)
366 return NULL;
367
368 a = old_a = q->next[q->tail];
369
370 /* Grab packet */
371 skb = __skb_dequeue(&q->qs[a]);
372 sfq_dec(q, a);
373 sch->q.qlen--;
374 sch->qstats.backlog -= qdisc_pkt_len(skb);
375
376 /* Is the slot empty? */
377 if (q->qs[a].qlen == 0) {
378 q->ht[q->hash[a]] = SFQ_DEPTH;
379 a = q->next[a];
380 if (a == old_a) {
381 q->tail = SFQ_DEPTH;
382 return skb;
383 }
384 q->next[q->tail] = a;
385 q->allot[a] += q->quantum;
386 } else if ((q->allot[a] -= qdisc_pkt_len(skb)) <= 0) {
387 q->tail = a;
388 a = q->next[a];
389 q->allot[a] += q->quantum;
390 }
391 return skb;
392}
393
394static void
395sfq_reset(struct Qdisc *sch)
396{
397 struct sk_buff *skb;
398
399 while ((skb = sfq_dequeue(sch)) != NULL)
400 kfree_skb(skb);
401}
402
403static void sfq_perturbation(unsigned long arg)
404{
405 struct Qdisc *sch = (struct Qdisc *)arg;
406 struct sfq_sched_data *q = qdisc_priv(sch);
407
408 q->perturbation = net_random();
409
410 if (q->perturb_period)
411 mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
412}
413
414static int sfq_change(struct Qdisc *sch, struct nlattr *opt)
415{
416 struct sfq_sched_data *q = qdisc_priv(sch);
417 struct tc_sfq_qopt *ctl = nla_data(opt);
418 unsigned int qlen;
419
420 if (opt->nla_len < nla_attr_size(sizeof(*ctl)))
421 return -EINVAL;
422
423 sch_tree_lock(sch);
424 q->quantum = ctl->quantum ? : psched_mtu(qdisc_dev(sch));
425 q->perturb_period = ctl->perturb_period * HZ;
426 if (ctl->limit)
427 q->limit = min_t(u32, ctl->limit, SFQ_DEPTH - 1);
428
429 qlen = sch->q.qlen;
430 while (sch->q.qlen > q->limit)
431 sfq_drop(sch);
432 qdisc_tree_decrease_qlen(sch, qlen - sch->q.qlen);
433
434 del_timer(&q->perturb_timer);
435 if (q->perturb_period) {
436 mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
437 q->perturbation = net_random();
438 }
439 sch_tree_unlock(sch);
440 return 0;
441}
442
443static int sfq_init(struct Qdisc *sch, struct nlattr *opt)
444{
445 struct sfq_sched_data *q = qdisc_priv(sch);
446 int i;
447
448 q->perturb_timer.function = sfq_perturbation;
449 q->perturb_timer.data = (unsigned long)sch;
450 init_timer_deferrable(&q->perturb_timer);
451
452 for (i = 0; i < SFQ_HASH_DIVISOR; i++)
453 q->ht[i] = SFQ_DEPTH;
454
455 for (i = 0; i < SFQ_DEPTH; i++) {
456 skb_queue_head_init(&q->qs[i]);
457 q->dep[i + SFQ_DEPTH].next = i + SFQ_DEPTH;
458 q->dep[i + SFQ_DEPTH].prev = i + SFQ_DEPTH;
459 }
460
461 q->limit = SFQ_DEPTH - 1;
462 q->max_depth = 0;
463 q->tail = SFQ_DEPTH;
464 if (opt == NULL) {
465 q->quantum = psched_mtu(qdisc_dev(sch));
466 q->perturb_period = 0;
467 q->perturbation = net_random();
468 } else {
469 int err = sfq_change(sch, opt);
470 if (err)
471 return err;
472 }
473
474 for (i = 0; i < SFQ_DEPTH; i++)
475 sfq_link(q, i);
476 return 0;
477}
478
479static void sfq_destroy(struct Qdisc *sch)
480{
481 struct sfq_sched_data *q = qdisc_priv(sch);
482
483 tcf_destroy_chain(&q->filter_list);
484 q->perturb_period = 0;
485 del_timer_sync(&q->perturb_timer);
486}
487
488static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb)
489{
490 struct sfq_sched_data *q = qdisc_priv(sch);
491 unsigned char *b = skb_tail_pointer(skb);
492 struct tc_sfq_qopt opt;
493
494 opt.quantum = q->quantum;
495 opt.perturb_period = q->perturb_period / HZ;
496
497 opt.limit = q->limit;
498 opt.divisor = SFQ_HASH_DIVISOR;
499 opt.flows = q->limit;
500
501 NLA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt);
502
503 return skb->len;
504
505nla_put_failure:
506 nlmsg_trim(skb, b);
507 return -1;
508}
509
510static struct Qdisc *sfq_leaf(struct Qdisc *sch, unsigned long arg)
511{
512 return NULL;
513}
514
515static unsigned long sfq_get(struct Qdisc *sch, u32 classid)
516{
517 return 0;
518}
519
520static unsigned long sfq_bind(struct Qdisc *sch, unsigned long parent,
521 u32 classid)
522{
523 return 0;
524}
525
526static void sfq_put(struct Qdisc *q, unsigned long cl)
527{
528}
529
530static struct tcf_proto **sfq_find_tcf(struct Qdisc *sch, unsigned long cl)
531{
532 struct sfq_sched_data *q = qdisc_priv(sch);
533
534 if (cl)
535 return NULL;
536 return &q->filter_list;
537}
538
539static int sfq_dump_class(struct Qdisc *sch, unsigned long cl,
540 struct sk_buff *skb, struct tcmsg *tcm)
541{
542 tcm->tcm_handle |= TC_H_MIN(cl);
543 return 0;
544}
545
546static int sfq_dump_class_stats(struct Qdisc *sch, unsigned long cl,
547 struct gnet_dump *d)
548{
549 struct sfq_sched_data *q = qdisc_priv(sch);
550 sfq_index idx = q->ht[cl-1];
551 struct gnet_stats_queue qs = { .qlen = q->qs[idx].qlen };
552 struct tc_sfq_xstats xstats = { .allot = q->allot[idx] };
553
554 if (gnet_stats_copy_queue(d, &qs) < 0)
555 return -1;
556 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
557}
558
559static void sfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
560{
561 struct sfq_sched_data *q = qdisc_priv(sch);
562 unsigned int i;
563
564 if (arg->stop)
565 return;
566
567 for (i = 0; i < SFQ_HASH_DIVISOR; i++) {
568 if (q->ht[i] == SFQ_DEPTH ||
569 arg->count < arg->skip) {
570 arg->count++;
571 continue;
572 }
573 if (arg->fn(sch, i + 1, arg) < 0) {
574 arg->stop = 1;
575 break;
576 }
577 arg->count++;
578 }
579}
580
581static const struct Qdisc_class_ops sfq_class_ops = {
582 .leaf = sfq_leaf,
583 .get = sfq_get,
584 .put = sfq_put,
585 .tcf_chain = sfq_find_tcf,
586 .bind_tcf = sfq_bind,
587 .unbind_tcf = sfq_put,
588 .dump = sfq_dump_class,
589 .dump_stats = sfq_dump_class_stats,
590 .walk = sfq_walk,
591};
592
593static struct Qdisc_ops sfq_qdisc_ops __read_mostly = {
594 .cl_ops = &sfq_class_ops,
595 .id = "sfq",
596 .priv_size = sizeof(struct sfq_sched_data),
597 .enqueue = sfq_enqueue,
598 .dequeue = sfq_dequeue,
599 .peek = sfq_peek,
600 .drop = sfq_drop,
601 .init = sfq_init,
602 .reset = sfq_reset,
603 .destroy = sfq_destroy,
604 .change = NULL,
605 .dump = sfq_dump,
606 .owner = THIS_MODULE,
607};
608
609static int __init sfq_module_init(void)
610{
611 return register_qdisc(&sfq_qdisc_ops);
612}
613static void __exit sfq_module_exit(void)
614{
615 unregister_qdisc(&sfq_qdisc_ops);
616}
617module_init(sfq_module_init)
618module_exit(sfq_module_exit)
619MODULE_LICENSE("GPL");