]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - net/ipv4/route.c
[IPSEC]: Fix reversed ICMP6 policy check
[net-next-2.6.git] / net / ipv4 / route.c
... / ...
CommitLineData
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * ROUTE - implementation of the IP router.
7 *
8 * Version: $Id: route.c,v 1.103 2002/01/12 07:44:09 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Alan Cox, <gw4pts@gw4pts.ampr.org>
13 * Linus Torvalds, <Linus.Torvalds@helsinki.fi>
14 * Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
15 *
16 * Fixes:
17 * Alan Cox : Verify area fixes.
18 * Alan Cox : cli() protects routing changes
19 * Rui Oliveira : ICMP routing table updates
20 * (rco@di.uminho.pt) Routing table insertion and update
21 * Linus Torvalds : Rewrote bits to be sensible
22 * Alan Cox : Added BSD route gw semantics
23 * Alan Cox : Super /proc >4K
24 * Alan Cox : MTU in route table
25 * Alan Cox : MSS actually. Also added the window
26 * clamper.
27 * Sam Lantinga : Fixed route matching in rt_del()
28 * Alan Cox : Routing cache support.
29 * Alan Cox : Removed compatibility cruft.
30 * Alan Cox : RTF_REJECT support.
31 * Alan Cox : TCP irtt support.
32 * Jonathan Naylor : Added Metric support.
33 * Miquel van Smoorenburg : BSD API fixes.
34 * Miquel van Smoorenburg : Metrics.
35 * Alan Cox : Use __u32 properly
36 * Alan Cox : Aligned routing errors more closely with BSD
37 * our system is still very different.
38 * Alan Cox : Faster /proc handling
39 * Alexey Kuznetsov : Massive rework to support tree based routing,
40 * routing caches and better behaviour.
41 *
42 * Olaf Erb : irtt wasn't being copied right.
43 * Bjorn Ekwall : Kerneld route support.
44 * Alan Cox : Multicast fixed (I hope)
45 * Pavel Krauz : Limited broadcast fixed
46 * Mike McLagan : Routing by source
47 * Alexey Kuznetsov : End of old history. Split to fib.c and
48 * route.c and rewritten from scratch.
49 * Andi Kleen : Load-limit warning messages.
50 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
51 * Vitaly E. Lavrov : Race condition in ip_route_input_slow.
52 * Tobias Ringstrom : Uninitialized res.type in ip_route_output_slow.
53 * Vladimir V. Ivanov : IP rule info (flowid) is really useful.
54 * Marc Boucher : routing by fwmark
55 * Robert Olsson : Added rt_cache statistics
56 * Arnaldo C. Melo : Convert proc stuff to seq_file
57 * Eric Dumazet : hashed spinlocks and rt_check_expire() fixes.
58 * Ilia Sotnikov : Ignore TOS on PMTUD and Redirect
59 * Ilia Sotnikov : Removed TOS from hash calculations
60 *
61 * This program is free software; you can redistribute it and/or
62 * modify it under the terms of the GNU General Public License
63 * as published by the Free Software Foundation; either version
64 * 2 of the License, or (at your option) any later version.
65 */
66
67#include <linux/module.h>
68#include <asm/uaccess.h>
69#include <asm/system.h>
70#include <linux/bitops.h>
71#include <linux/types.h>
72#include <linux/kernel.h>
73#include <linux/mm.h>
74#include <linux/bootmem.h>
75#include <linux/string.h>
76#include <linux/socket.h>
77#include <linux/sockios.h>
78#include <linux/errno.h>
79#include <linux/in.h>
80#include <linux/inet.h>
81#include <linux/netdevice.h>
82#include <linux/proc_fs.h>
83#include <linux/init.h>
84#include <linux/workqueue.h>
85#include <linux/skbuff.h>
86#include <linux/inetdevice.h>
87#include <linux/igmp.h>
88#include <linux/pkt_sched.h>
89#include <linux/mroute.h>
90#include <linux/netfilter_ipv4.h>
91#include <linux/random.h>
92#include <linux/jhash.h>
93#include <linux/rcupdate.h>
94#include <linux/times.h>
95#include <net/dst.h>
96#include <net/net_namespace.h>
97#include <net/protocol.h>
98#include <net/ip.h>
99#include <net/route.h>
100#include <net/inetpeer.h>
101#include <net/sock.h>
102#include <net/ip_fib.h>
103#include <net/arp.h>
104#include <net/tcp.h>
105#include <net/icmp.h>
106#include <net/xfrm.h>
107#include <net/netevent.h>
108#include <net/rtnetlink.h>
109#ifdef CONFIG_SYSCTL
110#include <linux/sysctl.h>
111#endif
112
113#define RT_FL_TOS(oldflp) \
114 ((u32)(oldflp->fl4_tos & (IPTOS_RT_MASK | RTO_ONLINK)))
115
116#define IP_MAX_MTU 0xFFF0
117
118#define RT_GC_TIMEOUT (300*HZ)
119
120static int ip_rt_min_delay = 2 * HZ;
121static int ip_rt_max_delay = 10 * HZ;
122static int ip_rt_max_size;
123static int ip_rt_gc_timeout = RT_GC_TIMEOUT;
124static int ip_rt_gc_interval = 60 * HZ;
125static int ip_rt_gc_min_interval = HZ / 2;
126static int ip_rt_redirect_number = 9;
127static int ip_rt_redirect_load = HZ / 50;
128static int ip_rt_redirect_silence = ((HZ / 50) << (9 + 1));
129static int ip_rt_error_cost = HZ;
130static int ip_rt_error_burst = 5 * HZ;
131static int ip_rt_gc_elasticity = 8;
132static int ip_rt_mtu_expires = 10 * 60 * HZ;
133static int ip_rt_min_pmtu = 512 + 20 + 20;
134static int ip_rt_min_advmss = 256;
135static int ip_rt_secret_interval = 10 * 60 * HZ;
136static int ip_rt_flush_expected;
137static unsigned long rt_deadline;
138
139#define RTprint(a...) printk(KERN_DEBUG a)
140
141static struct timer_list rt_flush_timer;
142static void rt_worker_func(struct work_struct *work);
143static DECLARE_DELAYED_WORK(expires_work, rt_worker_func);
144static struct timer_list rt_secret_timer;
145
146/*
147 * Interface to generic destination cache.
148 */
149
150static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie);
151static void ipv4_dst_destroy(struct dst_entry *dst);
152static void ipv4_dst_ifdown(struct dst_entry *dst,
153 struct net_device *dev, int how);
154static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst);
155static void ipv4_link_failure(struct sk_buff *skb);
156static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu);
157static int rt_garbage_collect(void);
158
159
160static struct dst_ops ipv4_dst_ops = {
161 .family = AF_INET,
162 .protocol = __constant_htons(ETH_P_IP),
163 .gc = rt_garbage_collect,
164 .check = ipv4_dst_check,
165 .destroy = ipv4_dst_destroy,
166 .ifdown = ipv4_dst_ifdown,
167 .negative_advice = ipv4_negative_advice,
168 .link_failure = ipv4_link_failure,
169 .update_pmtu = ip_rt_update_pmtu,
170 .local_out = ip_local_out,
171 .entry_size = sizeof(struct rtable),
172};
173
174#define ECN_OR_COST(class) TC_PRIO_##class
175
176const __u8 ip_tos2prio[16] = {
177 TC_PRIO_BESTEFFORT,
178 ECN_OR_COST(FILLER),
179 TC_PRIO_BESTEFFORT,
180 ECN_OR_COST(BESTEFFORT),
181 TC_PRIO_BULK,
182 ECN_OR_COST(BULK),
183 TC_PRIO_BULK,
184 ECN_OR_COST(BULK),
185 TC_PRIO_INTERACTIVE,
186 ECN_OR_COST(INTERACTIVE),
187 TC_PRIO_INTERACTIVE,
188 ECN_OR_COST(INTERACTIVE),
189 TC_PRIO_INTERACTIVE_BULK,
190 ECN_OR_COST(INTERACTIVE_BULK),
191 TC_PRIO_INTERACTIVE_BULK,
192 ECN_OR_COST(INTERACTIVE_BULK)
193};
194
195
196/*
197 * Route cache.
198 */
199
200/* The locking scheme is rather straight forward:
201 *
202 * 1) Read-Copy Update protects the buckets of the central route hash.
203 * 2) Only writers remove entries, and they hold the lock
204 * as they look at rtable reference counts.
205 * 3) Only readers acquire references to rtable entries,
206 * they do so with atomic increments and with the
207 * lock held.
208 */
209
210struct rt_hash_bucket {
211 struct rtable *chain;
212};
213#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) || \
214 defined(CONFIG_PROVE_LOCKING)
215/*
216 * Instead of using one spinlock for each rt_hash_bucket, we use a table of spinlocks
217 * The size of this table is a power of two and depends on the number of CPUS.
218 * (on lockdep we have a quite big spinlock_t, so keep the size down there)
219 */
220#ifdef CONFIG_LOCKDEP
221# define RT_HASH_LOCK_SZ 256
222#else
223# if NR_CPUS >= 32
224# define RT_HASH_LOCK_SZ 4096
225# elif NR_CPUS >= 16
226# define RT_HASH_LOCK_SZ 2048
227# elif NR_CPUS >= 8
228# define RT_HASH_LOCK_SZ 1024
229# elif NR_CPUS >= 4
230# define RT_HASH_LOCK_SZ 512
231# else
232# define RT_HASH_LOCK_SZ 256
233# endif
234#endif
235
236static spinlock_t *rt_hash_locks;
237# define rt_hash_lock_addr(slot) &rt_hash_locks[(slot) & (RT_HASH_LOCK_SZ - 1)]
238
239static __init void rt_hash_lock_init(void)
240{
241 int i;
242
243 rt_hash_locks = kmalloc(sizeof(spinlock_t) * RT_HASH_LOCK_SZ,
244 GFP_KERNEL);
245 if (!rt_hash_locks)
246 panic("IP: failed to allocate rt_hash_locks\n");
247
248 for (i = 0; i < RT_HASH_LOCK_SZ; i++)
249 spin_lock_init(&rt_hash_locks[i]);
250}
251#else
252# define rt_hash_lock_addr(slot) NULL
253
254static inline void rt_hash_lock_init(void)
255{
256}
257#endif
258
259static struct rt_hash_bucket *rt_hash_table;
260static unsigned rt_hash_mask;
261static unsigned int rt_hash_log;
262static unsigned int rt_hash_rnd;
263
264static DEFINE_PER_CPU(struct rt_cache_stat, rt_cache_stat);
265#define RT_CACHE_STAT_INC(field) \
266 (__raw_get_cpu_var(rt_cache_stat).field++)
267
268static int rt_intern_hash(unsigned hash, struct rtable *rth,
269 struct rtable **res);
270
271static unsigned int rt_hash_code(u32 daddr, u32 saddr)
272{
273 return (jhash_2words(daddr, saddr, rt_hash_rnd)
274 & rt_hash_mask);
275}
276
277#define rt_hash(daddr, saddr, idx) \
278 rt_hash_code((__force u32)(__be32)(daddr),\
279 (__force u32)(__be32)(saddr) ^ ((idx) << 5))
280
281#ifdef CONFIG_PROC_FS
282struct rt_cache_iter_state {
283 int bucket;
284};
285
286static struct rtable *rt_cache_get_first(struct seq_file *seq)
287{
288 struct rtable *r = NULL;
289 struct rt_cache_iter_state *st = seq->private;
290
291 for (st->bucket = rt_hash_mask; st->bucket >= 0; --st->bucket) {
292 rcu_read_lock_bh();
293 r = rt_hash_table[st->bucket].chain;
294 if (r)
295 break;
296 rcu_read_unlock_bh();
297 }
298 return rcu_dereference(r);
299}
300
301static struct rtable *rt_cache_get_next(struct seq_file *seq, struct rtable *r)
302{
303 struct rt_cache_iter_state *st = seq->private;
304
305 r = r->u.dst.rt_next;
306 while (!r) {
307 rcu_read_unlock_bh();
308 if (--st->bucket < 0)
309 break;
310 rcu_read_lock_bh();
311 r = rt_hash_table[st->bucket].chain;
312 }
313 return rcu_dereference(r);
314}
315
316static struct rtable *rt_cache_get_idx(struct seq_file *seq, loff_t pos)
317{
318 struct rtable *r = rt_cache_get_first(seq);
319
320 if (r)
321 while (pos && (r = rt_cache_get_next(seq, r)))
322 --pos;
323 return pos ? NULL : r;
324}
325
326static void *rt_cache_seq_start(struct seq_file *seq, loff_t *pos)
327{
328 return *pos ? rt_cache_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
329}
330
331static void *rt_cache_seq_next(struct seq_file *seq, void *v, loff_t *pos)
332{
333 struct rtable *r = NULL;
334
335 if (v == SEQ_START_TOKEN)
336 r = rt_cache_get_first(seq);
337 else
338 r = rt_cache_get_next(seq, v);
339 ++*pos;
340 return r;
341}
342
343static void rt_cache_seq_stop(struct seq_file *seq, void *v)
344{
345 if (v && v != SEQ_START_TOKEN)
346 rcu_read_unlock_bh();
347}
348
349static int rt_cache_seq_show(struct seq_file *seq, void *v)
350{
351 if (v == SEQ_START_TOKEN)
352 seq_printf(seq, "%-127s\n",
353 "Iface\tDestination\tGateway \tFlags\t\tRefCnt\tUse\t"
354 "Metric\tSource\t\tMTU\tWindow\tIRTT\tTOS\tHHRef\t"
355 "HHUptod\tSpecDst");
356 else {
357 struct rtable *r = v;
358 char temp[256];
359
360 sprintf(temp, "%s\t%08lX\t%08lX\t%8X\t%d\t%u\t%d\t"
361 "%08lX\t%d\t%u\t%u\t%02X\t%d\t%1d\t%08X",
362 r->u.dst.dev ? r->u.dst.dev->name : "*",
363 (unsigned long)r->rt_dst, (unsigned long)r->rt_gateway,
364 r->rt_flags, atomic_read(&r->u.dst.__refcnt),
365 r->u.dst.__use, 0, (unsigned long)r->rt_src,
366 (dst_metric(&r->u.dst, RTAX_ADVMSS) ?
367 (int)dst_metric(&r->u.dst, RTAX_ADVMSS) + 40 : 0),
368 dst_metric(&r->u.dst, RTAX_WINDOW),
369 (int)((dst_metric(&r->u.dst, RTAX_RTT) >> 3) +
370 dst_metric(&r->u.dst, RTAX_RTTVAR)),
371 r->fl.fl4_tos,
372 r->u.dst.hh ? atomic_read(&r->u.dst.hh->hh_refcnt) : -1,
373 r->u.dst.hh ? (r->u.dst.hh->hh_output ==
374 dev_queue_xmit) : 0,
375 r->rt_spec_dst);
376 seq_printf(seq, "%-127s\n", temp);
377 }
378 return 0;
379}
380
381static const struct seq_operations rt_cache_seq_ops = {
382 .start = rt_cache_seq_start,
383 .next = rt_cache_seq_next,
384 .stop = rt_cache_seq_stop,
385 .show = rt_cache_seq_show,
386};
387
388static int rt_cache_seq_open(struct inode *inode, struct file *file)
389{
390 return seq_open_private(file, &rt_cache_seq_ops,
391 sizeof(struct rt_cache_iter_state));
392}
393
394static const struct file_operations rt_cache_seq_fops = {
395 .owner = THIS_MODULE,
396 .open = rt_cache_seq_open,
397 .read = seq_read,
398 .llseek = seq_lseek,
399 .release = seq_release_private,
400};
401
402
403static void *rt_cpu_seq_start(struct seq_file *seq, loff_t *pos)
404{
405 int cpu;
406
407 if (*pos == 0)
408 return SEQ_START_TOKEN;
409
410 for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) {
411 if (!cpu_possible(cpu))
412 continue;
413 *pos = cpu+1;
414 return &per_cpu(rt_cache_stat, cpu);
415 }
416 return NULL;
417}
418
419static void *rt_cpu_seq_next(struct seq_file *seq, void *v, loff_t *pos)
420{
421 int cpu;
422
423 for (cpu = *pos; cpu < NR_CPUS; ++cpu) {
424 if (!cpu_possible(cpu))
425 continue;
426 *pos = cpu+1;
427 return &per_cpu(rt_cache_stat, cpu);
428 }
429 return NULL;
430
431}
432
433static void rt_cpu_seq_stop(struct seq_file *seq, void *v)
434{
435
436}
437
438static int rt_cpu_seq_show(struct seq_file *seq, void *v)
439{
440 struct rt_cache_stat *st = v;
441
442 if (v == SEQ_START_TOKEN) {
443 seq_printf(seq, "entries in_hit in_slow_tot in_slow_mc in_no_route in_brd in_martian_dst in_martian_src out_hit out_slow_tot out_slow_mc gc_total gc_ignored gc_goal_miss gc_dst_overflow in_hlist_search out_hlist_search\n");
444 return 0;
445 }
446
447 seq_printf(seq,"%08x %08x %08x %08x %08x %08x %08x %08x "
448 " %08x %08x %08x %08x %08x %08x %08x %08x %08x \n",
449 atomic_read(&ipv4_dst_ops.entries),
450 st->in_hit,
451 st->in_slow_tot,
452 st->in_slow_mc,
453 st->in_no_route,
454 st->in_brd,
455 st->in_martian_dst,
456 st->in_martian_src,
457
458 st->out_hit,
459 st->out_slow_tot,
460 st->out_slow_mc,
461
462 st->gc_total,
463 st->gc_ignored,
464 st->gc_goal_miss,
465 st->gc_dst_overflow,
466 st->in_hlist_search,
467 st->out_hlist_search
468 );
469 return 0;
470}
471
472static const struct seq_operations rt_cpu_seq_ops = {
473 .start = rt_cpu_seq_start,
474 .next = rt_cpu_seq_next,
475 .stop = rt_cpu_seq_stop,
476 .show = rt_cpu_seq_show,
477};
478
479
480static int rt_cpu_seq_open(struct inode *inode, struct file *file)
481{
482 return seq_open(file, &rt_cpu_seq_ops);
483}
484
485static const struct file_operations rt_cpu_seq_fops = {
486 .owner = THIS_MODULE,
487 .open = rt_cpu_seq_open,
488 .read = seq_read,
489 .llseek = seq_lseek,
490 .release = seq_release,
491};
492
493#ifdef CONFIG_NET_CLS_ROUTE
494static int ip_rt_acct_read(char *buffer, char **start, off_t offset,
495 int length, int *eof, void *data)
496{
497 unsigned int i;
498
499 if ((offset & 3) || (length & 3))
500 return -EIO;
501
502 if (offset >= sizeof(struct ip_rt_acct) * 256) {
503 *eof = 1;
504 return 0;
505 }
506
507 if (offset + length >= sizeof(struct ip_rt_acct) * 256) {
508 length = sizeof(struct ip_rt_acct) * 256 - offset;
509 *eof = 1;
510 }
511
512 offset /= sizeof(u32);
513
514 if (length > 0) {
515 u32 *dst = (u32 *) buffer;
516
517 *start = buffer;
518 memset(dst, 0, length);
519
520 for_each_possible_cpu(i) {
521 unsigned int j;
522 u32 *src;
523
524 src = ((u32 *) per_cpu_ptr(ip_rt_acct, i)) + offset;
525 for (j = 0; j < length/4; j++)
526 dst[j] += src[j];
527 }
528 }
529 return length;
530}
531#endif
532
533static __init int ip_rt_proc_init(struct net *net)
534{
535 struct proc_dir_entry *pde;
536
537 pde = proc_net_fops_create(net, "rt_cache", S_IRUGO,
538 &rt_cache_seq_fops);
539 if (!pde)
540 goto err1;
541
542 pde = create_proc_entry("rt_cache", S_IRUGO, net->proc_net_stat);
543 if (!pde)
544 goto err2;
545
546 pde->proc_fops = &rt_cpu_seq_fops;
547
548#ifdef CONFIG_NET_CLS_ROUTE
549 pde = create_proc_read_entry("rt_acct", 0, net->proc_net,
550 ip_rt_acct_read, NULL);
551 if (!pde)
552 goto err3;
553#endif
554 return 0;
555
556#ifdef CONFIG_NET_CLS_ROUTE
557err3:
558 remove_proc_entry("rt_cache", net->proc_net_stat);
559#endif
560err2:
561 remove_proc_entry("rt_cache", net->proc_net);
562err1:
563 return -ENOMEM;
564}
565#else
566static inline int ip_rt_proc_init(struct net *net)
567{
568 return 0;
569}
570#endif /* CONFIG_PROC_FS */
571
572static __inline__ void rt_free(struct rtable *rt)
573{
574 call_rcu_bh(&rt->u.dst.rcu_head, dst_rcu_free);
575}
576
577static __inline__ void rt_drop(struct rtable *rt)
578{
579 ip_rt_put(rt);
580 call_rcu_bh(&rt->u.dst.rcu_head, dst_rcu_free);
581}
582
583static __inline__ int rt_fast_clean(struct rtable *rth)
584{
585 /* Kill broadcast/multicast entries very aggresively, if they
586 collide in hash table with more useful entries */
587 return (rth->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) &&
588 rth->fl.iif && rth->u.dst.rt_next;
589}
590
591static __inline__ int rt_valuable(struct rtable *rth)
592{
593 return (rth->rt_flags & (RTCF_REDIRECTED | RTCF_NOTIFY)) ||
594 rth->u.dst.expires;
595}
596
597static int rt_may_expire(struct rtable *rth, unsigned long tmo1, unsigned long tmo2)
598{
599 unsigned long age;
600 int ret = 0;
601
602 if (atomic_read(&rth->u.dst.__refcnt))
603 goto out;
604
605 ret = 1;
606 if (rth->u.dst.expires &&
607 time_after_eq(jiffies, rth->u.dst.expires))
608 goto out;
609
610 age = jiffies - rth->u.dst.lastuse;
611 ret = 0;
612 if ((age <= tmo1 && !rt_fast_clean(rth)) ||
613 (age <= tmo2 && rt_valuable(rth)))
614 goto out;
615 ret = 1;
616out: return ret;
617}
618
619/* Bits of score are:
620 * 31: very valuable
621 * 30: not quite useless
622 * 29..0: usage counter
623 */
624static inline u32 rt_score(struct rtable *rt)
625{
626 u32 score = jiffies - rt->u.dst.lastuse;
627
628 score = ~score & ~(3<<30);
629
630 if (rt_valuable(rt))
631 score |= (1<<31);
632
633 if (!rt->fl.iif ||
634 !(rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST|RTCF_LOCAL)))
635 score |= (1<<30);
636
637 return score;
638}
639
640static inline int compare_keys(struct flowi *fl1, struct flowi *fl2)
641{
642 return ((__force u32)((fl1->nl_u.ip4_u.daddr ^ fl2->nl_u.ip4_u.daddr) |
643 (fl1->nl_u.ip4_u.saddr ^ fl2->nl_u.ip4_u.saddr)) |
644 (fl1->mark ^ fl2->mark) |
645 (*(u16 *)&fl1->nl_u.ip4_u.tos ^
646 *(u16 *)&fl2->nl_u.ip4_u.tos) |
647 (fl1->oif ^ fl2->oif) |
648 (fl1->iif ^ fl2->iif)) == 0;
649}
650
651/*
652 * Perform a full scan of hash table and free all entries.
653 * Can be called by a softirq or a process.
654 * In the later case, we want to be reschedule if necessary
655 */
656static void rt_do_flush(int process_context)
657{
658 unsigned int i;
659 struct rtable *rth, *next;
660
661 for (i = 0; i <= rt_hash_mask; i++) {
662 if (process_context && need_resched())
663 cond_resched();
664 rth = rt_hash_table[i].chain;
665 if (!rth)
666 continue;
667
668 spin_lock_bh(rt_hash_lock_addr(i));
669 rth = rt_hash_table[i].chain;
670 rt_hash_table[i].chain = NULL;
671 spin_unlock_bh(rt_hash_lock_addr(i));
672
673 for (; rth; rth = next) {
674 next = rth->u.dst.rt_next;
675 rt_free(rth);
676 }
677 }
678}
679
680static void rt_check_expire(void)
681{
682 static unsigned int rover;
683 unsigned int i = rover, goal;
684 struct rtable *rth, **rthp;
685 u64 mult;
686
687 mult = ((u64)ip_rt_gc_interval) << rt_hash_log;
688 if (ip_rt_gc_timeout > 1)
689 do_div(mult, ip_rt_gc_timeout);
690 goal = (unsigned int)mult;
691 if (goal > rt_hash_mask)
692 goal = rt_hash_mask + 1;
693 for (; goal > 0; goal--) {
694 unsigned long tmo = ip_rt_gc_timeout;
695
696 i = (i + 1) & rt_hash_mask;
697 rthp = &rt_hash_table[i].chain;
698
699 if (need_resched())
700 cond_resched();
701
702 if (*rthp == NULL)
703 continue;
704 spin_lock_bh(rt_hash_lock_addr(i));
705 while ((rth = *rthp) != NULL) {
706 if (rth->u.dst.expires) {
707 /* Entry is expired even if it is in use */
708 if (time_before_eq(jiffies, rth->u.dst.expires)) {
709 tmo >>= 1;
710 rthp = &rth->u.dst.rt_next;
711 continue;
712 }
713 } else if (!rt_may_expire(rth, tmo, ip_rt_gc_timeout)) {
714 tmo >>= 1;
715 rthp = &rth->u.dst.rt_next;
716 continue;
717 }
718
719 /* Cleanup aged off entries. */
720 *rthp = rth->u.dst.rt_next;
721 rt_free(rth);
722 }
723 spin_unlock_bh(rt_hash_lock_addr(i));
724 }
725 rover = i;
726}
727
728/*
729 * rt_worker_func() is run in process context.
730 * If a whole flush was scheduled, it is done.
731 * Else, we call rt_check_expire() to scan part of the hash table
732 */
733static void rt_worker_func(struct work_struct *work)
734{
735 if (ip_rt_flush_expected) {
736 ip_rt_flush_expected = 0;
737 rt_do_flush(1);
738 } else
739 rt_check_expire();
740 schedule_delayed_work(&expires_work, ip_rt_gc_interval);
741}
742
743/* This can run from both BH and non-BH contexts, the latter
744 * in the case of a forced flush event.
745 */
746static void rt_run_flush(unsigned long process_context)
747{
748 rt_deadline = 0;
749
750 get_random_bytes(&rt_hash_rnd, 4);
751
752 rt_do_flush(process_context);
753}
754
755static DEFINE_SPINLOCK(rt_flush_lock);
756
757void rt_cache_flush(int delay)
758{
759 unsigned long now = jiffies;
760 int user_mode = !in_softirq();
761
762 if (delay < 0)
763 delay = ip_rt_min_delay;
764
765 spin_lock_bh(&rt_flush_lock);
766
767 if (del_timer(&rt_flush_timer) && delay > 0 && rt_deadline) {
768 long tmo = (long)(rt_deadline - now);
769
770 /* If flush timer is already running
771 and flush request is not immediate (delay > 0):
772
773 if deadline is not achieved, prolongate timer to "delay",
774 otherwise fire it at deadline time.
775 */
776
777 if (user_mode && tmo < ip_rt_max_delay-ip_rt_min_delay)
778 tmo = 0;
779
780 if (delay > tmo)
781 delay = tmo;
782 }
783
784 if (delay <= 0) {
785 spin_unlock_bh(&rt_flush_lock);
786 rt_run_flush(user_mode);
787 return;
788 }
789
790 if (rt_deadline == 0)
791 rt_deadline = now + ip_rt_max_delay;
792
793 mod_timer(&rt_flush_timer, now+delay);
794 spin_unlock_bh(&rt_flush_lock);
795}
796
797/*
798 * We change rt_hash_rnd and ask next rt_worker_func() invocation
799 * to perform a flush in process context
800 */
801static void rt_secret_rebuild(unsigned long dummy)
802{
803 get_random_bytes(&rt_hash_rnd, 4);
804 ip_rt_flush_expected = 1;
805 cancel_delayed_work(&expires_work);
806 schedule_delayed_work(&expires_work, HZ/10);
807 mod_timer(&rt_secret_timer, jiffies + ip_rt_secret_interval);
808}
809
810/*
811 Short description of GC goals.
812
813 We want to build algorithm, which will keep routing cache
814 at some equilibrium point, when number of aged off entries
815 is kept approximately equal to newly generated ones.
816
817 Current expiration strength is variable "expire".
818 We try to adjust it dynamically, so that if networking
819 is idle expires is large enough to keep enough of warm entries,
820 and when load increases it reduces to limit cache size.
821 */
822
823static int rt_garbage_collect(void)
824{
825 static unsigned long expire = RT_GC_TIMEOUT;
826 static unsigned long last_gc;
827 static int rover;
828 static int equilibrium;
829 struct rtable *rth, **rthp;
830 unsigned long now = jiffies;
831 int goal;
832
833 /*
834 * Garbage collection is pretty expensive,
835 * do not make it too frequently.
836 */
837
838 RT_CACHE_STAT_INC(gc_total);
839
840 if (now - last_gc < ip_rt_gc_min_interval &&
841 atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size) {
842 RT_CACHE_STAT_INC(gc_ignored);
843 goto out;
844 }
845
846 /* Calculate number of entries, which we want to expire now. */
847 goal = atomic_read(&ipv4_dst_ops.entries) -
848 (ip_rt_gc_elasticity << rt_hash_log);
849 if (goal <= 0) {
850 if (equilibrium < ipv4_dst_ops.gc_thresh)
851 equilibrium = ipv4_dst_ops.gc_thresh;
852 goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium;
853 if (goal > 0) {
854 equilibrium += min_t(unsigned int, goal / 2, rt_hash_mask + 1);
855 goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium;
856 }
857 } else {
858 /* We are in dangerous area. Try to reduce cache really
859 * aggressively.
860 */
861 goal = max_t(unsigned int, goal / 2, rt_hash_mask + 1);
862 equilibrium = atomic_read(&ipv4_dst_ops.entries) - goal;
863 }
864
865 if (now - last_gc >= ip_rt_gc_min_interval)
866 last_gc = now;
867
868 if (goal <= 0) {
869 equilibrium += goal;
870 goto work_done;
871 }
872
873 do {
874 int i, k;
875
876 for (i = rt_hash_mask, k = rover; i >= 0; i--) {
877 unsigned long tmo = expire;
878
879 k = (k + 1) & rt_hash_mask;
880 rthp = &rt_hash_table[k].chain;
881 spin_lock_bh(rt_hash_lock_addr(k));
882 while ((rth = *rthp) != NULL) {
883 if (!rt_may_expire(rth, tmo, expire)) {
884 tmo >>= 1;
885 rthp = &rth->u.dst.rt_next;
886 continue;
887 }
888 *rthp = rth->u.dst.rt_next;
889 rt_free(rth);
890 goal--;
891 }
892 spin_unlock_bh(rt_hash_lock_addr(k));
893 if (goal <= 0)
894 break;
895 }
896 rover = k;
897
898 if (goal <= 0)
899 goto work_done;
900
901 /* Goal is not achieved. We stop process if:
902
903 - if expire reduced to zero. Otherwise, expire is halfed.
904 - if table is not full.
905 - if we are called from interrupt.
906 - jiffies check is just fallback/debug loop breaker.
907 We will not spin here for long time in any case.
908 */
909
910 RT_CACHE_STAT_INC(gc_goal_miss);
911
912 if (expire == 0)
913 break;
914
915 expire >>= 1;
916#if RT_CACHE_DEBUG >= 2
917 printk(KERN_DEBUG "expire>> %u %d %d %d\n", expire,
918 atomic_read(&ipv4_dst_ops.entries), goal, i);
919#endif
920
921 if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size)
922 goto out;
923 } while (!in_softirq() && time_before_eq(jiffies, now));
924
925 if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size)
926 goto out;
927 if (net_ratelimit())
928 printk(KERN_WARNING "dst cache overflow\n");
929 RT_CACHE_STAT_INC(gc_dst_overflow);
930 return 1;
931
932work_done:
933 expire += ip_rt_gc_min_interval;
934 if (expire > ip_rt_gc_timeout ||
935 atomic_read(&ipv4_dst_ops.entries) < ipv4_dst_ops.gc_thresh)
936 expire = ip_rt_gc_timeout;
937#if RT_CACHE_DEBUG >= 2
938 printk(KERN_DEBUG "expire++ %u %d %d %d\n", expire,
939 atomic_read(&ipv4_dst_ops.entries), goal, rover);
940#endif
941out: return 0;
942}
943
944static int rt_intern_hash(unsigned hash, struct rtable *rt, struct rtable **rp)
945{
946 struct rtable *rth, **rthp;
947 unsigned long now;
948 struct rtable *cand, **candp;
949 u32 min_score;
950 int chain_length;
951 int attempts = !in_softirq();
952
953restart:
954 chain_length = 0;
955 min_score = ~(u32)0;
956 cand = NULL;
957 candp = NULL;
958 now = jiffies;
959
960 rthp = &rt_hash_table[hash].chain;
961
962 spin_lock_bh(rt_hash_lock_addr(hash));
963 while ((rth = *rthp) != NULL) {
964 if (compare_keys(&rth->fl, &rt->fl)) {
965 /* Put it first */
966 *rthp = rth->u.dst.rt_next;
967 /*
968 * Since lookup is lockfree, the deletion
969 * must be visible to another weakly ordered CPU before
970 * the insertion at the start of the hash chain.
971 */
972 rcu_assign_pointer(rth->u.dst.rt_next,
973 rt_hash_table[hash].chain);
974 /*
975 * Since lookup is lockfree, the update writes
976 * must be ordered for consistency on SMP.
977 */
978 rcu_assign_pointer(rt_hash_table[hash].chain, rth);
979
980 dst_use(&rth->u.dst, now);
981 spin_unlock_bh(rt_hash_lock_addr(hash));
982
983 rt_drop(rt);
984 *rp = rth;
985 return 0;
986 }
987
988 if (!atomic_read(&rth->u.dst.__refcnt)) {
989 u32 score = rt_score(rth);
990
991 if (score <= min_score) {
992 cand = rth;
993 candp = rthp;
994 min_score = score;
995 }
996 }
997
998 chain_length++;
999
1000 rthp = &rth->u.dst.rt_next;
1001 }
1002
1003 if (cand) {
1004 /* ip_rt_gc_elasticity used to be average length of chain
1005 * length, when exceeded gc becomes really aggressive.
1006 *
1007 * The second limit is less certain. At the moment it allows
1008 * only 2 entries per bucket. We will see.
1009 */
1010 if (chain_length > ip_rt_gc_elasticity) {
1011 *candp = cand->u.dst.rt_next;
1012 rt_free(cand);
1013 }
1014 }
1015
1016 /* Try to bind route to arp only if it is output
1017 route or unicast forwarding path.
1018 */
1019 if (rt->rt_type == RTN_UNICAST || rt->fl.iif == 0) {
1020 int err = arp_bind_neighbour(&rt->u.dst);
1021 if (err) {
1022 spin_unlock_bh(rt_hash_lock_addr(hash));
1023
1024 if (err != -ENOBUFS) {
1025 rt_drop(rt);
1026 return err;
1027 }
1028
1029 /* Neighbour tables are full and nothing
1030 can be released. Try to shrink route cache,
1031 it is most likely it holds some neighbour records.
1032 */
1033 if (attempts-- > 0) {
1034 int saved_elasticity = ip_rt_gc_elasticity;
1035 int saved_int = ip_rt_gc_min_interval;
1036 ip_rt_gc_elasticity = 1;
1037 ip_rt_gc_min_interval = 0;
1038 rt_garbage_collect();
1039 ip_rt_gc_min_interval = saved_int;
1040 ip_rt_gc_elasticity = saved_elasticity;
1041 goto restart;
1042 }
1043
1044 if (net_ratelimit())
1045 printk(KERN_WARNING "Neighbour table overflow.\n");
1046 rt_drop(rt);
1047 return -ENOBUFS;
1048 }
1049 }
1050
1051 rt->u.dst.rt_next = rt_hash_table[hash].chain;
1052#if RT_CACHE_DEBUG >= 2
1053 if (rt->u.dst.rt_next) {
1054 struct rtable *trt;
1055 printk(KERN_DEBUG "rt_cache @%02x: %u.%u.%u.%u", hash,
1056 NIPQUAD(rt->rt_dst));
1057 for (trt = rt->u.dst.rt_next; trt; trt = trt->u.dst.rt_next)
1058 printk(" . %u.%u.%u.%u", NIPQUAD(trt->rt_dst));
1059 printk("\n");
1060 }
1061#endif
1062 rt_hash_table[hash].chain = rt;
1063 spin_unlock_bh(rt_hash_lock_addr(hash));
1064 *rp = rt;
1065 return 0;
1066}
1067
1068void rt_bind_peer(struct rtable *rt, int create)
1069{
1070 static DEFINE_SPINLOCK(rt_peer_lock);
1071 struct inet_peer *peer;
1072
1073 peer = inet_getpeer(rt->rt_dst, create);
1074
1075 spin_lock_bh(&rt_peer_lock);
1076 if (rt->peer == NULL) {
1077 rt->peer = peer;
1078 peer = NULL;
1079 }
1080 spin_unlock_bh(&rt_peer_lock);
1081 if (peer)
1082 inet_putpeer(peer);
1083}
1084
1085/*
1086 * Peer allocation may fail only in serious out-of-memory conditions. However
1087 * we still can generate some output.
1088 * Random ID selection looks a bit dangerous because we have no chances to
1089 * select ID being unique in a reasonable period of time.
1090 * But broken packet identifier may be better than no packet at all.
1091 */
1092static void ip_select_fb_ident(struct iphdr *iph)
1093{
1094 static DEFINE_SPINLOCK(ip_fb_id_lock);
1095 static u32 ip_fallback_id;
1096 u32 salt;
1097
1098 spin_lock_bh(&ip_fb_id_lock);
1099 salt = secure_ip_id((__force __be32)ip_fallback_id ^ iph->daddr);
1100 iph->id = htons(salt & 0xFFFF);
1101 ip_fallback_id = salt;
1102 spin_unlock_bh(&ip_fb_id_lock);
1103}
1104
1105void __ip_select_ident(struct iphdr *iph, struct dst_entry *dst, int more)
1106{
1107 struct rtable *rt = (struct rtable *) dst;
1108
1109 if (rt) {
1110 if (rt->peer == NULL)
1111 rt_bind_peer(rt, 1);
1112
1113 /* If peer is attached to destination, it is never detached,
1114 so that we need not to grab a lock to dereference it.
1115 */
1116 if (rt->peer) {
1117 iph->id = htons(inet_getid(rt->peer, more));
1118 return;
1119 }
1120 } else
1121 printk(KERN_DEBUG "rt_bind_peer(0) @%p\n",
1122 __builtin_return_address(0));
1123
1124 ip_select_fb_ident(iph);
1125}
1126
1127static void rt_del(unsigned hash, struct rtable *rt)
1128{
1129 struct rtable **rthp;
1130
1131 spin_lock_bh(rt_hash_lock_addr(hash));
1132 ip_rt_put(rt);
1133 for (rthp = &rt_hash_table[hash].chain; *rthp;
1134 rthp = &(*rthp)->u.dst.rt_next)
1135 if (*rthp == rt) {
1136 *rthp = rt->u.dst.rt_next;
1137 rt_free(rt);
1138 break;
1139 }
1140 spin_unlock_bh(rt_hash_lock_addr(hash));
1141}
1142
1143void ip_rt_redirect(__be32 old_gw, __be32 daddr, __be32 new_gw,
1144 __be32 saddr, struct net_device *dev)
1145{
1146 int i, k;
1147 struct in_device *in_dev = in_dev_get(dev);
1148 struct rtable *rth, **rthp;
1149 __be32 skeys[2] = { saddr, 0 };
1150 int ikeys[2] = { dev->ifindex, 0 };
1151 struct netevent_redirect netevent;
1152
1153 if (!in_dev)
1154 return;
1155
1156 if (new_gw == old_gw || !IN_DEV_RX_REDIRECTS(in_dev)
1157 || MULTICAST(new_gw) || BADCLASS(new_gw) || ZERONET(new_gw))
1158 goto reject_redirect;
1159
1160 if (!IN_DEV_SHARED_MEDIA(in_dev)) {
1161 if (!inet_addr_onlink(in_dev, new_gw, old_gw))
1162 goto reject_redirect;
1163 if (IN_DEV_SEC_REDIRECTS(in_dev) && ip_fib_check_default(new_gw, dev))
1164 goto reject_redirect;
1165 } else {
1166 if (inet_addr_type(new_gw) != RTN_UNICAST)
1167 goto reject_redirect;
1168 }
1169
1170 for (i = 0; i < 2; i++) {
1171 for (k = 0; k < 2; k++) {
1172 unsigned hash = rt_hash(daddr, skeys[i], ikeys[k]);
1173
1174 rthp=&rt_hash_table[hash].chain;
1175
1176 rcu_read_lock();
1177 while ((rth = rcu_dereference(*rthp)) != NULL) {
1178 struct rtable *rt;
1179
1180 if (rth->fl.fl4_dst != daddr ||
1181 rth->fl.fl4_src != skeys[i] ||
1182 rth->fl.oif != ikeys[k] ||
1183 rth->fl.iif != 0) {
1184 rthp = &rth->u.dst.rt_next;
1185 continue;
1186 }
1187
1188 if (rth->rt_dst != daddr ||
1189 rth->rt_src != saddr ||
1190 rth->u.dst.error ||
1191 rth->rt_gateway != old_gw ||
1192 rth->u.dst.dev != dev)
1193 break;
1194
1195 dst_hold(&rth->u.dst);
1196 rcu_read_unlock();
1197
1198 rt = dst_alloc(&ipv4_dst_ops);
1199 if (rt == NULL) {
1200 ip_rt_put(rth);
1201 in_dev_put(in_dev);
1202 return;
1203 }
1204
1205 /* Copy all the information. */
1206 *rt = *rth;
1207 INIT_RCU_HEAD(&rt->u.dst.rcu_head);
1208 rt->u.dst.__use = 1;
1209 atomic_set(&rt->u.dst.__refcnt, 1);
1210 rt->u.dst.child = NULL;
1211 if (rt->u.dst.dev)
1212 dev_hold(rt->u.dst.dev);
1213 if (rt->idev)
1214 in_dev_hold(rt->idev);
1215 rt->u.dst.obsolete = 0;
1216 rt->u.dst.lastuse = jiffies;
1217 rt->u.dst.path = &rt->u.dst;
1218 rt->u.dst.neighbour = NULL;
1219 rt->u.dst.hh = NULL;
1220 rt->u.dst.xfrm = NULL;
1221
1222 rt->rt_flags |= RTCF_REDIRECTED;
1223
1224 /* Gateway is different ... */
1225 rt->rt_gateway = new_gw;
1226
1227 /* Redirect received -> path was valid */
1228 dst_confirm(&rth->u.dst);
1229
1230 if (rt->peer)
1231 atomic_inc(&rt->peer->refcnt);
1232
1233 if (arp_bind_neighbour(&rt->u.dst) ||
1234 !(rt->u.dst.neighbour->nud_state &
1235 NUD_VALID)) {
1236 if (rt->u.dst.neighbour)
1237 neigh_event_send(rt->u.dst.neighbour, NULL);
1238 ip_rt_put(rth);
1239 rt_drop(rt);
1240 goto do_next;
1241 }
1242
1243 netevent.old = &rth->u.dst;
1244 netevent.new = &rt->u.dst;
1245 call_netevent_notifiers(NETEVENT_REDIRECT,
1246 &netevent);
1247
1248 rt_del(hash, rth);
1249 if (!rt_intern_hash(hash, rt, &rt))
1250 ip_rt_put(rt);
1251 goto do_next;
1252 }
1253 rcu_read_unlock();
1254 do_next:
1255 ;
1256 }
1257 }
1258 in_dev_put(in_dev);
1259 return;
1260
1261reject_redirect:
1262#ifdef CONFIG_IP_ROUTE_VERBOSE
1263 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
1264 printk(KERN_INFO "Redirect from %u.%u.%u.%u on %s about "
1265 "%u.%u.%u.%u ignored.\n"
1266 " Advised path = %u.%u.%u.%u -> %u.%u.%u.%u\n",
1267 NIPQUAD(old_gw), dev->name, NIPQUAD(new_gw),
1268 NIPQUAD(saddr), NIPQUAD(daddr));
1269#endif
1270 in_dev_put(in_dev);
1271}
1272
1273static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst)
1274{
1275 struct rtable *rt = (struct rtable*)dst;
1276 struct dst_entry *ret = dst;
1277
1278 if (rt) {
1279 if (dst->obsolete) {
1280 ip_rt_put(rt);
1281 ret = NULL;
1282 } else if ((rt->rt_flags & RTCF_REDIRECTED) ||
1283 rt->u.dst.expires) {
1284 unsigned hash = rt_hash(rt->fl.fl4_dst, rt->fl.fl4_src,
1285 rt->fl.oif);
1286#if RT_CACHE_DEBUG >= 1
1287 printk(KERN_DEBUG "ipv4_negative_advice: redirect to "
1288 "%u.%u.%u.%u/%02x dropped\n",
1289 NIPQUAD(rt->rt_dst), rt->fl.fl4_tos);
1290#endif
1291 rt_del(hash, rt);
1292 ret = NULL;
1293 }
1294 }
1295 return ret;
1296}
1297
1298/*
1299 * Algorithm:
1300 * 1. The first ip_rt_redirect_number redirects are sent
1301 * with exponential backoff, then we stop sending them at all,
1302 * assuming that the host ignores our redirects.
1303 * 2. If we did not see packets requiring redirects
1304 * during ip_rt_redirect_silence, we assume that the host
1305 * forgot redirected route and start to send redirects again.
1306 *
1307 * This algorithm is much cheaper and more intelligent than dumb load limiting
1308 * in icmp.c.
1309 *
1310 * NOTE. Do not forget to inhibit load limiting for redirects (redundant)
1311 * and "frag. need" (breaks PMTU discovery) in icmp.c.
1312 */
1313
1314void ip_rt_send_redirect(struct sk_buff *skb)
1315{
1316 struct rtable *rt = (struct rtable*)skb->dst;
1317 struct in_device *in_dev = in_dev_get(rt->u.dst.dev);
1318
1319 if (!in_dev)
1320 return;
1321
1322 if (!IN_DEV_TX_REDIRECTS(in_dev))
1323 goto out;
1324
1325 /* No redirected packets during ip_rt_redirect_silence;
1326 * reset the algorithm.
1327 */
1328 if (time_after(jiffies, rt->u.dst.rate_last + ip_rt_redirect_silence))
1329 rt->u.dst.rate_tokens = 0;
1330
1331 /* Too many ignored redirects; do not send anything
1332 * set u.dst.rate_last to the last seen redirected packet.
1333 */
1334 if (rt->u.dst.rate_tokens >= ip_rt_redirect_number) {
1335 rt->u.dst.rate_last = jiffies;
1336 goto out;
1337 }
1338
1339 /* Check for load limit; set rate_last to the latest sent
1340 * redirect.
1341 */
1342 if (rt->u.dst.rate_tokens == 0 ||
1343 time_after(jiffies,
1344 (rt->u.dst.rate_last +
1345 (ip_rt_redirect_load << rt->u.dst.rate_tokens)))) {
1346 icmp_send(skb, ICMP_REDIRECT, ICMP_REDIR_HOST, rt->rt_gateway);
1347 rt->u.dst.rate_last = jiffies;
1348 ++rt->u.dst.rate_tokens;
1349#ifdef CONFIG_IP_ROUTE_VERBOSE
1350 if (IN_DEV_LOG_MARTIANS(in_dev) &&
1351 rt->u.dst.rate_tokens == ip_rt_redirect_number &&
1352 net_ratelimit())
1353 printk(KERN_WARNING "host %u.%u.%u.%u/if%d ignores "
1354 "redirects for %u.%u.%u.%u to %u.%u.%u.%u.\n",
1355 NIPQUAD(rt->rt_src), rt->rt_iif,
1356 NIPQUAD(rt->rt_dst), NIPQUAD(rt->rt_gateway));
1357#endif
1358 }
1359out:
1360 in_dev_put(in_dev);
1361}
1362
1363static int ip_error(struct sk_buff *skb)
1364{
1365 struct rtable *rt = (struct rtable*)skb->dst;
1366 unsigned long now;
1367 int code;
1368
1369 switch (rt->u.dst.error) {
1370 case EINVAL:
1371 default:
1372 goto out;
1373 case EHOSTUNREACH:
1374 code = ICMP_HOST_UNREACH;
1375 break;
1376 case ENETUNREACH:
1377 code = ICMP_NET_UNREACH;
1378 IP_INC_STATS_BH(IPSTATS_MIB_INNOROUTES);
1379 break;
1380 case EACCES:
1381 code = ICMP_PKT_FILTERED;
1382 break;
1383 }
1384
1385 now = jiffies;
1386 rt->u.dst.rate_tokens += now - rt->u.dst.rate_last;
1387 if (rt->u.dst.rate_tokens > ip_rt_error_burst)
1388 rt->u.dst.rate_tokens = ip_rt_error_burst;
1389 rt->u.dst.rate_last = now;
1390 if (rt->u.dst.rate_tokens >= ip_rt_error_cost) {
1391 rt->u.dst.rate_tokens -= ip_rt_error_cost;
1392 icmp_send(skb, ICMP_DEST_UNREACH, code, 0);
1393 }
1394
1395out: kfree_skb(skb);
1396 return 0;
1397}
1398
1399/*
1400 * The last two values are not from the RFC but
1401 * are needed for AMPRnet AX.25 paths.
1402 */
1403
1404static const unsigned short mtu_plateau[] =
1405{32000, 17914, 8166, 4352, 2002, 1492, 576, 296, 216, 128 };
1406
1407static __inline__ unsigned short guess_mtu(unsigned short old_mtu)
1408{
1409 int i;
1410
1411 for (i = 0; i < ARRAY_SIZE(mtu_plateau); i++)
1412 if (old_mtu > mtu_plateau[i])
1413 return mtu_plateau[i];
1414 return 68;
1415}
1416
1417unsigned short ip_rt_frag_needed(struct iphdr *iph, unsigned short new_mtu)
1418{
1419 int i;
1420 unsigned short old_mtu = ntohs(iph->tot_len);
1421 struct rtable *rth;
1422 __be32 skeys[2] = { iph->saddr, 0, };
1423 __be32 daddr = iph->daddr;
1424 unsigned short est_mtu = 0;
1425
1426 if (ipv4_config.no_pmtu_disc)
1427 return 0;
1428
1429 for (i = 0; i < 2; i++) {
1430 unsigned hash = rt_hash(daddr, skeys[i], 0);
1431
1432 rcu_read_lock();
1433 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
1434 rth = rcu_dereference(rth->u.dst.rt_next)) {
1435 if (rth->fl.fl4_dst == daddr &&
1436 rth->fl.fl4_src == skeys[i] &&
1437 rth->rt_dst == daddr &&
1438 rth->rt_src == iph->saddr &&
1439 rth->fl.iif == 0 &&
1440 !(dst_metric_locked(&rth->u.dst, RTAX_MTU))) {
1441 unsigned short mtu = new_mtu;
1442
1443 if (new_mtu < 68 || new_mtu >= old_mtu) {
1444
1445 /* BSD 4.2 compatibility hack :-( */
1446 if (mtu == 0 &&
1447 old_mtu >= rth->u.dst.metrics[RTAX_MTU-1] &&
1448 old_mtu >= 68 + (iph->ihl << 2))
1449 old_mtu -= iph->ihl << 2;
1450
1451 mtu = guess_mtu(old_mtu);
1452 }
1453 if (mtu <= rth->u.dst.metrics[RTAX_MTU-1]) {
1454 if (mtu < rth->u.dst.metrics[RTAX_MTU-1]) {
1455 dst_confirm(&rth->u.dst);
1456 if (mtu < ip_rt_min_pmtu) {
1457 mtu = ip_rt_min_pmtu;
1458 rth->u.dst.metrics[RTAX_LOCK-1] |=
1459 (1 << RTAX_MTU);
1460 }
1461 rth->u.dst.metrics[RTAX_MTU-1] = mtu;
1462 dst_set_expires(&rth->u.dst,
1463 ip_rt_mtu_expires);
1464 }
1465 est_mtu = mtu;
1466 }
1467 }
1468 }
1469 rcu_read_unlock();
1470 }
1471 return est_mtu ? : new_mtu;
1472}
1473
1474static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu)
1475{
1476 if (dst->metrics[RTAX_MTU-1] > mtu && mtu >= 68 &&
1477 !(dst_metric_locked(dst, RTAX_MTU))) {
1478 if (mtu < ip_rt_min_pmtu) {
1479 mtu = ip_rt_min_pmtu;
1480 dst->metrics[RTAX_LOCK-1] |= (1 << RTAX_MTU);
1481 }
1482 dst->metrics[RTAX_MTU-1] = mtu;
1483 dst_set_expires(dst, ip_rt_mtu_expires);
1484 call_netevent_notifiers(NETEVENT_PMTU_UPDATE, dst);
1485 }
1486}
1487
1488static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie)
1489{
1490 return NULL;
1491}
1492
1493static void ipv4_dst_destroy(struct dst_entry *dst)
1494{
1495 struct rtable *rt = (struct rtable *) dst;
1496 struct inet_peer *peer = rt->peer;
1497 struct in_device *idev = rt->idev;
1498
1499 if (peer) {
1500 rt->peer = NULL;
1501 inet_putpeer(peer);
1502 }
1503
1504 if (idev) {
1505 rt->idev = NULL;
1506 in_dev_put(idev);
1507 }
1508}
1509
1510static void ipv4_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
1511 int how)
1512{
1513 struct rtable *rt = (struct rtable *) dst;
1514 struct in_device *idev = rt->idev;
1515 if (dev != dev->nd_net->loopback_dev && idev && idev->dev == dev) {
1516 struct in_device *loopback_idev =
1517 in_dev_get(dev->nd_net->loopback_dev);
1518 if (loopback_idev) {
1519 rt->idev = loopback_idev;
1520 in_dev_put(idev);
1521 }
1522 }
1523}
1524
1525static void ipv4_link_failure(struct sk_buff *skb)
1526{
1527 struct rtable *rt;
1528
1529 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_HOST_UNREACH, 0);
1530
1531 rt = (struct rtable *) skb->dst;
1532 if (rt)
1533 dst_set_expires(&rt->u.dst, 0);
1534}
1535
1536static int ip_rt_bug(struct sk_buff *skb)
1537{
1538 printk(KERN_DEBUG "ip_rt_bug: %u.%u.%u.%u -> %u.%u.%u.%u, %s\n",
1539 NIPQUAD(ip_hdr(skb)->saddr), NIPQUAD(ip_hdr(skb)->daddr),
1540 skb->dev ? skb->dev->name : "?");
1541 kfree_skb(skb);
1542 return 0;
1543}
1544
1545/*
1546 We do not cache source address of outgoing interface,
1547 because it is used only by IP RR, TS and SRR options,
1548 so that it out of fast path.
1549
1550 BTW remember: "addr" is allowed to be not aligned
1551 in IP options!
1552 */
1553
1554void ip_rt_get_source(u8 *addr, struct rtable *rt)
1555{
1556 __be32 src;
1557 struct fib_result res;
1558
1559 if (rt->fl.iif == 0)
1560 src = rt->rt_src;
1561 else if (fib_lookup(&rt->fl, &res) == 0) {
1562 src = FIB_RES_PREFSRC(res);
1563 fib_res_put(&res);
1564 } else
1565 src = inet_select_addr(rt->u.dst.dev, rt->rt_gateway,
1566 RT_SCOPE_UNIVERSE);
1567 memcpy(addr, &src, 4);
1568}
1569
1570#ifdef CONFIG_NET_CLS_ROUTE
1571static void set_class_tag(struct rtable *rt, u32 tag)
1572{
1573 if (!(rt->u.dst.tclassid & 0xFFFF))
1574 rt->u.dst.tclassid |= tag & 0xFFFF;
1575 if (!(rt->u.dst.tclassid & 0xFFFF0000))
1576 rt->u.dst.tclassid |= tag & 0xFFFF0000;
1577}
1578#endif
1579
1580static void rt_set_nexthop(struct rtable *rt, struct fib_result *res, u32 itag)
1581{
1582 struct fib_info *fi = res->fi;
1583
1584 if (fi) {
1585 if (FIB_RES_GW(*res) &&
1586 FIB_RES_NH(*res).nh_scope == RT_SCOPE_LINK)
1587 rt->rt_gateway = FIB_RES_GW(*res);
1588 memcpy(rt->u.dst.metrics, fi->fib_metrics,
1589 sizeof(rt->u.dst.metrics));
1590 if (fi->fib_mtu == 0) {
1591 rt->u.dst.metrics[RTAX_MTU-1] = rt->u.dst.dev->mtu;
1592 if (rt->u.dst.metrics[RTAX_LOCK-1] & (1 << RTAX_MTU) &&
1593 rt->rt_gateway != rt->rt_dst &&
1594 rt->u.dst.dev->mtu > 576)
1595 rt->u.dst.metrics[RTAX_MTU-1] = 576;
1596 }
1597#ifdef CONFIG_NET_CLS_ROUTE
1598 rt->u.dst.tclassid = FIB_RES_NH(*res).nh_tclassid;
1599#endif
1600 } else
1601 rt->u.dst.metrics[RTAX_MTU-1]= rt->u.dst.dev->mtu;
1602
1603 if (rt->u.dst.metrics[RTAX_HOPLIMIT-1] == 0)
1604 rt->u.dst.metrics[RTAX_HOPLIMIT-1] = sysctl_ip_default_ttl;
1605 if (rt->u.dst.metrics[RTAX_MTU-1] > IP_MAX_MTU)
1606 rt->u.dst.metrics[RTAX_MTU-1] = IP_MAX_MTU;
1607 if (rt->u.dst.metrics[RTAX_ADVMSS-1] == 0)
1608 rt->u.dst.metrics[RTAX_ADVMSS-1] = max_t(unsigned int, rt->u.dst.dev->mtu - 40,
1609 ip_rt_min_advmss);
1610 if (rt->u.dst.metrics[RTAX_ADVMSS-1] > 65535 - 40)
1611 rt->u.dst.metrics[RTAX_ADVMSS-1] = 65535 - 40;
1612
1613#ifdef CONFIG_NET_CLS_ROUTE
1614#ifdef CONFIG_IP_MULTIPLE_TABLES
1615 set_class_tag(rt, fib_rules_tclass(res));
1616#endif
1617 set_class_tag(rt, itag);
1618#endif
1619 rt->rt_type = res->type;
1620}
1621
1622static int ip_route_input_mc(struct sk_buff *skb, __be32 daddr, __be32 saddr,
1623 u8 tos, struct net_device *dev, int our)
1624{
1625 unsigned hash;
1626 struct rtable *rth;
1627 __be32 spec_dst;
1628 struct in_device *in_dev = in_dev_get(dev);
1629 u32 itag = 0;
1630
1631 /* Primary sanity checks. */
1632
1633 if (in_dev == NULL)
1634 return -EINVAL;
1635
1636 if (MULTICAST(saddr) || BADCLASS(saddr) || LOOPBACK(saddr) ||
1637 skb->protocol != htons(ETH_P_IP))
1638 goto e_inval;
1639
1640 if (ZERONET(saddr)) {
1641 if (!LOCAL_MCAST(daddr))
1642 goto e_inval;
1643 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
1644 } else if (fib_validate_source(saddr, 0, tos, 0,
1645 dev, &spec_dst, &itag) < 0)
1646 goto e_inval;
1647
1648 rth = dst_alloc(&ipv4_dst_ops);
1649 if (!rth)
1650 goto e_nobufs;
1651
1652 rth->u.dst.output= ip_rt_bug;
1653
1654 atomic_set(&rth->u.dst.__refcnt, 1);
1655 rth->u.dst.flags= DST_HOST;
1656 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
1657 rth->u.dst.flags |= DST_NOPOLICY;
1658 rth->fl.fl4_dst = daddr;
1659 rth->rt_dst = daddr;
1660 rth->fl.fl4_tos = tos;
1661 rth->fl.mark = skb->mark;
1662 rth->fl.fl4_src = saddr;
1663 rth->rt_src = saddr;
1664#ifdef CONFIG_NET_CLS_ROUTE
1665 rth->u.dst.tclassid = itag;
1666#endif
1667 rth->rt_iif =
1668 rth->fl.iif = dev->ifindex;
1669 rth->u.dst.dev = init_net.loopback_dev;
1670 dev_hold(rth->u.dst.dev);
1671 rth->idev = in_dev_get(rth->u.dst.dev);
1672 rth->fl.oif = 0;
1673 rth->rt_gateway = daddr;
1674 rth->rt_spec_dst= spec_dst;
1675 rth->rt_type = RTN_MULTICAST;
1676 rth->rt_flags = RTCF_MULTICAST;
1677 if (our) {
1678 rth->u.dst.input= ip_local_deliver;
1679 rth->rt_flags |= RTCF_LOCAL;
1680 }
1681
1682#ifdef CONFIG_IP_MROUTE
1683 if (!LOCAL_MCAST(daddr) && IN_DEV_MFORWARD(in_dev))
1684 rth->u.dst.input = ip_mr_input;
1685#endif
1686 RT_CACHE_STAT_INC(in_slow_mc);
1687
1688 in_dev_put(in_dev);
1689 hash = rt_hash(daddr, saddr, dev->ifindex);
1690 return rt_intern_hash(hash, rth, (struct rtable**) &skb->dst);
1691
1692e_nobufs:
1693 in_dev_put(in_dev);
1694 return -ENOBUFS;
1695
1696e_inval:
1697 in_dev_put(in_dev);
1698 return -EINVAL;
1699}
1700
1701
1702static void ip_handle_martian_source(struct net_device *dev,
1703 struct in_device *in_dev,
1704 struct sk_buff *skb,
1705 __be32 daddr,
1706 __be32 saddr)
1707{
1708 RT_CACHE_STAT_INC(in_martian_src);
1709#ifdef CONFIG_IP_ROUTE_VERBOSE
1710 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit()) {
1711 /*
1712 * RFC1812 recommendation, if source is martian,
1713 * the only hint is MAC header.
1714 */
1715 printk(KERN_WARNING "martian source %u.%u.%u.%u from "
1716 "%u.%u.%u.%u, on dev %s\n",
1717 NIPQUAD(daddr), NIPQUAD(saddr), dev->name);
1718 if (dev->hard_header_len && skb_mac_header_was_set(skb)) {
1719 int i;
1720 const unsigned char *p = skb_mac_header(skb);
1721 printk(KERN_WARNING "ll header: ");
1722 for (i = 0; i < dev->hard_header_len; i++, p++) {
1723 printk("%02x", *p);
1724 if (i < (dev->hard_header_len - 1))
1725 printk(":");
1726 }
1727 printk("\n");
1728 }
1729 }
1730#endif
1731}
1732
1733static inline int __mkroute_input(struct sk_buff *skb,
1734 struct fib_result* res,
1735 struct in_device *in_dev,
1736 __be32 daddr, __be32 saddr, u32 tos,
1737 struct rtable **result)
1738{
1739
1740 struct rtable *rth;
1741 int err;
1742 struct in_device *out_dev;
1743 unsigned flags = 0;
1744 __be32 spec_dst;
1745 u32 itag;
1746
1747 /* get a working reference to the output device */
1748 out_dev = in_dev_get(FIB_RES_DEV(*res));
1749 if (out_dev == NULL) {
1750 if (net_ratelimit())
1751 printk(KERN_CRIT "Bug in ip_route_input" \
1752 "_slow(). Please, report\n");
1753 return -EINVAL;
1754 }
1755
1756
1757 err = fib_validate_source(saddr, daddr, tos, FIB_RES_OIF(*res),
1758 in_dev->dev, &spec_dst, &itag);
1759 if (err < 0) {
1760 ip_handle_martian_source(in_dev->dev, in_dev, skb, daddr,
1761 saddr);
1762
1763 err = -EINVAL;
1764 goto cleanup;
1765 }
1766
1767 if (err)
1768 flags |= RTCF_DIRECTSRC;
1769
1770 if (out_dev == in_dev && err && !(flags & (RTCF_NAT | RTCF_MASQ)) &&
1771 (IN_DEV_SHARED_MEDIA(out_dev) ||
1772 inet_addr_onlink(out_dev, saddr, FIB_RES_GW(*res))))
1773 flags |= RTCF_DOREDIRECT;
1774
1775 if (skb->protocol != htons(ETH_P_IP)) {
1776 /* Not IP (i.e. ARP). Do not create route, if it is
1777 * invalid for proxy arp. DNAT routes are always valid.
1778 */
1779 if (out_dev == in_dev && !(flags & RTCF_DNAT)) {
1780 err = -EINVAL;
1781 goto cleanup;
1782 }
1783 }
1784
1785
1786 rth = dst_alloc(&ipv4_dst_ops);
1787 if (!rth) {
1788 err = -ENOBUFS;
1789 goto cleanup;
1790 }
1791
1792 atomic_set(&rth->u.dst.__refcnt, 1);
1793 rth->u.dst.flags= DST_HOST;
1794 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
1795 rth->u.dst.flags |= DST_NOPOLICY;
1796 if (IN_DEV_CONF_GET(out_dev, NOXFRM))
1797 rth->u.dst.flags |= DST_NOXFRM;
1798 rth->fl.fl4_dst = daddr;
1799 rth->rt_dst = daddr;
1800 rth->fl.fl4_tos = tos;
1801 rth->fl.mark = skb->mark;
1802 rth->fl.fl4_src = saddr;
1803 rth->rt_src = saddr;
1804 rth->rt_gateway = daddr;
1805 rth->rt_iif =
1806 rth->fl.iif = in_dev->dev->ifindex;
1807 rth->u.dst.dev = (out_dev)->dev;
1808 dev_hold(rth->u.dst.dev);
1809 rth->idev = in_dev_get(rth->u.dst.dev);
1810 rth->fl.oif = 0;
1811 rth->rt_spec_dst= spec_dst;
1812
1813 rth->u.dst.input = ip_forward;
1814 rth->u.dst.output = ip_output;
1815
1816 rt_set_nexthop(rth, res, itag);
1817
1818 rth->rt_flags = flags;
1819
1820 *result = rth;
1821 err = 0;
1822 cleanup:
1823 /* release the working reference to the output device */
1824 in_dev_put(out_dev);
1825 return err;
1826}
1827
1828static inline int ip_mkroute_input(struct sk_buff *skb,
1829 struct fib_result* res,
1830 const struct flowi *fl,
1831 struct in_device *in_dev,
1832 __be32 daddr, __be32 saddr, u32 tos)
1833{
1834 struct rtable* rth = NULL;
1835 int err;
1836 unsigned hash;
1837
1838#ifdef CONFIG_IP_ROUTE_MULTIPATH
1839 if (res->fi && res->fi->fib_nhs > 1 && fl->oif == 0)
1840 fib_select_multipath(fl, res);
1841#endif
1842
1843 /* create a routing cache entry */
1844 err = __mkroute_input(skb, res, in_dev, daddr, saddr, tos, &rth);
1845 if (err)
1846 return err;
1847
1848 /* put it into the cache */
1849 hash = rt_hash(daddr, saddr, fl->iif);
1850 return rt_intern_hash(hash, rth, (struct rtable**)&skb->dst);
1851}
1852
1853/*
1854 * NOTE. We drop all the packets that has local source
1855 * addresses, because every properly looped back packet
1856 * must have correct destination already attached by output routine.
1857 *
1858 * Such approach solves two big problems:
1859 * 1. Not simplex devices are handled properly.
1860 * 2. IP spoofing attempts are filtered with 100% of guarantee.
1861 */
1862
1863static int ip_route_input_slow(struct sk_buff *skb, __be32 daddr, __be32 saddr,
1864 u8 tos, struct net_device *dev)
1865{
1866 struct fib_result res;
1867 struct in_device *in_dev = in_dev_get(dev);
1868 struct flowi fl = { .nl_u = { .ip4_u =
1869 { .daddr = daddr,
1870 .saddr = saddr,
1871 .tos = tos,
1872 .scope = RT_SCOPE_UNIVERSE,
1873 } },
1874 .mark = skb->mark,
1875 .iif = dev->ifindex };
1876 unsigned flags = 0;
1877 u32 itag = 0;
1878 struct rtable * rth;
1879 unsigned hash;
1880 __be32 spec_dst;
1881 int err = -EINVAL;
1882 int free_res = 0;
1883
1884 /* IP on this device is disabled. */
1885
1886 if (!in_dev)
1887 goto out;
1888
1889 /* Check for the most weird martians, which can be not detected
1890 by fib_lookup.
1891 */
1892
1893 if (MULTICAST(saddr) || BADCLASS(saddr) || LOOPBACK(saddr))
1894 goto martian_source;
1895
1896 if (daddr == htonl(0xFFFFFFFF) || (saddr == 0 && daddr == 0))
1897 goto brd_input;
1898
1899 /* Accept zero addresses only to limited broadcast;
1900 * I even do not know to fix it or not. Waiting for complains :-)
1901 */
1902 if (ZERONET(saddr))
1903 goto martian_source;
1904
1905 if (BADCLASS(daddr) || ZERONET(daddr) || LOOPBACK(daddr))
1906 goto martian_destination;
1907
1908 /*
1909 * Now we are ready to route packet.
1910 */
1911 if ((err = fib_lookup(&fl, &res)) != 0) {
1912 if (!IN_DEV_FORWARD(in_dev))
1913 goto e_hostunreach;
1914 goto no_route;
1915 }
1916 free_res = 1;
1917
1918 RT_CACHE_STAT_INC(in_slow_tot);
1919
1920 if (res.type == RTN_BROADCAST)
1921 goto brd_input;
1922
1923 if (res.type == RTN_LOCAL) {
1924 int result;
1925 result = fib_validate_source(saddr, daddr, tos,
1926 init_net.loopback_dev->ifindex,
1927 dev, &spec_dst, &itag);
1928 if (result < 0)
1929 goto martian_source;
1930 if (result)
1931 flags |= RTCF_DIRECTSRC;
1932 spec_dst = daddr;
1933 goto local_input;
1934 }
1935
1936 if (!IN_DEV_FORWARD(in_dev))
1937 goto e_hostunreach;
1938 if (res.type != RTN_UNICAST)
1939 goto martian_destination;
1940
1941 err = ip_mkroute_input(skb, &res, &fl, in_dev, daddr, saddr, tos);
1942done:
1943 in_dev_put(in_dev);
1944 if (free_res)
1945 fib_res_put(&res);
1946out: return err;
1947
1948brd_input:
1949 if (skb->protocol != htons(ETH_P_IP))
1950 goto e_inval;
1951
1952 if (ZERONET(saddr))
1953 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
1954 else {
1955 err = fib_validate_source(saddr, 0, tos, 0, dev, &spec_dst,
1956 &itag);
1957 if (err < 0)
1958 goto martian_source;
1959 if (err)
1960 flags |= RTCF_DIRECTSRC;
1961 }
1962 flags |= RTCF_BROADCAST;
1963 res.type = RTN_BROADCAST;
1964 RT_CACHE_STAT_INC(in_brd);
1965
1966local_input:
1967 rth = dst_alloc(&ipv4_dst_ops);
1968 if (!rth)
1969 goto e_nobufs;
1970
1971 rth->u.dst.output= ip_rt_bug;
1972
1973 atomic_set(&rth->u.dst.__refcnt, 1);
1974 rth->u.dst.flags= DST_HOST;
1975 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
1976 rth->u.dst.flags |= DST_NOPOLICY;
1977 rth->fl.fl4_dst = daddr;
1978 rth->rt_dst = daddr;
1979 rth->fl.fl4_tos = tos;
1980 rth->fl.mark = skb->mark;
1981 rth->fl.fl4_src = saddr;
1982 rth->rt_src = saddr;
1983#ifdef CONFIG_NET_CLS_ROUTE
1984 rth->u.dst.tclassid = itag;
1985#endif
1986 rth->rt_iif =
1987 rth->fl.iif = dev->ifindex;
1988 rth->u.dst.dev = init_net.loopback_dev;
1989 dev_hold(rth->u.dst.dev);
1990 rth->idev = in_dev_get(rth->u.dst.dev);
1991 rth->rt_gateway = daddr;
1992 rth->rt_spec_dst= spec_dst;
1993 rth->u.dst.input= ip_local_deliver;
1994 rth->rt_flags = flags|RTCF_LOCAL;
1995 if (res.type == RTN_UNREACHABLE) {
1996 rth->u.dst.input= ip_error;
1997 rth->u.dst.error= -err;
1998 rth->rt_flags &= ~RTCF_LOCAL;
1999 }
2000 rth->rt_type = res.type;
2001 hash = rt_hash(daddr, saddr, fl.iif);
2002 err = rt_intern_hash(hash, rth, (struct rtable**)&skb->dst);
2003 goto done;
2004
2005no_route:
2006 RT_CACHE_STAT_INC(in_no_route);
2007 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_UNIVERSE);
2008 res.type = RTN_UNREACHABLE;
2009 if (err == -ESRCH)
2010 err = -ENETUNREACH;
2011 goto local_input;
2012
2013 /*
2014 * Do not cache martian addresses: they should be logged (RFC1812)
2015 */
2016martian_destination:
2017 RT_CACHE_STAT_INC(in_martian_dst);
2018#ifdef CONFIG_IP_ROUTE_VERBOSE
2019 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
2020 printk(KERN_WARNING "martian destination %u.%u.%u.%u from "
2021 "%u.%u.%u.%u, dev %s\n",
2022 NIPQUAD(daddr), NIPQUAD(saddr), dev->name);
2023#endif
2024
2025e_hostunreach:
2026 err = -EHOSTUNREACH;
2027 goto done;
2028
2029e_inval:
2030 err = -EINVAL;
2031 goto done;
2032
2033e_nobufs:
2034 err = -ENOBUFS;
2035 goto done;
2036
2037martian_source:
2038 ip_handle_martian_source(dev, in_dev, skb, daddr, saddr);
2039 goto e_inval;
2040}
2041
2042int ip_route_input(struct sk_buff *skb, __be32 daddr, __be32 saddr,
2043 u8 tos, struct net_device *dev)
2044{
2045 struct rtable * rth;
2046 unsigned hash;
2047 int iif = dev->ifindex;
2048
2049 tos &= IPTOS_RT_MASK;
2050 hash = rt_hash(daddr, saddr, iif);
2051
2052 rcu_read_lock();
2053 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
2054 rth = rcu_dereference(rth->u.dst.rt_next)) {
2055 if (rth->fl.fl4_dst == daddr &&
2056 rth->fl.fl4_src == saddr &&
2057 rth->fl.iif == iif &&
2058 rth->fl.oif == 0 &&
2059 rth->fl.mark == skb->mark &&
2060 rth->fl.fl4_tos == tos) {
2061 dst_use(&rth->u.dst, jiffies);
2062 RT_CACHE_STAT_INC(in_hit);
2063 rcu_read_unlock();
2064 skb->dst = (struct dst_entry*)rth;
2065 return 0;
2066 }
2067 RT_CACHE_STAT_INC(in_hlist_search);
2068 }
2069 rcu_read_unlock();
2070
2071 /* Multicast recognition logic is moved from route cache to here.
2072 The problem was that too many Ethernet cards have broken/missing
2073 hardware multicast filters :-( As result the host on multicasting
2074 network acquires a lot of useless route cache entries, sort of
2075 SDR messages from all the world. Now we try to get rid of them.
2076 Really, provided software IP multicast filter is organized
2077 reasonably (at least, hashed), it does not result in a slowdown
2078 comparing with route cache reject entries.
2079 Note, that multicast routers are not affected, because
2080 route cache entry is created eventually.
2081 */
2082 if (MULTICAST(daddr)) {
2083 struct in_device *in_dev;
2084
2085 rcu_read_lock();
2086 if ((in_dev = __in_dev_get_rcu(dev)) != NULL) {
2087 int our = ip_check_mc(in_dev, daddr, saddr,
2088 ip_hdr(skb)->protocol);
2089 if (our
2090#ifdef CONFIG_IP_MROUTE
2091 || (!LOCAL_MCAST(daddr) && IN_DEV_MFORWARD(in_dev))
2092#endif
2093 ) {
2094 rcu_read_unlock();
2095 return ip_route_input_mc(skb, daddr, saddr,
2096 tos, dev, our);
2097 }
2098 }
2099 rcu_read_unlock();
2100 return -EINVAL;
2101 }
2102 return ip_route_input_slow(skb, daddr, saddr, tos, dev);
2103}
2104
2105static inline int __mkroute_output(struct rtable **result,
2106 struct fib_result* res,
2107 const struct flowi *fl,
2108 const struct flowi *oldflp,
2109 struct net_device *dev_out,
2110 unsigned flags)
2111{
2112 struct rtable *rth;
2113 struct in_device *in_dev;
2114 u32 tos = RT_FL_TOS(oldflp);
2115 int err = 0;
2116
2117 if (LOOPBACK(fl->fl4_src) && !(dev_out->flags&IFF_LOOPBACK))
2118 return -EINVAL;
2119
2120 if (fl->fl4_dst == htonl(0xFFFFFFFF))
2121 res->type = RTN_BROADCAST;
2122 else if (MULTICAST(fl->fl4_dst))
2123 res->type = RTN_MULTICAST;
2124 else if (BADCLASS(fl->fl4_dst) || ZERONET(fl->fl4_dst))
2125 return -EINVAL;
2126
2127 if (dev_out->flags & IFF_LOOPBACK)
2128 flags |= RTCF_LOCAL;
2129
2130 /* get work reference to inet device */
2131 in_dev = in_dev_get(dev_out);
2132 if (!in_dev)
2133 return -EINVAL;
2134
2135 if (res->type == RTN_BROADCAST) {
2136 flags |= RTCF_BROADCAST | RTCF_LOCAL;
2137 if (res->fi) {
2138 fib_info_put(res->fi);
2139 res->fi = NULL;
2140 }
2141 } else if (res->type == RTN_MULTICAST) {
2142 flags |= RTCF_MULTICAST|RTCF_LOCAL;
2143 if (!ip_check_mc(in_dev, oldflp->fl4_dst, oldflp->fl4_src,
2144 oldflp->proto))
2145 flags &= ~RTCF_LOCAL;
2146 /* If multicast route do not exist use
2147 default one, but do not gateway in this case.
2148 Yes, it is hack.
2149 */
2150 if (res->fi && res->prefixlen < 4) {
2151 fib_info_put(res->fi);
2152 res->fi = NULL;
2153 }
2154 }
2155
2156
2157 rth = dst_alloc(&ipv4_dst_ops);
2158 if (!rth) {
2159 err = -ENOBUFS;
2160 goto cleanup;
2161 }
2162
2163 atomic_set(&rth->u.dst.__refcnt, 1);
2164 rth->u.dst.flags= DST_HOST;
2165 if (IN_DEV_CONF_GET(in_dev, NOXFRM))
2166 rth->u.dst.flags |= DST_NOXFRM;
2167 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
2168 rth->u.dst.flags |= DST_NOPOLICY;
2169
2170 rth->fl.fl4_dst = oldflp->fl4_dst;
2171 rth->fl.fl4_tos = tos;
2172 rth->fl.fl4_src = oldflp->fl4_src;
2173 rth->fl.oif = oldflp->oif;
2174 rth->fl.mark = oldflp->mark;
2175 rth->rt_dst = fl->fl4_dst;
2176 rth->rt_src = fl->fl4_src;
2177 rth->rt_iif = oldflp->oif ? : dev_out->ifindex;
2178 /* get references to the devices that are to be hold by the routing
2179 cache entry */
2180 rth->u.dst.dev = dev_out;
2181 dev_hold(dev_out);
2182 rth->idev = in_dev_get(dev_out);
2183 rth->rt_gateway = fl->fl4_dst;
2184 rth->rt_spec_dst= fl->fl4_src;
2185
2186 rth->u.dst.output=ip_output;
2187
2188 RT_CACHE_STAT_INC(out_slow_tot);
2189
2190 if (flags & RTCF_LOCAL) {
2191 rth->u.dst.input = ip_local_deliver;
2192 rth->rt_spec_dst = fl->fl4_dst;
2193 }
2194 if (flags & (RTCF_BROADCAST | RTCF_MULTICAST)) {
2195 rth->rt_spec_dst = fl->fl4_src;
2196 if (flags & RTCF_LOCAL &&
2197 !(dev_out->flags & IFF_LOOPBACK)) {
2198 rth->u.dst.output = ip_mc_output;
2199 RT_CACHE_STAT_INC(out_slow_mc);
2200 }
2201#ifdef CONFIG_IP_MROUTE
2202 if (res->type == RTN_MULTICAST) {
2203 if (IN_DEV_MFORWARD(in_dev) &&
2204 !LOCAL_MCAST(oldflp->fl4_dst)) {
2205 rth->u.dst.input = ip_mr_input;
2206 rth->u.dst.output = ip_mc_output;
2207 }
2208 }
2209#endif
2210 }
2211
2212 rt_set_nexthop(rth, res, 0);
2213
2214 rth->rt_flags = flags;
2215
2216 *result = rth;
2217 cleanup:
2218 /* release work reference to inet device */
2219 in_dev_put(in_dev);
2220
2221 return err;
2222}
2223
2224static inline int ip_mkroute_output(struct rtable **rp,
2225 struct fib_result* res,
2226 const struct flowi *fl,
2227 const struct flowi *oldflp,
2228 struct net_device *dev_out,
2229 unsigned flags)
2230{
2231 struct rtable *rth = NULL;
2232 int err = __mkroute_output(&rth, res, fl, oldflp, dev_out, flags);
2233 unsigned hash;
2234 if (err == 0) {
2235 hash = rt_hash(oldflp->fl4_dst, oldflp->fl4_src, oldflp->oif);
2236 err = rt_intern_hash(hash, rth, rp);
2237 }
2238
2239 return err;
2240}
2241
2242/*
2243 * Major route resolver routine.
2244 */
2245
2246static int ip_route_output_slow(struct rtable **rp, const struct flowi *oldflp)
2247{
2248 u32 tos = RT_FL_TOS(oldflp);
2249 struct flowi fl = { .nl_u = { .ip4_u =
2250 { .daddr = oldflp->fl4_dst,
2251 .saddr = oldflp->fl4_src,
2252 .tos = tos & IPTOS_RT_MASK,
2253 .scope = ((tos & RTO_ONLINK) ?
2254 RT_SCOPE_LINK :
2255 RT_SCOPE_UNIVERSE),
2256 } },
2257 .mark = oldflp->mark,
2258 .iif = init_net.loopback_dev->ifindex,
2259 .oif = oldflp->oif };
2260 struct fib_result res;
2261 unsigned flags = 0;
2262 struct net_device *dev_out = NULL;
2263 int free_res = 0;
2264 int err;
2265
2266
2267 res.fi = NULL;
2268#ifdef CONFIG_IP_MULTIPLE_TABLES
2269 res.r = NULL;
2270#endif
2271
2272 if (oldflp->fl4_src) {
2273 err = -EINVAL;
2274 if (MULTICAST(oldflp->fl4_src) ||
2275 BADCLASS(oldflp->fl4_src) ||
2276 ZERONET(oldflp->fl4_src))
2277 goto out;
2278
2279 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2280 dev_out = ip_dev_find(oldflp->fl4_src);
2281 if (dev_out == NULL)
2282 goto out;
2283
2284 /* I removed check for oif == dev_out->oif here.
2285 It was wrong for two reasons:
2286 1. ip_dev_find(saddr) can return wrong iface, if saddr is
2287 assigned to multiple interfaces.
2288 2. Moreover, we are allowed to send packets with saddr
2289 of another iface. --ANK
2290 */
2291
2292 if (oldflp->oif == 0
2293 && (MULTICAST(oldflp->fl4_dst) || oldflp->fl4_dst == htonl(0xFFFFFFFF))) {
2294 /* Special hack: user can direct multicasts
2295 and limited broadcast via necessary interface
2296 without fiddling with IP_MULTICAST_IF or IP_PKTINFO.
2297 This hack is not just for fun, it allows
2298 vic,vat and friends to work.
2299 They bind socket to loopback, set ttl to zero
2300 and expect that it will work.
2301 From the viewpoint of routing cache they are broken,
2302 because we are not allowed to build multicast path
2303 with loopback source addr (look, routing cache
2304 cannot know, that ttl is zero, so that packet
2305 will not leave this host and route is valid).
2306 Luckily, this hack is good workaround.
2307 */
2308
2309 fl.oif = dev_out->ifindex;
2310 goto make_route;
2311 }
2312 if (dev_out)
2313 dev_put(dev_out);
2314 dev_out = NULL;
2315 }
2316
2317
2318 if (oldflp->oif) {
2319 dev_out = dev_get_by_index(&init_net, oldflp->oif);
2320 err = -ENODEV;
2321 if (dev_out == NULL)
2322 goto out;
2323
2324 /* RACE: Check return value of inet_select_addr instead. */
2325 if (__in_dev_get_rtnl(dev_out) == NULL) {
2326 dev_put(dev_out);
2327 goto out; /* Wrong error code */
2328 }
2329
2330 if (LOCAL_MCAST(oldflp->fl4_dst) || oldflp->fl4_dst == htonl(0xFFFFFFFF)) {
2331 if (!fl.fl4_src)
2332 fl.fl4_src = inet_select_addr(dev_out, 0,
2333 RT_SCOPE_LINK);
2334 goto make_route;
2335 }
2336 if (!fl.fl4_src) {
2337 if (MULTICAST(oldflp->fl4_dst))
2338 fl.fl4_src = inet_select_addr(dev_out, 0,
2339 fl.fl4_scope);
2340 else if (!oldflp->fl4_dst)
2341 fl.fl4_src = inet_select_addr(dev_out, 0,
2342 RT_SCOPE_HOST);
2343 }
2344 }
2345
2346 if (!fl.fl4_dst) {
2347 fl.fl4_dst = fl.fl4_src;
2348 if (!fl.fl4_dst)
2349 fl.fl4_dst = fl.fl4_src = htonl(INADDR_LOOPBACK);
2350 if (dev_out)
2351 dev_put(dev_out);
2352 dev_out = init_net.loopback_dev;
2353 dev_hold(dev_out);
2354 fl.oif = init_net.loopback_dev->ifindex;
2355 res.type = RTN_LOCAL;
2356 flags |= RTCF_LOCAL;
2357 goto make_route;
2358 }
2359
2360 if (fib_lookup(&fl, &res)) {
2361 res.fi = NULL;
2362 if (oldflp->oif) {
2363 /* Apparently, routing tables are wrong. Assume,
2364 that the destination is on link.
2365
2366 WHY? DW.
2367 Because we are allowed to send to iface
2368 even if it has NO routes and NO assigned
2369 addresses. When oif is specified, routing
2370 tables are looked up with only one purpose:
2371 to catch if destination is gatewayed, rather than
2372 direct. Moreover, if MSG_DONTROUTE is set,
2373 we send packet, ignoring both routing tables
2374 and ifaddr state. --ANK
2375
2376
2377 We could make it even if oif is unknown,
2378 likely IPv6, but we do not.
2379 */
2380
2381 if (fl.fl4_src == 0)
2382 fl.fl4_src = inet_select_addr(dev_out, 0,
2383 RT_SCOPE_LINK);
2384 res.type = RTN_UNICAST;
2385 goto make_route;
2386 }
2387 if (dev_out)
2388 dev_put(dev_out);
2389 err = -ENETUNREACH;
2390 goto out;
2391 }
2392 free_res = 1;
2393
2394 if (res.type == RTN_LOCAL) {
2395 if (!fl.fl4_src)
2396 fl.fl4_src = fl.fl4_dst;
2397 if (dev_out)
2398 dev_put(dev_out);
2399 dev_out = init_net.loopback_dev;
2400 dev_hold(dev_out);
2401 fl.oif = dev_out->ifindex;
2402 if (res.fi)
2403 fib_info_put(res.fi);
2404 res.fi = NULL;
2405 flags |= RTCF_LOCAL;
2406 goto make_route;
2407 }
2408
2409#ifdef CONFIG_IP_ROUTE_MULTIPATH
2410 if (res.fi->fib_nhs > 1 && fl.oif == 0)
2411 fib_select_multipath(&fl, &res);
2412 else
2413#endif
2414 if (!res.prefixlen && res.type == RTN_UNICAST && !fl.oif)
2415 fib_select_default(&fl, &res);
2416
2417 if (!fl.fl4_src)
2418 fl.fl4_src = FIB_RES_PREFSRC(res);
2419
2420 if (dev_out)
2421 dev_put(dev_out);
2422 dev_out = FIB_RES_DEV(res);
2423 dev_hold(dev_out);
2424 fl.oif = dev_out->ifindex;
2425
2426
2427make_route:
2428 err = ip_mkroute_output(rp, &res, &fl, oldflp, dev_out, flags);
2429
2430
2431 if (free_res)
2432 fib_res_put(&res);
2433 if (dev_out)
2434 dev_put(dev_out);
2435out: return err;
2436}
2437
2438int __ip_route_output_key(struct rtable **rp, const struct flowi *flp)
2439{
2440 unsigned hash;
2441 struct rtable *rth;
2442
2443 hash = rt_hash(flp->fl4_dst, flp->fl4_src, flp->oif);
2444
2445 rcu_read_lock_bh();
2446 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
2447 rth = rcu_dereference(rth->u.dst.rt_next)) {
2448 if (rth->fl.fl4_dst == flp->fl4_dst &&
2449 rth->fl.fl4_src == flp->fl4_src &&
2450 rth->fl.iif == 0 &&
2451 rth->fl.oif == flp->oif &&
2452 rth->fl.mark == flp->mark &&
2453 !((rth->fl.fl4_tos ^ flp->fl4_tos) &
2454 (IPTOS_RT_MASK | RTO_ONLINK))) {
2455 dst_use(&rth->u.dst, jiffies);
2456 RT_CACHE_STAT_INC(out_hit);
2457 rcu_read_unlock_bh();
2458 *rp = rth;
2459 return 0;
2460 }
2461 RT_CACHE_STAT_INC(out_hlist_search);
2462 }
2463 rcu_read_unlock_bh();
2464
2465 return ip_route_output_slow(rp, flp);
2466}
2467
2468EXPORT_SYMBOL_GPL(__ip_route_output_key);
2469
2470static void ipv4_rt_blackhole_update_pmtu(struct dst_entry *dst, u32 mtu)
2471{
2472}
2473
2474static struct dst_ops ipv4_dst_blackhole_ops = {
2475 .family = AF_INET,
2476 .protocol = __constant_htons(ETH_P_IP),
2477 .destroy = ipv4_dst_destroy,
2478 .check = ipv4_dst_check,
2479 .update_pmtu = ipv4_rt_blackhole_update_pmtu,
2480 .entry_size = sizeof(struct rtable),
2481};
2482
2483
2484static int ipv4_dst_blackhole(struct rtable **rp, struct flowi *flp, struct sock *sk)
2485{
2486 struct rtable *ort = *rp;
2487 struct rtable *rt = (struct rtable *)
2488 dst_alloc(&ipv4_dst_blackhole_ops);
2489
2490 if (rt) {
2491 struct dst_entry *new = &rt->u.dst;
2492
2493 atomic_set(&new->__refcnt, 1);
2494 new->__use = 1;
2495 new->input = dst_discard;
2496 new->output = dst_discard;
2497 memcpy(new->metrics, ort->u.dst.metrics, RTAX_MAX*sizeof(u32));
2498
2499 new->dev = ort->u.dst.dev;
2500 if (new->dev)
2501 dev_hold(new->dev);
2502
2503 rt->fl = ort->fl;
2504
2505 rt->idev = ort->idev;
2506 if (rt->idev)
2507 in_dev_hold(rt->idev);
2508 rt->rt_flags = ort->rt_flags;
2509 rt->rt_type = ort->rt_type;
2510 rt->rt_dst = ort->rt_dst;
2511 rt->rt_src = ort->rt_src;
2512 rt->rt_iif = ort->rt_iif;
2513 rt->rt_gateway = ort->rt_gateway;
2514 rt->rt_spec_dst = ort->rt_spec_dst;
2515 rt->peer = ort->peer;
2516 if (rt->peer)
2517 atomic_inc(&rt->peer->refcnt);
2518
2519 dst_free(new);
2520 }
2521
2522 dst_release(&(*rp)->u.dst);
2523 *rp = rt;
2524 return (rt ? 0 : -ENOMEM);
2525}
2526
2527int ip_route_output_flow(struct rtable **rp, struct flowi *flp, struct sock *sk, int flags)
2528{
2529 int err;
2530
2531 if ((err = __ip_route_output_key(rp, flp)) != 0)
2532 return err;
2533
2534 if (flp->proto) {
2535 if (!flp->fl4_src)
2536 flp->fl4_src = (*rp)->rt_src;
2537 if (!flp->fl4_dst)
2538 flp->fl4_dst = (*rp)->rt_dst;
2539 err = __xfrm_lookup((struct dst_entry **)rp, flp, sk, flags);
2540 if (err == -EREMOTE)
2541 err = ipv4_dst_blackhole(rp, flp, sk);
2542
2543 return err;
2544 }
2545
2546 return 0;
2547}
2548
2549EXPORT_SYMBOL_GPL(ip_route_output_flow);
2550
2551int ip_route_output_key(struct rtable **rp, struct flowi *flp)
2552{
2553 return ip_route_output_flow(rp, flp, NULL, 0);
2554}
2555
2556static int rt_fill_info(struct sk_buff *skb, u32 pid, u32 seq, int event,
2557 int nowait, unsigned int flags)
2558{
2559 struct rtable *rt = (struct rtable*)skb->dst;
2560 struct rtmsg *r;
2561 struct nlmsghdr *nlh;
2562 long expires;
2563 u32 id = 0, ts = 0, tsage = 0, error;
2564
2565 nlh = nlmsg_put(skb, pid, seq, event, sizeof(*r), flags);
2566 if (nlh == NULL)
2567 return -EMSGSIZE;
2568
2569 r = nlmsg_data(nlh);
2570 r->rtm_family = AF_INET;
2571 r->rtm_dst_len = 32;
2572 r->rtm_src_len = 0;
2573 r->rtm_tos = rt->fl.fl4_tos;
2574 r->rtm_table = RT_TABLE_MAIN;
2575 NLA_PUT_U32(skb, RTA_TABLE, RT_TABLE_MAIN);
2576 r->rtm_type = rt->rt_type;
2577 r->rtm_scope = RT_SCOPE_UNIVERSE;
2578 r->rtm_protocol = RTPROT_UNSPEC;
2579 r->rtm_flags = (rt->rt_flags & ~0xFFFF) | RTM_F_CLONED;
2580 if (rt->rt_flags & RTCF_NOTIFY)
2581 r->rtm_flags |= RTM_F_NOTIFY;
2582
2583 NLA_PUT_BE32(skb, RTA_DST, rt->rt_dst);
2584
2585 if (rt->fl.fl4_src) {
2586 r->rtm_src_len = 32;
2587 NLA_PUT_BE32(skb, RTA_SRC, rt->fl.fl4_src);
2588 }
2589 if (rt->u.dst.dev)
2590 NLA_PUT_U32(skb, RTA_OIF, rt->u.dst.dev->ifindex);
2591#ifdef CONFIG_NET_CLS_ROUTE
2592 if (rt->u.dst.tclassid)
2593 NLA_PUT_U32(skb, RTA_FLOW, rt->u.dst.tclassid);
2594#endif
2595 if (rt->fl.iif)
2596 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_spec_dst);
2597 else if (rt->rt_src != rt->fl.fl4_src)
2598 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_src);
2599
2600 if (rt->rt_dst != rt->rt_gateway)
2601 NLA_PUT_BE32(skb, RTA_GATEWAY, rt->rt_gateway);
2602
2603 if (rtnetlink_put_metrics(skb, rt->u.dst.metrics) < 0)
2604 goto nla_put_failure;
2605
2606 error = rt->u.dst.error;
2607 expires = rt->u.dst.expires ? rt->u.dst.expires - jiffies : 0;
2608 if (rt->peer) {
2609 id = rt->peer->ip_id_count;
2610 if (rt->peer->tcp_ts_stamp) {
2611 ts = rt->peer->tcp_ts;
2612 tsage = get_seconds() - rt->peer->tcp_ts_stamp;
2613 }
2614 }
2615
2616 if (rt->fl.iif) {
2617#ifdef CONFIG_IP_MROUTE
2618 __be32 dst = rt->rt_dst;
2619
2620 if (MULTICAST(dst) && !LOCAL_MCAST(dst) &&
2621 IPV4_DEVCONF_ALL(MC_FORWARDING)) {
2622 int err = ipmr_get_route(skb, r, nowait);
2623 if (err <= 0) {
2624 if (!nowait) {
2625 if (err == 0)
2626 return 0;
2627 goto nla_put_failure;
2628 } else {
2629 if (err == -EMSGSIZE)
2630 goto nla_put_failure;
2631 error = err;
2632 }
2633 }
2634 } else
2635#endif
2636 NLA_PUT_U32(skb, RTA_IIF, rt->fl.iif);
2637 }
2638
2639 if (rtnl_put_cacheinfo(skb, &rt->u.dst, id, ts, tsage,
2640 expires, error) < 0)
2641 goto nla_put_failure;
2642
2643 return nlmsg_end(skb, nlh);
2644
2645nla_put_failure:
2646 nlmsg_cancel(skb, nlh);
2647 return -EMSGSIZE;
2648}
2649
2650static int inet_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr* nlh, void *arg)
2651{
2652 struct net *net = in_skb->sk->sk_net;
2653 struct rtmsg *rtm;
2654 struct nlattr *tb[RTA_MAX+1];
2655 struct rtable *rt = NULL;
2656 __be32 dst = 0;
2657 __be32 src = 0;
2658 u32 iif;
2659 int err;
2660 struct sk_buff *skb;
2661
2662 if (net != &init_net)
2663 return -EINVAL;
2664
2665 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv4_policy);
2666 if (err < 0)
2667 goto errout;
2668
2669 rtm = nlmsg_data(nlh);
2670
2671 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
2672 if (skb == NULL) {
2673 err = -ENOBUFS;
2674 goto errout;
2675 }
2676
2677 /* Reserve room for dummy headers, this skb can pass
2678 through good chunk of routing engine.
2679 */
2680 skb_reset_mac_header(skb);
2681 skb_reset_network_header(skb);
2682
2683 /* Bugfix: need to give ip_route_input enough of an IP header to not gag. */
2684 ip_hdr(skb)->protocol = IPPROTO_ICMP;
2685 skb_reserve(skb, MAX_HEADER + sizeof(struct iphdr));
2686
2687 src = tb[RTA_SRC] ? nla_get_be32(tb[RTA_SRC]) : 0;
2688 dst = tb[RTA_DST] ? nla_get_be32(tb[RTA_DST]) : 0;
2689 iif = tb[RTA_IIF] ? nla_get_u32(tb[RTA_IIF]) : 0;
2690
2691 if (iif) {
2692 struct net_device *dev;
2693
2694 dev = __dev_get_by_index(&init_net, iif);
2695 if (dev == NULL) {
2696 err = -ENODEV;
2697 goto errout_free;
2698 }
2699
2700 skb->protocol = htons(ETH_P_IP);
2701 skb->dev = dev;
2702 local_bh_disable();
2703 err = ip_route_input(skb, dst, src, rtm->rtm_tos, dev);
2704 local_bh_enable();
2705
2706 rt = (struct rtable*) skb->dst;
2707 if (err == 0 && rt->u.dst.error)
2708 err = -rt->u.dst.error;
2709 } else {
2710 struct flowi fl = {
2711 .nl_u = {
2712 .ip4_u = {
2713 .daddr = dst,
2714 .saddr = src,
2715 .tos = rtm->rtm_tos,
2716 },
2717 },
2718 .oif = tb[RTA_OIF] ? nla_get_u32(tb[RTA_OIF]) : 0,
2719 };
2720 err = ip_route_output_key(&rt, &fl);
2721 }
2722
2723 if (err)
2724 goto errout_free;
2725
2726 skb->dst = &rt->u.dst;
2727 if (rtm->rtm_flags & RTM_F_NOTIFY)
2728 rt->rt_flags |= RTCF_NOTIFY;
2729
2730 err = rt_fill_info(skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq,
2731 RTM_NEWROUTE, 0, 0);
2732 if (err <= 0)
2733 goto errout_free;
2734
2735 err = rtnl_unicast(skb, &init_net, NETLINK_CB(in_skb).pid);
2736errout:
2737 return err;
2738
2739errout_free:
2740 kfree_skb(skb);
2741 goto errout;
2742}
2743
2744int ip_rt_dump(struct sk_buff *skb, struct netlink_callback *cb)
2745{
2746 struct rtable *rt;
2747 int h, s_h;
2748 int idx, s_idx;
2749
2750 s_h = cb->args[0];
2751 if (s_h < 0)
2752 s_h = 0;
2753 s_idx = idx = cb->args[1];
2754 for (h = s_h; h <= rt_hash_mask; h++) {
2755 rcu_read_lock_bh();
2756 for (rt = rcu_dereference(rt_hash_table[h].chain), idx = 0; rt;
2757 rt = rcu_dereference(rt->u.dst.rt_next), idx++) {
2758 if (idx < s_idx)
2759 continue;
2760 skb->dst = dst_clone(&rt->u.dst);
2761 if (rt_fill_info(skb, NETLINK_CB(cb->skb).pid,
2762 cb->nlh->nlmsg_seq, RTM_NEWROUTE,
2763 1, NLM_F_MULTI) <= 0) {
2764 dst_release(xchg(&skb->dst, NULL));
2765 rcu_read_unlock_bh();
2766 goto done;
2767 }
2768 dst_release(xchg(&skb->dst, NULL));
2769 }
2770 rcu_read_unlock_bh();
2771 s_idx = 0;
2772 }
2773
2774done:
2775 cb->args[0] = h;
2776 cb->args[1] = idx;
2777 return skb->len;
2778}
2779
2780void ip_rt_multicast_event(struct in_device *in_dev)
2781{
2782 rt_cache_flush(0);
2783}
2784
2785#ifdef CONFIG_SYSCTL
2786static int flush_delay;
2787
2788static int ipv4_sysctl_rtcache_flush(ctl_table *ctl, int write,
2789 struct file *filp, void __user *buffer,
2790 size_t *lenp, loff_t *ppos)
2791{
2792 if (write) {
2793 proc_dointvec(ctl, write, filp, buffer, lenp, ppos);
2794 rt_cache_flush(flush_delay);
2795 return 0;
2796 }
2797
2798 return -EINVAL;
2799}
2800
2801static int ipv4_sysctl_rtcache_flush_strategy(ctl_table *table,
2802 int __user *name,
2803 int nlen,
2804 void __user *oldval,
2805 size_t __user *oldlenp,
2806 void __user *newval,
2807 size_t newlen)
2808{
2809 int delay;
2810 if (newlen != sizeof(int))
2811 return -EINVAL;
2812 if (get_user(delay, (int __user *)newval))
2813 return -EFAULT;
2814 rt_cache_flush(delay);
2815 return 0;
2816}
2817
2818ctl_table ipv4_route_table[] = {
2819 {
2820 .ctl_name = NET_IPV4_ROUTE_FLUSH,
2821 .procname = "flush",
2822 .data = &flush_delay,
2823 .maxlen = sizeof(int),
2824 .mode = 0200,
2825 .proc_handler = &ipv4_sysctl_rtcache_flush,
2826 .strategy = &ipv4_sysctl_rtcache_flush_strategy,
2827 },
2828 {
2829 .ctl_name = NET_IPV4_ROUTE_MIN_DELAY,
2830 .procname = "min_delay",
2831 .data = &ip_rt_min_delay,
2832 .maxlen = sizeof(int),
2833 .mode = 0644,
2834 .proc_handler = &proc_dointvec_jiffies,
2835 .strategy = &sysctl_jiffies,
2836 },
2837 {
2838 .ctl_name = NET_IPV4_ROUTE_MAX_DELAY,
2839 .procname = "max_delay",
2840 .data = &ip_rt_max_delay,
2841 .maxlen = sizeof(int),
2842 .mode = 0644,
2843 .proc_handler = &proc_dointvec_jiffies,
2844 .strategy = &sysctl_jiffies,
2845 },
2846 {
2847 .ctl_name = NET_IPV4_ROUTE_GC_THRESH,
2848 .procname = "gc_thresh",
2849 .data = &ipv4_dst_ops.gc_thresh,
2850 .maxlen = sizeof(int),
2851 .mode = 0644,
2852 .proc_handler = &proc_dointvec,
2853 },
2854 {
2855 .ctl_name = NET_IPV4_ROUTE_MAX_SIZE,
2856 .procname = "max_size",
2857 .data = &ip_rt_max_size,
2858 .maxlen = sizeof(int),
2859 .mode = 0644,
2860 .proc_handler = &proc_dointvec,
2861 },
2862 {
2863 /* Deprecated. Use gc_min_interval_ms */
2864
2865 .ctl_name = NET_IPV4_ROUTE_GC_MIN_INTERVAL,
2866 .procname = "gc_min_interval",
2867 .data = &ip_rt_gc_min_interval,
2868 .maxlen = sizeof(int),
2869 .mode = 0644,
2870 .proc_handler = &proc_dointvec_jiffies,
2871 .strategy = &sysctl_jiffies,
2872 },
2873 {
2874 .ctl_name = NET_IPV4_ROUTE_GC_MIN_INTERVAL_MS,
2875 .procname = "gc_min_interval_ms",
2876 .data = &ip_rt_gc_min_interval,
2877 .maxlen = sizeof(int),
2878 .mode = 0644,
2879 .proc_handler = &proc_dointvec_ms_jiffies,
2880 .strategy = &sysctl_ms_jiffies,
2881 },
2882 {
2883 .ctl_name = NET_IPV4_ROUTE_GC_TIMEOUT,
2884 .procname = "gc_timeout",
2885 .data = &ip_rt_gc_timeout,
2886 .maxlen = sizeof(int),
2887 .mode = 0644,
2888 .proc_handler = &proc_dointvec_jiffies,
2889 .strategy = &sysctl_jiffies,
2890 },
2891 {
2892 .ctl_name = NET_IPV4_ROUTE_GC_INTERVAL,
2893 .procname = "gc_interval",
2894 .data = &ip_rt_gc_interval,
2895 .maxlen = sizeof(int),
2896 .mode = 0644,
2897 .proc_handler = &proc_dointvec_jiffies,
2898 .strategy = &sysctl_jiffies,
2899 },
2900 {
2901 .ctl_name = NET_IPV4_ROUTE_REDIRECT_LOAD,
2902 .procname = "redirect_load",
2903 .data = &ip_rt_redirect_load,
2904 .maxlen = sizeof(int),
2905 .mode = 0644,
2906 .proc_handler = &proc_dointvec,
2907 },
2908 {
2909 .ctl_name = NET_IPV4_ROUTE_REDIRECT_NUMBER,
2910 .procname = "redirect_number",
2911 .data = &ip_rt_redirect_number,
2912 .maxlen = sizeof(int),
2913 .mode = 0644,
2914 .proc_handler = &proc_dointvec,
2915 },
2916 {
2917 .ctl_name = NET_IPV4_ROUTE_REDIRECT_SILENCE,
2918 .procname = "redirect_silence",
2919 .data = &ip_rt_redirect_silence,
2920 .maxlen = sizeof(int),
2921 .mode = 0644,
2922 .proc_handler = &proc_dointvec,
2923 },
2924 {
2925 .ctl_name = NET_IPV4_ROUTE_ERROR_COST,
2926 .procname = "error_cost",
2927 .data = &ip_rt_error_cost,
2928 .maxlen = sizeof(int),
2929 .mode = 0644,
2930 .proc_handler = &proc_dointvec,
2931 },
2932 {
2933 .ctl_name = NET_IPV4_ROUTE_ERROR_BURST,
2934 .procname = "error_burst",
2935 .data = &ip_rt_error_burst,
2936 .maxlen = sizeof(int),
2937 .mode = 0644,
2938 .proc_handler = &proc_dointvec,
2939 },
2940 {
2941 .ctl_name = NET_IPV4_ROUTE_GC_ELASTICITY,
2942 .procname = "gc_elasticity",
2943 .data = &ip_rt_gc_elasticity,
2944 .maxlen = sizeof(int),
2945 .mode = 0644,
2946 .proc_handler = &proc_dointvec,
2947 },
2948 {
2949 .ctl_name = NET_IPV4_ROUTE_MTU_EXPIRES,
2950 .procname = "mtu_expires",
2951 .data = &ip_rt_mtu_expires,
2952 .maxlen = sizeof(int),
2953 .mode = 0644,
2954 .proc_handler = &proc_dointvec_jiffies,
2955 .strategy = &sysctl_jiffies,
2956 },
2957 {
2958 .ctl_name = NET_IPV4_ROUTE_MIN_PMTU,
2959 .procname = "min_pmtu",
2960 .data = &ip_rt_min_pmtu,
2961 .maxlen = sizeof(int),
2962 .mode = 0644,
2963 .proc_handler = &proc_dointvec,
2964 },
2965 {
2966 .ctl_name = NET_IPV4_ROUTE_MIN_ADVMSS,
2967 .procname = "min_adv_mss",
2968 .data = &ip_rt_min_advmss,
2969 .maxlen = sizeof(int),
2970 .mode = 0644,
2971 .proc_handler = &proc_dointvec,
2972 },
2973 {
2974 .ctl_name = NET_IPV4_ROUTE_SECRET_INTERVAL,
2975 .procname = "secret_interval",
2976 .data = &ip_rt_secret_interval,
2977 .maxlen = sizeof(int),
2978 .mode = 0644,
2979 .proc_handler = &proc_dointvec_jiffies,
2980 .strategy = &sysctl_jiffies,
2981 },
2982 { .ctl_name = 0 }
2983};
2984#endif
2985
2986#ifdef CONFIG_NET_CLS_ROUTE
2987struct ip_rt_acct *ip_rt_acct __read_mostly;
2988#endif /* CONFIG_NET_CLS_ROUTE */
2989
2990static __initdata unsigned long rhash_entries;
2991static int __init set_rhash_entries(char *str)
2992{
2993 if (!str)
2994 return 0;
2995 rhash_entries = simple_strtoul(str, &str, 0);
2996 return 1;
2997}
2998__setup("rhash_entries=", set_rhash_entries);
2999
3000int __init ip_rt_init(void)
3001{
3002 int rc = 0;
3003
3004 rt_hash_rnd = (int) ((num_physpages ^ (num_physpages>>8)) ^
3005 (jiffies ^ (jiffies >> 7)));
3006
3007#ifdef CONFIG_NET_CLS_ROUTE
3008 ip_rt_acct = __alloc_percpu(256 * sizeof(struct ip_rt_acct));
3009 if (!ip_rt_acct)
3010 panic("IP: failed to allocate ip_rt_acct\n");
3011#endif
3012
3013 ipv4_dst_ops.kmem_cachep =
3014 kmem_cache_create("ip_dst_cache", sizeof(struct rtable), 0,
3015 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3016
3017 ipv4_dst_blackhole_ops.kmem_cachep = ipv4_dst_ops.kmem_cachep;
3018
3019 rt_hash_table = (struct rt_hash_bucket *)
3020 alloc_large_system_hash("IP route cache",
3021 sizeof(struct rt_hash_bucket),
3022 rhash_entries,
3023 (num_physpages >= 128 * 1024) ?
3024 15 : 17,
3025 0,
3026 &rt_hash_log,
3027 &rt_hash_mask,
3028 0);
3029 memset(rt_hash_table, 0, (rt_hash_mask + 1) * sizeof(struct rt_hash_bucket));
3030 rt_hash_lock_init();
3031
3032 ipv4_dst_ops.gc_thresh = (rt_hash_mask + 1);
3033 ip_rt_max_size = (rt_hash_mask + 1) * 16;
3034
3035 devinet_init();
3036 ip_fib_init();
3037
3038 setup_timer(&rt_flush_timer, rt_run_flush, 0);
3039 setup_timer(&rt_secret_timer, rt_secret_rebuild, 0);
3040
3041 /* All the timers, started at system startup tend
3042 to synchronize. Perturb it a bit.
3043 */
3044 schedule_delayed_work(&expires_work,
3045 net_random() % ip_rt_gc_interval + ip_rt_gc_interval);
3046
3047 rt_secret_timer.expires = jiffies + net_random() % ip_rt_secret_interval +
3048 ip_rt_secret_interval;
3049 add_timer(&rt_secret_timer);
3050
3051 if (ip_rt_proc_init(&init_net))
3052 printk(KERN_ERR "Unable to create route proc files\n");
3053#ifdef CONFIG_XFRM
3054 xfrm_init();
3055 xfrm4_init();
3056#endif
3057 rtnl_register(PF_INET, RTM_GETROUTE, inet_rtm_getroute, NULL);
3058
3059 return rc;
3060}
3061
3062EXPORT_SYMBOL(__ip_select_ident);
3063EXPORT_SYMBOL(ip_route_input);
3064EXPORT_SYMBOL(ip_route_output_key);