]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - net/ipv4/arp.c
ac3200: fix error path
[net-next-2.6.git] / net / ipv4 / arp.c
... / ...
CommitLineData
1/* linux/net/ipv4/arp.c
2 *
3 * Copyright (C) 1994 by Florian La Roche
4 *
5 * This module implements the Address Resolution Protocol ARP (RFC 826),
6 * which is used to convert IP addresses (or in the future maybe other
7 * high-level addresses) into a low-level hardware address (like an Ethernet
8 * address).
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 *
15 * Fixes:
16 * Alan Cox : Removed the Ethernet assumptions in
17 * Florian's code
18 * Alan Cox : Fixed some small errors in the ARP
19 * logic
20 * Alan Cox : Allow >4K in /proc
21 * Alan Cox : Make ARP add its own protocol entry
22 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
23 * Stephen Henson : Add AX25 support to arp_get_info()
24 * Alan Cox : Drop data when a device is downed.
25 * Alan Cox : Use init_timer().
26 * Alan Cox : Double lock fixes.
27 * Martin Seine : Move the arphdr structure
28 * to if_arp.h for compatibility.
29 * with BSD based programs.
30 * Andrew Tridgell : Added ARP netmask code and
31 * re-arranged proxy handling.
32 * Alan Cox : Changed to use notifiers.
33 * Niibe Yutaka : Reply for this device or proxies only.
34 * Alan Cox : Don't proxy across hardware types!
35 * Jonathan Naylor : Added support for NET/ROM.
36 * Mike Shaver : RFC1122 checks.
37 * Jonathan Naylor : Only lookup the hardware address for
38 * the correct hardware type.
39 * Germano Caronni : Assorted subtle races.
40 * Craig Schlenter : Don't modify permanent entry
41 * during arp_rcv.
42 * Russ Nelson : Tidied up a few bits.
43 * Alexey Kuznetsov: Major changes to caching and behaviour,
44 * eg intelligent arp probing and
45 * generation
46 * of host down events.
47 * Alan Cox : Missing unlock in device events.
48 * Eckes : ARP ioctl control errors.
49 * Alexey Kuznetsov: Arp free fix.
50 * Manuel Rodriguez: Gratuitous ARP.
51 * Jonathan Layes : Added arpd support through kerneld
52 * message queue (960314)
53 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
54 * Mike McLagan : Routing by source
55 * Stuart Cheshire : Metricom and grat arp fixes
56 * *** FOR 2.1 clean this up ***
57 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
58 * Alan Cox : Took the AP1000 nasty FDDI hack and
59 * folded into the mainstream FDDI code.
60 * Ack spit, Linus how did you allow that
61 * one in...
62 * Jes Sorensen : Make FDDI work again in 2.1.x and
63 * clean up the APFDDI & gen. FDDI bits.
64 * Alexey Kuznetsov: new arp state machine;
65 * now it is in net/core/neighbour.c.
66 * Krzysztof Halasa: Added Frame Relay ARP support.
67 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
68 * Shmulik Hen: Split arp_send to arp_create and
69 * arp_xmit so intermediate drivers like
70 * bonding can change the skb before
71 * sending (e.g. insert 8021q tag).
72 * Harald Welte : convert to make use of jenkins hash
73 * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support.
74 */
75
76#include <linux/module.h>
77#include <linux/types.h>
78#include <linux/string.h>
79#include <linux/kernel.h>
80#include <linux/capability.h>
81#include <linux/socket.h>
82#include <linux/sockios.h>
83#include <linux/errno.h>
84#include <linux/in.h>
85#include <linux/mm.h>
86#include <linux/inet.h>
87#include <linux/inetdevice.h>
88#include <linux/netdevice.h>
89#include <linux/etherdevice.h>
90#include <linux/fddidevice.h>
91#include <linux/if_arp.h>
92#include <linux/trdevice.h>
93#include <linux/skbuff.h>
94#include <linux/proc_fs.h>
95#include <linux/seq_file.h>
96#include <linux/stat.h>
97#include <linux/init.h>
98#include <linux/net.h>
99#include <linux/rcupdate.h>
100#include <linux/jhash.h>
101#include <linux/slab.h>
102#ifdef CONFIG_SYSCTL
103#include <linux/sysctl.h>
104#endif
105
106#include <net/net_namespace.h>
107#include <net/ip.h>
108#include <net/icmp.h>
109#include <net/route.h>
110#include <net/protocol.h>
111#include <net/tcp.h>
112#include <net/sock.h>
113#include <net/arp.h>
114#include <net/ax25.h>
115#include <net/netrom.h>
116#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
117#include <net/atmclip.h>
118struct neigh_table *clip_tbl_hook;
119#endif
120
121#include <asm/system.h>
122#include <asm/uaccess.h>
123
124#include <linux/netfilter_arp.h>
125
126/*
127 * Interface to generic neighbour cache.
128 */
129static u32 arp_hash(const void *pkey, const struct net_device *dev);
130static int arp_constructor(struct neighbour *neigh);
131static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
132static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
133static void parp_redo(struct sk_buff *skb);
134
135static const struct neigh_ops arp_generic_ops = {
136 .family = AF_INET,
137 .solicit = arp_solicit,
138 .error_report = arp_error_report,
139 .output = neigh_resolve_output,
140 .connected_output = neigh_connected_output,
141 .hh_output = dev_queue_xmit,
142 .queue_xmit = dev_queue_xmit,
143};
144
145static const struct neigh_ops arp_hh_ops = {
146 .family = AF_INET,
147 .solicit = arp_solicit,
148 .error_report = arp_error_report,
149 .output = neigh_resolve_output,
150 .connected_output = neigh_resolve_output,
151 .hh_output = dev_queue_xmit,
152 .queue_xmit = dev_queue_xmit,
153};
154
155static const struct neigh_ops arp_direct_ops = {
156 .family = AF_INET,
157 .output = dev_queue_xmit,
158 .connected_output = dev_queue_xmit,
159 .hh_output = dev_queue_xmit,
160 .queue_xmit = dev_queue_xmit,
161};
162
163const struct neigh_ops arp_broken_ops = {
164 .family = AF_INET,
165 .solicit = arp_solicit,
166 .error_report = arp_error_report,
167 .output = neigh_compat_output,
168 .connected_output = neigh_compat_output,
169 .hh_output = dev_queue_xmit,
170 .queue_xmit = dev_queue_xmit,
171};
172
173struct neigh_table arp_tbl = {
174 .family = AF_INET,
175 .entry_size = sizeof(struct neighbour) + 4,
176 .key_len = 4,
177 .hash = arp_hash,
178 .constructor = arp_constructor,
179 .proxy_redo = parp_redo,
180 .id = "arp_cache",
181 .parms = {
182 .tbl = &arp_tbl,
183 .base_reachable_time = 30 * HZ,
184 .retrans_time = 1 * HZ,
185 .gc_staletime = 60 * HZ,
186 .reachable_time = 30 * HZ,
187 .delay_probe_time = 5 * HZ,
188 .queue_len = 3,
189 .ucast_probes = 3,
190 .mcast_probes = 3,
191 .anycast_delay = 1 * HZ,
192 .proxy_delay = (8 * HZ) / 10,
193 .proxy_qlen = 64,
194 .locktime = 1 * HZ,
195 },
196 .gc_interval = 30 * HZ,
197 .gc_thresh1 = 128,
198 .gc_thresh2 = 512,
199 .gc_thresh3 = 1024,
200};
201
202int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
203{
204 switch (dev->type) {
205 case ARPHRD_ETHER:
206 case ARPHRD_FDDI:
207 case ARPHRD_IEEE802:
208 ip_eth_mc_map(addr, haddr);
209 return 0;
210 case ARPHRD_IEEE802_TR:
211 ip_tr_mc_map(addr, haddr);
212 return 0;
213 case ARPHRD_INFINIBAND:
214 ip_ib_mc_map(addr, dev->broadcast, haddr);
215 return 0;
216 default:
217 if (dir) {
218 memcpy(haddr, dev->broadcast, dev->addr_len);
219 return 0;
220 }
221 }
222 return -EINVAL;
223}
224
225
226static u32 arp_hash(const void *pkey, const struct net_device *dev)
227{
228 return jhash_2words(*(u32 *)pkey, dev->ifindex, arp_tbl.hash_rnd);
229}
230
231static int arp_constructor(struct neighbour *neigh)
232{
233 __be32 addr = *(__be32*)neigh->primary_key;
234 struct net_device *dev = neigh->dev;
235 struct in_device *in_dev;
236 struct neigh_parms *parms;
237
238 rcu_read_lock();
239 in_dev = __in_dev_get_rcu(dev);
240 if (in_dev == NULL) {
241 rcu_read_unlock();
242 return -EINVAL;
243 }
244
245 neigh->type = inet_addr_type(dev_net(dev), addr);
246
247 parms = in_dev->arp_parms;
248 __neigh_parms_put(neigh->parms);
249 neigh->parms = neigh_parms_clone(parms);
250 rcu_read_unlock();
251
252 if (!dev->header_ops) {
253 neigh->nud_state = NUD_NOARP;
254 neigh->ops = &arp_direct_ops;
255 neigh->output = neigh->ops->queue_xmit;
256 } else {
257 /* Good devices (checked by reading texts, but only Ethernet is
258 tested)
259
260 ARPHRD_ETHER: (ethernet, apfddi)
261 ARPHRD_FDDI: (fddi)
262 ARPHRD_IEEE802: (tr)
263 ARPHRD_METRICOM: (strip)
264 ARPHRD_ARCNET:
265 etc. etc. etc.
266
267 ARPHRD_IPDDP will also work, if author repairs it.
268 I did not it, because this driver does not work even
269 in old paradigm.
270 */
271
272#if 1
273 /* So... these "amateur" devices are hopeless.
274 The only thing, that I can say now:
275 It is very sad that we need to keep ugly obsolete
276 code to make them happy.
277
278 They should be moved to more reasonable state, now
279 they use rebuild_header INSTEAD OF hard_start_xmit!!!
280 Besides that, they are sort of out of date
281 (a lot of redundant clones/copies, useless in 2.1),
282 I wonder why people believe that they work.
283 */
284 switch (dev->type) {
285 default:
286 break;
287 case ARPHRD_ROSE:
288#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
289 case ARPHRD_AX25:
290#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
291 case ARPHRD_NETROM:
292#endif
293 neigh->ops = &arp_broken_ops;
294 neigh->output = neigh->ops->output;
295 return 0;
296#endif
297 ;}
298#endif
299 if (neigh->type == RTN_MULTICAST) {
300 neigh->nud_state = NUD_NOARP;
301 arp_mc_map(addr, neigh->ha, dev, 1);
302 } else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) {
303 neigh->nud_state = NUD_NOARP;
304 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
305 } else if (neigh->type == RTN_BROADCAST || dev->flags&IFF_POINTOPOINT) {
306 neigh->nud_state = NUD_NOARP;
307 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
308 }
309
310 if (dev->header_ops->cache)
311 neigh->ops = &arp_hh_ops;
312 else
313 neigh->ops = &arp_generic_ops;
314
315 if (neigh->nud_state&NUD_VALID)
316 neigh->output = neigh->ops->connected_output;
317 else
318 neigh->output = neigh->ops->output;
319 }
320 return 0;
321}
322
323static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
324{
325 dst_link_failure(skb);
326 kfree_skb(skb);
327}
328
329static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
330{
331 __be32 saddr = 0;
332 u8 *dst_ha = NULL;
333 struct net_device *dev = neigh->dev;
334 __be32 target = *(__be32*)neigh->primary_key;
335 int probes = atomic_read(&neigh->probes);
336 struct in_device *in_dev;
337
338 rcu_read_lock();
339 in_dev = __in_dev_get_rcu(dev);
340 if (!in_dev) {
341 rcu_read_unlock();
342 return;
343 }
344 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
345 default:
346 case 0: /* By default announce any local IP */
347 if (skb && inet_addr_type(dev_net(dev), ip_hdr(skb)->saddr) == RTN_LOCAL)
348 saddr = ip_hdr(skb)->saddr;
349 break;
350 case 1: /* Restrict announcements of saddr in same subnet */
351 if (!skb)
352 break;
353 saddr = ip_hdr(skb)->saddr;
354 if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
355 /* saddr should be known to target */
356 if (inet_addr_onlink(in_dev, target, saddr))
357 break;
358 }
359 saddr = 0;
360 break;
361 case 2: /* Avoid secondary IPs, get a primary/preferred one */
362 break;
363 }
364 rcu_read_unlock();
365
366 if (!saddr)
367 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
368
369 if ((probes -= neigh->parms->ucast_probes) < 0) {
370 if (!(neigh->nud_state&NUD_VALID))
371 printk(KERN_DEBUG "trying to ucast probe in NUD_INVALID\n");
372 dst_ha = neigh->ha;
373 read_lock_bh(&neigh->lock);
374 } else if ((probes -= neigh->parms->app_probes) < 0) {
375#ifdef CONFIG_ARPD
376 neigh_app_ns(neigh);
377#endif
378 return;
379 }
380
381 arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
382 dst_ha, dev->dev_addr, NULL);
383 if (dst_ha)
384 read_unlock_bh(&neigh->lock);
385}
386
387static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
388{
389 int scope;
390
391 switch (IN_DEV_ARP_IGNORE(in_dev)) {
392 case 0: /* Reply, the tip is already validated */
393 return 0;
394 case 1: /* Reply only if tip is configured on the incoming interface */
395 sip = 0;
396 scope = RT_SCOPE_HOST;
397 break;
398 case 2: /*
399 * Reply only if tip is configured on the incoming interface
400 * and is in same subnet as sip
401 */
402 scope = RT_SCOPE_HOST;
403 break;
404 case 3: /* Do not reply for scope host addresses */
405 sip = 0;
406 scope = RT_SCOPE_LINK;
407 break;
408 case 4: /* Reserved */
409 case 5:
410 case 6:
411 case 7:
412 return 0;
413 case 8: /* Do not reply */
414 return 1;
415 default:
416 return 0;
417 }
418 return !inet_confirm_addr(in_dev, sip, tip, scope);
419}
420
421static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
422{
423 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = sip,
424 .saddr = tip } } };
425 struct rtable *rt;
426 int flag = 0;
427 /*unsigned long now; */
428 struct net *net = dev_net(dev);
429
430 if (ip_route_output_key(net, &rt, &fl) < 0)
431 return 1;
432 if (rt->dst.dev != dev) {
433 NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
434 flag = 1;
435 }
436 ip_rt_put(rt);
437 return flag;
438}
439
440/* OBSOLETE FUNCTIONS */
441
442/*
443 * Find an arp mapping in the cache. If not found, post a request.
444 *
445 * It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
446 * even if it exists. It is supposed that skb->dev was mangled
447 * by a virtual device (eql, shaper). Nobody but broken devices
448 * is allowed to use this function, it is scheduled to be removed. --ANK
449 */
450
451static int arp_set_predefined(int addr_hint, unsigned char * haddr, __be32 paddr, struct net_device * dev)
452{
453 switch (addr_hint) {
454 case RTN_LOCAL:
455 printk(KERN_DEBUG "ARP: arp called for own IP address\n");
456 memcpy(haddr, dev->dev_addr, dev->addr_len);
457 return 1;
458 case RTN_MULTICAST:
459 arp_mc_map(paddr, haddr, dev, 1);
460 return 1;
461 case RTN_BROADCAST:
462 memcpy(haddr, dev->broadcast, dev->addr_len);
463 return 1;
464 }
465 return 0;
466}
467
468
469int arp_find(unsigned char *haddr, struct sk_buff *skb)
470{
471 struct net_device *dev = skb->dev;
472 __be32 paddr;
473 struct neighbour *n;
474
475 if (!skb_dst(skb)) {
476 printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
477 kfree_skb(skb);
478 return 1;
479 }
480
481 paddr = skb_rtable(skb)->rt_gateway;
482
483 if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr, paddr, dev))
484 return 0;
485
486 n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
487
488 if (n) {
489 n->used = jiffies;
490 if (n->nud_state&NUD_VALID || neigh_event_send(n, skb) == 0) {
491 read_lock_bh(&n->lock);
492 memcpy(haddr, n->ha, dev->addr_len);
493 read_unlock_bh(&n->lock);
494 neigh_release(n);
495 return 0;
496 }
497 neigh_release(n);
498 } else
499 kfree_skb(skb);
500 return 1;
501}
502
503/* END OF OBSOLETE FUNCTIONS */
504
505int arp_bind_neighbour(struct dst_entry *dst)
506{
507 struct net_device *dev = dst->dev;
508 struct neighbour *n = dst->neighbour;
509
510 if (dev == NULL)
511 return -EINVAL;
512 if (n == NULL) {
513 __be32 nexthop = ((struct rtable *)dst)->rt_gateway;
514 if (dev->flags&(IFF_LOOPBACK|IFF_POINTOPOINT))
515 nexthop = 0;
516 n = __neigh_lookup_errno(
517#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
518 dev->type == ARPHRD_ATM ? clip_tbl_hook :
519#endif
520 &arp_tbl, &nexthop, dev);
521 if (IS_ERR(n))
522 return PTR_ERR(n);
523 dst->neighbour = n;
524 }
525 return 0;
526}
527
528/*
529 * Check if we can use proxy ARP for this path
530 */
531static inline int arp_fwd_proxy(struct in_device *in_dev,
532 struct net_device *dev, struct rtable *rt)
533{
534 struct in_device *out_dev;
535 int imi, omi = -1;
536
537 if (rt->dst.dev == dev)
538 return 0;
539
540 if (!IN_DEV_PROXY_ARP(in_dev))
541 return 0;
542
543 if ((imi = IN_DEV_MEDIUM_ID(in_dev)) == 0)
544 return 1;
545 if (imi == -1)
546 return 0;
547
548 /* place to check for proxy_arp for routes */
549
550 out_dev = __in_dev_get_rcu(rt->dst.dev);
551 if (out_dev)
552 omi = IN_DEV_MEDIUM_ID(out_dev);
553
554 return (omi != imi && omi != -1);
555}
556
557/*
558 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
559 *
560 * RFC3069 supports proxy arp replies back to the same interface. This
561 * is done to support (ethernet) switch features, like RFC 3069, where
562 * the individual ports are not allowed to communicate with each
563 * other, BUT they are allowed to talk to the upstream router. As
564 * described in RFC 3069, it is possible to allow these hosts to
565 * communicate through the upstream router, by proxy_arp'ing.
566 *
567 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
568 *
569 * This technology is known by different names:
570 * In RFC 3069 it is called VLAN Aggregation.
571 * Cisco and Allied Telesyn call it Private VLAN.
572 * Hewlett-Packard call it Source-Port filtering or port-isolation.
573 * Ericsson call it MAC-Forced Forwarding (RFC Draft).
574 *
575 */
576static inline int arp_fwd_pvlan(struct in_device *in_dev,
577 struct net_device *dev, struct rtable *rt,
578 __be32 sip, __be32 tip)
579{
580 /* Private VLAN is only concerned about the same ethernet segment */
581 if (rt->dst.dev != dev)
582 return 0;
583
584 /* Don't reply on self probes (often done by windowz boxes)*/
585 if (sip == tip)
586 return 0;
587
588 if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
589 return 1;
590 else
591 return 0;
592}
593
594/*
595 * Interface to link layer: send routine and receive handler.
596 */
597
598/*
599 * Create an arp packet. If (dest_hw == NULL), we create a broadcast
600 * message.
601 */
602struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
603 struct net_device *dev, __be32 src_ip,
604 const unsigned char *dest_hw,
605 const unsigned char *src_hw,
606 const unsigned char *target_hw)
607{
608 struct sk_buff *skb;
609 struct arphdr *arp;
610 unsigned char *arp_ptr;
611
612 /*
613 * Allocate a buffer
614 */
615
616 skb = alloc_skb(arp_hdr_len(dev) + LL_ALLOCATED_SPACE(dev), GFP_ATOMIC);
617 if (skb == NULL)
618 return NULL;
619
620 skb_reserve(skb, LL_RESERVED_SPACE(dev));
621 skb_reset_network_header(skb);
622 arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
623 skb->dev = dev;
624 skb->protocol = htons(ETH_P_ARP);
625 if (src_hw == NULL)
626 src_hw = dev->dev_addr;
627 if (dest_hw == NULL)
628 dest_hw = dev->broadcast;
629
630 /*
631 * Fill the device header for the ARP frame
632 */
633 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
634 goto out;
635
636 /*
637 * Fill out the arp protocol part.
638 *
639 * The arp hardware type should match the device type, except for FDDI,
640 * which (according to RFC 1390) should always equal 1 (Ethernet).
641 */
642 /*
643 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
644 * DIX code for the protocol. Make these device structure fields.
645 */
646 switch (dev->type) {
647 default:
648 arp->ar_hrd = htons(dev->type);
649 arp->ar_pro = htons(ETH_P_IP);
650 break;
651
652#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
653 case ARPHRD_AX25:
654 arp->ar_hrd = htons(ARPHRD_AX25);
655 arp->ar_pro = htons(AX25_P_IP);
656 break;
657
658#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
659 case ARPHRD_NETROM:
660 arp->ar_hrd = htons(ARPHRD_NETROM);
661 arp->ar_pro = htons(AX25_P_IP);
662 break;
663#endif
664#endif
665
666#if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
667 case ARPHRD_FDDI:
668 arp->ar_hrd = htons(ARPHRD_ETHER);
669 arp->ar_pro = htons(ETH_P_IP);
670 break;
671#endif
672#if defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
673 case ARPHRD_IEEE802_TR:
674 arp->ar_hrd = htons(ARPHRD_IEEE802);
675 arp->ar_pro = htons(ETH_P_IP);
676 break;
677#endif
678 }
679
680 arp->ar_hln = dev->addr_len;
681 arp->ar_pln = 4;
682 arp->ar_op = htons(type);
683
684 arp_ptr=(unsigned char *)(arp+1);
685
686 memcpy(arp_ptr, src_hw, dev->addr_len);
687 arp_ptr += dev->addr_len;
688 memcpy(arp_ptr, &src_ip, 4);
689 arp_ptr += 4;
690 if (target_hw != NULL)
691 memcpy(arp_ptr, target_hw, dev->addr_len);
692 else
693 memset(arp_ptr, 0, dev->addr_len);
694 arp_ptr += dev->addr_len;
695 memcpy(arp_ptr, &dest_ip, 4);
696
697 return skb;
698
699out:
700 kfree_skb(skb);
701 return NULL;
702}
703
704/*
705 * Send an arp packet.
706 */
707void arp_xmit(struct sk_buff *skb)
708{
709 /* Send it off, maybe filter it using firewalling first. */
710 NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
711}
712
713/*
714 * Create and send an arp packet.
715 */
716void arp_send(int type, int ptype, __be32 dest_ip,
717 struct net_device *dev, __be32 src_ip,
718 const unsigned char *dest_hw, const unsigned char *src_hw,
719 const unsigned char *target_hw)
720{
721 struct sk_buff *skb;
722
723 /*
724 * No arp on this interface.
725 */
726
727 if (dev->flags&IFF_NOARP)
728 return;
729
730 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
731 dest_hw, src_hw, target_hw);
732 if (skb == NULL) {
733 return;
734 }
735
736 arp_xmit(skb);
737}
738
739/*
740 * Process an arp request.
741 */
742
743static int arp_process(struct sk_buff *skb)
744{
745 struct net_device *dev = skb->dev;
746 struct in_device *in_dev = __in_dev_get_rcu(dev);
747 struct arphdr *arp;
748 unsigned char *arp_ptr;
749 struct rtable *rt;
750 unsigned char *sha;
751 __be32 sip, tip;
752 u16 dev_type = dev->type;
753 int addr_type;
754 struct neighbour *n;
755 struct net *net = dev_net(dev);
756
757 /* arp_rcv below verifies the ARP header and verifies the device
758 * is ARP'able.
759 */
760
761 if (in_dev == NULL)
762 goto out;
763
764 arp = arp_hdr(skb);
765
766 switch (dev_type) {
767 default:
768 if (arp->ar_pro != htons(ETH_P_IP) ||
769 htons(dev_type) != arp->ar_hrd)
770 goto out;
771 break;
772 case ARPHRD_ETHER:
773 case ARPHRD_IEEE802_TR:
774 case ARPHRD_FDDI:
775 case ARPHRD_IEEE802:
776 /*
777 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
778 * devices, according to RFC 2625) devices will accept ARP
779 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
780 * This is the case also of FDDI, where the RFC 1390 says that
781 * FDDI devices should accept ARP hardware of (1) Ethernet,
782 * however, to be more robust, we'll accept both 1 (Ethernet)
783 * or 6 (IEEE 802.2)
784 */
785 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
786 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
787 arp->ar_pro != htons(ETH_P_IP))
788 goto out;
789 break;
790 case ARPHRD_AX25:
791 if (arp->ar_pro != htons(AX25_P_IP) ||
792 arp->ar_hrd != htons(ARPHRD_AX25))
793 goto out;
794 break;
795 case ARPHRD_NETROM:
796 if (arp->ar_pro != htons(AX25_P_IP) ||
797 arp->ar_hrd != htons(ARPHRD_NETROM))
798 goto out;
799 break;
800 }
801
802 /* Understand only these message types */
803
804 if (arp->ar_op != htons(ARPOP_REPLY) &&
805 arp->ar_op != htons(ARPOP_REQUEST))
806 goto out;
807
808/*
809 * Extract fields
810 */
811 arp_ptr= (unsigned char *)(arp+1);
812 sha = arp_ptr;
813 arp_ptr += dev->addr_len;
814 memcpy(&sip, arp_ptr, 4);
815 arp_ptr += 4;
816 arp_ptr += dev->addr_len;
817 memcpy(&tip, arp_ptr, 4);
818/*
819 * Check for bad requests for 127.x.x.x and requests for multicast
820 * addresses. If this is one such, delete it.
821 */
822 if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
823 goto out;
824
825/*
826 * Special case: We must set Frame Relay source Q.922 address
827 */
828 if (dev_type == ARPHRD_DLCI)
829 sha = dev->broadcast;
830
831/*
832 * Process entry. The idea here is we want to send a reply if it is a
833 * request for us or if it is a request for someone else that we hold
834 * a proxy for. We want to add an entry to our cache if it is a reply
835 * to us or if it is a request for our address.
836 * (The assumption for this last is that if someone is requesting our
837 * address, they are probably intending to talk to us, so it saves time
838 * if we cache their address. Their address is also probably not in
839 * our cache, since ours is not in their cache.)
840 *
841 * Putting this another way, we only care about replies if they are to
842 * us, in which case we add them to the cache. For requests, we care
843 * about those for us and those for our proxies. We reply to both,
844 * and in the case of requests for us we add the requester to the arp
845 * cache.
846 */
847
848 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
849 if (sip == 0) {
850 if (arp->ar_op == htons(ARPOP_REQUEST) &&
851 inet_addr_type(net, tip) == RTN_LOCAL &&
852 !arp_ignore(in_dev, sip, tip))
853 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
854 dev->dev_addr, sha);
855 goto out;
856 }
857
858 if (arp->ar_op == htons(ARPOP_REQUEST) &&
859 ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
860
861 rt = skb_rtable(skb);
862 addr_type = rt->rt_type;
863
864 if (addr_type == RTN_LOCAL) {
865 int dont_send = 0;
866
867 if (!dont_send)
868 dont_send |= arp_ignore(in_dev,sip,tip);
869 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
870 dont_send |= arp_filter(sip,tip,dev);
871 if (!dont_send) {
872 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
873 if (n) {
874 arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
875 neigh_release(n);
876 }
877 }
878 goto out;
879 } else if (IN_DEV_FORWARD(in_dev)) {
880 if (addr_type == RTN_UNICAST &&
881 (arp_fwd_proxy(in_dev, dev, rt) ||
882 arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
883 pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))
884 {
885 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
886 if (n)
887 neigh_release(n);
888
889 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
890 skb->pkt_type == PACKET_HOST ||
891 in_dev->arp_parms->proxy_delay == 0) {
892 arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
893 } else {
894 pneigh_enqueue(&arp_tbl, in_dev->arp_parms, skb);
895 return 0;
896 }
897 goto out;
898 }
899 }
900 }
901
902 /* Update our ARP tables */
903
904 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
905
906 if (IPV4_DEVCONF_ALL(dev_net(dev), ARP_ACCEPT)) {
907 /* Unsolicited ARP is not accepted by default.
908 It is possible, that this option should be enabled for some
909 devices (strip is candidate)
910 */
911 if (n == NULL &&
912 (arp->ar_op == htons(ARPOP_REPLY) ||
913 (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
914 inet_addr_type(net, sip) == RTN_UNICAST)
915 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
916 }
917
918 if (n) {
919 int state = NUD_REACHABLE;
920 int override;
921
922 /* If several different ARP replies follows back-to-back,
923 use the FIRST one. It is possible, if several proxy
924 agents are active. Taking the first reply prevents
925 arp trashing and chooses the fastest router.
926 */
927 override = time_after(jiffies, n->updated + n->parms->locktime);
928
929 /* Broadcast replies and request packets
930 do not assert neighbour reachability.
931 */
932 if (arp->ar_op != htons(ARPOP_REPLY) ||
933 skb->pkt_type != PACKET_HOST)
934 state = NUD_STALE;
935 neigh_update(n, sha, state, override ? NEIGH_UPDATE_F_OVERRIDE : 0);
936 neigh_release(n);
937 }
938
939out:
940 consume_skb(skb);
941 return 0;
942}
943
944static void parp_redo(struct sk_buff *skb)
945{
946 arp_process(skb);
947}
948
949
950/*
951 * Receive an arp request from the device layer.
952 */
953
954static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
955 struct packet_type *pt, struct net_device *orig_dev)
956{
957 struct arphdr *arp;
958
959 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
960 if (!pskb_may_pull(skb, arp_hdr_len(dev)))
961 goto freeskb;
962
963 arp = arp_hdr(skb);
964 if (arp->ar_hln != dev->addr_len ||
965 dev->flags & IFF_NOARP ||
966 skb->pkt_type == PACKET_OTHERHOST ||
967 skb->pkt_type == PACKET_LOOPBACK ||
968 arp->ar_pln != 4)
969 goto freeskb;
970
971 if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL)
972 goto out_of_mem;
973
974 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
975
976 return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
977
978freeskb:
979 kfree_skb(skb);
980out_of_mem:
981 return 0;
982}
983
984/*
985 * User level interface (ioctl)
986 */
987
988/*
989 * Set (create) an ARP cache entry.
990 */
991
992static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
993{
994 if (dev == NULL) {
995 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
996 return 0;
997 }
998 if (__in_dev_get_rtnl(dev)) {
999 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
1000 return 0;
1001 }
1002 return -ENXIO;
1003}
1004
1005static int arp_req_set_public(struct net *net, struct arpreq *r,
1006 struct net_device *dev)
1007{
1008 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1009 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1010
1011 if (mask && mask != htonl(0xFFFFFFFF))
1012 return -EINVAL;
1013 if (!dev && (r->arp_flags & ATF_COM)) {
1014 dev = dev_getbyhwaddr(net, r->arp_ha.sa_family,
1015 r->arp_ha.sa_data);
1016 if (!dev)
1017 return -ENODEV;
1018 }
1019 if (mask) {
1020 if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
1021 return -ENOBUFS;
1022 return 0;
1023 }
1024
1025 return arp_req_set_proxy(net, dev, 1);
1026}
1027
1028static int arp_req_set(struct net *net, struct arpreq *r,
1029 struct net_device * dev)
1030{
1031 __be32 ip;
1032 struct neighbour *neigh;
1033 int err;
1034
1035 if (r->arp_flags & ATF_PUBL)
1036 return arp_req_set_public(net, r, dev);
1037
1038 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1039 if (r->arp_flags & ATF_PERM)
1040 r->arp_flags |= ATF_COM;
1041 if (dev == NULL) {
1042 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1043 .tos = RTO_ONLINK } } };
1044 struct rtable * rt;
1045 if ((err = ip_route_output_key(net, &rt, &fl)) != 0)
1046 return err;
1047 dev = rt->dst.dev;
1048 ip_rt_put(rt);
1049 if (!dev)
1050 return -EINVAL;
1051 }
1052 switch (dev->type) {
1053#if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
1054 case ARPHRD_FDDI:
1055 /*
1056 * According to RFC 1390, FDDI devices should accept ARP
1057 * hardware types of 1 (Ethernet). However, to be more
1058 * robust, we'll accept hardware types of either 1 (Ethernet)
1059 * or 6 (IEEE 802.2).
1060 */
1061 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1062 r->arp_ha.sa_family != ARPHRD_ETHER &&
1063 r->arp_ha.sa_family != ARPHRD_IEEE802)
1064 return -EINVAL;
1065 break;
1066#endif
1067 default:
1068 if (r->arp_ha.sa_family != dev->type)
1069 return -EINVAL;
1070 break;
1071 }
1072
1073 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1074 err = PTR_ERR(neigh);
1075 if (!IS_ERR(neigh)) {
1076 unsigned state = NUD_STALE;
1077 if (r->arp_flags & ATF_PERM)
1078 state = NUD_PERMANENT;
1079 err = neigh_update(neigh, (r->arp_flags&ATF_COM) ?
1080 r->arp_ha.sa_data : NULL, state,
1081 NEIGH_UPDATE_F_OVERRIDE|
1082 NEIGH_UPDATE_F_ADMIN);
1083 neigh_release(neigh);
1084 }
1085 return err;
1086}
1087
1088static unsigned arp_state_to_flags(struct neighbour *neigh)
1089{
1090 unsigned flags = 0;
1091 if (neigh->nud_state&NUD_PERMANENT)
1092 flags = ATF_PERM|ATF_COM;
1093 else if (neigh->nud_state&NUD_VALID)
1094 flags = ATF_COM;
1095 return flags;
1096}
1097
1098/*
1099 * Get an ARP cache entry.
1100 */
1101
1102static int arp_req_get(struct arpreq *r, struct net_device *dev)
1103{
1104 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1105 struct neighbour *neigh;
1106 int err = -ENXIO;
1107
1108 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1109 if (neigh) {
1110 read_lock_bh(&neigh->lock);
1111 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1112 r->arp_flags = arp_state_to_flags(neigh);
1113 read_unlock_bh(&neigh->lock);
1114 r->arp_ha.sa_family = dev->type;
1115 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1116 neigh_release(neigh);
1117 err = 0;
1118 }
1119 return err;
1120}
1121
1122static int arp_req_delete_public(struct net *net, struct arpreq *r,
1123 struct net_device *dev)
1124{
1125 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1126 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1127
1128 if (mask == htonl(0xFFFFFFFF))
1129 return pneigh_delete(&arp_tbl, net, &ip, dev);
1130
1131 if (mask)
1132 return -EINVAL;
1133
1134 return arp_req_set_proxy(net, dev, 0);
1135}
1136
1137static int arp_req_delete(struct net *net, struct arpreq *r,
1138 struct net_device * dev)
1139{
1140 int err;
1141 __be32 ip;
1142 struct neighbour *neigh;
1143
1144 if (r->arp_flags & ATF_PUBL)
1145 return arp_req_delete_public(net, r, dev);
1146
1147 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1148 if (dev == NULL) {
1149 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1150 .tos = RTO_ONLINK } } };
1151 struct rtable * rt;
1152 if ((err = ip_route_output_key(net, &rt, &fl)) != 0)
1153 return err;
1154 dev = rt->dst.dev;
1155 ip_rt_put(rt);
1156 if (!dev)
1157 return -EINVAL;
1158 }
1159 err = -ENXIO;
1160 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1161 if (neigh) {
1162 if (neigh->nud_state&~NUD_NOARP)
1163 err = neigh_update(neigh, NULL, NUD_FAILED,
1164 NEIGH_UPDATE_F_OVERRIDE|
1165 NEIGH_UPDATE_F_ADMIN);
1166 neigh_release(neigh);
1167 }
1168 return err;
1169}
1170
1171/*
1172 * Handle an ARP layer I/O control request.
1173 */
1174
1175int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1176{
1177 int err;
1178 struct arpreq r;
1179 struct net_device *dev = NULL;
1180
1181 switch (cmd) {
1182 case SIOCDARP:
1183 case SIOCSARP:
1184 if (!capable(CAP_NET_ADMIN))
1185 return -EPERM;
1186 case SIOCGARP:
1187 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1188 if (err)
1189 return -EFAULT;
1190 break;
1191 default:
1192 return -EINVAL;
1193 }
1194
1195 if (r.arp_pa.sa_family != AF_INET)
1196 return -EPFNOSUPPORT;
1197
1198 if (!(r.arp_flags & ATF_PUBL) &&
1199 (r.arp_flags & (ATF_NETMASK|ATF_DONTPUB)))
1200 return -EINVAL;
1201 if (!(r.arp_flags & ATF_NETMASK))
1202 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1203 htonl(0xFFFFFFFFUL);
1204 rtnl_lock();
1205 if (r.arp_dev[0]) {
1206 err = -ENODEV;
1207 if ((dev = __dev_get_by_name(net, r.arp_dev)) == NULL)
1208 goto out;
1209
1210 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1211 if (!r.arp_ha.sa_family)
1212 r.arp_ha.sa_family = dev->type;
1213 err = -EINVAL;
1214 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1215 goto out;
1216 } else if (cmd == SIOCGARP) {
1217 err = -ENODEV;
1218 goto out;
1219 }
1220
1221 switch (cmd) {
1222 case SIOCDARP:
1223 err = arp_req_delete(net, &r, dev);
1224 break;
1225 case SIOCSARP:
1226 err = arp_req_set(net, &r, dev);
1227 break;
1228 case SIOCGARP:
1229 err = arp_req_get(&r, dev);
1230 if (!err && copy_to_user(arg, &r, sizeof(r)))
1231 err = -EFAULT;
1232 break;
1233 }
1234out:
1235 rtnl_unlock();
1236 return err;
1237}
1238
1239static int arp_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
1240{
1241 struct net_device *dev = ptr;
1242
1243 switch (event) {
1244 case NETDEV_CHANGEADDR:
1245 neigh_changeaddr(&arp_tbl, dev);
1246 rt_cache_flush(dev_net(dev), 0);
1247 break;
1248 default:
1249 break;
1250 }
1251
1252 return NOTIFY_DONE;
1253}
1254
1255static struct notifier_block arp_netdev_notifier = {
1256 .notifier_call = arp_netdev_event,
1257};
1258
1259/* Note, that it is not on notifier chain.
1260 It is necessary, that this routine was called after route cache will be
1261 flushed.
1262 */
1263void arp_ifdown(struct net_device *dev)
1264{
1265 neigh_ifdown(&arp_tbl, dev);
1266}
1267
1268
1269/*
1270 * Called once on startup.
1271 */
1272
1273static struct packet_type arp_packet_type __read_mostly = {
1274 .type = cpu_to_be16(ETH_P_ARP),
1275 .func = arp_rcv,
1276};
1277
1278static int arp_proc_init(void);
1279
1280void __init arp_init(void)
1281{
1282 neigh_table_init(&arp_tbl);
1283
1284 dev_add_pack(&arp_packet_type);
1285 arp_proc_init();
1286#ifdef CONFIG_SYSCTL
1287 neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1288#endif
1289 register_netdevice_notifier(&arp_netdev_notifier);
1290}
1291
1292#ifdef CONFIG_PROC_FS
1293#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1294
1295/* ------------------------------------------------------------------------ */
1296/*
1297 * ax25 -> ASCII conversion
1298 */
1299static char *ax2asc2(ax25_address *a, char *buf)
1300{
1301 char c, *s;
1302 int n;
1303
1304 for (n = 0, s = buf; n < 6; n++) {
1305 c = (a->ax25_call[n] >> 1) & 0x7F;
1306
1307 if (c != ' ') *s++ = c;
1308 }
1309
1310 *s++ = '-';
1311
1312 if ((n = ((a->ax25_call[6] >> 1) & 0x0F)) > 9) {
1313 *s++ = '1';
1314 n -= 10;
1315 }
1316
1317 *s++ = n + '0';
1318 *s++ = '\0';
1319
1320 if (*buf == '\0' || *buf == '-')
1321 return "*";
1322
1323 return buf;
1324
1325}
1326#endif /* CONFIG_AX25 */
1327
1328#define HBUFFERLEN 30
1329
1330static void arp_format_neigh_entry(struct seq_file *seq,
1331 struct neighbour *n)
1332{
1333 char hbuffer[HBUFFERLEN];
1334 int k, j;
1335 char tbuf[16];
1336 struct net_device *dev = n->dev;
1337 int hatype = dev->type;
1338
1339 read_lock(&n->lock);
1340 /* Convert hardware address to XX:XX:XX:XX ... form. */
1341#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1342 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1343 ax2asc2((ax25_address *)n->ha, hbuffer);
1344 else {
1345#endif
1346 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1347 hbuffer[k++] = hex_asc_hi(n->ha[j]);
1348 hbuffer[k++] = hex_asc_lo(n->ha[j]);
1349 hbuffer[k++] = ':';
1350 }
1351 if (k != 0)
1352 --k;
1353 hbuffer[k] = 0;
1354#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1355 }
1356#endif
1357 sprintf(tbuf, "%pI4", n->primary_key);
1358 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1359 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1360 read_unlock(&n->lock);
1361}
1362
1363static void arp_format_pneigh_entry(struct seq_file *seq,
1364 struct pneigh_entry *n)
1365{
1366 struct net_device *dev = n->dev;
1367 int hatype = dev ? dev->type : 0;
1368 char tbuf[16];
1369
1370 sprintf(tbuf, "%pI4", n->key);
1371 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1372 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1373 dev ? dev->name : "*");
1374}
1375
1376static int arp_seq_show(struct seq_file *seq, void *v)
1377{
1378 if (v == SEQ_START_TOKEN) {
1379 seq_puts(seq, "IP address HW type Flags "
1380 "HW address Mask Device\n");
1381 } else {
1382 struct neigh_seq_state *state = seq->private;
1383
1384 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1385 arp_format_pneigh_entry(seq, v);
1386 else
1387 arp_format_neigh_entry(seq, v);
1388 }
1389
1390 return 0;
1391}
1392
1393static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1394{
1395 /* Don't want to confuse "arp -a" w/ magic entries,
1396 * so we tell the generic iterator to skip NUD_NOARP.
1397 */
1398 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1399}
1400
1401/* ------------------------------------------------------------------------ */
1402
1403static const struct seq_operations arp_seq_ops = {
1404 .start = arp_seq_start,
1405 .next = neigh_seq_next,
1406 .stop = neigh_seq_stop,
1407 .show = arp_seq_show,
1408};
1409
1410static int arp_seq_open(struct inode *inode, struct file *file)
1411{
1412 return seq_open_net(inode, file, &arp_seq_ops,
1413 sizeof(struct neigh_seq_state));
1414}
1415
1416static const struct file_operations arp_seq_fops = {
1417 .owner = THIS_MODULE,
1418 .open = arp_seq_open,
1419 .read = seq_read,
1420 .llseek = seq_lseek,
1421 .release = seq_release_net,
1422};
1423
1424
1425static int __net_init arp_net_init(struct net *net)
1426{
1427 if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
1428 return -ENOMEM;
1429 return 0;
1430}
1431
1432static void __net_exit arp_net_exit(struct net *net)
1433{
1434 proc_net_remove(net, "arp");
1435}
1436
1437static struct pernet_operations arp_net_ops = {
1438 .init = arp_net_init,
1439 .exit = arp_net_exit,
1440};
1441
1442static int __init arp_proc_init(void)
1443{
1444 return register_pernet_subsys(&arp_net_ops);
1445}
1446
1447#else /* CONFIG_PROC_FS */
1448
1449static int __init arp_proc_init(void)
1450{
1451 return 0;
1452}
1453
1454#endif /* CONFIG_PROC_FS */
1455
1456EXPORT_SYMBOL(arp_broken_ops);
1457EXPORT_SYMBOL(arp_find);
1458EXPORT_SYMBOL(arp_create);
1459EXPORT_SYMBOL(arp_xmit);
1460EXPORT_SYMBOL(arp_send);
1461EXPORT_SYMBOL(arp_tbl);
1462
1463#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
1464EXPORT_SYMBOL(clip_tbl_hook);
1465#endif