]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - net/core/dev.c
xps: Transmit Packet Steering
[net-next-2.6.git] / net / core / dev.c
... / ...
CommitLineData
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <asm/system.h>
77#include <linux/bitops.h>
78#include <linux/capability.h>
79#include <linux/cpu.h>
80#include <linux/types.h>
81#include <linux/kernel.h>
82#include <linux/hash.h>
83#include <linux/slab.h>
84#include <linux/sched.h>
85#include <linux/mutex.h>
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
95#include <linux/ethtool.h>
96#include <linux/notifier.h>
97#include <linux/skbuff.h>
98#include <net/net_namespace.h>
99#include <net/sock.h>
100#include <linux/rtnetlink.h>
101#include <linux/proc_fs.h>
102#include <linux/seq_file.h>
103#include <linux/stat.h>
104#include <net/dst.h>
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
107#include <net/xfrm.h>
108#include <linux/highmem.h>
109#include <linux/init.h>
110#include <linux/kmod.h>
111#include <linux/module.h>
112#include <linux/netpoll.h>
113#include <linux/rcupdate.h>
114#include <linux/delay.h>
115#include <net/wext.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <linux/ipv6.h>
127#include <linux/in.h>
128#include <linux/jhash.h>
129#include <linux/random.h>
130#include <trace/events/napi.h>
131#include <trace/events/net.h>
132#include <trace/events/skb.h>
133#include <linux/pci.h>
134#include <linux/inetdevice.h>
135
136#include "net-sysfs.h"
137
138/* Instead of increasing this, you should create a hash table. */
139#define MAX_GRO_SKBS 8
140
141/* This should be increased if a protocol with a bigger head is added. */
142#define GRO_MAX_HEAD (MAX_HEADER + 128)
143
144/*
145 * The list of packet types we will receive (as opposed to discard)
146 * and the routines to invoke.
147 *
148 * Why 16. Because with 16 the only overlap we get on a hash of the
149 * low nibble of the protocol value is RARP/SNAP/X.25.
150 *
151 * NOTE: That is no longer true with the addition of VLAN tags. Not
152 * sure which should go first, but I bet it won't make much
153 * difference if we are running VLANs. The good news is that
154 * this protocol won't be in the list unless compiled in, so
155 * the average user (w/out VLANs) will not be adversely affected.
156 * --BLG
157 *
158 * 0800 IP
159 * 8100 802.1Q VLAN
160 * 0001 802.3
161 * 0002 AX.25
162 * 0004 802.2
163 * 8035 RARP
164 * 0005 SNAP
165 * 0805 X.25
166 * 0806 ARP
167 * 8137 IPX
168 * 0009 Localtalk
169 * 86DD IPv6
170 */
171
172#define PTYPE_HASH_SIZE (16)
173#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
174
175static DEFINE_SPINLOCK(ptype_lock);
176static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
177static struct list_head ptype_all __read_mostly; /* Taps */
178
179/*
180 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
181 * semaphore.
182 *
183 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
184 *
185 * Writers must hold the rtnl semaphore while they loop through the
186 * dev_base_head list, and hold dev_base_lock for writing when they do the
187 * actual updates. This allows pure readers to access the list even
188 * while a writer is preparing to update it.
189 *
190 * To put it another way, dev_base_lock is held for writing only to
191 * protect against pure readers; the rtnl semaphore provides the
192 * protection against other writers.
193 *
194 * See, for example usages, register_netdevice() and
195 * unregister_netdevice(), which must be called with the rtnl
196 * semaphore held.
197 */
198DEFINE_RWLOCK(dev_base_lock);
199EXPORT_SYMBOL(dev_base_lock);
200
201static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202{
203 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
204 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
205}
206
207static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
208{
209 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
210}
211
212static inline void rps_lock(struct softnet_data *sd)
213{
214#ifdef CONFIG_RPS
215 spin_lock(&sd->input_pkt_queue.lock);
216#endif
217}
218
219static inline void rps_unlock(struct softnet_data *sd)
220{
221#ifdef CONFIG_RPS
222 spin_unlock(&sd->input_pkt_queue.lock);
223#endif
224}
225
226/* Device list insertion */
227static int list_netdevice(struct net_device *dev)
228{
229 struct net *net = dev_net(dev);
230
231 ASSERT_RTNL();
232
233 write_lock_bh(&dev_base_lock);
234 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
235 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
236 hlist_add_head_rcu(&dev->index_hlist,
237 dev_index_hash(net, dev->ifindex));
238 write_unlock_bh(&dev_base_lock);
239 return 0;
240}
241
242/* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
245static void unlist_netdevice(struct net_device *dev)
246{
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
251 list_del_rcu(&dev->dev_list);
252 hlist_del_rcu(&dev->name_hlist);
253 hlist_del_rcu(&dev->index_hlist);
254 write_unlock_bh(&dev_base_lock);
255}
256
257/*
258 * Our notifier list
259 */
260
261static RAW_NOTIFIER_HEAD(netdev_chain);
262
263/*
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
266 */
267
268DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269EXPORT_PER_CPU_SYMBOL(softnet_data);
270
271#ifdef CONFIG_LOCKDEP
272/*
273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274 * according to dev->type
275 */
276static const unsigned short netdev_lock_type[] =
277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
290 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
291 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
292 ARPHRD_VOID, ARPHRD_NONE};
293
294static const char *const netdev_lock_name[] =
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
308 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
309 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
310 "_xmit_VOID", "_xmit_NONE"};
311
312static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316{
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324}
325
326static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
328{
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334}
335
336static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337{
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344}
345#else
346static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348{
349}
350static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351{
352}
353#endif
354
355/*******************************************************************************
356
357 Protocol management and registration routines
358
359*******************************************************************************/
360
361/*
362 * Add a protocol ID to the list. Now that the input handler is
363 * smarter we can dispense with all the messy stuff that used to be
364 * here.
365 *
366 * BEWARE!!! Protocol handlers, mangling input packets,
367 * MUST BE last in hash buckets and checking protocol handlers
368 * MUST start from promiscuous ptype_all chain in net_bh.
369 * It is true now, do not change it.
370 * Explanation follows: if protocol handler, mangling packet, will
371 * be the first on list, it is not able to sense, that packet
372 * is cloned and should be copied-on-write, so that it will
373 * change it and subsequent readers will get broken packet.
374 * --ANK (980803)
375 */
376
377static inline struct list_head *ptype_head(const struct packet_type *pt)
378{
379 if (pt->type == htons(ETH_P_ALL))
380 return &ptype_all;
381 else
382 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383}
384
385/**
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
388 *
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
392 *
393 * This call does not sleep therefore it can not
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
396 */
397
398void dev_add_pack(struct packet_type *pt)
399{
400 struct list_head *head = ptype_head(pt);
401
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
405}
406EXPORT_SYMBOL(dev_add_pack);
407
408/**
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
411 *
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
415 * returns.
416 *
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
420 */
421void __dev_remove_pack(struct packet_type *pt)
422{
423 struct list_head *head = ptype_head(pt);
424 struct packet_type *pt1;
425
426 spin_lock(&ptype_lock);
427
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
432 }
433 }
434
435 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
436out:
437 spin_unlock(&ptype_lock);
438}
439EXPORT_SYMBOL(__dev_remove_pack);
440
441/**
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
444 *
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
449 *
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
452 */
453void dev_remove_pack(struct packet_type *pt)
454{
455 __dev_remove_pack(pt);
456
457 synchronize_net();
458}
459EXPORT_SYMBOL(dev_remove_pack);
460
461/******************************************************************************
462
463 Device Boot-time Settings Routines
464
465*******************************************************************************/
466
467/* Boot time configuration table */
468static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
469
470/**
471 * netdev_boot_setup_add - add new setup entry
472 * @name: name of the device
473 * @map: configured settings for the device
474 *
475 * Adds new setup entry to the dev_boot_setup list. The function
476 * returns 0 on error and 1 on success. This is a generic routine to
477 * all netdevices.
478 */
479static int netdev_boot_setup_add(char *name, struct ifmap *map)
480{
481 struct netdev_boot_setup *s;
482 int i;
483
484 s = dev_boot_setup;
485 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
486 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
487 memset(s[i].name, 0, sizeof(s[i].name));
488 strlcpy(s[i].name, name, IFNAMSIZ);
489 memcpy(&s[i].map, map, sizeof(s[i].map));
490 break;
491 }
492 }
493
494 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
495}
496
497/**
498 * netdev_boot_setup_check - check boot time settings
499 * @dev: the netdevice
500 *
501 * Check boot time settings for the device.
502 * The found settings are set for the device to be used
503 * later in the device probing.
504 * Returns 0 if no settings found, 1 if they are.
505 */
506int netdev_boot_setup_check(struct net_device *dev)
507{
508 struct netdev_boot_setup *s = dev_boot_setup;
509 int i;
510
511 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
512 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
513 !strcmp(dev->name, s[i].name)) {
514 dev->irq = s[i].map.irq;
515 dev->base_addr = s[i].map.base_addr;
516 dev->mem_start = s[i].map.mem_start;
517 dev->mem_end = s[i].map.mem_end;
518 return 1;
519 }
520 }
521 return 0;
522}
523EXPORT_SYMBOL(netdev_boot_setup_check);
524
525
526/**
527 * netdev_boot_base - get address from boot time settings
528 * @prefix: prefix for network device
529 * @unit: id for network device
530 *
531 * Check boot time settings for the base address of device.
532 * The found settings are set for the device to be used
533 * later in the device probing.
534 * Returns 0 if no settings found.
535 */
536unsigned long netdev_boot_base(const char *prefix, int unit)
537{
538 const struct netdev_boot_setup *s = dev_boot_setup;
539 char name[IFNAMSIZ];
540 int i;
541
542 sprintf(name, "%s%d", prefix, unit);
543
544 /*
545 * If device already registered then return base of 1
546 * to indicate not to probe for this interface
547 */
548 if (__dev_get_by_name(&init_net, name))
549 return 1;
550
551 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
552 if (!strcmp(name, s[i].name))
553 return s[i].map.base_addr;
554 return 0;
555}
556
557/*
558 * Saves at boot time configured settings for any netdevice.
559 */
560int __init netdev_boot_setup(char *str)
561{
562 int ints[5];
563 struct ifmap map;
564
565 str = get_options(str, ARRAY_SIZE(ints), ints);
566 if (!str || !*str)
567 return 0;
568
569 /* Save settings */
570 memset(&map, 0, sizeof(map));
571 if (ints[0] > 0)
572 map.irq = ints[1];
573 if (ints[0] > 1)
574 map.base_addr = ints[2];
575 if (ints[0] > 2)
576 map.mem_start = ints[3];
577 if (ints[0] > 3)
578 map.mem_end = ints[4];
579
580 /* Add new entry to the list */
581 return netdev_boot_setup_add(str, &map);
582}
583
584__setup("netdev=", netdev_boot_setup);
585
586/*******************************************************************************
587
588 Device Interface Subroutines
589
590*******************************************************************************/
591
592/**
593 * __dev_get_by_name - find a device by its name
594 * @net: the applicable net namespace
595 * @name: name to find
596 *
597 * Find an interface by name. Must be called under RTNL semaphore
598 * or @dev_base_lock. If the name is found a pointer to the device
599 * is returned. If the name is not found then %NULL is returned. The
600 * reference counters are not incremented so the caller must be
601 * careful with locks.
602 */
603
604struct net_device *__dev_get_by_name(struct net *net, const char *name)
605{
606 struct hlist_node *p;
607 struct net_device *dev;
608 struct hlist_head *head = dev_name_hash(net, name);
609
610 hlist_for_each_entry(dev, p, head, name_hlist)
611 if (!strncmp(dev->name, name, IFNAMSIZ))
612 return dev;
613
614 return NULL;
615}
616EXPORT_SYMBOL(__dev_get_by_name);
617
618/**
619 * dev_get_by_name_rcu - find a device by its name
620 * @net: the applicable net namespace
621 * @name: name to find
622 *
623 * Find an interface by name.
624 * If the name is found a pointer to the device is returned.
625 * If the name is not found then %NULL is returned.
626 * The reference counters are not incremented so the caller must be
627 * careful with locks. The caller must hold RCU lock.
628 */
629
630struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
631{
632 struct hlist_node *p;
633 struct net_device *dev;
634 struct hlist_head *head = dev_name_hash(net, name);
635
636 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
637 if (!strncmp(dev->name, name, IFNAMSIZ))
638 return dev;
639
640 return NULL;
641}
642EXPORT_SYMBOL(dev_get_by_name_rcu);
643
644/**
645 * dev_get_by_name - find a device by its name
646 * @net: the applicable net namespace
647 * @name: name to find
648 *
649 * Find an interface by name. This can be called from any
650 * context and does its own locking. The returned handle has
651 * the usage count incremented and the caller must use dev_put() to
652 * release it when it is no longer needed. %NULL is returned if no
653 * matching device is found.
654 */
655
656struct net_device *dev_get_by_name(struct net *net, const char *name)
657{
658 struct net_device *dev;
659
660 rcu_read_lock();
661 dev = dev_get_by_name_rcu(net, name);
662 if (dev)
663 dev_hold(dev);
664 rcu_read_unlock();
665 return dev;
666}
667EXPORT_SYMBOL(dev_get_by_name);
668
669/**
670 * __dev_get_by_index - find a device by its ifindex
671 * @net: the applicable net namespace
672 * @ifindex: index of device
673 *
674 * Search for an interface by index. Returns %NULL if the device
675 * is not found or a pointer to the device. The device has not
676 * had its reference counter increased so the caller must be careful
677 * about locking. The caller must hold either the RTNL semaphore
678 * or @dev_base_lock.
679 */
680
681struct net_device *__dev_get_by_index(struct net *net, int ifindex)
682{
683 struct hlist_node *p;
684 struct net_device *dev;
685 struct hlist_head *head = dev_index_hash(net, ifindex);
686
687 hlist_for_each_entry(dev, p, head, index_hlist)
688 if (dev->ifindex == ifindex)
689 return dev;
690
691 return NULL;
692}
693EXPORT_SYMBOL(__dev_get_by_index);
694
695/**
696 * dev_get_by_index_rcu - find a device by its ifindex
697 * @net: the applicable net namespace
698 * @ifindex: index of device
699 *
700 * Search for an interface by index. Returns %NULL if the device
701 * is not found or a pointer to the device. The device has not
702 * had its reference counter increased so the caller must be careful
703 * about locking. The caller must hold RCU lock.
704 */
705
706struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
707{
708 struct hlist_node *p;
709 struct net_device *dev;
710 struct hlist_head *head = dev_index_hash(net, ifindex);
711
712 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
713 if (dev->ifindex == ifindex)
714 return dev;
715
716 return NULL;
717}
718EXPORT_SYMBOL(dev_get_by_index_rcu);
719
720
721/**
722 * dev_get_by_index - find a device by its ifindex
723 * @net: the applicable net namespace
724 * @ifindex: index of device
725 *
726 * Search for an interface by index. Returns NULL if the device
727 * is not found or a pointer to the device. The device returned has
728 * had a reference added and the pointer is safe until the user calls
729 * dev_put to indicate they have finished with it.
730 */
731
732struct net_device *dev_get_by_index(struct net *net, int ifindex)
733{
734 struct net_device *dev;
735
736 rcu_read_lock();
737 dev = dev_get_by_index_rcu(net, ifindex);
738 if (dev)
739 dev_hold(dev);
740 rcu_read_unlock();
741 return dev;
742}
743EXPORT_SYMBOL(dev_get_by_index);
744
745/**
746 * dev_getbyhwaddr - find a device by its hardware address
747 * @net: the applicable net namespace
748 * @type: media type of device
749 * @ha: hardware address
750 *
751 * Search for an interface by MAC address. Returns NULL if the device
752 * is not found or a pointer to the device. The caller must hold the
753 * rtnl semaphore. The returned device has not had its ref count increased
754 * and the caller must therefore be careful about locking
755 *
756 * BUGS:
757 * If the API was consistent this would be __dev_get_by_hwaddr
758 */
759
760struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
761{
762 struct net_device *dev;
763
764 ASSERT_RTNL();
765
766 for_each_netdev(net, dev)
767 if (dev->type == type &&
768 !memcmp(dev->dev_addr, ha, dev->addr_len))
769 return dev;
770
771 return NULL;
772}
773EXPORT_SYMBOL(dev_getbyhwaddr);
774
775struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
776{
777 struct net_device *dev;
778
779 ASSERT_RTNL();
780 for_each_netdev(net, dev)
781 if (dev->type == type)
782 return dev;
783
784 return NULL;
785}
786EXPORT_SYMBOL(__dev_getfirstbyhwtype);
787
788struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
789{
790 struct net_device *dev, *ret = NULL;
791
792 rcu_read_lock();
793 for_each_netdev_rcu(net, dev)
794 if (dev->type == type) {
795 dev_hold(dev);
796 ret = dev;
797 break;
798 }
799 rcu_read_unlock();
800 return ret;
801}
802EXPORT_SYMBOL(dev_getfirstbyhwtype);
803
804/**
805 * dev_get_by_flags_rcu - find any device with given flags
806 * @net: the applicable net namespace
807 * @if_flags: IFF_* values
808 * @mask: bitmask of bits in if_flags to check
809 *
810 * Search for any interface with the given flags. Returns NULL if a device
811 * is not found or a pointer to the device. Must be called inside
812 * rcu_read_lock(), and result refcount is unchanged.
813 */
814
815struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
816 unsigned short mask)
817{
818 struct net_device *dev, *ret;
819
820 ret = NULL;
821 for_each_netdev_rcu(net, dev) {
822 if (((dev->flags ^ if_flags) & mask) == 0) {
823 ret = dev;
824 break;
825 }
826 }
827 return ret;
828}
829EXPORT_SYMBOL(dev_get_by_flags_rcu);
830
831/**
832 * dev_valid_name - check if name is okay for network device
833 * @name: name string
834 *
835 * Network device names need to be valid file names to
836 * to allow sysfs to work. We also disallow any kind of
837 * whitespace.
838 */
839int dev_valid_name(const char *name)
840{
841 if (*name == '\0')
842 return 0;
843 if (strlen(name) >= IFNAMSIZ)
844 return 0;
845 if (!strcmp(name, ".") || !strcmp(name, ".."))
846 return 0;
847
848 while (*name) {
849 if (*name == '/' || isspace(*name))
850 return 0;
851 name++;
852 }
853 return 1;
854}
855EXPORT_SYMBOL(dev_valid_name);
856
857/**
858 * __dev_alloc_name - allocate a name for a device
859 * @net: network namespace to allocate the device name in
860 * @name: name format string
861 * @buf: scratch buffer and result name string
862 *
863 * Passed a format string - eg "lt%d" it will try and find a suitable
864 * id. It scans list of devices to build up a free map, then chooses
865 * the first empty slot. The caller must hold the dev_base or rtnl lock
866 * while allocating the name and adding the device in order to avoid
867 * duplicates.
868 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
869 * Returns the number of the unit assigned or a negative errno code.
870 */
871
872static int __dev_alloc_name(struct net *net, const char *name, char *buf)
873{
874 int i = 0;
875 const char *p;
876 const int max_netdevices = 8*PAGE_SIZE;
877 unsigned long *inuse;
878 struct net_device *d;
879
880 p = strnchr(name, IFNAMSIZ-1, '%');
881 if (p) {
882 /*
883 * Verify the string as this thing may have come from
884 * the user. There must be either one "%d" and no other "%"
885 * characters.
886 */
887 if (p[1] != 'd' || strchr(p + 2, '%'))
888 return -EINVAL;
889
890 /* Use one page as a bit array of possible slots */
891 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
892 if (!inuse)
893 return -ENOMEM;
894
895 for_each_netdev(net, d) {
896 if (!sscanf(d->name, name, &i))
897 continue;
898 if (i < 0 || i >= max_netdevices)
899 continue;
900
901 /* avoid cases where sscanf is not exact inverse of printf */
902 snprintf(buf, IFNAMSIZ, name, i);
903 if (!strncmp(buf, d->name, IFNAMSIZ))
904 set_bit(i, inuse);
905 }
906
907 i = find_first_zero_bit(inuse, max_netdevices);
908 free_page((unsigned long) inuse);
909 }
910
911 if (buf != name)
912 snprintf(buf, IFNAMSIZ, name, i);
913 if (!__dev_get_by_name(net, buf))
914 return i;
915
916 /* It is possible to run out of possible slots
917 * when the name is long and there isn't enough space left
918 * for the digits, or if all bits are used.
919 */
920 return -ENFILE;
921}
922
923/**
924 * dev_alloc_name - allocate a name for a device
925 * @dev: device
926 * @name: name format string
927 *
928 * Passed a format string - eg "lt%d" it will try and find a suitable
929 * id. It scans list of devices to build up a free map, then chooses
930 * the first empty slot. The caller must hold the dev_base or rtnl lock
931 * while allocating the name and adding the device in order to avoid
932 * duplicates.
933 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
934 * Returns the number of the unit assigned or a negative errno code.
935 */
936
937int dev_alloc_name(struct net_device *dev, const char *name)
938{
939 char buf[IFNAMSIZ];
940 struct net *net;
941 int ret;
942
943 BUG_ON(!dev_net(dev));
944 net = dev_net(dev);
945 ret = __dev_alloc_name(net, name, buf);
946 if (ret >= 0)
947 strlcpy(dev->name, buf, IFNAMSIZ);
948 return ret;
949}
950EXPORT_SYMBOL(dev_alloc_name);
951
952static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
953{
954 struct net *net;
955
956 BUG_ON(!dev_net(dev));
957 net = dev_net(dev);
958
959 if (!dev_valid_name(name))
960 return -EINVAL;
961
962 if (fmt && strchr(name, '%'))
963 return dev_alloc_name(dev, name);
964 else if (__dev_get_by_name(net, name))
965 return -EEXIST;
966 else if (dev->name != name)
967 strlcpy(dev->name, name, IFNAMSIZ);
968
969 return 0;
970}
971
972/**
973 * dev_change_name - change name of a device
974 * @dev: device
975 * @newname: name (or format string) must be at least IFNAMSIZ
976 *
977 * Change name of a device, can pass format strings "eth%d".
978 * for wildcarding.
979 */
980int dev_change_name(struct net_device *dev, const char *newname)
981{
982 char oldname[IFNAMSIZ];
983 int err = 0;
984 int ret;
985 struct net *net;
986
987 ASSERT_RTNL();
988 BUG_ON(!dev_net(dev));
989
990 net = dev_net(dev);
991 if (dev->flags & IFF_UP)
992 return -EBUSY;
993
994 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
995 return 0;
996
997 memcpy(oldname, dev->name, IFNAMSIZ);
998
999 err = dev_get_valid_name(dev, newname, 1);
1000 if (err < 0)
1001 return err;
1002
1003rollback:
1004 ret = device_rename(&dev->dev, dev->name);
1005 if (ret) {
1006 memcpy(dev->name, oldname, IFNAMSIZ);
1007 return ret;
1008 }
1009
1010 write_lock_bh(&dev_base_lock);
1011 hlist_del(&dev->name_hlist);
1012 write_unlock_bh(&dev_base_lock);
1013
1014 synchronize_rcu();
1015
1016 write_lock_bh(&dev_base_lock);
1017 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1018 write_unlock_bh(&dev_base_lock);
1019
1020 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1021 ret = notifier_to_errno(ret);
1022
1023 if (ret) {
1024 /* err >= 0 after dev_alloc_name() or stores the first errno */
1025 if (err >= 0) {
1026 err = ret;
1027 memcpy(dev->name, oldname, IFNAMSIZ);
1028 goto rollback;
1029 } else {
1030 printk(KERN_ERR
1031 "%s: name change rollback failed: %d.\n",
1032 dev->name, ret);
1033 }
1034 }
1035
1036 return err;
1037}
1038
1039/**
1040 * dev_set_alias - change ifalias of a device
1041 * @dev: device
1042 * @alias: name up to IFALIASZ
1043 * @len: limit of bytes to copy from info
1044 *
1045 * Set ifalias for a device,
1046 */
1047int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1048{
1049 ASSERT_RTNL();
1050
1051 if (len >= IFALIASZ)
1052 return -EINVAL;
1053
1054 if (!len) {
1055 if (dev->ifalias) {
1056 kfree(dev->ifalias);
1057 dev->ifalias = NULL;
1058 }
1059 return 0;
1060 }
1061
1062 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1063 if (!dev->ifalias)
1064 return -ENOMEM;
1065
1066 strlcpy(dev->ifalias, alias, len+1);
1067 return len;
1068}
1069
1070
1071/**
1072 * netdev_features_change - device changes features
1073 * @dev: device to cause notification
1074 *
1075 * Called to indicate a device has changed features.
1076 */
1077void netdev_features_change(struct net_device *dev)
1078{
1079 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1080}
1081EXPORT_SYMBOL(netdev_features_change);
1082
1083/**
1084 * netdev_state_change - device changes state
1085 * @dev: device to cause notification
1086 *
1087 * Called to indicate a device has changed state. This function calls
1088 * the notifier chains for netdev_chain and sends a NEWLINK message
1089 * to the routing socket.
1090 */
1091void netdev_state_change(struct net_device *dev)
1092{
1093 if (dev->flags & IFF_UP) {
1094 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1095 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1096 }
1097}
1098EXPORT_SYMBOL(netdev_state_change);
1099
1100int netdev_bonding_change(struct net_device *dev, unsigned long event)
1101{
1102 return call_netdevice_notifiers(event, dev);
1103}
1104EXPORT_SYMBOL(netdev_bonding_change);
1105
1106/**
1107 * dev_load - load a network module
1108 * @net: the applicable net namespace
1109 * @name: name of interface
1110 *
1111 * If a network interface is not present and the process has suitable
1112 * privileges this function loads the module. If module loading is not
1113 * available in this kernel then it becomes a nop.
1114 */
1115
1116void dev_load(struct net *net, const char *name)
1117{
1118 struct net_device *dev;
1119
1120 rcu_read_lock();
1121 dev = dev_get_by_name_rcu(net, name);
1122 rcu_read_unlock();
1123
1124 if (!dev && capable(CAP_NET_ADMIN))
1125 request_module("%s", name);
1126}
1127EXPORT_SYMBOL(dev_load);
1128
1129static int __dev_open(struct net_device *dev)
1130{
1131 const struct net_device_ops *ops = dev->netdev_ops;
1132 int ret;
1133
1134 ASSERT_RTNL();
1135
1136 /*
1137 * Is it even present?
1138 */
1139 if (!netif_device_present(dev))
1140 return -ENODEV;
1141
1142 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1143 ret = notifier_to_errno(ret);
1144 if (ret)
1145 return ret;
1146
1147 /*
1148 * Call device private open method
1149 */
1150 set_bit(__LINK_STATE_START, &dev->state);
1151
1152 if (ops->ndo_validate_addr)
1153 ret = ops->ndo_validate_addr(dev);
1154
1155 if (!ret && ops->ndo_open)
1156 ret = ops->ndo_open(dev);
1157
1158 /*
1159 * If it went open OK then:
1160 */
1161
1162 if (ret)
1163 clear_bit(__LINK_STATE_START, &dev->state);
1164 else {
1165 /*
1166 * Set the flags.
1167 */
1168 dev->flags |= IFF_UP;
1169
1170 /*
1171 * Enable NET_DMA
1172 */
1173 net_dmaengine_get();
1174
1175 /*
1176 * Initialize multicasting status
1177 */
1178 dev_set_rx_mode(dev);
1179
1180 /*
1181 * Wakeup transmit queue engine
1182 */
1183 dev_activate(dev);
1184 }
1185
1186 return ret;
1187}
1188
1189/**
1190 * dev_open - prepare an interface for use.
1191 * @dev: device to open
1192 *
1193 * Takes a device from down to up state. The device's private open
1194 * function is invoked and then the multicast lists are loaded. Finally
1195 * the device is moved into the up state and a %NETDEV_UP message is
1196 * sent to the netdev notifier chain.
1197 *
1198 * Calling this function on an active interface is a nop. On a failure
1199 * a negative errno code is returned.
1200 */
1201int dev_open(struct net_device *dev)
1202{
1203 int ret;
1204
1205 /*
1206 * Is it already up?
1207 */
1208 if (dev->flags & IFF_UP)
1209 return 0;
1210
1211 /*
1212 * Open device
1213 */
1214 ret = __dev_open(dev);
1215 if (ret < 0)
1216 return ret;
1217
1218 /*
1219 * ... and announce new interface.
1220 */
1221 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1222 call_netdevice_notifiers(NETDEV_UP, dev);
1223
1224 return ret;
1225}
1226EXPORT_SYMBOL(dev_open);
1227
1228static int __dev_close(struct net_device *dev)
1229{
1230 const struct net_device_ops *ops = dev->netdev_ops;
1231
1232 ASSERT_RTNL();
1233 might_sleep();
1234
1235 /*
1236 * Tell people we are going down, so that they can
1237 * prepare to death, when device is still operating.
1238 */
1239 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1240
1241 clear_bit(__LINK_STATE_START, &dev->state);
1242
1243 /* Synchronize to scheduled poll. We cannot touch poll list,
1244 * it can be even on different cpu. So just clear netif_running().
1245 *
1246 * dev->stop() will invoke napi_disable() on all of it's
1247 * napi_struct instances on this device.
1248 */
1249 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1250
1251 dev_deactivate(dev);
1252
1253 /*
1254 * Call the device specific close. This cannot fail.
1255 * Only if device is UP
1256 *
1257 * We allow it to be called even after a DETACH hot-plug
1258 * event.
1259 */
1260 if (ops->ndo_stop)
1261 ops->ndo_stop(dev);
1262
1263 /*
1264 * Device is now down.
1265 */
1266
1267 dev->flags &= ~IFF_UP;
1268
1269 /*
1270 * Shutdown NET_DMA
1271 */
1272 net_dmaengine_put();
1273
1274 return 0;
1275}
1276
1277/**
1278 * dev_close - shutdown an interface.
1279 * @dev: device to shutdown
1280 *
1281 * This function moves an active device into down state. A
1282 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1283 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1284 * chain.
1285 */
1286int dev_close(struct net_device *dev)
1287{
1288 if (!(dev->flags & IFF_UP))
1289 return 0;
1290
1291 __dev_close(dev);
1292
1293 /*
1294 * Tell people we are down
1295 */
1296 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1297 call_netdevice_notifiers(NETDEV_DOWN, dev);
1298
1299 return 0;
1300}
1301EXPORT_SYMBOL(dev_close);
1302
1303
1304/**
1305 * dev_disable_lro - disable Large Receive Offload on a device
1306 * @dev: device
1307 *
1308 * Disable Large Receive Offload (LRO) on a net device. Must be
1309 * called under RTNL. This is needed if received packets may be
1310 * forwarded to another interface.
1311 */
1312void dev_disable_lro(struct net_device *dev)
1313{
1314 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1315 dev->ethtool_ops->set_flags) {
1316 u32 flags = dev->ethtool_ops->get_flags(dev);
1317 if (flags & ETH_FLAG_LRO) {
1318 flags &= ~ETH_FLAG_LRO;
1319 dev->ethtool_ops->set_flags(dev, flags);
1320 }
1321 }
1322 WARN_ON(dev->features & NETIF_F_LRO);
1323}
1324EXPORT_SYMBOL(dev_disable_lro);
1325
1326
1327static int dev_boot_phase = 1;
1328
1329/*
1330 * Device change register/unregister. These are not inline or static
1331 * as we export them to the world.
1332 */
1333
1334/**
1335 * register_netdevice_notifier - register a network notifier block
1336 * @nb: notifier
1337 *
1338 * Register a notifier to be called when network device events occur.
1339 * The notifier passed is linked into the kernel structures and must
1340 * not be reused until it has been unregistered. A negative errno code
1341 * is returned on a failure.
1342 *
1343 * When registered all registration and up events are replayed
1344 * to the new notifier to allow device to have a race free
1345 * view of the network device list.
1346 */
1347
1348int register_netdevice_notifier(struct notifier_block *nb)
1349{
1350 struct net_device *dev;
1351 struct net_device *last;
1352 struct net *net;
1353 int err;
1354
1355 rtnl_lock();
1356 err = raw_notifier_chain_register(&netdev_chain, nb);
1357 if (err)
1358 goto unlock;
1359 if (dev_boot_phase)
1360 goto unlock;
1361 for_each_net(net) {
1362 for_each_netdev(net, dev) {
1363 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1364 err = notifier_to_errno(err);
1365 if (err)
1366 goto rollback;
1367
1368 if (!(dev->flags & IFF_UP))
1369 continue;
1370
1371 nb->notifier_call(nb, NETDEV_UP, dev);
1372 }
1373 }
1374
1375unlock:
1376 rtnl_unlock();
1377 return err;
1378
1379rollback:
1380 last = dev;
1381 for_each_net(net) {
1382 for_each_netdev(net, dev) {
1383 if (dev == last)
1384 break;
1385
1386 if (dev->flags & IFF_UP) {
1387 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1388 nb->notifier_call(nb, NETDEV_DOWN, dev);
1389 }
1390 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1391 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1392 }
1393 }
1394
1395 raw_notifier_chain_unregister(&netdev_chain, nb);
1396 goto unlock;
1397}
1398EXPORT_SYMBOL(register_netdevice_notifier);
1399
1400/**
1401 * unregister_netdevice_notifier - unregister a network notifier block
1402 * @nb: notifier
1403 *
1404 * Unregister a notifier previously registered by
1405 * register_netdevice_notifier(). The notifier is unlinked into the
1406 * kernel structures and may then be reused. A negative errno code
1407 * is returned on a failure.
1408 */
1409
1410int unregister_netdevice_notifier(struct notifier_block *nb)
1411{
1412 int err;
1413
1414 rtnl_lock();
1415 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1416 rtnl_unlock();
1417 return err;
1418}
1419EXPORT_SYMBOL(unregister_netdevice_notifier);
1420
1421/**
1422 * call_netdevice_notifiers - call all network notifier blocks
1423 * @val: value passed unmodified to notifier function
1424 * @dev: net_device pointer passed unmodified to notifier function
1425 *
1426 * Call all network notifier blocks. Parameters and return value
1427 * are as for raw_notifier_call_chain().
1428 */
1429
1430int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1431{
1432 ASSERT_RTNL();
1433 return raw_notifier_call_chain(&netdev_chain, val, dev);
1434}
1435
1436/* When > 0 there are consumers of rx skb time stamps */
1437static atomic_t netstamp_needed = ATOMIC_INIT(0);
1438
1439void net_enable_timestamp(void)
1440{
1441 atomic_inc(&netstamp_needed);
1442}
1443EXPORT_SYMBOL(net_enable_timestamp);
1444
1445void net_disable_timestamp(void)
1446{
1447 atomic_dec(&netstamp_needed);
1448}
1449EXPORT_SYMBOL(net_disable_timestamp);
1450
1451static inline void net_timestamp_set(struct sk_buff *skb)
1452{
1453 if (atomic_read(&netstamp_needed))
1454 __net_timestamp(skb);
1455 else
1456 skb->tstamp.tv64 = 0;
1457}
1458
1459static inline void net_timestamp_check(struct sk_buff *skb)
1460{
1461 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1462 __net_timestamp(skb);
1463}
1464
1465/**
1466 * dev_forward_skb - loopback an skb to another netif
1467 *
1468 * @dev: destination network device
1469 * @skb: buffer to forward
1470 *
1471 * return values:
1472 * NET_RX_SUCCESS (no congestion)
1473 * NET_RX_DROP (packet was dropped, but freed)
1474 *
1475 * dev_forward_skb can be used for injecting an skb from the
1476 * start_xmit function of one device into the receive queue
1477 * of another device.
1478 *
1479 * The receiving device may be in another namespace, so
1480 * we have to clear all information in the skb that could
1481 * impact namespace isolation.
1482 */
1483int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1484{
1485 skb_orphan(skb);
1486 nf_reset(skb);
1487
1488 if (unlikely(!(dev->flags & IFF_UP) ||
1489 (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) {
1490 atomic_long_inc(&dev->rx_dropped);
1491 kfree_skb(skb);
1492 return NET_RX_DROP;
1493 }
1494 skb_set_dev(skb, dev);
1495 skb->tstamp.tv64 = 0;
1496 skb->pkt_type = PACKET_HOST;
1497 skb->protocol = eth_type_trans(skb, dev);
1498 return netif_rx(skb);
1499}
1500EXPORT_SYMBOL_GPL(dev_forward_skb);
1501
1502/*
1503 * Support routine. Sends outgoing frames to any network
1504 * taps currently in use.
1505 */
1506
1507static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1508{
1509 struct packet_type *ptype;
1510
1511#ifdef CONFIG_NET_CLS_ACT
1512 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1513 net_timestamp_set(skb);
1514#else
1515 net_timestamp_set(skb);
1516#endif
1517
1518 rcu_read_lock();
1519 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1520 /* Never send packets back to the socket
1521 * they originated from - MvS (miquels@drinkel.ow.org)
1522 */
1523 if ((ptype->dev == dev || !ptype->dev) &&
1524 (ptype->af_packet_priv == NULL ||
1525 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1526 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1527 if (!skb2)
1528 break;
1529
1530 /* skb->nh should be correctly
1531 set by sender, so that the second statement is
1532 just protection against buggy protocols.
1533 */
1534 skb_reset_mac_header(skb2);
1535
1536 if (skb_network_header(skb2) < skb2->data ||
1537 skb2->network_header > skb2->tail) {
1538 if (net_ratelimit())
1539 printk(KERN_CRIT "protocol %04x is "
1540 "buggy, dev %s\n",
1541 ntohs(skb2->protocol),
1542 dev->name);
1543 skb_reset_network_header(skb2);
1544 }
1545
1546 skb2->transport_header = skb2->network_header;
1547 skb2->pkt_type = PACKET_OUTGOING;
1548 ptype->func(skb2, skb->dev, ptype, skb->dev);
1549 }
1550 }
1551 rcu_read_unlock();
1552}
1553
1554/*
1555 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1556 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1557 */
1558int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1559{
1560 int rc;
1561
1562 if (txq < 1 || txq > dev->num_tx_queues)
1563 return -EINVAL;
1564
1565 if (dev->reg_state == NETREG_REGISTERED) {
1566 ASSERT_RTNL();
1567
1568 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1569 txq);
1570 if (txq < dev->real_num_tx_queues)
1571 qdisc_reset_all_tx_gt(dev, txq);
1572 }
1573
1574 dev->real_num_tx_queues = txq;
1575 return 0;
1576}
1577EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1578
1579#ifdef CONFIG_RPS
1580/**
1581 * netif_set_real_num_rx_queues - set actual number of RX queues used
1582 * @dev: Network device
1583 * @rxq: Actual number of RX queues
1584 *
1585 * This must be called either with the rtnl_lock held or before
1586 * registration of the net device. Returns 0 on success, or a
1587 * negative error code. If called before registration, it always
1588 * succeeds.
1589 */
1590int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1591{
1592 int rc;
1593
1594 if (rxq < 1 || rxq > dev->num_rx_queues)
1595 return -EINVAL;
1596
1597 if (dev->reg_state == NETREG_REGISTERED) {
1598 ASSERT_RTNL();
1599
1600 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1601 rxq);
1602 if (rc)
1603 return rc;
1604 }
1605
1606 dev->real_num_rx_queues = rxq;
1607 return 0;
1608}
1609EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1610#endif
1611
1612static inline void __netif_reschedule(struct Qdisc *q)
1613{
1614 struct softnet_data *sd;
1615 unsigned long flags;
1616
1617 local_irq_save(flags);
1618 sd = &__get_cpu_var(softnet_data);
1619 q->next_sched = NULL;
1620 *sd->output_queue_tailp = q;
1621 sd->output_queue_tailp = &q->next_sched;
1622 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1623 local_irq_restore(flags);
1624}
1625
1626void __netif_schedule(struct Qdisc *q)
1627{
1628 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1629 __netif_reschedule(q);
1630}
1631EXPORT_SYMBOL(__netif_schedule);
1632
1633void dev_kfree_skb_irq(struct sk_buff *skb)
1634{
1635 if (atomic_dec_and_test(&skb->users)) {
1636 struct softnet_data *sd;
1637 unsigned long flags;
1638
1639 local_irq_save(flags);
1640 sd = &__get_cpu_var(softnet_data);
1641 skb->next = sd->completion_queue;
1642 sd->completion_queue = skb;
1643 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1644 local_irq_restore(flags);
1645 }
1646}
1647EXPORT_SYMBOL(dev_kfree_skb_irq);
1648
1649void dev_kfree_skb_any(struct sk_buff *skb)
1650{
1651 if (in_irq() || irqs_disabled())
1652 dev_kfree_skb_irq(skb);
1653 else
1654 dev_kfree_skb(skb);
1655}
1656EXPORT_SYMBOL(dev_kfree_skb_any);
1657
1658
1659/**
1660 * netif_device_detach - mark device as removed
1661 * @dev: network device
1662 *
1663 * Mark device as removed from system and therefore no longer available.
1664 */
1665void netif_device_detach(struct net_device *dev)
1666{
1667 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1668 netif_running(dev)) {
1669 netif_tx_stop_all_queues(dev);
1670 }
1671}
1672EXPORT_SYMBOL(netif_device_detach);
1673
1674/**
1675 * netif_device_attach - mark device as attached
1676 * @dev: network device
1677 *
1678 * Mark device as attached from system and restart if needed.
1679 */
1680void netif_device_attach(struct net_device *dev)
1681{
1682 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1683 netif_running(dev)) {
1684 netif_tx_wake_all_queues(dev);
1685 __netdev_watchdog_up(dev);
1686 }
1687}
1688EXPORT_SYMBOL(netif_device_attach);
1689
1690static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1691{
1692 return ((features & NETIF_F_NO_CSUM) ||
1693 ((features & NETIF_F_V4_CSUM) &&
1694 protocol == htons(ETH_P_IP)) ||
1695 ((features & NETIF_F_V6_CSUM) &&
1696 protocol == htons(ETH_P_IPV6)) ||
1697 ((features & NETIF_F_FCOE_CRC) &&
1698 protocol == htons(ETH_P_FCOE)));
1699}
1700
1701static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1702{
1703 __be16 protocol = skb->protocol;
1704 int features = dev->features;
1705
1706 if (vlan_tx_tag_present(skb)) {
1707 features &= dev->vlan_features;
1708 } else if (protocol == htons(ETH_P_8021Q)) {
1709 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1710 protocol = veh->h_vlan_encapsulated_proto;
1711 features &= dev->vlan_features;
1712 }
1713
1714 return can_checksum_protocol(features, protocol);
1715}
1716
1717/**
1718 * skb_dev_set -- assign a new device to a buffer
1719 * @skb: buffer for the new device
1720 * @dev: network device
1721 *
1722 * If an skb is owned by a device already, we have to reset
1723 * all data private to the namespace a device belongs to
1724 * before assigning it a new device.
1725 */
1726#ifdef CONFIG_NET_NS
1727void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1728{
1729 skb_dst_drop(skb);
1730 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1731 secpath_reset(skb);
1732 nf_reset(skb);
1733 skb_init_secmark(skb);
1734 skb->mark = 0;
1735 skb->priority = 0;
1736 skb->nf_trace = 0;
1737 skb->ipvs_property = 0;
1738#ifdef CONFIG_NET_SCHED
1739 skb->tc_index = 0;
1740#endif
1741 }
1742 skb->dev = dev;
1743}
1744EXPORT_SYMBOL(skb_set_dev);
1745#endif /* CONFIG_NET_NS */
1746
1747/*
1748 * Invalidate hardware checksum when packet is to be mangled, and
1749 * complete checksum manually on outgoing path.
1750 */
1751int skb_checksum_help(struct sk_buff *skb)
1752{
1753 __wsum csum;
1754 int ret = 0, offset;
1755
1756 if (skb->ip_summed == CHECKSUM_COMPLETE)
1757 goto out_set_summed;
1758
1759 if (unlikely(skb_shinfo(skb)->gso_size)) {
1760 /* Let GSO fix up the checksum. */
1761 goto out_set_summed;
1762 }
1763
1764 offset = skb->csum_start - skb_headroom(skb);
1765 BUG_ON(offset >= skb_headlen(skb));
1766 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1767
1768 offset += skb->csum_offset;
1769 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1770
1771 if (skb_cloned(skb) &&
1772 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1773 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1774 if (ret)
1775 goto out;
1776 }
1777
1778 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1779out_set_summed:
1780 skb->ip_summed = CHECKSUM_NONE;
1781out:
1782 return ret;
1783}
1784EXPORT_SYMBOL(skb_checksum_help);
1785
1786/**
1787 * skb_gso_segment - Perform segmentation on skb.
1788 * @skb: buffer to segment
1789 * @features: features for the output path (see dev->features)
1790 *
1791 * This function segments the given skb and returns a list of segments.
1792 *
1793 * It may return NULL if the skb requires no segmentation. This is
1794 * only possible when GSO is used for verifying header integrity.
1795 */
1796struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1797{
1798 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1799 struct packet_type *ptype;
1800 __be16 type = skb->protocol;
1801 int vlan_depth = ETH_HLEN;
1802 int err;
1803
1804 while (type == htons(ETH_P_8021Q)) {
1805 struct vlan_hdr *vh;
1806
1807 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1808 return ERR_PTR(-EINVAL);
1809
1810 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1811 type = vh->h_vlan_encapsulated_proto;
1812 vlan_depth += VLAN_HLEN;
1813 }
1814
1815 skb_reset_mac_header(skb);
1816 skb->mac_len = skb->network_header - skb->mac_header;
1817 __skb_pull(skb, skb->mac_len);
1818
1819 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1820 struct net_device *dev = skb->dev;
1821 struct ethtool_drvinfo info = {};
1822
1823 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1824 dev->ethtool_ops->get_drvinfo(dev, &info);
1825
1826 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1827 info.driver, dev ? dev->features : 0L,
1828 skb->sk ? skb->sk->sk_route_caps : 0L,
1829 skb->len, skb->data_len, skb->ip_summed);
1830
1831 if (skb_header_cloned(skb) &&
1832 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1833 return ERR_PTR(err);
1834 }
1835
1836 rcu_read_lock();
1837 list_for_each_entry_rcu(ptype,
1838 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1839 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1840 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1841 err = ptype->gso_send_check(skb);
1842 segs = ERR_PTR(err);
1843 if (err || skb_gso_ok(skb, features))
1844 break;
1845 __skb_push(skb, (skb->data -
1846 skb_network_header(skb)));
1847 }
1848 segs = ptype->gso_segment(skb, features);
1849 break;
1850 }
1851 }
1852 rcu_read_unlock();
1853
1854 __skb_push(skb, skb->data - skb_mac_header(skb));
1855
1856 return segs;
1857}
1858EXPORT_SYMBOL(skb_gso_segment);
1859
1860/* Take action when hardware reception checksum errors are detected. */
1861#ifdef CONFIG_BUG
1862void netdev_rx_csum_fault(struct net_device *dev)
1863{
1864 if (net_ratelimit()) {
1865 printk(KERN_ERR "%s: hw csum failure.\n",
1866 dev ? dev->name : "<unknown>");
1867 dump_stack();
1868 }
1869}
1870EXPORT_SYMBOL(netdev_rx_csum_fault);
1871#endif
1872
1873/* Actually, we should eliminate this check as soon as we know, that:
1874 * 1. IOMMU is present and allows to map all the memory.
1875 * 2. No high memory really exists on this machine.
1876 */
1877
1878static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1879{
1880#ifdef CONFIG_HIGHMEM
1881 int i;
1882 if (!(dev->features & NETIF_F_HIGHDMA)) {
1883 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1884 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1885 return 1;
1886 }
1887
1888 if (PCI_DMA_BUS_IS_PHYS) {
1889 struct device *pdev = dev->dev.parent;
1890
1891 if (!pdev)
1892 return 0;
1893 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1894 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1895 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1896 return 1;
1897 }
1898 }
1899#endif
1900 return 0;
1901}
1902
1903struct dev_gso_cb {
1904 void (*destructor)(struct sk_buff *skb);
1905};
1906
1907#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1908
1909static void dev_gso_skb_destructor(struct sk_buff *skb)
1910{
1911 struct dev_gso_cb *cb;
1912
1913 do {
1914 struct sk_buff *nskb = skb->next;
1915
1916 skb->next = nskb->next;
1917 nskb->next = NULL;
1918 kfree_skb(nskb);
1919 } while (skb->next);
1920
1921 cb = DEV_GSO_CB(skb);
1922 if (cb->destructor)
1923 cb->destructor(skb);
1924}
1925
1926/**
1927 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1928 * @skb: buffer to segment
1929 *
1930 * This function segments the given skb and stores the list of segments
1931 * in skb->next.
1932 */
1933static int dev_gso_segment(struct sk_buff *skb)
1934{
1935 struct net_device *dev = skb->dev;
1936 struct sk_buff *segs;
1937 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1938 NETIF_F_SG : 0);
1939
1940 segs = skb_gso_segment(skb, features);
1941
1942 /* Verifying header integrity only. */
1943 if (!segs)
1944 return 0;
1945
1946 if (IS_ERR(segs))
1947 return PTR_ERR(segs);
1948
1949 skb->next = segs;
1950 DEV_GSO_CB(skb)->destructor = skb->destructor;
1951 skb->destructor = dev_gso_skb_destructor;
1952
1953 return 0;
1954}
1955
1956/*
1957 * Try to orphan skb early, right before transmission by the device.
1958 * We cannot orphan skb if tx timestamp is requested or the sk-reference
1959 * is needed on driver level for other reasons, e.g. see net/can/raw.c
1960 */
1961static inline void skb_orphan_try(struct sk_buff *skb)
1962{
1963 struct sock *sk = skb->sk;
1964
1965 if (sk && !skb_shinfo(skb)->tx_flags) {
1966 /* skb_tx_hash() wont be able to get sk.
1967 * We copy sk_hash into skb->rxhash
1968 */
1969 if (!skb->rxhash)
1970 skb->rxhash = sk->sk_hash;
1971 skb_orphan(skb);
1972 }
1973}
1974
1975int netif_get_vlan_features(struct sk_buff *skb, struct net_device *dev)
1976{
1977 __be16 protocol = skb->protocol;
1978
1979 if (protocol == htons(ETH_P_8021Q)) {
1980 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1981 protocol = veh->h_vlan_encapsulated_proto;
1982 } else if (!skb->vlan_tci)
1983 return dev->features;
1984
1985 if (protocol != htons(ETH_P_8021Q))
1986 return dev->features & dev->vlan_features;
1987 else
1988 return 0;
1989}
1990EXPORT_SYMBOL(netif_get_vlan_features);
1991
1992/*
1993 * Returns true if either:
1994 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
1995 * 2. skb is fragmented and the device does not support SG, or if
1996 * at least one of fragments is in highmem and device does not
1997 * support DMA from it.
1998 */
1999static inline int skb_needs_linearize(struct sk_buff *skb,
2000 struct net_device *dev)
2001{
2002 if (skb_is_nonlinear(skb)) {
2003 int features = dev->features;
2004
2005 if (vlan_tx_tag_present(skb))
2006 features &= dev->vlan_features;
2007
2008 return (skb_has_frag_list(skb) &&
2009 !(features & NETIF_F_FRAGLIST)) ||
2010 (skb_shinfo(skb)->nr_frags &&
2011 (!(features & NETIF_F_SG) ||
2012 illegal_highdma(dev, skb)));
2013 }
2014
2015 return 0;
2016}
2017
2018int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2019 struct netdev_queue *txq)
2020{
2021 const struct net_device_ops *ops = dev->netdev_ops;
2022 int rc = NETDEV_TX_OK;
2023
2024 if (likely(!skb->next)) {
2025 if (!list_empty(&ptype_all))
2026 dev_queue_xmit_nit(skb, dev);
2027
2028 /*
2029 * If device doesnt need skb->dst, release it right now while
2030 * its hot in this cpu cache
2031 */
2032 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2033 skb_dst_drop(skb);
2034
2035 skb_orphan_try(skb);
2036
2037 if (vlan_tx_tag_present(skb) &&
2038 !(dev->features & NETIF_F_HW_VLAN_TX)) {
2039 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2040 if (unlikely(!skb))
2041 goto out;
2042
2043 skb->vlan_tci = 0;
2044 }
2045
2046 if (netif_needs_gso(dev, skb)) {
2047 if (unlikely(dev_gso_segment(skb)))
2048 goto out_kfree_skb;
2049 if (skb->next)
2050 goto gso;
2051 } else {
2052 if (skb_needs_linearize(skb, dev) &&
2053 __skb_linearize(skb))
2054 goto out_kfree_skb;
2055
2056 /* If packet is not checksummed and device does not
2057 * support checksumming for this protocol, complete
2058 * checksumming here.
2059 */
2060 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2061 skb_set_transport_header(skb, skb->csum_start -
2062 skb_headroom(skb));
2063 if (!dev_can_checksum(dev, skb) &&
2064 skb_checksum_help(skb))
2065 goto out_kfree_skb;
2066 }
2067 }
2068
2069 rc = ops->ndo_start_xmit(skb, dev);
2070 trace_net_dev_xmit(skb, rc);
2071 if (rc == NETDEV_TX_OK)
2072 txq_trans_update(txq);
2073 return rc;
2074 }
2075
2076gso:
2077 do {
2078 struct sk_buff *nskb = skb->next;
2079
2080 skb->next = nskb->next;
2081 nskb->next = NULL;
2082
2083 /*
2084 * If device doesnt need nskb->dst, release it right now while
2085 * its hot in this cpu cache
2086 */
2087 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2088 skb_dst_drop(nskb);
2089
2090 rc = ops->ndo_start_xmit(nskb, dev);
2091 trace_net_dev_xmit(nskb, rc);
2092 if (unlikely(rc != NETDEV_TX_OK)) {
2093 if (rc & ~NETDEV_TX_MASK)
2094 goto out_kfree_gso_skb;
2095 nskb->next = skb->next;
2096 skb->next = nskb;
2097 return rc;
2098 }
2099 txq_trans_update(txq);
2100 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2101 return NETDEV_TX_BUSY;
2102 } while (skb->next);
2103
2104out_kfree_gso_skb:
2105 if (likely(skb->next == NULL))
2106 skb->destructor = DEV_GSO_CB(skb)->destructor;
2107out_kfree_skb:
2108 kfree_skb(skb);
2109out:
2110 return rc;
2111}
2112
2113static u32 hashrnd __read_mostly;
2114
2115u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
2116{
2117 u32 hash;
2118
2119 if (skb_rx_queue_recorded(skb)) {
2120 hash = skb_get_rx_queue(skb);
2121 while (unlikely(hash >= dev->real_num_tx_queues))
2122 hash -= dev->real_num_tx_queues;
2123 return hash;
2124 }
2125
2126 if (skb->sk && skb->sk->sk_hash)
2127 hash = skb->sk->sk_hash;
2128 else
2129 hash = (__force u16) skb->protocol ^ skb->rxhash;
2130 hash = jhash_1word(hash, hashrnd);
2131
2132 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
2133}
2134EXPORT_SYMBOL(skb_tx_hash);
2135
2136static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2137{
2138 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2139 if (net_ratelimit()) {
2140 pr_warning("%s selects TX queue %d, but "
2141 "real number of TX queues is %d\n",
2142 dev->name, queue_index, dev->real_num_tx_queues);
2143 }
2144 return 0;
2145 }
2146 return queue_index;
2147}
2148
2149static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2150{
2151#ifdef CONFIG_RPS
2152 struct xps_dev_maps *dev_maps;
2153 struct xps_map *map;
2154 int queue_index = -1;
2155
2156 rcu_read_lock();
2157 dev_maps = rcu_dereference(dev->xps_maps);
2158 if (dev_maps) {
2159 map = rcu_dereference(
2160 dev_maps->cpu_map[raw_smp_processor_id()]);
2161 if (map) {
2162 if (map->len == 1)
2163 queue_index = map->queues[0];
2164 else {
2165 u32 hash;
2166 if (skb->sk && skb->sk->sk_hash)
2167 hash = skb->sk->sk_hash;
2168 else
2169 hash = (__force u16) skb->protocol ^
2170 skb->rxhash;
2171 hash = jhash_1word(hash, hashrnd);
2172 queue_index = map->queues[
2173 ((u64)hash * map->len) >> 32];
2174 }
2175 if (unlikely(queue_index >= dev->real_num_tx_queues))
2176 queue_index = -1;
2177 }
2178 }
2179 rcu_read_unlock();
2180
2181 return queue_index;
2182#else
2183 return -1;
2184#endif
2185}
2186
2187static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2188 struct sk_buff *skb)
2189{
2190 int queue_index;
2191 const struct net_device_ops *ops = dev->netdev_ops;
2192
2193 if (dev->real_num_tx_queues == 1)
2194 queue_index = 0;
2195 else if (ops->ndo_select_queue) {
2196 queue_index = ops->ndo_select_queue(dev, skb);
2197 queue_index = dev_cap_txqueue(dev, queue_index);
2198 } else {
2199 struct sock *sk = skb->sk;
2200 queue_index = sk_tx_queue_get(sk);
2201
2202 if (queue_index < 0 || skb->ooo_okay ||
2203 queue_index >= dev->real_num_tx_queues) {
2204 int old_index = queue_index;
2205
2206 queue_index = get_xps_queue(dev, skb);
2207 if (queue_index < 0)
2208 queue_index = skb_tx_hash(dev, skb);
2209
2210 if (queue_index != old_index && sk) {
2211 struct dst_entry *dst =
2212 rcu_dereference_check(sk->sk_dst_cache, 1);
2213
2214 if (dst && skb_dst(skb) == dst)
2215 sk_tx_queue_set(sk, queue_index);
2216 }
2217 }
2218 }
2219
2220 skb_set_queue_mapping(skb, queue_index);
2221 return netdev_get_tx_queue(dev, queue_index);
2222}
2223
2224static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2225 struct net_device *dev,
2226 struct netdev_queue *txq)
2227{
2228 spinlock_t *root_lock = qdisc_lock(q);
2229 bool contended = qdisc_is_running(q);
2230 int rc;
2231
2232 /*
2233 * Heuristic to force contended enqueues to serialize on a
2234 * separate lock before trying to get qdisc main lock.
2235 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2236 * and dequeue packets faster.
2237 */
2238 if (unlikely(contended))
2239 spin_lock(&q->busylock);
2240
2241 spin_lock(root_lock);
2242 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2243 kfree_skb(skb);
2244 rc = NET_XMIT_DROP;
2245 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2246 qdisc_run_begin(q)) {
2247 /*
2248 * This is a work-conserving queue; there are no old skbs
2249 * waiting to be sent out; and the qdisc is not running -
2250 * xmit the skb directly.
2251 */
2252 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2253 skb_dst_force(skb);
2254 __qdisc_update_bstats(q, skb->len);
2255 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2256 if (unlikely(contended)) {
2257 spin_unlock(&q->busylock);
2258 contended = false;
2259 }
2260 __qdisc_run(q);
2261 } else
2262 qdisc_run_end(q);
2263
2264 rc = NET_XMIT_SUCCESS;
2265 } else {
2266 skb_dst_force(skb);
2267 rc = qdisc_enqueue_root(skb, q);
2268 if (qdisc_run_begin(q)) {
2269 if (unlikely(contended)) {
2270 spin_unlock(&q->busylock);
2271 contended = false;
2272 }
2273 __qdisc_run(q);
2274 }
2275 }
2276 spin_unlock(root_lock);
2277 if (unlikely(contended))
2278 spin_unlock(&q->busylock);
2279 return rc;
2280}
2281
2282static DEFINE_PER_CPU(int, xmit_recursion);
2283#define RECURSION_LIMIT 10
2284
2285/**
2286 * dev_queue_xmit - transmit a buffer
2287 * @skb: buffer to transmit
2288 *
2289 * Queue a buffer for transmission to a network device. The caller must
2290 * have set the device and priority and built the buffer before calling
2291 * this function. The function can be called from an interrupt.
2292 *
2293 * A negative errno code is returned on a failure. A success does not
2294 * guarantee the frame will be transmitted as it may be dropped due
2295 * to congestion or traffic shaping.
2296 *
2297 * -----------------------------------------------------------------------------------
2298 * I notice this method can also return errors from the queue disciplines,
2299 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2300 * be positive.
2301 *
2302 * Regardless of the return value, the skb is consumed, so it is currently
2303 * difficult to retry a send to this method. (You can bump the ref count
2304 * before sending to hold a reference for retry if you are careful.)
2305 *
2306 * When calling this method, interrupts MUST be enabled. This is because
2307 * the BH enable code must have IRQs enabled so that it will not deadlock.
2308 * --BLG
2309 */
2310int dev_queue_xmit(struct sk_buff *skb)
2311{
2312 struct net_device *dev = skb->dev;
2313 struct netdev_queue *txq;
2314 struct Qdisc *q;
2315 int rc = -ENOMEM;
2316
2317 /* Disable soft irqs for various locks below. Also
2318 * stops preemption for RCU.
2319 */
2320 rcu_read_lock_bh();
2321
2322 txq = dev_pick_tx(dev, skb);
2323 q = rcu_dereference_bh(txq->qdisc);
2324
2325#ifdef CONFIG_NET_CLS_ACT
2326 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2327#endif
2328 trace_net_dev_queue(skb);
2329 if (q->enqueue) {
2330 rc = __dev_xmit_skb(skb, q, dev, txq);
2331 goto out;
2332 }
2333
2334 /* The device has no queue. Common case for software devices:
2335 loopback, all the sorts of tunnels...
2336
2337 Really, it is unlikely that netif_tx_lock protection is necessary
2338 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2339 counters.)
2340 However, it is possible, that they rely on protection
2341 made by us here.
2342
2343 Check this and shot the lock. It is not prone from deadlocks.
2344 Either shot noqueue qdisc, it is even simpler 8)
2345 */
2346 if (dev->flags & IFF_UP) {
2347 int cpu = smp_processor_id(); /* ok because BHs are off */
2348
2349 if (txq->xmit_lock_owner != cpu) {
2350
2351 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2352 goto recursion_alert;
2353
2354 HARD_TX_LOCK(dev, txq, cpu);
2355
2356 if (!netif_tx_queue_stopped(txq)) {
2357 __this_cpu_inc(xmit_recursion);
2358 rc = dev_hard_start_xmit(skb, dev, txq);
2359 __this_cpu_dec(xmit_recursion);
2360 if (dev_xmit_complete(rc)) {
2361 HARD_TX_UNLOCK(dev, txq);
2362 goto out;
2363 }
2364 }
2365 HARD_TX_UNLOCK(dev, txq);
2366 if (net_ratelimit())
2367 printk(KERN_CRIT "Virtual device %s asks to "
2368 "queue packet!\n", dev->name);
2369 } else {
2370 /* Recursion is detected! It is possible,
2371 * unfortunately
2372 */
2373recursion_alert:
2374 if (net_ratelimit())
2375 printk(KERN_CRIT "Dead loop on virtual device "
2376 "%s, fix it urgently!\n", dev->name);
2377 }
2378 }
2379
2380 rc = -ENETDOWN;
2381 rcu_read_unlock_bh();
2382
2383 kfree_skb(skb);
2384 return rc;
2385out:
2386 rcu_read_unlock_bh();
2387 return rc;
2388}
2389EXPORT_SYMBOL(dev_queue_xmit);
2390
2391
2392/*=======================================================================
2393 Receiver routines
2394 =======================================================================*/
2395
2396int netdev_max_backlog __read_mostly = 1000;
2397int netdev_tstamp_prequeue __read_mostly = 1;
2398int netdev_budget __read_mostly = 300;
2399int weight_p __read_mostly = 64; /* old backlog weight */
2400
2401/* Called with irq disabled */
2402static inline void ____napi_schedule(struct softnet_data *sd,
2403 struct napi_struct *napi)
2404{
2405 list_add_tail(&napi->poll_list, &sd->poll_list);
2406 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2407}
2408
2409/*
2410 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2411 * and src/dst port numbers. Returns a non-zero hash number on success
2412 * and 0 on failure.
2413 */
2414__u32 __skb_get_rxhash(struct sk_buff *skb)
2415{
2416 int nhoff, hash = 0, poff;
2417 struct ipv6hdr *ip6;
2418 struct iphdr *ip;
2419 u8 ip_proto;
2420 u32 addr1, addr2, ihl;
2421 union {
2422 u32 v32;
2423 u16 v16[2];
2424 } ports;
2425
2426 nhoff = skb_network_offset(skb);
2427
2428 switch (skb->protocol) {
2429 case __constant_htons(ETH_P_IP):
2430 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2431 goto done;
2432
2433 ip = (struct iphdr *) (skb->data + nhoff);
2434 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2435 ip_proto = 0;
2436 else
2437 ip_proto = ip->protocol;
2438 addr1 = (__force u32) ip->saddr;
2439 addr2 = (__force u32) ip->daddr;
2440 ihl = ip->ihl;
2441 break;
2442 case __constant_htons(ETH_P_IPV6):
2443 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2444 goto done;
2445
2446 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2447 ip_proto = ip6->nexthdr;
2448 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2449 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2450 ihl = (40 >> 2);
2451 break;
2452 default:
2453 goto done;
2454 }
2455
2456 ports.v32 = 0;
2457 poff = proto_ports_offset(ip_proto);
2458 if (poff >= 0) {
2459 nhoff += ihl * 4 + poff;
2460 if (pskb_may_pull(skb, nhoff + 4)) {
2461 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2462 if (ports.v16[1] < ports.v16[0])
2463 swap(ports.v16[0], ports.v16[1]);
2464 }
2465 }
2466
2467 /* get a consistent hash (same value on both flow directions) */
2468 if (addr2 < addr1)
2469 swap(addr1, addr2);
2470
2471 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2472 if (!hash)
2473 hash = 1;
2474
2475done:
2476 return hash;
2477}
2478EXPORT_SYMBOL(__skb_get_rxhash);
2479
2480#ifdef CONFIG_RPS
2481
2482/* One global table that all flow-based protocols share. */
2483struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2484EXPORT_SYMBOL(rps_sock_flow_table);
2485
2486/*
2487 * get_rps_cpu is called from netif_receive_skb and returns the target
2488 * CPU from the RPS map of the receiving queue for a given skb.
2489 * rcu_read_lock must be held on entry.
2490 */
2491static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2492 struct rps_dev_flow **rflowp)
2493{
2494 struct netdev_rx_queue *rxqueue;
2495 struct rps_map *map;
2496 struct rps_dev_flow_table *flow_table;
2497 struct rps_sock_flow_table *sock_flow_table;
2498 int cpu = -1;
2499 u16 tcpu;
2500
2501 if (skb_rx_queue_recorded(skb)) {
2502 u16 index = skb_get_rx_queue(skb);
2503 if (unlikely(index >= dev->real_num_rx_queues)) {
2504 WARN_ONCE(dev->real_num_rx_queues > 1,
2505 "%s received packet on queue %u, but number "
2506 "of RX queues is %u\n",
2507 dev->name, index, dev->real_num_rx_queues);
2508 goto done;
2509 }
2510 rxqueue = dev->_rx + index;
2511 } else
2512 rxqueue = dev->_rx;
2513
2514 map = rcu_dereference(rxqueue->rps_map);
2515 if (map) {
2516 if (map->len == 1) {
2517 tcpu = map->cpus[0];
2518 if (cpu_online(tcpu))
2519 cpu = tcpu;
2520 goto done;
2521 }
2522 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2523 goto done;
2524 }
2525
2526 skb_reset_network_header(skb);
2527 if (!skb_get_rxhash(skb))
2528 goto done;
2529
2530 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2531 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2532 if (flow_table && sock_flow_table) {
2533 u16 next_cpu;
2534 struct rps_dev_flow *rflow;
2535
2536 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2537 tcpu = rflow->cpu;
2538
2539 next_cpu = sock_flow_table->ents[skb->rxhash &
2540 sock_flow_table->mask];
2541
2542 /*
2543 * If the desired CPU (where last recvmsg was done) is
2544 * different from current CPU (one in the rx-queue flow
2545 * table entry), switch if one of the following holds:
2546 * - Current CPU is unset (equal to RPS_NO_CPU).
2547 * - Current CPU is offline.
2548 * - The current CPU's queue tail has advanced beyond the
2549 * last packet that was enqueued using this table entry.
2550 * This guarantees that all previous packets for the flow
2551 * have been dequeued, thus preserving in order delivery.
2552 */
2553 if (unlikely(tcpu != next_cpu) &&
2554 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2555 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2556 rflow->last_qtail)) >= 0)) {
2557 tcpu = rflow->cpu = next_cpu;
2558 if (tcpu != RPS_NO_CPU)
2559 rflow->last_qtail = per_cpu(softnet_data,
2560 tcpu).input_queue_head;
2561 }
2562 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2563 *rflowp = rflow;
2564 cpu = tcpu;
2565 goto done;
2566 }
2567 }
2568
2569 if (map) {
2570 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2571
2572 if (cpu_online(tcpu)) {
2573 cpu = tcpu;
2574 goto done;
2575 }
2576 }
2577
2578done:
2579 return cpu;
2580}
2581
2582/* Called from hardirq (IPI) context */
2583static void rps_trigger_softirq(void *data)
2584{
2585 struct softnet_data *sd = data;
2586
2587 ____napi_schedule(sd, &sd->backlog);
2588 sd->received_rps++;
2589}
2590
2591#endif /* CONFIG_RPS */
2592
2593/*
2594 * Check if this softnet_data structure is another cpu one
2595 * If yes, queue it to our IPI list and return 1
2596 * If no, return 0
2597 */
2598static int rps_ipi_queued(struct softnet_data *sd)
2599{
2600#ifdef CONFIG_RPS
2601 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2602
2603 if (sd != mysd) {
2604 sd->rps_ipi_next = mysd->rps_ipi_list;
2605 mysd->rps_ipi_list = sd;
2606
2607 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2608 return 1;
2609 }
2610#endif /* CONFIG_RPS */
2611 return 0;
2612}
2613
2614/*
2615 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2616 * queue (may be a remote CPU queue).
2617 */
2618static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2619 unsigned int *qtail)
2620{
2621 struct softnet_data *sd;
2622 unsigned long flags;
2623
2624 sd = &per_cpu(softnet_data, cpu);
2625
2626 local_irq_save(flags);
2627
2628 rps_lock(sd);
2629 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2630 if (skb_queue_len(&sd->input_pkt_queue)) {
2631enqueue:
2632 __skb_queue_tail(&sd->input_pkt_queue, skb);
2633 input_queue_tail_incr_save(sd, qtail);
2634 rps_unlock(sd);
2635 local_irq_restore(flags);
2636 return NET_RX_SUCCESS;
2637 }
2638
2639 /* Schedule NAPI for backlog device
2640 * We can use non atomic operation since we own the queue lock
2641 */
2642 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2643 if (!rps_ipi_queued(sd))
2644 ____napi_schedule(sd, &sd->backlog);
2645 }
2646 goto enqueue;
2647 }
2648
2649 sd->dropped++;
2650 rps_unlock(sd);
2651
2652 local_irq_restore(flags);
2653
2654 atomic_long_inc(&skb->dev->rx_dropped);
2655 kfree_skb(skb);
2656 return NET_RX_DROP;
2657}
2658
2659/**
2660 * netif_rx - post buffer to the network code
2661 * @skb: buffer to post
2662 *
2663 * This function receives a packet from a device driver and queues it for
2664 * the upper (protocol) levels to process. It always succeeds. The buffer
2665 * may be dropped during processing for congestion control or by the
2666 * protocol layers.
2667 *
2668 * return values:
2669 * NET_RX_SUCCESS (no congestion)
2670 * NET_RX_DROP (packet was dropped)
2671 *
2672 */
2673
2674int netif_rx(struct sk_buff *skb)
2675{
2676 int ret;
2677
2678 /* if netpoll wants it, pretend we never saw it */
2679 if (netpoll_rx(skb))
2680 return NET_RX_DROP;
2681
2682 if (netdev_tstamp_prequeue)
2683 net_timestamp_check(skb);
2684
2685 trace_netif_rx(skb);
2686#ifdef CONFIG_RPS
2687 {
2688 struct rps_dev_flow voidflow, *rflow = &voidflow;
2689 int cpu;
2690
2691 preempt_disable();
2692 rcu_read_lock();
2693
2694 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2695 if (cpu < 0)
2696 cpu = smp_processor_id();
2697
2698 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2699
2700 rcu_read_unlock();
2701 preempt_enable();
2702 }
2703#else
2704 {
2705 unsigned int qtail;
2706 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2707 put_cpu();
2708 }
2709#endif
2710 return ret;
2711}
2712EXPORT_SYMBOL(netif_rx);
2713
2714int netif_rx_ni(struct sk_buff *skb)
2715{
2716 int err;
2717
2718 preempt_disable();
2719 err = netif_rx(skb);
2720 if (local_softirq_pending())
2721 do_softirq();
2722 preempt_enable();
2723
2724 return err;
2725}
2726EXPORT_SYMBOL(netif_rx_ni);
2727
2728static void net_tx_action(struct softirq_action *h)
2729{
2730 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2731
2732 if (sd->completion_queue) {
2733 struct sk_buff *clist;
2734
2735 local_irq_disable();
2736 clist = sd->completion_queue;
2737 sd->completion_queue = NULL;
2738 local_irq_enable();
2739
2740 while (clist) {
2741 struct sk_buff *skb = clist;
2742 clist = clist->next;
2743
2744 WARN_ON(atomic_read(&skb->users));
2745 trace_kfree_skb(skb, net_tx_action);
2746 __kfree_skb(skb);
2747 }
2748 }
2749
2750 if (sd->output_queue) {
2751 struct Qdisc *head;
2752
2753 local_irq_disable();
2754 head = sd->output_queue;
2755 sd->output_queue = NULL;
2756 sd->output_queue_tailp = &sd->output_queue;
2757 local_irq_enable();
2758
2759 while (head) {
2760 struct Qdisc *q = head;
2761 spinlock_t *root_lock;
2762
2763 head = head->next_sched;
2764
2765 root_lock = qdisc_lock(q);
2766 if (spin_trylock(root_lock)) {
2767 smp_mb__before_clear_bit();
2768 clear_bit(__QDISC_STATE_SCHED,
2769 &q->state);
2770 qdisc_run(q);
2771 spin_unlock(root_lock);
2772 } else {
2773 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2774 &q->state)) {
2775 __netif_reschedule(q);
2776 } else {
2777 smp_mb__before_clear_bit();
2778 clear_bit(__QDISC_STATE_SCHED,
2779 &q->state);
2780 }
2781 }
2782 }
2783 }
2784}
2785
2786static inline int deliver_skb(struct sk_buff *skb,
2787 struct packet_type *pt_prev,
2788 struct net_device *orig_dev)
2789{
2790 atomic_inc(&skb->users);
2791 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2792}
2793
2794#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2795 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2796/* This hook is defined here for ATM LANE */
2797int (*br_fdb_test_addr_hook)(struct net_device *dev,
2798 unsigned char *addr) __read_mostly;
2799EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2800#endif
2801
2802#ifdef CONFIG_NET_CLS_ACT
2803/* TODO: Maybe we should just force sch_ingress to be compiled in
2804 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2805 * a compare and 2 stores extra right now if we dont have it on
2806 * but have CONFIG_NET_CLS_ACT
2807 * NOTE: This doesnt stop any functionality; if you dont have
2808 * the ingress scheduler, you just cant add policies on ingress.
2809 *
2810 */
2811static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2812{
2813 struct net_device *dev = skb->dev;
2814 u32 ttl = G_TC_RTTL(skb->tc_verd);
2815 int result = TC_ACT_OK;
2816 struct Qdisc *q;
2817
2818 if (unlikely(MAX_RED_LOOP < ttl++)) {
2819 if (net_ratelimit())
2820 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2821 skb->skb_iif, dev->ifindex);
2822 return TC_ACT_SHOT;
2823 }
2824
2825 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2826 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2827
2828 q = rxq->qdisc;
2829 if (q != &noop_qdisc) {
2830 spin_lock(qdisc_lock(q));
2831 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2832 result = qdisc_enqueue_root(skb, q);
2833 spin_unlock(qdisc_lock(q));
2834 }
2835
2836 return result;
2837}
2838
2839static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2840 struct packet_type **pt_prev,
2841 int *ret, struct net_device *orig_dev)
2842{
2843 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
2844
2845 if (!rxq || rxq->qdisc == &noop_qdisc)
2846 goto out;
2847
2848 if (*pt_prev) {
2849 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2850 *pt_prev = NULL;
2851 }
2852
2853 switch (ing_filter(skb, rxq)) {
2854 case TC_ACT_SHOT:
2855 case TC_ACT_STOLEN:
2856 kfree_skb(skb);
2857 return NULL;
2858 }
2859
2860out:
2861 skb->tc_verd = 0;
2862 return skb;
2863}
2864#endif
2865
2866/**
2867 * netdev_rx_handler_register - register receive handler
2868 * @dev: device to register a handler for
2869 * @rx_handler: receive handler to register
2870 * @rx_handler_data: data pointer that is used by rx handler
2871 *
2872 * Register a receive hander for a device. This handler will then be
2873 * called from __netif_receive_skb. A negative errno code is returned
2874 * on a failure.
2875 *
2876 * The caller must hold the rtnl_mutex.
2877 */
2878int netdev_rx_handler_register(struct net_device *dev,
2879 rx_handler_func_t *rx_handler,
2880 void *rx_handler_data)
2881{
2882 ASSERT_RTNL();
2883
2884 if (dev->rx_handler)
2885 return -EBUSY;
2886
2887 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2888 rcu_assign_pointer(dev->rx_handler, rx_handler);
2889
2890 return 0;
2891}
2892EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2893
2894/**
2895 * netdev_rx_handler_unregister - unregister receive handler
2896 * @dev: device to unregister a handler from
2897 *
2898 * Unregister a receive hander from a device.
2899 *
2900 * The caller must hold the rtnl_mutex.
2901 */
2902void netdev_rx_handler_unregister(struct net_device *dev)
2903{
2904
2905 ASSERT_RTNL();
2906 rcu_assign_pointer(dev->rx_handler, NULL);
2907 rcu_assign_pointer(dev->rx_handler_data, NULL);
2908}
2909EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2910
2911static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2912 struct net_device *master)
2913{
2914 if (skb->pkt_type == PACKET_HOST) {
2915 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2916
2917 memcpy(dest, master->dev_addr, ETH_ALEN);
2918 }
2919}
2920
2921/* On bonding slaves other than the currently active slave, suppress
2922 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2923 * ARP on active-backup slaves with arp_validate enabled.
2924 */
2925int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2926{
2927 struct net_device *dev = skb->dev;
2928
2929 if (master->priv_flags & IFF_MASTER_ARPMON)
2930 dev->last_rx = jiffies;
2931
2932 if ((master->priv_flags & IFF_MASTER_ALB) &&
2933 (master->priv_flags & IFF_BRIDGE_PORT)) {
2934 /* Do address unmangle. The local destination address
2935 * will be always the one master has. Provides the right
2936 * functionality in a bridge.
2937 */
2938 skb_bond_set_mac_by_master(skb, master);
2939 }
2940
2941 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2942 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2943 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2944 return 0;
2945
2946 if (master->priv_flags & IFF_MASTER_ALB) {
2947 if (skb->pkt_type != PACKET_BROADCAST &&
2948 skb->pkt_type != PACKET_MULTICAST)
2949 return 0;
2950 }
2951 if (master->priv_flags & IFF_MASTER_8023AD &&
2952 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2953 return 0;
2954
2955 return 1;
2956 }
2957 return 0;
2958}
2959EXPORT_SYMBOL(__skb_bond_should_drop);
2960
2961static int __netif_receive_skb(struct sk_buff *skb)
2962{
2963 struct packet_type *ptype, *pt_prev;
2964 rx_handler_func_t *rx_handler;
2965 struct net_device *orig_dev;
2966 struct net_device *master;
2967 struct net_device *null_or_orig;
2968 struct net_device *orig_or_bond;
2969 int ret = NET_RX_DROP;
2970 __be16 type;
2971
2972 if (!netdev_tstamp_prequeue)
2973 net_timestamp_check(skb);
2974
2975 trace_netif_receive_skb(skb);
2976
2977 /* if we've gotten here through NAPI, check netpoll */
2978 if (netpoll_receive_skb(skb))
2979 return NET_RX_DROP;
2980
2981 if (!skb->skb_iif)
2982 skb->skb_iif = skb->dev->ifindex;
2983
2984 /*
2985 * bonding note: skbs received on inactive slaves should only
2986 * be delivered to pkt handlers that are exact matches. Also
2987 * the deliver_no_wcard flag will be set. If packet handlers
2988 * are sensitive to duplicate packets these skbs will need to
2989 * be dropped at the handler.
2990 */
2991 null_or_orig = NULL;
2992 orig_dev = skb->dev;
2993 master = ACCESS_ONCE(orig_dev->master);
2994 if (skb->deliver_no_wcard)
2995 null_or_orig = orig_dev;
2996 else if (master) {
2997 if (skb_bond_should_drop(skb, master)) {
2998 skb->deliver_no_wcard = 1;
2999 null_or_orig = orig_dev; /* deliver only exact match */
3000 } else
3001 skb->dev = master;
3002 }
3003
3004 __this_cpu_inc(softnet_data.processed);
3005 skb_reset_network_header(skb);
3006 skb_reset_transport_header(skb);
3007 skb->mac_len = skb->network_header - skb->mac_header;
3008
3009 pt_prev = NULL;
3010
3011 rcu_read_lock();
3012
3013#ifdef CONFIG_NET_CLS_ACT
3014 if (skb->tc_verd & TC_NCLS) {
3015 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3016 goto ncls;
3017 }
3018#endif
3019
3020 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3021 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
3022 ptype->dev == orig_dev) {
3023 if (pt_prev)
3024 ret = deliver_skb(skb, pt_prev, orig_dev);
3025 pt_prev = ptype;
3026 }
3027 }
3028
3029#ifdef CONFIG_NET_CLS_ACT
3030 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3031 if (!skb)
3032 goto out;
3033ncls:
3034#endif
3035
3036 /* Handle special case of bridge or macvlan */
3037 rx_handler = rcu_dereference(skb->dev->rx_handler);
3038 if (rx_handler) {
3039 if (pt_prev) {
3040 ret = deliver_skb(skb, pt_prev, orig_dev);
3041 pt_prev = NULL;
3042 }
3043 skb = rx_handler(skb);
3044 if (!skb)
3045 goto out;
3046 }
3047
3048 if (vlan_tx_tag_present(skb)) {
3049 if (pt_prev) {
3050 ret = deliver_skb(skb, pt_prev, orig_dev);
3051 pt_prev = NULL;
3052 }
3053 if (vlan_hwaccel_do_receive(&skb)) {
3054 ret = __netif_receive_skb(skb);
3055 goto out;
3056 } else if (unlikely(!skb))
3057 goto out;
3058 }
3059
3060 /*
3061 * Make sure frames received on VLAN interfaces stacked on
3062 * bonding interfaces still make their way to any base bonding
3063 * device that may have registered for a specific ptype. The
3064 * handler may have to adjust skb->dev and orig_dev.
3065 */
3066 orig_or_bond = orig_dev;
3067 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
3068 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
3069 orig_or_bond = vlan_dev_real_dev(skb->dev);
3070 }
3071
3072 type = skb->protocol;
3073 list_for_each_entry_rcu(ptype,
3074 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3075 if (ptype->type == type && (ptype->dev == null_or_orig ||
3076 ptype->dev == skb->dev || ptype->dev == orig_dev ||
3077 ptype->dev == orig_or_bond)) {
3078 if (pt_prev)
3079 ret = deliver_skb(skb, pt_prev, orig_dev);
3080 pt_prev = ptype;
3081 }
3082 }
3083
3084 if (pt_prev) {
3085 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3086 } else {
3087 atomic_long_inc(&skb->dev->rx_dropped);
3088 kfree_skb(skb);
3089 /* Jamal, now you will not able to escape explaining
3090 * me how you were going to use this. :-)
3091 */
3092 ret = NET_RX_DROP;
3093 }
3094
3095out:
3096 rcu_read_unlock();
3097 return ret;
3098}
3099
3100/**
3101 * netif_receive_skb - process receive buffer from network
3102 * @skb: buffer to process
3103 *
3104 * netif_receive_skb() is the main receive data processing function.
3105 * It always succeeds. The buffer may be dropped during processing
3106 * for congestion control or by the protocol layers.
3107 *
3108 * This function may only be called from softirq context and interrupts
3109 * should be enabled.
3110 *
3111 * Return values (usually ignored):
3112 * NET_RX_SUCCESS: no congestion
3113 * NET_RX_DROP: packet was dropped
3114 */
3115int netif_receive_skb(struct sk_buff *skb)
3116{
3117 if (netdev_tstamp_prequeue)
3118 net_timestamp_check(skb);
3119
3120 if (skb_defer_rx_timestamp(skb))
3121 return NET_RX_SUCCESS;
3122
3123#ifdef CONFIG_RPS
3124 {
3125 struct rps_dev_flow voidflow, *rflow = &voidflow;
3126 int cpu, ret;
3127
3128 rcu_read_lock();
3129
3130 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3131
3132 if (cpu >= 0) {
3133 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3134 rcu_read_unlock();
3135 } else {
3136 rcu_read_unlock();
3137 ret = __netif_receive_skb(skb);
3138 }
3139
3140 return ret;
3141 }
3142#else
3143 return __netif_receive_skb(skb);
3144#endif
3145}
3146EXPORT_SYMBOL(netif_receive_skb);
3147
3148/* Network device is going away, flush any packets still pending
3149 * Called with irqs disabled.
3150 */
3151static void flush_backlog(void *arg)
3152{
3153 struct net_device *dev = arg;
3154 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3155 struct sk_buff *skb, *tmp;
3156
3157 rps_lock(sd);
3158 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3159 if (skb->dev == dev) {
3160 __skb_unlink(skb, &sd->input_pkt_queue);
3161 kfree_skb(skb);
3162 input_queue_head_incr(sd);
3163 }
3164 }
3165 rps_unlock(sd);
3166
3167 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3168 if (skb->dev == dev) {
3169 __skb_unlink(skb, &sd->process_queue);
3170 kfree_skb(skb);
3171 input_queue_head_incr(sd);
3172 }
3173 }
3174}
3175
3176static int napi_gro_complete(struct sk_buff *skb)
3177{
3178 struct packet_type *ptype;
3179 __be16 type = skb->protocol;
3180 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3181 int err = -ENOENT;
3182
3183 if (NAPI_GRO_CB(skb)->count == 1) {
3184 skb_shinfo(skb)->gso_size = 0;
3185 goto out;
3186 }
3187
3188 rcu_read_lock();
3189 list_for_each_entry_rcu(ptype, head, list) {
3190 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3191 continue;
3192
3193 err = ptype->gro_complete(skb);
3194 break;
3195 }
3196 rcu_read_unlock();
3197
3198 if (err) {
3199 WARN_ON(&ptype->list == head);
3200 kfree_skb(skb);
3201 return NET_RX_SUCCESS;
3202 }
3203
3204out:
3205 return netif_receive_skb(skb);
3206}
3207
3208inline void napi_gro_flush(struct napi_struct *napi)
3209{
3210 struct sk_buff *skb, *next;
3211
3212 for (skb = napi->gro_list; skb; skb = next) {
3213 next = skb->next;
3214 skb->next = NULL;
3215 napi_gro_complete(skb);
3216 }
3217
3218 napi->gro_count = 0;
3219 napi->gro_list = NULL;
3220}
3221EXPORT_SYMBOL(napi_gro_flush);
3222
3223enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3224{
3225 struct sk_buff **pp = NULL;
3226 struct packet_type *ptype;
3227 __be16 type = skb->protocol;
3228 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3229 int same_flow;
3230 int mac_len;
3231 enum gro_result ret;
3232
3233 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3234 goto normal;
3235
3236 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3237 goto normal;
3238
3239 rcu_read_lock();
3240 list_for_each_entry_rcu(ptype, head, list) {
3241 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3242 continue;
3243
3244 skb_set_network_header(skb, skb_gro_offset(skb));
3245 mac_len = skb->network_header - skb->mac_header;
3246 skb->mac_len = mac_len;
3247 NAPI_GRO_CB(skb)->same_flow = 0;
3248 NAPI_GRO_CB(skb)->flush = 0;
3249 NAPI_GRO_CB(skb)->free = 0;
3250
3251 pp = ptype->gro_receive(&napi->gro_list, skb);
3252 break;
3253 }
3254 rcu_read_unlock();
3255
3256 if (&ptype->list == head)
3257 goto normal;
3258
3259 same_flow = NAPI_GRO_CB(skb)->same_flow;
3260 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3261
3262 if (pp) {
3263 struct sk_buff *nskb = *pp;
3264
3265 *pp = nskb->next;
3266 nskb->next = NULL;
3267 napi_gro_complete(nskb);
3268 napi->gro_count--;
3269 }
3270
3271 if (same_flow)
3272 goto ok;
3273
3274 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3275 goto normal;
3276
3277 napi->gro_count++;
3278 NAPI_GRO_CB(skb)->count = 1;
3279 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3280 skb->next = napi->gro_list;
3281 napi->gro_list = skb;
3282 ret = GRO_HELD;
3283
3284pull:
3285 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3286 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3287
3288 BUG_ON(skb->end - skb->tail < grow);
3289
3290 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3291
3292 skb->tail += grow;
3293 skb->data_len -= grow;
3294
3295 skb_shinfo(skb)->frags[0].page_offset += grow;
3296 skb_shinfo(skb)->frags[0].size -= grow;
3297
3298 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3299 put_page(skb_shinfo(skb)->frags[0].page);
3300 memmove(skb_shinfo(skb)->frags,
3301 skb_shinfo(skb)->frags + 1,
3302 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3303 }
3304 }
3305
3306ok:
3307 return ret;
3308
3309normal:
3310 ret = GRO_NORMAL;
3311 goto pull;
3312}
3313EXPORT_SYMBOL(dev_gro_receive);
3314
3315static inline gro_result_t
3316__napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3317{
3318 struct sk_buff *p;
3319
3320 for (p = napi->gro_list; p; p = p->next) {
3321 unsigned long diffs;
3322
3323 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3324 diffs |= p->vlan_tci ^ skb->vlan_tci;
3325 diffs |= compare_ether_header(skb_mac_header(p),
3326 skb_gro_mac_header(skb));
3327 NAPI_GRO_CB(p)->same_flow = !diffs;
3328 NAPI_GRO_CB(p)->flush = 0;
3329 }
3330
3331 return dev_gro_receive(napi, skb);
3332}
3333
3334gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3335{
3336 switch (ret) {
3337 case GRO_NORMAL:
3338 if (netif_receive_skb(skb))
3339 ret = GRO_DROP;
3340 break;
3341
3342 case GRO_DROP:
3343 case GRO_MERGED_FREE:
3344 kfree_skb(skb);
3345 break;
3346
3347 case GRO_HELD:
3348 case GRO_MERGED:
3349 break;
3350 }
3351
3352 return ret;
3353}
3354EXPORT_SYMBOL(napi_skb_finish);
3355
3356void skb_gro_reset_offset(struct sk_buff *skb)
3357{
3358 NAPI_GRO_CB(skb)->data_offset = 0;
3359 NAPI_GRO_CB(skb)->frag0 = NULL;
3360 NAPI_GRO_CB(skb)->frag0_len = 0;
3361
3362 if (skb->mac_header == skb->tail &&
3363 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3364 NAPI_GRO_CB(skb)->frag0 =
3365 page_address(skb_shinfo(skb)->frags[0].page) +
3366 skb_shinfo(skb)->frags[0].page_offset;
3367 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3368 }
3369}
3370EXPORT_SYMBOL(skb_gro_reset_offset);
3371
3372gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3373{
3374 skb_gro_reset_offset(skb);
3375
3376 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3377}
3378EXPORT_SYMBOL(napi_gro_receive);
3379
3380static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3381{
3382 __skb_pull(skb, skb_headlen(skb));
3383 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3384 skb->vlan_tci = 0;
3385
3386 napi->skb = skb;
3387}
3388
3389struct sk_buff *napi_get_frags(struct napi_struct *napi)
3390{
3391 struct sk_buff *skb = napi->skb;
3392
3393 if (!skb) {
3394 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3395 if (skb)
3396 napi->skb = skb;
3397 }
3398 return skb;
3399}
3400EXPORT_SYMBOL(napi_get_frags);
3401
3402gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3403 gro_result_t ret)
3404{
3405 switch (ret) {
3406 case GRO_NORMAL:
3407 case GRO_HELD:
3408 skb->protocol = eth_type_trans(skb, skb->dev);
3409
3410 if (ret == GRO_HELD)
3411 skb_gro_pull(skb, -ETH_HLEN);
3412 else if (netif_receive_skb(skb))
3413 ret = GRO_DROP;
3414 break;
3415
3416 case GRO_DROP:
3417 case GRO_MERGED_FREE:
3418 napi_reuse_skb(napi, skb);
3419 break;
3420
3421 case GRO_MERGED:
3422 break;
3423 }
3424
3425 return ret;
3426}
3427EXPORT_SYMBOL(napi_frags_finish);
3428
3429struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3430{
3431 struct sk_buff *skb = napi->skb;
3432 struct ethhdr *eth;
3433 unsigned int hlen;
3434 unsigned int off;
3435
3436 napi->skb = NULL;
3437
3438 skb_reset_mac_header(skb);
3439 skb_gro_reset_offset(skb);
3440
3441 off = skb_gro_offset(skb);
3442 hlen = off + sizeof(*eth);
3443 eth = skb_gro_header_fast(skb, off);
3444 if (skb_gro_header_hard(skb, hlen)) {
3445 eth = skb_gro_header_slow(skb, hlen, off);
3446 if (unlikely(!eth)) {
3447 napi_reuse_skb(napi, skb);
3448 skb = NULL;
3449 goto out;
3450 }
3451 }
3452
3453 skb_gro_pull(skb, sizeof(*eth));
3454
3455 /*
3456 * This works because the only protocols we care about don't require
3457 * special handling. We'll fix it up properly at the end.
3458 */
3459 skb->protocol = eth->h_proto;
3460
3461out:
3462 return skb;
3463}
3464EXPORT_SYMBOL(napi_frags_skb);
3465
3466gro_result_t napi_gro_frags(struct napi_struct *napi)
3467{
3468 struct sk_buff *skb = napi_frags_skb(napi);
3469
3470 if (!skb)
3471 return GRO_DROP;
3472
3473 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3474}
3475EXPORT_SYMBOL(napi_gro_frags);
3476
3477/*
3478 * net_rps_action sends any pending IPI's for rps.
3479 * Note: called with local irq disabled, but exits with local irq enabled.
3480 */
3481static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3482{
3483#ifdef CONFIG_RPS
3484 struct softnet_data *remsd = sd->rps_ipi_list;
3485
3486 if (remsd) {
3487 sd->rps_ipi_list = NULL;
3488
3489 local_irq_enable();
3490
3491 /* Send pending IPI's to kick RPS processing on remote cpus. */
3492 while (remsd) {
3493 struct softnet_data *next = remsd->rps_ipi_next;
3494
3495 if (cpu_online(remsd->cpu))
3496 __smp_call_function_single(remsd->cpu,
3497 &remsd->csd, 0);
3498 remsd = next;
3499 }
3500 } else
3501#endif
3502 local_irq_enable();
3503}
3504
3505static int process_backlog(struct napi_struct *napi, int quota)
3506{
3507 int work = 0;
3508 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3509
3510#ifdef CONFIG_RPS
3511 /* Check if we have pending ipi, its better to send them now,
3512 * not waiting net_rx_action() end.
3513 */
3514 if (sd->rps_ipi_list) {
3515 local_irq_disable();
3516 net_rps_action_and_irq_enable(sd);
3517 }
3518#endif
3519 napi->weight = weight_p;
3520 local_irq_disable();
3521 while (work < quota) {
3522 struct sk_buff *skb;
3523 unsigned int qlen;
3524
3525 while ((skb = __skb_dequeue(&sd->process_queue))) {
3526 local_irq_enable();
3527 __netif_receive_skb(skb);
3528 local_irq_disable();
3529 input_queue_head_incr(sd);
3530 if (++work >= quota) {
3531 local_irq_enable();
3532 return work;
3533 }
3534 }
3535
3536 rps_lock(sd);
3537 qlen = skb_queue_len(&sd->input_pkt_queue);
3538 if (qlen)
3539 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3540 &sd->process_queue);
3541
3542 if (qlen < quota - work) {
3543 /*
3544 * Inline a custom version of __napi_complete().
3545 * only current cpu owns and manipulates this napi,
3546 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3547 * we can use a plain write instead of clear_bit(),
3548 * and we dont need an smp_mb() memory barrier.
3549 */
3550 list_del(&napi->poll_list);
3551 napi->state = 0;
3552
3553 quota = work + qlen;
3554 }
3555 rps_unlock(sd);
3556 }
3557 local_irq_enable();
3558
3559 return work;
3560}
3561
3562/**
3563 * __napi_schedule - schedule for receive
3564 * @n: entry to schedule
3565 *
3566 * The entry's receive function will be scheduled to run
3567 */
3568void __napi_schedule(struct napi_struct *n)
3569{
3570 unsigned long flags;
3571
3572 local_irq_save(flags);
3573 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3574 local_irq_restore(flags);
3575}
3576EXPORT_SYMBOL(__napi_schedule);
3577
3578void __napi_complete(struct napi_struct *n)
3579{
3580 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3581 BUG_ON(n->gro_list);
3582
3583 list_del(&n->poll_list);
3584 smp_mb__before_clear_bit();
3585 clear_bit(NAPI_STATE_SCHED, &n->state);
3586}
3587EXPORT_SYMBOL(__napi_complete);
3588
3589void napi_complete(struct napi_struct *n)
3590{
3591 unsigned long flags;
3592
3593 /*
3594 * don't let napi dequeue from the cpu poll list
3595 * just in case its running on a different cpu
3596 */
3597 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3598 return;
3599
3600 napi_gro_flush(n);
3601 local_irq_save(flags);
3602 __napi_complete(n);
3603 local_irq_restore(flags);
3604}
3605EXPORT_SYMBOL(napi_complete);
3606
3607void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3608 int (*poll)(struct napi_struct *, int), int weight)
3609{
3610 INIT_LIST_HEAD(&napi->poll_list);
3611 napi->gro_count = 0;
3612 napi->gro_list = NULL;
3613 napi->skb = NULL;
3614 napi->poll = poll;
3615 napi->weight = weight;
3616 list_add(&napi->dev_list, &dev->napi_list);
3617 napi->dev = dev;
3618#ifdef CONFIG_NETPOLL
3619 spin_lock_init(&napi->poll_lock);
3620 napi->poll_owner = -1;
3621#endif
3622 set_bit(NAPI_STATE_SCHED, &napi->state);
3623}
3624EXPORT_SYMBOL(netif_napi_add);
3625
3626void netif_napi_del(struct napi_struct *napi)
3627{
3628 struct sk_buff *skb, *next;
3629
3630 list_del_init(&napi->dev_list);
3631 napi_free_frags(napi);
3632
3633 for (skb = napi->gro_list; skb; skb = next) {
3634 next = skb->next;
3635 skb->next = NULL;
3636 kfree_skb(skb);
3637 }
3638
3639 napi->gro_list = NULL;
3640 napi->gro_count = 0;
3641}
3642EXPORT_SYMBOL(netif_napi_del);
3643
3644static void net_rx_action(struct softirq_action *h)
3645{
3646 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3647 unsigned long time_limit = jiffies + 2;
3648 int budget = netdev_budget;
3649 void *have;
3650
3651 local_irq_disable();
3652
3653 while (!list_empty(&sd->poll_list)) {
3654 struct napi_struct *n;
3655 int work, weight;
3656
3657 /* If softirq window is exhuasted then punt.
3658 * Allow this to run for 2 jiffies since which will allow
3659 * an average latency of 1.5/HZ.
3660 */
3661 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3662 goto softnet_break;
3663
3664 local_irq_enable();
3665
3666 /* Even though interrupts have been re-enabled, this
3667 * access is safe because interrupts can only add new
3668 * entries to the tail of this list, and only ->poll()
3669 * calls can remove this head entry from the list.
3670 */
3671 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3672
3673 have = netpoll_poll_lock(n);
3674
3675 weight = n->weight;
3676
3677 /* This NAPI_STATE_SCHED test is for avoiding a race
3678 * with netpoll's poll_napi(). Only the entity which
3679 * obtains the lock and sees NAPI_STATE_SCHED set will
3680 * actually make the ->poll() call. Therefore we avoid
3681 * accidently calling ->poll() when NAPI is not scheduled.
3682 */
3683 work = 0;
3684 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3685 work = n->poll(n, weight);
3686 trace_napi_poll(n);
3687 }
3688
3689 WARN_ON_ONCE(work > weight);
3690
3691 budget -= work;
3692
3693 local_irq_disable();
3694
3695 /* Drivers must not modify the NAPI state if they
3696 * consume the entire weight. In such cases this code
3697 * still "owns" the NAPI instance and therefore can
3698 * move the instance around on the list at-will.
3699 */
3700 if (unlikely(work == weight)) {
3701 if (unlikely(napi_disable_pending(n))) {
3702 local_irq_enable();
3703 napi_complete(n);
3704 local_irq_disable();
3705 } else
3706 list_move_tail(&n->poll_list, &sd->poll_list);
3707 }
3708
3709 netpoll_poll_unlock(have);
3710 }
3711out:
3712 net_rps_action_and_irq_enable(sd);
3713
3714#ifdef CONFIG_NET_DMA
3715 /*
3716 * There may not be any more sk_buffs coming right now, so push
3717 * any pending DMA copies to hardware
3718 */
3719 dma_issue_pending_all();
3720#endif
3721
3722 return;
3723
3724softnet_break:
3725 sd->time_squeeze++;
3726 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3727 goto out;
3728}
3729
3730static gifconf_func_t *gifconf_list[NPROTO];
3731
3732/**
3733 * register_gifconf - register a SIOCGIF handler
3734 * @family: Address family
3735 * @gifconf: Function handler
3736 *
3737 * Register protocol dependent address dumping routines. The handler
3738 * that is passed must not be freed or reused until it has been replaced
3739 * by another handler.
3740 */
3741int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3742{
3743 if (family >= NPROTO)
3744 return -EINVAL;
3745 gifconf_list[family] = gifconf;
3746 return 0;
3747}
3748EXPORT_SYMBOL(register_gifconf);
3749
3750
3751/*
3752 * Map an interface index to its name (SIOCGIFNAME)
3753 */
3754
3755/*
3756 * We need this ioctl for efficient implementation of the
3757 * if_indextoname() function required by the IPv6 API. Without
3758 * it, we would have to search all the interfaces to find a
3759 * match. --pb
3760 */
3761
3762static int dev_ifname(struct net *net, struct ifreq __user *arg)
3763{
3764 struct net_device *dev;
3765 struct ifreq ifr;
3766
3767 /*
3768 * Fetch the caller's info block.
3769 */
3770
3771 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3772 return -EFAULT;
3773
3774 rcu_read_lock();
3775 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3776 if (!dev) {
3777 rcu_read_unlock();
3778 return -ENODEV;
3779 }
3780
3781 strcpy(ifr.ifr_name, dev->name);
3782 rcu_read_unlock();
3783
3784 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3785 return -EFAULT;
3786 return 0;
3787}
3788
3789/*
3790 * Perform a SIOCGIFCONF call. This structure will change
3791 * size eventually, and there is nothing I can do about it.
3792 * Thus we will need a 'compatibility mode'.
3793 */
3794
3795static int dev_ifconf(struct net *net, char __user *arg)
3796{
3797 struct ifconf ifc;
3798 struct net_device *dev;
3799 char __user *pos;
3800 int len;
3801 int total;
3802 int i;
3803
3804 /*
3805 * Fetch the caller's info block.
3806 */
3807
3808 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3809 return -EFAULT;
3810
3811 pos = ifc.ifc_buf;
3812 len = ifc.ifc_len;
3813
3814 /*
3815 * Loop over the interfaces, and write an info block for each.
3816 */
3817
3818 total = 0;
3819 for_each_netdev(net, dev) {
3820 for (i = 0; i < NPROTO; i++) {
3821 if (gifconf_list[i]) {
3822 int done;
3823 if (!pos)
3824 done = gifconf_list[i](dev, NULL, 0);
3825 else
3826 done = gifconf_list[i](dev, pos + total,
3827 len - total);
3828 if (done < 0)
3829 return -EFAULT;
3830 total += done;
3831 }
3832 }
3833 }
3834
3835 /*
3836 * All done. Write the updated control block back to the caller.
3837 */
3838 ifc.ifc_len = total;
3839
3840 /*
3841 * Both BSD and Solaris return 0 here, so we do too.
3842 */
3843 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3844}
3845
3846#ifdef CONFIG_PROC_FS
3847/*
3848 * This is invoked by the /proc filesystem handler to display a device
3849 * in detail.
3850 */
3851void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3852 __acquires(RCU)
3853{
3854 struct net *net = seq_file_net(seq);
3855 loff_t off;
3856 struct net_device *dev;
3857
3858 rcu_read_lock();
3859 if (!*pos)
3860 return SEQ_START_TOKEN;
3861
3862 off = 1;
3863 for_each_netdev_rcu(net, dev)
3864 if (off++ == *pos)
3865 return dev;
3866
3867 return NULL;
3868}
3869
3870void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3871{
3872 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3873 first_net_device(seq_file_net(seq)) :
3874 next_net_device((struct net_device *)v);
3875
3876 ++*pos;
3877 return rcu_dereference(dev);
3878}
3879
3880void dev_seq_stop(struct seq_file *seq, void *v)
3881 __releases(RCU)
3882{
3883 rcu_read_unlock();
3884}
3885
3886static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3887{
3888 struct rtnl_link_stats64 temp;
3889 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3890
3891 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3892 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3893 dev->name, stats->rx_bytes, stats->rx_packets,
3894 stats->rx_errors,
3895 stats->rx_dropped + stats->rx_missed_errors,
3896 stats->rx_fifo_errors,
3897 stats->rx_length_errors + stats->rx_over_errors +
3898 stats->rx_crc_errors + stats->rx_frame_errors,
3899 stats->rx_compressed, stats->multicast,
3900 stats->tx_bytes, stats->tx_packets,
3901 stats->tx_errors, stats->tx_dropped,
3902 stats->tx_fifo_errors, stats->collisions,
3903 stats->tx_carrier_errors +
3904 stats->tx_aborted_errors +
3905 stats->tx_window_errors +
3906 stats->tx_heartbeat_errors,
3907 stats->tx_compressed);
3908}
3909
3910/*
3911 * Called from the PROCfs module. This now uses the new arbitrary sized
3912 * /proc/net interface to create /proc/net/dev
3913 */
3914static int dev_seq_show(struct seq_file *seq, void *v)
3915{
3916 if (v == SEQ_START_TOKEN)
3917 seq_puts(seq, "Inter-| Receive "
3918 " | Transmit\n"
3919 " face |bytes packets errs drop fifo frame "
3920 "compressed multicast|bytes packets errs "
3921 "drop fifo colls carrier compressed\n");
3922 else
3923 dev_seq_printf_stats(seq, v);
3924 return 0;
3925}
3926
3927static struct softnet_data *softnet_get_online(loff_t *pos)
3928{
3929 struct softnet_data *sd = NULL;
3930
3931 while (*pos < nr_cpu_ids)
3932 if (cpu_online(*pos)) {
3933 sd = &per_cpu(softnet_data, *pos);
3934 break;
3935 } else
3936 ++*pos;
3937 return sd;
3938}
3939
3940static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3941{
3942 return softnet_get_online(pos);
3943}
3944
3945static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3946{
3947 ++*pos;
3948 return softnet_get_online(pos);
3949}
3950
3951static void softnet_seq_stop(struct seq_file *seq, void *v)
3952{
3953}
3954
3955static int softnet_seq_show(struct seq_file *seq, void *v)
3956{
3957 struct softnet_data *sd = v;
3958
3959 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3960 sd->processed, sd->dropped, sd->time_squeeze, 0,
3961 0, 0, 0, 0, /* was fastroute */
3962 sd->cpu_collision, sd->received_rps);
3963 return 0;
3964}
3965
3966static const struct seq_operations dev_seq_ops = {
3967 .start = dev_seq_start,
3968 .next = dev_seq_next,
3969 .stop = dev_seq_stop,
3970 .show = dev_seq_show,
3971};
3972
3973static int dev_seq_open(struct inode *inode, struct file *file)
3974{
3975 return seq_open_net(inode, file, &dev_seq_ops,
3976 sizeof(struct seq_net_private));
3977}
3978
3979static const struct file_operations dev_seq_fops = {
3980 .owner = THIS_MODULE,
3981 .open = dev_seq_open,
3982 .read = seq_read,
3983 .llseek = seq_lseek,
3984 .release = seq_release_net,
3985};
3986
3987static const struct seq_operations softnet_seq_ops = {
3988 .start = softnet_seq_start,
3989 .next = softnet_seq_next,
3990 .stop = softnet_seq_stop,
3991 .show = softnet_seq_show,
3992};
3993
3994static int softnet_seq_open(struct inode *inode, struct file *file)
3995{
3996 return seq_open(file, &softnet_seq_ops);
3997}
3998
3999static const struct file_operations softnet_seq_fops = {
4000 .owner = THIS_MODULE,
4001 .open = softnet_seq_open,
4002 .read = seq_read,
4003 .llseek = seq_lseek,
4004 .release = seq_release,
4005};
4006
4007static void *ptype_get_idx(loff_t pos)
4008{
4009 struct packet_type *pt = NULL;
4010 loff_t i = 0;
4011 int t;
4012
4013 list_for_each_entry_rcu(pt, &ptype_all, list) {
4014 if (i == pos)
4015 return pt;
4016 ++i;
4017 }
4018
4019 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4020 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4021 if (i == pos)
4022 return pt;
4023 ++i;
4024 }
4025 }
4026 return NULL;
4027}
4028
4029static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4030 __acquires(RCU)
4031{
4032 rcu_read_lock();
4033 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4034}
4035
4036static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4037{
4038 struct packet_type *pt;
4039 struct list_head *nxt;
4040 int hash;
4041
4042 ++*pos;
4043 if (v == SEQ_START_TOKEN)
4044 return ptype_get_idx(0);
4045
4046 pt = v;
4047 nxt = pt->list.next;
4048 if (pt->type == htons(ETH_P_ALL)) {
4049 if (nxt != &ptype_all)
4050 goto found;
4051 hash = 0;
4052 nxt = ptype_base[0].next;
4053 } else
4054 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4055
4056 while (nxt == &ptype_base[hash]) {
4057 if (++hash >= PTYPE_HASH_SIZE)
4058 return NULL;
4059 nxt = ptype_base[hash].next;
4060 }
4061found:
4062 return list_entry(nxt, struct packet_type, list);
4063}
4064
4065static void ptype_seq_stop(struct seq_file *seq, void *v)
4066 __releases(RCU)
4067{
4068 rcu_read_unlock();
4069}
4070
4071static int ptype_seq_show(struct seq_file *seq, void *v)
4072{
4073 struct packet_type *pt = v;
4074
4075 if (v == SEQ_START_TOKEN)
4076 seq_puts(seq, "Type Device Function\n");
4077 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4078 if (pt->type == htons(ETH_P_ALL))
4079 seq_puts(seq, "ALL ");
4080 else
4081 seq_printf(seq, "%04x", ntohs(pt->type));
4082
4083 seq_printf(seq, " %-8s %pF\n",
4084 pt->dev ? pt->dev->name : "", pt->func);
4085 }
4086
4087 return 0;
4088}
4089
4090static const struct seq_operations ptype_seq_ops = {
4091 .start = ptype_seq_start,
4092 .next = ptype_seq_next,
4093 .stop = ptype_seq_stop,
4094 .show = ptype_seq_show,
4095};
4096
4097static int ptype_seq_open(struct inode *inode, struct file *file)
4098{
4099 return seq_open_net(inode, file, &ptype_seq_ops,
4100 sizeof(struct seq_net_private));
4101}
4102
4103static const struct file_operations ptype_seq_fops = {
4104 .owner = THIS_MODULE,
4105 .open = ptype_seq_open,
4106 .read = seq_read,
4107 .llseek = seq_lseek,
4108 .release = seq_release_net,
4109};
4110
4111
4112static int __net_init dev_proc_net_init(struct net *net)
4113{
4114 int rc = -ENOMEM;
4115
4116 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4117 goto out;
4118 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4119 goto out_dev;
4120 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4121 goto out_softnet;
4122
4123 if (wext_proc_init(net))
4124 goto out_ptype;
4125 rc = 0;
4126out:
4127 return rc;
4128out_ptype:
4129 proc_net_remove(net, "ptype");
4130out_softnet:
4131 proc_net_remove(net, "softnet_stat");
4132out_dev:
4133 proc_net_remove(net, "dev");
4134 goto out;
4135}
4136
4137static void __net_exit dev_proc_net_exit(struct net *net)
4138{
4139 wext_proc_exit(net);
4140
4141 proc_net_remove(net, "ptype");
4142 proc_net_remove(net, "softnet_stat");
4143 proc_net_remove(net, "dev");
4144}
4145
4146static struct pernet_operations __net_initdata dev_proc_ops = {
4147 .init = dev_proc_net_init,
4148 .exit = dev_proc_net_exit,
4149};
4150
4151static int __init dev_proc_init(void)
4152{
4153 return register_pernet_subsys(&dev_proc_ops);
4154}
4155#else
4156#define dev_proc_init() 0
4157#endif /* CONFIG_PROC_FS */
4158
4159
4160/**
4161 * netdev_set_master - set up master/slave pair
4162 * @slave: slave device
4163 * @master: new master device
4164 *
4165 * Changes the master device of the slave. Pass %NULL to break the
4166 * bonding. The caller must hold the RTNL semaphore. On a failure
4167 * a negative errno code is returned. On success the reference counts
4168 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4169 * function returns zero.
4170 */
4171int netdev_set_master(struct net_device *slave, struct net_device *master)
4172{
4173 struct net_device *old = slave->master;
4174
4175 ASSERT_RTNL();
4176
4177 if (master) {
4178 if (old)
4179 return -EBUSY;
4180 dev_hold(master);
4181 }
4182
4183 slave->master = master;
4184
4185 if (old) {
4186 synchronize_net();
4187 dev_put(old);
4188 }
4189 if (master)
4190 slave->flags |= IFF_SLAVE;
4191 else
4192 slave->flags &= ~IFF_SLAVE;
4193
4194 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4195 return 0;
4196}
4197EXPORT_SYMBOL(netdev_set_master);
4198
4199static void dev_change_rx_flags(struct net_device *dev, int flags)
4200{
4201 const struct net_device_ops *ops = dev->netdev_ops;
4202
4203 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4204 ops->ndo_change_rx_flags(dev, flags);
4205}
4206
4207static int __dev_set_promiscuity(struct net_device *dev, int inc)
4208{
4209 unsigned short old_flags = dev->flags;
4210 uid_t uid;
4211 gid_t gid;
4212
4213 ASSERT_RTNL();
4214
4215 dev->flags |= IFF_PROMISC;
4216 dev->promiscuity += inc;
4217 if (dev->promiscuity == 0) {
4218 /*
4219 * Avoid overflow.
4220 * If inc causes overflow, untouch promisc and return error.
4221 */
4222 if (inc < 0)
4223 dev->flags &= ~IFF_PROMISC;
4224 else {
4225 dev->promiscuity -= inc;
4226 printk(KERN_WARNING "%s: promiscuity touches roof, "
4227 "set promiscuity failed, promiscuity feature "
4228 "of device might be broken.\n", dev->name);
4229 return -EOVERFLOW;
4230 }
4231 }
4232 if (dev->flags != old_flags) {
4233 printk(KERN_INFO "device %s %s promiscuous mode\n",
4234 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4235 "left");
4236 if (audit_enabled) {
4237 current_uid_gid(&uid, &gid);
4238 audit_log(current->audit_context, GFP_ATOMIC,
4239 AUDIT_ANOM_PROMISCUOUS,
4240 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4241 dev->name, (dev->flags & IFF_PROMISC),
4242 (old_flags & IFF_PROMISC),
4243 audit_get_loginuid(current),
4244 uid, gid,
4245 audit_get_sessionid(current));
4246 }
4247
4248 dev_change_rx_flags(dev, IFF_PROMISC);
4249 }
4250 return 0;
4251}
4252
4253/**
4254 * dev_set_promiscuity - update promiscuity count on a device
4255 * @dev: device
4256 * @inc: modifier
4257 *
4258 * Add or remove promiscuity from a device. While the count in the device
4259 * remains above zero the interface remains promiscuous. Once it hits zero
4260 * the device reverts back to normal filtering operation. A negative inc
4261 * value is used to drop promiscuity on the device.
4262 * Return 0 if successful or a negative errno code on error.
4263 */
4264int dev_set_promiscuity(struct net_device *dev, int inc)
4265{
4266 unsigned short old_flags = dev->flags;
4267 int err;
4268
4269 err = __dev_set_promiscuity(dev, inc);
4270 if (err < 0)
4271 return err;
4272 if (dev->flags != old_flags)
4273 dev_set_rx_mode(dev);
4274 return err;
4275}
4276EXPORT_SYMBOL(dev_set_promiscuity);
4277
4278/**
4279 * dev_set_allmulti - update allmulti count on a device
4280 * @dev: device
4281 * @inc: modifier
4282 *
4283 * Add or remove reception of all multicast frames to a device. While the
4284 * count in the device remains above zero the interface remains listening
4285 * to all interfaces. Once it hits zero the device reverts back to normal
4286 * filtering operation. A negative @inc value is used to drop the counter
4287 * when releasing a resource needing all multicasts.
4288 * Return 0 if successful or a negative errno code on error.
4289 */
4290
4291int dev_set_allmulti(struct net_device *dev, int inc)
4292{
4293 unsigned short old_flags = dev->flags;
4294
4295 ASSERT_RTNL();
4296
4297 dev->flags |= IFF_ALLMULTI;
4298 dev->allmulti += inc;
4299 if (dev->allmulti == 0) {
4300 /*
4301 * Avoid overflow.
4302 * If inc causes overflow, untouch allmulti and return error.
4303 */
4304 if (inc < 0)
4305 dev->flags &= ~IFF_ALLMULTI;
4306 else {
4307 dev->allmulti -= inc;
4308 printk(KERN_WARNING "%s: allmulti touches roof, "
4309 "set allmulti failed, allmulti feature of "
4310 "device might be broken.\n", dev->name);
4311 return -EOVERFLOW;
4312 }
4313 }
4314 if (dev->flags ^ old_flags) {
4315 dev_change_rx_flags(dev, IFF_ALLMULTI);
4316 dev_set_rx_mode(dev);
4317 }
4318 return 0;
4319}
4320EXPORT_SYMBOL(dev_set_allmulti);
4321
4322/*
4323 * Upload unicast and multicast address lists to device and
4324 * configure RX filtering. When the device doesn't support unicast
4325 * filtering it is put in promiscuous mode while unicast addresses
4326 * are present.
4327 */
4328void __dev_set_rx_mode(struct net_device *dev)
4329{
4330 const struct net_device_ops *ops = dev->netdev_ops;
4331
4332 /* dev_open will call this function so the list will stay sane. */
4333 if (!(dev->flags&IFF_UP))
4334 return;
4335
4336 if (!netif_device_present(dev))
4337 return;
4338
4339 if (ops->ndo_set_rx_mode)
4340 ops->ndo_set_rx_mode(dev);
4341 else {
4342 /* Unicast addresses changes may only happen under the rtnl,
4343 * therefore calling __dev_set_promiscuity here is safe.
4344 */
4345 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4346 __dev_set_promiscuity(dev, 1);
4347 dev->uc_promisc = 1;
4348 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4349 __dev_set_promiscuity(dev, -1);
4350 dev->uc_promisc = 0;
4351 }
4352
4353 if (ops->ndo_set_multicast_list)
4354 ops->ndo_set_multicast_list(dev);
4355 }
4356}
4357
4358void dev_set_rx_mode(struct net_device *dev)
4359{
4360 netif_addr_lock_bh(dev);
4361 __dev_set_rx_mode(dev);
4362 netif_addr_unlock_bh(dev);
4363}
4364
4365/**
4366 * dev_get_flags - get flags reported to userspace
4367 * @dev: device
4368 *
4369 * Get the combination of flag bits exported through APIs to userspace.
4370 */
4371unsigned dev_get_flags(const struct net_device *dev)
4372{
4373 unsigned flags;
4374
4375 flags = (dev->flags & ~(IFF_PROMISC |
4376 IFF_ALLMULTI |
4377 IFF_RUNNING |
4378 IFF_LOWER_UP |
4379 IFF_DORMANT)) |
4380 (dev->gflags & (IFF_PROMISC |
4381 IFF_ALLMULTI));
4382
4383 if (netif_running(dev)) {
4384 if (netif_oper_up(dev))
4385 flags |= IFF_RUNNING;
4386 if (netif_carrier_ok(dev))
4387 flags |= IFF_LOWER_UP;
4388 if (netif_dormant(dev))
4389 flags |= IFF_DORMANT;
4390 }
4391
4392 return flags;
4393}
4394EXPORT_SYMBOL(dev_get_flags);
4395
4396int __dev_change_flags(struct net_device *dev, unsigned int flags)
4397{
4398 int old_flags = dev->flags;
4399 int ret;
4400
4401 ASSERT_RTNL();
4402
4403 /*
4404 * Set the flags on our device.
4405 */
4406
4407 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4408 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4409 IFF_AUTOMEDIA)) |
4410 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4411 IFF_ALLMULTI));
4412
4413 /*
4414 * Load in the correct multicast list now the flags have changed.
4415 */
4416
4417 if ((old_flags ^ flags) & IFF_MULTICAST)
4418 dev_change_rx_flags(dev, IFF_MULTICAST);
4419
4420 dev_set_rx_mode(dev);
4421
4422 /*
4423 * Have we downed the interface. We handle IFF_UP ourselves
4424 * according to user attempts to set it, rather than blindly
4425 * setting it.
4426 */
4427
4428 ret = 0;
4429 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4430 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4431
4432 if (!ret)
4433 dev_set_rx_mode(dev);
4434 }
4435
4436 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4437 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4438
4439 dev->gflags ^= IFF_PROMISC;
4440 dev_set_promiscuity(dev, inc);
4441 }
4442
4443 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4444 is important. Some (broken) drivers set IFF_PROMISC, when
4445 IFF_ALLMULTI is requested not asking us and not reporting.
4446 */
4447 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4448 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4449
4450 dev->gflags ^= IFF_ALLMULTI;
4451 dev_set_allmulti(dev, inc);
4452 }
4453
4454 return ret;
4455}
4456
4457void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4458{
4459 unsigned int changes = dev->flags ^ old_flags;
4460
4461 if (changes & IFF_UP) {
4462 if (dev->flags & IFF_UP)
4463 call_netdevice_notifiers(NETDEV_UP, dev);
4464 else
4465 call_netdevice_notifiers(NETDEV_DOWN, dev);
4466 }
4467
4468 if (dev->flags & IFF_UP &&
4469 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4470 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4471}
4472
4473/**
4474 * dev_change_flags - change device settings
4475 * @dev: device
4476 * @flags: device state flags
4477 *
4478 * Change settings on device based state flags. The flags are
4479 * in the userspace exported format.
4480 */
4481int dev_change_flags(struct net_device *dev, unsigned flags)
4482{
4483 int ret, changes;
4484 int old_flags = dev->flags;
4485
4486 ret = __dev_change_flags(dev, flags);
4487 if (ret < 0)
4488 return ret;
4489
4490 changes = old_flags ^ dev->flags;
4491 if (changes)
4492 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4493
4494 __dev_notify_flags(dev, old_flags);
4495 return ret;
4496}
4497EXPORT_SYMBOL(dev_change_flags);
4498
4499/**
4500 * dev_set_mtu - Change maximum transfer unit
4501 * @dev: device
4502 * @new_mtu: new transfer unit
4503 *
4504 * Change the maximum transfer size of the network device.
4505 */
4506int dev_set_mtu(struct net_device *dev, int new_mtu)
4507{
4508 const struct net_device_ops *ops = dev->netdev_ops;
4509 int err;
4510
4511 if (new_mtu == dev->mtu)
4512 return 0;
4513
4514 /* MTU must be positive. */
4515 if (new_mtu < 0)
4516 return -EINVAL;
4517
4518 if (!netif_device_present(dev))
4519 return -ENODEV;
4520
4521 err = 0;
4522 if (ops->ndo_change_mtu)
4523 err = ops->ndo_change_mtu(dev, new_mtu);
4524 else
4525 dev->mtu = new_mtu;
4526
4527 if (!err && dev->flags & IFF_UP)
4528 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4529 return err;
4530}
4531EXPORT_SYMBOL(dev_set_mtu);
4532
4533/**
4534 * dev_set_mac_address - Change Media Access Control Address
4535 * @dev: device
4536 * @sa: new address
4537 *
4538 * Change the hardware (MAC) address of the device
4539 */
4540int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4541{
4542 const struct net_device_ops *ops = dev->netdev_ops;
4543 int err;
4544
4545 if (!ops->ndo_set_mac_address)
4546 return -EOPNOTSUPP;
4547 if (sa->sa_family != dev->type)
4548 return -EINVAL;
4549 if (!netif_device_present(dev))
4550 return -ENODEV;
4551 err = ops->ndo_set_mac_address(dev, sa);
4552 if (!err)
4553 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4554 return err;
4555}
4556EXPORT_SYMBOL(dev_set_mac_address);
4557
4558/*
4559 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4560 */
4561static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4562{
4563 int err;
4564 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4565
4566 if (!dev)
4567 return -ENODEV;
4568
4569 switch (cmd) {
4570 case SIOCGIFFLAGS: /* Get interface flags */
4571 ifr->ifr_flags = (short) dev_get_flags(dev);
4572 return 0;
4573
4574 case SIOCGIFMETRIC: /* Get the metric on the interface
4575 (currently unused) */
4576 ifr->ifr_metric = 0;
4577 return 0;
4578
4579 case SIOCGIFMTU: /* Get the MTU of a device */
4580 ifr->ifr_mtu = dev->mtu;
4581 return 0;
4582
4583 case SIOCGIFHWADDR:
4584 if (!dev->addr_len)
4585 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4586 else
4587 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4588 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4589 ifr->ifr_hwaddr.sa_family = dev->type;
4590 return 0;
4591
4592 case SIOCGIFSLAVE:
4593 err = -EINVAL;
4594 break;
4595
4596 case SIOCGIFMAP:
4597 ifr->ifr_map.mem_start = dev->mem_start;
4598 ifr->ifr_map.mem_end = dev->mem_end;
4599 ifr->ifr_map.base_addr = dev->base_addr;
4600 ifr->ifr_map.irq = dev->irq;
4601 ifr->ifr_map.dma = dev->dma;
4602 ifr->ifr_map.port = dev->if_port;
4603 return 0;
4604
4605 case SIOCGIFINDEX:
4606 ifr->ifr_ifindex = dev->ifindex;
4607 return 0;
4608
4609 case SIOCGIFTXQLEN:
4610 ifr->ifr_qlen = dev->tx_queue_len;
4611 return 0;
4612
4613 default:
4614 /* dev_ioctl() should ensure this case
4615 * is never reached
4616 */
4617 WARN_ON(1);
4618 err = -EINVAL;
4619 break;
4620
4621 }
4622 return err;
4623}
4624
4625/*
4626 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4627 */
4628static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4629{
4630 int err;
4631 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4632 const struct net_device_ops *ops;
4633
4634 if (!dev)
4635 return -ENODEV;
4636
4637 ops = dev->netdev_ops;
4638
4639 switch (cmd) {
4640 case SIOCSIFFLAGS: /* Set interface flags */
4641 return dev_change_flags(dev, ifr->ifr_flags);
4642
4643 case SIOCSIFMETRIC: /* Set the metric on the interface
4644 (currently unused) */
4645 return -EOPNOTSUPP;
4646
4647 case SIOCSIFMTU: /* Set the MTU of a device */
4648 return dev_set_mtu(dev, ifr->ifr_mtu);
4649
4650 case SIOCSIFHWADDR:
4651 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4652
4653 case SIOCSIFHWBROADCAST:
4654 if (ifr->ifr_hwaddr.sa_family != dev->type)
4655 return -EINVAL;
4656 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4657 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4658 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4659 return 0;
4660
4661 case SIOCSIFMAP:
4662 if (ops->ndo_set_config) {
4663 if (!netif_device_present(dev))
4664 return -ENODEV;
4665 return ops->ndo_set_config(dev, &ifr->ifr_map);
4666 }
4667 return -EOPNOTSUPP;
4668
4669 case SIOCADDMULTI:
4670 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4671 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4672 return -EINVAL;
4673 if (!netif_device_present(dev))
4674 return -ENODEV;
4675 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4676
4677 case SIOCDELMULTI:
4678 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4679 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4680 return -EINVAL;
4681 if (!netif_device_present(dev))
4682 return -ENODEV;
4683 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4684
4685 case SIOCSIFTXQLEN:
4686 if (ifr->ifr_qlen < 0)
4687 return -EINVAL;
4688 dev->tx_queue_len = ifr->ifr_qlen;
4689 return 0;
4690
4691 case SIOCSIFNAME:
4692 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4693 return dev_change_name(dev, ifr->ifr_newname);
4694
4695 /*
4696 * Unknown or private ioctl
4697 */
4698 default:
4699 if ((cmd >= SIOCDEVPRIVATE &&
4700 cmd <= SIOCDEVPRIVATE + 15) ||
4701 cmd == SIOCBONDENSLAVE ||
4702 cmd == SIOCBONDRELEASE ||
4703 cmd == SIOCBONDSETHWADDR ||
4704 cmd == SIOCBONDSLAVEINFOQUERY ||
4705 cmd == SIOCBONDINFOQUERY ||
4706 cmd == SIOCBONDCHANGEACTIVE ||
4707 cmd == SIOCGMIIPHY ||
4708 cmd == SIOCGMIIREG ||
4709 cmd == SIOCSMIIREG ||
4710 cmd == SIOCBRADDIF ||
4711 cmd == SIOCBRDELIF ||
4712 cmd == SIOCSHWTSTAMP ||
4713 cmd == SIOCWANDEV) {
4714 err = -EOPNOTSUPP;
4715 if (ops->ndo_do_ioctl) {
4716 if (netif_device_present(dev))
4717 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4718 else
4719 err = -ENODEV;
4720 }
4721 } else
4722 err = -EINVAL;
4723
4724 }
4725 return err;
4726}
4727
4728/*
4729 * This function handles all "interface"-type I/O control requests. The actual
4730 * 'doing' part of this is dev_ifsioc above.
4731 */
4732
4733/**
4734 * dev_ioctl - network device ioctl
4735 * @net: the applicable net namespace
4736 * @cmd: command to issue
4737 * @arg: pointer to a struct ifreq in user space
4738 *
4739 * Issue ioctl functions to devices. This is normally called by the
4740 * user space syscall interfaces but can sometimes be useful for
4741 * other purposes. The return value is the return from the syscall if
4742 * positive or a negative errno code on error.
4743 */
4744
4745int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4746{
4747 struct ifreq ifr;
4748 int ret;
4749 char *colon;
4750
4751 /* One special case: SIOCGIFCONF takes ifconf argument
4752 and requires shared lock, because it sleeps writing
4753 to user space.
4754 */
4755
4756 if (cmd == SIOCGIFCONF) {
4757 rtnl_lock();
4758 ret = dev_ifconf(net, (char __user *) arg);
4759 rtnl_unlock();
4760 return ret;
4761 }
4762 if (cmd == SIOCGIFNAME)
4763 return dev_ifname(net, (struct ifreq __user *)arg);
4764
4765 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4766 return -EFAULT;
4767
4768 ifr.ifr_name[IFNAMSIZ-1] = 0;
4769
4770 colon = strchr(ifr.ifr_name, ':');
4771 if (colon)
4772 *colon = 0;
4773
4774 /*
4775 * See which interface the caller is talking about.
4776 */
4777
4778 switch (cmd) {
4779 /*
4780 * These ioctl calls:
4781 * - can be done by all.
4782 * - atomic and do not require locking.
4783 * - return a value
4784 */
4785 case SIOCGIFFLAGS:
4786 case SIOCGIFMETRIC:
4787 case SIOCGIFMTU:
4788 case SIOCGIFHWADDR:
4789 case SIOCGIFSLAVE:
4790 case SIOCGIFMAP:
4791 case SIOCGIFINDEX:
4792 case SIOCGIFTXQLEN:
4793 dev_load(net, ifr.ifr_name);
4794 rcu_read_lock();
4795 ret = dev_ifsioc_locked(net, &ifr, cmd);
4796 rcu_read_unlock();
4797 if (!ret) {
4798 if (colon)
4799 *colon = ':';
4800 if (copy_to_user(arg, &ifr,
4801 sizeof(struct ifreq)))
4802 ret = -EFAULT;
4803 }
4804 return ret;
4805
4806 case SIOCETHTOOL:
4807 dev_load(net, ifr.ifr_name);
4808 rtnl_lock();
4809 ret = dev_ethtool(net, &ifr);
4810 rtnl_unlock();
4811 if (!ret) {
4812 if (colon)
4813 *colon = ':';
4814 if (copy_to_user(arg, &ifr,
4815 sizeof(struct ifreq)))
4816 ret = -EFAULT;
4817 }
4818 return ret;
4819
4820 /*
4821 * These ioctl calls:
4822 * - require superuser power.
4823 * - require strict serialization.
4824 * - return a value
4825 */
4826 case SIOCGMIIPHY:
4827 case SIOCGMIIREG:
4828 case SIOCSIFNAME:
4829 if (!capable(CAP_NET_ADMIN))
4830 return -EPERM;
4831 dev_load(net, ifr.ifr_name);
4832 rtnl_lock();
4833 ret = dev_ifsioc(net, &ifr, cmd);
4834 rtnl_unlock();
4835 if (!ret) {
4836 if (colon)
4837 *colon = ':';
4838 if (copy_to_user(arg, &ifr,
4839 sizeof(struct ifreq)))
4840 ret = -EFAULT;
4841 }
4842 return ret;
4843
4844 /*
4845 * These ioctl calls:
4846 * - require superuser power.
4847 * - require strict serialization.
4848 * - do not return a value
4849 */
4850 case SIOCSIFFLAGS:
4851 case SIOCSIFMETRIC:
4852 case SIOCSIFMTU:
4853 case SIOCSIFMAP:
4854 case SIOCSIFHWADDR:
4855 case SIOCSIFSLAVE:
4856 case SIOCADDMULTI:
4857 case SIOCDELMULTI:
4858 case SIOCSIFHWBROADCAST:
4859 case SIOCSIFTXQLEN:
4860 case SIOCSMIIREG:
4861 case SIOCBONDENSLAVE:
4862 case SIOCBONDRELEASE:
4863 case SIOCBONDSETHWADDR:
4864 case SIOCBONDCHANGEACTIVE:
4865 case SIOCBRADDIF:
4866 case SIOCBRDELIF:
4867 case SIOCSHWTSTAMP:
4868 if (!capable(CAP_NET_ADMIN))
4869 return -EPERM;
4870 /* fall through */
4871 case SIOCBONDSLAVEINFOQUERY:
4872 case SIOCBONDINFOQUERY:
4873 dev_load(net, ifr.ifr_name);
4874 rtnl_lock();
4875 ret = dev_ifsioc(net, &ifr, cmd);
4876 rtnl_unlock();
4877 return ret;
4878
4879 case SIOCGIFMEM:
4880 /* Get the per device memory space. We can add this but
4881 * currently do not support it */
4882 case SIOCSIFMEM:
4883 /* Set the per device memory buffer space.
4884 * Not applicable in our case */
4885 case SIOCSIFLINK:
4886 return -EINVAL;
4887
4888 /*
4889 * Unknown or private ioctl.
4890 */
4891 default:
4892 if (cmd == SIOCWANDEV ||
4893 (cmd >= SIOCDEVPRIVATE &&
4894 cmd <= SIOCDEVPRIVATE + 15)) {
4895 dev_load(net, ifr.ifr_name);
4896 rtnl_lock();
4897 ret = dev_ifsioc(net, &ifr, cmd);
4898 rtnl_unlock();
4899 if (!ret && copy_to_user(arg, &ifr,
4900 sizeof(struct ifreq)))
4901 ret = -EFAULT;
4902 return ret;
4903 }
4904 /* Take care of Wireless Extensions */
4905 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4906 return wext_handle_ioctl(net, &ifr, cmd, arg);
4907 return -EINVAL;
4908 }
4909}
4910
4911
4912/**
4913 * dev_new_index - allocate an ifindex
4914 * @net: the applicable net namespace
4915 *
4916 * Returns a suitable unique value for a new device interface
4917 * number. The caller must hold the rtnl semaphore or the
4918 * dev_base_lock to be sure it remains unique.
4919 */
4920static int dev_new_index(struct net *net)
4921{
4922 static int ifindex;
4923 for (;;) {
4924 if (++ifindex <= 0)
4925 ifindex = 1;
4926 if (!__dev_get_by_index(net, ifindex))
4927 return ifindex;
4928 }
4929}
4930
4931/* Delayed registration/unregisteration */
4932static LIST_HEAD(net_todo_list);
4933
4934static void net_set_todo(struct net_device *dev)
4935{
4936 list_add_tail(&dev->todo_list, &net_todo_list);
4937}
4938
4939static void rollback_registered_many(struct list_head *head)
4940{
4941 struct net_device *dev, *tmp;
4942
4943 BUG_ON(dev_boot_phase);
4944 ASSERT_RTNL();
4945
4946 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4947 /* Some devices call without registering
4948 * for initialization unwind. Remove those
4949 * devices and proceed with the remaining.
4950 */
4951 if (dev->reg_state == NETREG_UNINITIALIZED) {
4952 pr_debug("unregister_netdevice: device %s/%p never "
4953 "was registered\n", dev->name, dev);
4954
4955 WARN_ON(1);
4956 list_del(&dev->unreg_list);
4957 continue;
4958 }
4959
4960 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4961
4962 /* If device is running, close it first. */
4963 dev_close(dev);
4964
4965 /* And unlink it from device chain. */
4966 unlist_netdevice(dev);
4967
4968 dev->reg_state = NETREG_UNREGISTERING;
4969 }
4970
4971 synchronize_net();
4972
4973 list_for_each_entry(dev, head, unreg_list) {
4974 /* Shutdown queueing discipline. */
4975 dev_shutdown(dev);
4976
4977
4978 /* Notify protocols, that we are about to destroy
4979 this device. They should clean all the things.
4980 */
4981 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4982
4983 if (!dev->rtnl_link_ops ||
4984 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4985 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4986
4987 /*
4988 * Flush the unicast and multicast chains
4989 */
4990 dev_uc_flush(dev);
4991 dev_mc_flush(dev);
4992
4993 if (dev->netdev_ops->ndo_uninit)
4994 dev->netdev_ops->ndo_uninit(dev);
4995
4996 /* Notifier chain MUST detach us from master device. */
4997 WARN_ON(dev->master);
4998
4999 /* Remove entries from kobject tree */
5000 netdev_unregister_kobject(dev);
5001 }
5002
5003 /* Process any work delayed until the end of the batch */
5004 dev = list_first_entry(head, struct net_device, unreg_list);
5005 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5006
5007 rcu_barrier();
5008
5009 list_for_each_entry(dev, head, unreg_list)
5010 dev_put(dev);
5011}
5012
5013static void rollback_registered(struct net_device *dev)
5014{
5015 LIST_HEAD(single);
5016
5017 list_add(&dev->unreg_list, &single);
5018 rollback_registered_many(&single);
5019}
5020
5021unsigned long netdev_fix_features(unsigned long features, const char *name)
5022{
5023 /* Fix illegal SG+CSUM combinations. */
5024 if ((features & NETIF_F_SG) &&
5025 !(features & NETIF_F_ALL_CSUM)) {
5026 if (name)
5027 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
5028 "checksum feature.\n", name);
5029 features &= ~NETIF_F_SG;
5030 }
5031
5032 /* TSO requires that SG is present as well. */
5033 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5034 if (name)
5035 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
5036 "SG feature.\n", name);
5037 features &= ~NETIF_F_TSO;
5038 }
5039
5040 if (features & NETIF_F_UFO) {
5041 if (!(features & NETIF_F_GEN_CSUM)) {
5042 if (name)
5043 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5044 "since no NETIF_F_HW_CSUM feature.\n",
5045 name);
5046 features &= ~NETIF_F_UFO;
5047 }
5048
5049 if (!(features & NETIF_F_SG)) {
5050 if (name)
5051 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5052 "since no NETIF_F_SG feature.\n", name);
5053 features &= ~NETIF_F_UFO;
5054 }
5055 }
5056
5057 return features;
5058}
5059EXPORT_SYMBOL(netdev_fix_features);
5060
5061/**
5062 * netif_stacked_transfer_operstate - transfer operstate
5063 * @rootdev: the root or lower level device to transfer state from
5064 * @dev: the device to transfer operstate to
5065 *
5066 * Transfer operational state from root to device. This is normally
5067 * called when a stacking relationship exists between the root
5068 * device and the device(a leaf device).
5069 */
5070void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5071 struct net_device *dev)
5072{
5073 if (rootdev->operstate == IF_OPER_DORMANT)
5074 netif_dormant_on(dev);
5075 else
5076 netif_dormant_off(dev);
5077
5078 if (netif_carrier_ok(rootdev)) {
5079 if (!netif_carrier_ok(dev))
5080 netif_carrier_on(dev);
5081 } else {
5082 if (netif_carrier_ok(dev))
5083 netif_carrier_off(dev);
5084 }
5085}
5086EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5087
5088static int netif_alloc_rx_queues(struct net_device *dev)
5089{
5090#ifdef CONFIG_RPS
5091 unsigned int i, count = dev->num_rx_queues;
5092 struct netdev_rx_queue *rx;
5093
5094 BUG_ON(count < 1);
5095
5096 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5097 if (!rx) {
5098 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5099 return -ENOMEM;
5100 }
5101 dev->_rx = rx;
5102
5103 for (i = 0; i < count; i++)
5104 rx[i].dev = dev;
5105#endif
5106 return 0;
5107}
5108
5109static int netif_alloc_netdev_queues(struct net_device *dev)
5110{
5111 unsigned int count = dev->num_tx_queues;
5112 struct netdev_queue *tx;
5113 int i;
5114
5115 BUG_ON(count < 1);
5116
5117 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5118 if (!tx) {
5119 pr_err("netdev: Unable to allocate %u tx queues.\n",
5120 count);
5121 return -ENOMEM;
5122 }
5123 dev->_tx = tx;
5124
5125 for (i = 0; i < count; i++)
5126 tx[i].dev = dev;
5127
5128 return 0;
5129}
5130
5131static void netdev_init_one_queue(struct net_device *dev,
5132 struct netdev_queue *queue,
5133 void *_unused)
5134{
5135 /* Initialize queue lock */
5136 spin_lock_init(&queue->_xmit_lock);
5137 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5138 queue->xmit_lock_owner = -1;
5139}
5140
5141static void netdev_init_queues(struct net_device *dev)
5142{
5143 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5144 spin_lock_init(&dev->tx_global_lock);
5145}
5146
5147/**
5148 * register_netdevice - register a network device
5149 * @dev: device to register
5150 *
5151 * Take a completed network device structure and add it to the kernel
5152 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5153 * chain. 0 is returned on success. A negative errno code is returned
5154 * on a failure to set up the device, or if the name is a duplicate.
5155 *
5156 * Callers must hold the rtnl semaphore. You may want
5157 * register_netdev() instead of this.
5158 *
5159 * BUGS:
5160 * The locking appears insufficient to guarantee two parallel registers
5161 * will not get the same name.
5162 */
5163
5164int register_netdevice(struct net_device *dev)
5165{
5166 int ret;
5167 struct net *net = dev_net(dev);
5168
5169 BUG_ON(dev_boot_phase);
5170 ASSERT_RTNL();
5171
5172 might_sleep();
5173
5174 /* When net_device's are persistent, this will be fatal. */
5175 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5176 BUG_ON(!net);
5177
5178 spin_lock_init(&dev->addr_list_lock);
5179 netdev_set_addr_lockdep_class(dev);
5180
5181 dev->iflink = -1;
5182
5183 netdev_init_queues(dev);
5184
5185 /* Init, if this function is available */
5186 if (dev->netdev_ops->ndo_init) {
5187 ret = dev->netdev_ops->ndo_init(dev);
5188 if (ret) {
5189 if (ret > 0)
5190 ret = -EIO;
5191 goto out;
5192 }
5193 }
5194
5195 ret = dev_get_valid_name(dev, dev->name, 0);
5196 if (ret)
5197 goto err_uninit;
5198
5199 dev->ifindex = dev_new_index(net);
5200 if (dev->iflink == -1)
5201 dev->iflink = dev->ifindex;
5202
5203 /* Fix illegal checksum combinations */
5204 if ((dev->features & NETIF_F_HW_CSUM) &&
5205 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5206 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5207 dev->name);
5208 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5209 }
5210
5211 if ((dev->features & NETIF_F_NO_CSUM) &&
5212 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5213 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5214 dev->name);
5215 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5216 }
5217
5218 dev->features = netdev_fix_features(dev->features, dev->name);
5219
5220 /* Enable software GSO if SG is supported. */
5221 if (dev->features & NETIF_F_SG)
5222 dev->features |= NETIF_F_GSO;
5223
5224 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5225 * vlan_dev_init() will do the dev->features check, so these features
5226 * are enabled only if supported by underlying device.
5227 */
5228 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5229
5230 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5231 ret = notifier_to_errno(ret);
5232 if (ret)
5233 goto err_uninit;
5234
5235 ret = netdev_register_kobject(dev);
5236 if (ret)
5237 goto err_uninit;
5238 dev->reg_state = NETREG_REGISTERED;
5239
5240 /*
5241 * Default initial state at registry is that the
5242 * device is present.
5243 */
5244
5245 set_bit(__LINK_STATE_PRESENT, &dev->state);
5246
5247 dev_init_scheduler(dev);
5248 dev_hold(dev);
5249 list_netdevice(dev);
5250
5251 /* Notify protocols, that a new device appeared. */
5252 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5253 ret = notifier_to_errno(ret);
5254 if (ret) {
5255 rollback_registered(dev);
5256 dev->reg_state = NETREG_UNREGISTERED;
5257 }
5258 /*
5259 * Prevent userspace races by waiting until the network
5260 * device is fully setup before sending notifications.
5261 */
5262 if (!dev->rtnl_link_ops ||
5263 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5264 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5265
5266out:
5267 return ret;
5268
5269err_uninit:
5270 if (dev->netdev_ops->ndo_uninit)
5271 dev->netdev_ops->ndo_uninit(dev);
5272 goto out;
5273}
5274EXPORT_SYMBOL(register_netdevice);
5275
5276/**
5277 * init_dummy_netdev - init a dummy network device for NAPI
5278 * @dev: device to init
5279 *
5280 * This takes a network device structure and initialize the minimum
5281 * amount of fields so it can be used to schedule NAPI polls without
5282 * registering a full blown interface. This is to be used by drivers
5283 * that need to tie several hardware interfaces to a single NAPI
5284 * poll scheduler due to HW limitations.
5285 */
5286int init_dummy_netdev(struct net_device *dev)
5287{
5288 /* Clear everything. Note we don't initialize spinlocks
5289 * are they aren't supposed to be taken by any of the
5290 * NAPI code and this dummy netdev is supposed to be
5291 * only ever used for NAPI polls
5292 */
5293 memset(dev, 0, sizeof(struct net_device));
5294
5295 /* make sure we BUG if trying to hit standard
5296 * register/unregister code path
5297 */
5298 dev->reg_state = NETREG_DUMMY;
5299
5300 /* NAPI wants this */
5301 INIT_LIST_HEAD(&dev->napi_list);
5302
5303 /* a dummy interface is started by default */
5304 set_bit(__LINK_STATE_PRESENT, &dev->state);
5305 set_bit(__LINK_STATE_START, &dev->state);
5306
5307 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5308 * because users of this 'device' dont need to change
5309 * its refcount.
5310 */
5311
5312 return 0;
5313}
5314EXPORT_SYMBOL_GPL(init_dummy_netdev);
5315
5316
5317/**
5318 * register_netdev - register a network device
5319 * @dev: device to register
5320 *
5321 * Take a completed network device structure and add it to the kernel
5322 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5323 * chain. 0 is returned on success. A negative errno code is returned
5324 * on a failure to set up the device, or if the name is a duplicate.
5325 *
5326 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5327 * and expands the device name if you passed a format string to
5328 * alloc_netdev.
5329 */
5330int register_netdev(struct net_device *dev)
5331{
5332 int err;
5333
5334 rtnl_lock();
5335
5336 /*
5337 * If the name is a format string the caller wants us to do a
5338 * name allocation.
5339 */
5340 if (strchr(dev->name, '%')) {
5341 err = dev_alloc_name(dev, dev->name);
5342 if (err < 0)
5343 goto out;
5344 }
5345
5346 err = register_netdevice(dev);
5347out:
5348 rtnl_unlock();
5349 return err;
5350}
5351EXPORT_SYMBOL(register_netdev);
5352
5353int netdev_refcnt_read(const struct net_device *dev)
5354{
5355 int i, refcnt = 0;
5356
5357 for_each_possible_cpu(i)
5358 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5359 return refcnt;
5360}
5361EXPORT_SYMBOL(netdev_refcnt_read);
5362
5363/*
5364 * netdev_wait_allrefs - wait until all references are gone.
5365 *
5366 * This is called when unregistering network devices.
5367 *
5368 * Any protocol or device that holds a reference should register
5369 * for netdevice notification, and cleanup and put back the
5370 * reference if they receive an UNREGISTER event.
5371 * We can get stuck here if buggy protocols don't correctly
5372 * call dev_put.
5373 */
5374static void netdev_wait_allrefs(struct net_device *dev)
5375{
5376 unsigned long rebroadcast_time, warning_time;
5377 int refcnt;
5378
5379 linkwatch_forget_dev(dev);
5380
5381 rebroadcast_time = warning_time = jiffies;
5382 refcnt = netdev_refcnt_read(dev);
5383
5384 while (refcnt != 0) {
5385 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5386 rtnl_lock();
5387
5388 /* Rebroadcast unregister notification */
5389 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5390 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5391 * should have already handle it the first time */
5392
5393 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5394 &dev->state)) {
5395 /* We must not have linkwatch events
5396 * pending on unregister. If this
5397 * happens, we simply run the queue
5398 * unscheduled, resulting in a noop
5399 * for this device.
5400 */
5401 linkwatch_run_queue();
5402 }
5403
5404 __rtnl_unlock();
5405
5406 rebroadcast_time = jiffies;
5407 }
5408
5409 msleep(250);
5410
5411 refcnt = netdev_refcnt_read(dev);
5412
5413 if (time_after(jiffies, warning_time + 10 * HZ)) {
5414 printk(KERN_EMERG "unregister_netdevice: "
5415 "waiting for %s to become free. Usage "
5416 "count = %d\n",
5417 dev->name, refcnt);
5418 warning_time = jiffies;
5419 }
5420 }
5421}
5422
5423/* The sequence is:
5424 *
5425 * rtnl_lock();
5426 * ...
5427 * register_netdevice(x1);
5428 * register_netdevice(x2);
5429 * ...
5430 * unregister_netdevice(y1);
5431 * unregister_netdevice(y2);
5432 * ...
5433 * rtnl_unlock();
5434 * free_netdev(y1);
5435 * free_netdev(y2);
5436 *
5437 * We are invoked by rtnl_unlock().
5438 * This allows us to deal with problems:
5439 * 1) We can delete sysfs objects which invoke hotplug
5440 * without deadlocking with linkwatch via keventd.
5441 * 2) Since we run with the RTNL semaphore not held, we can sleep
5442 * safely in order to wait for the netdev refcnt to drop to zero.
5443 *
5444 * We must not return until all unregister events added during
5445 * the interval the lock was held have been completed.
5446 */
5447void netdev_run_todo(void)
5448{
5449 struct list_head list;
5450
5451 /* Snapshot list, allow later requests */
5452 list_replace_init(&net_todo_list, &list);
5453
5454 __rtnl_unlock();
5455
5456 while (!list_empty(&list)) {
5457 struct net_device *dev
5458 = list_first_entry(&list, struct net_device, todo_list);
5459 list_del(&dev->todo_list);
5460
5461 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5462 printk(KERN_ERR "network todo '%s' but state %d\n",
5463 dev->name, dev->reg_state);
5464 dump_stack();
5465 continue;
5466 }
5467
5468 dev->reg_state = NETREG_UNREGISTERED;
5469
5470 on_each_cpu(flush_backlog, dev, 1);
5471
5472 netdev_wait_allrefs(dev);
5473
5474 /* paranoia */
5475 BUG_ON(netdev_refcnt_read(dev));
5476 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5477 WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5478 WARN_ON(dev->dn_ptr);
5479
5480 if (dev->destructor)
5481 dev->destructor(dev);
5482
5483 /* Free network device */
5484 kobject_put(&dev->dev.kobj);
5485 }
5486}
5487
5488/**
5489 * dev_txq_stats_fold - fold tx_queues stats
5490 * @dev: device to get statistics from
5491 * @stats: struct rtnl_link_stats64 to hold results
5492 */
5493void dev_txq_stats_fold(const struct net_device *dev,
5494 struct rtnl_link_stats64 *stats)
5495{
5496 u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5497 unsigned int i;
5498 struct netdev_queue *txq;
5499
5500 for (i = 0; i < dev->num_tx_queues; i++) {
5501 txq = netdev_get_tx_queue(dev, i);
5502 spin_lock_bh(&txq->_xmit_lock);
5503 tx_bytes += txq->tx_bytes;
5504 tx_packets += txq->tx_packets;
5505 tx_dropped += txq->tx_dropped;
5506 spin_unlock_bh(&txq->_xmit_lock);
5507 }
5508 if (tx_bytes || tx_packets || tx_dropped) {
5509 stats->tx_bytes = tx_bytes;
5510 stats->tx_packets = tx_packets;
5511 stats->tx_dropped = tx_dropped;
5512 }
5513}
5514EXPORT_SYMBOL(dev_txq_stats_fold);
5515
5516/* Convert net_device_stats to rtnl_link_stats64. They have the same
5517 * fields in the same order, with only the type differing.
5518 */
5519static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5520 const struct net_device_stats *netdev_stats)
5521{
5522#if BITS_PER_LONG == 64
5523 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5524 memcpy(stats64, netdev_stats, sizeof(*stats64));
5525#else
5526 size_t i, n = sizeof(*stats64) / sizeof(u64);
5527 const unsigned long *src = (const unsigned long *)netdev_stats;
5528 u64 *dst = (u64 *)stats64;
5529
5530 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5531 sizeof(*stats64) / sizeof(u64));
5532 for (i = 0; i < n; i++)
5533 dst[i] = src[i];
5534#endif
5535}
5536
5537/**
5538 * dev_get_stats - get network device statistics
5539 * @dev: device to get statistics from
5540 * @storage: place to store stats
5541 *
5542 * Get network statistics from device. Return @storage.
5543 * The device driver may provide its own method by setting
5544 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5545 * otherwise the internal statistics structure is used.
5546 */
5547struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5548 struct rtnl_link_stats64 *storage)
5549{
5550 const struct net_device_ops *ops = dev->netdev_ops;
5551
5552 if (ops->ndo_get_stats64) {
5553 memset(storage, 0, sizeof(*storage));
5554 ops->ndo_get_stats64(dev, storage);
5555 } else if (ops->ndo_get_stats) {
5556 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5557 } else {
5558 netdev_stats_to_stats64(storage, &dev->stats);
5559 dev_txq_stats_fold(dev, storage);
5560 }
5561 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5562 return storage;
5563}
5564EXPORT_SYMBOL(dev_get_stats);
5565
5566struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5567{
5568 struct netdev_queue *queue = dev_ingress_queue(dev);
5569
5570#ifdef CONFIG_NET_CLS_ACT
5571 if (queue)
5572 return queue;
5573 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5574 if (!queue)
5575 return NULL;
5576 netdev_init_one_queue(dev, queue, NULL);
5577 queue->qdisc = &noop_qdisc;
5578 queue->qdisc_sleeping = &noop_qdisc;
5579 rcu_assign_pointer(dev->ingress_queue, queue);
5580#endif
5581 return queue;
5582}
5583
5584/**
5585 * alloc_netdev_mq - allocate network device
5586 * @sizeof_priv: size of private data to allocate space for
5587 * @name: device name format string
5588 * @setup: callback to initialize device
5589 * @queue_count: the number of subqueues to allocate
5590 *
5591 * Allocates a struct net_device with private data area for driver use
5592 * and performs basic initialization. Also allocates subquue structs
5593 * for each queue on the device at the end of the netdevice.
5594 */
5595struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5596 void (*setup)(struct net_device *), unsigned int queue_count)
5597{
5598 struct net_device *dev;
5599 size_t alloc_size;
5600 struct net_device *p;
5601
5602 BUG_ON(strlen(name) >= sizeof(dev->name));
5603
5604 if (queue_count < 1) {
5605 pr_err("alloc_netdev: Unable to allocate device "
5606 "with zero queues.\n");
5607 return NULL;
5608 }
5609
5610 alloc_size = sizeof(struct net_device);
5611 if (sizeof_priv) {
5612 /* ensure 32-byte alignment of private area */
5613 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5614 alloc_size += sizeof_priv;
5615 }
5616 /* ensure 32-byte alignment of whole construct */
5617 alloc_size += NETDEV_ALIGN - 1;
5618
5619 p = kzalloc(alloc_size, GFP_KERNEL);
5620 if (!p) {
5621 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5622 return NULL;
5623 }
5624
5625 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5626 dev->padded = (char *)dev - (char *)p;
5627
5628 dev->pcpu_refcnt = alloc_percpu(int);
5629 if (!dev->pcpu_refcnt)
5630 goto free_p;
5631
5632 if (dev_addr_init(dev))
5633 goto free_pcpu;
5634
5635 dev_mc_init(dev);
5636 dev_uc_init(dev);
5637
5638 dev_net_set(dev, &init_net);
5639
5640 dev->num_tx_queues = queue_count;
5641 dev->real_num_tx_queues = queue_count;
5642 if (netif_alloc_netdev_queues(dev))
5643 goto free_pcpu;
5644
5645#ifdef CONFIG_RPS
5646 dev->num_rx_queues = queue_count;
5647 dev->real_num_rx_queues = queue_count;
5648 if (netif_alloc_rx_queues(dev))
5649 goto free_pcpu;
5650#endif
5651
5652 dev->gso_max_size = GSO_MAX_SIZE;
5653
5654 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5655 dev->ethtool_ntuple_list.count = 0;
5656 INIT_LIST_HEAD(&dev->napi_list);
5657 INIT_LIST_HEAD(&dev->unreg_list);
5658 INIT_LIST_HEAD(&dev->link_watch_list);
5659 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5660 setup(dev);
5661 strcpy(dev->name, name);
5662 return dev;
5663
5664free_pcpu:
5665 free_percpu(dev->pcpu_refcnt);
5666 kfree(dev->_tx);
5667#ifdef CONFIG_RPS
5668 kfree(dev->_rx);
5669#endif
5670
5671free_p:
5672 kfree(p);
5673 return NULL;
5674}
5675EXPORT_SYMBOL(alloc_netdev_mq);
5676
5677/**
5678 * free_netdev - free network device
5679 * @dev: device
5680 *
5681 * This function does the last stage of destroying an allocated device
5682 * interface. The reference to the device object is released.
5683 * If this is the last reference then it will be freed.
5684 */
5685void free_netdev(struct net_device *dev)
5686{
5687 struct napi_struct *p, *n;
5688
5689 release_net(dev_net(dev));
5690
5691 kfree(dev->_tx);
5692#ifdef CONFIG_RPS
5693 kfree(dev->_rx);
5694#endif
5695
5696 kfree(rcu_dereference_raw(dev->ingress_queue));
5697
5698 /* Flush device addresses */
5699 dev_addr_flush(dev);
5700
5701 /* Clear ethtool n-tuple list */
5702 ethtool_ntuple_flush(dev);
5703
5704 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5705 netif_napi_del(p);
5706
5707 free_percpu(dev->pcpu_refcnt);
5708 dev->pcpu_refcnt = NULL;
5709
5710 /* Compatibility with error handling in drivers */
5711 if (dev->reg_state == NETREG_UNINITIALIZED) {
5712 kfree((char *)dev - dev->padded);
5713 return;
5714 }
5715
5716 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5717 dev->reg_state = NETREG_RELEASED;
5718
5719 /* will free via device release */
5720 put_device(&dev->dev);
5721}
5722EXPORT_SYMBOL(free_netdev);
5723
5724/**
5725 * synchronize_net - Synchronize with packet receive processing
5726 *
5727 * Wait for packets currently being received to be done.
5728 * Does not block later packets from starting.
5729 */
5730void synchronize_net(void)
5731{
5732 might_sleep();
5733 synchronize_rcu();
5734}
5735EXPORT_SYMBOL(synchronize_net);
5736
5737/**
5738 * unregister_netdevice_queue - remove device from the kernel
5739 * @dev: device
5740 * @head: list
5741 *
5742 * This function shuts down a device interface and removes it
5743 * from the kernel tables.
5744 * If head not NULL, device is queued to be unregistered later.
5745 *
5746 * Callers must hold the rtnl semaphore. You may want
5747 * unregister_netdev() instead of this.
5748 */
5749
5750void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5751{
5752 ASSERT_RTNL();
5753
5754 if (head) {
5755 list_move_tail(&dev->unreg_list, head);
5756 } else {
5757 rollback_registered(dev);
5758 /* Finish processing unregister after unlock */
5759 net_set_todo(dev);
5760 }
5761}
5762EXPORT_SYMBOL(unregister_netdevice_queue);
5763
5764/**
5765 * unregister_netdevice_many - unregister many devices
5766 * @head: list of devices
5767 */
5768void unregister_netdevice_many(struct list_head *head)
5769{
5770 struct net_device *dev;
5771
5772 if (!list_empty(head)) {
5773 rollback_registered_many(head);
5774 list_for_each_entry(dev, head, unreg_list)
5775 net_set_todo(dev);
5776 }
5777}
5778EXPORT_SYMBOL(unregister_netdevice_many);
5779
5780/**
5781 * unregister_netdev - remove device from the kernel
5782 * @dev: device
5783 *
5784 * This function shuts down a device interface and removes it
5785 * from the kernel tables.
5786 *
5787 * This is just a wrapper for unregister_netdevice that takes
5788 * the rtnl semaphore. In general you want to use this and not
5789 * unregister_netdevice.
5790 */
5791void unregister_netdev(struct net_device *dev)
5792{
5793 rtnl_lock();
5794 unregister_netdevice(dev);
5795 rtnl_unlock();
5796}
5797EXPORT_SYMBOL(unregister_netdev);
5798
5799/**
5800 * dev_change_net_namespace - move device to different nethost namespace
5801 * @dev: device
5802 * @net: network namespace
5803 * @pat: If not NULL name pattern to try if the current device name
5804 * is already taken in the destination network namespace.
5805 *
5806 * This function shuts down a device interface and moves it
5807 * to a new network namespace. On success 0 is returned, on
5808 * a failure a netagive errno code is returned.
5809 *
5810 * Callers must hold the rtnl semaphore.
5811 */
5812
5813int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5814{
5815 int err;
5816
5817 ASSERT_RTNL();
5818
5819 /* Don't allow namespace local devices to be moved. */
5820 err = -EINVAL;
5821 if (dev->features & NETIF_F_NETNS_LOCAL)
5822 goto out;
5823
5824 /* Ensure the device has been registrered */
5825 err = -EINVAL;
5826 if (dev->reg_state != NETREG_REGISTERED)
5827 goto out;
5828
5829 /* Get out if there is nothing todo */
5830 err = 0;
5831 if (net_eq(dev_net(dev), net))
5832 goto out;
5833
5834 /* Pick the destination device name, and ensure
5835 * we can use it in the destination network namespace.
5836 */
5837 err = -EEXIST;
5838 if (__dev_get_by_name(net, dev->name)) {
5839 /* We get here if we can't use the current device name */
5840 if (!pat)
5841 goto out;
5842 if (dev_get_valid_name(dev, pat, 1))
5843 goto out;
5844 }
5845
5846 /*
5847 * And now a mini version of register_netdevice unregister_netdevice.
5848 */
5849
5850 /* If device is running close it first. */
5851 dev_close(dev);
5852
5853 /* And unlink it from device chain */
5854 err = -ENODEV;
5855 unlist_netdevice(dev);
5856
5857 synchronize_net();
5858
5859 /* Shutdown queueing discipline. */
5860 dev_shutdown(dev);
5861
5862 /* Notify protocols, that we are about to destroy
5863 this device. They should clean all the things.
5864
5865 Note that dev->reg_state stays at NETREG_REGISTERED.
5866 This is wanted because this way 8021q and macvlan know
5867 the device is just moving and can keep their slaves up.
5868 */
5869 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5870 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5871
5872 /*
5873 * Flush the unicast and multicast chains
5874 */
5875 dev_uc_flush(dev);
5876 dev_mc_flush(dev);
5877
5878 /* Actually switch the network namespace */
5879 dev_net_set(dev, net);
5880
5881 /* If there is an ifindex conflict assign a new one */
5882 if (__dev_get_by_index(net, dev->ifindex)) {
5883 int iflink = (dev->iflink == dev->ifindex);
5884 dev->ifindex = dev_new_index(net);
5885 if (iflink)
5886 dev->iflink = dev->ifindex;
5887 }
5888
5889 /* Fixup kobjects */
5890 err = device_rename(&dev->dev, dev->name);
5891 WARN_ON(err);
5892
5893 /* Add the device back in the hashes */
5894 list_netdevice(dev);
5895
5896 /* Notify protocols, that a new device appeared. */
5897 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5898
5899 /*
5900 * Prevent userspace races by waiting until the network
5901 * device is fully setup before sending notifications.
5902 */
5903 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5904
5905 synchronize_net();
5906 err = 0;
5907out:
5908 return err;
5909}
5910EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5911
5912static int dev_cpu_callback(struct notifier_block *nfb,
5913 unsigned long action,
5914 void *ocpu)
5915{
5916 struct sk_buff **list_skb;
5917 struct sk_buff *skb;
5918 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5919 struct softnet_data *sd, *oldsd;
5920
5921 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5922 return NOTIFY_OK;
5923
5924 local_irq_disable();
5925 cpu = smp_processor_id();
5926 sd = &per_cpu(softnet_data, cpu);
5927 oldsd = &per_cpu(softnet_data, oldcpu);
5928
5929 /* Find end of our completion_queue. */
5930 list_skb = &sd->completion_queue;
5931 while (*list_skb)
5932 list_skb = &(*list_skb)->next;
5933 /* Append completion queue from offline CPU. */
5934 *list_skb = oldsd->completion_queue;
5935 oldsd->completion_queue = NULL;
5936
5937 /* Append output queue from offline CPU. */
5938 if (oldsd->output_queue) {
5939 *sd->output_queue_tailp = oldsd->output_queue;
5940 sd->output_queue_tailp = oldsd->output_queue_tailp;
5941 oldsd->output_queue = NULL;
5942 oldsd->output_queue_tailp = &oldsd->output_queue;
5943 }
5944
5945 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5946 local_irq_enable();
5947
5948 /* Process offline CPU's input_pkt_queue */
5949 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5950 netif_rx(skb);
5951 input_queue_head_incr(oldsd);
5952 }
5953 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5954 netif_rx(skb);
5955 input_queue_head_incr(oldsd);
5956 }
5957
5958 return NOTIFY_OK;
5959}
5960
5961
5962/**
5963 * netdev_increment_features - increment feature set by one
5964 * @all: current feature set
5965 * @one: new feature set
5966 * @mask: mask feature set
5967 *
5968 * Computes a new feature set after adding a device with feature set
5969 * @one to the master device with current feature set @all. Will not
5970 * enable anything that is off in @mask. Returns the new feature set.
5971 */
5972unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5973 unsigned long mask)
5974{
5975 /* If device needs checksumming, downgrade to it. */
5976 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5977 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5978 else if (mask & NETIF_F_ALL_CSUM) {
5979 /* If one device supports v4/v6 checksumming, set for all. */
5980 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5981 !(all & NETIF_F_GEN_CSUM)) {
5982 all &= ~NETIF_F_ALL_CSUM;
5983 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5984 }
5985
5986 /* If one device supports hw checksumming, set for all. */
5987 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5988 all &= ~NETIF_F_ALL_CSUM;
5989 all |= NETIF_F_HW_CSUM;
5990 }
5991 }
5992
5993 one |= NETIF_F_ALL_CSUM;
5994
5995 one |= all & NETIF_F_ONE_FOR_ALL;
5996 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5997 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5998
5999 return all;
6000}
6001EXPORT_SYMBOL(netdev_increment_features);
6002
6003static struct hlist_head *netdev_create_hash(void)
6004{
6005 int i;
6006 struct hlist_head *hash;
6007
6008 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6009 if (hash != NULL)
6010 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6011 INIT_HLIST_HEAD(&hash[i]);
6012
6013 return hash;
6014}
6015
6016/* Initialize per network namespace state */
6017static int __net_init netdev_init(struct net *net)
6018{
6019 INIT_LIST_HEAD(&net->dev_base_head);
6020
6021 net->dev_name_head = netdev_create_hash();
6022 if (net->dev_name_head == NULL)
6023 goto err_name;
6024
6025 net->dev_index_head = netdev_create_hash();
6026 if (net->dev_index_head == NULL)
6027 goto err_idx;
6028
6029 return 0;
6030
6031err_idx:
6032 kfree(net->dev_name_head);
6033err_name:
6034 return -ENOMEM;
6035}
6036
6037/**
6038 * netdev_drivername - network driver for the device
6039 * @dev: network device
6040 * @buffer: buffer for resulting name
6041 * @len: size of buffer
6042 *
6043 * Determine network driver for device.
6044 */
6045char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6046{
6047 const struct device_driver *driver;
6048 const struct device *parent;
6049
6050 if (len <= 0 || !buffer)
6051 return buffer;
6052 buffer[0] = 0;
6053
6054 parent = dev->dev.parent;
6055
6056 if (!parent)
6057 return buffer;
6058
6059 driver = parent->driver;
6060 if (driver && driver->name)
6061 strlcpy(buffer, driver->name, len);
6062 return buffer;
6063}
6064
6065static int __netdev_printk(const char *level, const struct net_device *dev,
6066 struct va_format *vaf)
6067{
6068 int r;
6069
6070 if (dev && dev->dev.parent)
6071 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6072 netdev_name(dev), vaf);
6073 else if (dev)
6074 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6075 else
6076 r = printk("%s(NULL net_device): %pV", level, vaf);
6077
6078 return r;
6079}
6080
6081int netdev_printk(const char *level, const struct net_device *dev,
6082 const char *format, ...)
6083{
6084 struct va_format vaf;
6085 va_list args;
6086 int r;
6087
6088 va_start(args, format);
6089
6090 vaf.fmt = format;
6091 vaf.va = &args;
6092
6093 r = __netdev_printk(level, dev, &vaf);
6094 va_end(args);
6095
6096 return r;
6097}
6098EXPORT_SYMBOL(netdev_printk);
6099
6100#define define_netdev_printk_level(func, level) \
6101int func(const struct net_device *dev, const char *fmt, ...) \
6102{ \
6103 int r; \
6104 struct va_format vaf; \
6105 va_list args; \
6106 \
6107 va_start(args, fmt); \
6108 \
6109 vaf.fmt = fmt; \
6110 vaf.va = &args; \
6111 \
6112 r = __netdev_printk(level, dev, &vaf); \
6113 va_end(args); \
6114 \
6115 return r; \
6116} \
6117EXPORT_SYMBOL(func);
6118
6119define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6120define_netdev_printk_level(netdev_alert, KERN_ALERT);
6121define_netdev_printk_level(netdev_crit, KERN_CRIT);
6122define_netdev_printk_level(netdev_err, KERN_ERR);
6123define_netdev_printk_level(netdev_warn, KERN_WARNING);
6124define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6125define_netdev_printk_level(netdev_info, KERN_INFO);
6126
6127static void __net_exit netdev_exit(struct net *net)
6128{
6129 kfree(net->dev_name_head);
6130 kfree(net->dev_index_head);
6131}
6132
6133static struct pernet_operations __net_initdata netdev_net_ops = {
6134 .init = netdev_init,
6135 .exit = netdev_exit,
6136};
6137
6138static void __net_exit default_device_exit(struct net *net)
6139{
6140 struct net_device *dev, *aux;
6141 /*
6142 * Push all migratable network devices back to the
6143 * initial network namespace
6144 */
6145 rtnl_lock();
6146 for_each_netdev_safe(net, dev, aux) {
6147 int err;
6148 char fb_name[IFNAMSIZ];
6149
6150 /* Ignore unmoveable devices (i.e. loopback) */
6151 if (dev->features & NETIF_F_NETNS_LOCAL)
6152 continue;
6153
6154 /* Leave virtual devices for the generic cleanup */
6155 if (dev->rtnl_link_ops)
6156 continue;
6157
6158 /* Push remaing network devices to init_net */
6159 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6160 err = dev_change_net_namespace(dev, &init_net, fb_name);
6161 if (err) {
6162 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6163 __func__, dev->name, err);
6164 BUG();
6165 }
6166 }
6167 rtnl_unlock();
6168}
6169
6170static void __net_exit default_device_exit_batch(struct list_head *net_list)
6171{
6172 /* At exit all network devices most be removed from a network
6173 * namespace. Do this in the reverse order of registeration.
6174 * Do this across as many network namespaces as possible to
6175 * improve batching efficiency.
6176 */
6177 struct net_device *dev;
6178 struct net *net;
6179 LIST_HEAD(dev_kill_list);
6180
6181 rtnl_lock();
6182 list_for_each_entry(net, net_list, exit_list) {
6183 for_each_netdev_reverse(net, dev) {
6184 if (dev->rtnl_link_ops)
6185 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6186 else
6187 unregister_netdevice_queue(dev, &dev_kill_list);
6188 }
6189 }
6190 unregister_netdevice_many(&dev_kill_list);
6191 rtnl_unlock();
6192}
6193
6194static struct pernet_operations __net_initdata default_device_ops = {
6195 .exit = default_device_exit,
6196 .exit_batch = default_device_exit_batch,
6197};
6198
6199/*
6200 * Initialize the DEV module. At boot time this walks the device list and
6201 * unhooks any devices that fail to initialise (normally hardware not
6202 * present) and leaves us with a valid list of present and active devices.
6203 *
6204 */
6205
6206/*
6207 * This is called single threaded during boot, so no need
6208 * to take the rtnl semaphore.
6209 */
6210static int __init net_dev_init(void)
6211{
6212 int i, rc = -ENOMEM;
6213
6214 BUG_ON(!dev_boot_phase);
6215
6216 if (dev_proc_init())
6217 goto out;
6218
6219 if (netdev_kobject_init())
6220 goto out;
6221
6222 INIT_LIST_HEAD(&ptype_all);
6223 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6224 INIT_LIST_HEAD(&ptype_base[i]);
6225
6226 if (register_pernet_subsys(&netdev_net_ops))
6227 goto out;
6228
6229 /*
6230 * Initialise the packet receive queues.
6231 */
6232
6233 for_each_possible_cpu(i) {
6234 struct softnet_data *sd = &per_cpu(softnet_data, i);
6235
6236 memset(sd, 0, sizeof(*sd));
6237 skb_queue_head_init(&sd->input_pkt_queue);
6238 skb_queue_head_init(&sd->process_queue);
6239 sd->completion_queue = NULL;
6240 INIT_LIST_HEAD(&sd->poll_list);
6241 sd->output_queue = NULL;
6242 sd->output_queue_tailp = &sd->output_queue;
6243#ifdef CONFIG_RPS
6244 sd->csd.func = rps_trigger_softirq;
6245 sd->csd.info = sd;
6246 sd->csd.flags = 0;
6247 sd->cpu = i;
6248#endif
6249
6250 sd->backlog.poll = process_backlog;
6251 sd->backlog.weight = weight_p;
6252 sd->backlog.gro_list = NULL;
6253 sd->backlog.gro_count = 0;
6254 }
6255
6256 dev_boot_phase = 0;
6257
6258 /* The loopback device is special if any other network devices
6259 * is present in a network namespace the loopback device must
6260 * be present. Since we now dynamically allocate and free the
6261 * loopback device ensure this invariant is maintained by
6262 * keeping the loopback device as the first device on the
6263 * list of network devices. Ensuring the loopback devices
6264 * is the first device that appears and the last network device
6265 * that disappears.
6266 */
6267 if (register_pernet_device(&loopback_net_ops))
6268 goto out;
6269
6270 if (register_pernet_device(&default_device_ops))
6271 goto out;
6272
6273 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6274 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6275
6276 hotcpu_notifier(dev_cpu_callback, 0);
6277 dst_init();
6278 dev_mcast_init();
6279 rc = 0;
6280out:
6281 return rc;
6282}
6283
6284subsys_initcall(net_dev_init);
6285
6286static int __init initialize_hashrnd(void)
6287{
6288 get_random_bytes(&hashrnd, sizeof(hashrnd));
6289 return 0;
6290}
6291
6292late_initcall_sync(initialize_hashrnd);
6293