]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - net/core/dev.c
rfs: Receive Flow Steering
[net-next-2.6.git] / net / core / dev.c
... / ...
CommitLineData
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <asm/system.h>
77#include <linux/bitops.h>
78#include <linux/capability.h>
79#include <linux/cpu.h>
80#include <linux/types.h>
81#include <linux/kernel.h>
82#include <linux/hash.h>
83#include <linux/slab.h>
84#include <linux/sched.h>
85#include <linux/mutex.h>
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
95#include <linux/ethtool.h>
96#include <linux/notifier.h>
97#include <linux/skbuff.h>
98#include <net/net_namespace.h>
99#include <net/sock.h>
100#include <linux/rtnetlink.h>
101#include <linux/proc_fs.h>
102#include <linux/seq_file.h>
103#include <linux/stat.h>
104#include <linux/if_bridge.h>
105#include <linux/if_macvlan.h>
106#include <net/dst.h>
107#include <net/pkt_sched.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <linux/highmem.h>
111#include <linux/init.h>
112#include <linux/kmod.h>
113#include <linux/module.h>
114#include <linux/netpoll.h>
115#include <linux/rcupdate.h>
116#include <linux/delay.h>
117#include <net/wext.h>
118#include <net/iw_handler.h>
119#include <asm/current.h>
120#include <linux/audit.h>
121#include <linux/dmaengine.h>
122#include <linux/err.h>
123#include <linux/ctype.h>
124#include <linux/if_arp.h>
125#include <linux/if_vlan.h>
126#include <linux/ip.h>
127#include <net/ip.h>
128#include <linux/ipv6.h>
129#include <linux/in.h>
130#include <linux/jhash.h>
131#include <linux/random.h>
132#include <trace/events/napi.h>
133#include <linux/pci.h>
134
135#include "net-sysfs.h"
136
137/* Instead of increasing this, you should create a hash table. */
138#define MAX_GRO_SKBS 8
139
140/* This should be increased if a protocol with a bigger head is added. */
141#define GRO_MAX_HEAD (MAX_HEADER + 128)
142
143/*
144 * The list of packet types we will receive (as opposed to discard)
145 * and the routines to invoke.
146 *
147 * Why 16. Because with 16 the only overlap we get on a hash of the
148 * low nibble of the protocol value is RARP/SNAP/X.25.
149 *
150 * NOTE: That is no longer true with the addition of VLAN tags. Not
151 * sure which should go first, but I bet it won't make much
152 * difference if we are running VLANs. The good news is that
153 * this protocol won't be in the list unless compiled in, so
154 * the average user (w/out VLANs) will not be adversely affected.
155 * --BLG
156 *
157 * 0800 IP
158 * 8100 802.1Q VLAN
159 * 0001 802.3
160 * 0002 AX.25
161 * 0004 802.2
162 * 8035 RARP
163 * 0005 SNAP
164 * 0805 X.25
165 * 0806 ARP
166 * 8137 IPX
167 * 0009 Localtalk
168 * 86DD IPv6
169 */
170
171#define PTYPE_HASH_SIZE (16)
172#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
173
174static DEFINE_SPINLOCK(ptype_lock);
175static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
176static struct list_head ptype_all __read_mostly; /* Taps */
177
178/*
179 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
180 * semaphore.
181 *
182 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
183 *
184 * Writers must hold the rtnl semaphore while they loop through the
185 * dev_base_head list, and hold dev_base_lock for writing when they do the
186 * actual updates. This allows pure readers to access the list even
187 * while a writer is preparing to update it.
188 *
189 * To put it another way, dev_base_lock is held for writing only to
190 * protect against pure readers; the rtnl semaphore provides the
191 * protection against other writers.
192 *
193 * See, for example usages, register_netdevice() and
194 * unregister_netdevice(), which must be called with the rtnl
195 * semaphore held.
196 */
197DEFINE_RWLOCK(dev_base_lock);
198EXPORT_SYMBOL(dev_base_lock);
199
200static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201{
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204}
205
206static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207{
208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209}
210
211static inline void rps_lock(struct softnet_data *queue)
212{
213#ifdef CONFIG_RPS
214 spin_lock(&queue->input_pkt_queue.lock);
215#endif
216}
217
218static inline void rps_unlock(struct softnet_data *queue)
219{
220#ifdef CONFIG_RPS
221 spin_unlock(&queue->input_pkt_queue.lock);
222#endif
223}
224
225/* Device list insertion */
226static int list_netdevice(struct net_device *dev)
227{
228 struct net *net = dev_net(dev);
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
238 return 0;
239}
240
241/* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
243 */
244static void unlist_netdevice(struct net_device *dev)
245{
246 ASSERT_RTNL();
247
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
250 list_del_rcu(&dev->dev_list);
251 hlist_del_rcu(&dev->name_hlist);
252 hlist_del_rcu(&dev->index_hlist);
253 write_unlock_bh(&dev_base_lock);
254}
255
256/*
257 * Our notifier list
258 */
259
260static RAW_NOTIFIER_HEAD(netdev_chain);
261
262/*
263 * Device drivers call our routines to queue packets here. We empty the
264 * queue in the local softnet handler.
265 */
266
267DEFINE_PER_CPU(struct softnet_data, softnet_data);
268EXPORT_PER_CPU_SYMBOL(softnet_data);
269
270#ifdef CONFIG_LOCKDEP
271/*
272 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
273 * according to dev->type
274 */
275static const unsigned short netdev_lock_type[] =
276 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
277 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
278 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
279 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
280 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
281 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
282 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
283 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
284 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
285 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
286 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
287 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
288 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
289 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
290 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
291 ARPHRD_VOID, ARPHRD_NONE};
292
293static const char *const netdev_lock_name[] =
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
307 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
308 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
309 "_xmit_VOID", "_xmit_NONE"};
310
311static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313
314static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315{
316 int i;
317
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
323}
324
325static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327{
328 int i;
329
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
333}
334
335static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336{
337 int i;
338
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
343}
344#else
345static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
347{
348}
349static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350{
351}
352#endif
353
354/*******************************************************************************
355
356 Protocol management and registration routines
357
358*******************************************************************************/
359
360/*
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
364 *
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
374 */
375
376/**
377 * dev_add_pack - add packet handler
378 * @pt: packet type declaration
379 *
380 * Add a protocol handler to the networking stack. The passed &packet_type
381 * is linked into kernel lists and may not be freed until it has been
382 * removed from the kernel lists.
383 *
384 * This call does not sleep therefore it can not
385 * guarantee all CPU's that are in middle of receiving packets
386 * will see the new packet type (until the next received packet).
387 */
388
389void dev_add_pack(struct packet_type *pt)
390{
391 int hash;
392
393 spin_lock_bh(&ptype_lock);
394 if (pt->type == htons(ETH_P_ALL))
395 list_add_rcu(&pt->list, &ptype_all);
396 else {
397 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
398 list_add_rcu(&pt->list, &ptype_base[hash]);
399 }
400 spin_unlock_bh(&ptype_lock);
401}
402EXPORT_SYMBOL(dev_add_pack);
403
404/**
405 * __dev_remove_pack - remove packet handler
406 * @pt: packet type declaration
407 *
408 * Remove a protocol handler that was previously added to the kernel
409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
410 * from the kernel lists and can be freed or reused once this function
411 * returns.
412 *
413 * The packet type might still be in use by receivers
414 * and must not be freed until after all the CPU's have gone
415 * through a quiescent state.
416 */
417void __dev_remove_pack(struct packet_type *pt)
418{
419 struct list_head *head;
420 struct packet_type *pt1;
421
422 spin_lock_bh(&ptype_lock);
423
424 if (pt->type == htons(ETH_P_ALL))
425 head = &ptype_all;
426 else
427 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437out:
438 spin_unlock_bh(&ptype_lock);
439}
440EXPORT_SYMBOL(__dev_remove_pack);
441
442/**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454void dev_remove_pack(struct packet_type *pt)
455{
456 __dev_remove_pack(pt);
457
458 synchronize_net();
459}
460EXPORT_SYMBOL(dev_remove_pack);
461
462/******************************************************************************
463
464 Device Boot-time Settings Routines
465
466*******************************************************************************/
467
468/* Boot time configuration table */
469static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
470
471/**
472 * netdev_boot_setup_add - add new setup entry
473 * @name: name of the device
474 * @map: configured settings for the device
475 *
476 * Adds new setup entry to the dev_boot_setup list. The function
477 * returns 0 on error and 1 on success. This is a generic routine to
478 * all netdevices.
479 */
480static int netdev_boot_setup_add(char *name, struct ifmap *map)
481{
482 struct netdev_boot_setup *s;
483 int i;
484
485 s = dev_boot_setup;
486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 memset(s[i].name, 0, sizeof(s[i].name));
489 strlcpy(s[i].name, name, IFNAMSIZ);
490 memcpy(&s[i].map, map, sizeof(s[i].map));
491 break;
492 }
493 }
494
495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
496}
497
498/**
499 * netdev_boot_setup_check - check boot time settings
500 * @dev: the netdevice
501 *
502 * Check boot time settings for the device.
503 * The found settings are set for the device to be used
504 * later in the device probing.
505 * Returns 0 if no settings found, 1 if they are.
506 */
507int netdev_boot_setup_check(struct net_device *dev)
508{
509 struct netdev_boot_setup *s = dev_boot_setup;
510 int i;
511
512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 !strcmp(dev->name, s[i].name)) {
515 dev->irq = s[i].map.irq;
516 dev->base_addr = s[i].map.base_addr;
517 dev->mem_start = s[i].map.mem_start;
518 dev->mem_end = s[i].map.mem_end;
519 return 1;
520 }
521 }
522 return 0;
523}
524EXPORT_SYMBOL(netdev_boot_setup_check);
525
526
527/**
528 * netdev_boot_base - get address from boot time settings
529 * @prefix: prefix for network device
530 * @unit: id for network device
531 *
532 * Check boot time settings for the base address of device.
533 * The found settings are set for the device to be used
534 * later in the device probing.
535 * Returns 0 if no settings found.
536 */
537unsigned long netdev_boot_base(const char *prefix, int unit)
538{
539 const struct netdev_boot_setup *s = dev_boot_setup;
540 char name[IFNAMSIZ];
541 int i;
542
543 sprintf(name, "%s%d", prefix, unit);
544
545 /*
546 * If device already registered then return base of 1
547 * to indicate not to probe for this interface
548 */
549 if (__dev_get_by_name(&init_net, name))
550 return 1;
551
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 if (!strcmp(name, s[i].name))
554 return s[i].map.base_addr;
555 return 0;
556}
557
558/*
559 * Saves at boot time configured settings for any netdevice.
560 */
561int __init netdev_boot_setup(char *str)
562{
563 int ints[5];
564 struct ifmap map;
565
566 str = get_options(str, ARRAY_SIZE(ints), ints);
567 if (!str || !*str)
568 return 0;
569
570 /* Save settings */
571 memset(&map, 0, sizeof(map));
572 if (ints[0] > 0)
573 map.irq = ints[1];
574 if (ints[0] > 1)
575 map.base_addr = ints[2];
576 if (ints[0] > 2)
577 map.mem_start = ints[3];
578 if (ints[0] > 3)
579 map.mem_end = ints[4];
580
581 /* Add new entry to the list */
582 return netdev_boot_setup_add(str, &map);
583}
584
585__setup("netdev=", netdev_boot_setup);
586
587/*******************************************************************************
588
589 Device Interface Subroutines
590
591*******************************************************************************/
592
593/**
594 * __dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
597 *
598 * Find an interface by name. Must be called under RTNL semaphore
599 * or @dev_base_lock. If the name is found a pointer to the device
600 * is returned. If the name is not found then %NULL is returned. The
601 * reference counters are not incremented so the caller must be
602 * careful with locks.
603 */
604
605struct net_device *__dev_get_by_name(struct net *net, const char *name)
606{
607 struct hlist_node *p;
608 struct net_device *dev;
609 struct hlist_head *head = dev_name_hash(net, name);
610
611 hlist_for_each_entry(dev, p, head, name_hlist)
612 if (!strncmp(dev->name, name, IFNAMSIZ))
613 return dev;
614
615 return NULL;
616}
617EXPORT_SYMBOL(__dev_get_by_name);
618
619/**
620 * dev_get_by_name_rcu - find a device by its name
621 * @net: the applicable net namespace
622 * @name: name to find
623 *
624 * Find an interface by name.
625 * If the name is found a pointer to the device is returned.
626 * If the name is not found then %NULL is returned.
627 * The reference counters are not incremented so the caller must be
628 * careful with locks. The caller must hold RCU lock.
629 */
630
631struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
632{
633 struct hlist_node *p;
634 struct net_device *dev;
635 struct hlist_head *head = dev_name_hash(net, name);
636
637 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 if (!strncmp(dev->name, name, IFNAMSIZ))
639 return dev;
640
641 return NULL;
642}
643EXPORT_SYMBOL(dev_get_by_name_rcu);
644
645/**
646 * dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
649 *
650 * Find an interface by name. This can be called from any
651 * context and does its own locking. The returned handle has
652 * the usage count incremented and the caller must use dev_put() to
653 * release it when it is no longer needed. %NULL is returned if no
654 * matching device is found.
655 */
656
657struct net_device *dev_get_by_name(struct net *net, const char *name)
658{
659 struct net_device *dev;
660
661 rcu_read_lock();
662 dev = dev_get_by_name_rcu(net, name);
663 if (dev)
664 dev_hold(dev);
665 rcu_read_unlock();
666 return dev;
667}
668EXPORT_SYMBOL(dev_get_by_name);
669
670/**
671 * __dev_get_by_index - find a device by its ifindex
672 * @net: the applicable net namespace
673 * @ifindex: index of device
674 *
675 * Search for an interface by index. Returns %NULL if the device
676 * is not found or a pointer to the device. The device has not
677 * had its reference counter increased so the caller must be careful
678 * about locking. The caller must hold either the RTNL semaphore
679 * or @dev_base_lock.
680 */
681
682struct net_device *__dev_get_by_index(struct net *net, int ifindex)
683{
684 struct hlist_node *p;
685 struct net_device *dev;
686 struct hlist_head *head = dev_index_hash(net, ifindex);
687
688 hlist_for_each_entry(dev, p, head, index_hlist)
689 if (dev->ifindex == ifindex)
690 return dev;
691
692 return NULL;
693}
694EXPORT_SYMBOL(__dev_get_by_index);
695
696/**
697 * dev_get_by_index_rcu - find a device by its ifindex
698 * @net: the applicable net namespace
699 * @ifindex: index of device
700 *
701 * Search for an interface by index. Returns %NULL if the device
702 * is not found or a pointer to the device. The device has not
703 * had its reference counter increased so the caller must be careful
704 * about locking. The caller must hold RCU lock.
705 */
706
707struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
708{
709 struct hlist_node *p;
710 struct net_device *dev;
711 struct hlist_head *head = dev_index_hash(net, ifindex);
712
713 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 if (dev->ifindex == ifindex)
715 return dev;
716
717 return NULL;
718}
719EXPORT_SYMBOL(dev_get_by_index_rcu);
720
721
722/**
723 * dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns NULL if the device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
731 */
732
733struct net_device *dev_get_by_index(struct net *net, int ifindex)
734{
735 struct net_device *dev;
736
737 rcu_read_lock();
738 dev = dev_get_by_index_rcu(net, ifindex);
739 if (dev)
740 dev_hold(dev);
741 rcu_read_unlock();
742 return dev;
743}
744EXPORT_SYMBOL(dev_get_by_index);
745
746/**
747 * dev_getbyhwaddr - find a device by its hardware address
748 * @net: the applicable net namespace
749 * @type: media type of device
750 * @ha: hardware address
751 *
752 * Search for an interface by MAC address. Returns NULL if the device
753 * is not found or a pointer to the device. The caller must hold the
754 * rtnl semaphore. The returned device has not had its ref count increased
755 * and the caller must therefore be careful about locking
756 *
757 * BUGS:
758 * If the API was consistent this would be __dev_get_by_hwaddr
759 */
760
761struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
762{
763 struct net_device *dev;
764
765 ASSERT_RTNL();
766
767 for_each_netdev(net, dev)
768 if (dev->type == type &&
769 !memcmp(dev->dev_addr, ha, dev->addr_len))
770 return dev;
771
772 return NULL;
773}
774EXPORT_SYMBOL(dev_getbyhwaddr);
775
776struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
777{
778 struct net_device *dev;
779
780 ASSERT_RTNL();
781 for_each_netdev(net, dev)
782 if (dev->type == type)
783 return dev;
784
785 return NULL;
786}
787EXPORT_SYMBOL(__dev_getfirstbyhwtype);
788
789struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
790{
791 struct net_device *dev, *ret = NULL;
792
793 rcu_read_lock();
794 for_each_netdev_rcu(net, dev)
795 if (dev->type == type) {
796 dev_hold(dev);
797 ret = dev;
798 break;
799 }
800 rcu_read_unlock();
801 return ret;
802}
803EXPORT_SYMBOL(dev_getfirstbyhwtype);
804
805/**
806 * dev_get_by_flags - find any device with given flags
807 * @net: the applicable net namespace
808 * @if_flags: IFF_* values
809 * @mask: bitmask of bits in if_flags to check
810 *
811 * Search for any interface with the given flags. Returns NULL if a device
812 * is not found or a pointer to the device. The device returned has
813 * had a reference added and the pointer is safe until the user calls
814 * dev_put to indicate they have finished with it.
815 */
816
817struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
818 unsigned short mask)
819{
820 struct net_device *dev, *ret;
821
822 ret = NULL;
823 rcu_read_lock();
824 for_each_netdev_rcu(net, dev) {
825 if (((dev->flags ^ if_flags) & mask) == 0) {
826 dev_hold(dev);
827 ret = dev;
828 break;
829 }
830 }
831 rcu_read_unlock();
832 return ret;
833}
834EXPORT_SYMBOL(dev_get_by_flags);
835
836/**
837 * dev_valid_name - check if name is okay for network device
838 * @name: name string
839 *
840 * Network device names need to be valid file names to
841 * to allow sysfs to work. We also disallow any kind of
842 * whitespace.
843 */
844int dev_valid_name(const char *name)
845{
846 if (*name == '\0')
847 return 0;
848 if (strlen(name) >= IFNAMSIZ)
849 return 0;
850 if (!strcmp(name, ".") || !strcmp(name, ".."))
851 return 0;
852
853 while (*name) {
854 if (*name == '/' || isspace(*name))
855 return 0;
856 name++;
857 }
858 return 1;
859}
860EXPORT_SYMBOL(dev_valid_name);
861
862/**
863 * __dev_alloc_name - allocate a name for a device
864 * @net: network namespace to allocate the device name in
865 * @name: name format string
866 * @buf: scratch buffer and result name string
867 *
868 * Passed a format string - eg "lt%d" it will try and find a suitable
869 * id. It scans list of devices to build up a free map, then chooses
870 * the first empty slot. The caller must hold the dev_base or rtnl lock
871 * while allocating the name and adding the device in order to avoid
872 * duplicates.
873 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
874 * Returns the number of the unit assigned or a negative errno code.
875 */
876
877static int __dev_alloc_name(struct net *net, const char *name, char *buf)
878{
879 int i = 0;
880 const char *p;
881 const int max_netdevices = 8*PAGE_SIZE;
882 unsigned long *inuse;
883 struct net_device *d;
884
885 p = strnchr(name, IFNAMSIZ-1, '%');
886 if (p) {
887 /*
888 * Verify the string as this thing may have come from
889 * the user. There must be either one "%d" and no other "%"
890 * characters.
891 */
892 if (p[1] != 'd' || strchr(p + 2, '%'))
893 return -EINVAL;
894
895 /* Use one page as a bit array of possible slots */
896 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
897 if (!inuse)
898 return -ENOMEM;
899
900 for_each_netdev(net, d) {
901 if (!sscanf(d->name, name, &i))
902 continue;
903 if (i < 0 || i >= max_netdevices)
904 continue;
905
906 /* avoid cases where sscanf is not exact inverse of printf */
907 snprintf(buf, IFNAMSIZ, name, i);
908 if (!strncmp(buf, d->name, IFNAMSIZ))
909 set_bit(i, inuse);
910 }
911
912 i = find_first_zero_bit(inuse, max_netdevices);
913 free_page((unsigned long) inuse);
914 }
915
916 if (buf != name)
917 snprintf(buf, IFNAMSIZ, name, i);
918 if (!__dev_get_by_name(net, buf))
919 return i;
920
921 /* It is possible to run out of possible slots
922 * when the name is long and there isn't enough space left
923 * for the digits, or if all bits are used.
924 */
925 return -ENFILE;
926}
927
928/**
929 * dev_alloc_name - allocate a name for a device
930 * @dev: device
931 * @name: name format string
932 *
933 * Passed a format string - eg "lt%d" it will try and find a suitable
934 * id. It scans list of devices to build up a free map, then chooses
935 * the first empty slot. The caller must hold the dev_base or rtnl lock
936 * while allocating the name and adding the device in order to avoid
937 * duplicates.
938 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
939 * Returns the number of the unit assigned or a negative errno code.
940 */
941
942int dev_alloc_name(struct net_device *dev, const char *name)
943{
944 char buf[IFNAMSIZ];
945 struct net *net;
946 int ret;
947
948 BUG_ON(!dev_net(dev));
949 net = dev_net(dev);
950 ret = __dev_alloc_name(net, name, buf);
951 if (ret >= 0)
952 strlcpy(dev->name, buf, IFNAMSIZ);
953 return ret;
954}
955EXPORT_SYMBOL(dev_alloc_name);
956
957static int dev_get_valid_name(struct net *net, const char *name, char *buf,
958 bool fmt)
959{
960 if (!dev_valid_name(name))
961 return -EINVAL;
962
963 if (fmt && strchr(name, '%'))
964 return __dev_alloc_name(net, name, buf);
965 else if (__dev_get_by_name(net, name))
966 return -EEXIST;
967 else if (buf != name)
968 strlcpy(buf, name, IFNAMSIZ);
969
970 return 0;
971}
972
973/**
974 * dev_change_name - change name of a device
975 * @dev: device
976 * @newname: name (or format string) must be at least IFNAMSIZ
977 *
978 * Change name of a device, can pass format strings "eth%d".
979 * for wildcarding.
980 */
981int dev_change_name(struct net_device *dev, const char *newname)
982{
983 char oldname[IFNAMSIZ];
984 int err = 0;
985 int ret;
986 struct net *net;
987
988 ASSERT_RTNL();
989 BUG_ON(!dev_net(dev));
990
991 net = dev_net(dev);
992 if (dev->flags & IFF_UP)
993 return -EBUSY;
994
995 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
996 return 0;
997
998 memcpy(oldname, dev->name, IFNAMSIZ);
999
1000 err = dev_get_valid_name(net, newname, dev->name, 1);
1001 if (err < 0)
1002 return err;
1003
1004rollback:
1005 /* For now only devices in the initial network namespace
1006 * are in sysfs.
1007 */
1008 if (net_eq(net, &init_net)) {
1009 ret = device_rename(&dev->dev, dev->name);
1010 if (ret) {
1011 memcpy(dev->name, oldname, IFNAMSIZ);
1012 return ret;
1013 }
1014 }
1015
1016 write_lock_bh(&dev_base_lock);
1017 hlist_del(&dev->name_hlist);
1018 write_unlock_bh(&dev_base_lock);
1019
1020 synchronize_rcu();
1021
1022 write_lock_bh(&dev_base_lock);
1023 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1024 write_unlock_bh(&dev_base_lock);
1025
1026 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1027 ret = notifier_to_errno(ret);
1028
1029 if (ret) {
1030 /* err >= 0 after dev_alloc_name() or stores the first errno */
1031 if (err >= 0) {
1032 err = ret;
1033 memcpy(dev->name, oldname, IFNAMSIZ);
1034 goto rollback;
1035 } else {
1036 printk(KERN_ERR
1037 "%s: name change rollback failed: %d.\n",
1038 dev->name, ret);
1039 }
1040 }
1041
1042 return err;
1043}
1044
1045/**
1046 * dev_set_alias - change ifalias of a device
1047 * @dev: device
1048 * @alias: name up to IFALIASZ
1049 * @len: limit of bytes to copy from info
1050 *
1051 * Set ifalias for a device,
1052 */
1053int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1054{
1055 ASSERT_RTNL();
1056
1057 if (len >= IFALIASZ)
1058 return -EINVAL;
1059
1060 if (!len) {
1061 if (dev->ifalias) {
1062 kfree(dev->ifalias);
1063 dev->ifalias = NULL;
1064 }
1065 return 0;
1066 }
1067
1068 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1069 if (!dev->ifalias)
1070 return -ENOMEM;
1071
1072 strlcpy(dev->ifalias, alias, len+1);
1073 return len;
1074}
1075
1076
1077/**
1078 * netdev_features_change - device changes features
1079 * @dev: device to cause notification
1080 *
1081 * Called to indicate a device has changed features.
1082 */
1083void netdev_features_change(struct net_device *dev)
1084{
1085 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1086}
1087EXPORT_SYMBOL(netdev_features_change);
1088
1089/**
1090 * netdev_state_change - device changes state
1091 * @dev: device to cause notification
1092 *
1093 * Called to indicate a device has changed state. This function calls
1094 * the notifier chains for netdev_chain and sends a NEWLINK message
1095 * to the routing socket.
1096 */
1097void netdev_state_change(struct net_device *dev)
1098{
1099 if (dev->flags & IFF_UP) {
1100 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1101 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1102 }
1103}
1104EXPORT_SYMBOL(netdev_state_change);
1105
1106int netdev_bonding_change(struct net_device *dev, unsigned long event)
1107{
1108 return call_netdevice_notifiers(event, dev);
1109}
1110EXPORT_SYMBOL(netdev_bonding_change);
1111
1112/**
1113 * dev_load - load a network module
1114 * @net: the applicable net namespace
1115 * @name: name of interface
1116 *
1117 * If a network interface is not present and the process has suitable
1118 * privileges this function loads the module. If module loading is not
1119 * available in this kernel then it becomes a nop.
1120 */
1121
1122void dev_load(struct net *net, const char *name)
1123{
1124 struct net_device *dev;
1125
1126 rcu_read_lock();
1127 dev = dev_get_by_name_rcu(net, name);
1128 rcu_read_unlock();
1129
1130 if (!dev && capable(CAP_NET_ADMIN))
1131 request_module("%s", name);
1132}
1133EXPORT_SYMBOL(dev_load);
1134
1135static int __dev_open(struct net_device *dev)
1136{
1137 const struct net_device_ops *ops = dev->netdev_ops;
1138 int ret;
1139
1140 ASSERT_RTNL();
1141
1142 /*
1143 * Is it even present?
1144 */
1145 if (!netif_device_present(dev))
1146 return -ENODEV;
1147
1148 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1149 ret = notifier_to_errno(ret);
1150 if (ret)
1151 return ret;
1152
1153 /*
1154 * Call device private open method
1155 */
1156 set_bit(__LINK_STATE_START, &dev->state);
1157
1158 if (ops->ndo_validate_addr)
1159 ret = ops->ndo_validate_addr(dev);
1160
1161 if (!ret && ops->ndo_open)
1162 ret = ops->ndo_open(dev);
1163
1164 /*
1165 * If it went open OK then:
1166 */
1167
1168 if (ret)
1169 clear_bit(__LINK_STATE_START, &dev->state);
1170 else {
1171 /*
1172 * Set the flags.
1173 */
1174 dev->flags |= IFF_UP;
1175
1176 /*
1177 * Enable NET_DMA
1178 */
1179 net_dmaengine_get();
1180
1181 /*
1182 * Initialize multicasting status
1183 */
1184 dev_set_rx_mode(dev);
1185
1186 /*
1187 * Wakeup transmit queue engine
1188 */
1189 dev_activate(dev);
1190 }
1191
1192 return ret;
1193}
1194
1195/**
1196 * dev_open - prepare an interface for use.
1197 * @dev: device to open
1198 *
1199 * Takes a device from down to up state. The device's private open
1200 * function is invoked and then the multicast lists are loaded. Finally
1201 * the device is moved into the up state and a %NETDEV_UP message is
1202 * sent to the netdev notifier chain.
1203 *
1204 * Calling this function on an active interface is a nop. On a failure
1205 * a negative errno code is returned.
1206 */
1207int dev_open(struct net_device *dev)
1208{
1209 int ret;
1210
1211 /*
1212 * Is it already up?
1213 */
1214 if (dev->flags & IFF_UP)
1215 return 0;
1216
1217 /*
1218 * Open device
1219 */
1220 ret = __dev_open(dev);
1221 if (ret < 0)
1222 return ret;
1223
1224 /*
1225 * ... and announce new interface.
1226 */
1227 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1228 call_netdevice_notifiers(NETDEV_UP, dev);
1229
1230 return ret;
1231}
1232EXPORT_SYMBOL(dev_open);
1233
1234static int __dev_close(struct net_device *dev)
1235{
1236 const struct net_device_ops *ops = dev->netdev_ops;
1237
1238 ASSERT_RTNL();
1239 might_sleep();
1240
1241 /*
1242 * Tell people we are going down, so that they can
1243 * prepare to death, when device is still operating.
1244 */
1245 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1246
1247 clear_bit(__LINK_STATE_START, &dev->state);
1248
1249 /* Synchronize to scheduled poll. We cannot touch poll list,
1250 * it can be even on different cpu. So just clear netif_running().
1251 *
1252 * dev->stop() will invoke napi_disable() on all of it's
1253 * napi_struct instances on this device.
1254 */
1255 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1256
1257 dev_deactivate(dev);
1258
1259 /*
1260 * Call the device specific close. This cannot fail.
1261 * Only if device is UP
1262 *
1263 * We allow it to be called even after a DETACH hot-plug
1264 * event.
1265 */
1266 if (ops->ndo_stop)
1267 ops->ndo_stop(dev);
1268
1269 /*
1270 * Device is now down.
1271 */
1272
1273 dev->flags &= ~IFF_UP;
1274
1275 /*
1276 * Shutdown NET_DMA
1277 */
1278 net_dmaengine_put();
1279
1280 return 0;
1281}
1282
1283/**
1284 * dev_close - shutdown an interface.
1285 * @dev: device to shutdown
1286 *
1287 * This function moves an active device into down state. A
1288 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1289 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1290 * chain.
1291 */
1292int dev_close(struct net_device *dev)
1293{
1294 if (!(dev->flags & IFF_UP))
1295 return 0;
1296
1297 __dev_close(dev);
1298
1299 /*
1300 * Tell people we are down
1301 */
1302 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1303 call_netdevice_notifiers(NETDEV_DOWN, dev);
1304
1305 return 0;
1306}
1307EXPORT_SYMBOL(dev_close);
1308
1309
1310/**
1311 * dev_disable_lro - disable Large Receive Offload on a device
1312 * @dev: device
1313 *
1314 * Disable Large Receive Offload (LRO) on a net device. Must be
1315 * called under RTNL. This is needed if received packets may be
1316 * forwarded to another interface.
1317 */
1318void dev_disable_lro(struct net_device *dev)
1319{
1320 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1321 dev->ethtool_ops->set_flags) {
1322 u32 flags = dev->ethtool_ops->get_flags(dev);
1323 if (flags & ETH_FLAG_LRO) {
1324 flags &= ~ETH_FLAG_LRO;
1325 dev->ethtool_ops->set_flags(dev, flags);
1326 }
1327 }
1328 WARN_ON(dev->features & NETIF_F_LRO);
1329}
1330EXPORT_SYMBOL(dev_disable_lro);
1331
1332
1333static int dev_boot_phase = 1;
1334
1335/*
1336 * Device change register/unregister. These are not inline or static
1337 * as we export them to the world.
1338 */
1339
1340/**
1341 * register_netdevice_notifier - register a network notifier block
1342 * @nb: notifier
1343 *
1344 * Register a notifier to be called when network device events occur.
1345 * The notifier passed is linked into the kernel structures and must
1346 * not be reused until it has been unregistered. A negative errno code
1347 * is returned on a failure.
1348 *
1349 * When registered all registration and up events are replayed
1350 * to the new notifier to allow device to have a race free
1351 * view of the network device list.
1352 */
1353
1354int register_netdevice_notifier(struct notifier_block *nb)
1355{
1356 struct net_device *dev;
1357 struct net_device *last;
1358 struct net *net;
1359 int err;
1360
1361 rtnl_lock();
1362 err = raw_notifier_chain_register(&netdev_chain, nb);
1363 if (err)
1364 goto unlock;
1365 if (dev_boot_phase)
1366 goto unlock;
1367 for_each_net(net) {
1368 for_each_netdev(net, dev) {
1369 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1370 err = notifier_to_errno(err);
1371 if (err)
1372 goto rollback;
1373
1374 if (!(dev->flags & IFF_UP))
1375 continue;
1376
1377 nb->notifier_call(nb, NETDEV_UP, dev);
1378 }
1379 }
1380
1381unlock:
1382 rtnl_unlock();
1383 return err;
1384
1385rollback:
1386 last = dev;
1387 for_each_net(net) {
1388 for_each_netdev(net, dev) {
1389 if (dev == last)
1390 break;
1391
1392 if (dev->flags & IFF_UP) {
1393 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1394 nb->notifier_call(nb, NETDEV_DOWN, dev);
1395 }
1396 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1397 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1398 }
1399 }
1400
1401 raw_notifier_chain_unregister(&netdev_chain, nb);
1402 goto unlock;
1403}
1404EXPORT_SYMBOL(register_netdevice_notifier);
1405
1406/**
1407 * unregister_netdevice_notifier - unregister a network notifier block
1408 * @nb: notifier
1409 *
1410 * Unregister a notifier previously registered by
1411 * register_netdevice_notifier(). The notifier is unlinked into the
1412 * kernel structures and may then be reused. A negative errno code
1413 * is returned on a failure.
1414 */
1415
1416int unregister_netdevice_notifier(struct notifier_block *nb)
1417{
1418 int err;
1419
1420 rtnl_lock();
1421 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1422 rtnl_unlock();
1423 return err;
1424}
1425EXPORT_SYMBOL(unregister_netdevice_notifier);
1426
1427/**
1428 * call_netdevice_notifiers - call all network notifier blocks
1429 * @val: value passed unmodified to notifier function
1430 * @dev: net_device pointer passed unmodified to notifier function
1431 *
1432 * Call all network notifier blocks. Parameters and return value
1433 * are as for raw_notifier_call_chain().
1434 */
1435
1436int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1437{
1438 return raw_notifier_call_chain(&netdev_chain, val, dev);
1439}
1440
1441/* When > 0 there are consumers of rx skb time stamps */
1442static atomic_t netstamp_needed = ATOMIC_INIT(0);
1443
1444void net_enable_timestamp(void)
1445{
1446 atomic_inc(&netstamp_needed);
1447}
1448EXPORT_SYMBOL(net_enable_timestamp);
1449
1450void net_disable_timestamp(void)
1451{
1452 atomic_dec(&netstamp_needed);
1453}
1454EXPORT_SYMBOL(net_disable_timestamp);
1455
1456static inline void net_timestamp(struct sk_buff *skb)
1457{
1458 if (atomic_read(&netstamp_needed))
1459 __net_timestamp(skb);
1460 else
1461 skb->tstamp.tv64 = 0;
1462}
1463
1464/**
1465 * dev_forward_skb - loopback an skb to another netif
1466 *
1467 * @dev: destination network device
1468 * @skb: buffer to forward
1469 *
1470 * return values:
1471 * NET_RX_SUCCESS (no congestion)
1472 * NET_RX_DROP (packet was dropped)
1473 *
1474 * dev_forward_skb can be used for injecting an skb from the
1475 * start_xmit function of one device into the receive queue
1476 * of another device.
1477 *
1478 * The receiving device may be in another namespace, so
1479 * we have to clear all information in the skb that could
1480 * impact namespace isolation.
1481 */
1482int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1483{
1484 skb_orphan(skb);
1485
1486 if (!(dev->flags & IFF_UP))
1487 return NET_RX_DROP;
1488
1489 if (skb->len > (dev->mtu + dev->hard_header_len))
1490 return NET_RX_DROP;
1491
1492 skb_set_dev(skb, dev);
1493 skb->tstamp.tv64 = 0;
1494 skb->pkt_type = PACKET_HOST;
1495 skb->protocol = eth_type_trans(skb, dev);
1496 return netif_rx(skb);
1497}
1498EXPORT_SYMBOL_GPL(dev_forward_skb);
1499
1500/*
1501 * Support routine. Sends outgoing frames to any network
1502 * taps currently in use.
1503 */
1504
1505static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1506{
1507 struct packet_type *ptype;
1508
1509#ifdef CONFIG_NET_CLS_ACT
1510 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1511 net_timestamp(skb);
1512#else
1513 net_timestamp(skb);
1514#endif
1515
1516 rcu_read_lock();
1517 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1518 /* Never send packets back to the socket
1519 * they originated from - MvS (miquels@drinkel.ow.org)
1520 */
1521 if ((ptype->dev == dev || !ptype->dev) &&
1522 (ptype->af_packet_priv == NULL ||
1523 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1524 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1525 if (!skb2)
1526 break;
1527
1528 /* skb->nh should be correctly
1529 set by sender, so that the second statement is
1530 just protection against buggy protocols.
1531 */
1532 skb_reset_mac_header(skb2);
1533
1534 if (skb_network_header(skb2) < skb2->data ||
1535 skb2->network_header > skb2->tail) {
1536 if (net_ratelimit())
1537 printk(KERN_CRIT "protocol %04x is "
1538 "buggy, dev %s\n",
1539 skb2->protocol, dev->name);
1540 skb_reset_network_header(skb2);
1541 }
1542
1543 skb2->transport_header = skb2->network_header;
1544 skb2->pkt_type = PACKET_OUTGOING;
1545 ptype->func(skb2, skb->dev, ptype, skb->dev);
1546 }
1547 }
1548 rcu_read_unlock();
1549}
1550
1551
1552static inline void __netif_reschedule(struct Qdisc *q)
1553{
1554 struct softnet_data *sd;
1555 unsigned long flags;
1556
1557 local_irq_save(flags);
1558 sd = &__get_cpu_var(softnet_data);
1559 q->next_sched = sd->output_queue;
1560 sd->output_queue = q;
1561 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1562 local_irq_restore(flags);
1563}
1564
1565void __netif_schedule(struct Qdisc *q)
1566{
1567 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1568 __netif_reschedule(q);
1569}
1570EXPORT_SYMBOL(__netif_schedule);
1571
1572void dev_kfree_skb_irq(struct sk_buff *skb)
1573{
1574 if (atomic_dec_and_test(&skb->users)) {
1575 struct softnet_data *sd;
1576 unsigned long flags;
1577
1578 local_irq_save(flags);
1579 sd = &__get_cpu_var(softnet_data);
1580 skb->next = sd->completion_queue;
1581 sd->completion_queue = skb;
1582 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1583 local_irq_restore(flags);
1584 }
1585}
1586EXPORT_SYMBOL(dev_kfree_skb_irq);
1587
1588void dev_kfree_skb_any(struct sk_buff *skb)
1589{
1590 if (in_irq() || irqs_disabled())
1591 dev_kfree_skb_irq(skb);
1592 else
1593 dev_kfree_skb(skb);
1594}
1595EXPORT_SYMBOL(dev_kfree_skb_any);
1596
1597
1598/**
1599 * netif_device_detach - mark device as removed
1600 * @dev: network device
1601 *
1602 * Mark device as removed from system and therefore no longer available.
1603 */
1604void netif_device_detach(struct net_device *dev)
1605{
1606 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1607 netif_running(dev)) {
1608 netif_tx_stop_all_queues(dev);
1609 }
1610}
1611EXPORT_SYMBOL(netif_device_detach);
1612
1613/**
1614 * netif_device_attach - mark device as attached
1615 * @dev: network device
1616 *
1617 * Mark device as attached from system and restart if needed.
1618 */
1619void netif_device_attach(struct net_device *dev)
1620{
1621 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1622 netif_running(dev)) {
1623 netif_tx_wake_all_queues(dev);
1624 __netdev_watchdog_up(dev);
1625 }
1626}
1627EXPORT_SYMBOL(netif_device_attach);
1628
1629static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1630{
1631 return ((features & NETIF_F_GEN_CSUM) ||
1632 ((features & NETIF_F_IP_CSUM) &&
1633 protocol == htons(ETH_P_IP)) ||
1634 ((features & NETIF_F_IPV6_CSUM) &&
1635 protocol == htons(ETH_P_IPV6)) ||
1636 ((features & NETIF_F_FCOE_CRC) &&
1637 protocol == htons(ETH_P_FCOE)));
1638}
1639
1640static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1641{
1642 if (can_checksum_protocol(dev->features, skb->protocol))
1643 return true;
1644
1645 if (skb->protocol == htons(ETH_P_8021Q)) {
1646 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1647 if (can_checksum_protocol(dev->features & dev->vlan_features,
1648 veh->h_vlan_encapsulated_proto))
1649 return true;
1650 }
1651
1652 return false;
1653}
1654
1655/**
1656 * skb_dev_set -- assign a new device to a buffer
1657 * @skb: buffer for the new device
1658 * @dev: network device
1659 *
1660 * If an skb is owned by a device already, we have to reset
1661 * all data private to the namespace a device belongs to
1662 * before assigning it a new device.
1663 */
1664#ifdef CONFIG_NET_NS
1665void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1666{
1667 skb_dst_drop(skb);
1668 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1669 secpath_reset(skb);
1670 nf_reset(skb);
1671 skb_init_secmark(skb);
1672 skb->mark = 0;
1673 skb->priority = 0;
1674 skb->nf_trace = 0;
1675 skb->ipvs_property = 0;
1676#ifdef CONFIG_NET_SCHED
1677 skb->tc_index = 0;
1678#endif
1679 }
1680 skb->dev = dev;
1681}
1682EXPORT_SYMBOL(skb_set_dev);
1683#endif /* CONFIG_NET_NS */
1684
1685/*
1686 * Invalidate hardware checksum when packet is to be mangled, and
1687 * complete checksum manually on outgoing path.
1688 */
1689int skb_checksum_help(struct sk_buff *skb)
1690{
1691 __wsum csum;
1692 int ret = 0, offset;
1693
1694 if (skb->ip_summed == CHECKSUM_COMPLETE)
1695 goto out_set_summed;
1696
1697 if (unlikely(skb_shinfo(skb)->gso_size)) {
1698 /* Let GSO fix up the checksum. */
1699 goto out_set_summed;
1700 }
1701
1702 offset = skb->csum_start - skb_headroom(skb);
1703 BUG_ON(offset >= skb_headlen(skb));
1704 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1705
1706 offset += skb->csum_offset;
1707 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1708
1709 if (skb_cloned(skb) &&
1710 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1711 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1712 if (ret)
1713 goto out;
1714 }
1715
1716 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1717out_set_summed:
1718 skb->ip_summed = CHECKSUM_NONE;
1719out:
1720 return ret;
1721}
1722EXPORT_SYMBOL(skb_checksum_help);
1723
1724/**
1725 * skb_gso_segment - Perform segmentation on skb.
1726 * @skb: buffer to segment
1727 * @features: features for the output path (see dev->features)
1728 *
1729 * This function segments the given skb and returns a list of segments.
1730 *
1731 * It may return NULL if the skb requires no segmentation. This is
1732 * only possible when GSO is used for verifying header integrity.
1733 */
1734struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1735{
1736 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1737 struct packet_type *ptype;
1738 __be16 type = skb->protocol;
1739 int err;
1740
1741 skb_reset_mac_header(skb);
1742 skb->mac_len = skb->network_header - skb->mac_header;
1743 __skb_pull(skb, skb->mac_len);
1744
1745 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1746 struct net_device *dev = skb->dev;
1747 struct ethtool_drvinfo info = {};
1748
1749 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1750 dev->ethtool_ops->get_drvinfo(dev, &info);
1751
1752 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1753 "ip_summed=%d",
1754 info.driver, dev ? dev->features : 0L,
1755 skb->sk ? skb->sk->sk_route_caps : 0L,
1756 skb->len, skb->data_len, skb->ip_summed);
1757
1758 if (skb_header_cloned(skb) &&
1759 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1760 return ERR_PTR(err);
1761 }
1762
1763 rcu_read_lock();
1764 list_for_each_entry_rcu(ptype,
1765 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1766 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1767 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1768 err = ptype->gso_send_check(skb);
1769 segs = ERR_PTR(err);
1770 if (err || skb_gso_ok(skb, features))
1771 break;
1772 __skb_push(skb, (skb->data -
1773 skb_network_header(skb)));
1774 }
1775 segs = ptype->gso_segment(skb, features);
1776 break;
1777 }
1778 }
1779 rcu_read_unlock();
1780
1781 __skb_push(skb, skb->data - skb_mac_header(skb));
1782
1783 return segs;
1784}
1785EXPORT_SYMBOL(skb_gso_segment);
1786
1787/* Take action when hardware reception checksum errors are detected. */
1788#ifdef CONFIG_BUG
1789void netdev_rx_csum_fault(struct net_device *dev)
1790{
1791 if (net_ratelimit()) {
1792 printk(KERN_ERR "%s: hw csum failure.\n",
1793 dev ? dev->name : "<unknown>");
1794 dump_stack();
1795 }
1796}
1797EXPORT_SYMBOL(netdev_rx_csum_fault);
1798#endif
1799
1800/* Actually, we should eliminate this check as soon as we know, that:
1801 * 1. IOMMU is present and allows to map all the memory.
1802 * 2. No high memory really exists on this machine.
1803 */
1804
1805static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1806{
1807#ifdef CONFIG_HIGHMEM
1808 int i;
1809 if (!(dev->features & NETIF_F_HIGHDMA)) {
1810 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1811 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1812 return 1;
1813 }
1814
1815 if (PCI_DMA_BUS_IS_PHYS) {
1816 struct device *pdev = dev->dev.parent;
1817
1818 if (!pdev)
1819 return 0;
1820 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1821 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1822 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1823 return 1;
1824 }
1825 }
1826#endif
1827 return 0;
1828}
1829
1830struct dev_gso_cb {
1831 void (*destructor)(struct sk_buff *skb);
1832};
1833
1834#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1835
1836static void dev_gso_skb_destructor(struct sk_buff *skb)
1837{
1838 struct dev_gso_cb *cb;
1839
1840 do {
1841 struct sk_buff *nskb = skb->next;
1842
1843 skb->next = nskb->next;
1844 nskb->next = NULL;
1845 kfree_skb(nskb);
1846 } while (skb->next);
1847
1848 cb = DEV_GSO_CB(skb);
1849 if (cb->destructor)
1850 cb->destructor(skb);
1851}
1852
1853/**
1854 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1855 * @skb: buffer to segment
1856 *
1857 * This function segments the given skb and stores the list of segments
1858 * in skb->next.
1859 */
1860static int dev_gso_segment(struct sk_buff *skb)
1861{
1862 struct net_device *dev = skb->dev;
1863 struct sk_buff *segs;
1864 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1865 NETIF_F_SG : 0);
1866
1867 segs = skb_gso_segment(skb, features);
1868
1869 /* Verifying header integrity only. */
1870 if (!segs)
1871 return 0;
1872
1873 if (IS_ERR(segs))
1874 return PTR_ERR(segs);
1875
1876 skb->next = segs;
1877 DEV_GSO_CB(skb)->destructor = skb->destructor;
1878 skb->destructor = dev_gso_skb_destructor;
1879
1880 return 0;
1881}
1882
1883int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1884 struct netdev_queue *txq)
1885{
1886 const struct net_device_ops *ops = dev->netdev_ops;
1887 int rc = NETDEV_TX_OK;
1888
1889 if (likely(!skb->next)) {
1890 if (!list_empty(&ptype_all))
1891 dev_queue_xmit_nit(skb, dev);
1892
1893 if (netif_needs_gso(dev, skb)) {
1894 if (unlikely(dev_gso_segment(skb)))
1895 goto out_kfree_skb;
1896 if (skb->next)
1897 goto gso;
1898 }
1899
1900 /*
1901 * If device doesnt need skb->dst, release it right now while
1902 * its hot in this cpu cache
1903 */
1904 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1905 skb_dst_drop(skb);
1906
1907 rc = ops->ndo_start_xmit(skb, dev);
1908 if (rc == NETDEV_TX_OK)
1909 txq_trans_update(txq);
1910 /*
1911 * TODO: if skb_orphan() was called by
1912 * dev->hard_start_xmit() (for example, the unmodified
1913 * igb driver does that; bnx2 doesn't), then
1914 * skb_tx_software_timestamp() will be unable to send
1915 * back the time stamp.
1916 *
1917 * How can this be prevented? Always create another
1918 * reference to the socket before calling
1919 * dev->hard_start_xmit()? Prevent that skb_orphan()
1920 * does anything in dev->hard_start_xmit() by clearing
1921 * the skb destructor before the call and restoring it
1922 * afterwards, then doing the skb_orphan() ourselves?
1923 */
1924 return rc;
1925 }
1926
1927gso:
1928 do {
1929 struct sk_buff *nskb = skb->next;
1930
1931 skb->next = nskb->next;
1932 nskb->next = NULL;
1933
1934 /*
1935 * If device doesnt need nskb->dst, release it right now while
1936 * its hot in this cpu cache
1937 */
1938 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1939 skb_dst_drop(nskb);
1940
1941 rc = ops->ndo_start_xmit(nskb, dev);
1942 if (unlikely(rc != NETDEV_TX_OK)) {
1943 if (rc & ~NETDEV_TX_MASK)
1944 goto out_kfree_gso_skb;
1945 nskb->next = skb->next;
1946 skb->next = nskb;
1947 return rc;
1948 }
1949 txq_trans_update(txq);
1950 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1951 return NETDEV_TX_BUSY;
1952 } while (skb->next);
1953
1954out_kfree_gso_skb:
1955 if (likely(skb->next == NULL))
1956 skb->destructor = DEV_GSO_CB(skb)->destructor;
1957out_kfree_skb:
1958 kfree_skb(skb);
1959 return rc;
1960}
1961
1962static u32 hashrnd __read_mostly;
1963
1964u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1965{
1966 u32 hash;
1967
1968 if (skb_rx_queue_recorded(skb)) {
1969 hash = skb_get_rx_queue(skb);
1970 while (unlikely(hash >= dev->real_num_tx_queues))
1971 hash -= dev->real_num_tx_queues;
1972 return hash;
1973 }
1974
1975 if (skb->sk && skb->sk->sk_hash)
1976 hash = skb->sk->sk_hash;
1977 else
1978 hash = skb->protocol;
1979
1980 hash = jhash_1word(hash, hashrnd);
1981
1982 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1983}
1984EXPORT_SYMBOL(skb_tx_hash);
1985
1986static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1987{
1988 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1989 if (net_ratelimit()) {
1990 pr_warning("%s selects TX queue %d, but "
1991 "real number of TX queues is %d\n",
1992 dev->name, queue_index, dev->real_num_tx_queues);
1993 }
1994 return 0;
1995 }
1996 return queue_index;
1997}
1998
1999static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2000 struct sk_buff *skb)
2001{
2002 u16 queue_index;
2003 struct sock *sk = skb->sk;
2004
2005 if (sk_tx_queue_recorded(sk)) {
2006 queue_index = sk_tx_queue_get(sk);
2007 } else {
2008 const struct net_device_ops *ops = dev->netdev_ops;
2009
2010 if (ops->ndo_select_queue) {
2011 queue_index = ops->ndo_select_queue(dev, skb);
2012 queue_index = dev_cap_txqueue(dev, queue_index);
2013 } else {
2014 queue_index = 0;
2015 if (dev->real_num_tx_queues > 1)
2016 queue_index = skb_tx_hash(dev, skb);
2017
2018 if (sk && rcu_dereference_check(sk->sk_dst_cache, 1))
2019 sk_tx_queue_set(sk, queue_index);
2020 }
2021 }
2022
2023 skb_set_queue_mapping(skb, queue_index);
2024 return netdev_get_tx_queue(dev, queue_index);
2025}
2026
2027static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2028 struct net_device *dev,
2029 struct netdev_queue *txq)
2030{
2031 spinlock_t *root_lock = qdisc_lock(q);
2032 int rc;
2033
2034 spin_lock(root_lock);
2035 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2036 kfree_skb(skb);
2037 rc = NET_XMIT_DROP;
2038 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2039 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2040 /*
2041 * This is a work-conserving queue; there are no old skbs
2042 * waiting to be sent out; and the qdisc is not running -
2043 * xmit the skb directly.
2044 */
2045 __qdisc_update_bstats(q, skb->len);
2046 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2047 __qdisc_run(q);
2048 else
2049 clear_bit(__QDISC_STATE_RUNNING, &q->state);
2050
2051 rc = NET_XMIT_SUCCESS;
2052 } else {
2053 rc = qdisc_enqueue_root(skb, q);
2054 qdisc_run(q);
2055 }
2056 spin_unlock(root_lock);
2057
2058 return rc;
2059}
2060
2061/*
2062 * Returns true if either:
2063 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2064 * 2. skb is fragmented and the device does not support SG, or if
2065 * at least one of fragments is in highmem and device does not
2066 * support DMA from it.
2067 */
2068static inline int skb_needs_linearize(struct sk_buff *skb,
2069 struct net_device *dev)
2070{
2071 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2072 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2073 illegal_highdma(dev, skb)));
2074}
2075
2076/**
2077 * dev_queue_xmit - transmit a buffer
2078 * @skb: buffer to transmit
2079 *
2080 * Queue a buffer for transmission to a network device. The caller must
2081 * have set the device and priority and built the buffer before calling
2082 * this function. The function can be called from an interrupt.
2083 *
2084 * A negative errno code is returned on a failure. A success does not
2085 * guarantee the frame will be transmitted as it may be dropped due
2086 * to congestion or traffic shaping.
2087 *
2088 * -----------------------------------------------------------------------------------
2089 * I notice this method can also return errors from the queue disciplines,
2090 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2091 * be positive.
2092 *
2093 * Regardless of the return value, the skb is consumed, so it is currently
2094 * difficult to retry a send to this method. (You can bump the ref count
2095 * before sending to hold a reference for retry if you are careful.)
2096 *
2097 * When calling this method, interrupts MUST be enabled. This is because
2098 * the BH enable code must have IRQs enabled so that it will not deadlock.
2099 * --BLG
2100 */
2101int dev_queue_xmit(struct sk_buff *skb)
2102{
2103 struct net_device *dev = skb->dev;
2104 struct netdev_queue *txq;
2105 struct Qdisc *q;
2106 int rc = -ENOMEM;
2107
2108 /* GSO will handle the following emulations directly. */
2109 if (netif_needs_gso(dev, skb))
2110 goto gso;
2111
2112 /* Convert a paged skb to linear, if required */
2113 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
2114 goto out_kfree_skb;
2115
2116 /* If packet is not checksummed and device does not support
2117 * checksumming for this protocol, complete checksumming here.
2118 */
2119 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2120 skb_set_transport_header(skb, skb->csum_start -
2121 skb_headroom(skb));
2122 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2123 goto out_kfree_skb;
2124 }
2125
2126gso:
2127 /* Disable soft irqs for various locks below. Also
2128 * stops preemption for RCU.
2129 */
2130 rcu_read_lock_bh();
2131
2132 txq = dev_pick_tx(dev, skb);
2133 q = rcu_dereference_bh(txq->qdisc);
2134
2135#ifdef CONFIG_NET_CLS_ACT
2136 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2137#endif
2138 if (q->enqueue) {
2139 rc = __dev_xmit_skb(skb, q, dev, txq);
2140 goto out;
2141 }
2142
2143 /* The device has no queue. Common case for software devices:
2144 loopback, all the sorts of tunnels...
2145
2146 Really, it is unlikely that netif_tx_lock protection is necessary
2147 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2148 counters.)
2149 However, it is possible, that they rely on protection
2150 made by us here.
2151
2152 Check this and shot the lock. It is not prone from deadlocks.
2153 Either shot noqueue qdisc, it is even simpler 8)
2154 */
2155 if (dev->flags & IFF_UP) {
2156 int cpu = smp_processor_id(); /* ok because BHs are off */
2157
2158 if (txq->xmit_lock_owner != cpu) {
2159
2160 HARD_TX_LOCK(dev, txq, cpu);
2161
2162 if (!netif_tx_queue_stopped(txq)) {
2163 rc = dev_hard_start_xmit(skb, dev, txq);
2164 if (dev_xmit_complete(rc)) {
2165 HARD_TX_UNLOCK(dev, txq);
2166 goto out;
2167 }
2168 }
2169 HARD_TX_UNLOCK(dev, txq);
2170 if (net_ratelimit())
2171 printk(KERN_CRIT "Virtual device %s asks to "
2172 "queue packet!\n", dev->name);
2173 } else {
2174 /* Recursion is detected! It is possible,
2175 * unfortunately */
2176 if (net_ratelimit())
2177 printk(KERN_CRIT "Dead loop on virtual device "
2178 "%s, fix it urgently!\n", dev->name);
2179 }
2180 }
2181
2182 rc = -ENETDOWN;
2183 rcu_read_unlock_bh();
2184
2185out_kfree_skb:
2186 kfree_skb(skb);
2187 return rc;
2188out:
2189 rcu_read_unlock_bh();
2190 return rc;
2191}
2192EXPORT_SYMBOL(dev_queue_xmit);
2193
2194
2195/*=======================================================================
2196 Receiver routines
2197 =======================================================================*/
2198
2199int netdev_max_backlog __read_mostly = 1000;
2200int netdev_budget __read_mostly = 300;
2201int weight_p __read_mostly = 64; /* old backlog weight */
2202
2203DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
2204
2205#ifdef CONFIG_RPS
2206
2207/* One global table that all flow-based protocols share. */
2208struct rps_sock_flow_table *rps_sock_flow_table;
2209EXPORT_SYMBOL(rps_sock_flow_table);
2210
2211/*
2212 * get_rps_cpu is called from netif_receive_skb and returns the target
2213 * CPU from the RPS map of the receiving queue for a given skb.
2214 * rcu_read_lock must be held on entry.
2215 */
2216static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2217 struct rps_dev_flow **rflowp)
2218{
2219 struct ipv6hdr *ip6;
2220 struct iphdr *ip;
2221 struct netdev_rx_queue *rxqueue;
2222 struct rps_map *map;
2223 struct rps_dev_flow_table *flow_table;
2224 struct rps_sock_flow_table *sock_flow_table;
2225 int cpu = -1;
2226 u8 ip_proto;
2227 u16 tcpu;
2228 u32 addr1, addr2, ports, ihl;
2229
2230 if (skb_rx_queue_recorded(skb)) {
2231 u16 index = skb_get_rx_queue(skb);
2232 if (unlikely(index >= dev->num_rx_queues)) {
2233 if (net_ratelimit()) {
2234 pr_warning("%s received packet on queue "
2235 "%u, but number of RX queues is %u\n",
2236 dev->name, index, dev->num_rx_queues);
2237 }
2238 goto done;
2239 }
2240 rxqueue = dev->_rx + index;
2241 } else
2242 rxqueue = dev->_rx;
2243
2244 if (!rxqueue->rps_map && !rxqueue->rps_flow_table)
2245 goto done;
2246
2247 if (skb->rxhash)
2248 goto got_hash; /* Skip hash computation on packet header */
2249
2250 switch (skb->protocol) {
2251 case __constant_htons(ETH_P_IP):
2252 if (!pskb_may_pull(skb, sizeof(*ip)))
2253 goto done;
2254
2255 ip = (struct iphdr *) skb->data;
2256 ip_proto = ip->protocol;
2257 addr1 = ip->saddr;
2258 addr2 = ip->daddr;
2259 ihl = ip->ihl;
2260 break;
2261 case __constant_htons(ETH_P_IPV6):
2262 if (!pskb_may_pull(skb, sizeof(*ip6)))
2263 goto done;
2264
2265 ip6 = (struct ipv6hdr *) skb->data;
2266 ip_proto = ip6->nexthdr;
2267 addr1 = ip6->saddr.s6_addr32[3];
2268 addr2 = ip6->daddr.s6_addr32[3];
2269 ihl = (40 >> 2);
2270 break;
2271 default:
2272 goto done;
2273 }
2274 ports = 0;
2275 switch (ip_proto) {
2276 case IPPROTO_TCP:
2277 case IPPROTO_UDP:
2278 case IPPROTO_DCCP:
2279 case IPPROTO_ESP:
2280 case IPPROTO_AH:
2281 case IPPROTO_SCTP:
2282 case IPPROTO_UDPLITE:
2283 if (pskb_may_pull(skb, (ihl * 4) + 4))
2284 ports = *((u32 *) (skb->data + (ihl * 4)));
2285 break;
2286
2287 default:
2288 break;
2289 }
2290
2291 skb->rxhash = jhash_3words(addr1, addr2, ports, hashrnd);
2292 if (!skb->rxhash)
2293 skb->rxhash = 1;
2294
2295got_hash:
2296 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2297 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2298 if (flow_table && sock_flow_table) {
2299 u16 next_cpu;
2300 struct rps_dev_flow *rflow;
2301
2302 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2303 tcpu = rflow->cpu;
2304
2305 next_cpu = sock_flow_table->ents[skb->rxhash &
2306 sock_flow_table->mask];
2307
2308 /*
2309 * If the desired CPU (where last recvmsg was done) is
2310 * different from current CPU (one in the rx-queue flow
2311 * table entry), switch if one of the following holds:
2312 * - Current CPU is unset (equal to RPS_NO_CPU).
2313 * - Current CPU is offline.
2314 * - The current CPU's queue tail has advanced beyond the
2315 * last packet that was enqueued using this table entry.
2316 * This guarantees that all previous packets for the flow
2317 * have been dequeued, thus preserving in order delivery.
2318 */
2319 if (unlikely(tcpu != next_cpu) &&
2320 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2321 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2322 rflow->last_qtail)) >= 0)) {
2323 tcpu = rflow->cpu = next_cpu;
2324 if (tcpu != RPS_NO_CPU)
2325 rflow->last_qtail = per_cpu(softnet_data,
2326 tcpu).input_queue_head;
2327 }
2328 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2329 *rflowp = rflow;
2330 cpu = tcpu;
2331 goto done;
2332 }
2333 }
2334
2335 map = rcu_dereference(rxqueue->rps_map);
2336 if (map) {
2337 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2338
2339 if (cpu_online(tcpu)) {
2340 cpu = tcpu;
2341 goto done;
2342 }
2343 }
2344
2345done:
2346 return cpu;
2347}
2348
2349/*
2350 * This structure holds the per-CPU mask of CPUs for which IPIs are scheduled
2351 * to be sent to kick remote softirq processing. There are two masks since
2352 * the sending of IPIs must be done with interrupts enabled. The select field
2353 * indicates the current mask that enqueue_backlog uses to schedule IPIs.
2354 * select is flipped before net_rps_action is called while still under lock,
2355 * net_rps_action then uses the non-selected mask to send the IPIs and clears
2356 * it without conflicting with enqueue_backlog operation.
2357 */
2358struct rps_remote_softirq_cpus {
2359 cpumask_t mask[2];
2360 int select;
2361};
2362static DEFINE_PER_CPU(struct rps_remote_softirq_cpus, rps_remote_softirq_cpus);
2363
2364/* Called from hardirq (IPI) context */
2365static void trigger_softirq(void *data)
2366{
2367 struct softnet_data *queue = data;
2368 __napi_schedule(&queue->backlog);
2369 __get_cpu_var(netdev_rx_stat).received_rps++;
2370}
2371#endif /* CONFIG_RPS */
2372
2373/*
2374 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2375 * queue (may be a remote CPU queue).
2376 */
2377static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2378 unsigned int *qtail)
2379{
2380 struct softnet_data *queue;
2381 unsigned long flags;
2382
2383 queue = &per_cpu(softnet_data, cpu);
2384
2385 local_irq_save(flags);
2386 __get_cpu_var(netdev_rx_stat).total++;
2387
2388 rps_lock(queue);
2389 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2390 if (queue->input_pkt_queue.qlen) {
2391enqueue:
2392 __skb_queue_tail(&queue->input_pkt_queue, skb);
2393#ifdef CONFIG_RPS
2394 *qtail = queue->input_queue_head +
2395 queue->input_pkt_queue.qlen;
2396#endif
2397 rps_unlock(queue);
2398 local_irq_restore(flags);
2399 return NET_RX_SUCCESS;
2400 }
2401
2402 /* Schedule NAPI for backlog device */
2403 if (napi_schedule_prep(&queue->backlog)) {
2404#ifdef CONFIG_RPS
2405 if (cpu != smp_processor_id()) {
2406 struct rps_remote_softirq_cpus *rcpus =
2407 &__get_cpu_var(rps_remote_softirq_cpus);
2408
2409 cpu_set(cpu, rcpus->mask[rcpus->select]);
2410 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2411 goto enqueue;
2412 }
2413#endif
2414 __napi_schedule(&queue->backlog);
2415 }
2416 goto enqueue;
2417 }
2418
2419 rps_unlock(queue);
2420
2421 __get_cpu_var(netdev_rx_stat).dropped++;
2422 local_irq_restore(flags);
2423
2424 kfree_skb(skb);
2425 return NET_RX_DROP;
2426}
2427
2428/**
2429 * netif_rx - post buffer to the network code
2430 * @skb: buffer to post
2431 *
2432 * This function receives a packet from a device driver and queues it for
2433 * the upper (protocol) levels to process. It always succeeds. The buffer
2434 * may be dropped during processing for congestion control or by the
2435 * protocol layers.
2436 *
2437 * return values:
2438 * NET_RX_SUCCESS (no congestion)
2439 * NET_RX_DROP (packet was dropped)
2440 *
2441 */
2442
2443int netif_rx(struct sk_buff *skb)
2444{
2445 int ret;
2446
2447 /* if netpoll wants it, pretend we never saw it */
2448 if (netpoll_rx(skb))
2449 return NET_RX_DROP;
2450
2451 if (!skb->tstamp.tv64)
2452 net_timestamp(skb);
2453
2454#ifdef CONFIG_RPS
2455 {
2456 struct rps_dev_flow voidflow, *rflow = &voidflow;
2457 int cpu;
2458
2459 rcu_read_lock();
2460
2461 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2462 if (cpu < 0)
2463 cpu = smp_processor_id();
2464
2465 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2466
2467 rcu_read_unlock();
2468 }
2469#else
2470 {
2471 unsigned int qtail;
2472 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2473 put_cpu();
2474 }
2475#endif
2476 return ret;
2477}
2478EXPORT_SYMBOL(netif_rx);
2479
2480int netif_rx_ni(struct sk_buff *skb)
2481{
2482 int err;
2483
2484 preempt_disable();
2485 err = netif_rx(skb);
2486 if (local_softirq_pending())
2487 do_softirq();
2488 preempt_enable();
2489
2490 return err;
2491}
2492EXPORT_SYMBOL(netif_rx_ni);
2493
2494static void net_tx_action(struct softirq_action *h)
2495{
2496 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2497
2498 if (sd->completion_queue) {
2499 struct sk_buff *clist;
2500
2501 local_irq_disable();
2502 clist = sd->completion_queue;
2503 sd->completion_queue = NULL;
2504 local_irq_enable();
2505
2506 while (clist) {
2507 struct sk_buff *skb = clist;
2508 clist = clist->next;
2509
2510 WARN_ON(atomic_read(&skb->users));
2511 __kfree_skb(skb);
2512 }
2513 }
2514
2515 if (sd->output_queue) {
2516 struct Qdisc *head;
2517
2518 local_irq_disable();
2519 head = sd->output_queue;
2520 sd->output_queue = NULL;
2521 local_irq_enable();
2522
2523 while (head) {
2524 struct Qdisc *q = head;
2525 spinlock_t *root_lock;
2526
2527 head = head->next_sched;
2528
2529 root_lock = qdisc_lock(q);
2530 if (spin_trylock(root_lock)) {
2531 smp_mb__before_clear_bit();
2532 clear_bit(__QDISC_STATE_SCHED,
2533 &q->state);
2534 qdisc_run(q);
2535 spin_unlock(root_lock);
2536 } else {
2537 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2538 &q->state)) {
2539 __netif_reschedule(q);
2540 } else {
2541 smp_mb__before_clear_bit();
2542 clear_bit(__QDISC_STATE_SCHED,
2543 &q->state);
2544 }
2545 }
2546 }
2547 }
2548}
2549
2550static inline int deliver_skb(struct sk_buff *skb,
2551 struct packet_type *pt_prev,
2552 struct net_device *orig_dev)
2553{
2554 atomic_inc(&skb->users);
2555 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2556}
2557
2558#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2559
2560#if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2561/* This hook is defined here for ATM LANE */
2562int (*br_fdb_test_addr_hook)(struct net_device *dev,
2563 unsigned char *addr) __read_mostly;
2564EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2565#endif
2566
2567/*
2568 * If bridge module is loaded call bridging hook.
2569 * returns NULL if packet was consumed.
2570 */
2571struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2572 struct sk_buff *skb) __read_mostly;
2573EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2574
2575static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2576 struct packet_type **pt_prev, int *ret,
2577 struct net_device *orig_dev)
2578{
2579 struct net_bridge_port *port;
2580
2581 if (skb->pkt_type == PACKET_LOOPBACK ||
2582 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2583 return skb;
2584
2585 if (*pt_prev) {
2586 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2587 *pt_prev = NULL;
2588 }
2589
2590 return br_handle_frame_hook(port, skb);
2591}
2592#else
2593#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2594#endif
2595
2596#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2597struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2598EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2599
2600static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2601 struct packet_type **pt_prev,
2602 int *ret,
2603 struct net_device *orig_dev)
2604{
2605 if (skb->dev->macvlan_port == NULL)
2606 return skb;
2607
2608 if (*pt_prev) {
2609 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2610 *pt_prev = NULL;
2611 }
2612 return macvlan_handle_frame_hook(skb);
2613}
2614#else
2615#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2616#endif
2617
2618#ifdef CONFIG_NET_CLS_ACT
2619/* TODO: Maybe we should just force sch_ingress to be compiled in
2620 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2621 * a compare and 2 stores extra right now if we dont have it on
2622 * but have CONFIG_NET_CLS_ACT
2623 * NOTE: This doesnt stop any functionality; if you dont have
2624 * the ingress scheduler, you just cant add policies on ingress.
2625 *
2626 */
2627static int ing_filter(struct sk_buff *skb)
2628{
2629 struct net_device *dev = skb->dev;
2630 u32 ttl = G_TC_RTTL(skb->tc_verd);
2631 struct netdev_queue *rxq;
2632 int result = TC_ACT_OK;
2633 struct Qdisc *q;
2634
2635 if (MAX_RED_LOOP < ttl++) {
2636 printk(KERN_WARNING
2637 "Redir loop detected Dropping packet (%d->%d)\n",
2638 skb->skb_iif, dev->ifindex);
2639 return TC_ACT_SHOT;
2640 }
2641
2642 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2643 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2644
2645 rxq = &dev->rx_queue;
2646
2647 q = rxq->qdisc;
2648 if (q != &noop_qdisc) {
2649 spin_lock(qdisc_lock(q));
2650 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2651 result = qdisc_enqueue_root(skb, q);
2652 spin_unlock(qdisc_lock(q));
2653 }
2654
2655 return result;
2656}
2657
2658static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2659 struct packet_type **pt_prev,
2660 int *ret, struct net_device *orig_dev)
2661{
2662 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2663 goto out;
2664
2665 if (*pt_prev) {
2666 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2667 *pt_prev = NULL;
2668 } else {
2669 /* Huh? Why does turning on AF_PACKET affect this? */
2670 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2671 }
2672
2673 switch (ing_filter(skb)) {
2674 case TC_ACT_SHOT:
2675 case TC_ACT_STOLEN:
2676 kfree_skb(skb);
2677 return NULL;
2678 }
2679
2680out:
2681 skb->tc_verd = 0;
2682 return skb;
2683}
2684#endif
2685
2686/*
2687 * netif_nit_deliver - deliver received packets to network taps
2688 * @skb: buffer
2689 *
2690 * This function is used to deliver incoming packets to network
2691 * taps. It should be used when the normal netif_receive_skb path
2692 * is bypassed, for example because of VLAN acceleration.
2693 */
2694void netif_nit_deliver(struct sk_buff *skb)
2695{
2696 struct packet_type *ptype;
2697
2698 if (list_empty(&ptype_all))
2699 return;
2700
2701 skb_reset_network_header(skb);
2702 skb_reset_transport_header(skb);
2703 skb->mac_len = skb->network_header - skb->mac_header;
2704
2705 rcu_read_lock();
2706 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2707 if (!ptype->dev || ptype->dev == skb->dev)
2708 deliver_skb(skb, ptype, skb->dev);
2709 }
2710 rcu_read_unlock();
2711}
2712
2713static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2714 struct net_device *master)
2715{
2716 if (skb->pkt_type == PACKET_HOST) {
2717 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2718
2719 memcpy(dest, master->dev_addr, ETH_ALEN);
2720 }
2721}
2722
2723/* On bonding slaves other than the currently active slave, suppress
2724 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2725 * ARP on active-backup slaves with arp_validate enabled.
2726 */
2727int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2728{
2729 struct net_device *dev = skb->dev;
2730
2731 if (master->priv_flags & IFF_MASTER_ARPMON)
2732 dev->last_rx = jiffies;
2733
2734 if ((master->priv_flags & IFF_MASTER_ALB) && master->br_port) {
2735 /* Do address unmangle. The local destination address
2736 * will be always the one master has. Provides the right
2737 * functionality in a bridge.
2738 */
2739 skb_bond_set_mac_by_master(skb, master);
2740 }
2741
2742 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2743 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2744 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2745 return 0;
2746
2747 if (master->priv_flags & IFF_MASTER_ALB) {
2748 if (skb->pkt_type != PACKET_BROADCAST &&
2749 skb->pkt_type != PACKET_MULTICAST)
2750 return 0;
2751 }
2752 if (master->priv_flags & IFF_MASTER_8023AD &&
2753 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2754 return 0;
2755
2756 return 1;
2757 }
2758 return 0;
2759}
2760EXPORT_SYMBOL(__skb_bond_should_drop);
2761
2762static int __netif_receive_skb(struct sk_buff *skb)
2763{
2764 struct packet_type *ptype, *pt_prev;
2765 struct net_device *orig_dev;
2766 struct net_device *master;
2767 struct net_device *null_or_orig;
2768 struct net_device *null_or_bond;
2769 int ret = NET_RX_DROP;
2770 __be16 type;
2771
2772 if (!skb->tstamp.tv64)
2773 net_timestamp(skb);
2774
2775 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2776 return NET_RX_SUCCESS;
2777
2778 /* if we've gotten here through NAPI, check netpoll */
2779 if (netpoll_receive_skb(skb))
2780 return NET_RX_DROP;
2781
2782 if (!skb->skb_iif)
2783 skb->skb_iif = skb->dev->ifindex;
2784
2785 null_or_orig = NULL;
2786 orig_dev = skb->dev;
2787 master = ACCESS_ONCE(orig_dev->master);
2788 if (master) {
2789 if (skb_bond_should_drop(skb, master))
2790 null_or_orig = orig_dev; /* deliver only exact match */
2791 else
2792 skb->dev = master;
2793 }
2794
2795 __get_cpu_var(netdev_rx_stat).total++;
2796
2797 skb_reset_network_header(skb);
2798 skb_reset_transport_header(skb);
2799 skb->mac_len = skb->network_header - skb->mac_header;
2800
2801 pt_prev = NULL;
2802
2803 rcu_read_lock();
2804
2805#ifdef CONFIG_NET_CLS_ACT
2806 if (skb->tc_verd & TC_NCLS) {
2807 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2808 goto ncls;
2809 }
2810#endif
2811
2812 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2813 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2814 ptype->dev == orig_dev) {
2815 if (pt_prev)
2816 ret = deliver_skb(skb, pt_prev, orig_dev);
2817 pt_prev = ptype;
2818 }
2819 }
2820
2821#ifdef CONFIG_NET_CLS_ACT
2822 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2823 if (!skb)
2824 goto out;
2825ncls:
2826#endif
2827
2828 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2829 if (!skb)
2830 goto out;
2831 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2832 if (!skb)
2833 goto out;
2834
2835 /*
2836 * Make sure frames received on VLAN interfaces stacked on
2837 * bonding interfaces still make their way to any base bonding
2838 * device that may have registered for a specific ptype. The
2839 * handler may have to adjust skb->dev and orig_dev.
2840 */
2841 null_or_bond = NULL;
2842 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2843 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2844 null_or_bond = vlan_dev_real_dev(skb->dev);
2845 }
2846
2847 type = skb->protocol;
2848 list_for_each_entry_rcu(ptype,
2849 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2850 if (ptype->type == type && (ptype->dev == null_or_orig ||
2851 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2852 ptype->dev == null_or_bond)) {
2853 if (pt_prev)
2854 ret = deliver_skb(skb, pt_prev, orig_dev);
2855 pt_prev = ptype;
2856 }
2857 }
2858
2859 if (pt_prev) {
2860 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2861 } else {
2862 kfree_skb(skb);
2863 /* Jamal, now you will not able to escape explaining
2864 * me how you were going to use this. :-)
2865 */
2866 ret = NET_RX_DROP;
2867 }
2868
2869out:
2870 rcu_read_unlock();
2871 return ret;
2872}
2873
2874/**
2875 * netif_receive_skb - process receive buffer from network
2876 * @skb: buffer to process
2877 *
2878 * netif_receive_skb() is the main receive data processing function.
2879 * It always succeeds. The buffer may be dropped during processing
2880 * for congestion control or by the protocol layers.
2881 *
2882 * This function may only be called from softirq context and interrupts
2883 * should be enabled.
2884 *
2885 * Return values (usually ignored):
2886 * NET_RX_SUCCESS: no congestion
2887 * NET_RX_DROP: packet was dropped
2888 */
2889int netif_receive_skb(struct sk_buff *skb)
2890{
2891#ifdef CONFIG_RPS
2892 struct rps_dev_flow voidflow, *rflow = &voidflow;
2893 int cpu, ret;
2894
2895 rcu_read_lock();
2896
2897 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2898
2899 if (cpu >= 0) {
2900 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2901 rcu_read_unlock();
2902 } else {
2903 rcu_read_unlock();
2904 ret = __netif_receive_skb(skb);
2905 }
2906
2907 return ret;
2908#else
2909 return __netif_receive_skb(skb);
2910#endif
2911}
2912EXPORT_SYMBOL(netif_receive_skb);
2913
2914/* Network device is going away, flush any packets still pending */
2915static void flush_backlog(void *arg)
2916{
2917 struct net_device *dev = arg;
2918 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2919 struct sk_buff *skb, *tmp;
2920
2921 rps_lock(queue);
2922 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2923 if (skb->dev == dev) {
2924 __skb_unlink(skb, &queue->input_pkt_queue);
2925 kfree_skb(skb);
2926 incr_input_queue_head(queue);
2927 }
2928 rps_unlock(queue);
2929}
2930
2931static int napi_gro_complete(struct sk_buff *skb)
2932{
2933 struct packet_type *ptype;
2934 __be16 type = skb->protocol;
2935 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2936 int err = -ENOENT;
2937
2938 if (NAPI_GRO_CB(skb)->count == 1) {
2939 skb_shinfo(skb)->gso_size = 0;
2940 goto out;
2941 }
2942
2943 rcu_read_lock();
2944 list_for_each_entry_rcu(ptype, head, list) {
2945 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2946 continue;
2947
2948 err = ptype->gro_complete(skb);
2949 break;
2950 }
2951 rcu_read_unlock();
2952
2953 if (err) {
2954 WARN_ON(&ptype->list == head);
2955 kfree_skb(skb);
2956 return NET_RX_SUCCESS;
2957 }
2958
2959out:
2960 return netif_receive_skb(skb);
2961}
2962
2963static void napi_gro_flush(struct napi_struct *napi)
2964{
2965 struct sk_buff *skb, *next;
2966
2967 for (skb = napi->gro_list; skb; skb = next) {
2968 next = skb->next;
2969 skb->next = NULL;
2970 napi_gro_complete(skb);
2971 }
2972
2973 napi->gro_count = 0;
2974 napi->gro_list = NULL;
2975}
2976
2977enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2978{
2979 struct sk_buff **pp = NULL;
2980 struct packet_type *ptype;
2981 __be16 type = skb->protocol;
2982 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2983 int same_flow;
2984 int mac_len;
2985 enum gro_result ret;
2986
2987 if (!(skb->dev->features & NETIF_F_GRO))
2988 goto normal;
2989
2990 if (skb_is_gso(skb) || skb_has_frags(skb))
2991 goto normal;
2992
2993 rcu_read_lock();
2994 list_for_each_entry_rcu(ptype, head, list) {
2995 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2996 continue;
2997
2998 skb_set_network_header(skb, skb_gro_offset(skb));
2999 mac_len = skb->network_header - skb->mac_header;
3000 skb->mac_len = mac_len;
3001 NAPI_GRO_CB(skb)->same_flow = 0;
3002 NAPI_GRO_CB(skb)->flush = 0;
3003 NAPI_GRO_CB(skb)->free = 0;
3004
3005 pp = ptype->gro_receive(&napi->gro_list, skb);
3006 break;
3007 }
3008 rcu_read_unlock();
3009
3010 if (&ptype->list == head)
3011 goto normal;
3012
3013 same_flow = NAPI_GRO_CB(skb)->same_flow;
3014 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3015
3016 if (pp) {
3017 struct sk_buff *nskb = *pp;
3018
3019 *pp = nskb->next;
3020 nskb->next = NULL;
3021 napi_gro_complete(nskb);
3022 napi->gro_count--;
3023 }
3024
3025 if (same_flow)
3026 goto ok;
3027
3028 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3029 goto normal;
3030
3031 napi->gro_count++;
3032 NAPI_GRO_CB(skb)->count = 1;
3033 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3034 skb->next = napi->gro_list;
3035 napi->gro_list = skb;
3036 ret = GRO_HELD;
3037
3038pull:
3039 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3040 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3041
3042 BUG_ON(skb->end - skb->tail < grow);
3043
3044 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3045
3046 skb->tail += grow;
3047 skb->data_len -= grow;
3048
3049 skb_shinfo(skb)->frags[0].page_offset += grow;
3050 skb_shinfo(skb)->frags[0].size -= grow;
3051
3052 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3053 put_page(skb_shinfo(skb)->frags[0].page);
3054 memmove(skb_shinfo(skb)->frags,
3055 skb_shinfo(skb)->frags + 1,
3056 --skb_shinfo(skb)->nr_frags);
3057 }
3058 }
3059
3060ok:
3061 return ret;
3062
3063normal:
3064 ret = GRO_NORMAL;
3065 goto pull;
3066}
3067EXPORT_SYMBOL(dev_gro_receive);
3068
3069static gro_result_t
3070__napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3071{
3072 struct sk_buff *p;
3073
3074 if (netpoll_rx_on(skb))
3075 return GRO_NORMAL;
3076
3077 for (p = napi->gro_list; p; p = p->next) {
3078 NAPI_GRO_CB(p)->same_flow =
3079 (p->dev == skb->dev) &&
3080 !compare_ether_header(skb_mac_header(p),
3081 skb_gro_mac_header(skb));
3082 NAPI_GRO_CB(p)->flush = 0;
3083 }
3084
3085 return dev_gro_receive(napi, skb);
3086}
3087
3088gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3089{
3090 switch (ret) {
3091 case GRO_NORMAL:
3092 if (netif_receive_skb(skb))
3093 ret = GRO_DROP;
3094 break;
3095
3096 case GRO_DROP:
3097 case GRO_MERGED_FREE:
3098 kfree_skb(skb);
3099 break;
3100
3101 case GRO_HELD:
3102 case GRO_MERGED:
3103 break;
3104 }
3105
3106 return ret;
3107}
3108EXPORT_SYMBOL(napi_skb_finish);
3109
3110void skb_gro_reset_offset(struct sk_buff *skb)
3111{
3112 NAPI_GRO_CB(skb)->data_offset = 0;
3113 NAPI_GRO_CB(skb)->frag0 = NULL;
3114 NAPI_GRO_CB(skb)->frag0_len = 0;
3115
3116 if (skb->mac_header == skb->tail &&
3117 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3118 NAPI_GRO_CB(skb)->frag0 =
3119 page_address(skb_shinfo(skb)->frags[0].page) +
3120 skb_shinfo(skb)->frags[0].page_offset;
3121 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3122 }
3123}
3124EXPORT_SYMBOL(skb_gro_reset_offset);
3125
3126gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3127{
3128 skb_gro_reset_offset(skb);
3129
3130 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3131}
3132EXPORT_SYMBOL(napi_gro_receive);
3133
3134void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3135{
3136 __skb_pull(skb, skb_headlen(skb));
3137 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3138
3139 napi->skb = skb;
3140}
3141EXPORT_SYMBOL(napi_reuse_skb);
3142
3143struct sk_buff *napi_get_frags(struct napi_struct *napi)
3144{
3145 struct sk_buff *skb = napi->skb;
3146
3147 if (!skb) {
3148 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3149 if (skb)
3150 napi->skb = skb;
3151 }
3152 return skb;
3153}
3154EXPORT_SYMBOL(napi_get_frags);
3155
3156gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3157 gro_result_t ret)
3158{
3159 switch (ret) {
3160 case GRO_NORMAL:
3161 case GRO_HELD:
3162 skb->protocol = eth_type_trans(skb, skb->dev);
3163
3164 if (ret == GRO_HELD)
3165 skb_gro_pull(skb, -ETH_HLEN);
3166 else if (netif_receive_skb(skb))
3167 ret = GRO_DROP;
3168 break;
3169
3170 case GRO_DROP:
3171 case GRO_MERGED_FREE:
3172 napi_reuse_skb(napi, skb);
3173 break;
3174
3175 case GRO_MERGED:
3176 break;
3177 }
3178
3179 return ret;
3180}
3181EXPORT_SYMBOL(napi_frags_finish);
3182
3183struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3184{
3185 struct sk_buff *skb = napi->skb;
3186 struct ethhdr *eth;
3187 unsigned int hlen;
3188 unsigned int off;
3189
3190 napi->skb = NULL;
3191
3192 skb_reset_mac_header(skb);
3193 skb_gro_reset_offset(skb);
3194
3195 off = skb_gro_offset(skb);
3196 hlen = off + sizeof(*eth);
3197 eth = skb_gro_header_fast(skb, off);
3198 if (skb_gro_header_hard(skb, hlen)) {
3199 eth = skb_gro_header_slow(skb, hlen, off);
3200 if (unlikely(!eth)) {
3201 napi_reuse_skb(napi, skb);
3202 skb = NULL;
3203 goto out;
3204 }
3205 }
3206
3207 skb_gro_pull(skb, sizeof(*eth));
3208
3209 /*
3210 * This works because the only protocols we care about don't require
3211 * special handling. We'll fix it up properly at the end.
3212 */
3213 skb->protocol = eth->h_proto;
3214
3215out:
3216 return skb;
3217}
3218EXPORT_SYMBOL(napi_frags_skb);
3219
3220gro_result_t napi_gro_frags(struct napi_struct *napi)
3221{
3222 struct sk_buff *skb = napi_frags_skb(napi);
3223
3224 if (!skb)
3225 return GRO_DROP;
3226
3227 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3228}
3229EXPORT_SYMBOL(napi_gro_frags);
3230
3231static int process_backlog(struct napi_struct *napi, int quota)
3232{
3233 int work = 0;
3234 struct softnet_data *queue = &__get_cpu_var(softnet_data);
3235 unsigned long start_time = jiffies;
3236
3237 napi->weight = weight_p;
3238 do {
3239 struct sk_buff *skb;
3240
3241 local_irq_disable();
3242 rps_lock(queue);
3243 skb = __skb_dequeue(&queue->input_pkt_queue);
3244 if (!skb) {
3245 __napi_complete(napi);
3246 rps_unlock(queue);
3247 local_irq_enable();
3248 break;
3249 }
3250 incr_input_queue_head(queue);
3251 rps_unlock(queue);
3252 local_irq_enable();
3253
3254 __netif_receive_skb(skb);
3255 } while (++work < quota && jiffies == start_time);
3256
3257 return work;
3258}
3259
3260/**
3261 * __napi_schedule - schedule for receive
3262 * @n: entry to schedule
3263 *
3264 * The entry's receive function will be scheduled to run
3265 */
3266void __napi_schedule(struct napi_struct *n)
3267{
3268 unsigned long flags;
3269
3270 local_irq_save(flags);
3271 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
3272 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3273 local_irq_restore(flags);
3274}
3275EXPORT_SYMBOL(__napi_schedule);
3276
3277void __napi_complete(struct napi_struct *n)
3278{
3279 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3280 BUG_ON(n->gro_list);
3281
3282 list_del(&n->poll_list);
3283 smp_mb__before_clear_bit();
3284 clear_bit(NAPI_STATE_SCHED, &n->state);
3285}
3286EXPORT_SYMBOL(__napi_complete);
3287
3288void napi_complete(struct napi_struct *n)
3289{
3290 unsigned long flags;
3291
3292 /*
3293 * don't let napi dequeue from the cpu poll list
3294 * just in case its running on a different cpu
3295 */
3296 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3297 return;
3298
3299 napi_gro_flush(n);
3300 local_irq_save(flags);
3301 __napi_complete(n);
3302 local_irq_restore(flags);
3303}
3304EXPORT_SYMBOL(napi_complete);
3305
3306void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3307 int (*poll)(struct napi_struct *, int), int weight)
3308{
3309 INIT_LIST_HEAD(&napi->poll_list);
3310 napi->gro_count = 0;
3311 napi->gro_list = NULL;
3312 napi->skb = NULL;
3313 napi->poll = poll;
3314 napi->weight = weight;
3315 list_add(&napi->dev_list, &dev->napi_list);
3316 napi->dev = dev;
3317#ifdef CONFIG_NETPOLL
3318 spin_lock_init(&napi->poll_lock);
3319 napi->poll_owner = -1;
3320#endif
3321 set_bit(NAPI_STATE_SCHED, &napi->state);
3322}
3323EXPORT_SYMBOL(netif_napi_add);
3324
3325void netif_napi_del(struct napi_struct *napi)
3326{
3327 struct sk_buff *skb, *next;
3328
3329 list_del_init(&napi->dev_list);
3330 napi_free_frags(napi);
3331
3332 for (skb = napi->gro_list; skb; skb = next) {
3333 next = skb->next;
3334 skb->next = NULL;
3335 kfree_skb(skb);
3336 }
3337
3338 napi->gro_list = NULL;
3339 napi->gro_count = 0;
3340}
3341EXPORT_SYMBOL(netif_napi_del);
3342
3343#ifdef CONFIG_RPS
3344/*
3345 * net_rps_action sends any pending IPI's for rps. This is only called from
3346 * softirq and interrupts must be enabled.
3347 */
3348static void net_rps_action(cpumask_t *mask)
3349{
3350 int cpu;
3351
3352 /* Send pending IPI's to kick RPS processing on remote cpus. */
3353 for_each_cpu_mask_nr(cpu, *mask) {
3354 struct softnet_data *queue = &per_cpu(softnet_data, cpu);
3355 if (cpu_online(cpu))
3356 __smp_call_function_single(cpu, &queue->csd, 0);
3357 }
3358 cpus_clear(*mask);
3359}
3360#endif
3361
3362static void net_rx_action(struct softirq_action *h)
3363{
3364 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
3365 unsigned long time_limit = jiffies + 2;
3366 int budget = netdev_budget;
3367 void *have;
3368#ifdef CONFIG_RPS
3369 int select;
3370 struct rps_remote_softirq_cpus *rcpus;
3371#endif
3372
3373 local_irq_disable();
3374
3375 while (!list_empty(list)) {
3376 struct napi_struct *n;
3377 int work, weight;
3378
3379 /* If softirq window is exhuasted then punt.
3380 * Allow this to run for 2 jiffies since which will allow
3381 * an average latency of 1.5/HZ.
3382 */
3383 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3384 goto softnet_break;
3385
3386 local_irq_enable();
3387
3388 /* Even though interrupts have been re-enabled, this
3389 * access is safe because interrupts can only add new
3390 * entries to the tail of this list, and only ->poll()
3391 * calls can remove this head entry from the list.
3392 */
3393 n = list_first_entry(list, struct napi_struct, poll_list);
3394
3395 have = netpoll_poll_lock(n);
3396
3397 weight = n->weight;
3398
3399 /* This NAPI_STATE_SCHED test is for avoiding a race
3400 * with netpoll's poll_napi(). Only the entity which
3401 * obtains the lock and sees NAPI_STATE_SCHED set will
3402 * actually make the ->poll() call. Therefore we avoid
3403 * accidently calling ->poll() when NAPI is not scheduled.
3404 */
3405 work = 0;
3406 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3407 work = n->poll(n, weight);
3408 trace_napi_poll(n);
3409 }
3410
3411 WARN_ON_ONCE(work > weight);
3412
3413 budget -= work;
3414
3415 local_irq_disable();
3416
3417 /* Drivers must not modify the NAPI state if they
3418 * consume the entire weight. In such cases this code
3419 * still "owns" the NAPI instance and therefore can
3420 * move the instance around on the list at-will.
3421 */
3422 if (unlikely(work == weight)) {
3423 if (unlikely(napi_disable_pending(n))) {
3424 local_irq_enable();
3425 napi_complete(n);
3426 local_irq_disable();
3427 } else
3428 list_move_tail(&n->poll_list, list);
3429 }
3430
3431 netpoll_poll_unlock(have);
3432 }
3433out:
3434#ifdef CONFIG_RPS
3435 rcpus = &__get_cpu_var(rps_remote_softirq_cpus);
3436 select = rcpus->select;
3437 rcpus->select ^= 1;
3438
3439 local_irq_enable();
3440
3441 net_rps_action(&rcpus->mask[select]);
3442#else
3443 local_irq_enable();
3444#endif
3445
3446#ifdef CONFIG_NET_DMA
3447 /*
3448 * There may not be any more sk_buffs coming right now, so push
3449 * any pending DMA copies to hardware
3450 */
3451 dma_issue_pending_all();
3452#endif
3453
3454 return;
3455
3456softnet_break:
3457 __get_cpu_var(netdev_rx_stat).time_squeeze++;
3458 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3459 goto out;
3460}
3461
3462static gifconf_func_t *gifconf_list[NPROTO];
3463
3464/**
3465 * register_gifconf - register a SIOCGIF handler
3466 * @family: Address family
3467 * @gifconf: Function handler
3468 *
3469 * Register protocol dependent address dumping routines. The handler
3470 * that is passed must not be freed or reused until it has been replaced
3471 * by another handler.
3472 */
3473int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3474{
3475 if (family >= NPROTO)
3476 return -EINVAL;
3477 gifconf_list[family] = gifconf;
3478 return 0;
3479}
3480EXPORT_SYMBOL(register_gifconf);
3481
3482
3483/*
3484 * Map an interface index to its name (SIOCGIFNAME)
3485 */
3486
3487/*
3488 * We need this ioctl for efficient implementation of the
3489 * if_indextoname() function required by the IPv6 API. Without
3490 * it, we would have to search all the interfaces to find a
3491 * match. --pb
3492 */
3493
3494static int dev_ifname(struct net *net, struct ifreq __user *arg)
3495{
3496 struct net_device *dev;
3497 struct ifreq ifr;
3498
3499 /*
3500 * Fetch the caller's info block.
3501 */
3502
3503 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3504 return -EFAULT;
3505
3506 rcu_read_lock();
3507 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3508 if (!dev) {
3509 rcu_read_unlock();
3510 return -ENODEV;
3511 }
3512
3513 strcpy(ifr.ifr_name, dev->name);
3514 rcu_read_unlock();
3515
3516 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3517 return -EFAULT;
3518 return 0;
3519}
3520
3521/*
3522 * Perform a SIOCGIFCONF call. This structure will change
3523 * size eventually, and there is nothing I can do about it.
3524 * Thus we will need a 'compatibility mode'.
3525 */
3526
3527static int dev_ifconf(struct net *net, char __user *arg)
3528{
3529 struct ifconf ifc;
3530 struct net_device *dev;
3531 char __user *pos;
3532 int len;
3533 int total;
3534 int i;
3535
3536 /*
3537 * Fetch the caller's info block.
3538 */
3539
3540 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3541 return -EFAULT;
3542
3543 pos = ifc.ifc_buf;
3544 len = ifc.ifc_len;
3545
3546 /*
3547 * Loop over the interfaces, and write an info block for each.
3548 */
3549
3550 total = 0;
3551 for_each_netdev(net, dev) {
3552 for (i = 0; i < NPROTO; i++) {
3553 if (gifconf_list[i]) {
3554 int done;
3555 if (!pos)
3556 done = gifconf_list[i](dev, NULL, 0);
3557 else
3558 done = gifconf_list[i](dev, pos + total,
3559 len - total);
3560 if (done < 0)
3561 return -EFAULT;
3562 total += done;
3563 }
3564 }
3565 }
3566
3567 /*
3568 * All done. Write the updated control block back to the caller.
3569 */
3570 ifc.ifc_len = total;
3571
3572 /*
3573 * Both BSD and Solaris return 0 here, so we do too.
3574 */
3575 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3576}
3577
3578#ifdef CONFIG_PROC_FS
3579/*
3580 * This is invoked by the /proc filesystem handler to display a device
3581 * in detail.
3582 */
3583void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3584 __acquires(RCU)
3585{
3586 struct net *net = seq_file_net(seq);
3587 loff_t off;
3588 struct net_device *dev;
3589
3590 rcu_read_lock();
3591 if (!*pos)
3592 return SEQ_START_TOKEN;
3593
3594 off = 1;
3595 for_each_netdev_rcu(net, dev)
3596 if (off++ == *pos)
3597 return dev;
3598
3599 return NULL;
3600}
3601
3602void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3603{
3604 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3605 first_net_device(seq_file_net(seq)) :
3606 next_net_device((struct net_device *)v);
3607
3608 ++*pos;
3609 return rcu_dereference(dev);
3610}
3611
3612void dev_seq_stop(struct seq_file *seq, void *v)
3613 __releases(RCU)
3614{
3615 rcu_read_unlock();
3616}
3617
3618static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3619{
3620 const struct net_device_stats *stats = dev_get_stats(dev);
3621
3622 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3623 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3624 dev->name, stats->rx_bytes, stats->rx_packets,
3625 stats->rx_errors,
3626 stats->rx_dropped + stats->rx_missed_errors,
3627 stats->rx_fifo_errors,
3628 stats->rx_length_errors + stats->rx_over_errors +
3629 stats->rx_crc_errors + stats->rx_frame_errors,
3630 stats->rx_compressed, stats->multicast,
3631 stats->tx_bytes, stats->tx_packets,
3632 stats->tx_errors, stats->tx_dropped,
3633 stats->tx_fifo_errors, stats->collisions,
3634 stats->tx_carrier_errors +
3635 stats->tx_aborted_errors +
3636 stats->tx_window_errors +
3637 stats->tx_heartbeat_errors,
3638 stats->tx_compressed);
3639}
3640
3641/*
3642 * Called from the PROCfs module. This now uses the new arbitrary sized
3643 * /proc/net interface to create /proc/net/dev
3644 */
3645static int dev_seq_show(struct seq_file *seq, void *v)
3646{
3647 if (v == SEQ_START_TOKEN)
3648 seq_puts(seq, "Inter-| Receive "
3649 " | Transmit\n"
3650 " face |bytes packets errs drop fifo frame "
3651 "compressed multicast|bytes packets errs "
3652 "drop fifo colls carrier compressed\n");
3653 else
3654 dev_seq_printf_stats(seq, v);
3655 return 0;
3656}
3657
3658static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3659{
3660 struct netif_rx_stats *rc = NULL;
3661
3662 while (*pos < nr_cpu_ids)
3663 if (cpu_online(*pos)) {
3664 rc = &per_cpu(netdev_rx_stat, *pos);
3665 break;
3666 } else
3667 ++*pos;
3668 return rc;
3669}
3670
3671static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3672{
3673 return softnet_get_online(pos);
3674}
3675
3676static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3677{
3678 ++*pos;
3679 return softnet_get_online(pos);
3680}
3681
3682static void softnet_seq_stop(struct seq_file *seq, void *v)
3683{
3684}
3685
3686static int softnet_seq_show(struct seq_file *seq, void *v)
3687{
3688 struct netif_rx_stats *s = v;
3689
3690 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3691 s->total, s->dropped, s->time_squeeze, 0,
3692 0, 0, 0, 0, /* was fastroute */
3693 s->cpu_collision, s->received_rps);
3694 return 0;
3695}
3696
3697static const struct seq_operations dev_seq_ops = {
3698 .start = dev_seq_start,
3699 .next = dev_seq_next,
3700 .stop = dev_seq_stop,
3701 .show = dev_seq_show,
3702};
3703
3704static int dev_seq_open(struct inode *inode, struct file *file)
3705{
3706 return seq_open_net(inode, file, &dev_seq_ops,
3707 sizeof(struct seq_net_private));
3708}
3709
3710static const struct file_operations dev_seq_fops = {
3711 .owner = THIS_MODULE,
3712 .open = dev_seq_open,
3713 .read = seq_read,
3714 .llseek = seq_lseek,
3715 .release = seq_release_net,
3716};
3717
3718static const struct seq_operations softnet_seq_ops = {
3719 .start = softnet_seq_start,
3720 .next = softnet_seq_next,
3721 .stop = softnet_seq_stop,
3722 .show = softnet_seq_show,
3723};
3724
3725static int softnet_seq_open(struct inode *inode, struct file *file)
3726{
3727 return seq_open(file, &softnet_seq_ops);
3728}
3729
3730static const struct file_operations softnet_seq_fops = {
3731 .owner = THIS_MODULE,
3732 .open = softnet_seq_open,
3733 .read = seq_read,
3734 .llseek = seq_lseek,
3735 .release = seq_release,
3736};
3737
3738static void *ptype_get_idx(loff_t pos)
3739{
3740 struct packet_type *pt = NULL;
3741 loff_t i = 0;
3742 int t;
3743
3744 list_for_each_entry_rcu(pt, &ptype_all, list) {
3745 if (i == pos)
3746 return pt;
3747 ++i;
3748 }
3749
3750 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3751 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3752 if (i == pos)
3753 return pt;
3754 ++i;
3755 }
3756 }
3757 return NULL;
3758}
3759
3760static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3761 __acquires(RCU)
3762{
3763 rcu_read_lock();
3764 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3765}
3766
3767static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3768{
3769 struct packet_type *pt;
3770 struct list_head *nxt;
3771 int hash;
3772
3773 ++*pos;
3774 if (v == SEQ_START_TOKEN)
3775 return ptype_get_idx(0);
3776
3777 pt = v;
3778 nxt = pt->list.next;
3779 if (pt->type == htons(ETH_P_ALL)) {
3780 if (nxt != &ptype_all)
3781 goto found;
3782 hash = 0;
3783 nxt = ptype_base[0].next;
3784 } else
3785 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3786
3787 while (nxt == &ptype_base[hash]) {
3788 if (++hash >= PTYPE_HASH_SIZE)
3789 return NULL;
3790 nxt = ptype_base[hash].next;
3791 }
3792found:
3793 return list_entry(nxt, struct packet_type, list);
3794}
3795
3796static void ptype_seq_stop(struct seq_file *seq, void *v)
3797 __releases(RCU)
3798{
3799 rcu_read_unlock();
3800}
3801
3802static int ptype_seq_show(struct seq_file *seq, void *v)
3803{
3804 struct packet_type *pt = v;
3805
3806 if (v == SEQ_START_TOKEN)
3807 seq_puts(seq, "Type Device Function\n");
3808 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3809 if (pt->type == htons(ETH_P_ALL))
3810 seq_puts(seq, "ALL ");
3811 else
3812 seq_printf(seq, "%04x", ntohs(pt->type));
3813
3814 seq_printf(seq, " %-8s %pF\n",
3815 pt->dev ? pt->dev->name : "", pt->func);
3816 }
3817
3818 return 0;
3819}
3820
3821static const struct seq_operations ptype_seq_ops = {
3822 .start = ptype_seq_start,
3823 .next = ptype_seq_next,
3824 .stop = ptype_seq_stop,
3825 .show = ptype_seq_show,
3826};
3827
3828static int ptype_seq_open(struct inode *inode, struct file *file)
3829{
3830 return seq_open_net(inode, file, &ptype_seq_ops,
3831 sizeof(struct seq_net_private));
3832}
3833
3834static const struct file_operations ptype_seq_fops = {
3835 .owner = THIS_MODULE,
3836 .open = ptype_seq_open,
3837 .read = seq_read,
3838 .llseek = seq_lseek,
3839 .release = seq_release_net,
3840};
3841
3842
3843static int __net_init dev_proc_net_init(struct net *net)
3844{
3845 int rc = -ENOMEM;
3846
3847 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3848 goto out;
3849 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3850 goto out_dev;
3851 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3852 goto out_softnet;
3853
3854 if (wext_proc_init(net))
3855 goto out_ptype;
3856 rc = 0;
3857out:
3858 return rc;
3859out_ptype:
3860 proc_net_remove(net, "ptype");
3861out_softnet:
3862 proc_net_remove(net, "softnet_stat");
3863out_dev:
3864 proc_net_remove(net, "dev");
3865 goto out;
3866}
3867
3868static void __net_exit dev_proc_net_exit(struct net *net)
3869{
3870 wext_proc_exit(net);
3871
3872 proc_net_remove(net, "ptype");
3873 proc_net_remove(net, "softnet_stat");
3874 proc_net_remove(net, "dev");
3875}
3876
3877static struct pernet_operations __net_initdata dev_proc_ops = {
3878 .init = dev_proc_net_init,
3879 .exit = dev_proc_net_exit,
3880};
3881
3882static int __init dev_proc_init(void)
3883{
3884 return register_pernet_subsys(&dev_proc_ops);
3885}
3886#else
3887#define dev_proc_init() 0
3888#endif /* CONFIG_PROC_FS */
3889
3890
3891/**
3892 * netdev_set_master - set up master/slave pair
3893 * @slave: slave device
3894 * @master: new master device
3895 *
3896 * Changes the master device of the slave. Pass %NULL to break the
3897 * bonding. The caller must hold the RTNL semaphore. On a failure
3898 * a negative errno code is returned. On success the reference counts
3899 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3900 * function returns zero.
3901 */
3902int netdev_set_master(struct net_device *slave, struct net_device *master)
3903{
3904 struct net_device *old = slave->master;
3905
3906 ASSERT_RTNL();
3907
3908 if (master) {
3909 if (old)
3910 return -EBUSY;
3911 dev_hold(master);
3912 }
3913
3914 slave->master = master;
3915
3916 if (old) {
3917 synchronize_net();
3918 dev_put(old);
3919 }
3920 if (master)
3921 slave->flags |= IFF_SLAVE;
3922 else
3923 slave->flags &= ~IFF_SLAVE;
3924
3925 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3926 return 0;
3927}
3928EXPORT_SYMBOL(netdev_set_master);
3929
3930static void dev_change_rx_flags(struct net_device *dev, int flags)
3931{
3932 const struct net_device_ops *ops = dev->netdev_ops;
3933
3934 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3935 ops->ndo_change_rx_flags(dev, flags);
3936}
3937
3938static int __dev_set_promiscuity(struct net_device *dev, int inc)
3939{
3940 unsigned short old_flags = dev->flags;
3941 uid_t uid;
3942 gid_t gid;
3943
3944 ASSERT_RTNL();
3945
3946 dev->flags |= IFF_PROMISC;
3947 dev->promiscuity += inc;
3948 if (dev->promiscuity == 0) {
3949 /*
3950 * Avoid overflow.
3951 * If inc causes overflow, untouch promisc and return error.
3952 */
3953 if (inc < 0)
3954 dev->flags &= ~IFF_PROMISC;
3955 else {
3956 dev->promiscuity -= inc;
3957 printk(KERN_WARNING "%s: promiscuity touches roof, "
3958 "set promiscuity failed, promiscuity feature "
3959 "of device might be broken.\n", dev->name);
3960 return -EOVERFLOW;
3961 }
3962 }
3963 if (dev->flags != old_flags) {
3964 printk(KERN_INFO "device %s %s promiscuous mode\n",
3965 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3966 "left");
3967 if (audit_enabled) {
3968 current_uid_gid(&uid, &gid);
3969 audit_log(current->audit_context, GFP_ATOMIC,
3970 AUDIT_ANOM_PROMISCUOUS,
3971 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3972 dev->name, (dev->flags & IFF_PROMISC),
3973 (old_flags & IFF_PROMISC),
3974 audit_get_loginuid(current),
3975 uid, gid,
3976 audit_get_sessionid(current));
3977 }
3978
3979 dev_change_rx_flags(dev, IFF_PROMISC);
3980 }
3981 return 0;
3982}
3983
3984/**
3985 * dev_set_promiscuity - update promiscuity count on a device
3986 * @dev: device
3987 * @inc: modifier
3988 *
3989 * Add or remove promiscuity from a device. While the count in the device
3990 * remains above zero the interface remains promiscuous. Once it hits zero
3991 * the device reverts back to normal filtering operation. A negative inc
3992 * value is used to drop promiscuity on the device.
3993 * Return 0 if successful or a negative errno code on error.
3994 */
3995int dev_set_promiscuity(struct net_device *dev, int inc)
3996{
3997 unsigned short old_flags = dev->flags;
3998 int err;
3999
4000 err = __dev_set_promiscuity(dev, inc);
4001 if (err < 0)
4002 return err;
4003 if (dev->flags != old_flags)
4004 dev_set_rx_mode(dev);
4005 return err;
4006}
4007EXPORT_SYMBOL(dev_set_promiscuity);
4008
4009/**
4010 * dev_set_allmulti - update allmulti count on a device
4011 * @dev: device
4012 * @inc: modifier
4013 *
4014 * Add or remove reception of all multicast frames to a device. While the
4015 * count in the device remains above zero the interface remains listening
4016 * to all interfaces. Once it hits zero the device reverts back to normal
4017 * filtering operation. A negative @inc value is used to drop the counter
4018 * when releasing a resource needing all multicasts.
4019 * Return 0 if successful or a negative errno code on error.
4020 */
4021
4022int dev_set_allmulti(struct net_device *dev, int inc)
4023{
4024 unsigned short old_flags = dev->flags;
4025
4026 ASSERT_RTNL();
4027
4028 dev->flags |= IFF_ALLMULTI;
4029 dev->allmulti += inc;
4030 if (dev->allmulti == 0) {
4031 /*
4032 * Avoid overflow.
4033 * If inc causes overflow, untouch allmulti and return error.
4034 */
4035 if (inc < 0)
4036 dev->flags &= ~IFF_ALLMULTI;
4037 else {
4038 dev->allmulti -= inc;
4039 printk(KERN_WARNING "%s: allmulti touches roof, "
4040 "set allmulti failed, allmulti feature of "
4041 "device might be broken.\n", dev->name);
4042 return -EOVERFLOW;
4043 }
4044 }
4045 if (dev->flags ^ old_flags) {
4046 dev_change_rx_flags(dev, IFF_ALLMULTI);
4047 dev_set_rx_mode(dev);
4048 }
4049 return 0;
4050}
4051EXPORT_SYMBOL(dev_set_allmulti);
4052
4053/*
4054 * Upload unicast and multicast address lists to device and
4055 * configure RX filtering. When the device doesn't support unicast
4056 * filtering it is put in promiscuous mode while unicast addresses
4057 * are present.
4058 */
4059void __dev_set_rx_mode(struct net_device *dev)
4060{
4061 const struct net_device_ops *ops = dev->netdev_ops;
4062
4063 /* dev_open will call this function so the list will stay sane. */
4064 if (!(dev->flags&IFF_UP))
4065 return;
4066
4067 if (!netif_device_present(dev))
4068 return;
4069
4070 if (ops->ndo_set_rx_mode)
4071 ops->ndo_set_rx_mode(dev);
4072 else {
4073 /* Unicast addresses changes may only happen under the rtnl,
4074 * therefore calling __dev_set_promiscuity here is safe.
4075 */
4076 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4077 __dev_set_promiscuity(dev, 1);
4078 dev->uc_promisc = 1;
4079 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4080 __dev_set_promiscuity(dev, -1);
4081 dev->uc_promisc = 0;
4082 }
4083
4084 if (ops->ndo_set_multicast_list)
4085 ops->ndo_set_multicast_list(dev);
4086 }
4087}
4088
4089void dev_set_rx_mode(struct net_device *dev)
4090{
4091 netif_addr_lock_bh(dev);
4092 __dev_set_rx_mode(dev);
4093 netif_addr_unlock_bh(dev);
4094}
4095
4096/**
4097 * dev_get_flags - get flags reported to userspace
4098 * @dev: device
4099 *
4100 * Get the combination of flag bits exported through APIs to userspace.
4101 */
4102unsigned dev_get_flags(const struct net_device *dev)
4103{
4104 unsigned flags;
4105
4106 flags = (dev->flags & ~(IFF_PROMISC |
4107 IFF_ALLMULTI |
4108 IFF_RUNNING |
4109 IFF_LOWER_UP |
4110 IFF_DORMANT)) |
4111 (dev->gflags & (IFF_PROMISC |
4112 IFF_ALLMULTI));
4113
4114 if (netif_running(dev)) {
4115 if (netif_oper_up(dev))
4116 flags |= IFF_RUNNING;
4117 if (netif_carrier_ok(dev))
4118 flags |= IFF_LOWER_UP;
4119 if (netif_dormant(dev))
4120 flags |= IFF_DORMANT;
4121 }
4122
4123 return flags;
4124}
4125EXPORT_SYMBOL(dev_get_flags);
4126
4127int __dev_change_flags(struct net_device *dev, unsigned int flags)
4128{
4129 int old_flags = dev->flags;
4130 int ret;
4131
4132 ASSERT_RTNL();
4133
4134 /*
4135 * Set the flags on our device.
4136 */
4137
4138 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4139 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4140 IFF_AUTOMEDIA)) |
4141 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4142 IFF_ALLMULTI));
4143
4144 /*
4145 * Load in the correct multicast list now the flags have changed.
4146 */
4147
4148 if ((old_flags ^ flags) & IFF_MULTICAST)
4149 dev_change_rx_flags(dev, IFF_MULTICAST);
4150
4151 dev_set_rx_mode(dev);
4152
4153 /*
4154 * Have we downed the interface. We handle IFF_UP ourselves
4155 * according to user attempts to set it, rather than blindly
4156 * setting it.
4157 */
4158
4159 ret = 0;
4160 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4161 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4162
4163 if (!ret)
4164 dev_set_rx_mode(dev);
4165 }
4166
4167 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4168 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4169
4170 dev->gflags ^= IFF_PROMISC;
4171 dev_set_promiscuity(dev, inc);
4172 }
4173
4174 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4175 is important. Some (broken) drivers set IFF_PROMISC, when
4176 IFF_ALLMULTI is requested not asking us and not reporting.
4177 */
4178 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4179 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4180
4181 dev->gflags ^= IFF_ALLMULTI;
4182 dev_set_allmulti(dev, inc);
4183 }
4184
4185 return ret;
4186}
4187
4188void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4189{
4190 unsigned int changes = dev->flags ^ old_flags;
4191
4192 if (changes & IFF_UP) {
4193 if (dev->flags & IFF_UP)
4194 call_netdevice_notifiers(NETDEV_UP, dev);
4195 else
4196 call_netdevice_notifiers(NETDEV_DOWN, dev);
4197 }
4198
4199 if (dev->flags & IFF_UP &&
4200 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4201 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4202}
4203
4204/**
4205 * dev_change_flags - change device settings
4206 * @dev: device
4207 * @flags: device state flags
4208 *
4209 * Change settings on device based state flags. The flags are
4210 * in the userspace exported format.
4211 */
4212int dev_change_flags(struct net_device *dev, unsigned flags)
4213{
4214 int ret, changes;
4215 int old_flags = dev->flags;
4216
4217 ret = __dev_change_flags(dev, flags);
4218 if (ret < 0)
4219 return ret;
4220
4221 changes = old_flags ^ dev->flags;
4222 if (changes)
4223 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4224
4225 __dev_notify_flags(dev, old_flags);
4226 return ret;
4227}
4228EXPORT_SYMBOL(dev_change_flags);
4229
4230/**
4231 * dev_set_mtu - Change maximum transfer unit
4232 * @dev: device
4233 * @new_mtu: new transfer unit
4234 *
4235 * Change the maximum transfer size of the network device.
4236 */
4237int dev_set_mtu(struct net_device *dev, int new_mtu)
4238{
4239 const struct net_device_ops *ops = dev->netdev_ops;
4240 int err;
4241
4242 if (new_mtu == dev->mtu)
4243 return 0;
4244
4245 /* MTU must be positive. */
4246 if (new_mtu < 0)
4247 return -EINVAL;
4248
4249 if (!netif_device_present(dev))
4250 return -ENODEV;
4251
4252 err = 0;
4253 if (ops->ndo_change_mtu)
4254 err = ops->ndo_change_mtu(dev, new_mtu);
4255 else
4256 dev->mtu = new_mtu;
4257
4258 if (!err && dev->flags & IFF_UP)
4259 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4260 return err;
4261}
4262EXPORT_SYMBOL(dev_set_mtu);
4263
4264/**
4265 * dev_set_mac_address - Change Media Access Control Address
4266 * @dev: device
4267 * @sa: new address
4268 *
4269 * Change the hardware (MAC) address of the device
4270 */
4271int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4272{
4273 const struct net_device_ops *ops = dev->netdev_ops;
4274 int err;
4275
4276 if (!ops->ndo_set_mac_address)
4277 return -EOPNOTSUPP;
4278 if (sa->sa_family != dev->type)
4279 return -EINVAL;
4280 if (!netif_device_present(dev))
4281 return -ENODEV;
4282 err = ops->ndo_set_mac_address(dev, sa);
4283 if (!err)
4284 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4285 return err;
4286}
4287EXPORT_SYMBOL(dev_set_mac_address);
4288
4289/*
4290 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4291 */
4292static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4293{
4294 int err;
4295 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4296
4297 if (!dev)
4298 return -ENODEV;
4299
4300 switch (cmd) {
4301 case SIOCGIFFLAGS: /* Get interface flags */
4302 ifr->ifr_flags = (short) dev_get_flags(dev);
4303 return 0;
4304
4305 case SIOCGIFMETRIC: /* Get the metric on the interface
4306 (currently unused) */
4307 ifr->ifr_metric = 0;
4308 return 0;
4309
4310 case SIOCGIFMTU: /* Get the MTU of a device */
4311 ifr->ifr_mtu = dev->mtu;
4312 return 0;
4313
4314 case SIOCGIFHWADDR:
4315 if (!dev->addr_len)
4316 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4317 else
4318 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4319 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4320 ifr->ifr_hwaddr.sa_family = dev->type;
4321 return 0;
4322
4323 case SIOCGIFSLAVE:
4324 err = -EINVAL;
4325 break;
4326
4327 case SIOCGIFMAP:
4328 ifr->ifr_map.mem_start = dev->mem_start;
4329 ifr->ifr_map.mem_end = dev->mem_end;
4330 ifr->ifr_map.base_addr = dev->base_addr;
4331 ifr->ifr_map.irq = dev->irq;
4332 ifr->ifr_map.dma = dev->dma;
4333 ifr->ifr_map.port = dev->if_port;
4334 return 0;
4335
4336 case SIOCGIFINDEX:
4337 ifr->ifr_ifindex = dev->ifindex;
4338 return 0;
4339
4340 case SIOCGIFTXQLEN:
4341 ifr->ifr_qlen = dev->tx_queue_len;
4342 return 0;
4343
4344 default:
4345 /* dev_ioctl() should ensure this case
4346 * is never reached
4347 */
4348 WARN_ON(1);
4349 err = -EINVAL;
4350 break;
4351
4352 }
4353 return err;
4354}
4355
4356/*
4357 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4358 */
4359static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4360{
4361 int err;
4362 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4363 const struct net_device_ops *ops;
4364
4365 if (!dev)
4366 return -ENODEV;
4367
4368 ops = dev->netdev_ops;
4369
4370 switch (cmd) {
4371 case SIOCSIFFLAGS: /* Set interface flags */
4372 return dev_change_flags(dev, ifr->ifr_flags);
4373
4374 case SIOCSIFMETRIC: /* Set the metric on the interface
4375 (currently unused) */
4376 return -EOPNOTSUPP;
4377
4378 case SIOCSIFMTU: /* Set the MTU of a device */
4379 return dev_set_mtu(dev, ifr->ifr_mtu);
4380
4381 case SIOCSIFHWADDR:
4382 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4383
4384 case SIOCSIFHWBROADCAST:
4385 if (ifr->ifr_hwaddr.sa_family != dev->type)
4386 return -EINVAL;
4387 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4388 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4389 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4390 return 0;
4391
4392 case SIOCSIFMAP:
4393 if (ops->ndo_set_config) {
4394 if (!netif_device_present(dev))
4395 return -ENODEV;
4396 return ops->ndo_set_config(dev, &ifr->ifr_map);
4397 }
4398 return -EOPNOTSUPP;
4399
4400 case SIOCADDMULTI:
4401 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4402 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4403 return -EINVAL;
4404 if (!netif_device_present(dev))
4405 return -ENODEV;
4406 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4407
4408 case SIOCDELMULTI:
4409 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4410 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4411 return -EINVAL;
4412 if (!netif_device_present(dev))
4413 return -ENODEV;
4414 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4415
4416 case SIOCSIFTXQLEN:
4417 if (ifr->ifr_qlen < 0)
4418 return -EINVAL;
4419 dev->tx_queue_len = ifr->ifr_qlen;
4420 return 0;
4421
4422 case SIOCSIFNAME:
4423 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4424 return dev_change_name(dev, ifr->ifr_newname);
4425
4426 /*
4427 * Unknown or private ioctl
4428 */
4429 default:
4430 if ((cmd >= SIOCDEVPRIVATE &&
4431 cmd <= SIOCDEVPRIVATE + 15) ||
4432 cmd == SIOCBONDENSLAVE ||
4433 cmd == SIOCBONDRELEASE ||
4434 cmd == SIOCBONDSETHWADDR ||
4435 cmd == SIOCBONDSLAVEINFOQUERY ||
4436 cmd == SIOCBONDINFOQUERY ||
4437 cmd == SIOCBONDCHANGEACTIVE ||
4438 cmd == SIOCGMIIPHY ||
4439 cmd == SIOCGMIIREG ||
4440 cmd == SIOCSMIIREG ||
4441 cmd == SIOCBRADDIF ||
4442 cmd == SIOCBRDELIF ||
4443 cmd == SIOCSHWTSTAMP ||
4444 cmd == SIOCWANDEV) {
4445 err = -EOPNOTSUPP;
4446 if (ops->ndo_do_ioctl) {
4447 if (netif_device_present(dev))
4448 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4449 else
4450 err = -ENODEV;
4451 }
4452 } else
4453 err = -EINVAL;
4454
4455 }
4456 return err;
4457}
4458
4459/*
4460 * This function handles all "interface"-type I/O control requests. The actual
4461 * 'doing' part of this is dev_ifsioc above.
4462 */
4463
4464/**
4465 * dev_ioctl - network device ioctl
4466 * @net: the applicable net namespace
4467 * @cmd: command to issue
4468 * @arg: pointer to a struct ifreq in user space
4469 *
4470 * Issue ioctl functions to devices. This is normally called by the
4471 * user space syscall interfaces but can sometimes be useful for
4472 * other purposes. The return value is the return from the syscall if
4473 * positive or a negative errno code on error.
4474 */
4475
4476int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4477{
4478 struct ifreq ifr;
4479 int ret;
4480 char *colon;
4481
4482 /* One special case: SIOCGIFCONF takes ifconf argument
4483 and requires shared lock, because it sleeps writing
4484 to user space.
4485 */
4486
4487 if (cmd == SIOCGIFCONF) {
4488 rtnl_lock();
4489 ret = dev_ifconf(net, (char __user *) arg);
4490 rtnl_unlock();
4491 return ret;
4492 }
4493 if (cmd == SIOCGIFNAME)
4494 return dev_ifname(net, (struct ifreq __user *)arg);
4495
4496 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4497 return -EFAULT;
4498
4499 ifr.ifr_name[IFNAMSIZ-1] = 0;
4500
4501 colon = strchr(ifr.ifr_name, ':');
4502 if (colon)
4503 *colon = 0;
4504
4505 /*
4506 * See which interface the caller is talking about.
4507 */
4508
4509 switch (cmd) {
4510 /*
4511 * These ioctl calls:
4512 * - can be done by all.
4513 * - atomic and do not require locking.
4514 * - return a value
4515 */
4516 case SIOCGIFFLAGS:
4517 case SIOCGIFMETRIC:
4518 case SIOCGIFMTU:
4519 case SIOCGIFHWADDR:
4520 case SIOCGIFSLAVE:
4521 case SIOCGIFMAP:
4522 case SIOCGIFINDEX:
4523 case SIOCGIFTXQLEN:
4524 dev_load(net, ifr.ifr_name);
4525 rcu_read_lock();
4526 ret = dev_ifsioc_locked(net, &ifr, cmd);
4527 rcu_read_unlock();
4528 if (!ret) {
4529 if (colon)
4530 *colon = ':';
4531 if (copy_to_user(arg, &ifr,
4532 sizeof(struct ifreq)))
4533 ret = -EFAULT;
4534 }
4535 return ret;
4536
4537 case SIOCETHTOOL:
4538 dev_load(net, ifr.ifr_name);
4539 rtnl_lock();
4540 ret = dev_ethtool(net, &ifr);
4541 rtnl_unlock();
4542 if (!ret) {
4543 if (colon)
4544 *colon = ':';
4545 if (copy_to_user(arg, &ifr,
4546 sizeof(struct ifreq)))
4547 ret = -EFAULT;
4548 }
4549 return ret;
4550
4551 /*
4552 * These ioctl calls:
4553 * - require superuser power.
4554 * - require strict serialization.
4555 * - return a value
4556 */
4557 case SIOCGMIIPHY:
4558 case SIOCGMIIREG:
4559 case SIOCSIFNAME:
4560 if (!capable(CAP_NET_ADMIN))
4561 return -EPERM;
4562 dev_load(net, ifr.ifr_name);
4563 rtnl_lock();
4564 ret = dev_ifsioc(net, &ifr, cmd);
4565 rtnl_unlock();
4566 if (!ret) {
4567 if (colon)
4568 *colon = ':';
4569 if (copy_to_user(arg, &ifr,
4570 sizeof(struct ifreq)))
4571 ret = -EFAULT;
4572 }
4573 return ret;
4574
4575 /*
4576 * These ioctl calls:
4577 * - require superuser power.
4578 * - require strict serialization.
4579 * - do not return a value
4580 */
4581 case SIOCSIFFLAGS:
4582 case SIOCSIFMETRIC:
4583 case SIOCSIFMTU:
4584 case SIOCSIFMAP:
4585 case SIOCSIFHWADDR:
4586 case SIOCSIFSLAVE:
4587 case SIOCADDMULTI:
4588 case SIOCDELMULTI:
4589 case SIOCSIFHWBROADCAST:
4590 case SIOCSIFTXQLEN:
4591 case SIOCSMIIREG:
4592 case SIOCBONDENSLAVE:
4593 case SIOCBONDRELEASE:
4594 case SIOCBONDSETHWADDR:
4595 case SIOCBONDCHANGEACTIVE:
4596 case SIOCBRADDIF:
4597 case SIOCBRDELIF:
4598 case SIOCSHWTSTAMP:
4599 if (!capable(CAP_NET_ADMIN))
4600 return -EPERM;
4601 /* fall through */
4602 case SIOCBONDSLAVEINFOQUERY:
4603 case SIOCBONDINFOQUERY:
4604 dev_load(net, ifr.ifr_name);
4605 rtnl_lock();
4606 ret = dev_ifsioc(net, &ifr, cmd);
4607 rtnl_unlock();
4608 return ret;
4609
4610 case SIOCGIFMEM:
4611 /* Get the per device memory space. We can add this but
4612 * currently do not support it */
4613 case SIOCSIFMEM:
4614 /* Set the per device memory buffer space.
4615 * Not applicable in our case */
4616 case SIOCSIFLINK:
4617 return -EINVAL;
4618
4619 /*
4620 * Unknown or private ioctl.
4621 */
4622 default:
4623 if (cmd == SIOCWANDEV ||
4624 (cmd >= SIOCDEVPRIVATE &&
4625 cmd <= SIOCDEVPRIVATE + 15)) {
4626 dev_load(net, ifr.ifr_name);
4627 rtnl_lock();
4628 ret = dev_ifsioc(net, &ifr, cmd);
4629 rtnl_unlock();
4630 if (!ret && copy_to_user(arg, &ifr,
4631 sizeof(struct ifreq)))
4632 ret = -EFAULT;
4633 return ret;
4634 }
4635 /* Take care of Wireless Extensions */
4636 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4637 return wext_handle_ioctl(net, &ifr, cmd, arg);
4638 return -EINVAL;
4639 }
4640}
4641
4642
4643/**
4644 * dev_new_index - allocate an ifindex
4645 * @net: the applicable net namespace
4646 *
4647 * Returns a suitable unique value for a new device interface
4648 * number. The caller must hold the rtnl semaphore or the
4649 * dev_base_lock to be sure it remains unique.
4650 */
4651static int dev_new_index(struct net *net)
4652{
4653 static int ifindex;
4654 for (;;) {
4655 if (++ifindex <= 0)
4656 ifindex = 1;
4657 if (!__dev_get_by_index(net, ifindex))
4658 return ifindex;
4659 }
4660}
4661
4662/* Delayed registration/unregisteration */
4663static LIST_HEAD(net_todo_list);
4664
4665static void net_set_todo(struct net_device *dev)
4666{
4667 list_add_tail(&dev->todo_list, &net_todo_list);
4668}
4669
4670static void rollback_registered_many(struct list_head *head)
4671{
4672 struct net_device *dev, *tmp;
4673
4674 BUG_ON(dev_boot_phase);
4675 ASSERT_RTNL();
4676
4677 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4678 /* Some devices call without registering
4679 * for initialization unwind. Remove those
4680 * devices and proceed with the remaining.
4681 */
4682 if (dev->reg_state == NETREG_UNINITIALIZED) {
4683 pr_debug("unregister_netdevice: device %s/%p never "
4684 "was registered\n", dev->name, dev);
4685
4686 WARN_ON(1);
4687 list_del(&dev->unreg_list);
4688 continue;
4689 }
4690
4691 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4692
4693 /* If device is running, close it first. */
4694 dev_close(dev);
4695
4696 /* And unlink it from device chain. */
4697 unlist_netdevice(dev);
4698
4699 dev->reg_state = NETREG_UNREGISTERING;
4700 }
4701
4702 synchronize_net();
4703
4704 list_for_each_entry(dev, head, unreg_list) {
4705 /* Shutdown queueing discipline. */
4706 dev_shutdown(dev);
4707
4708
4709 /* Notify protocols, that we are about to destroy
4710 this device. They should clean all the things.
4711 */
4712 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4713
4714 if (!dev->rtnl_link_ops ||
4715 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4716 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4717
4718 /*
4719 * Flush the unicast and multicast chains
4720 */
4721 dev_uc_flush(dev);
4722 dev_mc_flush(dev);
4723
4724 if (dev->netdev_ops->ndo_uninit)
4725 dev->netdev_ops->ndo_uninit(dev);
4726
4727 /* Notifier chain MUST detach us from master device. */
4728 WARN_ON(dev->master);
4729
4730 /* Remove entries from kobject tree */
4731 netdev_unregister_kobject(dev);
4732 }
4733
4734 /* Process any work delayed until the end of the batch */
4735 dev = list_first_entry(head, struct net_device, unreg_list);
4736 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4737
4738 synchronize_net();
4739
4740 list_for_each_entry(dev, head, unreg_list)
4741 dev_put(dev);
4742}
4743
4744static void rollback_registered(struct net_device *dev)
4745{
4746 LIST_HEAD(single);
4747
4748 list_add(&dev->unreg_list, &single);
4749 rollback_registered_many(&single);
4750}
4751
4752static void __netdev_init_queue_locks_one(struct net_device *dev,
4753 struct netdev_queue *dev_queue,
4754 void *_unused)
4755{
4756 spin_lock_init(&dev_queue->_xmit_lock);
4757 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4758 dev_queue->xmit_lock_owner = -1;
4759}
4760
4761static void netdev_init_queue_locks(struct net_device *dev)
4762{
4763 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4764 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4765}
4766
4767unsigned long netdev_fix_features(unsigned long features, const char *name)
4768{
4769 /* Fix illegal SG+CSUM combinations. */
4770 if ((features & NETIF_F_SG) &&
4771 !(features & NETIF_F_ALL_CSUM)) {
4772 if (name)
4773 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4774 "checksum feature.\n", name);
4775 features &= ~NETIF_F_SG;
4776 }
4777
4778 /* TSO requires that SG is present as well. */
4779 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4780 if (name)
4781 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4782 "SG feature.\n", name);
4783 features &= ~NETIF_F_TSO;
4784 }
4785
4786 if (features & NETIF_F_UFO) {
4787 if (!(features & NETIF_F_GEN_CSUM)) {
4788 if (name)
4789 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4790 "since no NETIF_F_HW_CSUM feature.\n",
4791 name);
4792 features &= ~NETIF_F_UFO;
4793 }
4794
4795 if (!(features & NETIF_F_SG)) {
4796 if (name)
4797 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4798 "since no NETIF_F_SG feature.\n", name);
4799 features &= ~NETIF_F_UFO;
4800 }
4801 }
4802
4803 return features;
4804}
4805EXPORT_SYMBOL(netdev_fix_features);
4806
4807/**
4808 * netif_stacked_transfer_operstate - transfer operstate
4809 * @rootdev: the root or lower level device to transfer state from
4810 * @dev: the device to transfer operstate to
4811 *
4812 * Transfer operational state from root to device. This is normally
4813 * called when a stacking relationship exists between the root
4814 * device and the device(a leaf device).
4815 */
4816void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4817 struct net_device *dev)
4818{
4819 if (rootdev->operstate == IF_OPER_DORMANT)
4820 netif_dormant_on(dev);
4821 else
4822 netif_dormant_off(dev);
4823
4824 if (netif_carrier_ok(rootdev)) {
4825 if (!netif_carrier_ok(dev))
4826 netif_carrier_on(dev);
4827 } else {
4828 if (netif_carrier_ok(dev))
4829 netif_carrier_off(dev);
4830 }
4831}
4832EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4833
4834/**
4835 * register_netdevice - register a network device
4836 * @dev: device to register
4837 *
4838 * Take a completed network device structure and add it to the kernel
4839 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4840 * chain. 0 is returned on success. A negative errno code is returned
4841 * on a failure to set up the device, or if the name is a duplicate.
4842 *
4843 * Callers must hold the rtnl semaphore. You may want
4844 * register_netdev() instead of this.
4845 *
4846 * BUGS:
4847 * The locking appears insufficient to guarantee two parallel registers
4848 * will not get the same name.
4849 */
4850
4851int register_netdevice(struct net_device *dev)
4852{
4853 int ret;
4854 struct net *net = dev_net(dev);
4855
4856 BUG_ON(dev_boot_phase);
4857 ASSERT_RTNL();
4858
4859 might_sleep();
4860
4861 /* When net_device's are persistent, this will be fatal. */
4862 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4863 BUG_ON(!net);
4864
4865 spin_lock_init(&dev->addr_list_lock);
4866 netdev_set_addr_lockdep_class(dev);
4867 netdev_init_queue_locks(dev);
4868
4869 dev->iflink = -1;
4870
4871#ifdef CONFIG_RPS
4872 if (!dev->num_rx_queues) {
4873 /*
4874 * Allocate a single RX queue if driver never called
4875 * alloc_netdev_mq
4876 */
4877
4878 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
4879 if (!dev->_rx) {
4880 ret = -ENOMEM;
4881 goto out;
4882 }
4883
4884 dev->_rx->first = dev->_rx;
4885 atomic_set(&dev->_rx->count, 1);
4886 dev->num_rx_queues = 1;
4887 }
4888#endif
4889 /* Init, if this function is available */
4890 if (dev->netdev_ops->ndo_init) {
4891 ret = dev->netdev_ops->ndo_init(dev);
4892 if (ret) {
4893 if (ret > 0)
4894 ret = -EIO;
4895 goto out;
4896 }
4897 }
4898
4899 ret = dev_get_valid_name(net, dev->name, dev->name, 0);
4900 if (ret)
4901 goto err_uninit;
4902
4903 dev->ifindex = dev_new_index(net);
4904 if (dev->iflink == -1)
4905 dev->iflink = dev->ifindex;
4906
4907 /* Fix illegal checksum combinations */
4908 if ((dev->features & NETIF_F_HW_CSUM) &&
4909 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4910 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4911 dev->name);
4912 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4913 }
4914
4915 if ((dev->features & NETIF_F_NO_CSUM) &&
4916 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4917 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4918 dev->name);
4919 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4920 }
4921
4922 dev->features = netdev_fix_features(dev->features, dev->name);
4923
4924 /* Enable software GSO if SG is supported. */
4925 if (dev->features & NETIF_F_SG)
4926 dev->features |= NETIF_F_GSO;
4927
4928 netdev_initialize_kobject(dev);
4929
4930 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
4931 ret = notifier_to_errno(ret);
4932 if (ret)
4933 goto err_uninit;
4934
4935 ret = netdev_register_kobject(dev);
4936 if (ret)
4937 goto err_uninit;
4938 dev->reg_state = NETREG_REGISTERED;
4939
4940 /*
4941 * Default initial state at registry is that the
4942 * device is present.
4943 */
4944
4945 set_bit(__LINK_STATE_PRESENT, &dev->state);
4946
4947 dev_init_scheduler(dev);
4948 dev_hold(dev);
4949 list_netdevice(dev);
4950
4951 /* Notify protocols, that a new device appeared. */
4952 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4953 ret = notifier_to_errno(ret);
4954 if (ret) {
4955 rollback_registered(dev);
4956 dev->reg_state = NETREG_UNREGISTERED;
4957 }
4958 /*
4959 * Prevent userspace races by waiting until the network
4960 * device is fully setup before sending notifications.
4961 */
4962 if (!dev->rtnl_link_ops ||
4963 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4964 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
4965
4966out:
4967 return ret;
4968
4969err_uninit:
4970 if (dev->netdev_ops->ndo_uninit)
4971 dev->netdev_ops->ndo_uninit(dev);
4972 goto out;
4973}
4974EXPORT_SYMBOL(register_netdevice);
4975
4976/**
4977 * init_dummy_netdev - init a dummy network device for NAPI
4978 * @dev: device to init
4979 *
4980 * This takes a network device structure and initialize the minimum
4981 * amount of fields so it can be used to schedule NAPI polls without
4982 * registering a full blown interface. This is to be used by drivers
4983 * that need to tie several hardware interfaces to a single NAPI
4984 * poll scheduler due to HW limitations.
4985 */
4986int init_dummy_netdev(struct net_device *dev)
4987{
4988 /* Clear everything. Note we don't initialize spinlocks
4989 * are they aren't supposed to be taken by any of the
4990 * NAPI code and this dummy netdev is supposed to be
4991 * only ever used for NAPI polls
4992 */
4993 memset(dev, 0, sizeof(struct net_device));
4994
4995 /* make sure we BUG if trying to hit standard
4996 * register/unregister code path
4997 */
4998 dev->reg_state = NETREG_DUMMY;
4999
5000 /* initialize the ref count */
5001 atomic_set(&dev->refcnt, 1);
5002
5003 /* NAPI wants this */
5004 INIT_LIST_HEAD(&dev->napi_list);
5005
5006 /* a dummy interface is started by default */
5007 set_bit(__LINK_STATE_PRESENT, &dev->state);
5008 set_bit(__LINK_STATE_START, &dev->state);
5009
5010 return 0;
5011}
5012EXPORT_SYMBOL_GPL(init_dummy_netdev);
5013
5014
5015/**
5016 * register_netdev - register a network device
5017 * @dev: device to register
5018 *
5019 * Take a completed network device structure and add it to the kernel
5020 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5021 * chain. 0 is returned on success. A negative errno code is returned
5022 * on a failure to set up the device, or if the name is a duplicate.
5023 *
5024 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5025 * and expands the device name if you passed a format string to
5026 * alloc_netdev.
5027 */
5028int register_netdev(struct net_device *dev)
5029{
5030 int err;
5031
5032 rtnl_lock();
5033
5034 /*
5035 * If the name is a format string the caller wants us to do a
5036 * name allocation.
5037 */
5038 if (strchr(dev->name, '%')) {
5039 err = dev_alloc_name(dev, dev->name);
5040 if (err < 0)
5041 goto out;
5042 }
5043
5044 err = register_netdevice(dev);
5045out:
5046 rtnl_unlock();
5047 return err;
5048}
5049EXPORT_SYMBOL(register_netdev);
5050
5051/*
5052 * netdev_wait_allrefs - wait until all references are gone.
5053 *
5054 * This is called when unregistering network devices.
5055 *
5056 * Any protocol or device that holds a reference should register
5057 * for netdevice notification, and cleanup and put back the
5058 * reference if they receive an UNREGISTER event.
5059 * We can get stuck here if buggy protocols don't correctly
5060 * call dev_put.
5061 */
5062static void netdev_wait_allrefs(struct net_device *dev)
5063{
5064 unsigned long rebroadcast_time, warning_time;
5065
5066 linkwatch_forget_dev(dev);
5067
5068 rebroadcast_time = warning_time = jiffies;
5069 while (atomic_read(&dev->refcnt) != 0) {
5070 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5071 rtnl_lock();
5072
5073 /* Rebroadcast unregister notification */
5074 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5075 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5076 * should have already handle it the first time */
5077
5078 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5079 &dev->state)) {
5080 /* We must not have linkwatch events
5081 * pending on unregister. If this
5082 * happens, we simply run the queue
5083 * unscheduled, resulting in a noop
5084 * for this device.
5085 */
5086 linkwatch_run_queue();
5087 }
5088
5089 __rtnl_unlock();
5090
5091 rebroadcast_time = jiffies;
5092 }
5093
5094 msleep(250);
5095
5096 if (time_after(jiffies, warning_time + 10 * HZ)) {
5097 printk(KERN_EMERG "unregister_netdevice: "
5098 "waiting for %s to become free. Usage "
5099 "count = %d\n",
5100 dev->name, atomic_read(&dev->refcnt));
5101 warning_time = jiffies;
5102 }
5103 }
5104}
5105
5106/* The sequence is:
5107 *
5108 * rtnl_lock();
5109 * ...
5110 * register_netdevice(x1);
5111 * register_netdevice(x2);
5112 * ...
5113 * unregister_netdevice(y1);
5114 * unregister_netdevice(y2);
5115 * ...
5116 * rtnl_unlock();
5117 * free_netdev(y1);
5118 * free_netdev(y2);
5119 *
5120 * We are invoked by rtnl_unlock().
5121 * This allows us to deal with problems:
5122 * 1) We can delete sysfs objects which invoke hotplug
5123 * without deadlocking with linkwatch via keventd.
5124 * 2) Since we run with the RTNL semaphore not held, we can sleep
5125 * safely in order to wait for the netdev refcnt to drop to zero.
5126 *
5127 * We must not return until all unregister events added during
5128 * the interval the lock was held have been completed.
5129 */
5130void netdev_run_todo(void)
5131{
5132 struct list_head list;
5133
5134 /* Snapshot list, allow later requests */
5135 list_replace_init(&net_todo_list, &list);
5136
5137 __rtnl_unlock();
5138
5139 while (!list_empty(&list)) {
5140 struct net_device *dev
5141 = list_first_entry(&list, struct net_device, todo_list);
5142 list_del(&dev->todo_list);
5143
5144 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5145 printk(KERN_ERR "network todo '%s' but state %d\n",
5146 dev->name, dev->reg_state);
5147 dump_stack();
5148 continue;
5149 }
5150
5151 dev->reg_state = NETREG_UNREGISTERED;
5152
5153 on_each_cpu(flush_backlog, dev, 1);
5154
5155 netdev_wait_allrefs(dev);
5156
5157 /* paranoia */
5158 BUG_ON(atomic_read(&dev->refcnt));
5159 WARN_ON(dev->ip_ptr);
5160 WARN_ON(dev->ip6_ptr);
5161 WARN_ON(dev->dn_ptr);
5162
5163 if (dev->destructor)
5164 dev->destructor(dev);
5165
5166 /* Free network device */
5167 kobject_put(&dev->dev.kobj);
5168 }
5169}
5170
5171/**
5172 * dev_txq_stats_fold - fold tx_queues stats
5173 * @dev: device to get statistics from
5174 * @stats: struct net_device_stats to hold results
5175 */
5176void dev_txq_stats_fold(const struct net_device *dev,
5177 struct net_device_stats *stats)
5178{
5179 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5180 unsigned int i;
5181 struct netdev_queue *txq;
5182
5183 for (i = 0; i < dev->num_tx_queues; i++) {
5184 txq = netdev_get_tx_queue(dev, i);
5185 tx_bytes += txq->tx_bytes;
5186 tx_packets += txq->tx_packets;
5187 tx_dropped += txq->tx_dropped;
5188 }
5189 if (tx_bytes || tx_packets || tx_dropped) {
5190 stats->tx_bytes = tx_bytes;
5191 stats->tx_packets = tx_packets;
5192 stats->tx_dropped = tx_dropped;
5193 }
5194}
5195EXPORT_SYMBOL(dev_txq_stats_fold);
5196
5197/**
5198 * dev_get_stats - get network device statistics
5199 * @dev: device to get statistics from
5200 *
5201 * Get network statistics from device. The device driver may provide
5202 * its own method by setting dev->netdev_ops->get_stats; otherwise
5203 * the internal statistics structure is used.
5204 */
5205const struct net_device_stats *dev_get_stats(struct net_device *dev)
5206{
5207 const struct net_device_ops *ops = dev->netdev_ops;
5208
5209 if (ops->ndo_get_stats)
5210 return ops->ndo_get_stats(dev);
5211
5212 dev_txq_stats_fold(dev, &dev->stats);
5213 return &dev->stats;
5214}
5215EXPORT_SYMBOL(dev_get_stats);
5216
5217static void netdev_init_one_queue(struct net_device *dev,
5218 struct netdev_queue *queue,
5219 void *_unused)
5220{
5221 queue->dev = dev;
5222}
5223
5224static void netdev_init_queues(struct net_device *dev)
5225{
5226 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5227 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5228 spin_lock_init(&dev->tx_global_lock);
5229}
5230
5231/**
5232 * alloc_netdev_mq - allocate network device
5233 * @sizeof_priv: size of private data to allocate space for
5234 * @name: device name format string
5235 * @setup: callback to initialize device
5236 * @queue_count: the number of subqueues to allocate
5237 *
5238 * Allocates a struct net_device with private data area for driver use
5239 * and performs basic initialization. Also allocates subquue structs
5240 * for each queue on the device at the end of the netdevice.
5241 */
5242struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5243 void (*setup)(struct net_device *), unsigned int queue_count)
5244{
5245 struct netdev_queue *tx;
5246 struct net_device *dev;
5247 size_t alloc_size;
5248 struct net_device *p;
5249#ifdef CONFIG_RPS
5250 struct netdev_rx_queue *rx;
5251 int i;
5252#endif
5253
5254 BUG_ON(strlen(name) >= sizeof(dev->name));
5255
5256 alloc_size = sizeof(struct net_device);
5257 if (sizeof_priv) {
5258 /* ensure 32-byte alignment of private area */
5259 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5260 alloc_size += sizeof_priv;
5261 }
5262 /* ensure 32-byte alignment of whole construct */
5263 alloc_size += NETDEV_ALIGN - 1;
5264
5265 p = kzalloc(alloc_size, GFP_KERNEL);
5266 if (!p) {
5267 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5268 return NULL;
5269 }
5270
5271 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5272 if (!tx) {
5273 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5274 "tx qdiscs.\n");
5275 goto free_p;
5276 }
5277
5278#ifdef CONFIG_RPS
5279 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5280 if (!rx) {
5281 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5282 "rx queues.\n");
5283 goto free_tx;
5284 }
5285
5286 atomic_set(&rx->count, queue_count);
5287
5288 /*
5289 * Set a pointer to first element in the array which holds the
5290 * reference count.
5291 */
5292 for (i = 0; i < queue_count; i++)
5293 rx[i].first = rx;
5294#endif
5295
5296 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5297 dev->padded = (char *)dev - (char *)p;
5298
5299 if (dev_addr_init(dev))
5300 goto free_rx;
5301
5302 dev_mc_init(dev);
5303 dev_uc_init(dev);
5304
5305 dev_net_set(dev, &init_net);
5306
5307 dev->_tx = tx;
5308 dev->num_tx_queues = queue_count;
5309 dev->real_num_tx_queues = queue_count;
5310
5311#ifdef CONFIG_RPS
5312 dev->_rx = rx;
5313 dev->num_rx_queues = queue_count;
5314#endif
5315
5316 dev->gso_max_size = GSO_MAX_SIZE;
5317
5318 netdev_init_queues(dev);
5319
5320 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5321 dev->ethtool_ntuple_list.count = 0;
5322 INIT_LIST_HEAD(&dev->napi_list);
5323 INIT_LIST_HEAD(&dev->unreg_list);
5324 INIT_LIST_HEAD(&dev->link_watch_list);
5325 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5326 setup(dev);
5327 strcpy(dev->name, name);
5328 return dev;
5329
5330free_rx:
5331#ifdef CONFIG_RPS
5332 kfree(rx);
5333free_tx:
5334#endif
5335 kfree(tx);
5336free_p:
5337 kfree(p);
5338 return NULL;
5339}
5340EXPORT_SYMBOL(alloc_netdev_mq);
5341
5342/**
5343 * free_netdev - free network device
5344 * @dev: device
5345 *
5346 * This function does the last stage of destroying an allocated device
5347 * interface. The reference to the device object is released.
5348 * If this is the last reference then it will be freed.
5349 */
5350void free_netdev(struct net_device *dev)
5351{
5352 struct napi_struct *p, *n;
5353
5354 release_net(dev_net(dev));
5355
5356 kfree(dev->_tx);
5357
5358 /* Flush device addresses */
5359 dev_addr_flush(dev);
5360
5361 /* Clear ethtool n-tuple list */
5362 ethtool_ntuple_flush(dev);
5363
5364 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5365 netif_napi_del(p);
5366
5367 /* Compatibility with error handling in drivers */
5368 if (dev->reg_state == NETREG_UNINITIALIZED) {
5369 kfree((char *)dev - dev->padded);
5370 return;
5371 }
5372
5373 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5374 dev->reg_state = NETREG_RELEASED;
5375
5376 /* will free via device release */
5377 put_device(&dev->dev);
5378}
5379EXPORT_SYMBOL(free_netdev);
5380
5381/**
5382 * synchronize_net - Synchronize with packet receive processing
5383 *
5384 * Wait for packets currently being received to be done.
5385 * Does not block later packets from starting.
5386 */
5387void synchronize_net(void)
5388{
5389 might_sleep();
5390 synchronize_rcu();
5391}
5392EXPORT_SYMBOL(synchronize_net);
5393
5394/**
5395 * unregister_netdevice_queue - remove device from the kernel
5396 * @dev: device
5397 * @head: list
5398 *
5399 * This function shuts down a device interface and removes it
5400 * from the kernel tables.
5401 * If head not NULL, device is queued to be unregistered later.
5402 *
5403 * Callers must hold the rtnl semaphore. You may want
5404 * unregister_netdev() instead of this.
5405 */
5406
5407void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5408{
5409 ASSERT_RTNL();
5410
5411 if (head) {
5412 list_move_tail(&dev->unreg_list, head);
5413 } else {
5414 rollback_registered(dev);
5415 /* Finish processing unregister after unlock */
5416 net_set_todo(dev);
5417 }
5418}
5419EXPORT_SYMBOL(unregister_netdevice_queue);
5420
5421/**
5422 * unregister_netdevice_many - unregister many devices
5423 * @head: list of devices
5424 */
5425void unregister_netdevice_many(struct list_head *head)
5426{
5427 struct net_device *dev;
5428
5429 if (!list_empty(head)) {
5430 rollback_registered_many(head);
5431 list_for_each_entry(dev, head, unreg_list)
5432 net_set_todo(dev);
5433 }
5434}
5435EXPORT_SYMBOL(unregister_netdevice_many);
5436
5437/**
5438 * unregister_netdev - remove device from the kernel
5439 * @dev: device
5440 *
5441 * This function shuts down a device interface and removes it
5442 * from the kernel tables.
5443 *
5444 * This is just a wrapper for unregister_netdevice that takes
5445 * the rtnl semaphore. In general you want to use this and not
5446 * unregister_netdevice.
5447 */
5448void unregister_netdev(struct net_device *dev)
5449{
5450 rtnl_lock();
5451 unregister_netdevice(dev);
5452 rtnl_unlock();
5453}
5454EXPORT_SYMBOL(unregister_netdev);
5455
5456/**
5457 * dev_change_net_namespace - move device to different nethost namespace
5458 * @dev: device
5459 * @net: network namespace
5460 * @pat: If not NULL name pattern to try if the current device name
5461 * is already taken in the destination network namespace.
5462 *
5463 * This function shuts down a device interface and moves it
5464 * to a new network namespace. On success 0 is returned, on
5465 * a failure a netagive errno code is returned.
5466 *
5467 * Callers must hold the rtnl semaphore.
5468 */
5469
5470int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5471{
5472 int err;
5473
5474 ASSERT_RTNL();
5475
5476 /* Don't allow namespace local devices to be moved. */
5477 err = -EINVAL;
5478 if (dev->features & NETIF_F_NETNS_LOCAL)
5479 goto out;
5480
5481#ifdef CONFIG_SYSFS
5482 /* Don't allow real devices to be moved when sysfs
5483 * is enabled.
5484 */
5485 err = -EINVAL;
5486 if (dev->dev.parent)
5487 goto out;
5488#endif
5489
5490 /* Ensure the device has been registrered */
5491 err = -EINVAL;
5492 if (dev->reg_state != NETREG_REGISTERED)
5493 goto out;
5494
5495 /* Get out if there is nothing todo */
5496 err = 0;
5497 if (net_eq(dev_net(dev), net))
5498 goto out;
5499
5500 /* Pick the destination device name, and ensure
5501 * we can use it in the destination network namespace.
5502 */
5503 err = -EEXIST;
5504 if (__dev_get_by_name(net, dev->name)) {
5505 /* We get here if we can't use the current device name */
5506 if (!pat)
5507 goto out;
5508 if (dev_get_valid_name(net, pat, dev->name, 1))
5509 goto out;
5510 }
5511
5512 /*
5513 * And now a mini version of register_netdevice unregister_netdevice.
5514 */
5515
5516 /* If device is running close it first. */
5517 dev_close(dev);
5518
5519 /* And unlink it from device chain */
5520 err = -ENODEV;
5521 unlist_netdevice(dev);
5522
5523 synchronize_net();
5524
5525 /* Shutdown queueing discipline. */
5526 dev_shutdown(dev);
5527
5528 /* Notify protocols, that we are about to destroy
5529 this device. They should clean all the things.
5530 */
5531 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5532 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5533
5534 /*
5535 * Flush the unicast and multicast chains
5536 */
5537 dev_uc_flush(dev);
5538 dev_mc_flush(dev);
5539
5540 netdev_unregister_kobject(dev);
5541
5542 /* Actually switch the network namespace */
5543 dev_net_set(dev, net);
5544
5545 /* If there is an ifindex conflict assign a new one */
5546 if (__dev_get_by_index(net, dev->ifindex)) {
5547 int iflink = (dev->iflink == dev->ifindex);
5548 dev->ifindex = dev_new_index(net);
5549 if (iflink)
5550 dev->iflink = dev->ifindex;
5551 }
5552
5553 /* Fixup kobjects */
5554 err = netdev_register_kobject(dev);
5555 WARN_ON(err);
5556
5557 /* Add the device back in the hashes */
5558 list_netdevice(dev);
5559
5560 /* Notify protocols, that a new device appeared. */
5561 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5562
5563 /*
5564 * Prevent userspace races by waiting until the network
5565 * device is fully setup before sending notifications.
5566 */
5567 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5568
5569 synchronize_net();
5570 err = 0;
5571out:
5572 return err;
5573}
5574EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5575
5576static int dev_cpu_callback(struct notifier_block *nfb,
5577 unsigned long action,
5578 void *ocpu)
5579{
5580 struct sk_buff **list_skb;
5581 struct Qdisc **list_net;
5582 struct sk_buff *skb;
5583 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5584 struct softnet_data *sd, *oldsd;
5585
5586 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5587 return NOTIFY_OK;
5588
5589 local_irq_disable();
5590 cpu = smp_processor_id();
5591 sd = &per_cpu(softnet_data, cpu);
5592 oldsd = &per_cpu(softnet_data, oldcpu);
5593
5594 /* Find end of our completion_queue. */
5595 list_skb = &sd->completion_queue;
5596 while (*list_skb)
5597 list_skb = &(*list_skb)->next;
5598 /* Append completion queue from offline CPU. */
5599 *list_skb = oldsd->completion_queue;
5600 oldsd->completion_queue = NULL;
5601
5602 /* Find end of our output_queue. */
5603 list_net = &sd->output_queue;
5604 while (*list_net)
5605 list_net = &(*list_net)->next_sched;
5606 /* Append output queue from offline CPU. */
5607 *list_net = oldsd->output_queue;
5608 oldsd->output_queue = NULL;
5609
5610 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5611 local_irq_enable();
5612
5613 /* Process offline CPU's input_pkt_queue */
5614 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5615 netif_rx(skb);
5616 incr_input_queue_head(oldsd);
5617 }
5618
5619 return NOTIFY_OK;
5620}
5621
5622
5623/**
5624 * netdev_increment_features - increment feature set by one
5625 * @all: current feature set
5626 * @one: new feature set
5627 * @mask: mask feature set
5628 *
5629 * Computes a new feature set after adding a device with feature set
5630 * @one to the master device with current feature set @all. Will not
5631 * enable anything that is off in @mask. Returns the new feature set.
5632 */
5633unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5634 unsigned long mask)
5635{
5636 /* If device needs checksumming, downgrade to it. */
5637 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5638 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5639 else if (mask & NETIF_F_ALL_CSUM) {
5640 /* If one device supports v4/v6 checksumming, set for all. */
5641 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5642 !(all & NETIF_F_GEN_CSUM)) {
5643 all &= ~NETIF_F_ALL_CSUM;
5644 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5645 }
5646
5647 /* If one device supports hw checksumming, set for all. */
5648 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5649 all &= ~NETIF_F_ALL_CSUM;
5650 all |= NETIF_F_HW_CSUM;
5651 }
5652 }
5653
5654 one |= NETIF_F_ALL_CSUM;
5655
5656 one |= all & NETIF_F_ONE_FOR_ALL;
5657 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5658 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5659
5660 return all;
5661}
5662EXPORT_SYMBOL(netdev_increment_features);
5663
5664static struct hlist_head *netdev_create_hash(void)
5665{
5666 int i;
5667 struct hlist_head *hash;
5668
5669 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5670 if (hash != NULL)
5671 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5672 INIT_HLIST_HEAD(&hash[i]);
5673
5674 return hash;
5675}
5676
5677/* Initialize per network namespace state */
5678static int __net_init netdev_init(struct net *net)
5679{
5680 INIT_LIST_HEAD(&net->dev_base_head);
5681
5682 net->dev_name_head = netdev_create_hash();
5683 if (net->dev_name_head == NULL)
5684 goto err_name;
5685
5686 net->dev_index_head = netdev_create_hash();
5687 if (net->dev_index_head == NULL)
5688 goto err_idx;
5689
5690 return 0;
5691
5692err_idx:
5693 kfree(net->dev_name_head);
5694err_name:
5695 return -ENOMEM;
5696}
5697
5698/**
5699 * netdev_drivername - network driver for the device
5700 * @dev: network device
5701 * @buffer: buffer for resulting name
5702 * @len: size of buffer
5703 *
5704 * Determine network driver for device.
5705 */
5706char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5707{
5708 const struct device_driver *driver;
5709 const struct device *parent;
5710
5711 if (len <= 0 || !buffer)
5712 return buffer;
5713 buffer[0] = 0;
5714
5715 parent = dev->dev.parent;
5716
5717 if (!parent)
5718 return buffer;
5719
5720 driver = parent->driver;
5721 if (driver && driver->name)
5722 strlcpy(buffer, driver->name, len);
5723 return buffer;
5724}
5725
5726static void __net_exit netdev_exit(struct net *net)
5727{
5728 kfree(net->dev_name_head);
5729 kfree(net->dev_index_head);
5730}
5731
5732static struct pernet_operations __net_initdata netdev_net_ops = {
5733 .init = netdev_init,
5734 .exit = netdev_exit,
5735};
5736
5737static void __net_exit default_device_exit(struct net *net)
5738{
5739 struct net_device *dev, *aux;
5740 /*
5741 * Push all migratable network devices back to the
5742 * initial network namespace
5743 */
5744 rtnl_lock();
5745 for_each_netdev_safe(net, dev, aux) {
5746 int err;
5747 char fb_name[IFNAMSIZ];
5748
5749 /* Ignore unmoveable devices (i.e. loopback) */
5750 if (dev->features & NETIF_F_NETNS_LOCAL)
5751 continue;
5752
5753 /* Leave virtual devices for the generic cleanup */
5754 if (dev->rtnl_link_ops)
5755 continue;
5756
5757 /* Push remaing network devices to init_net */
5758 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5759 err = dev_change_net_namespace(dev, &init_net, fb_name);
5760 if (err) {
5761 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5762 __func__, dev->name, err);
5763 BUG();
5764 }
5765 }
5766 rtnl_unlock();
5767}
5768
5769static void __net_exit default_device_exit_batch(struct list_head *net_list)
5770{
5771 /* At exit all network devices most be removed from a network
5772 * namespace. Do this in the reverse order of registeration.
5773 * Do this across as many network namespaces as possible to
5774 * improve batching efficiency.
5775 */
5776 struct net_device *dev;
5777 struct net *net;
5778 LIST_HEAD(dev_kill_list);
5779
5780 rtnl_lock();
5781 list_for_each_entry(net, net_list, exit_list) {
5782 for_each_netdev_reverse(net, dev) {
5783 if (dev->rtnl_link_ops)
5784 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5785 else
5786 unregister_netdevice_queue(dev, &dev_kill_list);
5787 }
5788 }
5789 unregister_netdevice_many(&dev_kill_list);
5790 rtnl_unlock();
5791}
5792
5793static struct pernet_operations __net_initdata default_device_ops = {
5794 .exit = default_device_exit,
5795 .exit_batch = default_device_exit_batch,
5796};
5797
5798/*
5799 * Initialize the DEV module. At boot time this walks the device list and
5800 * unhooks any devices that fail to initialise (normally hardware not
5801 * present) and leaves us with a valid list of present and active devices.
5802 *
5803 */
5804
5805/*
5806 * This is called single threaded during boot, so no need
5807 * to take the rtnl semaphore.
5808 */
5809static int __init net_dev_init(void)
5810{
5811 int i, rc = -ENOMEM;
5812
5813 BUG_ON(!dev_boot_phase);
5814
5815 if (dev_proc_init())
5816 goto out;
5817
5818 if (netdev_kobject_init())
5819 goto out;
5820
5821 INIT_LIST_HEAD(&ptype_all);
5822 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5823 INIT_LIST_HEAD(&ptype_base[i]);
5824
5825 if (register_pernet_subsys(&netdev_net_ops))
5826 goto out;
5827
5828 /*
5829 * Initialise the packet receive queues.
5830 */
5831
5832 for_each_possible_cpu(i) {
5833 struct softnet_data *queue;
5834
5835 queue = &per_cpu(softnet_data, i);
5836 skb_queue_head_init(&queue->input_pkt_queue);
5837 queue->completion_queue = NULL;
5838 INIT_LIST_HEAD(&queue->poll_list);
5839
5840#ifdef CONFIG_RPS
5841 queue->csd.func = trigger_softirq;
5842 queue->csd.info = queue;
5843 queue->csd.flags = 0;
5844#endif
5845
5846 queue->backlog.poll = process_backlog;
5847 queue->backlog.weight = weight_p;
5848 queue->backlog.gro_list = NULL;
5849 queue->backlog.gro_count = 0;
5850 }
5851
5852 dev_boot_phase = 0;
5853
5854 /* The loopback device is special if any other network devices
5855 * is present in a network namespace the loopback device must
5856 * be present. Since we now dynamically allocate and free the
5857 * loopback device ensure this invariant is maintained by
5858 * keeping the loopback device as the first device on the
5859 * list of network devices. Ensuring the loopback devices
5860 * is the first device that appears and the last network device
5861 * that disappears.
5862 */
5863 if (register_pernet_device(&loopback_net_ops))
5864 goto out;
5865
5866 if (register_pernet_device(&default_device_ops))
5867 goto out;
5868
5869 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5870 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5871
5872 hotcpu_notifier(dev_cpu_callback, 0);
5873 dst_init();
5874 dev_mcast_init();
5875 rc = 0;
5876out:
5877 return rc;
5878}
5879
5880subsys_initcall(net_dev_init);
5881
5882static int __init initialize_hashrnd(void)
5883{
5884 get_random_bytes(&hashrnd, sizeof(hashrnd));
5885 return 0;
5886}
5887
5888late_initcall_sync(initialize_hashrnd);
5889