]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - net/core/dev.c
[NET]: Validate device addr prior to interface-up
[net-next-2.6.git] / net / core / dev.c
... / ...
CommitLineData
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <asm/system.h>
77#include <linux/bitops.h>
78#include <linux/capability.h>
79#include <linux/cpu.h>
80#include <linux/types.h>
81#include <linux/kernel.h>
82#include <linux/sched.h>
83#include <linux/mutex.h>
84#include <linux/string.h>
85#include <linux/mm.h>
86#include <linux/socket.h>
87#include <linux/sockios.h>
88#include <linux/errno.h>
89#include <linux/interrupt.h>
90#include <linux/if_ether.h>
91#include <linux/netdevice.h>
92#include <linux/etherdevice.h>
93#include <linux/notifier.h>
94#include <linux/skbuff.h>
95#include <net/net_namespace.h>
96#include <net/sock.h>
97#include <linux/rtnetlink.h>
98#include <linux/proc_fs.h>
99#include <linux/seq_file.h>
100#include <linux/stat.h>
101#include <linux/if_bridge.h>
102#include <linux/if_macvlan.h>
103#include <net/dst.h>
104#include <net/pkt_sched.h>
105#include <net/checksum.h>
106#include <linux/highmem.h>
107#include <linux/init.h>
108#include <linux/kmod.h>
109#include <linux/module.h>
110#include <linux/kallsyms.h>
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
114#include <net/wext.h>
115#include <net/iw_handler.h>
116#include <asm/current.h>
117#include <linux/audit.h>
118#include <linux/dmaengine.h>
119#include <linux/err.h>
120#include <linux/ctype.h>
121#include <linux/if_arp.h>
122
123/*
124 * The list of packet types we will receive (as opposed to discard)
125 * and the routines to invoke.
126 *
127 * Why 16. Because with 16 the only overlap we get on a hash of the
128 * low nibble of the protocol value is RARP/SNAP/X.25.
129 *
130 * NOTE: That is no longer true with the addition of VLAN tags. Not
131 * sure which should go first, but I bet it won't make much
132 * difference if we are running VLANs. The good news is that
133 * this protocol won't be in the list unless compiled in, so
134 * the average user (w/out VLANs) will not be adversely affected.
135 * --BLG
136 *
137 * 0800 IP
138 * 8100 802.1Q VLAN
139 * 0001 802.3
140 * 0002 AX.25
141 * 0004 802.2
142 * 8035 RARP
143 * 0005 SNAP
144 * 0805 X.25
145 * 0806 ARP
146 * 8137 IPX
147 * 0009 Localtalk
148 * 86DD IPv6
149 */
150
151static DEFINE_SPINLOCK(ptype_lock);
152static struct list_head ptype_base[16] __read_mostly; /* 16 way hashed list */
153static struct list_head ptype_all __read_mostly; /* Taps */
154
155#ifdef CONFIG_NET_DMA
156struct net_dma {
157 struct dma_client client;
158 spinlock_t lock;
159 cpumask_t channel_mask;
160 struct dma_chan *channels[NR_CPUS];
161};
162
163static enum dma_state_client
164netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
165 enum dma_state state);
166
167static struct net_dma net_dma = {
168 .client = {
169 .event_callback = netdev_dma_event,
170 },
171};
172#endif
173
174/*
175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
176 * semaphore.
177 *
178 * Pure readers hold dev_base_lock for reading.
179 *
180 * Writers must hold the rtnl semaphore while they loop through the
181 * dev_base_head list, and hold dev_base_lock for writing when they do the
182 * actual updates. This allows pure readers to access the list even
183 * while a writer is preparing to update it.
184 *
185 * To put it another way, dev_base_lock is held for writing only to
186 * protect against pure readers; the rtnl semaphore provides the
187 * protection against other writers.
188 *
189 * See, for example usages, register_netdevice() and
190 * unregister_netdevice(), which must be called with the rtnl
191 * semaphore held.
192 */
193DEFINE_RWLOCK(dev_base_lock);
194
195EXPORT_SYMBOL(dev_base_lock);
196
197#define NETDEV_HASHBITS 8
198#define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
199
200static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201{
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
204}
205
206static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207{
208 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
209}
210
211/* Device list insertion */
212static int list_netdevice(struct net_device *dev)
213{
214 struct net *net = dev->nd_net;
215
216 ASSERT_RTNL();
217
218 write_lock_bh(&dev_base_lock);
219 list_add_tail(&dev->dev_list, &net->dev_base_head);
220 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
221 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
222 write_unlock_bh(&dev_base_lock);
223 return 0;
224}
225
226/* Device list removal */
227static void unlist_netdevice(struct net_device *dev)
228{
229 ASSERT_RTNL();
230
231 /* Unlink dev from the device chain */
232 write_lock_bh(&dev_base_lock);
233 list_del(&dev->dev_list);
234 hlist_del(&dev->name_hlist);
235 hlist_del(&dev->index_hlist);
236 write_unlock_bh(&dev_base_lock);
237}
238
239/*
240 * Our notifier list
241 */
242
243static RAW_NOTIFIER_HEAD(netdev_chain);
244
245/*
246 * Device drivers call our routines to queue packets here. We empty the
247 * queue in the local softnet handler.
248 */
249
250DEFINE_PER_CPU(struct softnet_data, softnet_data);
251
252extern int netdev_kobject_init(void);
253extern int netdev_register_kobject(struct net_device *);
254extern void netdev_unregister_kobject(struct net_device *);
255
256#ifdef CONFIG_DEBUG_LOCK_ALLOC
257/*
258 * register_netdevice() inits dev->_xmit_lock and sets lockdep class
259 * according to dev->type
260 */
261static const unsigned short netdev_lock_type[] =
262 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
263 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
264 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
265 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
266 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
267 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
268 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
269 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
270 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
271 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
272 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
273 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
274 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
275 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
276 ARPHRD_NONE};
277
278static const char *netdev_lock_name[] =
279 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
280 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
281 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
282 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
283 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
284 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
285 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
286 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
287 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
288 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
289 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
290 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
291 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
292 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
293 "_xmit_NONE"};
294
295static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
296
297static inline unsigned short netdev_lock_pos(unsigned short dev_type)
298{
299 int i;
300
301 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
302 if (netdev_lock_type[i] == dev_type)
303 return i;
304 /* the last key is used by default */
305 return ARRAY_SIZE(netdev_lock_type) - 1;
306}
307
308static inline void netdev_set_lockdep_class(spinlock_t *lock,
309 unsigned short dev_type)
310{
311 int i;
312
313 i = netdev_lock_pos(dev_type);
314 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
315 netdev_lock_name[i]);
316}
317#else
318static inline void netdev_set_lockdep_class(spinlock_t *lock,
319 unsigned short dev_type)
320{
321}
322#endif
323
324/*******************************************************************************
325
326 Protocol management and registration routines
327
328*******************************************************************************/
329
330/*
331 * Add a protocol ID to the list. Now that the input handler is
332 * smarter we can dispense with all the messy stuff that used to be
333 * here.
334 *
335 * BEWARE!!! Protocol handlers, mangling input packets,
336 * MUST BE last in hash buckets and checking protocol handlers
337 * MUST start from promiscuous ptype_all chain in net_bh.
338 * It is true now, do not change it.
339 * Explanation follows: if protocol handler, mangling packet, will
340 * be the first on list, it is not able to sense, that packet
341 * is cloned and should be copied-on-write, so that it will
342 * change it and subsequent readers will get broken packet.
343 * --ANK (980803)
344 */
345
346/**
347 * dev_add_pack - add packet handler
348 * @pt: packet type declaration
349 *
350 * Add a protocol handler to the networking stack. The passed &packet_type
351 * is linked into kernel lists and may not be freed until it has been
352 * removed from the kernel lists.
353 *
354 * This call does not sleep therefore it can not
355 * guarantee all CPU's that are in middle of receiving packets
356 * will see the new packet type (until the next received packet).
357 */
358
359void dev_add_pack(struct packet_type *pt)
360{
361 int hash;
362
363 spin_lock_bh(&ptype_lock);
364 if (pt->type == htons(ETH_P_ALL))
365 list_add_rcu(&pt->list, &ptype_all);
366 else {
367 hash = ntohs(pt->type) & 15;
368 list_add_rcu(&pt->list, &ptype_base[hash]);
369 }
370 spin_unlock_bh(&ptype_lock);
371}
372
373/**
374 * __dev_remove_pack - remove packet handler
375 * @pt: packet type declaration
376 *
377 * Remove a protocol handler that was previously added to the kernel
378 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
379 * from the kernel lists and can be freed or reused once this function
380 * returns.
381 *
382 * The packet type might still be in use by receivers
383 * and must not be freed until after all the CPU's have gone
384 * through a quiescent state.
385 */
386void __dev_remove_pack(struct packet_type *pt)
387{
388 struct list_head *head;
389 struct packet_type *pt1;
390
391 spin_lock_bh(&ptype_lock);
392
393 if (pt->type == htons(ETH_P_ALL))
394 head = &ptype_all;
395 else
396 head = &ptype_base[ntohs(pt->type) & 15];
397
398 list_for_each_entry(pt1, head, list) {
399 if (pt == pt1) {
400 list_del_rcu(&pt->list);
401 goto out;
402 }
403 }
404
405 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
406out:
407 spin_unlock_bh(&ptype_lock);
408}
409/**
410 * dev_remove_pack - remove packet handler
411 * @pt: packet type declaration
412 *
413 * Remove a protocol handler that was previously added to the kernel
414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
415 * from the kernel lists and can be freed or reused once this function
416 * returns.
417 *
418 * This call sleeps to guarantee that no CPU is looking at the packet
419 * type after return.
420 */
421void dev_remove_pack(struct packet_type *pt)
422{
423 __dev_remove_pack(pt);
424
425 synchronize_net();
426}
427
428/******************************************************************************
429
430 Device Boot-time Settings Routines
431
432*******************************************************************************/
433
434/* Boot time configuration table */
435static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
436
437/**
438 * netdev_boot_setup_add - add new setup entry
439 * @name: name of the device
440 * @map: configured settings for the device
441 *
442 * Adds new setup entry to the dev_boot_setup list. The function
443 * returns 0 on error and 1 on success. This is a generic routine to
444 * all netdevices.
445 */
446static int netdev_boot_setup_add(char *name, struct ifmap *map)
447{
448 struct netdev_boot_setup *s;
449 int i;
450
451 s = dev_boot_setup;
452 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
453 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
454 memset(s[i].name, 0, sizeof(s[i].name));
455 strcpy(s[i].name, name);
456 memcpy(&s[i].map, map, sizeof(s[i].map));
457 break;
458 }
459 }
460
461 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
462}
463
464/**
465 * netdev_boot_setup_check - check boot time settings
466 * @dev: the netdevice
467 *
468 * Check boot time settings for the device.
469 * The found settings are set for the device to be used
470 * later in the device probing.
471 * Returns 0 if no settings found, 1 if they are.
472 */
473int netdev_boot_setup_check(struct net_device *dev)
474{
475 struct netdev_boot_setup *s = dev_boot_setup;
476 int i;
477
478 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
479 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
480 !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
481 dev->irq = s[i].map.irq;
482 dev->base_addr = s[i].map.base_addr;
483 dev->mem_start = s[i].map.mem_start;
484 dev->mem_end = s[i].map.mem_end;
485 return 1;
486 }
487 }
488 return 0;
489}
490
491
492/**
493 * netdev_boot_base - get address from boot time settings
494 * @prefix: prefix for network device
495 * @unit: id for network device
496 *
497 * Check boot time settings for the base address of device.
498 * The found settings are set for the device to be used
499 * later in the device probing.
500 * Returns 0 if no settings found.
501 */
502unsigned long netdev_boot_base(const char *prefix, int unit)
503{
504 const struct netdev_boot_setup *s = dev_boot_setup;
505 char name[IFNAMSIZ];
506 int i;
507
508 sprintf(name, "%s%d", prefix, unit);
509
510 /*
511 * If device already registered then return base of 1
512 * to indicate not to probe for this interface
513 */
514 if (__dev_get_by_name(&init_net, name))
515 return 1;
516
517 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
518 if (!strcmp(name, s[i].name))
519 return s[i].map.base_addr;
520 return 0;
521}
522
523/*
524 * Saves at boot time configured settings for any netdevice.
525 */
526int __init netdev_boot_setup(char *str)
527{
528 int ints[5];
529 struct ifmap map;
530
531 str = get_options(str, ARRAY_SIZE(ints), ints);
532 if (!str || !*str)
533 return 0;
534
535 /* Save settings */
536 memset(&map, 0, sizeof(map));
537 if (ints[0] > 0)
538 map.irq = ints[1];
539 if (ints[0] > 1)
540 map.base_addr = ints[2];
541 if (ints[0] > 2)
542 map.mem_start = ints[3];
543 if (ints[0] > 3)
544 map.mem_end = ints[4];
545
546 /* Add new entry to the list */
547 return netdev_boot_setup_add(str, &map);
548}
549
550__setup("netdev=", netdev_boot_setup);
551
552/*******************************************************************************
553
554 Device Interface Subroutines
555
556*******************************************************************************/
557
558/**
559 * __dev_get_by_name - find a device by its name
560 * @net: the applicable net namespace
561 * @name: name to find
562 *
563 * Find an interface by name. Must be called under RTNL semaphore
564 * or @dev_base_lock. If the name is found a pointer to the device
565 * is returned. If the name is not found then %NULL is returned. The
566 * reference counters are not incremented so the caller must be
567 * careful with locks.
568 */
569
570struct net_device *__dev_get_by_name(struct net *net, const char *name)
571{
572 struct hlist_node *p;
573
574 hlist_for_each(p, dev_name_hash(net, name)) {
575 struct net_device *dev
576 = hlist_entry(p, struct net_device, name_hlist);
577 if (!strncmp(dev->name, name, IFNAMSIZ))
578 return dev;
579 }
580 return NULL;
581}
582
583/**
584 * dev_get_by_name - find a device by its name
585 * @net: the applicable net namespace
586 * @name: name to find
587 *
588 * Find an interface by name. This can be called from any
589 * context and does its own locking. The returned handle has
590 * the usage count incremented and the caller must use dev_put() to
591 * release it when it is no longer needed. %NULL is returned if no
592 * matching device is found.
593 */
594
595struct net_device *dev_get_by_name(struct net *net, const char *name)
596{
597 struct net_device *dev;
598
599 read_lock(&dev_base_lock);
600 dev = __dev_get_by_name(net, name);
601 if (dev)
602 dev_hold(dev);
603 read_unlock(&dev_base_lock);
604 return dev;
605}
606
607/**
608 * __dev_get_by_index - find a device by its ifindex
609 * @net: the applicable net namespace
610 * @ifindex: index of device
611 *
612 * Search for an interface by index. Returns %NULL if the device
613 * is not found or a pointer to the device. The device has not
614 * had its reference counter increased so the caller must be careful
615 * about locking. The caller must hold either the RTNL semaphore
616 * or @dev_base_lock.
617 */
618
619struct net_device *__dev_get_by_index(struct net *net, int ifindex)
620{
621 struct hlist_node *p;
622
623 hlist_for_each(p, dev_index_hash(net, ifindex)) {
624 struct net_device *dev
625 = hlist_entry(p, struct net_device, index_hlist);
626 if (dev->ifindex == ifindex)
627 return dev;
628 }
629 return NULL;
630}
631
632
633/**
634 * dev_get_by_index - find a device by its ifindex
635 * @net: the applicable net namespace
636 * @ifindex: index of device
637 *
638 * Search for an interface by index. Returns NULL if the device
639 * is not found or a pointer to the device. The device returned has
640 * had a reference added and the pointer is safe until the user calls
641 * dev_put to indicate they have finished with it.
642 */
643
644struct net_device *dev_get_by_index(struct net *net, int ifindex)
645{
646 struct net_device *dev;
647
648 read_lock(&dev_base_lock);
649 dev = __dev_get_by_index(net, ifindex);
650 if (dev)
651 dev_hold(dev);
652 read_unlock(&dev_base_lock);
653 return dev;
654}
655
656/**
657 * dev_getbyhwaddr - find a device by its hardware address
658 * @net: the applicable net namespace
659 * @type: media type of device
660 * @ha: hardware address
661 *
662 * Search for an interface by MAC address. Returns NULL if the device
663 * is not found or a pointer to the device. The caller must hold the
664 * rtnl semaphore. The returned device has not had its ref count increased
665 * and the caller must therefore be careful about locking
666 *
667 * BUGS:
668 * If the API was consistent this would be __dev_get_by_hwaddr
669 */
670
671struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
672{
673 struct net_device *dev;
674
675 ASSERT_RTNL();
676
677 for_each_netdev(&init_net, dev)
678 if (dev->type == type &&
679 !memcmp(dev->dev_addr, ha, dev->addr_len))
680 return dev;
681
682 return NULL;
683}
684
685EXPORT_SYMBOL(dev_getbyhwaddr);
686
687struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
688{
689 struct net_device *dev;
690
691 ASSERT_RTNL();
692 for_each_netdev(net, dev)
693 if (dev->type == type)
694 return dev;
695
696 return NULL;
697}
698
699EXPORT_SYMBOL(__dev_getfirstbyhwtype);
700
701struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
702{
703 struct net_device *dev;
704
705 rtnl_lock();
706 dev = __dev_getfirstbyhwtype(net, type);
707 if (dev)
708 dev_hold(dev);
709 rtnl_unlock();
710 return dev;
711}
712
713EXPORT_SYMBOL(dev_getfirstbyhwtype);
714
715/**
716 * dev_get_by_flags - find any device with given flags
717 * @net: the applicable net namespace
718 * @if_flags: IFF_* values
719 * @mask: bitmask of bits in if_flags to check
720 *
721 * Search for any interface with the given flags. Returns NULL if a device
722 * is not found or a pointer to the device. The device returned has
723 * had a reference added and the pointer is safe until the user calls
724 * dev_put to indicate they have finished with it.
725 */
726
727struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
728{
729 struct net_device *dev, *ret;
730
731 ret = NULL;
732 read_lock(&dev_base_lock);
733 for_each_netdev(net, dev) {
734 if (((dev->flags ^ if_flags) & mask) == 0) {
735 dev_hold(dev);
736 ret = dev;
737 break;
738 }
739 }
740 read_unlock(&dev_base_lock);
741 return ret;
742}
743
744/**
745 * dev_valid_name - check if name is okay for network device
746 * @name: name string
747 *
748 * Network device names need to be valid file names to
749 * to allow sysfs to work. We also disallow any kind of
750 * whitespace.
751 */
752int dev_valid_name(const char *name)
753{
754 if (*name == '\0')
755 return 0;
756 if (strlen(name) >= IFNAMSIZ)
757 return 0;
758 if (!strcmp(name, ".") || !strcmp(name, ".."))
759 return 0;
760
761 while (*name) {
762 if (*name == '/' || isspace(*name))
763 return 0;
764 name++;
765 }
766 return 1;
767}
768
769/**
770 * __dev_alloc_name - allocate a name for a device
771 * @net: network namespace to allocate the device name in
772 * @name: name format string
773 * @buf: scratch buffer and result name string
774 *
775 * Passed a format string - eg "lt%d" it will try and find a suitable
776 * id. It scans list of devices to build up a free map, then chooses
777 * the first empty slot. The caller must hold the dev_base or rtnl lock
778 * while allocating the name and adding the device in order to avoid
779 * duplicates.
780 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
781 * Returns the number of the unit assigned or a negative errno code.
782 */
783
784static int __dev_alloc_name(struct net *net, const char *name, char *buf)
785{
786 int i = 0;
787 const char *p;
788 const int max_netdevices = 8*PAGE_SIZE;
789 unsigned long *inuse;
790 struct net_device *d;
791
792 p = strnchr(name, IFNAMSIZ-1, '%');
793 if (p) {
794 /*
795 * Verify the string as this thing may have come from
796 * the user. There must be either one "%d" and no other "%"
797 * characters.
798 */
799 if (p[1] != 'd' || strchr(p + 2, '%'))
800 return -EINVAL;
801
802 /* Use one page as a bit array of possible slots */
803 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
804 if (!inuse)
805 return -ENOMEM;
806
807 for_each_netdev(net, d) {
808 if (!sscanf(d->name, name, &i))
809 continue;
810 if (i < 0 || i >= max_netdevices)
811 continue;
812
813 /* avoid cases where sscanf is not exact inverse of printf */
814 snprintf(buf, IFNAMSIZ, name, i);
815 if (!strncmp(buf, d->name, IFNAMSIZ))
816 set_bit(i, inuse);
817 }
818
819 i = find_first_zero_bit(inuse, max_netdevices);
820 free_page((unsigned long) inuse);
821 }
822
823 snprintf(buf, IFNAMSIZ, name, i);
824 if (!__dev_get_by_name(net, buf))
825 return i;
826
827 /* It is possible to run out of possible slots
828 * when the name is long and there isn't enough space left
829 * for the digits, or if all bits are used.
830 */
831 return -ENFILE;
832}
833
834/**
835 * dev_alloc_name - allocate a name for a device
836 * @dev: device
837 * @name: name format string
838 *
839 * Passed a format string - eg "lt%d" it will try and find a suitable
840 * id. It scans list of devices to build up a free map, then chooses
841 * the first empty slot. The caller must hold the dev_base or rtnl lock
842 * while allocating the name and adding the device in order to avoid
843 * duplicates.
844 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
845 * Returns the number of the unit assigned or a negative errno code.
846 */
847
848int dev_alloc_name(struct net_device *dev, const char *name)
849{
850 char buf[IFNAMSIZ];
851 struct net *net;
852 int ret;
853
854 BUG_ON(!dev->nd_net);
855 net = dev->nd_net;
856 ret = __dev_alloc_name(net, name, buf);
857 if (ret >= 0)
858 strlcpy(dev->name, buf, IFNAMSIZ);
859 return ret;
860}
861
862
863/**
864 * dev_change_name - change name of a device
865 * @dev: device
866 * @newname: name (or format string) must be at least IFNAMSIZ
867 *
868 * Change name of a device, can pass format strings "eth%d".
869 * for wildcarding.
870 */
871int dev_change_name(struct net_device *dev, char *newname)
872{
873 char oldname[IFNAMSIZ];
874 int err = 0;
875 int ret;
876 struct net *net;
877
878 ASSERT_RTNL();
879 BUG_ON(!dev->nd_net);
880
881 net = dev->nd_net;
882 if (dev->flags & IFF_UP)
883 return -EBUSY;
884
885 if (!dev_valid_name(newname))
886 return -EINVAL;
887
888 memcpy(oldname, dev->name, IFNAMSIZ);
889
890 if (strchr(newname, '%')) {
891 err = dev_alloc_name(dev, newname);
892 if (err < 0)
893 return err;
894 strcpy(newname, dev->name);
895 }
896 else if (__dev_get_by_name(net, newname))
897 return -EEXIST;
898 else
899 strlcpy(dev->name, newname, IFNAMSIZ);
900
901rollback:
902 device_rename(&dev->dev, dev->name);
903
904 write_lock_bh(&dev_base_lock);
905 hlist_del(&dev->name_hlist);
906 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
907 write_unlock_bh(&dev_base_lock);
908
909 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
910 ret = notifier_to_errno(ret);
911
912 if (ret) {
913 if (err) {
914 printk(KERN_ERR
915 "%s: name change rollback failed: %d.\n",
916 dev->name, ret);
917 } else {
918 err = ret;
919 memcpy(dev->name, oldname, IFNAMSIZ);
920 goto rollback;
921 }
922 }
923
924 return err;
925}
926
927/**
928 * netdev_features_change - device changes features
929 * @dev: device to cause notification
930 *
931 * Called to indicate a device has changed features.
932 */
933void netdev_features_change(struct net_device *dev)
934{
935 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
936}
937EXPORT_SYMBOL(netdev_features_change);
938
939/**
940 * netdev_state_change - device changes state
941 * @dev: device to cause notification
942 *
943 * Called to indicate a device has changed state. This function calls
944 * the notifier chains for netdev_chain and sends a NEWLINK message
945 * to the routing socket.
946 */
947void netdev_state_change(struct net_device *dev)
948{
949 if (dev->flags & IFF_UP) {
950 call_netdevice_notifiers(NETDEV_CHANGE, dev);
951 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
952 }
953}
954
955/**
956 * dev_load - load a network module
957 * @net: the applicable net namespace
958 * @name: name of interface
959 *
960 * If a network interface is not present and the process has suitable
961 * privileges this function loads the module. If module loading is not
962 * available in this kernel then it becomes a nop.
963 */
964
965void dev_load(struct net *net, const char *name)
966{
967 struct net_device *dev;
968
969 read_lock(&dev_base_lock);
970 dev = __dev_get_by_name(net, name);
971 read_unlock(&dev_base_lock);
972
973 if (!dev && capable(CAP_SYS_MODULE))
974 request_module("%s", name);
975}
976
977/**
978 * dev_open - prepare an interface for use.
979 * @dev: device to open
980 *
981 * Takes a device from down to up state. The device's private open
982 * function is invoked and then the multicast lists are loaded. Finally
983 * the device is moved into the up state and a %NETDEV_UP message is
984 * sent to the netdev notifier chain.
985 *
986 * Calling this function on an active interface is a nop. On a failure
987 * a negative errno code is returned.
988 */
989int dev_open(struct net_device *dev)
990{
991 int ret = 0;
992
993 /*
994 * Is it already up?
995 */
996
997 if (dev->flags & IFF_UP)
998 return 0;
999
1000 /*
1001 * Is it even present?
1002 */
1003 if (!netif_device_present(dev))
1004 return -ENODEV;
1005
1006 /*
1007 * Call device private open method
1008 */
1009 set_bit(__LINK_STATE_START, &dev->state);
1010
1011 if (dev->validate_addr)
1012 ret = dev->validate_addr(dev);
1013
1014 if (!ret && dev->open)
1015 ret = dev->open(dev);
1016
1017 /*
1018 * If it went open OK then:
1019 */
1020
1021 if (ret)
1022 clear_bit(__LINK_STATE_START, &dev->state);
1023 else {
1024 /*
1025 * Set the flags.
1026 */
1027 dev->flags |= IFF_UP;
1028
1029 /*
1030 * Initialize multicasting status
1031 */
1032 dev_set_rx_mode(dev);
1033
1034 /*
1035 * Wakeup transmit queue engine
1036 */
1037 dev_activate(dev);
1038
1039 /*
1040 * ... and announce new interface.
1041 */
1042 call_netdevice_notifiers(NETDEV_UP, dev);
1043 }
1044
1045 return ret;
1046}
1047
1048/**
1049 * dev_close - shutdown an interface.
1050 * @dev: device to shutdown
1051 *
1052 * This function moves an active device into down state. A
1053 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1054 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1055 * chain.
1056 */
1057int dev_close(struct net_device *dev)
1058{
1059 might_sleep();
1060
1061 if (!(dev->flags & IFF_UP))
1062 return 0;
1063
1064 /*
1065 * Tell people we are going down, so that they can
1066 * prepare to death, when device is still operating.
1067 */
1068 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1069
1070 dev_deactivate(dev);
1071
1072 clear_bit(__LINK_STATE_START, &dev->state);
1073
1074 /* Synchronize to scheduled poll. We cannot touch poll list,
1075 * it can be even on different cpu. So just clear netif_running().
1076 *
1077 * dev->stop() will invoke napi_disable() on all of it's
1078 * napi_struct instances on this device.
1079 */
1080 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1081
1082 /*
1083 * Call the device specific close. This cannot fail.
1084 * Only if device is UP
1085 *
1086 * We allow it to be called even after a DETACH hot-plug
1087 * event.
1088 */
1089 if (dev->stop)
1090 dev->stop(dev);
1091
1092 /*
1093 * Device is now down.
1094 */
1095
1096 dev->flags &= ~IFF_UP;
1097
1098 /*
1099 * Tell people we are down
1100 */
1101 call_netdevice_notifiers(NETDEV_DOWN, dev);
1102
1103 return 0;
1104}
1105
1106
1107static int dev_boot_phase = 1;
1108
1109/*
1110 * Device change register/unregister. These are not inline or static
1111 * as we export them to the world.
1112 */
1113
1114/**
1115 * register_netdevice_notifier - register a network notifier block
1116 * @nb: notifier
1117 *
1118 * Register a notifier to be called when network device events occur.
1119 * The notifier passed is linked into the kernel structures and must
1120 * not be reused until it has been unregistered. A negative errno code
1121 * is returned on a failure.
1122 *
1123 * When registered all registration and up events are replayed
1124 * to the new notifier to allow device to have a race free
1125 * view of the network device list.
1126 */
1127
1128int register_netdevice_notifier(struct notifier_block *nb)
1129{
1130 struct net_device *dev;
1131 struct net_device *last;
1132 struct net *net;
1133 int err;
1134
1135 rtnl_lock();
1136 err = raw_notifier_chain_register(&netdev_chain, nb);
1137 if (err)
1138 goto unlock;
1139 if (dev_boot_phase)
1140 goto unlock;
1141 for_each_net(net) {
1142 for_each_netdev(net, dev) {
1143 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1144 err = notifier_to_errno(err);
1145 if (err)
1146 goto rollback;
1147
1148 if (!(dev->flags & IFF_UP))
1149 continue;
1150
1151 nb->notifier_call(nb, NETDEV_UP, dev);
1152 }
1153 }
1154
1155unlock:
1156 rtnl_unlock();
1157 return err;
1158
1159rollback:
1160 last = dev;
1161 for_each_net(net) {
1162 for_each_netdev(net, dev) {
1163 if (dev == last)
1164 break;
1165
1166 if (dev->flags & IFF_UP) {
1167 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1168 nb->notifier_call(nb, NETDEV_DOWN, dev);
1169 }
1170 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1171 }
1172 }
1173 goto unlock;
1174}
1175
1176/**
1177 * unregister_netdevice_notifier - unregister a network notifier block
1178 * @nb: notifier
1179 *
1180 * Unregister a notifier previously registered by
1181 * register_netdevice_notifier(). The notifier is unlinked into the
1182 * kernel structures and may then be reused. A negative errno code
1183 * is returned on a failure.
1184 */
1185
1186int unregister_netdevice_notifier(struct notifier_block *nb)
1187{
1188 int err;
1189
1190 rtnl_lock();
1191 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1192 rtnl_unlock();
1193 return err;
1194}
1195
1196/**
1197 * call_netdevice_notifiers - call all network notifier blocks
1198 * @val: value passed unmodified to notifier function
1199 * @dev: net_device pointer passed unmodified to notifier function
1200 *
1201 * Call all network notifier blocks. Parameters and return value
1202 * are as for raw_notifier_call_chain().
1203 */
1204
1205int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1206{
1207 return raw_notifier_call_chain(&netdev_chain, val, dev);
1208}
1209
1210/* When > 0 there are consumers of rx skb time stamps */
1211static atomic_t netstamp_needed = ATOMIC_INIT(0);
1212
1213void net_enable_timestamp(void)
1214{
1215 atomic_inc(&netstamp_needed);
1216}
1217
1218void net_disable_timestamp(void)
1219{
1220 atomic_dec(&netstamp_needed);
1221}
1222
1223static inline void net_timestamp(struct sk_buff *skb)
1224{
1225 if (atomic_read(&netstamp_needed))
1226 __net_timestamp(skb);
1227 else
1228 skb->tstamp.tv64 = 0;
1229}
1230
1231/*
1232 * Support routine. Sends outgoing frames to any network
1233 * taps currently in use.
1234 */
1235
1236static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1237{
1238 struct packet_type *ptype;
1239
1240 net_timestamp(skb);
1241
1242 rcu_read_lock();
1243 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1244 /* Never send packets back to the socket
1245 * they originated from - MvS (miquels@drinkel.ow.org)
1246 */
1247 if ((ptype->dev == dev || !ptype->dev) &&
1248 (ptype->af_packet_priv == NULL ||
1249 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1250 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1251 if (!skb2)
1252 break;
1253
1254 /* skb->nh should be correctly
1255 set by sender, so that the second statement is
1256 just protection against buggy protocols.
1257 */
1258 skb_reset_mac_header(skb2);
1259
1260 if (skb_network_header(skb2) < skb2->data ||
1261 skb2->network_header > skb2->tail) {
1262 if (net_ratelimit())
1263 printk(KERN_CRIT "protocol %04x is "
1264 "buggy, dev %s\n",
1265 skb2->protocol, dev->name);
1266 skb_reset_network_header(skb2);
1267 }
1268
1269 skb2->transport_header = skb2->network_header;
1270 skb2->pkt_type = PACKET_OUTGOING;
1271 ptype->func(skb2, skb->dev, ptype, skb->dev);
1272 }
1273 }
1274 rcu_read_unlock();
1275}
1276
1277
1278void __netif_schedule(struct net_device *dev)
1279{
1280 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1281 unsigned long flags;
1282 struct softnet_data *sd;
1283
1284 local_irq_save(flags);
1285 sd = &__get_cpu_var(softnet_data);
1286 dev->next_sched = sd->output_queue;
1287 sd->output_queue = dev;
1288 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1289 local_irq_restore(flags);
1290 }
1291}
1292EXPORT_SYMBOL(__netif_schedule);
1293
1294void dev_kfree_skb_irq(struct sk_buff *skb)
1295{
1296 if (atomic_dec_and_test(&skb->users)) {
1297 struct softnet_data *sd;
1298 unsigned long flags;
1299
1300 local_irq_save(flags);
1301 sd = &__get_cpu_var(softnet_data);
1302 skb->next = sd->completion_queue;
1303 sd->completion_queue = skb;
1304 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1305 local_irq_restore(flags);
1306 }
1307}
1308EXPORT_SYMBOL(dev_kfree_skb_irq);
1309
1310void dev_kfree_skb_any(struct sk_buff *skb)
1311{
1312 if (in_irq() || irqs_disabled())
1313 dev_kfree_skb_irq(skb);
1314 else
1315 dev_kfree_skb(skb);
1316}
1317EXPORT_SYMBOL(dev_kfree_skb_any);
1318
1319
1320/**
1321 * netif_device_detach - mark device as removed
1322 * @dev: network device
1323 *
1324 * Mark device as removed from system and therefore no longer available.
1325 */
1326void netif_device_detach(struct net_device *dev)
1327{
1328 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1329 netif_running(dev)) {
1330 netif_stop_queue(dev);
1331 }
1332}
1333EXPORT_SYMBOL(netif_device_detach);
1334
1335/**
1336 * netif_device_attach - mark device as attached
1337 * @dev: network device
1338 *
1339 * Mark device as attached from system and restart if needed.
1340 */
1341void netif_device_attach(struct net_device *dev)
1342{
1343 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1344 netif_running(dev)) {
1345 netif_wake_queue(dev);
1346 __netdev_watchdog_up(dev);
1347 }
1348}
1349EXPORT_SYMBOL(netif_device_attach);
1350
1351
1352/*
1353 * Invalidate hardware checksum when packet is to be mangled, and
1354 * complete checksum manually on outgoing path.
1355 */
1356int skb_checksum_help(struct sk_buff *skb)
1357{
1358 __wsum csum;
1359 int ret = 0, offset;
1360
1361 if (skb->ip_summed == CHECKSUM_COMPLETE)
1362 goto out_set_summed;
1363
1364 if (unlikely(skb_shinfo(skb)->gso_size)) {
1365 /* Let GSO fix up the checksum. */
1366 goto out_set_summed;
1367 }
1368
1369 offset = skb->csum_start - skb_headroom(skb);
1370 BUG_ON(offset >= skb_headlen(skb));
1371 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1372
1373 offset += skb->csum_offset;
1374 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1375
1376 if (skb_cloned(skb) &&
1377 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1378 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1379 if (ret)
1380 goto out;
1381 }
1382
1383 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1384out_set_summed:
1385 skb->ip_summed = CHECKSUM_NONE;
1386out:
1387 return ret;
1388}
1389
1390/**
1391 * skb_gso_segment - Perform segmentation on skb.
1392 * @skb: buffer to segment
1393 * @features: features for the output path (see dev->features)
1394 *
1395 * This function segments the given skb and returns a list of segments.
1396 *
1397 * It may return NULL if the skb requires no segmentation. This is
1398 * only possible when GSO is used for verifying header integrity.
1399 */
1400struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1401{
1402 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1403 struct packet_type *ptype;
1404 __be16 type = skb->protocol;
1405 int err;
1406
1407 BUG_ON(skb_shinfo(skb)->frag_list);
1408
1409 skb_reset_mac_header(skb);
1410 skb->mac_len = skb->network_header - skb->mac_header;
1411 __skb_pull(skb, skb->mac_len);
1412
1413 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1414 if (skb_header_cloned(skb) &&
1415 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1416 return ERR_PTR(err);
1417 }
1418
1419 rcu_read_lock();
1420 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) {
1421 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1422 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1423 err = ptype->gso_send_check(skb);
1424 segs = ERR_PTR(err);
1425 if (err || skb_gso_ok(skb, features))
1426 break;
1427 __skb_push(skb, (skb->data -
1428 skb_network_header(skb)));
1429 }
1430 segs = ptype->gso_segment(skb, features);
1431 break;
1432 }
1433 }
1434 rcu_read_unlock();
1435
1436 __skb_push(skb, skb->data - skb_mac_header(skb));
1437
1438 return segs;
1439}
1440
1441EXPORT_SYMBOL(skb_gso_segment);
1442
1443/* Take action when hardware reception checksum errors are detected. */
1444#ifdef CONFIG_BUG
1445void netdev_rx_csum_fault(struct net_device *dev)
1446{
1447 if (net_ratelimit()) {
1448 printk(KERN_ERR "%s: hw csum failure.\n",
1449 dev ? dev->name : "<unknown>");
1450 dump_stack();
1451 }
1452}
1453EXPORT_SYMBOL(netdev_rx_csum_fault);
1454#endif
1455
1456/* Actually, we should eliminate this check as soon as we know, that:
1457 * 1. IOMMU is present and allows to map all the memory.
1458 * 2. No high memory really exists on this machine.
1459 */
1460
1461static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1462{
1463#ifdef CONFIG_HIGHMEM
1464 int i;
1465
1466 if (dev->features & NETIF_F_HIGHDMA)
1467 return 0;
1468
1469 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1470 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1471 return 1;
1472
1473#endif
1474 return 0;
1475}
1476
1477struct dev_gso_cb {
1478 void (*destructor)(struct sk_buff *skb);
1479};
1480
1481#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1482
1483static void dev_gso_skb_destructor(struct sk_buff *skb)
1484{
1485 struct dev_gso_cb *cb;
1486
1487 do {
1488 struct sk_buff *nskb = skb->next;
1489
1490 skb->next = nskb->next;
1491 nskb->next = NULL;
1492 kfree_skb(nskb);
1493 } while (skb->next);
1494
1495 cb = DEV_GSO_CB(skb);
1496 if (cb->destructor)
1497 cb->destructor(skb);
1498}
1499
1500/**
1501 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1502 * @skb: buffer to segment
1503 *
1504 * This function segments the given skb and stores the list of segments
1505 * in skb->next.
1506 */
1507static int dev_gso_segment(struct sk_buff *skb)
1508{
1509 struct net_device *dev = skb->dev;
1510 struct sk_buff *segs;
1511 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1512 NETIF_F_SG : 0);
1513
1514 segs = skb_gso_segment(skb, features);
1515
1516 /* Verifying header integrity only. */
1517 if (!segs)
1518 return 0;
1519
1520 if (unlikely(IS_ERR(segs)))
1521 return PTR_ERR(segs);
1522
1523 skb->next = segs;
1524 DEV_GSO_CB(skb)->destructor = skb->destructor;
1525 skb->destructor = dev_gso_skb_destructor;
1526
1527 return 0;
1528}
1529
1530int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1531{
1532 if (likely(!skb->next)) {
1533 if (!list_empty(&ptype_all))
1534 dev_queue_xmit_nit(skb, dev);
1535
1536 if (netif_needs_gso(dev, skb)) {
1537 if (unlikely(dev_gso_segment(skb)))
1538 goto out_kfree_skb;
1539 if (skb->next)
1540 goto gso;
1541 }
1542
1543 return dev->hard_start_xmit(skb, dev);
1544 }
1545
1546gso:
1547 do {
1548 struct sk_buff *nskb = skb->next;
1549 int rc;
1550
1551 skb->next = nskb->next;
1552 nskb->next = NULL;
1553 rc = dev->hard_start_xmit(nskb, dev);
1554 if (unlikely(rc)) {
1555 nskb->next = skb->next;
1556 skb->next = nskb;
1557 return rc;
1558 }
1559 if (unlikely((netif_queue_stopped(dev) ||
1560 netif_subqueue_stopped(dev, skb)) &&
1561 skb->next))
1562 return NETDEV_TX_BUSY;
1563 } while (skb->next);
1564
1565 skb->destructor = DEV_GSO_CB(skb)->destructor;
1566
1567out_kfree_skb:
1568 kfree_skb(skb);
1569 return 0;
1570}
1571
1572/**
1573 * dev_queue_xmit - transmit a buffer
1574 * @skb: buffer to transmit
1575 *
1576 * Queue a buffer for transmission to a network device. The caller must
1577 * have set the device and priority and built the buffer before calling
1578 * this function. The function can be called from an interrupt.
1579 *
1580 * A negative errno code is returned on a failure. A success does not
1581 * guarantee the frame will be transmitted as it may be dropped due
1582 * to congestion or traffic shaping.
1583 *
1584 * -----------------------------------------------------------------------------------
1585 * I notice this method can also return errors from the queue disciplines,
1586 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1587 * be positive.
1588 *
1589 * Regardless of the return value, the skb is consumed, so it is currently
1590 * difficult to retry a send to this method. (You can bump the ref count
1591 * before sending to hold a reference for retry if you are careful.)
1592 *
1593 * When calling this method, interrupts MUST be enabled. This is because
1594 * the BH enable code must have IRQs enabled so that it will not deadlock.
1595 * --BLG
1596 */
1597
1598int dev_queue_xmit(struct sk_buff *skb)
1599{
1600 struct net_device *dev = skb->dev;
1601 struct Qdisc *q;
1602 int rc = -ENOMEM;
1603
1604 /* GSO will handle the following emulations directly. */
1605 if (netif_needs_gso(dev, skb))
1606 goto gso;
1607
1608 if (skb_shinfo(skb)->frag_list &&
1609 !(dev->features & NETIF_F_FRAGLIST) &&
1610 __skb_linearize(skb))
1611 goto out_kfree_skb;
1612
1613 /* Fragmented skb is linearized if device does not support SG,
1614 * or if at least one of fragments is in highmem and device
1615 * does not support DMA from it.
1616 */
1617 if (skb_shinfo(skb)->nr_frags &&
1618 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1619 __skb_linearize(skb))
1620 goto out_kfree_skb;
1621
1622 /* If packet is not checksummed and device does not support
1623 * checksumming for this protocol, complete checksumming here.
1624 */
1625 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1626 skb_set_transport_header(skb, skb->csum_start -
1627 skb_headroom(skb));
1628
1629 if (!(dev->features & NETIF_F_GEN_CSUM) &&
1630 !((dev->features & NETIF_F_IP_CSUM) &&
1631 skb->protocol == htons(ETH_P_IP)) &&
1632 !((dev->features & NETIF_F_IPV6_CSUM) &&
1633 skb->protocol == htons(ETH_P_IPV6)))
1634 if (skb_checksum_help(skb))
1635 goto out_kfree_skb;
1636 }
1637
1638gso:
1639 spin_lock_prefetch(&dev->queue_lock);
1640
1641 /* Disable soft irqs for various locks below. Also
1642 * stops preemption for RCU.
1643 */
1644 rcu_read_lock_bh();
1645
1646 /* Updates of qdisc are serialized by queue_lock.
1647 * The struct Qdisc which is pointed to by qdisc is now a
1648 * rcu structure - it may be accessed without acquiring
1649 * a lock (but the structure may be stale.) The freeing of the
1650 * qdisc will be deferred until it's known that there are no
1651 * more references to it.
1652 *
1653 * If the qdisc has an enqueue function, we still need to
1654 * hold the queue_lock before calling it, since queue_lock
1655 * also serializes access to the device queue.
1656 */
1657
1658 q = rcu_dereference(dev->qdisc);
1659#ifdef CONFIG_NET_CLS_ACT
1660 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1661#endif
1662 if (q->enqueue) {
1663 /* Grab device queue */
1664 spin_lock(&dev->queue_lock);
1665 q = dev->qdisc;
1666 if (q->enqueue) {
1667 /* reset queue_mapping to zero */
1668 skb_set_queue_mapping(skb, 0);
1669 rc = q->enqueue(skb, q);
1670 qdisc_run(dev);
1671 spin_unlock(&dev->queue_lock);
1672
1673 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1674 goto out;
1675 }
1676 spin_unlock(&dev->queue_lock);
1677 }
1678
1679 /* The device has no queue. Common case for software devices:
1680 loopback, all the sorts of tunnels...
1681
1682 Really, it is unlikely that netif_tx_lock protection is necessary
1683 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1684 counters.)
1685 However, it is possible, that they rely on protection
1686 made by us here.
1687
1688 Check this and shot the lock. It is not prone from deadlocks.
1689 Either shot noqueue qdisc, it is even simpler 8)
1690 */
1691 if (dev->flags & IFF_UP) {
1692 int cpu = smp_processor_id(); /* ok because BHs are off */
1693
1694 if (dev->xmit_lock_owner != cpu) {
1695
1696 HARD_TX_LOCK(dev, cpu);
1697
1698 if (!netif_queue_stopped(dev) &&
1699 !netif_subqueue_stopped(dev, skb)) {
1700 rc = 0;
1701 if (!dev_hard_start_xmit(skb, dev)) {
1702 HARD_TX_UNLOCK(dev);
1703 goto out;
1704 }
1705 }
1706 HARD_TX_UNLOCK(dev);
1707 if (net_ratelimit())
1708 printk(KERN_CRIT "Virtual device %s asks to "
1709 "queue packet!\n", dev->name);
1710 } else {
1711 /* Recursion is detected! It is possible,
1712 * unfortunately */
1713 if (net_ratelimit())
1714 printk(KERN_CRIT "Dead loop on virtual device "
1715 "%s, fix it urgently!\n", dev->name);
1716 }
1717 }
1718
1719 rc = -ENETDOWN;
1720 rcu_read_unlock_bh();
1721
1722out_kfree_skb:
1723 kfree_skb(skb);
1724 return rc;
1725out:
1726 rcu_read_unlock_bh();
1727 return rc;
1728}
1729
1730
1731/*=======================================================================
1732 Receiver routines
1733 =======================================================================*/
1734
1735int netdev_max_backlog __read_mostly = 1000;
1736int netdev_budget __read_mostly = 300;
1737int weight_p __read_mostly = 64; /* old backlog weight */
1738
1739DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1740
1741
1742/**
1743 * netif_rx - post buffer to the network code
1744 * @skb: buffer to post
1745 *
1746 * This function receives a packet from a device driver and queues it for
1747 * the upper (protocol) levels to process. It always succeeds. The buffer
1748 * may be dropped during processing for congestion control or by the
1749 * protocol layers.
1750 *
1751 * return values:
1752 * NET_RX_SUCCESS (no congestion)
1753 * NET_RX_CN_LOW (low congestion)
1754 * NET_RX_CN_MOD (moderate congestion)
1755 * NET_RX_CN_HIGH (high congestion)
1756 * NET_RX_DROP (packet was dropped)
1757 *
1758 */
1759
1760int netif_rx(struct sk_buff *skb)
1761{
1762 struct softnet_data *queue;
1763 unsigned long flags;
1764
1765 /* if netpoll wants it, pretend we never saw it */
1766 if (netpoll_rx(skb))
1767 return NET_RX_DROP;
1768
1769 if (!skb->tstamp.tv64)
1770 net_timestamp(skb);
1771
1772 /*
1773 * The code is rearranged so that the path is the most
1774 * short when CPU is congested, but is still operating.
1775 */
1776 local_irq_save(flags);
1777 queue = &__get_cpu_var(softnet_data);
1778
1779 __get_cpu_var(netdev_rx_stat).total++;
1780 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1781 if (queue->input_pkt_queue.qlen) {
1782enqueue:
1783 dev_hold(skb->dev);
1784 __skb_queue_tail(&queue->input_pkt_queue, skb);
1785 local_irq_restore(flags);
1786 return NET_RX_SUCCESS;
1787 }
1788
1789 napi_schedule(&queue->backlog);
1790 goto enqueue;
1791 }
1792
1793 __get_cpu_var(netdev_rx_stat).dropped++;
1794 local_irq_restore(flags);
1795
1796 kfree_skb(skb);
1797 return NET_RX_DROP;
1798}
1799
1800int netif_rx_ni(struct sk_buff *skb)
1801{
1802 int err;
1803
1804 preempt_disable();
1805 err = netif_rx(skb);
1806 if (local_softirq_pending())
1807 do_softirq();
1808 preempt_enable();
1809
1810 return err;
1811}
1812
1813EXPORT_SYMBOL(netif_rx_ni);
1814
1815static inline struct net_device *skb_bond(struct sk_buff *skb)
1816{
1817 struct net_device *dev = skb->dev;
1818
1819 if (dev->master) {
1820 if (skb_bond_should_drop(skb)) {
1821 kfree_skb(skb);
1822 return NULL;
1823 }
1824 skb->dev = dev->master;
1825 }
1826
1827 return dev;
1828}
1829
1830
1831static void net_tx_action(struct softirq_action *h)
1832{
1833 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1834
1835 if (sd->completion_queue) {
1836 struct sk_buff *clist;
1837
1838 local_irq_disable();
1839 clist = sd->completion_queue;
1840 sd->completion_queue = NULL;
1841 local_irq_enable();
1842
1843 while (clist) {
1844 struct sk_buff *skb = clist;
1845 clist = clist->next;
1846
1847 BUG_TRAP(!atomic_read(&skb->users));
1848 __kfree_skb(skb);
1849 }
1850 }
1851
1852 if (sd->output_queue) {
1853 struct net_device *head;
1854
1855 local_irq_disable();
1856 head = sd->output_queue;
1857 sd->output_queue = NULL;
1858 local_irq_enable();
1859
1860 while (head) {
1861 struct net_device *dev = head;
1862 head = head->next_sched;
1863
1864 smp_mb__before_clear_bit();
1865 clear_bit(__LINK_STATE_SCHED, &dev->state);
1866
1867 if (spin_trylock(&dev->queue_lock)) {
1868 qdisc_run(dev);
1869 spin_unlock(&dev->queue_lock);
1870 } else {
1871 netif_schedule(dev);
1872 }
1873 }
1874 }
1875}
1876
1877static inline int deliver_skb(struct sk_buff *skb,
1878 struct packet_type *pt_prev,
1879 struct net_device *orig_dev)
1880{
1881 atomic_inc(&skb->users);
1882 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1883}
1884
1885#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1886/* These hooks defined here for ATM */
1887struct net_bridge;
1888struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1889 unsigned char *addr);
1890void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1891
1892/*
1893 * If bridge module is loaded call bridging hook.
1894 * returns NULL if packet was consumed.
1895 */
1896struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1897 struct sk_buff *skb) __read_mostly;
1898static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1899 struct packet_type **pt_prev, int *ret,
1900 struct net_device *orig_dev)
1901{
1902 struct net_bridge_port *port;
1903
1904 if (skb->pkt_type == PACKET_LOOPBACK ||
1905 (port = rcu_dereference(skb->dev->br_port)) == NULL)
1906 return skb;
1907
1908 if (*pt_prev) {
1909 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1910 *pt_prev = NULL;
1911 }
1912
1913 return br_handle_frame_hook(port, skb);
1914}
1915#else
1916#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1917#endif
1918
1919#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
1920struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
1921EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
1922
1923static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
1924 struct packet_type **pt_prev,
1925 int *ret,
1926 struct net_device *orig_dev)
1927{
1928 if (skb->dev->macvlan_port == NULL)
1929 return skb;
1930
1931 if (*pt_prev) {
1932 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1933 *pt_prev = NULL;
1934 }
1935 return macvlan_handle_frame_hook(skb);
1936}
1937#else
1938#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
1939#endif
1940
1941#ifdef CONFIG_NET_CLS_ACT
1942/* TODO: Maybe we should just force sch_ingress to be compiled in
1943 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1944 * a compare and 2 stores extra right now if we dont have it on
1945 * but have CONFIG_NET_CLS_ACT
1946 * NOTE: This doesnt stop any functionality; if you dont have
1947 * the ingress scheduler, you just cant add policies on ingress.
1948 *
1949 */
1950static int ing_filter(struct sk_buff *skb)
1951{
1952 struct Qdisc *q;
1953 struct net_device *dev = skb->dev;
1954 int result = TC_ACT_OK;
1955 u32 ttl = G_TC_RTTL(skb->tc_verd);
1956
1957 if (MAX_RED_LOOP < ttl++) {
1958 printk(KERN_WARNING
1959 "Redir loop detected Dropping packet (%d->%d)\n",
1960 skb->iif, dev->ifindex);
1961 return TC_ACT_SHOT;
1962 }
1963
1964 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
1965 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1966
1967 spin_lock(&dev->ingress_lock);
1968 if ((q = dev->qdisc_ingress) != NULL)
1969 result = q->enqueue(skb, q);
1970 spin_unlock(&dev->ingress_lock);
1971
1972 return result;
1973}
1974
1975static inline struct sk_buff *handle_ing(struct sk_buff *skb,
1976 struct packet_type **pt_prev,
1977 int *ret, struct net_device *orig_dev)
1978{
1979 if (!skb->dev->qdisc_ingress)
1980 goto out;
1981
1982 if (*pt_prev) {
1983 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1984 *pt_prev = NULL;
1985 } else {
1986 /* Huh? Why does turning on AF_PACKET affect this? */
1987 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
1988 }
1989
1990 switch (ing_filter(skb)) {
1991 case TC_ACT_SHOT:
1992 case TC_ACT_STOLEN:
1993 kfree_skb(skb);
1994 return NULL;
1995 }
1996
1997out:
1998 skb->tc_verd = 0;
1999 return skb;
2000}
2001#endif
2002
2003int netif_receive_skb(struct sk_buff *skb)
2004{
2005 struct packet_type *ptype, *pt_prev;
2006 struct net_device *orig_dev;
2007 int ret = NET_RX_DROP;
2008 __be16 type;
2009
2010 /* if we've gotten here through NAPI, check netpoll */
2011 if (netpoll_receive_skb(skb))
2012 return NET_RX_DROP;
2013
2014 if (!skb->tstamp.tv64)
2015 net_timestamp(skb);
2016
2017 if (!skb->iif)
2018 skb->iif = skb->dev->ifindex;
2019
2020 orig_dev = skb_bond(skb);
2021
2022 if (!orig_dev)
2023 return NET_RX_DROP;
2024
2025 __get_cpu_var(netdev_rx_stat).total++;
2026
2027 skb_reset_network_header(skb);
2028 skb_reset_transport_header(skb);
2029 skb->mac_len = skb->network_header - skb->mac_header;
2030
2031 pt_prev = NULL;
2032
2033 rcu_read_lock();
2034
2035#ifdef CONFIG_NET_CLS_ACT
2036 if (skb->tc_verd & TC_NCLS) {
2037 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2038 goto ncls;
2039 }
2040#endif
2041
2042 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2043 if (!ptype->dev || ptype->dev == skb->dev) {
2044 if (pt_prev)
2045 ret = deliver_skb(skb, pt_prev, orig_dev);
2046 pt_prev = ptype;
2047 }
2048 }
2049
2050#ifdef CONFIG_NET_CLS_ACT
2051 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2052 if (!skb)
2053 goto out;
2054ncls:
2055#endif
2056
2057 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2058 if (!skb)
2059 goto out;
2060 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2061 if (!skb)
2062 goto out;
2063
2064 type = skb->protocol;
2065 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) {
2066 if (ptype->type == type &&
2067 (!ptype->dev || ptype->dev == skb->dev)) {
2068 if (pt_prev)
2069 ret = deliver_skb(skb, pt_prev, orig_dev);
2070 pt_prev = ptype;
2071 }
2072 }
2073
2074 if (pt_prev) {
2075 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2076 } else {
2077 kfree_skb(skb);
2078 /* Jamal, now you will not able to escape explaining
2079 * me how you were going to use this. :-)
2080 */
2081 ret = NET_RX_DROP;
2082 }
2083
2084out:
2085 rcu_read_unlock();
2086 return ret;
2087}
2088
2089static int process_backlog(struct napi_struct *napi, int quota)
2090{
2091 int work = 0;
2092 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2093 unsigned long start_time = jiffies;
2094
2095 napi->weight = weight_p;
2096 do {
2097 struct sk_buff *skb;
2098 struct net_device *dev;
2099
2100 local_irq_disable();
2101 skb = __skb_dequeue(&queue->input_pkt_queue);
2102 if (!skb) {
2103 __napi_complete(napi);
2104 local_irq_enable();
2105 break;
2106 }
2107
2108 local_irq_enable();
2109
2110 dev = skb->dev;
2111
2112 netif_receive_skb(skb);
2113
2114 dev_put(dev);
2115 } while (++work < quota && jiffies == start_time);
2116
2117 return work;
2118}
2119
2120/**
2121 * __napi_schedule - schedule for receive
2122 * @n: entry to schedule
2123 *
2124 * The entry's receive function will be scheduled to run
2125 */
2126void fastcall __napi_schedule(struct napi_struct *n)
2127{
2128 unsigned long flags;
2129
2130 local_irq_save(flags);
2131 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2132 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2133 local_irq_restore(flags);
2134}
2135EXPORT_SYMBOL(__napi_schedule);
2136
2137
2138static void net_rx_action(struct softirq_action *h)
2139{
2140 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2141 unsigned long start_time = jiffies;
2142 int budget = netdev_budget;
2143 void *have;
2144
2145 local_irq_disable();
2146
2147 while (!list_empty(list)) {
2148 struct napi_struct *n;
2149 int work, weight;
2150
2151 /* If softirq window is exhuasted then punt.
2152 *
2153 * Note that this is a slight policy change from the
2154 * previous NAPI code, which would allow up to 2
2155 * jiffies to pass before breaking out. The test
2156 * used to be "jiffies - start_time > 1".
2157 */
2158 if (unlikely(budget <= 0 || jiffies != start_time))
2159 goto softnet_break;
2160
2161 local_irq_enable();
2162
2163 /* Even though interrupts have been re-enabled, this
2164 * access is safe because interrupts can only add new
2165 * entries to the tail of this list, and only ->poll()
2166 * calls can remove this head entry from the list.
2167 */
2168 n = list_entry(list->next, struct napi_struct, poll_list);
2169
2170 have = netpoll_poll_lock(n);
2171
2172 weight = n->weight;
2173
2174 work = n->poll(n, weight);
2175
2176 WARN_ON_ONCE(work > weight);
2177
2178 budget -= work;
2179
2180 local_irq_disable();
2181
2182 /* Drivers must not modify the NAPI state if they
2183 * consume the entire weight. In such cases this code
2184 * still "owns" the NAPI instance and therefore can
2185 * move the instance around on the list at-will.
2186 */
2187 if (unlikely(work == weight))
2188 list_move_tail(&n->poll_list, list);
2189
2190 netpoll_poll_unlock(have);
2191 }
2192out:
2193 local_irq_enable();
2194
2195#ifdef CONFIG_NET_DMA
2196 /*
2197 * There may not be any more sk_buffs coming right now, so push
2198 * any pending DMA copies to hardware
2199 */
2200 if (!cpus_empty(net_dma.channel_mask)) {
2201 int chan_idx;
2202 for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2203 struct dma_chan *chan = net_dma.channels[chan_idx];
2204 if (chan)
2205 dma_async_memcpy_issue_pending(chan);
2206 }
2207 }
2208#endif
2209
2210 return;
2211
2212softnet_break:
2213 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2214 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2215 goto out;
2216}
2217
2218static gifconf_func_t * gifconf_list [NPROTO];
2219
2220/**
2221 * register_gifconf - register a SIOCGIF handler
2222 * @family: Address family
2223 * @gifconf: Function handler
2224 *
2225 * Register protocol dependent address dumping routines. The handler
2226 * that is passed must not be freed or reused until it has been replaced
2227 * by another handler.
2228 */
2229int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2230{
2231 if (family >= NPROTO)
2232 return -EINVAL;
2233 gifconf_list[family] = gifconf;
2234 return 0;
2235}
2236
2237
2238/*
2239 * Map an interface index to its name (SIOCGIFNAME)
2240 */
2241
2242/*
2243 * We need this ioctl for efficient implementation of the
2244 * if_indextoname() function required by the IPv6 API. Without
2245 * it, we would have to search all the interfaces to find a
2246 * match. --pb
2247 */
2248
2249static int dev_ifname(struct net *net, struct ifreq __user *arg)
2250{
2251 struct net_device *dev;
2252 struct ifreq ifr;
2253
2254 /*
2255 * Fetch the caller's info block.
2256 */
2257
2258 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2259 return -EFAULT;
2260
2261 read_lock(&dev_base_lock);
2262 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2263 if (!dev) {
2264 read_unlock(&dev_base_lock);
2265 return -ENODEV;
2266 }
2267
2268 strcpy(ifr.ifr_name, dev->name);
2269 read_unlock(&dev_base_lock);
2270
2271 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2272 return -EFAULT;
2273 return 0;
2274}
2275
2276/*
2277 * Perform a SIOCGIFCONF call. This structure will change
2278 * size eventually, and there is nothing I can do about it.
2279 * Thus we will need a 'compatibility mode'.
2280 */
2281
2282static int dev_ifconf(struct net *net, char __user *arg)
2283{
2284 struct ifconf ifc;
2285 struct net_device *dev;
2286 char __user *pos;
2287 int len;
2288 int total;
2289 int i;
2290
2291 /*
2292 * Fetch the caller's info block.
2293 */
2294
2295 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2296 return -EFAULT;
2297
2298 pos = ifc.ifc_buf;
2299 len = ifc.ifc_len;
2300
2301 /*
2302 * Loop over the interfaces, and write an info block for each.
2303 */
2304
2305 total = 0;
2306 for_each_netdev(net, dev) {
2307 for (i = 0; i < NPROTO; i++) {
2308 if (gifconf_list[i]) {
2309 int done;
2310 if (!pos)
2311 done = gifconf_list[i](dev, NULL, 0);
2312 else
2313 done = gifconf_list[i](dev, pos + total,
2314 len - total);
2315 if (done < 0)
2316 return -EFAULT;
2317 total += done;
2318 }
2319 }
2320 }
2321
2322 /*
2323 * All done. Write the updated control block back to the caller.
2324 */
2325 ifc.ifc_len = total;
2326
2327 /*
2328 * Both BSD and Solaris return 0 here, so we do too.
2329 */
2330 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2331}
2332
2333#ifdef CONFIG_PROC_FS
2334/*
2335 * This is invoked by the /proc filesystem handler to display a device
2336 * in detail.
2337 */
2338void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2339{
2340 struct net *net = seq->private;
2341 loff_t off;
2342 struct net_device *dev;
2343
2344 read_lock(&dev_base_lock);
2345 if (!*pos)
2346 return SEQ_START_TOKEN;
2347
2348 off = 1;
2349 for_each_netdev(net, dev)
2350 if (off++ == *pos)
2351 return dev;
2352
2353 return NULL;
2354}
2355
2356void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2357{
2358 struct net *net = seq->private;
2359 ++*pos;
2360 return v == SEQ_START_TOKEN ?
2361 first_net_device(net) : next_net_device((struct net_device *)v);
2362}
2363
2364void dev_seq_stop(struct seq_file *seq, void *v)
2365{
2366 read_unlock(&dev_base_lock);
2367}
2368
2369static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2370{
2371 struct net_device_stats *stats = dev->get_stats(dev);
2372
2373 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2374 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2375 dev->name, stats->rx_bytes, stats->rx_packets,
2376 stats->rx_errors,
2377 stats->rx_dropped + stats->rx_missed_errors,
2378 stats->rx_fifo_errors,
2379 stats->rx_length_errors + stats->rx_over_errors +
2380 stats->rx_crc_errors + stats->rx_frame_errors,
2381 stats->rx_compressed, stats->multicast,
2382 stats->tx_bytes, stats->tx_packets,
2383 stats->tx_errors, stats->tx_dropped,
2384 stats->tx_fifo_errors, stats->collisions,
2385 stats->tx_carrier_errors +
2386 stats->tx_aborted_errors +
2387 stats->tx_window_errors +
2388 stats->tx_heartbeat_errors,
2389 stats->tx_compressed);
2390}
2391
2392/*
2393 * Called from the PROCfs module. This now uses the new arbitrary sized
2394 * /proc/net interface to create /proc/net/dev
2395 */
2396static int dev_seq_show(struct seq_file *seq, void *v)
2397{
2398 if (v == SEQ_START_TOKEN)
2399 seq_puts(seq, "Inter-| Receive "
2400 " | Transmit\n"
2401 " face |bytes packets errs drop fifo frame "
2402 "compressed multicast|bytes packets errs "
2403 "drop fifo colls carrier compressed\n");
2404 else
2405 dev_seq_printf_stats(seq, v);
2406 return 0;
2407}
2408
2409static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2410{
2411 struct netif_rx_stats *rc = NULL;
2412
2413 while (*pos < NR_CPUS)
2414 if (cpu_online(*pos)) {
2415 rc = &per_cpu(netdev_rx_stat, *pos);
2416 break;
2417 } else
2418 ++*pos;
2419 return rc;
2420}
2421
2422static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2423{
2424 return softnet_get_online(pos);
2425}
2426
2427static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2428{
2429 ++*pos;
2430 return softnet_get_online(pos);
2431}
2432
2433static void softnet_seq_stop(struct seq_file *seq, void *v)
2434{
2435}
2436
2437static int softnet_seq_show(struct seq_file *seq, void *v)
2438{
2439 struct netif_rx_stats *s = v;
2440
2441 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2442 s->total, s->dropped, s->time_squeeze, 0,
2443 0, 0, 0, 0, /* was fastroute */
2444 s->cpu_collision );
2445 return 0;
2446}
2447
2448static const struct seq_operations dev_seq_ops = {
2449 .start = dev_seq_start,
2450 .next = dev_seq_next,
2451 .stop = dev_seq_stop,
2452 .show = dev_seq_show,
2453};
2454
2455static int dev_seq_open(struct inode *inode, struct file *file)
2456{
2457 struct seq_file *seq;
2458 int res;
2459 res = seq_open(file, &dev_seq_ops);
2460 if (!res) {
2461 seq = file->private_data;
2462 seq->private = get_proc_net(inode);
2463 if (!seq->private) {
2464 seq_release(inode, file);
2465 res = -ENXIO;
2466 }
2467 }
2468 return res;
2469}
2470
2471static int dev_seq_release(struct inode *inode, struct file *file)
2472{
2473 struct seq_file *seq = file->private_data;
2474 struct net *net = seq->private;
2475 put_net(net);
2476 return seq_release(inode, file);
2477}
2478
2479static const struct file_operations dev_seq_fops = {
2480 .owner = THIS_MODULE,
2481 .open = dev_seq_open,
2482 .read = seq_read,
2483 .llseek = seq_lseek,
2484 .release = dev_seq_release,
2485};
2486
2487static const struct seq_operations softnet_seq_ops = {
2488 .start = softnet_seq_start,
2489 .next = softnet_seq_next,
2490 .stop = softnet_seq_stop,
2491 .show = softnet_seq_show,
2492};
2493
2494static int softnet_seq_open(struct inode *inode, struct file *file)
2495{
2496 return seq_open(file, &softnet_seq_ops);
2497}
2498
2499static const struct file_operations softnet_seq_fops = {
2500 .owner = THIS_MODULE,
2501 .open = softnet_seq_open,
2502 .read = seq_read,
2503 .llseek = seq_lseek,
2504 .release = seq_release,
2505};
2506
2507static void *ptype_get_idx(loff_t pos)
2508{
2509 struct packet_type *pt = NULL;
2510 loff_t i = 0;
2511 int t;
2512
2513 list_for_each_entry_rcu(pt, &ptype_all, list) {
2514 if (i == pos)
2515 return pt;
2516 ++i;
2517 }
2518
2519 for (t = 0; t < 16; t++) {
2520 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2521 if (i == pos)
2522 return pt;
2523 ++i;
2524 }
2525 }
2526 return NULL;
2527}
2528
2529static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2530{
2531 rcu_read_lock();
2532 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2533}
2534
2535static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2536{
2537 struct packet_type *pt;
2538 struct list_head *nxt;
2539 int hash;
2540
2541 ++*pos;
2542 if (v == SEQ_START_TOKEN)
2543 return ptype_get_idx(0);
2544
2545 pt = v;
2546 nxt = pt->list.next;
2547 if (pt->type == htons(ETH_P_ALL)) {
2548 if (nxt != &ptype_all)
2549 goto found;
2550 hash = 0;
2551 nxt = ptype_base[0].next;
2552 } else
2553 hash = ntohs(pt->type) & 15;
2554
2555 while (nxt == &ptype_base[hash]) {
2556 if (++hash >= 16)
2557 return NULL;
2558 nxt = ptype_base[hash].next;
2559 }
2560found:
2561 return list_entry(nxt, struct packet_type, list);
2562}
2563
2564static void ptype_seq_stop(struct seq_file *seq, void *v)
2565{
2566 rcu_read_unlock();
2567}
2568
2569static void ptype_seq_decode(struct seq_file *seq, void *sym)
2570{
2571#ifdef CONFIG_KALLSYMS
2572 unsigned long offset = 0, symsize;
2573 const char *symname;
2574 char *modname;
2575 char namebuf[128];
2576
2577 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2578 &modname, namebuf);
2579
2580 if (symname) {
2581 char *delim = ":";
2582
2583 if (!modname)
2584 modname = delim = "";
2585 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2586 symname, offset);
2587 return;
2588 }
2589#endif
2590
2591 seq_printf(seq, "[%p]", sym);
2592}
2593
2594static int ptype_seq_show(struct seq_file *seq, void *v)
2595{
2596 struct packet_type *pt = v;
2597
2598 if (v == SEQ_START_TOKEN)
2599 seq_puts(seq, "Type Device Function\n");
2600 else {
2601 if (pt->type == htons(ETH_P_ALL))
2602 seq_puts(seq, "ALL ");
2603 else
2604 seq_printf(seq, "%04x", ntohs(pt->type));
2605
2606 seq_printf(seq, " %-8s ",
2607 pt->dev ? pt->dev->name : "");
2608 ptype_seq_decode(seq, pt->func);
2609 seq_putc(seq, '\n');
2610 }
2611
2612 return 0;
2613}
2614
2615static const struct seq_operations ptype_seq_ops = {
2616 .start = ptype_seq_start,
2617 .next = ptype_seq_next,
2618 .stop = ptype_seq_stop,
2619 .show = ptype_seq_show,
2620};
2621
2622static int ptype_seq_open(struct inode *inode, struct file *file)
2623{
2624 return seq_open(file, &ptype_seq_ops);
2625}
2626
2627static const struct file_operations ptype_seq_fops = {
2628 .owner = THIS_MODULE,
2629 .open = ptype_seq_open,
2630 .read = seq_read,
2631 .llseek = seq_lseek,
2632 .release = seq_release,
2633};
2634
2635
2636static int __net_init dev_proc_net_init(struct net *net)
2637{
2638 int rc = -ENOMEM;
2639
2640 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2641 goto out;
2642 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2643 goto out_dev;
2644 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2645 goto out_softnet;
2646
2647 if (wext_proc_init(net))
2648 goto out_ptype;
2649 rc = 0;
2650out:
2651 return rc;
2652out_ptype:
2653 proc_net_remove(net, "ptype");
2654out_softnet:
2655 proc_net_remove(net, "softnet_stat");
2656out_dev:
2657 proc_net_remove(net, "dev");
2658 goto out;
2659}
2660
2661static void __net_exit dev_proc_net_exit(struct net *net)
2662{
2663 wext_proc_exit(net);
2664
2665 proc_net_remove(net, "ptype");
2666 proc_net_remove(net, "softnet_stat");
2667 proc_net_remove(net, "dev");
2668}
2669
2670static struct pernet_operations __net_initdata dev_proc_ops = {
2671 .init = dev_proc_net_init,
2672 .exit = dev_proc_net_exit,
2673};
2674
2675static int __init dev_proc_init(void)
2676{
2677 return register_pernet_subsys(&dev_proc_ops);
2678}
2679#else
2680#define dev_proc_init() 0
2681#endif /* CONFIG_PROC_FS */
2682
2683
2684/**
2685 * netdev_set_master - set up master/slave pair
2686 * @slave: slave device
2687 * @master: new master device
2688 *
2689 * Changes the master device of the slave. Pass %NULL to break the
2690 * bonding. The caller must hold the RTNL semaphore. On a failure
2691 * a negative errno code is returned. On success the reference counts
2692 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2693 * function returns zero.
2694 */
2695int netdev_set_master(struct net_device *slave, struct net_device *master)
2696{
2697 struct net_device *old = slave->master;
2698
2699 ASSERT_RTNL();
2700
2701 if (master) {
2702 if (old)
2703 return -EBUSY;
2704 dev_hold(master);
2705 }
2706
2707 slave->master = master;
2708
2709 synchronize_net();
2710
2711 if (old)
2712 dev_put(old);
2713
2714 if (master)
2715 slave->flags |= IFF_SLAVE;
2716 else
2717 slave->flags &= ~IFF_SLAVE;
2718
2719 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2720 return 0;
2721}
2722
2723static void __dev_set_promiscuity(struct net_device *dev, int inc)
2724{
2725 unsigned short old_flags = dev->flags;
2726
2727 ASSERT_RTNL();
2728
2729 if ((dev->promiscuity += inc) == 0)
2730 dev->flags &= ~IFF_PROMISC;
2731 else
2732 dev->flags |= IFF_PROMISC;
2733 if (dev->flags != old_flags) {
2734 printk(KERN_INFO "device %s %s promiscuous mode\n",
2735 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2736 "left");
2737 audit_log(current->audit_context, GFP_ATOMIC,
2738 AUDIT_ANOM_PROMISCUOUS,
2739 "dev=%s prom=%d old_prom=%d auid=%u",
2740 dev->name, (dev->flags & IFF_PROMISC),
2741 (old_flags & IFF_PROMISC),
2742 audit_get_loginuid(current->audit_context));
2743
2744 if (dev->change_rx_flags)
2745 dev->change_rx_flags(dev, IFF_PROMISC);
2746 }
2747}
2748
2749/**
2750 * dev_set_promiscuity - update promiscuity count on a device
2751 * @dev: device
2752 * @inc: modifier
2753 *
2754 * Add or remove promiscuity from a device. While the count in the device
2755 * remains above zero the interface remains promiscuous. Once it hits zero
2756 * the device reverts back to normal filtering operation. A negative inc
2757 * value is used to drop promiscuity on the device.
2758 */
2759void dev_set_promiscuity(struct net_device *dev, int inc)
2760{
2761 unsigned short old_flags = dev->flags;
2762
2763 __dev_set_promiscuity(dev, inc);
2764 if (dev->flags != old_flags)
2765 dev_set_rx_mode(dev);
2766}
2767
2768/**
2769 * dev_set_allmulti - update allmulti count on a device
2770 * @dev: device
2771 * @inc: modifier
2772 *
2773 * Add or remove reception of all multicast frames to a device. While the
2774 * count in the device remains above zero the interface remains listening
2775 * to all interfaces. Once it hits zero the device reverts back to normal
2776 * filtering operation. A negative @inc value is used to drop the counter
2777 * when releasing a resource needing all multicasts.
2778 */
2779
2780void dev_set_allmulti(struct net_device *dev, int inc)
2781{
2782 unsigned short old_flags = dev->flags;
2783
2784 ASSERT_RTNL();
2785
2786 dev->flags |= IFF_ALLMULTI;
2787 if ((dev->allmulti += inc) == 0)
2788 dev->flags &= ~IFF_ALLMULTI;
2789 if (dev->flags ^ old_flags) {
2790 if (dev->change_rx_flags)
2791 dev->change_rx_flags(dev, IFF_ALLMULTI);
2792 dev_set_rx_mode(dev);
2793 }
2794}
2795
2796/*
2797 * Upload unicast and multicast address lists to device and
2798 * configure RX filtering. When the device doesn't support unicast
2799 * filtering it is put in promiscous mode while unicast addresses
2800 * are present.
2801 */
2802void __dev_set_rx_mode(struct net_device *dev)
2803{
2804 /* dev_open will call this function so the list will stay sane. */
2805 if (!(dev->flags&IFF_UP))
2806 return;
2807
2808 if (!netif_device_present(dev))
2809 return;
2810
2811 if (dev->set_rx_mode)
2812 dev->set_rx_mode(dev);
2813 else {
2814 /* Unicast addresses changes may only happen under the rtnl,
2815 * therefore calling __dev_set_promiscuity here is safe.
2816 */
2817 if (dev->uc_count > 0 && !dev->uc_promisc) {
2818 __dev_set_promiscuity(dev, 1);
2819 dev->uc_promisc = 1;
2820 } else if (dev->uc_count == 0 && dev->uc_promisc) {
2821 __dev_set_promiscuity(dev, -1);
2822 dev->uc_promisc = 0;
2823 }
2824
2825 if (dev->set_multicast_list)
2826 dev->set_multicast_list(dev);
2827 }
2828}
2829
2830void dev_set_rx_mode(struct net_device *dev)
2831{
2832 netif_tx_lock_bh(dev);
2833 __dev_set_rx_mode(dev);
2834 netif_tx_unlock_bh(dev);
2835}
2836
2837int __dev_addr_delete(struct dev_addr_list **list, int *count,
2838 void *addr, int alen, int glbl)
2839{
2840 struct dev_addr_list *da;
2841
2842 for (; (da = *list) != NULL; list = &da->next) {
2843 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2844 alen == da->da_addrlen) {
2845 if (glbl) {
2846 int old_glbl = da->da_gusers;
2847 da->da_gusers = 0;
2848 if (old_glbl == 0)
2849 break;
2850 }
2851 if (--da->da_users)
2852 return 0;
2853
2854 *list = da->next;
2855 kfree(da);
2856 (*count)--;
2857 return 0;
2858 }
2859 }
2860 return -ENOENT;
2861}
2862
2863int __dev_addr_add(struct dev_addr_list **list, int *count,
2864 void *addr, int alen, int glbl)
2865{
2866 struct dev_addr_list *da;
2867
2868 for (da = *list; da != NULL; da = da->next) {
2869 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2870 da->da_addrlen == alen) {
2871 if (glbl) {
2872 int old_glbl = da->da_gusers;
2873 da->da_gusers = 1;
2874 if (old_glbl)
2875 return 0;
2876 }
2877 da->da_users++;
2878 return 0;
2879 }
2880 }
2881
2882 da = kmalloc(sizeof(*da), GFP_ATOMIC);
2883 if (da == NULL)
2884 return -ENOMEM;
2885 memcpy(da->da_addr, addr, alen);
2886 da->da_addrlen = alen;
2887 da->da_users = 1;
2888 da->da_gusers = glbl ? 1 : 0;
2889 da->next = *list;
2890 *list = da;
2891 (*count)++;
2892 return 0;
2893}
2894
2895/**
2896 * dev_unicast_delete - Release secondary unicast address.
2897 * @dev: device
2898 * @addr: address to delete
2899 * @alen: length of @addr
2900 *
2901 * Release reference to a secondary unicast address and remove it
2902 * from the device if the reference count drops to zero.
2903 *
2904 * The caller must hold the rtnl_mutex.
2905 */
2906int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
2907{
2908 int err;
2909
2910 ASSERT_RTNL();
2911
2912 netif_tx_lock_bh(dev);
2913 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2914 if (!err)
2915 __dev_set_rx_mode(dev);
2916 netif_tx_unlock_bh(dev);
2917 return err;
2918}
2919EXPORT_SYMBOL(dev_unicast_delete);
2920
2921/**
2922 * dev_unicast_add - add a secondary unicast address
2923 * @dev: device
2924 * @addr: address to delete
2925 * @alen: length of @addr
2926 *
2927 * Add a secondary unicast address to the device or increase
2928 * the reference count if it already exists.
2929 *
2930 * The caller must hold the rtnl_mutex.
2931 */
2932int dev_unicast_add(struct net_device *dev, void *addr, int alen)
2933{
2934 int err;
2935
2936 ASSERT_RTNL();
2937
2938 netif_tx_lock_bh(dev);
2939 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2940 if (!err)
2941 __dev_set_rx_mode(dev);
2942 netif_tx_unlock_bh(dev);
2943 return err;
2944}
2945EXPORT_SYMBOL(dev_unicast_add);
2946
2947static void __dev_addr_discard(struct dev_addr_list **list)
2948{
2949 struct dev_addr_list *tmp;
2950
2951 while (*list != NULL) {
2952 tmp = *list;
2953 *list = tmp->next;
2954 if (tmp->da_users > tmp->da_gusers)
2955 printk("__dev_addr_discard: address leakage! "
2956 "da_users=%d\n", tmp->da_users);
2957 kfree(tmp);
2958 }
2959}
2960
2961static void dev_addr_discard(struct net_device *dev)
2962{
2963 netif_tx_lock_bh(dev);
2964
2965 __dev_addr_discard(&dev->uc_list);
2966 dev->uc_count = 0;
2967
2968 __dev_addr_discard(&dev->mc_list);
2969 dev->mc_count = 0;
2970
2971 netif_tx_unlock_bh(dev);
2972}
2973
2974unsigned dev_get_flags(const struct net_device *dev)
2975{
2976 unsigned flags;
2977
2978 flags = (dev->flags & ~(IFF_PROMISC |
2979 IFF_ALLMULTI |
2980 IFF_RUNNING |
2981 IFF_LOWER_UP |
2982 IFF_DORMANT)) |
2983 (dev->gflags & (IFF_PROMISC |
2984 IFF_ALLMULTI));
2985
2986 if (netif_running(dev)) {
2987 if (netif_oper_up(dev))
2988 flags |= IFF_RUNNING;
2989 if (netif_carrier_ok(dev))
2990 flags |= IFF_LOWER_UP;
2991 if (netif_dormant(dev))
2992 flags |= IFF_DORMANT;
2993 }
2994
2995 return flags;
2996}
2997
2998int dev_change_flags(struct net_device *dev, unsigned flags)
2999{
3000 int ret, changes;
3001 int old_flags = dev->flags;
3002
3003 ASSERT_RTNL();
3004
3005 /*
3006 * Set the flags on our device.
3007 */
3008
3009 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3010 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3011 IFF_AUTOMEDIA)) |
3012 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3013 IFF_ALLMULTI));
3014
3015 /*
3016 * Load in the correct multicast list now the flags have changed.
3017 */
3018
3019 if (dev->change_rx_flags && (dev->flags ^ flags) & IFF_MULTICAST)
3020 dev->change_rx_flags(dev, IFF_MULTICAST);
3021
3022 dev_set_rx_mode(dev);
3023
3024 /*
3025 * Have we downed the interface. We handle IFF_UP ourselves
3026 * according to user attempts to set it, rather than blindly
3027 * setting it.
3028 */
3029
3030 ret = 0;
3031 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3032 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3033
3034 if (!ret)
3035 dev_set_rx_mode(dev);
3036 }
3037
3038 if (dev->flags & IFF_UP &&
3039 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3040 IFF_VOLATILE)))
3041 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3042
3043 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3044 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3045 dev->gflags ^= IFF_PROMISC;
3046 dev_set_promiscuity(dev, inc);
3047 }
3048
3049 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3050 is important. Some (broken) drivers set IFF_PROMISC, when
3051 IFF_ALLMULTI is requested not asking us and not reporting.
3052 */
3053 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3054 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3055 dev->gflags ^= IFF_ALLMULTI;
3056 dev_set_allmulti(dev, inc);
3057 }
3058
3059 /* Exclude state transition flags, already notified */
3060 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3061 if (changes)
3062 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3063
3064 return ret;
3065}
3066
3067int dev_set_mtu(struct net_device *dev, int new_mtu)
3068{
3069 int err;
3070
3071 if (new_mtu == dev->mtu)
3072 return 0;
3073
3074 /* MTU must be positive. */
3075 if (new_mtu < 0)
3076 return -EINVAL;
3077
3078 if (!netif_device_present(dev))
3079 return -ENODEV;
3080
3081 err = 0;
3082 if (dev->change_mtu)
3083 err = dev->change_mtu(dev, new_mtu);
3084 else
3085 dev->mtu = new_mtu;
3086 if (!err && dev->flags & IFF_UP)
3087 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3088 return err;
3089}
3090
3091int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3092{
3093 int err;
3094
3095 if (!dev->set_mac_address)
3096 return -EOPNOTSUPP;
3097 if (sa->sa_family != dev->type)
3098 return -EINVAL;
3099 if (!netif_device_present(dev))
3100 return -ENODEV;
3101 err = dev->set_mac_address(dev, sa);
3102 if (!err)
3103 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3104 return err;
3105}
3106
3107/*
3108 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3109 */
3110static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3111{
3112 int err;
3113 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3114
3115 if (!dev)
3116 return -ENODEV;
3117
3118 switch (cmd) {
3119 case SIOCGIFFLAGS: /* Get interface flags */
3120 ifr->ifr_flags = dev_get_flags(dev);
3121 return 0;
3122
3123 case SIOCGIFMETRIC: /* Get the metric on the interface
3124 (currently unused) */
3125 ifr->ifr_metric = 0;
3126 return 0;
3127
3128 case SIOCGIFMTU: /* Get the MTU of a device */
3129 ifr->ifr_mtu = dev->mtu;
3130 return 0;
3131
3132 case SIOCGIFHWADDR:
3133 if (!dev->addr_len)
3134 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3135 else
3136 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3137 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3138 ifr->ifr_hwaddr.sa_family = dev->type;
3139 return 0;
3140
3141 case SIOCGIFSLAVE:
3142 err = -EINVAL;
3143 break;
3144
3145 case SIOCGIFMAP:
3146 ifr->ifr_map.mem_start = dev->mem_start;
3147 ifr->ifr_map.mem_end = dev->mem_end;
3148 ifr->ifr_map.base_addr = dev->base_addr;
3149 ifr->ifr_map.irq = dev->irq;
3150 ifr->ifr_map.dma = dev->dma;
3151 ifr->ifr_map.port = dev->if_port;
3152 return 0;
3153
3154 case SIOCGIFINDEX:
3155 ifr->ifr_ifindex = dev->ifindex;
3156 return 0;
3157
3158 case SIOCGIFTXQLEN:
3159 ifr->ifr_qlen = dev->tx_queue_len;
3160 return 0;
3161
3162 default:
3163 /* dev_ioctl() should ensure this case
3164 * is never reached
3165 */
3166 WARN_ON(1);
3167 err = -EINVAL;
3168 break;
3169
3170 }
3171 return err;
3172}
3173
3174/*
3175 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3176 */
3177static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3178{
3179 int err;
3180 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3181
3182 if (!dev)
3183 return -ENODEV;
3184
3185 switch (cmd) {
3186 case SIOCSIFFLAGS: /* Set interface flags */
3187 return dev_change_flags(dev, ifr->ifr_flags);
3188
3189 case SIOCSIFMETRIC: /* Set the metric on the interface
3190 (currently unused) */
3191 return -EOPNOTSUPP;
3192
3193 case SIOCSIFMTU: /* Set the MTU of a device */
3194 return dev_set_mtu(dev, ifr->ifr_mtu);
3195
3196 case SIOCSIFHWADDR:
3197 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3198
3199 case SIOCSIFHWBROADCAST:
3200 if (ifr->ifr_hwaddr.sa_family != dev->type)
3201 return -EINVAL;
3202 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3203 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3204 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3205 return 0;
3206
3207 case SIOCSIFMAP:
3208 if (dev->set_config) {
3209 if (!netif_device_present(dev))
3210 return -ENODEV;
3211 return dev->set_config(dev, &ifr->ifr_map);
3212 }
3213 return -EOPNOTSUPP;
3214
3215 case SIOCADDMULTI:
3216 if (!dev->set_multicast_list ||
3217 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3218 return -EINVAL;
3219 if (!netif_device_present(dev))
3220 return -ENODEV;
3221 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3222 dev->addr_len, 1);
3223
3224 case SIOCDELMULTI:
3225 if (!dev->set_multicast_list ||
3226 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3227 return -EINVAL;
3228 if (!netif_device_present(dev))
3229 return -ENODEV;
3230 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3231 dev->addr_len, 1);
3232
3233 case SIOCSIFTXQLEN:
3234 if (ifr->ifr_qlen < 0)
3235 return -EINVAL;
3236 dev->tx_queue_len = ifr->ifr_qlen;
3237 return 0;
3238
3239 case SIOCSIFNAME:
3240 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3241 return dev_change_name(dev, ifr->ifr_newname);
3242
3243 /*
3244 * Unknown or private ioctl
3245 */
3246
3247 default:
3248 if ((cmd >= SIOCDEVPRIVATE &&
3249 cmd <= SIOCDEVPRIVATE + 15) ||
3250 cmd == SIOCBONDENSLAVE ||
3251 cmd == SIOCBONDRELEASE ||
3252 cmd == SIOCBONDSETHWADDR ||
3253 cmd == SIOCBONDSLAVEINFOQUERY ||
3254 cmd == SIOCBONDINFOQUERY ||
3255 cmd == SIOCBONDCHANGEACTIVE ||
3256 cmd == SIOCGMIIPHY ||
3257 cmd == SIOCGMIIREG ||
3258 cmd == SIOCSMIIREG ||
3259 cmd == SIOCBRADDIF ||
3260 cmd == SIOCBRDELIF ||
3261 cmd == SIOCWANDEV) {
3262 err = -EOPNOTSUPP;
3263 if (dev->do_ioctl) {
3264 if (netif_device_present(dev))
3265 err = dev->do_ioctl(dev, ifr,
3266 cmd);
3267 else
3268 err = -ENODEV;
3269 }
3270 } else
3271 err = -EINVAL;
3272
3273 }
3274 return err;
3275}
3276
3277/*
3278 * This function handles all "interface"-type I/O control requests. The actual
3279 * 'doing' part of this is dev_ifsioc above.
3280 */
3281
3282/**
3283 * dev_ioctl - network device ioctl
3284 * @net: the applicable net namespace
3285 * @cmd: command to issue
3286 * @arg: pointer to a struct ifreq in user space
3287 *
3288 * Issue ioctl functions to devices. This is normally called by the
3289 * user space syscall interfaces but can sometimes be useful for
3290 * other purposes. The return value is the return from the syscall if
3291 * positive or a negative errno code on error.
3292 */
3293
3294int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3295{
3296 struct ifreq ifr;
3297 int ret;
3298 char *colon;
3299
3300 /* One special case: SIOCGIFCONF takes ifconf argument
3301 and requires shared lock, because it sleeps writing
3302 to user space.
3303 */
3304
3305 if (cmd == SIOCGIFCONF) {
3306 rtnl_lock();
3307 ret = dev_ifconf(net, (char __user *) arg);
3308 rtnl_unlock();
3309 return ret;
3310 }
3311 if (cmd == SIOCGIFNAME)
3312 return dev_ifname(net, (struct ifreq __user *)arg);
3313
3314 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3315 return -EFAULT;
3316
3317 ifr.ifr_name[IFNAMSIZ-1] = 0;
3318
3319 colon = strchr(ifr.ifr_name, ':');
3320 if (colon)
3321 *colon = 0;
3322
3323 /*
3324 * See which interface the caller is talking about.
3325 */
3326
3327 switch (cmd) {
3328 /*
3329 * These ioctl calls:
3330 * - can be done by all.
3331 * - atomic and do not require locking.
3332 * - return a value
3333 */
3334 case SIOCGIFFLAGS:
3335 case SIOCGIFMETRIC:
3336 case SIOCGIFMTU:
3337 case SIOCGIFHWADDR:
3338 case SIOCGIFSLAVE:
3339 case SIOCGIFMAP:
3340 case SIOCGIFINDEX:
3341 case SIOCGIFTXQLEN:
3342 dev_load(net, ifr.ifr_name);
3343 read_lock(&dev_base_lock);
3344 ret = dev_ifsioc_locked(net, &ifr, cmd);
3345 read_unlock(&dev_base_lock);
3346 if (!ret) {
3347 if (colon)
3348 *colon = ':';
3349 if (copy_to_user(arg, &ifr,
3350 sizeof(struct ifreq)))
3351 ret = -EFAULT;
3352 }
3353 return ret;
3354
3355 case SIOCETHTOOL:
3356 dev_load(net, ifr.ifr_name);
3357 rtnl_lock();
3358 ret = dev_ethtool(net, &ifr);
3359 rtnl_unlock();
3360 if (!ret) {
3361 if (colon)
3362 *colon = ':';
3363 if (copy_to_user(arg, &ifr,
3364 sizeof(struct ifreq)))
3365 ret = -EFAULT;
3366 }
3367 return ret;
3368
3369 /*
3370 * These ioctl calls:
3371 * - require superuser power.
3372 * - require strict serialization.
3373 * - return a value
3374 */
3375 case SIOCGMIIPHY:
3376 case SIOCGMIIREG:
3377 case SIOCSIFNAME:
3378 if (!capable(CAP_NET_ADMIN))
3379 return -EPERM;
3380 dev_load(net, ifr.ifr_name);
3381 rtnl_lock();
3382 ret = dev_ifsioc(net, &ifr, cmd);
3383 rtnl_unlock();
3384 if (!ret) {
3385 if (colon)
3386 *colon = ':';
3387 if (copy_to_user(arg, &ifr,
3388 sizeof(struct ifreq)))
3389 ret = -EFAULT;
3390 }
3391 return ret;
3392
3393 /*
3394 * These ioctl calls:
3395 * - require superuser power.
3396 * - require strict serialization.
3397 * - do not return a value
3398 */
3399 case SIOCSIFFLAGS:
3400 case SIOCSIFMETRIC:
3401 case SIOCSIFMTU:
3402 case SIOCSIFMAP:
3403 case SIOCSIFHWADDR:
3404 case SIOCSIFSLAVE:
3405 case SIOCADDMULTI:
3406 case SIOCDELMULTI:
3407 case SIOCSIFHWBROADCAST:
3408 case SIOCSIFTXQLEN:
3409 case SIOCSMIIREG:
3410 case SIOCBONDENSLAVE:
3411 case SIOCBONDRELEASE:
3412 case SIOCBONDSETHWADDR:
3413 case SIOCBONDCHANGEACTIVE:
3414 case SIOCBRADDIF:
3415 case SIOCBRDELIF:
3416 if (!capable(CAP_NET_ADMIN))
3417 return -EPERM;
3418 /* fall through */
3419 case SIOCBONDSLAVEINFOQUERY:
3420 case SIOCBONDINFOQUERY:
3421 dev_load(net, ifr.ifr_name);
3422 rtnl_lock();
3423 ret = dev_ifsioc(net, &ifr, cmd);
3424 rtnl_unlock();
3425 return ret;
3426
3427 case SIOCGIFMEM:
3428 /* Get the per device memory space. We can add this but
3429 * currently do not support it */
3430 case SIOCSIFMEM:
3431 /* Set the per device memory buffer space.
3432 * Not applicable in our case */
3433 case SIOCSIFLINK:
3434 return -EINVAL;
3435
3436 /*
3437 * Unknown or private ioctl.
3438 */
3439 default:
3440 if (cmd == SIOCWANDEV ||
3441 (cmd >= SIOCDEVPRIVATE &&
3442 cmd <= SIOCDEVPRIVATE + 15)) {
3443 dev_load(net, ifr.ifr_name);
3444 rtnl_lock();
3445 ret = dev_ifsioc(net, &ifr, cmd);
3446 rtnl_unlock();
3447 if (!ret && copy_to_user(arg, &ifr,
3448 sizeof(struct ifreq)))
3449 ret = -EFAULT;
3450 return ret;
3451 }
3452 /* Take care of Wireless Extensions */
3453 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3454 return wext_handle_ioctl(net, &ifr, cmd, arg);
3455 return -EINVAL;
3456 }
3457}
3458
3459
3460/**
3461 * dev_new_index - allocate an ifindex
3462 * @net: the applicable net namespace
3463 *
3464 * Returns a suitable unique value for a new device interface
3465 * number. The caller must hold the rtnl semaphore or the
3466 * dev_base_lock to be sure it remains unique.
3467 */
3468static int dev_new_index(struct net *net)
3469{
3470 static int ifindex;
3471 for (;;) {
3472 if (++ifindex <= 0)
3473 ifindex = 1;
3474 if (!__dev_get_by_index(net, ifindex))
3475 return ifindex;
3476 }
3477}
3478
3479/* Delayed registration/unregisteration */
3480static DEFINE_SPINLOCK(net_todo_list_lock);
3481static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list);
3482
3483static void net_set_todo(struct net_device *dev)
3484{
3485 spin_lock(&net_todo_list_lock);
3486 list_add_tail(&dev->todo_list, &net_todo_list);
3487 spin_unlock(&net_todo_list_lock);
3488}
3489
3490/**
3491 * register_netdevice - register a network device
3492 * @dev: device to register
3493 *
3494 * Take a completed network device structure and add it to the kernel
3495 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3496 * chain. 0 is returned on success. A negative errno code is returned
3497 * on a failure to set up the device, or if the name is a duplicate.
3498 *
3499 * Callers must hold the rtnl semaphore. You may want
3500 * register_netdev() instead of this.
3501 *
3502 * BUGS:
3503 * The locking appears insufficient to guarantee two parallel registers
3504 * will not get the same name.
3505 */
3506
3507int register_netdevice(struct net_device *dev)
3508{
3509 struct hlist_head *head;
3510 struct hlist_node *p;
3511 int ret;
3512 struct net *net;
3513
3514 BUG_ON(dev_boot_phase);
3515 ASSERT_RTNL();
3516
3517 might_sleep();
3518
3519 /* When net_device's are persistent, this will be fatal. */
3520 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3521 BUG_ON(!dev->nd_net);
3522 net = dev->nd_net;
3523
3524 spin_lock_init(&dev->queue_lock);
3525 spin_lock_init(&dev->_xmit_lock);
3526 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type);
3527 dev->xmit_lock_owner = -1;
3528 spin_lock_init(&dev->ingress_lock);
3529
3530 dev->iflink = -1;
3531
3532 /* Init, if this function is available */
3533 if (dev->init) {
3534 ret = dev->init(dev);
3535 if (ret) {
3536 if (ret > 0)
3537 ret = -EIO;
3538 goto out;
3539 }
3540 }
3541
3542 if (!dev_valid_name(dev->name)) {
3543 ret = -EINVAL;
3544 goto err_uninit;
3545 }
3546
3547 dev->ifindex = dev_new_index(net);
3548 if (dev->iflink == -1)
3549 dev->iflink = dev->ifindex;
3550
3551 /* Check for existence of name */
3552 head = dev_name_hash(net, dev->name);
3553 hlist_for_each(p, head) {
3554 struct net_device *d
3555 = hlist_entry(p, struct net_device, name_hlist);
3556 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3557 ret = -EEXIST;
3558 goto err_uninit;
3559 }
3560 }
3561
3562 /* Fix illegal checksum combinations */
3563 if ((dev->features & NETIF_F_HW_CSUM) &&
3564 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3565 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3566 dev->name);
3567 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3568 }
3569
3570 if ((dev->features & NETIF_F_NO_CSUM) &&
3571 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3572 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3573 dev->name);
3574 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3575 }
3576
3577
3578 /* Fix illegal SG+CSUM combinations. */
3579 if ((dev->features & NETIF_F_SG) &&
3580 !(dev->features & NETIF_F_ALL_CSUM)) {
3581 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3582 dev->name);
3583 dev->features &= ~NETIF_F_SG;
3584 }
3585
3586 /* TSO requires that SG is present as well. */
3587 if ((dev->features & NETIF_F_TSO) &&
3588 !(dev->features & NETIF_F_SG)) {
3589 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3590 dev->name);
3591 dev->features &= ~NETIF_F_TSO;
3592 }
3593 if (dev->features & NETIF_F_UFO) {
3594 if (!(dev->features & NETIF_F_HW_CSUM)) {
3595 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3596 "NETIF_F_HW_CSUM feature.\n",
3597 dev->name);
3598 dev->features &= ~NETIF_F_UFO;
3599 }
3600 if (!(dev->features & NETIF_F_SG)) {
3601 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3602 "NETIF_F_SG feature.\n",
3603 dev->name);
3604 dev->features &= ~NETIF_F_UFO;
3605 }
3606 }
3607
3608 ret = netdev_register_kobject(dev);
3609 if (ret)
3610 goto err_uninit;
3611 dev->reg_state = NETREG_REGISTERED;
3612
3613 /*
3614 * Default initial state at registry is that the
3615 * device is present.
3616 */
3617
3618 set_bit(__LINK_STATE_PRESENT, &dev->state);
3619
3620 dev_init_scheduler(dev);
3621 dev_hold(dev);
3622 list_netdevice(dev);
3623
3624 /* Notify protocols, that a new device appeared. */
3625 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
3626 ret = notifier_to_errno(ret);
3627 if (ret)
3628 unregister_netdevice(dev);
3629
3630out:
3631 return ret;
3632
3633err_uninit:
3634 if (dev->uninit)
3635 dev->uninit(dev);
3636 goto out;
3637}
3638
3639/**
3640 * register_netdev - register a network device
3641 * @dev: device to register
3642 *
3643 * Take a completed network device structure and add it to the kernel
3644 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3645 * chain. 0 is returned on success. A negative errno code is returned
3646 * on a failure to set up the device, or if the name is a duplicate.
3647 *
3648 * This is a wrapper around register_netdevice that takes the rtnl semaphore
3649 * and expands the device name if you passed a format string to
3650 * alloc_netdev.
3651 */
3652int register_netdev(struct net_device *dev)
3653{
3654 int err;
3655
3656 rtnl_lock();
3657
3658 /*
3659 * If the name is a format string the caller wants us to do a
3660 * name allocation.
3661 */
3662 if (strchr(dev->name, '%')) {
3663 err = dev_alloc_name(dev, dev->name);
3664 if (err < 0)
3665 goto out;
3666 }
3667
3668 err = register_netdevice(dev);
3669out:
3670 rtnl_unlock();
3671 return err;
3672}
3673EXPORT_SYMBOL(register_netdev);
3674
3675/*
3676 * netdev_wait_allrefs - wait until all references are gone.
3677 *
3678 * This is called when unregistering network devices.
3679 *
3680 * Any protocol or device that holds a reference should register
3681 * for netdevice notification, and cleanup and put back the
3682 * reference if they receive an UNREGISTER event.
3683 * We can get stuck here if buggy protocols don't correctly
3684 * call dev_put.
3685 */
3686static void netdev_wait_allrefs(struct net_device *dev)
3687{
3688 unsigned long rebroadcast_time, warning_time;
3689
3690 rebroadcast_time = warning_time = jiffies;
3691 while (atomic_read(&dev->refcnt) != 0) {
3692 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
3693 rtnl_lock();
3694
3695 /* Rebroadcast unregister notification */
3696 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3697
3698 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3699 &dev->state)) {
3700 /* We must not have linkwatch events
3701 * pending on unregister. If this
3702 * happens, we simply run the queue
3703 * unscheduled, resulting in a noop
3704 * for this device.
3705 */
3706 linkwatch_run_queue();
3707 }
3708
3709 __rtnl_unlock();
3710
3711 rebroadcast_time = jiffies;
3712 }
3713
3714 msleep(250);
3715
3716 if (time_after(jiffies, warning_time + 10 * HZ)) {
3717 printk(KERN_EMERG "unregister_netdevice: "
3718 "waiting for %s to become free. Usage "
3719 "count = %d\n",
3720 dev->name, atomic_read(&dev->refcnt));
3721 warning_time = jiffies;
3722 }
3723 }
3724}
3725
3726/* The sequence is:
3727 *
3728 * rtnl_lock();
3729 * ...
3730 * register_netdevice(x1);
3731 * register_netdevice(x2);
3732 * ...
3733 * unregister_netdevice(y1);
3734 * unregister_netdevice(y2);
3735 * ...
3736 * rtnl_unlock();
3737 * free_netdev(y1);
3738 * free_netdev(y2);
3739 *
3740 * We are invoked by rtnl_unlock() after it drops the semaphore.
3741 * This allows us to deal with problems:
3742 * 1) We can delete sysfs objects which invoke hotplug
3743 * without deadlocking with linkwatch via keventd.
3744 * 2) Since we run with the RTNL semaphore not held, we can sleep
3745 * safely in order to wait for the netdev refcnt to drop to zero.
3746 */
3747static DEFINE_MUTEX(net_todo_run_mutex);
3748void netdev_run_todo(void)
3749{
3750 struct list_head list;
3751
3752 /* Need to guard against multiple cpu's getting out of order. */
3753 mutex_lock(&net_todo_run_mutex);
3754
3755 /* Not safe to do outside the semaphore. We must not return
3756 * until all unregister events invoked by the local processor
3757 * have been completed (either by this todo run, or one on
3758 * another cpu).
3759 */
3760 if (list_empty(&net_todo_list))
3761 goto out;
3762
3763 /* Snapshot list, allow later requests */
3764 spin_lock(&net_todo_list_lock);
3765 list_replace_init(&net_todo_list, &list);
3766 spin_unlock(&net_todo_list_lock);
3767
3768 while (!list_empty(&list)) {
3769 struct net_device *dev
3770 = list_entry(list.next, struct net_device, todo_list);
3771 list_del(&dev->todo_list);
3772
3773 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
3774 printk(KERN_ERR "network todo '%s' but state %d\n",
3775 dev->name, dev->reg_state);
3776 dump_stack();
3777 continue;
3778 }
3779
3780 dev->reg_state = NETREG_UNREGISTERED;
3781
3782 netdev_wait_allrefs(dev);
3783
3784 /* paranoia */
3785 BUG_ON(atomic_read(&dev->refcnt));
3786 BUG_TRAP(!dev->ip_ptr);
3787 BUG_TRAP(!dev->ip6_ptr);
3788 BUG_TRAP(!dev->dn_ptr);
3789
3790 if (dev->destructor)
3791 dev->destructor(dev);
3792
3793 /* Free network device */
3794 kobject_put(&dev->dev.kobj);
3795 }
3796
3797out:
3798 mutex_unlock(&net_todo_run_mutex);
3799}
3800
3801static struct net_device_stats *internal_stats(struct net_device *dev)
3802{
3803 return &dev->stats;
3804}
3805
3806/**
3807 * alloc_netdev_mq - allocate network device
3808 * @sizeof_priv: size of private data to allocate space for
3809 * @name: device name format string
3810 * @setup: callback to initialize device
3811 * @queue_count: the number of subqueues to allocate
3812 *
3813 * Allocates a struct net_device with private data area for driver use
3814 * and performs basic initialization. Also allocates subquue structs
3815 * for each queue on the device at the end of the netdevice.
3816 */
3817struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
3818 void (*setup)(struct net_device *), unsigned int queue_count)
3819{
3820 void *p;
3821 struct net_device *dev;
3822 int alloc_size;
3823
3824 BUG_ON(strlen(name) >= sizeof(dev->name));
3825
3826 /* ensure 32-byte alignment of both the device and private area */
3827 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST +
3828 (sizeof(struct net_device_subqueue) * (queue_count - 1))) &
3829 ~NETDEV_ALIGN_CONST;
3830 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST;
3831
3832 p = kzalloc(alloc_size, GFP_KERNEL);
3833 if (!p) {
3834 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
3835 return NULL;
3836 }
3837
3838 dev = (struct net_device *)
3839 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
3840 dev->padded = (char *)dev - (char *)p;
3841 dev->nd_net = &init_net;
3842
3843 if (sizeof_priv) {
3844 dev->priv = ((char *)dev +
3845 ((sizeof(struct net_device) +
3846 (sizeof(struct net_device_subqueue) *
3847 (queue_count - 1)) + NETDEV_ALIGN_CONST)
3848 & ~NETDEV_ALIGN_CONST));
3849 }
3850
3851 dev->egress_subqueue_count = queue_count;
3852
3853 dev->get_stats = internal_stats;
3854 netpoll_netdev_init(dev);
3855 setup(dev);
3856 strcpy(dev->name, name);
3857 return dev;
3858}
3859EXPORT_SYMBOL(alloc_netdev_mq);
3860
3861/**
3862 * free_netdev - free network device
3863 * @dev: device
3864 *
3865 * This function does the last stage of destroying an allocated device
3866 * interface. The reference to the device object is released.
3867 * If this is the last reference then it will be freed.
3868 */
3869void free_netdev(struct net_device *dev)
3870{
3871 /* Compatibility with error handling in drivers */
3872 if (dev->reg_state == NETREG_UNINITIALIZED) {
3873 kfree((char *)dev - dev->padded);
3874 return;
3875 }
3876
3877 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
3878 dev->reg_state = NETREG_RELEASED;
3879
3880 /* will free via device release */
3881 put_device(&dev->dev);
3882}
3883
3884/* Synchronize with packet receive processing. */
3885void synchronize_net(void)
3886{
3887 might_sleep();
3888 synchronize_rcu();
3889}
3890
3891/**
3892 * unregister_netdevice - remove device from the kernel
3893 * @dev: device
3894 *
3895 * This function shuts down a device interface and removes it
3896 * from the kernel tables. On success 0 is returned, on a failure
3897 * a negative errno code is returned.
3898 *
3899 * Callers must hold the rtnl semaphore. You may want
3900 * unregister_netdev() instead of this.
3901 */
3902
3903void unregister_netdevice(struct net_device *dev)
3904{
3905 BUG_ON(dev_boot_phase);
3906 ASSERT_RTNL();
3907
3908 /* Some devices call without registering for initialization unwind. */
3909 if (dev->reg_state == NETREG_UNINITIALIZED) {
3910 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3911 "was registered\n", dev->name, dev);
3912
3913 WARN_ON(1);
3914 return;
3915 }
3916
3917 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3918
3919 /* If device is running, close it first. */
3920 dev_close(dev);
3921
3922 /* And unlink it from device chain. */
3923 unlist_netdevice(dev);
3924
3925 dev->reg_state = NETREG_UNREGISTERING;
3926
3927 synchronize_net();
3928
3929 /* Shutdown queueing discipline. */
3930 dev_shutdown(dev);
3931
3932
3933 /* Notify protocols, that we are about to destroy
3934 this device. They should clean all the things.
3935 */
3936 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3937
3938 /*
3939 * Flush the unicast and multicast chains
3940 */
3941 dev_addr_discard(dev);
3942
3943 if (dev->uninit)
3944 dev->uninit(dev);
3945
3946 /* Notifier chain MUST detach us from master device. */
3947 BUG_TRAP(!dev->master);
3948
3949 /* Remove entries from kobject tree */
3950 netdev_unregister_kobject(dev);
3951
3952 /* Finish processing unregister after unlock */
3953 net_set_todo(dev);
3954
3955 synchronize_net();
3956
3957 dev_put(dev);
3958}
3959
3960/**
3961 * unregister_netdev - remove device from the kernel
3962 * @dev: device
3963 *
3964 * This function shuts down a device interface and removes it
3965 * from the kernel tables. On success 0 is returned, on a failure
3966 * a negative errno code is returned.
3967 *
3968 * This is just a wrapper for unregister_netdevice that takes
3969 * the rtnl semaphore. In general you want to use this and not
3970 * unregister_netdevice.
3971 */
3972void unregister_netdev(struct net_device *dev)
3973{
3974 rtnl_lock();
3975 unregister_netdevice(dev);
3976 rtnl_unlock();
3977}
3978
3979EXPORT_SYMBOL(unregister_netdev);
3980
3981/**
3982 * dev_change_net_namespace - move device to different nethost namespace
3983 * @dev: device
3984 * @net: network namespace
3985 * @pat: If not NULL name pattern to try if the current device name
3986 * is already taken in the destination network namespace.
3987 *
3988 * This function shuts down a device interface and moves it
3989 * to a new network namespace. On success 0 is returned, on
3990 * a failure a netagive errno code is returned.
3991 *
3992 * Callers must hold the rtnl semaphore.
3993 */
3994
3995int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
3996{
3997 char buf[IFNAMSIZ];
3998 const char *destname;
3999 int err;
4000
4001 ASSERT_RTNL();
4002
4003 /* Don't allow namespace local devices to be moved. */
4004 err = -EINVAL;
4005 if (dev->features & NETIF_F_NETNS_LOCAL)
4006 goto out;
4007
4008 /* Ensure the device has been registrered */
4009 err = -EINVAL;
4010 if (dev->reg_state != NETREG_REGISTERED)
4011 goto out;
4012
4013 /* Get out if there is nothing todo */
4014 err = 0;
4015 if (dev->nd_net == net)
4016 goto out;
4017
4018 /* Pick the destination device name, and ensure
4019 * we can use it in the destination network namespace.
4020 */
4021 err = -EEXIST;
4022 destname = dev->name;
4023 if (__dev_get_by_name(net, destname)) {
4024 /* We get here if we can't use the current device name */
4025 if (!pat)
4026 goto out;
4027 if (!dev_valid_name(pat))
4028 goto out;
4029 if (strchr(pat, '%')) {
4030 if (__dev_alloc_name(net, pat, buf) < 0)
4031 goto out;
4032 destname = buf;
4033 } else
4034 destname = pat;
4035 if (__dev_get_by_name(net, destname))
4036 goto out;
4037 }
4038
4039 /*
4040 * And now a mini version of register_netdevice unregister_netdevice.
4041 */
4042
4043 /* If device is running close it first. */
4044 dev_close(dev);
4045
4046 /* And unlink it from device chain */
4047 err = -ENODEV;
4048 unlist_netdevice(dev);
4049
4050 synchronize_net();
4051
4052 /* Shutdown queueing discipline. */
4053 dev_shutdown(dev);
4054
4055 /* Notify protocols, that we are about to destroy
4056 this device. They should clean all the things.
4057 */
4058 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4059
4060 /*
4061 * Flush the unicast and multicast chains
4062 */
4063 dev_addr_discard(dev);
4064
4065 /* Actually switch the network namespace */
4066 dev->nd_net = net;
4067
4068 /* Assign the new device name */
4069 if (destname != dev->name)
4070 strcpy(dev->name, destname);
4071
4072 /* If there is an ifindex conflict assign a new one */
4073 if (__dev_get_by_index(net, dev->ifindex)) {
4074 int iflink = (dev->iflink == dev->ifindex);
4075 dev->ifindex = dev_new_index(net);
4076 if (iflink)
4077 dev->iflink = dev->ifindex;
4078 }
4079
4080 /* Fixup kobjects */
4081 err = device_rename(&dev->dev, dev->name);
4082 WARN_ON(err);
4083
4084 /* Add the device back in the hashes */
4085 list_netdevice(dev);
4086
4087 /* Notify protocols, that a new device appeared. */
4088 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4089
4090 synchronize_net();
4091 err = 0;
4092out:
4093 return err;
4094}
4095
4096static int dev_cpu_callback(struct notifier_block *nfb,
4097 unsigned long action,
4098 void *ocpu)
4099{
4100 struct sk_buff **list_skb;
4101 struct net_device **list_net;
4102 struct sk_buff *skb;
4103 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4104 struct softnet_data *sd, *oldsd;
4105
4106 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4107 return NOTIFY_OK;
4108
4109 local_irq_disable();
4110 cpu = smp_processor_id();
4111 sd = &per_cpu(softnet_data, cpu);
4112 oldsd = &per_cpu(softnet_data, oldcpu);
4113
4114 /* Find end of our completion_queue. */
4115 list_skb = &sd->completion_queue;
4116 while (*list_skb)
4117 list_skb = &(*list_skb)->next;
4118 /* Append completion queue from offline CPU. */
4119 *list_skb = oldsd->completion_queue;
4120 oldsd->completion_queue = NULL;
4121
4122 /* Find end of our output_queue. */
4123 list_net = &sd->output_queue;
4124 while (*list_net)
4125 list_net = &(*list_net)->next_sched;
4126 /* Append output queue from offline CPU. */
4127 *list_net = oldsd->output_queue;
4128 oldsd->output_queue = NULL;
4129
4130 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4131 local_irq_enable();
4132
4133 /* Process offline CPU's input_pkt_queue */
4134 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4135 netif_rx(skb);
4136
4137 return NOTIFY_OK;
4138}
4139
4140#ifdef CONFIG_NET_DMA
4141/**
4142 * net_dma_rebalance - try to maintain one DMA channel per CPU
4143 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4144 *
4145 * This is called when the number of channels allocated to the net_dma client
4146 * changes. The net_dma client tries to have one DMA channel per CPU.
4147 */
4148
4149static void net_dma_rebalance(struct net_dma *net_dma)
4150{
4151 unsigned int cpu, i, n, chan_idx;
4152 struct dma_chan *chan;
4153
4154 if (cpus_empty(net_dma->channel_mask)) {
4155 for_each_online_cpu(cpu)
4156 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4157 return;
4158 }
4159
4160 i = 0;
4161 cpu = first_cpu(cpu_online_map);
4162
4163 for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
4164 chan = net_dma->channels[chan_idx];
4165
4166 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4167 + (i < (num_online_cpus() %
4168 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4169
4170 while(n) {
4171 per_cpu(softnet_data, cpu).net_dma = chan;
4172 cpu = next_cpu(cpu, cpu_online_map);
4173 n--;
4174 }
4175 i++;
4176 }
4177}
4178
4179/**
4180 * netdev_dma_event - event callback for the net_dma_client
4181 * @client: should always be net_dma_client
4182 * @chan: DMA channel for the event
4183 * @state: DMA state to be handled
4184 */
4185static enum dma_state_client
4186netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4187 enum dma_state state)
4188{
4189 int i, found = 0, pos = -1;
4190 struct net_dma *net_dma =
4191 container_of(client, struct net_dma, client);
4192 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4193
4194 spin_lock(&net_dma->lock);
4195 switch (state) {
4196 case DMA_RESOURCE_AVAILABLE:
4197 for (i = 0; i < NR_CPUS; i++)
4198 if (net_dma->channels[i] == chan) {
4199 found = 1;
4200 break;
4201 } else if (net_dma->channels[i] == NULL && pos < 0)
4202 pos = i;
4203
4204 if (!found && pos >= 0) {
4205 ack = DMA_ACK;
4206 net_dma->channels[pos] = chan;
4207 cpu_set(pos, net_dma->channel_mask);
4208 net_dma_rebalance(net_dma);
4209 }
4210 break;
4211 case DMA_RESOURCE_REMOVED:
4212 for (i = 0; i < NR_CPUS; i++)
4213 if (net_dma->channels[i] == chan) {
4214 found = 1;
4215 pos = i;
4216 break;
4217 }
4218
4219 if (found) {
4220 ack = DMA_ACK;
4221 cpu_clear(pos, net_dma->channel_mask);
4222 net_dma->channels[i] = NULL;
4223 net_dma_rebalance(net_dma);
4224 }
4225 break;
4226 default:
4227 break;
4228 }
4229 spin_unlock(&net_dma->lock);
4230
4231 return ack;
4232}
4233
4234/**
4235 * netdev_dma_regiser - register the networking subsystem as a DMA client
4236 */
4237static int __init netdev_dma_register(void)
4238{
4239 spin_lock_init(&net_dma.lock);
4240 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4241 dma_async_client_register(&net_dma.client);
4242 dma_async_client_chan_request(&net_dma.client);
4243 return 0;
4244}
4245
4246#else
4247static int __init netdev_dma_register(void) { return -ENODEV; }
4248#endif /* CONFIG_NET_DMA */
4249
4250/**
4251 * netdev_compute_feature - compute conjunction of two feature sets
4252 * @all: first feature set
4253 * @one: second feature set
4254 *
4255 * Computes a new feature set after adding a device with feature set
4256 * @one to the master device with current feature set @all. Returns
4257 * the new feature set.
4258 */
4259int netdev_compute_features(unsigned long all, unsigned long one)
4260{
4261 /* if device needs checksumming, downgrade to hw checksumming */
4262 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4263 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4264
4265 /* if device can't do all checksum, downgrade to ipv4/ipv6 */
4266 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4267 all ^= NETIF_F_HW_CSUM
4268 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4269
4270 if (one & NETIF_F_GSO)
4271 one |= NETIF_F_GSO_SOFTWARE;
4272 one |= NETIF_F_GSO;
4273
4274 /* If even one device supports robust GSO, enable it for all. */
4275 if (one & NETIF_F_GSO_ROBUST)
4276 all |= NETIF_F_GSO_ROBUST;
4277
4278 all &= one | NETIF_F_LLTX;
4279
4280 if (!(all & NETIF_F_ALL_CSUM))
4281 all &= ~NETIF_F_SG;
4282 if (!(all & NETIF_F_SG))
4283 all &= ~NETIF_F_GSO_MASK;
4284
4285 return all;
4286}
4287EXPORT_SYMBOL(netdev_compute_features);
4288
4289static struct hlist_head *netdev_create_hash(void)
4290{
4291 int i;
4292 struct hlist_head *hash;
4293
4294 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4295 if (hash != NULL)
4296 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4297 INIT_HLIST_HEAD(&hash[i]);
4298
4299 return hash;
4300}
4301
4302/* Initialize per network namespace state */
4303static int __net_init netdev_init(struct net *net)
4304{
4305 INIT_LIST_HEAD(&net->dev_base_head);
4306 rwlock_init(&dev_base_lock);
4307
4308 net->dev_name_head = netdev_create_hash();
4309 if (net->dev_name_head == NULL)
4310 goto err_name;
4311
4312 net->dev_index_head = netdev_create_hash();
4313 if (net->dev_index_head == NULL)
4314 goto err_idx;
4315
4316 return 0;
4317
4318err_idx:
4319 kfree(net->dev_name_head);
4320err_name:
4321 return -ENOMEM;
4322}
4323
4324static void __net_exit netdev_exit(struct net *net)
4325{
4326 kfree(net->dev_name_head);
4327 kfree(net->dev_index_head);
4328}
4329
4330static struct pernet_operations __net_initdata netdev_net_ops = {
4331 .init = netdev_init,
4332 .exit = netdev_exit,
4333};
4334
4335static void __net_exit default_device_exit(struct net *net)
4336{
4337 struct net_device *dev, *next;
4338 /*
4339 * Push all migratable of the network devices back to the
4340 * initial network namespace
4341 */
4342 rtnl_lock();
4343 for_each_netdev_safe(net, dev, next) {
4344 int err;
4345
4346 /* Ignore unmoveable devices (i.e. loopback) */
4347 if (dev->features & NETIF_F_NETNS_LOCAL)
4348 continue;
4349
4350 /* Push remaing network devices to init_net */
4351 err = dev_change_net_namespace(dev, &init_net, "dev%d");
4352 if (err) {
4353 printk(KERN_WARNING "%s: failed to move %s to init_net: %d\n",
4354 __func__, dev->name, err);
4355 unregister_netdevice(dev);
4356 }
4357 }
4358 rtnl_unlock();
4359}
4360
4361static struct pernet_operations __net_initdata default_device_ops = {
4362 .exit = default_device_exit,
4363};
4364
4365/*
4366 * Initialize the DEV module. At boot time this walks the device list and
4367 * unhooks any devices that fail to initialise (normally hardware not
4368 * present) and leaves us with a valid list of present and active devices.
4369 *
4370 */
4371
4372/*
4373 * This is called single threaded during boot, so no need
4374 * to take the rtnl semaphore.
4375 */
4376static int __init net_dev_init(void)
4377{
4378 int i, rc = -ENOMEM;
4379
4380 BUG_ON(!dev_boot_phase);
4381
4382 if (dev_proc_init())
4383 goto out;
4384
4385 if (netdev_kobject_init())
4386 goto out;
4387
4388 INIT_LIST_HEAD(&ptype_all);
4389 for (i = 0; i < 16; i++)
4390 INIT_LIST_HEAD(&ptype_base[i]);
4391
4392 if (register_pernet_subsys(&netdev_net_ops))
4393 goto out;
4394
4395 if (register_pernet_device(&default_device_ops))
4396 goto out;
4397
4398 /*
4399 * Initialise the packet receive queues.
4400 */
4401
4402 for_each_possible_cpu(i) {
4403 struct softnet_data *queue;
4404
4405 queue = &per_cpu(softnet_data, i);
4406 skb_queue_head_init(&queue->input_pkt_queue);
4407 queue->completion_queue = NULL;
4408 INIT_LIST_HEAD(&queue->poll_list);
4409
4410 queue->backlog.poll = process_backlog;
4411 queue->backlog.weight = weight_p;
4412 }
4413
4414 netdev_dma_register();
4415
4416 dev_boot_phase = 0;
4417
4418 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
4419 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
4420
4421 hotcpu_notifier(dev_cpu_callback, 0);
4422 dst_init();
4423 dev_mcast_init();
4424 rc = 0;
4425out:
4426 return rc;
4427}
4428
4429subsys_initcall(net_dev_init);
4430
4431EXPORT_SYMBOL(__dev_get_by_index);
4432EXPORT_SYMBOL(__dev_get_by_name);
4433EXPORT_SYMBOL(__dev_remove_pack);
4434EXPORT_SYMBOL(dev_valid_name);
4435EXPORT_SYMBOL(dev_add_pack);
4436EXPORT_SYMBOL(dev_alloc_name);
4437EXPORT_SYMBOL(dev_close);
4438EXPORT_SYMBOL(dev_get_by_flags);
4439EXPORT_SYMBOL(dev_get_by_index);
4440EXPORT_SYMBOL(dev_get_by_name);
4441EXPORT_SYMBOL(dev_open);
4442EXPORT_SYMBOL(dev_queue_xmit);
4443EXPORT_SYMBOL(dev_remove_pack);
4444EXPORT_SYMBOL(dev_set_allmulti);
4445EXPORT_SYMBOL(dev_set_promiscuity);
4446EXPORT_SYMBOL(dev_change_flags);
4447EXPORT_SYMBOL(dev_set_mtu);
4448EXPORT_SYMBOL(dev_set_mac_address);
4449EXPORT_SYMBOL(free_netdev);
4450EXPORT_SYMBOL(netdev_boot_setup_check);
4451EXPORT_SYMBOL(netdev_set_master);
4452EXPORT_SYMBOL(netdev_state_change);
4453EXPORT_SYMBOL(netif_receive_skb);
4454EXPORT_SYMBOL(netif_rx);
4455EXPORT_SYMBOL(register_gifconf);
4456EXPORT_SYMBOL(register_netdevice);
4457EXPORT_SYMBOL(register_netdevice_notifier);
4458EXPORT_SYMBOL(skb_checksum_help);
4459EXPORT_SYMBOL(synchronize_net);
4460EXPORT_SYMBOL(unregister_netdevice);
4461EXPORT_SYMBOL(unregister_netdevice_notifier);
4462EXPORT_SYMBOL(net_enable_timestamp);
4463EXPORT_SYMBOL(net_disable_timestamp);
4464EXPORT_SYMBOL(dev_get_flags);
4465
4466#if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4467EXPORT_SYMBOL(br_handle_frame_hook);
4468EXPORT_SYMBOL(br_fdb_get_hook);
4469EXPORT_SYMBOL(br_fdb_put_hook);
4470#endif
4471
4472#ifdef CONFIG_KMOD
4473EXPORT_SYMBOL(dev_load);
4474#endif
4475
4476EXPORT_PER_CPU_SYMBOL(softnet_data);