]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - net/core/dev.c
napi: Convert trace_napi_poll to TRACE_EVENT
[net-next-2.6.git] / net / core / dev.c
... / ...
CommitLineData
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <asm/system.h>
77#include <linux/bitops.h>
78#include <linux/capability.h>
79#include <linux/cpu.h>
80#include <linux/types.h>
81#include <linux/kernel.h>
82#include <linux/hash.h>
83#include <linux/slab.h>
84#include <linux/sched.h>
85#include <linux/mutex.h>
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
95#include <linux/ethtool.h>
96#include <linux/notifier.h>
97#include <linux/skbuff.h>
98#include <net/net_namespace.h>
99#include <net/sock.h>
100#include <linux/rtnetlink.h>
101#include <linux/proc_fs.h>
102#include <linux/seq_file.h>
103#include <linux/stat.h>
104#include <net/dst.h>
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
107#include <net/xfrm.h>
108#include <linux/highmem.h>
109#include <linux/init.h>
110#include <linux/kmod.h>
111#include <linux/module.h>
112#include <linux/netpoll.h>
113#include <linux/rcupdate.h>
114#include <linux/delay.h>
115#include <net/wext.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <linux/ipv6.h>
127#include <linux/in.h>
128#include <linux/jhash.h>
129#include <linux/random.h>
130#include <trace/events/napi.h>
131#include <linux/pci.h>
132
133#include "net-sysfs.h"
134
135/* Instead of increasing this, you should create a hash table. */
136#define MAX_GRO_SKBS 8
137
138/* This should be increased if a protocol with a bigger head is added. */
139#define GRO_MAX_HEAD (MAX_HEADER + 128)
140
141/*
142 * The list of packet types we will receive (as opposed to discard)
143 * and the routines to invoke.
144 *
145 * Why 16. Because with 16 the only overlap we get on a hash of the
146 * low nibble of the protocol value is RARP/SNAP/X.25.
147 *
148 * NOTE: That is no longer true with the addition of VLAN tags. Not
149 * sure which should go first, but I bet it won't make much
150 * difference if we are running VLANs. The good news is that
151 * this protocol won't be in the list unless compiled in, so
152 * the average user (w/out VLANs) will not be adversely affected.
153 * --BLG
154 *
155 * 0800 IP
156 * 8100 802.1Q VLAN
157 * 0001 802.3
158 * 0002 AX.25
159 * 0004 802.2
160 * 8035 RARP
161 * 0005 SNAP
162 * 0805 X.25
163 * 0806 ARP
164 * 8137 IPX
165 * 0009 Localtalk
166 * 86DD IPv6
167 */
168
169#define PTYPE_HASH_SIZE (16)
170#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
171
172static DEFINE_SPINLOCK(ptype_lock);
173static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
174static struct list_head ptype_all __read_mostly; /* Taps */
175
176/*
177 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
178 * semaphore.
179 *
180 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
181 *
182 * Writers must hold the rtnl semaphore while they loop through the
183 * dev_base_head list, and hold dev_base_lock for writing when they do the
184 * actual updates. This allows pure readers to access the list even
185 * while a writer is preparing to update it.
186 *
187 * To put it another way, dev_base_lock is held for writing only to
188 * protect against pure readers; the rtnl semaphore provides the
189 * protection against other writers.
190 *
191 * See, for example usages, register_netdevice() and
192 * unregister_netdevice(), which must be called with the rtnl
193 * semaphore held.
194 */
195DEFINE_RWLOCK(dev_base_lock);
196EXPORT_SYMBOL(dev_base_lock);
197
198static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199{
200 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
202}
203
204static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
205{
206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
207}
208
209static inline void rps_lock(struct softnet_data *sd)
210{
211#ifdef CONFIG_RPS
212 spin_lock(&sd->input_pkt_queue.lock);
213#endif
214}
215
216static inline void rps_unlock(struct softnet_data *sd)
217{
218#ifdef CONFIG_RPS
219 spin_unlock(&sd->input_pkt_queue.lock);
220#endif
221}
222
223/* Device list insertion */
224static int list_netdevice(struct net_device *dev)
225{
226 struct net *net = dev_net(dev);
227
228 ASSERT_RTNL();
229
230 write_lock_bh(&dev_base_lock);
231 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
232 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
233 hlist_add_head_rcu(&dev->index_hlist,
234 dev_index_hash(net, dev->ifindex));
235 write_unlock_bh(&dev_base_lock);
236 return 0;
237}
238
239/* Device list removal
240 * caller must respect a RCU grace period before freeing/reusing dev
241 */
242static void unlist_netdevice(struct net_device *dev)
243{
244 ASSERT_RTNL();
245
246 /* Unlink dev from the device chain */
247 write_lock_bh(&dev_base_lock);
248 list_del_rcu(&dev->dev_list);
249 hlist_del_rcu(&dev->name_hlist);
250 hlist_del_rcu(&dev->index_hlist);
251 write_unlock_bh(&dev_base_lock);
252}
253
254/*
255 * Our notifier list
256 */
257
258static RAW_NOTIFIER_HEAD(netdev_chain);
259
260/*
261 * Device drivers call our routines to queue packets here. We empty the
262 * queue in the local softnet handler.
263 */
264
265DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
266EXPORT_PER_CPU_SYMBOL(softnet_data);
267
268#ifdef CONFIG_LOCKDEP
269/*
270 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
271 * according to dev->type
272 */
273static const unsigned short netdev_lock_type[] =
274 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
275 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
276 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
277 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
278 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
279 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
280 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
281 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
282 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
283 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
284 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
285 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
286 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
287 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
288 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
289 ARPHRD_VOID, ARPHRD_NONE};
290
291static const char *const netdev_lock_name[] =
292 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
293 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
294 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
295 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
296 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
297 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
298 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
299 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
300 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
301 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
302 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
303 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
304 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
305 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
306 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
307 "_xmit_VOID", "_xmit_NONE"};
308
309static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
310static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
311
312static inline unsigned short netdev_lock_pos(unsigned short dev_type)
313{
314 int i;
315
316 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
317 if (netdev_lock_type[i] == dev_type)
318 return i;
319 /* the last key is used by default */
320 return ARRAY_SIZE(netdev_lock_type) - 1;
321}
322
323static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
324 unsigned short dev_type)
325{
326 int i;
327
328 i = netdev_lock_pos(dev_type);
329 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
330 netdev_lock_name[i]);
331}
332
333static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
334{
335 int i;
336
337 i = netdev_lock_pos(dev->type);
338 lockdep_set_class_and_name(&dev->addr_list_lock,
339 &netdev_addr_lock_key[i],
340 netdev_lock_name[i]);
341}
342#else
343static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
344 unsigned short dev_type)
345{
346}
347static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
348{
349}
350#endif
351
352/*******************************************************************************
353
354 Protocol management and registration routines
355
356*******************************************************************************/
357
358/*
359 * Add a protocol ID to the list. Now that the input handler is
360 * smarter we can dispense with all the messy stuff that used to be
361 * here.
362 *
363 * BEWARE!!! Protocol handlers, mangling input packets,
364 * MUST BE last in hash buckets and checking protocol handlers
365 * MUST start from promiscuous ptype_all chain in net_bh.
366 * It is true now, do not change it.
367 * Explanation follows: if protocol handler, mangling packet, will
368 * be the first on list, it is not able to sense, that packet
369 * is cloned and should be copied-on-write, so that it will
370 * change it and subsequent readers will get broken packet.
371 * --ANK (980803)
372 */
373
374/**
375 * dev_add_pack - add packet handler
376 * @pt: packet type declaration
377 *
378 * Add a protocol handler to the networking stack. The passed &packet_type
379 * is linked into kernel lists and may not be freed until it has been
380 * removed from the kernel lists.
381 *
382 * This call does not sleep therefore it can not
383 * guarantee all CPU's that are in middle of receiving packets
384 * will see the new packet type (until the next received packet).
385 */
386
387void dev_add_pack(struct packet_type *pt)
388{
389 int hash;
390
391 spin_lock_bh(&ptype_lock);
392 if (pt->type == htons(ETH_P_ALL))
393 list_add_rcu(&pt->list, &ptype_all);
394 else {
395 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
396 list_add_rcu(&pt->list, &ptype_base[hash]);
397 }
398 spin_unlock_bh(&ptype_lock);
399}
400EXPORT_SYMBOL(dev_add_pack);
401
402/**
403 * __dev_remove_pack - remove packet handler
404 * @pt: packet type declaration
405 *
406 * Remove a protocol handler that was previously added to the kernel
407 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
408 * from the kernel lists and can be freed or reused once this function
409 * returns.
410 *
411 * The packet type might still be in use by receivers
412 * and must not be freed until after all the CPU's have gone
413 * through a quiescent state.
414 */
415void __dev_remove_pack(struct packet_type *pt)
416{
417 struct list_head *head;
418 struct packet_type *pt1;
419
420 spin_lock_bh(&ptype_lock);
421
422 if (pt->type == htons(ETH_P_ALL))
423 head = &ptype_all;
424 else
425 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
426
427 list_for_each_entry(pt1, head, list) {
428 if (pt == pt1) {
429 list_del_rcu(&pt->list);
430 goto out;
431 }
432 }
433
434 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
435out:
436 spin_unlock_bh(&ptype_lock);
437}
438EXPORT_SYMBOL(__dev_remove_pack);
439
440/**
441 * dev_remove_pack - remove packet handler
442 * @pt: packet type declaration
443 *
444 * Remove a protocol handler that was previously added to the kernel
445 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
446 * from the kernel lists and can be freed or reused once this function
447 * returns.
448 *
449 * This call sleeps to guarantee that no CPU is looking at the packet
450 * type after return.
451 */
452void dev_remove_pack(struct packet_type *pt)
453{
454 __dev_remove_pack(pt);
455
456 synchronize_net();
457}
458EXPORT_SYMBOL(dev_remove_pack);
459
460/******************************************************************************
461
462 Device Boot-time Settings Routines
463
464*******************************************************************************/
465
466/* Boot time configuration table */
467static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
468
469/**
470 * netdev_boot_setup_add - add new setup entry
471 * @name: name of the device
472 * @map: configured settings for the device
473 *
474 * Adds new setup entry to the dev_boot_setup list. The function
475 * returns 0 on error and 1 on success. This is a generic routine to
476 * all netdevices.
477 */
478static int netdev_boot_setup_add(char *name, struct ifmap *map)
479{
480 struct netdev_boot_setup *s;
481 int i;
482
483 s = dev_boot_setup;
484 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
485 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
486 memset(s[i].name, 0, sizeof(s[i].name));
487 strlcpy(s[i].name, name, IFNAMSIZ);
488 memcpy(&s[i].map, map, sizeof(s[i].map));
489 break;
490 }
491 }
492
493 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
494}
495
496/**
497 * netdev_boot_setup_check - check boot time settings
498 * @dev: the netdevice
499 *
500 * Check boot time settings for the device.
501 * The found settings are set for the device to be used
502 * later in the device probing.
503 * Returns 0 if no settings found, 1 if they are.
504 */
505int netdev_boot_setup_check(struct net_device *dev)
506{
507 struct netdev_boot_setup *s = dev_boot_setup;
508 int i;
509
510 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
511 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
512 !strcmp(dev->name, s[i].name)) {
513 dev->irq = s[i].map.irq;
514 dev->base_addr = s[i].map.base_addr;
515 dev->mem_start = s[i].map.mem_start;
516 dev->mem_end = s[i].map.mem_end;
517 return 1;
518 }
519 }
520 return 0;
521}
522EXPORT_SYMBOL(netdev_boot_setup_check);
523
524
525/**
526 * netdev_boot_base - get address from boot time settings
527 * @prefix: prefix for network device
528 * @unit: id for network device
529 *
530 * Check boot time settings for the base address of device.
531 * The found settings are set for the device to be used
532 * later in the device probing.
533 * Returns 0 if no settings found.
534 */
535unsigned long netdev_boot_base(const char *prefix, int unit)
536{
537 const struct netdev_boot_setup *s = dev_boot_setup;
538 char name[IFNAMSIZ];
539 int i;
540
541 sprintf(name, "%s%d", prefix, unit);
542
543 /*
544 * If device already registered then return base of 1
545 * to indicate not to probe for this interface
546 */
547 if (__dev_get_by_name(&init_net, name))
548 return 1;
549
550 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
551 if (!strcmp(name, s[i].name))
552 return s[i].map.base_addr;
553 return 0;
554}
555
556/*
557 * Saves at boot time configured settings for any netdevice.
558 */
559int __init netdev_boot_setup(char *str)
560{
561 int ints[5];
562 struct ifmap map;
563
564 str = get_options(str, ARRAY_SIZE(ints), ints);
565 if (!str || !*str)
566 return 0;
567
568 /* Save settings */
569 memset(&map, 0, sizeof(map));
570 if (ints[0] > 0)
571 map.irq = ints[1];
572 if (ints[0] > 1)
573 map.base_addr = ints[2];
574 if (ints[0] > 2)
575 map.mem_start = ints[3];
576 if (ints[0] > 3)
577 map.mem_end = ints[4];
578
579 /* Add new entry to the list */
580 return netdev_boot_setup_add(str, &map);
581}
582
583__setup("netdev=", netdev_boot_setup);
584
585/*******************************************************************************
586
587 Device Interface Subroutines
588
589*******************************************************************************/
590
591/**
592 * __dev_get_by_name - find a device by its name
593 * @net: the applicable net namespace
594 * @name: name to find
595 *
596 * Find an interface by name. Must be called under RTNL semaphore
597 * or @dev_base_lock. If the name is found a pointer to the device
598 * is returned. If the name is not found then %NULL is returned. The
599 * reference counters are not incremented so the caller must be
600 * careful with locks.
601 */
602
603struct net_device *__dev_get_by_name(struct net *net, const char *name)
604{
605 struct hlist_node *p;
606 struct net_device *dev;
607 struct hlist_head *head = dev_name_hash(net, name);
608
609 hlist_for_each_entry(dev, p, head, name_hlist)
610 if (!strncmp(dev->name, name, IFNAMSIZ))
611 return dev;
612
613 return NULL;
614}
615EXPORT_SYMBOL(__dev_get_by_name);
616
617/**
618 * dev_get_by_name_rcu - find a device by its name
619 * @net: the applicable net namespace
620 * @name: name to find
621 *
622 * Find an interface by name.
623 * If the name is found a pointer to the device is returned.
624 * If the name is not found then %NULL is returned.
625 * The reference counters are not incremented so the caller must be
626 * careful with locks. The caller must hold RCU lock.
627 */
628
629struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
630{
631 struct hlist_node *p;
632 struct net_device *dev;
633 struct hlist_head *head = dev_name_hash(net, name);
634
635 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
636 if (!strncmp(dev->name, name, IFNAMSIZ))
637 return dev;
638
639 return NULL;
640}
641EXPORT_SYMBOL(dev_get_by_name_rcu);
642
643/**
644 * dev_get_by_name - find a device by its name
645 * @net: the applicable net namespace
646 * @name: name to find
647 *
648 * Find an interface by name. This can be called from any
649 * context and does its own locking. The returned handle has
650 * the usage count incremented and the caller must use dev_put() to
651 * release it when it is no longer needed. %NULL is returned if no
652 * matching device is found.
653 */
654
655struct net_device *dev_get_by_name(struct net *net, const char *name)
656{
657 struct net_device *dev;
658
659 rcu_read_lock();
660 dev = dev_get_by_name_rcu(net, name);
661 if (dev)
662 dev_hold(dev);
663 rcu_read_unlock();
664 return dev;
665}
666EXPORT_SYMBOL(dev_get_by_name);
667
668/**
669 * __dev_get_by_index - find a device by its ifindex
670 * @net: the applicable net namespace
671 * @ifindex: index of device
672 *
673 * Search for an interface by index. Returns %NULL if the device
674 * is not found or a pointer to the device. The device has not
675 * had its reference counter increased so the caller must be careful
676 * about locking. The caller must hold either the RTNL semaphore
677 * or @dev_base_lock.
678 */
679
680struct net_device *__dev_get_by_index(struct net *net, int ifindex)
681{
682 struct hlist_node *p;
683 struct net_device *dev;
684 struct hlist_head *head = dev_index_hash(net, ifindex);
685
686 hlist_for_each_entry(dev, p, head, index_hlist)
687 if (dev->ifindex == ifindex)
688 return dev;
689
690 return NULL;
691}
692EXPORT_SYMBOL(__dev_get_by_index);
693
694/**
695 * dev_get_by_index_rcu - find a device by its ifindex
696 * @net: the applicable net namespace
697 * @ifindex: index of device
698 *
699 * Search for an interface by index. Returns %NULL if the device
700 * is not found or a pointer to the device. The device has not
701 * had its reference counter increased so the caller must be careful
702 * about locking. The caller must hold RCU lock.
703 */
704
705struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
706{
707 struct hlist_node *p;
708 struct net_device *dev;
709 struct hlist_head *head = dev_index_hash(net, ifindex);
710
711 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
712 if (dev->ifindex == ifindex)
713 return dev;
714
715 return NULL;
716}
717EXPORT_SYMBOL(dev_get_by_index_rcu);
718
719
720/**
721 * dev_get_by_index - find a device by its ifindex
722 * @net: the applicable net namespace
723 * @ifindex: index of device
724 *
725 * Search for an interface by index. Returns NULL if the device
726 * is not found or a pointer to the device. The device returned has
727 * had a reference added and the pointer is safe until the user calls
728 * dev_put to indicate they have finished with it.
729 */
730
731struct net_device *dev_get_by_index(struct net *net, int ifindex)
732{
733 struct net_device *dev;
734
735 rcu_read_lock();
736 dev = dev_get_by_index_rcu(net, ifindex);
737 if (dev)
738 dev_hold(dev);
739 rcu_read_unlock();
740 return dev;
741}
742EXPORT_SYMBOL(dev_get_by_index);
743
744/**
745 * dev_getbyhwaddr - find a device by its hardware address
746 * @net: the applicable net namespace
747 * @type: media type of device
748 * @ha: hardware address
749 *
750 * Search for an interface by MAC address. Returns NULL if the device
751 * is not found or a pointer to the device. The caller must hold the
752 * rtnl semaphore. The returned device has not had its ref count increased
753 * and the caller must therefore be careful about locking
754 *
755 * BUGS:
756 * If the API was consistent this would be __dev_get_by_hwaddr
757 */
758
759struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
760{
761 struct net_device *dev;
762
763 ASSERT_RTNL();
764
765 for_each_netdev(net, dev)
766 if (dev->type == type &&
767 !memcmp(dev->dev_addr, ha, dev->addr_len))
768 return dev;
769
770 return NULL;
771}
772EXPORT_SYMBOL(dev_getbyhwaddr);
773
774struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
775{
776 struct net_device *dev;
777
778 ASSERT_RTNL();
779 for_each_netdev(net, dev)
780 if (dev->type == type)
781 return dev;
782
783 return NULL;
784}
785EXPORT_SYMBOL(__dev_getfirstbyhwtype);
786
787struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
788{
789 struct net_device *dev, *ret = NULL;
790
791 rcu_read_lock();
792 for_each_netdev_rcu(net, dev)
793 if (dev->type == type) {
794 dev_hold(dev);
795 ret = dev;
796 break;
797 }
798 rcu_read_unlock();
799 return ret;
800}
801EXPORT_SYMBOL(dev_getfirstbyhwtype);
802
803/**
804 * dev_get_by_flags_rcu - find any device with given flags
805 * @net: the applicable net namespace
806 * @if_flags: IFF_* values
807 * @mask: bitmask of bits in if_flags to check
808 *
809 * Search for any interface with the given flags. Returns NULL if a device
810 * is not found or a pointer to the device. Must be called inside
811 * rcu_read_lock(), and result refcount is unchanged.
812 */
813
814struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
815 unsigned short mask)
816{
817 struct net_device *dev, *ret;
818
819 ret = NULL;
820 for_each_netdev_rcu(net, dev) {
821 if (((dev->flags ^ if_flags) & mask) == 0) {
822 ret = dev;
823 break;
824 }
825 }
826 return ret;
827}
828EXPORT_SYMBOL(dev_get_by_flags_rcu);
829
830/**
831 * dev_valid_name - check if name is okay for network device
832 * @name: name string
833 *
834 * Network device names need to be valid file names to
835 * to allow sysfs to work. We also disallow any kind of
836 * whitespace.
837 */
838int dev_valid_name(const char *name)
839{
840 if (*name == '\0')
841 return 0;
842 if (strlen(name) >= IFNAMSIZ)
843 return 0;
844 if (!strcmp(name, ".") || !strcmp(name, ".."))
845 return 0;
846
847 while (*name) {
848 if (*name == '/' || isspace(*name))
849 return 0;
850 name++;
851 }
852 return 1;
853}
854EXPORT_SYMBOL(dev_valid_name);
855
856/**
857 * __dev_alloc_name - allocate a name for a device
858 * @net: network namespace to allocate the device name in
859 * @name: name format string
860 * @buf: scratch buffer and result name string
861 *
862 * Passed a format string - eg "lt%d" it will try and find a suitable
863 * id. It scans list of devices to build up a free map, then chooses
864 * the first empty slot. The caller must hold the dev_base or rtnl lock
865 * while allocating the name and adding the device in order to avoid
866 * duplicates.
867 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
868 * Returns the number of the unit assigned or a negative errno code.
869 */
870
871static int __dev_alloc_name(struct net *net, const char *name, char *buf)
872{
873 int i = 0;
874 const char *p;
875 const int max_netdevices = 8*PAGE_SIZE;
876 unsigned long *inuse;
877 struct net_device *d;
878
879 p = strnchr(name, IFNAMSIZ-1, '%');
880 if (p) {
881 /*
882 * Verify the string as this thing may have come from
883 * the user. There must be either one "%d" and no other "%"
884 * characters.
885 */
886 if (p[1] != 'd' || strchr(p + 2, '%'))
887 return -EINVAL;
888
889 /* Use one page as a bit array of possible slots */
890 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
891 if (!inuse)
892 return -ENOMEM;
893
894 for_each_netdev(net, d) {
895 if (!sscanf(d->name, name, &i))
896 continue;
897 if (i < 0 || i >= max_netdevices)
898 continue;
899
900 /* avoid cases where sscanf is not exact inverse of printf */
901 snprintf(buf, IFNAMSIZ, name, i);
902 if (!strncmp(buf, d->name, IFNAMSIZ))
903 set_bit(i, inuse);
904 }
905
906 i = find_first_zero_bit(inuse, max_netdevices);
907 free_page((unsigned long) inuse);
908 }
909
910 if (buf != name)
911 snprintf(buf, IFNAMSIZ, name, i);
912 if (!__dev_get_by_name(net, buf))
913 return i;
914
915 /* It is possible to run out of possible slots
916 * when the name is long and there isn't enough space left
917 * for the digits, or if all bits are used.
918 */
919 return -ENFILE;
920}
921
922/**
923 * dev_alloc_name - allocate a name for a device
924 * @dev: device
925 * @name: name format string
926 *
927 * Passed a format string - eg "lt%d" it will try and find a suitable
928 * id. It scans list of devices to build up a free map, then chooses
929 * the first empty slot. The caller must hold the dev_base or rtnl lock
930 * while allocating the name and adding the device in order to avoid
931 * duplicates.
932 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
933 * Returns the number of the unit assigned or a negative errno code.
934 */
935
936int dev_alloc_name(struct net_device *dev, const char *name)
937{
938 char buf[IFNAMSIZ];
939 struct net *net;
940 int ret;
941
942 BUG_ON(!dev_net(dev));
943 net = dev_net(dev);
944 ret = __dev_alloc_name(net, name, buf);
945 if (ret >= 0)
946 strlcpy(dev->name, buf, IFNAMSIZ);
947 return ret;
948}
949EXPORT_SYMBOL(dev_alloc_name);
950
951static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
952{
953 struct net *net;
954
955 BUG_ON(!dev_net(dev));
956 net = dev_net(dev);
957
958 if (!dev_valid_name(name))
959 return -EINVAL;
960
961 if (fmt && strchr(name, '%'))
962 return dev_alloc_name(dev, name);
963 else if (__dev_get_by_name(net, name))
964 return -EEXIST;
965 else if (dev->name != name)
966 strlcpy(dev->name, name, IFNAMSIZ);
967
968 return 0;
969}
970
971/**
972 * dev_change_name - change name of a device
973 * @dev: device
974 * @newname: name (or format string) must be at least IFNAMSIZ
975 *
976 * Change name of a device, can pass format strings "eth%d".
977 * for wildcarding.
978 */
979int dev_change_name(struct net_device *dev, const char *newname)
980{
981 char oldname[IFNAMSIZ];
982 int err = 0;
983 int ret;
984 struct net *net;
985
986 ASSERT_RTNL();
987 BUG_ON(!dev_net(dev));
988
989 net = dev_net(dev);
990 if (dev->flags & IFF_UP)
991 return -EBUSY;
992
993 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
994 return 0;
995
996 memcpy(oldname, dev->name, IFNAMSIZ);
997
998 err = dev_get_valid_name(dev, newname, 1);
999 if (err < 0)
1000 return err;
1001
1002rollback:
1003 ret = device_rename(&dev->dev, dev->name);
1004 if (ret) {
1005 memcpy(dev->name, oldname, IFNAMSIZ);
1006 return ret;
1007 }
1008
1009 write_lock_bh(&dev_base_lock);
1010 hlist_del(&dev->name_hlist);
1011 write_unlock_bh(&dev_base_lock);
1012
1013 synchronize_rcu();
1014
1015 write_lock_bh(&dev_base_lock);
1016 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1017 write_unlock_bh(&dev_base_lock);
1018
1019 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1020 ret = notifier_to_errno(ret);
1021
1022 if (ret) {
1023 /* err >= 0 after dev_alloc_name() or stores the first errno */
1024 if (err >= 0) {
1025 err = ret;
1026 memcpy(dev->name, oldname, IFNAMSIZ);
1027 goto rollback;
1028 } else {
1029 printk(KERN_ERR
1030 "%s: name change rollback failed: %d.\n",
1031 dev->name, ret);
1032 }
1033 }
1034
1035 return err;
1036}
1037
1038/**
1039 * dev_set_alias - change ifalias of a device
1040 * @dev: device
1041 * @alias: name up to IFALIASZ
1042 * @len: limit of bytes to copy from info
1043 *
1044 * Set ifalias for a device,
1045 */
1046int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1047{
1048 ASSERT_RTNL();
1049
1050 if (len >= IFALIASZ)
1051 return -EINVAL;
1052
1053 if (!len) {
1054 if (dev->ifalias) {
1055 kfree(dev->ifalias);
1056 dev->ifalias = NULL;
1057 }
1058 return 0;
1059 }
1060
1061 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1062 if (!dev->ifalias)
1063 return -ENOMEM;
1064
1065 strlcpy(dev->ifalias, alias, len+1);
1066 return len;
1067}
1068
1069
1070/**
1071 * netdev_features_change - device changes features
1072 * @dev: device to cause notification
1073 *
1074 * Called to indicate a device has changed features.
1075 */
1076void netdev_features_change(struct net_device *dev)
1077{
1078 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1079}
1080EXPORT_SYMBOL(netdev_features_change);
1081
1082/**
1083 * netdev_state_change - device changes state
1084 * @dev: device to cause notification
1085 *
1086 * Called to indicate a device has changed state. This function calls
1087 * the notifier chains for netdev_chain and sends a NEWLINK message
1088 * to the routing socket.
1089 */
1090void netdev_state_change(struct net_device *dev)
1091{
1092 if (dev->flags & IFF_UP) {
1093 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1094 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1095 }
1096}
1097EXPORT_SYMBOL(netdev_state_change);
1098
1099int netdev_bonding_change(struct net_device *dev, unsigned long event)
1100{
1101 return call_netdevice_notifiers(event, dev);
1102}
1103EXPORT_SYMBOL(netdev_bonding_change);
1104
1105/**
1106 * dev_load - load a network module
1107 * @net: the applicable net namespace
1108 * @name: name of interface
1109 *
1110 * If a network interface is not present and the process has suitable
1111 * privileges this function loads the module. If module loading is not
1112 * available in this kernel then it becomes a nop.
1113 */
1114
1115void dev_load(struct net *net, const char *name)
1116{
1117 struct net_device *dev;
1118
1119 rcu_read_lock();
1120 dev = dev_get_by_name_rcu(net, name);
1121 rcu_read_unlock();
1122
1123 if (!dev && capable(CAP_NET_ADMIN))
1124 request_module("%s", name);
1125}
1126EXPORT_SYMBOL(dev_load);
1127
1128static int __dev_open(struct net_device *dev)
1129{
1130 const struct net_device_ops *ops = dev->netdev_ops;
1131 int ret;
1132
1133 ASSERT_RTNL();
1134
1135 /*
1136 * Is it even present?
1137 */
1138 if (!netif_device_present(dev))
1139 return -ENODEV;
1140
1141 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1142 ret = notifier_to_errno(ret);
1143 if (ret)
1144 return ret;
1145
1146 /*
1147 * Call device private open method
1148 */
1149 set_bit(__LINK_STATE_START, &dev->state);
1150
1151 if (ops->ndo_validate_addr)
1152 ret = ops->ndo_validate_addr(dev);
1153
1154 if (!ret && ops->ndo_open)
1155 ret = ops->ndo_open(dev);
1156
1157 /*
1158 * If it went open OK then:
1159 */
1160
1161 if (ret)
1162 clear_bit(__LINK_STATE_START, &dev->state);
1163 else {
1164 /*
1165 * Set the flags.
1166 */
1167 dev->flags |= IFF_UP;
1168
1169 /*
1170 * Enable NET_DMA
1171 */
1172 net_dmaengine_get();
1173
1174 /*
1175 * Initialize multicasting status
1176 */
1177 dev_set_rx_mode(dev);
1178
1179 /*
1180 * Wakeup transmit queue engine
1181 */
1182 dev_activate(dev);
1183 }
1184
1185 return ret;
1186}
1187
1188/**
1189 * dev_open - prepare an interface for use.
1190 * @dev: device to open
1191 *
1192 * Takes a device from down to up state. The device's private open
1193 * function is invoked and then the multicast lists are loaded. Finally
1194 * the device is moved into the up state and a %NETDEV_UP message is
1195 * sent to the netdev notifier chain.
1196 *
1197 * Calling this function on an active interface is a nop. On a failure
1198 * a negative errno code is returned.
1199 */
1200int dev_open(struct net_device *dev)
1201{
1202 int ret;
1203
1204 /*
1205 * Is it already up?
1206 */
1207 if (dev->flags & IFF_UP)
1208 return 0;
1209
1210 /*
1211 * Open device
1212 */
1213 ret = __dev_open(dev);
1214 if (ret < 0)
1215 return ret;
1216
1217 /*
1218 * ... and announce new interface.
1219 */
1220 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1221 call_netdevice_notifiers(NETDEV_UP, dev);
1222
1223 return ret;
1224}
1225EXPORT_SYMBOL(dev_open);
1226
1227static int __dev_close(struct net_device *dev)
1228{
1229 const struct net_device_ops *ops = dev->netdev_ops;
1230
1231 ASSERT_RTNL();
1232 might_sleep();
1233
1234 /*
1235 * Tell people we are going down, so that they can
1236 * prepare to death, when device is still operating.
1237 */
1238 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1239
1240 clear_bit(__LINK_STATE_START, &dev->state);
1241
1242 /* Synchronize to scheduled poll. We cannot touch poll list,
1243 * it can be even on different cpu. So just clear netif_running().
1244 *
1245 * dev->stop() will invoke napi_disable() on all of it's
1246 * napi_struct instances on this device.
1247 */
1248 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1249
1250 dev_deactivate(dev);
1251
1252 /*
1253 * Call the device specific close. This cannot fail.
1254 * Only if device is UP
1255 *
1256 * We allow it to be called even after a DETACH hot-plug
1257 * event.
1258 */
1259 if (ops->ndo_stop)
1260 ops->ndo_stop(dev);
1261
1262 /*
1263 * Device is now down.
1264 */
1265
1266 dev->flags &= ~IFF_UP;
1267
1268 /*
1269 * Shutdown NET_DMA
1270 */
1271 net_dmaengine_put();
1272
1273 return 0;
1274}
1275
1276/**
1277 * dev_close - shutdown an interface.
1278 * @dev: device to shutdown
1279 *
1280 * This function moves an active device into down state. A
1281 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1282 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1283 * chain.
1284 */
1285int dev_close(struct net_device *dev)
1286{
1287 if (!(dev->flags & IFF_UP))
1288 return 0;
1289
1290 __dev_close(dev);
1291
1292 /*
1293 * Tell people we are down
1294 */
1295 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1296 call_netdevice_notifiers(NETDEV_DOWN, dev);
1297
1298 return 0;
1299}
1300EXPORT_SYMBOL(dev_close);
1301
1302
1303/**
1304 * dev_disable_lro - disable Large Receive Offload on a device
1305 * @dev: device
1306 *
1307 * Disable Large Receive Offload (LRO) on a net device. Must be
1308 * called under RTNL. This is needed if received packets may be
1309 * forwarded to another interface.
1310 */
1311void dev_disable_lro(struct net_device *dev)
1312{
1313 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1314 dev->ethtool_ops->set_flags) {
1315 u32 flags = dev->ethtool_ops->get_flags(dev);
1316 if (flags & ETH_FLAG_LRO) {
1317 flags &= ~ETH_FLAG_LRO;
1318 dev->ethtool_ops->set_flags(dev, flags);
1319 }
1320 }
1321 WARN_ON(dev->features & NETIF_F_LRO);
1322}
1323EXPORT_SYMBOL(dev_disable_lro);
1324
1325
1326static int dev_boot_phase = 1;
1327
1328/*
1329 * Device change register/unregister. These are not inline or static
1330 * as we export them to the world.
1331 */
1332
1333/**
1334 * register_netdevice_notifier - register a network notifier block
1335 * @nb: notifier
1336 *
1337 * Register a notifier to be called when network device events occur.
1338 * The notifier passed is linked into the kernel structures and must
1339 * not be reused until it has been unregistered. A negative errno code
1340 * is returned on a failure.
1341 *
1342 * When registered all registration and up events are replayed
1343 * to the new notifier to allow device to have a race free
1344 * view of the network device list.
1345 */
1346
1347int register_netdevice_notifier(struct notifier_block *nb)
1348{
1349 struct net_device *dev;
1350 struct net_device *last;
1351 struct net *net;
1352 int err;
1353
1354 rtnl_lock();
1355 err = raw_notifier_chain_register(&netdev_chain, nb);
1356 if (err)
1357 goto unlock;
1358 if (dev_boot_phase)
1359 goto unlock;
1360 for_each_net(net) {
1361 for_each_netdev(net, dev) {
1362 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1363 err = notifier_to_errno(err);
1364 if (err)
1365 goto rollback;
1366
1367 if (!(dev->flags & IFF_UP))
1368 continue;
1369
1370 nb->notifier_call(nb, NETDEV_UP, dev);
1371 }
1372 }
1373
1374unlock:
1375 rtnl_unlock();
1376 return err;
1377
1378rollback:
1379 last = dev;
1380 for_each_net(net) {
1381 for_each_netdev(net, dev) {
1382 if (dev == last)
1383 break;
1384
1385 if (dev->flags & IFF_UP) {
1386 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1387 nb->notifier_call(nb, NETDEV_DOWN, dev);
1388 }
1389 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1390 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1391 }
1392 }
1393
1394 raw_notifier_chain_unregister(&netdev_chain, nb);
1395 goto unlock;
1396}
1397EXPORT_SYMBOL(register_netdevice_notifier);
1398
1399/**
1400 * unregister_netdevice_notifier - unregister a network notifier block
1401 * @nb: notifier
1402 *
1403 * Unregister a notifier previously registered by
1404 * register_netdevice_notifier(). The notifier is unlinked into the
1405 * kernel structures and may then be reused. A negative errno code
1406 * is returned on a failure.
1407 */
1408
1409int unregister_netdevice_notifier(struct notifier_block *nb)
1410{
1411 int err;
1412
1413 rtnl_lock();
1414 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1415 rtnl_unlock();
1416 return err;
1417}
1418EXPORT_SYMBOL(unregister_netdevice_notifier);
1419
1420/**
1421 * call_netdevice_notifiers - call all network notifier blocks
1422 * @val: value passed unmodified to notifier function
1423 * @dev: net_device pointer passed unmodified to notifier function
1424 *
1425 * Call all network notifier blocks. Parameters and return value
1426 * are as for raw_notifier_call_chain().
1427 */
1428
1429int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1430{
1431 ASSERT_RTNL();
1432 return raw_notifier_call_chain(&netdev_chain, val, dev);
1433}
1434
1435/* When > 0 there are consumers of rx skb time stamps */
1436static atomic_t netstamp_needed = ATOMIC_INIT(0);
1437
1438void net_enable_timestamp(void)
1439{
1440 atomic_inc(&netstamp_needed);
1441}
1442EXPORT_SYMBOL(net_enable_timestamp);
1443
1444void net_disable_timestamp(void)
1445{
1446 atomic_dec(&netstamp_needed);
1447}
1448EXPORT_SYMBOL(net_disable_timestamp);
1449
1450static inline void net_timestamp_set(struct sk_buff *skb)
1451{
1452 if (atomic_read(&netstamp_needed))
1453 __net_timestamp(skb);
1454 else
1455 skb->tstamp.tv64 = 0;
1456}
1457
1458static inline void net_timestamp_check(struct sk_buff *skb)
1459{
1460 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1461 __net_timestamp(skb);
1462}
1463
1464/**
1465 * dev_forward_skb - loopback an skb to another netif
1466 *
1467 * @dev: destination network device
1468 * @skb: buffer to forward
1469 *
1470 * return values:
1471 * NET_RX_SUCCESS (no congestion)
1472 * NET_RX_DROP (packet was dropped, but freed)
1473 *
1474 * dev_forward_skb can be used for injecting an skb from the
1475 * start_xmit function of one device into the receive queue
1476 * of another device.
1477 *
1478 * The receiving device may be in another namespace, so
1479 * we have to clear all information in the skb that could
1480 * impact namespace isolation.
1481 */
1482int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1483{
1484 skb_orphan(skb);
1485 nf_reset(skb);
1486
1487 if (!(dev->flags & IFF_UP) ||
1488 (skb->len > (dev->mtu + dev->hard_header_len))) {
1489 kfree_skb(skb);
1490 return NET_RX_DROP;
1491 }
1492 skb_set_dev(skb, dev);
1493 skb->tstamp.tv64 = 0;
1494 skb->pkt_type = PACKET_HOST;
1495 skb->protocol = eth_type_trans(skb, dev);
1496 return netif_rx(skb);
1497}
1498EXPORT_SYMBOL_GPL(dev_forward_skb);
1499
1500/*
1501 * Support routine. Sends outgoing frames to any network
1502 * taps currently in use.
1503 */
1504
1505static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1506{
1507 struct packet_type *ptype;
1508
1509#ifdef CONFIG_NET_CLS_ACT
1510 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1511 net_timestamp_set(skb);
1512#else
1513 net_timestamp_set(skb);
1514#endif
1515
1516 rcu_read_lock();
1517 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1518 /* Never send packets back to the socket
1519 * they originated from - MvS (miquels@drinkel.ow.org)
1520 */
1521 if ((ptype->dev == dev || !ptype->dev) &&
1522 (ptype->af_packet_priv == NULL ||
1523 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1524 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1525 if (!skb2)
1526 break;
1527
1528 /* skb->nh should be correctly
1529 set by sender, so that the second statement is
1530 just protection against buggy protocols.
1531 */
1532 skb_reset_mac_header(skb2);
1533
1534 if (skb_network_header(skb2) < skb2->data ||
1535 skb2->network_header > skb2->tail) {
1536 if (net_ratelimit())
1537 printk(KERN_CRIT "protocol %04x is "
1538 "buggy, dev %s\n",
1539 ntohs(skb2->protocol),
1540 dev->name);
1541 skb_reset_network_header(skb2);
1542 }
1543
1544 skb2->transport_header = skb2->network_header;
1545 skb2->pkt_type = PACKET_OUTGOING;
1546 ptype->func(skb2, skb->dev, ptype, skb->dev);
1547 }
1548 }
1549 rcu_read_unlock();
1550}
1551
1552/*
1553 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1554 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1555 */
1556void netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1557{
1558 unsigned int real_num = dev->real_num_tx_queues;
1559
1560 if (unlikely(txq > dev->num_tx_queues))
1561 ;
1562 else if (txq > real_num)
1563 dev->real_num_tx_queues = txq;
1564 else if (txq < real_num) {
1565 dev->real_num_tx_queues = txq;
1566 qdisc_reset_all_tx_gt(dev, txq);
1567 }
1568}
1569EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1570
1571static inline void __netif_reschedule(struct Qdisc *q)
1572{
1573 struct softnet_data *sd;
1574 unsigned long flags;
1575
1576 local_irq_save(flags);
1577 sd = &__get_cpu_var(softnet_data);
1578 q->next_sched = NULL;
1579 *sd->output_queue_tailp = q;
1580 sd->output_queue_tailp = &q->next_sched;
1581 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1582 local_irq_restore(flags);
1583}
1584
1585void __netif_schedule(struct Qdisc *q)
1586{
1587 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1588 __netif_reschedule(q);
1589}
1590EXPORT_SYMBOL(__netif_schedule);
1591
1592void dev_kfree_skb_irq(struct sk_buff *skb)
1593{
1594 if (atomic_dec_and_test(&skb->users)) {
1595 struct softnet_data *sd;
1596 unsigned long flags;
1597
1598 local_irq_save(flags);
1599 sd = &__get_cpu_var(softnet_data);
1600 skb->next = sd->completion_queue;
1601 sd->completion_queue = skb;
1602 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1603 local_irq_restore(flags);
1604 }
1605}
1606EXPORT_SYMBOL(dev_kfree_skb_irq);
1607
1608void dev_kfree_skb_any(struct sk_buff *skb)
1609{
1610 if (in_irq() || irqs_disabled())
1611 dev_kfree_skb_irq(skb);
1612 else
1613 dev_kfree_skb(skb);
1614}
1615EXPORT_SYMBOL(dev_kfree_skb_any);
1616
1617
1618/**
1619 * netif_device_detach - mark device as removed
1620 * @dev: network device
1621 *
1622 * Mark device as removed from system and therefore no longer available.
1623 */
1624void netif_device_detach(struct net_device *dev)
1625{
1626 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1627 netif_running(dev)) {
1628 netif_tx_stop_all_queues(dev);
1629 }
1630}
1631EXPORT_SYMBOL(netif_device_detach);
1632
1633/**
1634 * netif_device_attach - mark device as attached
1635 * @dev: network device
1636 *
1637 * Mark device as attached from system and restart if needed.
1638 */
1639void netif_device_attach(struct net_device *dev)
1640{
1641 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1642 netif_running(dev)) {
1643 netif_tx_wake_all_queues(dev);
1644 __netdev_watchdog_up(dev);
1645 }
1646}
1647EXPORT_SYMBOL(netif_device_attach);
1648
1649static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1650{
1651 return ((features & NETIF_F_GEN_CSUM) ||
1652 ((features & NETIF_F_IP_CSUM) &&
1653 protocol == htons(ETH_P_IP)) ||
1654 ((features & NETIF_F_IPV6_CSUM) &&
1655 protocol == htons(ETH_P_IPV6)) ||
1656 ((features & NETIF_F_FCOE_CRC) &&
1657 protocol == htons(ETH_P_FCOE)));
1658}
1659
1660static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1661{
1662 if (can_checksum_protocol(dev->features, skb->protocol))
1663 return true;
1664
1665 if (skb->protocol == htons(ETH_P_8021Q)) {
1666 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1667 if (can_checksum_protocol(dev->features & dev->vlan_features,
1668 veh->h_vlan_encapsulated_proto))
1669 return true;
1670 }
1671
1672 return false;
1673}
1674
1675/**
1676 * skb_dev_set -- assign a new device to a buffer
1677 * @skb: buffer for the new device
1678 * @dev: network device
1679 *
1680 * If an skb is owned by a device already, we have to reset
1681 * all data private to the namespace a device belongs to
1682 * before assigning it a new device.
1683 */
1684#ifdef CONFIG_NET_NS
1685void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1686{
1687 skb_dst_drop(skb);
1688 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1689 secpath_reset(skb);
1690 nf_reset(skb);
1691 skb_init_secmark(skb);
1692 skb->mark = 0;
1693 skb->priority = 0;
1694 skb->nf_trace = 0;
1695 skb->ipvs_property = 0;
1696#ifdef CONFIG_NET_SCHED
1697 skb->tc_index = 0;
1698#endif
1699 }
1700 skb->dev = dev;
1701}
1702EXPORT_SYMBOL(skb_set_dev);
1703#endif /* CONFIG_NET_NS */
1704
1705/*
1706 * Invalidate hardware checksum when packet is to be mangled, and
1707 * complete checksum manually on outgoing path.
1708 */
1709int skb_checksum_help(struct sk_buff *skb)
1710{
1711 __wsum csum;
1712 int ret = 0, offset;
1713
1714 if (skb->ip_summed == CHECKSUM_COMPLETE)
1715 goto out_set_summed;
1716
1717 if (unlikely(skb_shinfo(skb)->gso_size)) {
1718 /* Let GSO fix up the checksum. */
1719 goto out_set_summed;
1720 }
1721
1722 offset = skb->csum_start - skb_headroom(skb);
1723 BUG_ON(offset >= skb_headlen(skb));
1724 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1725
1726 offset += skb->csum_offset;
1727 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1728
1729 if (skb_cloned(skb) &&
1730 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1731 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1732 if (ret)
1733 goto out;
1734 }
1735
1736 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1737out_set_summed:
1738 skb->ip_summed = CHECKSUM_NONE;
1739out:
1740 return ret;
1741}
1742EXPORT_SYMBOL(skb_checksum_help);
1743
1744/**
1745 * skb_gso_segment - Perform segmentation on skb.
1746 * @skb: buffer to segment
1747 * @features: features for the output path (see dev->features)
1748 *
1749 * This function segments the given skb and returns a list of segments.
1750 *
1751 * It may return NULL if the skb requires no segmentation. This is
1752 * only possible when GSO is used for verifying header integrity.
1753 */
1754struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1755{
1756 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1757 struct packet_type *ptype;
1758 __be16 type = skb->protocol;
1759 int err;
1760
1761 skb_reset_mac_header(skb);
1762 skb->mac_len = skb->network_header - skb->mac_header;
1763 __skb_pull(skb, skb->mac_len);
1764
1765 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1766 struct net_device *dev = skb->dev;
1767 struct ethtool_drvinfo info = {};
1768
1769 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1770 dev->ethtool_ops->get_drvinfo(dev, &info);
1771
1772 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1773 "ip_summed=%d",
1774 info.driver, dev ? dev->features : 0L,
1775 skb->sk ? skb->sk->sk_route_caps : 0L,
1776 skb->len, skb->data_len, skb->ip_summed);
1777
1778 if (skb_header_cloned(skb) &&
1779 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1780 return ERR_PTR(err);
1781 }
1782
1783 rcu_read_lock();
1784 list_for_each_entry_rcu(ptype,
1785 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1786 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1787 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1788 err = ptype->gso_send_check(skb);
1789 segs = ERR_PTR(err);
1790 if (err || skb_gso_ok(skb, features))
1791 break;
1792 __skb_push(skb, (skb->data -
1793 skb_network_header(skb)));
1794 }
1795 segs = ptype->gso_segment(skb, features);
1796 break;
1797 }
1798 }
1799 rcu_read_unlock();
1800
1801 __skb_push(skb, skb->data - skb_mac_header(skb));
1802
1803 return segs;
1804}
1805EXPORT_SYMBOL(skb_gso_segment);
1806
1807/* Take action when hardware reception checksum errors are detected. */
1808#ifdef CONFIG_BUG
1809void netdev_rx_csum_fault(struct net_device *dev)
1810{
1811 if (net_ratelimit()) {
1812 printk(KERN_ERR "%s: hw csum failure.\n",
1813 dev ? dev->name : "<unknown>");
1814 dump_stack();
1815 }
1816}
1817EXPORT_SYMBOL(netdev_rx_csum_fault);
1818#endif
1819
1820/* Actually, we should eliminate this check as soon as we know, that:
1821 * 1. IOMMU is present and allows to map all the memory.
1822 * 2. No high memory really exists on this machine.
1823 */
1824
1825static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1826{
1827#ifdef CONFIG_HIGHMEM
1828 int i;
1829 if (!(dev->features & NETIF_F_HIGHDMA)) {
1830 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1831 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1832 return 1;
1833 }
1834
1835 if (PCI_DMA_BUS_IS_PHYS) {
1836 struct device *pdev = dev->dev.parent;
1837
1838 if (!pdev)
1839 return 0;
1840 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1841 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1842 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1843 return 1;
1844 }
1845 }
1846#endif
1847 return 0;
1848}
1849
1850struct dev_gso_cb {
1851 void (*destructor)(struct sk_buff *skb);
1852};
1853
1854#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1855
1856static void dev_gso_skb_destructor(struct sk_buff *skb)
1857{
1858 struct dev_gso_cb *cb;
1859
1860 do {
1861 struct sk_buff *nskb = skb->next;
1862
1863 skb->next = nskb->next;
1864 nskb->next = NULL;
1865 kfree_skb(nskb);
1866 } while (skb->next);
1867
1868 cb = DEV_GSO_CB(skb);
1869 if (cb->destructor)
1870 cb->destructor(skb);
1871}
1872
1873/**
1874 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1875 * @skb: buffer to segment
1876 *
1877 * This function segments the given skb and stores the list of segments
1878 * in skb->next.
1879 */
1880static int dev_gso_segment(struct sk_buff *skb)
1881{
1882 struct net_device *dev = skb->dev;
1883 struct sk_buff *segs;
1884 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1885 NETIF_F_SG : 0);
1886
1887 segs = skb_gso_segment(skb, features);
1888
1889 /* Verifying header integrity only. */
1890 if (!segs)
1891 return 0;
1892
1893 if (IS_ERR(segs))
1894 return PTR_ERR(segs);
1895
1896 skb->next = segs;
1897 DEV_GSO_CB(skb)->destructor = skb->destructor;
1898 skb->destructor = dev_gso_skb_destructor;
1899
1900 return 0;
1901}
1902
1903/*
1904 * Try to orphan skb early, right before transmission by the device.
1905 * We cannot orphan skb if tx timestamp is requested, since
1906 * drivers need to call skb_tstamp_tx() to send the timestamp.
1907 */
1908static inline void skb_orphan_try(struct sk_buff *skb)
1909{
1910 struct sock *sk = skb->sk;
1911
1912 if (sk && !skb_tx(skb)->flags) {
1913 /* skb_tx_hash() wont be able to get sk.
1914 * We copy sk_hash into skb->rxhash
1915 */
1916 if (!skb->rxhash)
1917 skb->rxhash = sk->sk_hash;
1918 skb_orphan(skb);
1919 }
1920}
1921
1922/*
1923 * Returns true if either:
1924 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
1925 * 2. skb is fragmented and the device does not support SG, or if
1926 * at least one of fragments is in highmem and device does not
1927 * support DMA from it.
1928 */
1929static inline int skb_needs_linearize(struct sk_buff *skb,
1930 struct net_device *dev)
1931{
1932 return skb_is_nonlinear(skb) &&
1933 ((skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
1934 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
1935 illegal_highdma(dev, skb))));
1936}
1937
1938int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1939 struct netdev_queue *txq)
1940{
1941 const struct net_device_ops *ops = dev->netdev_ops;
1942 int rc = NETDEV_TX_OK;
1943
1944 if (likely(!skb->next)) {
1945 if (!list_empty(&ptype_all))
1946 dev_queue_xmit_nit(skb, dev);
1947
1948 /*
1949 * If device doesnt need skb->dst, release it right now while
1950 * its hot in this cpu cache
1951 */
1952 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1953 skb_dst_drop(skb);
1954
1955 skb_orphan_try(skb);
1956
1957 if (netif_needs_gso(dev, skb)) {
1958 if (unlikely(dev_gso_segment(skb)))
1959 goto out_kfree_skb;
1960 if (skb->next)
1961 goto gso;
1962 } else {
1963 if (skb_needs_linearize(skb, dev) &&
1964 __skb_linearize(skb))
1965 goto out_kfree_skb;
1966
1967 /* If packet is not checksummed and device does not
1968 * support checksumming for this protocol, complete
1969 * checksumming here.
1970 */
1971 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1972 skb_set_transport_header(skb, skb->csum_start -
1973 skb_headroom(skb));
1974 if (!dev_can_checksum(dev, skb) &&
1975 skb_checksum_help(skb))
1976 goto out_kfree_skb;
1977 }
1978 }
1979
1980 rc = ops->ndo_start_xmit(skb, dev);
1981 if (rc == NETDEV_TX_OK)
1982 txq_trans_update(txq);
1983 return rc;
1984 }
1985
1986gso:
1987 do {
1988 struct sk_buff *nskb = skb->next;
1989
1990 skb->next = nskb->next;
1991 nskb->next = NULL;
1992
1993 /*
1994 * If device doesnt need nskb->dst, release it right now while
1995 * its hot in this cpu cache
1996 */
1997 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1998 skb_dst_drop(nskb);
1999
2000 rc = ops->ndo_start_xmit(nskb, dev);
2001 if (unlikely(rc != NETDEV_TX_OK)) {
2002 if (rc & ~NETDEV_TX_MASK)
2003 goto out_kfree_gso_skb;
2004 nskb->next = skb->next;
2005 skb->next = nskb;
2006 return rc;
2007 }
2008 txq_trans_update(txq);
2009 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2010 return NETDEV_TX_BUSY;
2011 } while (skb->next);
2012
2013out_kfree_gso_skb:
2014 if (likely(skb->next == NULL))
2015 skb->destructor = DEV_GSO_CB(skb)->destructor;
2016out_kfree_skb:
2017 kfree_skb(skb);
2018 return rc;
2019}
2020
2021static u32 hashrnd __read_mostly;
2022
2023u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
2024{
2025 u32 hash;
2026
2027 if (skb_rx_queue_recorded(skb)) {
2028 hash = skb_get_rx_queue(skb);
2029 while (unlikely(hash >= dev->real_num_tx_queues))
2030 hash -= dev->real_num_tx_queues;
2031 return hash;
2032 }
2033
2034 if (skb->sk && skb->sk->sk_hash)
2035 hash = skb->sk->sk_hash;
2036 else
2037 hash = (__force u16) skb->protocol ^ skb->rxhash;
2038 hash = jhash_1word(hash, hashrnd);
2039
2040 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
2041}
2042EXPORT_SYMBOL(skb_tx_hash);
2043
2044static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2045{
2046 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2047 if (net_ratelimit()) {
2048 pr_warning("%s selects TX queue %d, but "
2049 "real number of TX queues is %d\n",
2050 dev->name, queue_index, dev->real_num_tx_queues);
2051 }
2052 return 0;
2053 }
2054 return queue_index;
2055}
2056
2057static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2058 struct sk_buff *skb)
2059{
2060 int queue_index;
2061 struct sock *sk = skb->sk;
2062
2063 queue_index = sk_tx_queue_get(sk);
2064 if (queue_index < 0) {
2065 const struct net_device_ops *ops = dev->netdev_ops;
2066
2067 if (ops->ndo_select_queue) {
2068 queue_index = ops->ndo_select_queue(dev, skb);
2069 queue_index = dev_cap_txqueue(dev, queue_index);
2070 } else {
2071 queue_index = 0;
2072 if (dev->real_num_tx_queues > 1)
2073 queue_index = skb_tx_hash(dev, skb);
2074
2075 if (sk) {
2076 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2077
2078 if (dst && skb_dst(skb) == dst)
2079 sk_tx_queue_set(sk, queue_index);
2080 }
2081 }
2082 }
2083
2084 skb_set_queue_mapping(skb, queue_index);
2085 return netdev_get_tx_queue(dev, queue_index);
2086}
2087
2088static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2089 struct net_device *dev,
2090 struct netdev_queue *txq)
2091{
2092 spinlock_t *root_lock = qdisc_lock(q);
2093 bool contended = qdisc_is_running(q);
2094 int rc;
2095
2096 /*
2097 * Heuristic to force contended enqueues to serialize on a
2098 * separate lock before trying to get qdisc main lock.
2099 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2100 * and dequeue packets faster.
2101 */
2102 if (unlikely(contended))
2103 spin_lock(&q->busylock);
2104
2105 spin_lock(root_lock);
2106 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2107 kfree_skb(skb);
2108 rc = NET_XMIT_DROP;
2109 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2110 qdisc_run_begin(q)) {
2111 /*
2112 * This is a work-conserving queue; there are no old skbs
2113 * waiting to be sent out; and the qdisc is not running -
2114 * xmit the skb directly.
2115 */
2116 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2117 skb_dst_force(skb);
2118 __qdisc_update_bstats(q, skb->len);
2119 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2120 if (unlikely(contended)) {
2121 spin_unlock(&q->busylock);
2122 contended = false;
2123 }
2124 __qdisc_run(q);
2125 } else
2126 qdisc_run_end(q);
2127
2128 rc = NET_XMIT_SUCCESS;
2129 } else {
2130 skb_dst_force(skb);
2131 rc = qdisc_enqueue_root(skb, q);
2132 if (qdisc_run_begin(q)) {
2133 if (unlikely(contended)) {
2134 spin_unlock(&q->busylock);
2135 contended = false;
2136 }
2137 __qdisc_run(q);
2138 }
2139 }
2140 spin_unlock(root_lock);
2141 if (unlikely(contended))
2142 spin_unlock(&q->busylock);
2143 return rc;
2144}
2145
2146/**
2147 * dev_queue_xmit - transmit a buffer
2148 * @skb: buffer to transmit
2149 *
2150 * Queue a buffer for transmission to a network device. The caller must
2151 * have set the device and priority and built the buffer before calling
2152 * this function. The function can be called from an interrupt.
2153 *
2154 * A negative errno code is returned on a failure. A success does not
2155 * guarantee the frame will be transmitted as it may be dropped due
2156 * to congestion or traffic shaping.
2157 *
2158 * -----------------------------------------------------------------------------------
2159 * I notice this method can also return errors from the queue disciplines,
2160 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2161 * be positive.
2162 *
2163 * Regardless of the return value, the skb is consumed, so it is currently
2164 * difficult to retry a send to this method. (You can bump the ref count
2165 * before sending to hold a reference for retry if you are careful.)
2166 *
2167 * When calling this method, interrupts MUST be enabled. This is because
2168 * the BH enable code must have IRQs enabled so that it will not deadlock.
2169 * --BLG
2170 */
2171int dev_queue_xmit(struct sk_buff *skb)
2172{
2173 struct net_device *dev = skb->dev;
2174 struct netdev_queue *txq;
2175 struct Qdisc *q;
2176 int rc = -ENOMEM;
2177
2178 /* Disable soft irqs for various locks below. Also
2179 * stops preemption for RCU.
2180 */
2181 rcu_read_lock_bh();
2182
2183 txq = dev_pick_tx(dev, skb);
2184 q = rcu_dereference_bh(txq->qdisc);
2185
2186#ifdef CONFIG_NET_CLS_ACT
2187 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2188#endif
2189 if (q->enqueue) {
2190 rc = __dev_xmit_skb(skb, q, dev, txq);
2191 goto out;
2192 }
2193
2194 /* The device has no queue. Common case for software devices:
2195 loopback, all the sorts of tunnels...
2196
2197 Really, it is unlikely that netif_tx_lock protection is necessary
2198 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2199 counters.)
2200 However, it is possible, that they rely on protection
2201 made by us here.
2202
2203 Check this and shot the lock. It is not prone from deadlocks.
2204 Either shot noqueue qdisc, it is even simpler 8)
2205 */
2206 if (dev->flags & IFF_UP) {
2207 int cpu = smp_processor_id(); /* ok because BHs are off */
2208
2209 if (txq->xmit_lock_owner != cpu) {
2210
2211 HARD_TX_LOCK(dev, txq, cpu);
2212
2213 if (!netif_tx_queue_stopped(txq)) {
2214 rc = dev_hard_start_xmit(skb, dev, txq);
2215 if (dev_xmit_complete(rc)) {
2216 HARD_TX_UNLOCK(dev, txq);
2217 goto out;
2218 }
2219 }
2220 HARD_TX_UNLOCK(dev, txq);
2221 if (net_ratelimit())
2222 printk(KERN_CRIT "Virtual device %s asks to "
2223 "queue packet!\n", dev->name);
2224 } else {
2225 /* Recursion is detected! It is possible,
2226 * unfortunately */
2227 if (net_ratelimit())
2228 printk(KERN_CRIT "Dead loop on virtual device "
2229 "%s, fix it urgently!\n", dev->name);
2230 }
2231 }
2232
2233 rc = -ENETDOWN;
2234 rcu_read_unlock_bh();
2235
2236 kfree_skb(skb);
2237 return rc;
2238out:
2239 rcu_read_unlock_bh();
2240 return rc;
2241}
2242EXPORT_SYMBOL(dev_queue_xmit);
2243
2244
2245/*=======================================================================
2246 Receiver routines
2247 =======================================================================*/
2248
2249int netdev_max_backlog __read_mostly = 1000;
2250int netdev_tstamp_prequeue __read_mostly = 1;
2251int netdev_budget __read_mostly = 300;
2252int weight_p __read_mostly = 64; /* old backlog weight */
2253
2254/* Called with irq disabled */
2255static inline void ____napi_schedule(struct softnet_data *sd,
2256 struct napi_struct *napi)
2257{
2258 list_add_tail(&napi->poll_list, &sd->poll_list);
2259 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2260}
2261
2262#ifdef CONFIG_RPS
2263
2264/* One global table that all flow-based protocols share. */
2265struct rps_sock_flow_table *rps_sock_flow_table __read_mostly;
2266EXPORT_SYMBOL(rps_sock_flow_table);
2267
2268/*
2269 * get_rps_cpu is called from netif_receive_skb and returns the target
2270 * CPU from the RPS map of the receiving queue for a given skb.
2271 * rcu_read_lock must be held on entry.
2272 */
2273static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2274 struct rps_dev_flow **rflowp)
2275{
2276 struct ipv6hdr *ip6;
2277 struct iphdr *ip;
2278 struct netdev_rx_queue *rxqueue;
2279 struct rps_map *map;
2280 struct rps_dev_flow_table *flow_table;
2281 struct rps_sock_flow_table *sock_flow_table;
2282 int cpu = -1;
2283 u8 ip_proto;
2284 u16 tcpu;
2285 u32 addr1, addr2, ihl;
2286 union {
2287 u32 v32;
2288 u16 v16[2];
2289 } ports;
2290
2291 if (skb_rx_queue_recorded(skb)) {
2292 u16 index = skb_get_rx_queue(skb);
2293 if (unlikely(index >= dev->num_rx_queues)) {
2294 WARN_ONCE(dev->num_rx_queues > 1, "%s received packet "
2295 "on queue %u, but number of RX queues is %u\n",
2296 dev->name, index, dev->num_rx_queues);
2297 goto done;
2298 }
2299 rxqueue = dev->_rx + index;
2300 } else
2301 rxqueue = dev->_rx;
2302
2303 if (!rxqueue->rps_map && !rxqueue->rps_flow_table)
2304 goto done;
2305
2306 if (skb->rxhash)
2307 goto got_hash; /* Skip hash computation on packet header */
2308
2309 switch (skb->protocol) {
2310 case __constant_htons(ETH_P_IP):
2311 if (!pskb_may_pull(skb, sizeof(*ip)))
2312 goto done;
2313
2314 ip = (struct iphdr *) skb->data;
2315 ip_proto = ip->protocol;
2316 addr1 = (__force u32) ip->saddr;
2317 addr2 = (__force u32) ip->daddr;
2318 ihl = ip->ihl;
2319 break;
2320 case __constant_htons(ETH_P_IPV6):
2321 if (!pskb_may_pull(skb, sizeof(*ip6)))
2322 goto done;
2323
2324 ip6 = (struct ipv6hdr *) skb->data;
2325 ip_proto = ip6->nexthdr;
2326 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2327 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2328 ihl = (40 >> 2);
2329 break;
2330 default:
2331 goto done;
2332 }
2333 switch (ip_proto) {
2334 case IPPROTO_TCP:
2335 case IPPROTO_UDP:
2336 case IPPROTO_DCCP:
2337 case IPPROTO_ESP:
2338 case IPPROTO_AH:
2339 case IPPROTO_SCTP:
2340 case IPPROTO_UDPLITE:
2341 if (pskb_may_pull(skb, (ihl * 4) + 4)) {
2342 ports.v32 = * (__force u32 *) (skb->data + (ihl * 4));
2343 if (ports.v16[1] < ports.v16[0])
2344 swap(ports.v16[0], ports.v16[1]);
2345 break;
2346 }
2347 default:
2348 ports.v32 = 0;
2349 break;
2350 }
2351
2352 /* get a consistent hash (same value on both flow directions) */
2353 if (addr2 < addr1)
2354 swap(addr1, addr2);
2355 skb->rxhash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2356 if (!skb->rxhash)
2357 skb->rxhash = 1;
2358
2359got_hash:
2360 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2361 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2362 if (flow_table && sock_flow_table) {
2363 u16 next_cpu;
2364 struct rps_dev_flow *rflow;
2365
2366 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2367 tcpu = rflow->cpu;
2368
2369 next_cpu = sock_flow_table->ents[skb->rxhash &
2370 sock_flow_table->mask];
2371
2372 /*
2373 * If the desired CPU (where last recvmsg was done) is
2374 * different from current CPU (one in the rx-queue flow
2375 * table entry), switch if one of the following holds:
2376 * - Current CPU is unset (equal to RPS_NO_CPU).
2377 * - Current CPU is offline.
2378 * - The current CPU's queue tail has advanced beyond the
2379 * last packet that was enqueued using this table entry.
2380 * This guarantees that all previous packets for the flow
2381 * have been dequeued, thus preserving in order delivery.
2382 */
2383 if (unlikely(tcpu != next_cpu) &&
2384 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2385 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2386 rflow->last_qtail)) >= 0)) {
2387 tcpu = rflow->cpu = next_cpu;
2388 if (tcpu != RPS_NO_CPU)
2389 rflow->last_qtail = per_cpu(softnet_data,
2390 tcpu).input_queue_head;
2391 }
2392 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2393 *rflowp = rflow;
2394 cpu = tcpu;
2395 goto done;
2396 }
2397 }
2398
2399 map = rcu_dereference(rxqueue->rps_map);
2400 if (map) {
2401 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2402
2403 if (cpu_online(tcpu)) {
2404 cpu = tcpu;
2405 goto done;
2406 }
2407 }
2408
2409done:
2410 return cpu;
2411}
2412
2413/* Called from hardirq (IPI) context */
2414static void rps_trigger_softirq(void *data)
2415{
2416 struct softnet_data *sd = data;
2417
2418 ____napi_schedule(sd, &sd->backlog);
2419 sd->received_rps++;
2420}
2421
2422#endif /* CONFIG_RPS */
2423
2424/*
2425 * Check if this softnet_data structure is another cpu one
2426 * If yes, queue it to our IPI list and return 1
2427 * If no, return 0
2428 */
2429static int rps_ipi_queued(struct softnet_data *sd)
2430{
2431#ifdef CONFIG_RPS
2432 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2433
2434 if (sd != mysd) {
2435 sd->rps_ipi_next = mysd->rps_ipi_list;
2436 mysd->rps_ipi_list = sd;
2437
2438 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2439 return 1;
2440 }
2441#endif /* CONFIG_RPS */
2442 return 0;
2443}
2444
2445/*
2446 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2447 * queue (may be a remote CPU queue).
2448 */
2449static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2450 unsigned int *qtail)
2451{
2452 struct softnet_data *sd;
2453 unsigned long flags;
2454
2455 sd = &per_cpu(softnet_data, cpu);
2456
2457 local_irq_save(flags);
2458
2459 rps_lock(sd);
2460 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2461 if (skb_queue_len(&sd->input_pkt_queue)) {
2462enqueue:
2463 __skb_queue_tail(&sd->input_pkt_queue, skb);
2464 input_queue_tail_incr_save(sd, qtail);
2465 rps_unlock(sd);
2466 local_irq_restore(flags);
2467 return NET_RX_SUCCESS;
2468 }
2469
2470 /* Schedule NAPI for backlog device
2471 * We can use non atomic operation since we own the queue lock
2472 */
2473 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2474 if (!rps_ipi_queued(sd))
2475 ____napi_schedule(sd, &sd->backlog);
2476 }
2477 goto enqueue;
2478 }
2479
2480 sd->dropped++;
2481 rps_unlock(sd);
2482
2483 local_irq_restore(flags);
2484
2485 kfree_skb(skb);
2486 return NET_RX_DROP;
2487}
2488
2489/**
2490 * netif_rx - post buffer to the network code
2491 * @skb: buffer to post
2492 *
2493 * This function receives a packet from a device driver and queues it for
2494 * the upper (protocol) levels to process. It always succeeds. The buffer
2495 * may be dropped during processing for congestion control or by the
2496 * protocol layers.
2497 *
2498 * return values:
2499 * NET_RX_SUCCESS (no congestion)
2500 * NET_RX_DROP (packet was dropped)
2501 *
2502 */
2503
2504int netif_rx(struct sk_buff *skb)
2505{
2506 int ret;
2507
2508 /* if netpoll wants it, pretend we never saw it */
2509 if (netpoll_rx(skb))
2510 return NET_RX_DROP;
2511
2512 if (netdev_tstamp_prequeue)
2513 net_timestamp_check(skb);
2514
2515#ifdef CONFIG_RPS
2516 {
2517 struct rps_dev_flow voidflow, *rflow = &voidflow;
2518 int cpu;
2519
2520 preempt_disable();
2521 rcu_read_lock();
2522
2523 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2524 if (cpu < 0)
2525 cpu = smp_processor_id();
2526
2527 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2528
2529 rcu_read_unlock();
2530 preempt_enable();
2531 }
2532#else
2533 {
2534 unsigned int qtail;
2535 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2536 put_cpu();
2537 }
2538#endif
2539 return ret;
2540}
2541EXPORT_SYMBOL(netif_rx);
2542
2543int netif_rx_ni(struct sk_buff *skb)
2544{
2545 int err;
2546
2547 preempt_disable();
2548 err = netif_rx(skb);
2549 if (local_softirq_pending())
2550 do_softirq();
2551 preempt_enable();
2552
2553 return err;
2554}
2555EXPORT_SYMBOL(netif_rx_ni);
2556
2557static void net_tx_action(struct softirq_action *h)
2558{
2559 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2560
2561 if (sd->completion_queue) {
2562 struct sk_buff *clist;
2563
2564 local_irq_disable();
2565 clist = sd->completion_queue;
2566 sd->completion_queue = NULL;
2567 local_irq_enable();
2568
2569 while (clist) {
2570 struct sk_buff *skb = clist;
2571 clist = clist->next;
2572
2573 WARN_ON(atomic_read(&skb->users));
2574 __kfree_skb(skb);
2575 }
2576 }
2577
2578 if (sd->output_queue) {
2579 struct Qdisc *head;
2580
2581 local_irq_disable();
2582 head = sd->output_queue;
2583 sd->output_queue = NULL;
2584 sd->output_queue_tailp = &sd->output_queue;
2585 local_irq_enable();
2586
2587 while (head) {
2588 struct Qdisc *q = head;
2589 spinlock_t *root_lock;
2590
2591 head = head->next_sched;
2592
2593 root_lock = qdisc_lock(q);
2594 if (spin_trylock(root_lock)) {
2595 smp_mb__before_clear_bit();
2596 clear_bit(__QDISC_STATE_SCHED,
2597 &q->state);
2598 qdisc_run(q);
2599 spin_unlock(root_lock);
2600 } else {
2601 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2602 &q->state)) {
2603 __netif_reschedule(q);
2604 } else {
2605 smp_mb__before_clear_bit();
2606 clear_bit(__QDISC_STATE_SCHED,
2607 &q->state);
2608 }
2609 }
2610 }
2611 }
2612}
2613
2614static inline int deliver_skb(struct sk_buff *skb,
2615 struct packet_type *pt_prev,
2616 struct net_device *orig_dev)
2617{
2618 atomic_inc(&skb->users);
2619 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2620}
2621
2622#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2623 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2624/* This hook is defined here for ATM LANE */
2625int (*br_fdb_test_addr_hook)(struct net_device *dev,
2626 unsigned char *addr) __read_mostly;
2627EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2628#endif
2629
2630#ifdef CONFIG_NET_CLS_ACT
2631/* TODO: Maybe we should just force sch_ingress to be compiled in
2632 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2633 * a compare and 2 stores extra right now if we dont have it on
2634 * but have CONFIG_NET_CLS_ACT
2635 * NOTE: This doesnt stop any functionality; if you dont have
2636 * the ingress scheduler, you just cant add policies on ingress.
2637 *
2638 */
2639static int ing_filter(struct sk_buff *skb)
2640{
2641 struct net_device *dev = skb->dev;
2642 u32 ttl = G_TC_RTTL(skb->tc_verd);
2643 struct netdev_queue *rxq;
2644 int result = TC_ACT_OK;
2645 struct Qdisc *q;
2646
2647 if (unlikely(MAX_RED_LOOP < ttl++)) {
2648 if (net_ratelimit())
2649 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2650 skb->skb_iif, dev->ifindex);
2651 return TC_ACT_SHOT;
2652 }
2653
2654 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2655 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2656
2657 rxq = &dev->rx_queue;
2658
2659 q = rxq->qdisc;
2660 if (q != &noop_qdisc) {
2661 spin_lock(qdisc_lock(q));
2662 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2663 result = qdisc_enqueue_root(skb, q);
2664 spin_unlock(qdisc_lock(q));
2665 }
2666
2667 return result;
2668}
2669
2670static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2671 struct packet_type **pt_prev,
2672 int *ret, struct net_device *orig_dev)
2673{
2674 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2675 goto out;
2676
2677 if (*pt_prev) {
2678 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2679 *pt_prev = NULL;
2680 }
2681
2682 switch (ing_filter(skb)) {
2683 case TC_ACT_SHOT:
2684 case TC_ACT_STOLEN:
2685 kfree_skb(skb);
2686 return NULL;
2687 }
2688
2689out:
2690 skb->tc_verd = 0;
2691 return skb;
2692}
2693#endif
2694
2695/*
2696 * netif_nit_deliver - deliver received packets to network taps
2697 * @skb: buffer
2698 *
2699 * This function is used to deliver incoming packets to network
2700 * taps. It should be used when the normal netif_receive_skb path
2701 * is bypassed, for example because of VLAN acceleration.
2702 */
2703void netif_nit_deliver(struct sk_buff *skb)
2704{
2705 struct packet_type *ptype;
2706
2707 if (list_empty(&ptype_all))
2708 return;
2709
2710 skb_reset_network_header(skb);
2711 skb_reset_transport_header(skb);
2712 skb->mac_len = skb->network_header - skb->mac_header;
2713
2714 rcu_read_lock();
2715 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2716 if (!ptype->dev || ptype->dev == skb->dev)
2717 deliver_skb(skb, ptype, skb->dev);
2718 }
2719 rcu_read_unlock();
2720}
2721
2722/**
2723 * netdev_rx_handler_register - register receive handler
2724 * @dev: device to register a handler for
2725 * @rx_handler: receive handler to register
2726 * @rx_handler_data: data pointer that is used by rx handler
2727 *
2728 * Register a receive hander for a device. This handler will then be
2729 * called from __netif_receive_skb. A negative errno code is returned
2730 * on a failure.
2731 *
2732 * The caller must hold the rtnl_mutex.
2733 */
2734int netdev_rx_handler_register(struct net_device *dev,
2735 rx_handler_func_t *rx_handler,
2736 void *rx_handler_data)
2737{
2738 ASSERT_RTNL();
2739
2740 if (dev->rx_handler)
2741 return -EBUSY;
2742
2743 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2744 rcu_assign_pointer(dev->rx_handler, rx_handler);
2745
2746 return 0;
2747}
2748EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2749
2750/**
2751 * netdev_rx_handler_unregister - unregister receive handler
2752 * @dev: device to unregister a handler from
2753 *
2754 * Unregister a receive hander from a device.
2755 *
2756 * The caller must hold the rtnl_mutex.
2757 */
2758void netdev_rx_handler_unregister(struct net_device *dev)
2759{
2760
2761 ASSERT_RTNL();
2762 rcu_assign_pointer(dev->rx_handler, NULL);
2763 rcu_assign_pointer(dev->rx_handler_data, NULL);
2764}
2765EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2766
2767static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2768 struct net_device *master)
2769{
2770 if (skb->pkt_type == PACKET_HOST) {
2771 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2772
2773 memcpy(dest, master->dev_addr, ETH_ALEN);
2774 }
2775}
2776
2777/* On bonding slaves other than the currently active slave, suppress
2778 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2779 * ARP on active-backup slaves with arp_validate enabled.
2780 */
2781int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2782{
2783 struct net_device *dev = skb->dev;
2784
2785 if (master->priv_flags & IFF_MASTER_ARPMON)
2786 dev->last_rx = jiffies;
2787
2788 if ((master->priv_flags & IFF_MASTER_ALB) &&
2789 (master->priv_flags & IFF_BRIDGE_PORT)) {
2790 /* Do address unmangle. The local destination address
2791 * will be always the one master has. Provides the right
2792 * functionality in a bridge.
2793 */
2794 skb_bond_set_mac_by_master(skb, master);
2795 }
2796
2797 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2798 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2799 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2800 return 0;
2801
2802 if (master->priv_flags & IFF_MASTER_ALB) {
2803 if (skb->pkt_type != PACKET_BROADCAST &&
2804 skb->pkt_type != PACKET_MULTICAST)
2805 return 0;
2806 }
2807 if (master->priv_flags & IFF_MASTER_8023AD &&
2808 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2809 return 0;
2810
2811 return 1;
2812 }
2813 return 0;
2814}
2815EXPORT_SYMBOL(__skb_bond_should_drop);
2816
2817static int __netif_receive_skb(struct sk_buff *skb)
2818{
2819 struct packet_type *ptype, *pt_prev;
2820 rx_handler_func_t *rx_handler;
2821 struct net_device *orig_dev;
2822 struct net_device *master;
2823 struct net_device *null_or_orig;
2824 struct net_device *orig_or_bond;
2825 int ret = NET_RX_DROP;
2826 __be16 type;
2827
2828 if (!netdev_tstamp_prequeue)
2829 net_timestamp_check(skb);
2830
2831 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2832 return NET_RX_SUCCESS;
2833
2834 /* if we've gotten here through NAPI, check netpoll */
2835 if (netpoll_receive_skb(skb))
2836 return NET_RX_DROP;
2837
2838 if (!skb->skb_iif)
2839 skb->skb_iif = skb->dev->ifindex;
2840
2841 /*
2842 * bonding note: skbs received on inactive slaves should only
2843 * be delivered to pkt handlers that are exact matches. Also
2844 * the deliver_no_wcard flag will be set. If packet handlers
2845 * are sensitive to duplicate packets these skbs will need to
2846 * be dropped at the handler. The vlan accel path may have
2847 * already set the deliver_no_wcard flag.
2848 */
2849 null_or_orig = NULL;
2850 orig_dev = skb->dev;
2851 master = ACCESS_ONCE(orig_dev->master);
2852 if (skb->deliver_no_wcard)
2853 null_or_orig = orig_dev;
2854 else if (master) {
2855 if (skb_bond_should_drop(skb, master)) {
2856 skb->deliver_no_wcard = 1;
2857 null_or_orig = orig_dev; /* deliver only exact match */
2858 } else
2859 skb->dev = master;
2860 }
2861
2862 __this_cpu_inc(softnet_data.processed);
2863 skb_reset_network_header(skb);
2864 skb_reset_transport_header(skb);
2865 skb->mac_len = skb->network_header - skb->mac_header;
2866
2867 pt_prev = NULL;
2868
2869 rcu_read_lock();
2870
2871#ifdef CONFIG_NET_CLS_ACT
2872 if (skb->tc_verd & TC_NCLS) {
2873 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2874 goto ncls;
2875 }
2876#endif
2877
2878 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2879 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2880 ptype->dev == orig_dev) {
2881 if (pt_prev)
2882 ret = deliver_skb(skb, pt_prev, orig_dev);
2883 pt_prev = ptype;
2884 }
2885 }
2886
2887#ifdef CONFIG_NET_CLS_ACT
2888 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2889 if (!skb)
2890 goto out;
2891ncls:
2892#endif
2893
2894 /* Handle special case of bridge or macvlan */
2895 rx_handler = rcu_dereference(skb->dev->rx_handler);
2896 if (rx_handler) {
2897 if (pt_prev) {
2898 ret = deliver_skb(skb, pt_prev, orig_dev);
2899 pt_prev = NULL;
2900 }
2901 skb = rx_handler(skb);
2902 if (!skb)
2903 goto out;
2904 }
2905
2906 /*
2907 * Make sure frames received on VLAN interfaces stacked on
2908 * bonding interfaces still make their way to any base bonding
2909 * device that may have registered for a specific ptype. The
2910 * handler may have to adjust skb->dev and orig_dev.
2911 */
2912 orig_or_bond = orig_dev;
2913 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2914 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2915 orig_or_bond = vlan_dev_real_dev(skb->dev);
2916 }
2917
2918 type = skb->protocol;
2919 list_for_each_entry_rcu(ptype,
2920 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2921 if (ptype->type == type && (ptype->dev == null_or_orig ||
2922 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2923 ptype->dev == orig_or_bond)) {
2924 if (pt_prev)
2925 ret = deliver_skb(skb, pt_prev, orig_dev);
2926 pt_prev = ptype;
2927 }
2928 }
2929
2930 if (pt_prev) {
2931 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2932 } else {
2933 kfree_skb(skb);
2934 /* Jamal, now you will not able to escape explaining
2935 * me how you were going to use this. :-)
2936 */
2937 ret = NET_RX_DROP;
2938 }
2939
2940out:
2941 rcu_read_unlock();
2942 return ret;
2943}
2944
2945/**
2946 * netif_receive_skb - process receive buffer from network
2947 * @skb: buffer to process
2948 *
2949 * netif_receive_skb() is the main receive data processing function.
2950 * It always succeeds. The buffer may be dropped during processing
2951 * for congestion control or by the protocol layers.
2952 *
2953 * This function may only be called from softirq context and interrupts
2954 * should be enabled.
2955 *
2956 * Return values (usually ignored):
2957 * NET_RX_SUCCESS: no congestion
2958 * NET_RX_DROP: packet was dropped
2959 */
2960int netif_receive_skb(struct sk_buff *skb)
2961{
2962 if (netdev_tstamp_prequeue)
2963 net_timestamp_check(skb);
2964
2965 if (skb_defer_rx_timestamp(skb))
2966 return NET_RX_SUCCESS;
2967
2968#ifdef CONFIG_RPS
2969 {
2970 struct rps_dev_flow voidflow, *rflow = &voidflow;
2971 int cpu, ret;
2972
2973 rcu_read_lock();
2974
2975 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2976
2977 if (cpu >= 0) {
2978 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2979 rcu_read_unlock();
2980 } else {
2981 rcu_read_unlock();
2982 ret = __netif_receive_skb(skb);
2983 }
2984
2985 return ret;
2986 }
2987#else
2988 return __netif_receive_skb(skb);
2989#endif
2990}
2991EXPORT_SYMBOL(netif_receive_skb);
2992
2993/* Network device is going away, flush any packets still pending
2994 * Called with irqs disabled.
2995 */
2996static void flush_backlog(void *arg)
2997{
2998 struct net_device *dev = arg;
2999 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3000 struct sk_buff *skb, *tmp;
3001
3002 rps_lock(sd);
3003 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3004 if (skb->dev == dev) {
3005 __skb_unlink(skb, &sd->input_pkt_queue);
3006 kfree_skb(skb);
3007 input_queue_head_incr(sd);
3008 }
3009 }
3010 rps_unlock(sd);
3011
3012 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3013 if (skb->dev == dev) {
3014 __skb_unlink(skb, &sd->process_queue);
3015 kfree_skb(skb);
3016 input_queue_head_incr(sd);
3017 }
3018 }
3019}
3020
3021static int napi_gro_complete(struct sk_buff *skb)
3022{
3023 struct packet_type *ptype;
3024 __be16 type = skb->protocol;
3025 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3026 int err = -ENOENT;
3027
3028 if (NAPI_GRO_CB(skb)->count == 1) {
3029 skb_shinfo(skb)->gso_size = 0;
3030 goto out;
3031 }
3032
3033 rcu_read_lock();
3034 list_for_each_entry_rcu(ptype, head, list) {
3035 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3036 continue;
3037
3038 err = ptype->gro_complete(skb);
3039 break;
3040 }
3041 rcu_read_unlock();
3042
3043 if (err) {
3044 WARN_ON(&ptype->list == head);
3045 kfree_skb(skb);
3046 return NET_RX_SUCCESS;
3047 }
3048
3049out:
3050 return netif_receive_skb(skb);
3051}
3052
3053static void napi_gro_flush(struct napi_struct *napi)
3054{
3055 struct sk_buff *skb, *next;
3056
3057 for (skb = napi->gro_list; skb; skb = next) {
3058 next = skb->next;
3059 skb->next = NULL;
3060 napi_gro_complete(skb);
3061 }
3062
3063 napi->gro_count = 0;
3064 napi->gro_list = NULL;
3065}
3066
3067enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3068{
3069 struct sk_buff **pp = NULL;
3070 struct packet_type *ptype;
3071 __be16 type = skb->protocol;
3072 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3073 int same_flow;
3074 int mac_len;
3075 enum gro_result ret;
3076
3077 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3078 goto normal;
3079
3080 if (skb_is_gso(skb) || skb_has_frags(skb))
3081 goto normal;
3082
3083 rcu_read_lock();
3084 list_for_each_entry_rcu(ptype, head, list) {
3085 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3086 continue;
3087
3088 skb_set_network_header(skb, skb_gro_offset(skb));
3089 mac_len = skb->network_header - skb->mac_header;
3090 skb->mac_len = mac_len;
3091 NAPI_GRO_CB(skb)->same_flow = 0;
3092 NAPI_GRO_CB(skb)->flush = 0;
3093 NAPI_GRO_CB(skb)->free = 0;
3094
3095 pp = ptype->gro_receive(&napi->gro_list, skb);
3096 break;
3097 }
3098 rcu_read_unlock();
3099
3100 if (&ptype->list == head)
3101 goto normal;
3102
3103 same_flow = NAPI_GRO_CB(skb)->same_flow;
3104 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3105
3106 if (pp) {
3107 struct sk_buff *nskb = *pp;
3108
3109 *pp = nskb->next;
3110 nskb->next = NULL;
3111 napi_gro_complete(nskb);
3112 napi->gro_count--;
3113 }
3114
3115 if (same_flow)
3116 goto ok;
3117
3118 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3119 goto normal;
3120
3121 napi->gro_count++;
3122 NAPI_GRO_CB(skb)->count = 1;
3123 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3124 skb->next = napi->gro_list;
3125 napi->gro_list = skb;
3126 ret = GRO_HELD;
3127
3128pull:
3129 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3130 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3131
3132 BUG_ON(skb->end - skb->tail < grow);
3133
3134 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3135
3136 skb->tail += grow;
3137 skb->data_len -= grow;
3138
3139 skb_shinfo(skb)->frags[0].page_offset += grow;
3140 skb_shinfo(skb)->frags[0].size -= grow;
3141
3142 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3143 put_page(skb_shinfo(skb)->frags[0].page);
3144 memmove(skb_shinfo(skb)->frags,
3145 skb_shinfo(skb)->frags + 1,
3146 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3147 }
3148 }
3149
3150ok:
3151 return ret;
3152
3153normal:
3154 ret = GRO_NORMAL;
3155 goto pull;
3156}
3157EXPORT_SYMBOL(dev_gro_receive);
3158
3159static gro_result_t
3160__napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3161{
3162 struct sk_buff *p;
3163
3164 for (p = napi->gro_list; p; p = p->next) {
3165 NAPI_GRO_CB(p)->same_flow =
3166 (p->dev == skb->dev) &&
3167 !compare_ether_header(skb_mac_header(p),
3168 skb_gro_mac_header(skb));
3169 NAPI_GRO_CB(p)->flush = 0;
3170 }
3171
3172 return dev_gro_receive(napi, skb);
3173}
3174
3175gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3176{
3177 switch (ret) {
3178 case GRO_NORMAL:
3179 if (netif_receive_skb(skb))
3180 ret = GRO_DROP;
3181 break;
3182
3183 case GRO_DROP:
3184 case GRO_MERGED_FREE:
3185 kfree_skb(skb);
3186 break;
3187
3188 case GRO_HELD:
3189 case GRO_MERGED:
3190 break;
3191 }
3192
3193 return ret;
3194}
3195EXPORT_SYMBOL(napi_skb_finish);
3196
3197void skb_gro_reset_offset(struct sk_buff *skb)
3198{
3199 NAPI_GRO_CB(skb)->data_offset = 0;
3200 NAPI_GRO_CB(skb)->frag0 = NULL;
3201 NAPI_GRO_CB(skb)->frag0_len = 0;
3202
3203 if (skb->mac_header == skb->tail &&
3204 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3205 NAPI_GRO_CB(skb)->frag0 =
3206 page_address(skb_shinfo(skb)->frags[0].page) +
3207 skb_shinfo(skb)->frags[0].page_offset;
3208 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3209 }
3210}
3211EXPORT_SYMBOL(skb_gro_reset_offset);
3212
3213gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3214{
3215 skb_gro_reset_offset(skb);
3216
3217 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3218}
3219EXPORT_SYMBOL(napi_gro_receive);
3220
3221void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3222{
3223 __skb_pull(skb, skb_headlen(skb));
3224 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3225
3226 napi->skb = skb;
3227}
3228EXPORT_SYMBOL(napi_reuse_skb);
3229
3230struct sk_buff *napi_get_frags(struct napi_struct *napi)
3231{
3232 struct sk_buff *skb = napi->skb;
3233
3234 if (!skb) {
3235 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3236 if (skb)
3237 napi->skb = skb;
3238 }
3239 return skb;
3240}
3241EXPORT_SYMBOL(napi_get_frags);
3242
3243gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3244 gro_result_t ret)
3245{
3246 switch (ret) {
3247 case GRO_NORMAL:
3248 case GRO_HELD:
3249 skb->protocol = eth_type_trans(skb, skb->dev);
3250
3251 if (ret == GRO_HELD)
3252 skb_gro_pull(skb, -ETH_HLEN);
3253 else if (netif_receive_skb(skb))
3254 ret = GRO_DROP;
3255 break;
3256
3257 case GRO_DROP:
3258 case GRO_MERGED_FREE:
3259 napi_reuse_skb(napi, skb);
3260 break;
3261
3262 case GRO_MERGED:
3263 break;
3264 }
3265
3266 return ret;
3267}
3268EXPORT_SYMBOL(napi_frags_finish);
3269
3270struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3271{
3272 struct sk_buff *skb = napi->skb;
3273 struct ethhdr *eth;
3274 unsigned int hlen;
3275 unsigned int off;
3276
3277 napi->skb = NULL;
3278
3279 skb_reset_mac_header(skb);
3280 skb_gro_reset_offset(skb);
3281
3282 off = skb_gro_offset(skb);
3283 hlen = off + sizeof(*eth);
3284 eth = skb_gro_header_fast(skb, off);
3285 if (skb_gro_header_hard(skb, hlen)) {
3286 eth = skb_gro_header_slow(skb, hlen, off);
3287 if (unlikely(!eth)) {
3288 napi_reuse_skb(napi, skb);
3289 skb = NULL;
3290 goto out;
3291 }
3292 }
3293
3294 skb_gro_pull(skb, sizeof(*eth));
3295
3296 /*
3297 * This works because the only protocols we care about don't require
3298 * special handling. We'll fix it up properly at the end.
3299 */
3300 skb->protocol = eth->h_proto;
3301
3302out:
3303 return skb;
3304}
3305EXPORT_SYMBOL(napi_frags_skb);
3306
3307gro_result_t napi_gro_frags(struct napi_struct *napi)
3308{
3309 struct sk_buff *skb = napi_frags_skb(napi);
3310
3311 if (!skb)
3312 return GRO_DROP;
3313
3314 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3315}
3316EXPORT_SYMBOL(napi_gro_frags);
3317
3318/*
3319 * net_rps_action sends any pending IPI's for rps.
3320 * Note: called with local irq disabled, but exits with local irq enabled.
3321 */
3322static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3323{
3324#ifdef CONFIG_RPS
3325 struct softnet_data *remsd = sd->rps_ipi_list;
3326
3327 if (remsd) {
3328 sd->rps_ipi_list = NULL;
3329
3330 local_irq_enable();
3331
3332 /* Send pending IPI's to kick RPS processing on remote cpus. */
3333 while (remsd) {
3334 struct softnet_data *next = remsd->rps_ipi_next;
3335
3336 if (cpu_online(remsd->cpu))
3337 __smp_call_function_single(remsd->cpu,
3338 &remsd->csd, 0);
3339 remsd = next;
3340 }
3341 } else
3342#endif
3343 local_irq_enable();
3344}
3345
3346static int process_backlog(struct napi_struct *napi, int quota)
3347{
3348 int work = 0;
3349 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3350
3351#ifdef CONFIG_RPS
3352 /* Check if we have pending ipi, its better to send them now,
3353 * not waiting net_rx_action() end.
3354 */
3355 if (sd->rps_ipi_list) {
3356 local_irq_disable();
3357 net_rps_action_and_irq_enable(sd);
3358 }
3359#endif
3360 napi->weight = weight_p;
3361 local_irq_disable();
3362 while (work < quota) {
3363 struct sk_buff *skb;
3364 unsigned int qlen;
3365
3366 while ((skb = __skb_dequeue(&sd->process_queue))) {
3367 local_irq_enable();
3368 __netif_receive_skb(skb);
3369 local_irq_disable();
3370 input_queue_head_incr(sd);
3371 if (++work >= quota) {
3372 local_irq_enable();
3373 return work;
3374 }
3375 }
3376
3377 rps_lock(sd);
3378 qlen = skb_queue_len(&sd->input_pkt_queue);
3379 if (qlen)
3380 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3381 &sd->process_queue);
3382
3383 if (qlen < quota - work) {
3384 /*
3385 * Inline a custom version of __napi_complete().
3386 * only current cpu owns and manipulates this napi,
3387 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3388 * we can use a plain write instead of clear_bit(),
3389 * and we dont need an smp_mb() memory barrier.
3390 */
3391 list_del(&napi->poll_list);
3392 napi->state = 0;
3393
3394 quota = work + qlen;
3395 }
3396 rps_unlock(sd);
3397 }
3398 local_irq_enable();
3399
3400 return work;
3401}
3402
3403/**
3404 * __napi_schedule - schedule for receive
3405 * @n: entry to schedule
3406 *
3407 * The entry's receive function will be scheduled to run
3408 */
3409void __napi_schedule(struct napi_struct *n)
3410{
3411 unsigned long flags;
3412
3413 local_irq_save(flags);
3414 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3415 local_irq_restore(flags);
3416}
3417EXPORT_SYMBOL(__napi_schedule);
3418
3419void __napi_complete(struct napi_struct *n)
3420{
3421 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3422 BUG_ON(n->gro_list);
3423
3424 list_del(&n->poll_list);
3425 smp_mb__before_clear_bit();
3426 clear_bit(NAPI_STATE_SCHED, &n->state);
3427}
3428EXPORT_SYMBOL(__napi_complete);
3429
3430void napi_complete(struct napi_struct *n)
3431{
3432 unsigned long flags;
3433
3434 /*
3435 * don't let napi dequeue from the cpu poll list
3436 * just in case its running on a different cpu
3437 */
3438 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3439 return;
3440
3441 napi_gro_flush(n);
3442 local_irq_save(flags);
3443 __napi_complete(n);
3444 local_irq_restore(flags);
3445}
3446EXPORT_SYMBOL(napi_complete);
3447
3448void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3449 int (*poll)(struct napi_struct *, int), int weight)
3450{
3451 INIT_LIST_HEAD(&napi->poll_list);
3452 napi->gro_count = 0;
3453 napi->gro_list = NULL;
3454 napi->skb = NULL;
3455 napi->poll = poll;
3456 napi->weight = weight;
3457 list_add(&napi->dev_list, &dev->napi_list);
3458 napi->dev = dev;
3459#ifdef CONFIG_NETPOLL
3460 spin_lock_init(&napi->poll_lock);
3461 napi->poll_owner = -1;
3462#endif
3463 set_bit(NAPI_STATE_SCHED, &napi->state);
3464}
3465EXPORT_SYMBOL(netif_napi_add);
3466
3467void netif_napi_del(struct napi_struct *napi)
3468{
3469 struct sk_buff *skb, *next;
3470
3471 list_del_init(&napi->dev_list);
3472 napi_free_frags(napi);
3473
3474 for (skb = napi->gro_list; skb; skb = next) {
3475 next = skb->next;
3476 skb->next = NULL;
3477 kfree_skb(skb);
3478 }
3479
3480 napi->gro_list = NULL;
3481 napi->gro_count = 0;
3482}
3483EXPORT_SYMBOL(netif_napi_del);
3484
3485static void net_rx_action(struct softirq_action *h)
3486{
3487 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3488 unsigned long time_limit = jiffies + 2;
3489 int budget = netdev_budget;
3490 void *have;
3491
3492 local_irq_disable();
3493
3494 while (!list_empty(&sd->poll_list)) {
3495 struct napi_struct *n;
3496 int work, weight;
3497
3498 /* If softirq window is exhuasted then punt.
3499 * Allow this to run for 2 jiffies since which will allow
3500 * an average latency of 1.5/HZ.
3501 */
3502 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3503 goto softnet_break;
3504
3505 local_irq_enable();
3506
3507 /* Even though interrupts have been re-enabled, this
3508 * access is safe because interrupts can only add new
3509 * entries to the tail of this list, and only ->poll()
3510 * calls can remove this head entry from the list.
3511 */
3512 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3513
3514 have = netpoll_poll_lock(n);
3515
3516 weight = n->weight;
3517
3518 /* This NAPI_STATE_SCHED test is for avoiding a race
3519 * with netpoll's poll_napi(). Only the entity which
3520 * obtains the lock and sees NAPI_STATE_SCHED set will
3521 * actually make the ->poll() call. Therefore we avoid
3522 * accidently calling ->poll() when NAPI is not scheduled.
3523 */
3524 work = 0;
3525 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3526 work = n->poll(n, weight);
3527 trace_napi_poll(n);
3528 }
3529
3530 WARN_ON_ONCE(work > weight);
3531
3532 budget -= work;
3533
3534 local_irq_disable();
3535
3536 /* Drivers must not modify the NAPI state if they
3537 * consume the entire weight. In such cases this code
3538 * still "owns" the NAPI instance and therefore can
3539 * move the instance around on the list at-will.
3540 */
3541 if (unlikely(work == weight)) {
3542 if (unlikely(napi_disable_pending(n))) {
3543 local_irq_enable();
3544 napi_complete(n);
3545 local_irq_disable();
3546 } else
3547 list_move_tail(&n->poll_list, &sd->poll_list);
3548 }
3549
3550 netpoll_poll_unlock(have);
3551 }
3552out:
3553 net_rps_action_and_irq_enable(sd);
3554
3555#ifdef CONFIG_NET_DMA
3556 /*
3557 * There may not be any more sk_buffs coming right now, so push
3558 * any pending DMA copies to hardware
3559 */
3560 dma_issue_pending_all();
3561#endif
3562
3563 return;
3564
3565softnet_break:
3566 sd->time_squeeze++;
3567 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3568 goto out;
3569}
3570
3571static gifconf_func_t *gifconf_list[NPROTO];
3572
3573/**
3574 * register_gifconf - register a SIOCGIF handler
3575 * @family: Address family
3576 * @gifconf: Function handler
3577 *
3578 * Register protocol dependent address dumping routines. The handler
3579 * that is passed must not be freed or reused until it has been replaced
3580 * by another handler.
3581 */
3582int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3583{
3584 if (family >= NPROTO)
3585 return -EINVAL;
3586 gifconf_list[family] = gifconf;
3587 return 0;
3588}
3589EXPORT_SYMBOL(register_gifconf);
3590
3591
3592/*
3593 * Map an interface index to its name (SIOCGIFNAME)
3594 */
3595
3596/*
3597 * We need this ioctl for efficient implementation of the
3598 * if_indextoname() function required by the IPv6 API. Without
3599 * it, we would have to search all the interfaces to find a
3600 * match. --pb
3601 */
3602
3603static int dev_ifname(struct net *net, struct ifreq __user *arg)
3604{
3605 struct net_device *dev;
3606 struct ifreq ifr;
3607
3608 /*
3609 * Fetch the caller's info block.
3610 */
3611
3612 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3613 return -EFAULT;
3614
3615 rcu_read_lock();
3616 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3617 if (!dev) {
3618 rcu_read_unlock();
3619 return -ENODEV;
3620 }
3621
3622 strcpy(ifr.ifr_name, dev->name);
3623 rcu_read_unlock();
3624
3625 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3626 return -EFAULT;
3627 return 0;
3628}
3629
3630/*
3631 * Perform a SIOCGIFCONF call. This structure will change
3632 * size eventually, and there is nothing I can do about it.
3633 * Thus we will need a 'compatibility mode'.
3634 */
3635
3636static int dev_ifconf(struct net *net, char __user *arg)
3637{
3638 struct ifconf ifc;
3639 struct net_device *dev;
3640 char __user *pos;
3641 int len;
3642 int total;
3643 int i;
3644
3645 /*
3646 * Fetch the caller's info block.
3647 */
3648
3649 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3650 return -EFAULT;
3651
3652 pos = ifc.ifc_buf;
3653 len = ifc.ifc_len;
3654
3655 /*
3656 * Loop over the interfaces, and write an info block for each.
3657 */
3658
3659 total = 0;
3660 for_each_netdev(net, dev) {
3661 for (i = 0; i < NPROTO; i++) {
3662 if (gifconf_list[i]) {
3663 int done;
3664 if (!pos)
3665 done = gifconf_list[i](dev, NULL, 0);
3666 else
3667 done = gifconf_list[i](dev, pos + total,
3668 len - total);
3669 if (done < 0)
3670 return -EFAULT;
3671 total += done;
3672 }
3673 }
3674 }
3675
3676 /*
3677 * All done. Write the updated control block back to the caller.
3678 */
3679 ifc.ifc_len = total;
3680
3681 /*
3682 * Both BSD and Solaris return 0 here, so we do too.
3683 */
3684 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3685}
3686
3687#ifdef CONFIG_PROC_FS
3688/*
3689 * This is invoked by the /proc filesystem handler to display a device
3690 * in detail.
3691 */
3692void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3693 __acquires(RCU)
3694{
3695 struct net *net = seq_file_net(seq);
3696 loff_t off;
3697 struct net_device *dev;
3698
3699 rcu_read_lock();
3700 if (!*pos)
3701 return SEQ_START_TOKEN;
3702
3703 off = 1;
3704 for_each_netdev_rcu(net, dev)
3705 if (off++ == *pos)
3706 return dev;
3707
3708 return NULL;
3709}
3710
3711void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3712{
3713 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3714 first_net_device(seq_file_net(seq)) :
3715 next_net_device((struct net_device *)v);
3716
3717 ++*pos;
3718 return rcu_dereference(dev);
3719}
3720
3721void dev_seq_stop(struct seq_file *seq, void *v)
3722 __releases(RCU)
3723{
3724 rcu_read_unlock();
3725}
3726
3727static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3728{
3729 struct rtnl_link_stats64 temp;
3730 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3731
3732 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3733 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3734 dev->name, stats->rx_bytes, stats->rx_packets,
3735 stats->rx_errors,
3736 stats->rx_dropped + stats->rx_missed_errors,
3737 stats->rx_fifo_errors,
3738 stats->rx_length_errors + stats->rx_over_errors +
3739 stats->rx_crc_errors + stats->rx_frame_errors,
3740 stats->rx_compressed, stats->multicast,
3741 stats->tx_bytes, stats->tx_packets,
3742 stats->tx_errors, stats->tx_dropped,
3743 stats->tx_fifo_errors, stats->collisions,
3744 stats->tx_carrier_errors +
3745 stats->tx_aborted_errors +
3746 stats->tx_window_errors +
3747 stats->tx_heartbeat_errors,
3748 stats->tx_compressed);
3749}
3750
3751/*
3752 * Called from the PROCfs module. This now uses the new arbitrary sized
3753 * /proc/net interface to create /proc/net/dev
3754 */
3755static int dev_seq_show(struct seq_file *seq, void *v)
3756{
3757 if (v == SEQ_START_TOKEN)
3758 seq_puts(seq, "Inter-| Receive "
3759 " | Transmit\n"
3760 " face |bytes packets errs drop fifo frame "
3761 "compressed multicast|bytes packets errs "
3762 "drop fifo colls carrier compressed\n");
3763 else
3764 dev_seq_printf_stats(seq, v);
3765 return 0;
3766}
3767
3768static struct softnet_data *softnet_get_online(loff_t *pos)
3769{
3770 struct softnet_data *sd = NULL;
3771
3772 while (*pos < nr_cpu_ids)
3773 if (cpu_online(*pos)) {
3774 sd = &per_cpu(softnet_data, *pos);
3775 break;
3776 } else
3777 ++*pos;
3778 return sd;
3779}
3780
3781static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3782{
3783 return softnet_get_online(pos);
3784}
3785
3786static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3787{
3788 ++*pos;
3789 return softnet_get_online(pos);
3790}
3791
3792static void softnet_seq_stop(struct seq_file *seq, void *v)
3793{
3794}
3795
3796static int softnet_seq_show(struct seq_file *seq, void *v)
3797{
3798 struct softnet_data *sd = v;
3799
3800 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3801 sd->processed, sd->dropped, sd->time_squeeze, 0,
3802 0, 0, 0, 0, /* was fastroute */
3803 sd->cpu_collision, sd->received_rps);
3804 return 0;
3805}
3806
3807static const struct seq_operations dev_seq_ops = {
3808 .start = dev_seq_start,
3809 .next = dev_seq_next,
3810 .stop = dev_seq_stop,
3811 .show = dev_seq_show,
3812};
3813
3814static int dev_seq_open(struct inode *inode, struct file *file)
3815{
3816 return seq_open_net(inode, file, &dev_seq_ops,
3817 sizeof(struct seq_net_private));
3818}
3819
3820static const struct file_operations dev_seq_fops = {
3821 .owner = THIS_MODULE,
3822 .open = dev_seq_open,
3823 .read = seq_read,
3824 .llseek = seq_lseek,
3825 .release = seq_release_net,
3826};
3827
3828static const struct seq_operations softnet_seq_ops = {
3829 .start = softnet_seq_start,
3830 .next = softnet_seq_next,
3831 .stop = softnet_seq_stop,
3832 .show = softnet_seq_show,
3833};
3834
3835static int softnet_seq_open(struct inode *inode, struct file *file)
3836{
3837 return seq_open(file, &softnet_seq_ops);
3838}
3839
3840static const struct file_operations softnet_seq_fops = {
3841 .owner = THIS_MODULE,
3842 .open = softnet_seq_open,
3843 .read = seq_read,
3844 .llseek = seq_lseek,
3845 .release = seq_release,
3846};
3847
3848static void *ptype_get_idx(loff_t pos)
3849{
3850 struct packet_type *pt = NULL;
3851 loff_t i = 0;
3852 int t;
3853
3854 list_for_each_entry_rcu(pt, &ptype_all, list) {
3855 if (i == pos)
3856 return pt;
3857 ++i;
3858 }
3859
3860 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3861 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3862 if (i == pos)
3863 return pt;
3864 ++i;
3865 }
3866 }
3867 return NULL;
3868}
3869
3870static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3871 __acquires(RCU)
3872{
3873 rcu_read_lock();
3874 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3875}
3876
3877static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3878{
3879 struct packet_type *pt;
3880 struct list_head *nxt;
3881 int hash;
3882
3883 ++*pos;
3884 if (v == SEQ_START_TOKEN)
3885 return ptype_get_idx(0);
3886
3887 pt = v;
3888 nxt = pt->list.next;
3889 if (pt->type == htons(ETH_P_ALL)) {
3890 if (nxt != &ptype_all)
3891 goto found;
3892 hash = 0;
3893 nxt = ptype_base[0].next;
3894 } else
3895 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3896
3897 while (nxt == &ptype_base[hash]) {
3898 if (++hash >= PTYPE_HASH_SIZE)
3899 return NULL;
3900 nxt = ptype_base[hash].next;
3901 }
3902found:
3903 return list_entry(nxt, struct packet_type, list);
3904}
3905
3906static void ptype_seq_stop(struct seq_file *seq, void *v)
3907 __releases(RCU)
3908{
3909 rcu_read_unlock();
3910}
3911
3912static int ptype_seq_show(struct seq_file *seq, void *v)
3913{
3914 struct packet_type *pt = v;
3915
3916 if (v == SEQ_START_TOKEN)
3917 seq_puts(seq, "Type Device Function\n");
3918 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3919 if (pt->type == htons(ETH_P_ALL))
3920 seq_puts(seq, "ALL ");
3921 else
3922 seq_printf(seq, "%04x", ntohs(pt->type));
3923
3924 seq_printf(seq, " %-8s %pF\n",
3925 pt->dev ? pt->dev->name : "", pt->func);
3926 }
3927
3928 return 0;
3929}
3930
3931static const struct seq_operations ptype_seq_ops = {
3932 .start = ptype_seq_start,
3933 .next = ptype_seq_next,
3934 .stop = ptype_seq_stop,
3935 .show = ptype_seq_show,
3936};
3937
3938static int ptype_seq_open(struct inode *inode, struct file *file)
3939{
3940 return seq_open_net(inode, file, &ptype_seq_ops,
3941 sizeof(struct seq_net_private));
3942}
3943
3944static const struct file_operations ptype_seq_fops = {
3945 .owner = THIS_MODULE,
3946 .open = ptype_seq_open,
3947 .read = seq_read,
3948 .llseek = seq_lseek,
3949 .release = seq_release_net,
3950};
3951
3952
3953static int __net_init dev_proc_net_init(struct net *net)
3954{
3955 int rc = -ENOMEM;
3956
3957 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3958 goto out;
3959 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3960 goto out_dev;
3961 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3962 goto out_softnet;
3963
3964 if (wext_proc_init(net))
3965 goto out_ptype;
3966 rc = 0;
3967out:
3968 return rc;
3969out_ptype:
3970 proc_net_remove(net, "ptype");
3971out_softnet:
3972 proc_net_remove(net, "softnet_stat");
3973out_dev:
3974 proc_net_remove(net, "dev");
3975 goto out;
3976}
3977
3978static void __net_exit dev_proc_net_exit(struct net *net)
3979{
3980 wext_proc_exit(net);
3981
3982 proc_net_remove(net, "ptype");
3983 proc_net_remove(net, "softnet_stat");
3984 proc_net_remove(net, "dev");
3985}
3986
3987static struct pernet_operations __net_initdata dev_proc_ops = {
3988 .init = dev_proc_net_init,
3989 .exit = dev_proc_net_exit,
3990};
3991
3992static int __init dev_proc_init(void)
3993{
3994 return register_pernet_subsys(&dev_proc_ops);
3995}
3996#else
3997#define dev_proc_init() 0
3998#endif /* CONFIG_PROC_FS */
3999
4000
4001/**
4002 * netdev_set_master - set up master/slave pair
4003 * @slave: slave device
4004 * @master: new master device
4005 *
4006 * Changes the master device of the slave. Pass %NULL to break the
4007 * bonding. The caller must hold the RTNL semaphore. On a failure
4008 * a negative errno code is returned. On success the reference counts
4009 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4010 * function returns zero.
4011 */
4012int netdev_set_master(struct net_device *slave, struct net_device *master)
4013{
4014 struct net_device *old = slave->master;
4015
4016 ASSERT_RTNL();
4017
4018 if (master) {
4019 if (old)
4020 return -EBUSY;
4021 dev_hold(master);
4022 }
4023
4024 slave->master = master;
4025
4026 if (old) {
4027 synchronize_net();
4028 dev_put(old);
4029 }
4030 if (master)
4031 slave->flags |= IFF_SLAVE;
4032 else
4033 slave->flags &= ~IFF_SLAVE;
4034
4035 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4036 return 0;
4037}
4038EXPORT_SYMBOL(netdev_set_master);
4039
4040static void dev_change_rx_flags(struct net_device *dev, int flags)
4041{
4042 const struct net_device_ops *ops = dev->netdev_ops;
4043
4044 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4045 ops->ndo_change_rx_flags(dev, flags);
4046}
4047
4048static int __dev_set_promiscuity(struct net_device *dev, int inc)
4049{
4050 unsigned short old_flags = dev->flags;
4051 uid_t uid;
4052 gid_t gid;
4053
4054 ASSERT_RTNL();
4055
4056 dev->flags |= IFF_PROMISC;
4057 dev->promiscuity += inc;
4058 if (dev->promiscuity == 0) {
4059 /*
4060 * Avoid overflow.
4061 * If inc causes overflow, untouch promisc and return error.
4062 */
4063 if (inc < 0)
4064 dev->flags &= ~IFF_PROMISC;
4065 else {
4066 dev->promiscuity -= inc;
4067 printk(KERN_WARNING "%s: promiscuity touches roof, "
4068 "set promiscuity failed, promiscuity feature "
4069 "of device might be broken.\n", dev->name);
4070 return -EOVERFLOW;
4071 }
4072 }
4073 if (dev->flags != old_flags) {
4074 printk(KERN_INFO "device %s %s promiscuous mode\n",
4075 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4076 "left");
4077 if (audit_enabled) {
4078 current_uid_gid(&uid, &gid);
4079 audit_log(current->audit_context, GFP_ATOMIC,
4080 AUDIT_ANOM_PROMISCUOUS,
4081 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4082 dev->name, (dev->flags & IFF_PROMISC),
4083 (old_flags & IFF_PROMISC),
4084 audit_get_loginuid(current),
4085 uid, gid,
4086 audit_get_sessionid(current));
4087 }
4088
4089 dev_change_rx_flags(dev, IFF_PROMISC);
4090 }
4091 return 0;
4092}
4093
4094/**
4095 * dev_set_promiscuity - update promiscuity count on a device
4096 * @dev: device
4097 * @inc: modifier
4098 *
4099 * Add or remove promiscuity from a device. While the count in the device
4100 * remains above zero the interface remains promiscuous. Once it hits zero
4101 * the device reverts back to normal filtering operation. A negative inc
4102 * value is used to drop promiscuity on the device.
4103 * Return 0 if successful or a negative errno code on error.
4104 */
4105int dev_set_promiscuity(struct net_device *dev, int inc)
4106{
4107 unsigned short old_flags = dev->flags;
4108 int err;
4109
4110 err = __dev_set_promiscuity(dev, inc);
4111 if (err < 0)
4112 return err;
4113 if (dev->flags != old_flags)
4114 dev_set_rx_mode(dev);
4115 return err;
4116}
4117EXPORT_SYMBOL(dev_set_promiscuity);
4118
4119/**
4120 * dev_set_allmulti - update allmulti count on a device
4121 * @dev: device
4122 * @inc: modifier
4123 *
4124 * Add or remove reception of all multicast frames to a device. While the
4125 * count in the device remains above zero the interface remains listening
4126 * to all interfaces. Once it hits zero the device reverts back to normal
4127 * filtering operation. A negative @inc value is used to drop the counter
4128 * when releasing a resource needing all multicasts.
4129 * Return 0 if successful or a negative errno code on error.
4130 */
4131
4132int dev_set_allmulti(struct net_device *dev, int inc)
4133{
4134 unsigned short old_flags = dev->flags;
4135
4136 ASSERT_RTNL();
4137
4138 dev->flags |= IFF_ALLMULTI;
4139 dev->allmulti += inc;
4140 if (dev->allmulti == 0) {
4141 /*
4142 * Avoid overflow.
4143 * If inc causes overflow, untouch allmulti and return error.
4144 */
4145 if (inc < 0)
4146 dev->flags &= ~IFF_ALLMULTI;
4147 else {
4148 dev->allmulti -= inc;
4149 printk(KERN_WARNING "%s: allmulti touches roof, "
4150 "set allmulti failed, allmulti feature of "
4151 "device might be broken.\n", dev->name);
4152 return -EOVERFLOW;
4153 }
4154 }
4155 if (dev->flags ^ old_flags) {
4156 dev_change_rx_flags(dev, IFF_ALLMULTI);
4157 dev_set_rx_mode(dev);
4158 }
4159 return 0;
4160}
4161EXPORT_SYMBOL(dev_set_allmulti);
4162
4163/*
4164 * Upload unicast and multicast address lists to device and
4165 * configure RX filtering. When the device doesn't support unicast
4166 * filtering it is put in promiscuous mode while unicast addresses
4167 * are present.
4168 */
4169void __dev_set_rx_mode(struct net_device *dev)
4170{
4171 const struct net_device_ops *ops = dev->netdev_ops;
4172
4173 /* dev_open will call this function so the list will stay sane. */
4174 if (!(dev->flags&IFF_UP))
4175 return;
4176
4177 if (!netif_device_present(dev))
4178 return;
4179
4180 if (ops->ndo_set_rx_mode)
4181 ops->ndo_set_rx_mode(dev);
4182 else {
4183 /* Unicast addresses changes may only happen under the rtnl,
4184 * therefore calling __dev_set_promiscuity here is safe.
4185 */
4186 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4187 __dev_set_promiscuity(dev, 1);
4188 dev->uc_promisc = 1;
4189 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4190 __dev_set_promiscuity(dev, -1);
4191 dev->uc_promisc = 0;
4192 }
4193
4194 if (ops->ndo_set_multicast_list)
4195 ops->ndo_set_multicast_list(dev);
4196 }
4197}
4198
4199void dev_set_rx_mode(struct net_device *dev)
4200{
4201 netif_addr_lock_bh(dev);
4202 __dev_set_rx_mode(dev);
4203 netif_addr_unlock_bh(dev);
4204}
4205
4206/**
4207 * dev_get_flags - get flags reported to userspace
4208 * @dev: device
4209 *
4210 * Get the combination of flag bits exported through APIs to userspace.
4211 */
4212unsigned dev_get_flags(const struct net_device *dev)
4213{
4214 unsigned flags;
4215
4216 flags = (dev->flags & ~(IFF_PROMISC |
4217 IFF_ALLMULTI |
4218 IFF_RUNNING |
4219 IFF_LOWER_UP |
4220 IFF_DORMANT)) |
4221 (dev->gflags & (IFF_PROMISC |
4222 IFF_ALLMULTI));
4223
4224 if (netif_running(dev)) {
4225 if (netif_oper_up(dev))
4226 flags |= IFF_RUNNING;
4227 if (netif_carrier_ok(dev))
4228 flags |= IFF_LOWER_UP;
4229 if (netif_dormant(dev))
4230 flags |= IFF_DORMANT;
4231 }
4232
4233 return flags;
4234}
4235EXPORT_SYMBOL(dev_get_flags);
4236
4237int __dev_change_flags(struct net_device *dev, unsigned int flags)
4238{
4239 int old_flags = dev->flags;
4240 int ret;
4241
4242 ASSERT_RTNL();
4243
4244 /*
4245 * Set the flags on our device.
4246 */
4247
4248 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4249 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4250 IFF_AUTOMEDIA)) |
4251 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4252 IFF_ALLMULTI));
4253
4254 /*
4255 * Load in the correct multicast list now the flags have changed.
4256 */
4257
4258 if ((old_flags ^ flags) & IFF_MULTICAST)
4259 dev_change_rx_flags(dev, IFF_MULTICAST);
4260
4261 dev_set_rx_mode(dev);
4262
4263 /*
4264 * Have we downed the interface. We handle IFF_UP ourselves
4265 * according to user attempts to set it, rather than blindly
4266 * setting it.
4267 */
4268
4269 ret = 0;
4270 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4271 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4272
4273 if (!ret)
4274 dev_set_rx_mode(dev);
4275 }
4276
4277 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4278 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4279
4280 dev->gflags ^= IFF_PROMISC;
4281 dev_set_promiscuity(dev, inc);
4282 }
4283
4284 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4285 is important. Some (broken) drivers set IFF_PROMISC, when
4286 IFF_ALLMULTI is requested not asking us and not reporting.
4287 */
4288 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4289 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4290
4291 dev->gflags ^= IFF_ALLMULTI;
4292 dev_set_allmulti(dev, inc);
4293 }
4294
4295 return ret;
4296}
4297
4298void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4299{
4300 unsigned int changes = dev->flags ^ old_flags;
4301
4302 if (changes & IFF_UP) {
4303 if (dev->flags & IFF_UP)
4304 call_netdevice_notifiers(NETDEV_UP, dev);
4305 else
4306 call_netdevice_notifiers(NETDEV_DOWN, dev);
4307 }
4308
4309 if (dev->flags & IFF_UP &&
4310 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4311 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4312}
4313
4314/**
4315 * dev_change_flags - change device settings
4316 * @dev: device
4317 * @flags: device state flags
4318 *
4319 * Change settings on device based state flags. The flags are
4320 * in the userspace exported format.
4321 */
4322int dev_change_flags(struct net_device *dev, unsigned flags)
4323{
4324 int ret, changes;
4325 int old_flags = dev->flags;
4326
4327 ret = __dev_change_flags(dev, flags);
4328 if (ret < 0)
4329 return ret;
4330
4331 changes = old_flags ^ dev->flags;
4332 if (changes)
4333 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4334
4335 __dev_notify_flags(dev, old_flags);
4336 return ret;
4337}
4338EXPORT_SYMBOL(dev_change_flags);
4339
4340/**
4341 * dev_set_mtu - Change maximum transfer unit
4342 * @dev: device
4343 * @new_mtu: new transfer unit
4344 *
4345 * Change the maximum transfer size of the network device.
4346 */
4347int dev_set_mtu(struct net_device *dev, int new_mtu)
4348{
4349 const struct net_device_ops *ops = dev->netdev_ops;
4350 int err;
4351
4352 if (new_mtu == dev->mtu)
4353 return 0;
4354
4355 /* MTU must be positive. */
4356 if (new_mtu < 0)
4357 return -EINVAL;
4358
4359 if (!netif_device_present(dev))
4360 return -ENODEV;
4361
4362 err = 0;
4363 if (ops->ndo_change_mtu)
4364 err = ops->ndo_change_mtu(dev, new_mtu);
4365 else
4366 dev->mtu = new_mtu;
4367
4368 if (!err && dev->flags & IFF_UP)
4369 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4370 return err;
4371}
4372EXPORT_SYMBOL(dev_set_mtu);
4373
4374/**
4375 * dev_set_mac_address - Change Media Access Control Address
4376 * @dev: device
4377 * @sa: new address
4378 *
4379 * Change the hardware (MAC) address of the device
4380 */
4381int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4382{
4383 const struct net_device_ops *ops = dev->netdev_ops;
4384 int err;
4385
4386 if (!ops->ndo_set_mac_address)
4387 return -EOPNOTSUPP;
4388 if (sa->sa_family != dev->type)
4389 return -EINVAL;
4390 if (!netif_device_present(dev))
4391 return -ENODEV;
4392 err = ops->ndo_set_mac_address(dev, sa);
4393 if (!err)
4394 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4395 return err;
4396}
4397EXPORT_SYMBOL(dev_set_mac_address);
4398
4399/*
4400 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4401 */
4402static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4403{
4404 int err;
4405 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4406
4407 if (!dev)
4408 return -ENODEV;
4409
4410 switch (cmd) {
4411 case SIOCGIFFLAGS: /* Get interface flags */
4412 ifr->ifr_flags = (short) dev_get_flags(dev);
4413 return 0;
4414
4415 case SIOCGIFMETRIC: /* Get the metric on the interface
4416 (currently unused) */
4417 ifr->ifr_metric = 0;
4418 return 0;
4419
4420 case SIOCGIFMTU: /* Get the MTU of a device */
4421 ifr->ifr_mtu = dev->mtu;
4422 return 0;
4423
4424 case SIOCGIFHWADDR:
4425 if (!dev->addr_len)
4426 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4427 else
4428 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4429 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4430 ifr->ifr_hwaddr.sa_family = dev->type;
4431 return 0;
4432
4433 case SIOCGIFSLAVE:
4434 err = -EINVAL;
4435 break;
4436
4437 case SIOCGIFMAP:
4438 ifr->ifr_map.mem_start = dev->mem_start;
4439 ifr->ifr_map.mem_end = dev->mem_end;
4440 ifr->ifr_map.base_addr = dev->base_addr;
4441 ifr->ifr_map.irq = dev->irq;
4442 ifr->ifr_map.dma = dev->dma;
4443 ifr->ifr_map.port = dev->if_port;
4444 return 0;
4445
4446 case SIOCGIFINDEX:
4447 ifr->ifr_ifindex = dev->ifindex;
4448 return 0;
4449
4450 case SIOCGIFTXQLEN:
4451 ifr->ifr_qlen = dev->tx_queue_len;
4452 return 0;
4453
4454 default:
4455 /* dev_ioctl() should ensure this case
4456 * is never reached
4457 */
4458 WARN_ON(1);
4459 err = -EINVAL;
4460 break;
4461
4462 }
4463 return err;
4464}
4465
4466/*
4467 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4468 */
4469static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4470{
4471 int err;
4472 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4473 const struct net_device_ops *ops;
4474
4475 if (!dev)
4476 return -ENODEV;
4477
4478 ops = dev->netdev_ops;
4479
4480 switch (cmd) {
4481 case SIOCSIFFLAGS: /* Set interface flags */
4482 return dev_change_flags(dev, ifr->ifr_flags);
4483
4484 case SIOCSIFMETRIC: /* Set the metric on the interface
4485 (currently unused) */
4486 return -EOPNOTSUPP;
4487
4488 case SIOCSIFMTU: /* Set the MTU of a device */
4489 return dev_set_mtu(dev, ifr->ifr_mtu);
4490
4491 case SIOCSIFHWADDR:
4492 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4493
4494 case SIOCSIFHWBROADCAST:
4495 if (ifr->ifr_hwaddr.sa_family != dev->type)
4496 return -EINVAL;
4497 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4498 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4499 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4500 return 0;
4501
4502 case SIOCSIFMAP:
4503 if (ops->ndo_set_config) {
4504 if (!netif_device_present(dev))
4505 return -ENODEV;
4506 return ops->ndo_set_config(dev, &ifr->ifr_map);
4507 }
4508 return -EOPNOTSUPP;
4509
4510 case SIOCADDMULTI:
4511 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4512 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4513 return -EINVAL;
4514 if (!netif_device_present(dev))
4515 return -ENODEV;
4516 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4517
4518 case SIOCDELMULTI:
4519 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4520 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4521 return -EINVAL;
4522 if (!netif_device_present(dev))
4523 return -ENODEV;
4524 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4525
4526 case SIOCSIFTXQLEN:
4527 if (ifr->ifr_qlen < 0)
4528 return -EINVAL;
4529 dev->tx_queue_len = ifr->ifr_qlen;
4530 return 0;
4531
4532 case SIOCSIFNAME:
4533 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4534 return dev_change_name(dev, ifr->ifr_newname);
4535
4536 /*
4537 * Unknown or private ioctl
4538 */
4539 default:
4540 if ((cmd >= SIOCDEVPRIVATE &&
4541 cmd <= SIOCDEVPRIVATE + 15) ||
4542 cmd == SIOCBONDENSLAVE ||
4543 cmd == SIOCBONDRELEASE ||
4544 cmd == SIOCBONDSETHWADDR ||
4545 cmd == SIOCBONDSLAVEINFOQUERY ||
4546 cmd == SIOCBONDINFOQUERY ||
4547 cmd == SIOCBONDCHANGEACTIVE ||
4548 cmd == SIOCGMIIPHY ||
4549 cmd == SIOCGMIIREG ||
4550 cmd == SIOCSMIIREG ||
4551 cmd == SIOCBRADDIF ||
4552 cmd == SIOCBRDELIF ||
4553 cmd == SIOCSHWTSTAMP ||
4554 cmd == SIOCWANDEV) {
4555 err = -EOPNOTSUPP;
4556 if (ops->ndo_do_ioctl) {
4557 if (netif_device_present(dev))
4558 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4559 else
4560 err = -ENODEV;
4561 }
4562 } else
4563 err = -EINVAL;
4564
4565 }
4566 return err;
4567}
4568
4569/*
4570 * This function handles all "interface"-type I/O control requests. The actual
4571 * 'doing' part of this is dev_ifsioc above.
4572 */
4573
4574/**
4575 * dev_ioctl - network device ioctl
4576 * @net: the applicable net namespace
4577 * @cmd: command to issue
4578 * @arg: pointer to a struct ifreq in user space
4579 *
4580 * Issue ioctl functions to devices. This is normally called by the
4581 * user space syscall interfaces but can sometimes be useful for
4582 * other purposes. The return value is the return from the syscall if
4583 * positive or a negative errno code on error.
4584 */
4585
4586int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4587{
4588 struct ifreq ifr;
4589 int ret;
4590 char *colon;
4591
4592 /* One special case: SIOCGIFCONF takes ifconf argument
4593 and requires shared lock, because it sleeps writing
4594 to user space.
4595 */
4596
4597 if (cmd == SIOCGIFCONF) {
4598 rtnl_lock();
4599 ret = dev_ifconf(net, (char __user *) arg);
4600 rtnl_unlock();
4601 return ret;
4602 }
4603 if (cmd == SIOCGIFNAME)
4604 return dev_ifname(net, (struct ifreq __user *)arg);
4605
4606 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4607 return -EFAULT;
4608
4609 ifr.ifr_name[IFNAMSIZ-1] = 0;
4610
4611 colon = strchr(ifr.ifr_name, ':');
4612 if (colon)
4613 *colon = 0;
4614
4615 /*
4616 * See which interface the caller is talking about.
4617 */
4618
4619 switch (cmd) {
4620 /*
4621 * These ioctl calls:
4622 * - can be done by all.
4623 * - atomic and do not require locking.
4624 * - return a value
4625 */
4626 case SIOCGIFFLAGS:
4627 case SIOCGIFMETRIC:
4628 case SIOCGIFMTU:
4629 case SIOCGIFHWADDR:
4630 case SIOCGIFSLAVE:
4631 case SIOCGIFMAP:
4632 case SIOCGIFINDEX:
4633 case SIOCGIFTXQLEN:
4634 dev_load(net, ifr.ifr_name);
4635 rcu_read_lock();
4636 ret = dev_ifsioc_locked(net, &ifr, cmd);
4637 rcu_read_unlock();
4638 if (!ret) {
4639 if (colon)
4640 *colon = ':';
4641 if (copy_to_user(arg, &ifr,
4642 sizeof(struct ifreq)))
4643 ret = -EFAULT;
4644 }
4645 return ret;
4646
4647 case SIOCETHTOOL:
4648 dev_load(net, ifr.ifr_name);
4649 rtnl_lock();
4650 ret = dev_ethtool(net, &ifr);
4651 rtnl_unlock();
4652 if (!ret) {
4653 if (colon)
4654 *colon = ':';
4655 if (copy_to_user(arg, &ifr,
4656 sizeof(struct ifreq)))
4657 ret = -EFAULT;
4658 }
4659 return ret;
4660
4661 /*
4662 * These ioctl calls:
4663 * - require superuser power.
4664 * - require strict serialization.
4665 * - return a value
4666 */
4667 case SIOCGMIIPHY:
4668 case SIOCGMIIREG:
4669 case SIOCSIFNAME:
4670 if (!capable(CAP_NET_ADMIN))
4671 return -EPERM;
4672 dev_load(net, ifr.ifr_name);
4673 rtnl_lock();
4674 ret = dev_ifsioc(net, &ifr, cmd);
4675 rtnl_unlock();
4676 if (!ret) {
4677 if (colon)
4678 *colon = ':';
4679 if (copy_to_user(arg, &ifr,
4680 sizeof(struct ifreq)))
4681 ret = -EFAULT;
4682 }
4683 return ret;
4684
4685 /*
4686 * These ioctl calls:
4687 * - require superuser power.
4688 * - require strict serialization.
4689 * - do not return a value
4690 */
4691 case SIOCSIFFLAGS:
4692 case SIOCSIFMETRIC:
4693 case SIOCSIFMTU:
4694 case SIOCSIFMAP:
4695 case SIOCSIFHWADDR:
4696 case SIOCSIFSLAVE:
4697 case SIOCADDMULTI:
4698 case SIOCDELMULTI:
4699 case SIOCSIFHWBROADCAST:
4700 case SIOCSIFTXQLEN:
4701 case SIOCSMIIREG:
4702 case SIOCBONDENSLAVE:
4703 case SIOCBONDRELEASE:
4704 case SIOCBONDSETHWADDR:
4705 case SIOCBONDCHANGEACTIVE:
4706 case SIOCBRADDIF:
4707 case SIOCBRDELIF:
4708 case SIOCSHWTSTAMP:
4709 if (!capable(CAP_NET_ADMIN))
4710 return -EPERM;
4711 /* fall through */
4712 case SIOCBONDSLAVEINFOQUERY:
4713 case SIOCBONDINFOQUERY:
4714 dev_load(net, ifr.ifr_name);
4715 rtnl_lock();
4716 ret = dev_ifsioc(net, &ifr, cmd);
4717 rtnl_unlock();
4718 return ret;
4719
4720 case SIOCGIFMEM:
4721 /* Get the per device memory space. We can add this but
4722 * currently do not support it */
4723 case SIOCSIFMEM:
4724 /* Set the per device memory buffer space.
4725 * Not applicable in our case */
4726 case SIOCSIFLINK:
4727 return -EINVAL;
4728
4729 /*
4730 * Unknown or private ioctl.
4731 */
4732 default:
4733 if (cmd == SIOCWANDEV ||
4734 (cmd >= SIOCDEVPRIVATE &&
4735 cmd <= SIOCDEVPRIVATE + 15)) {
4736 dev_load(net, ifr.ifr_name);
4737 rtnl_lock();
4738 ret = dev_ifsioc(net, &ifr, cmd);
4739 rtnl_unlock();
4740 if (!ret && copy_to_user(arg, &ifr,
4741 sizeof(struct ifreq)))
4742 ret = -EFAULT;
4743 return ret;
4744 }
4745 /* Take care of Wireless Extensions */
4746 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4747 return wext_handle_ioctl(net, &ifr, cmd, arg);
4748 return -EINVAL;
4749 }
4750}
4751
4752
4753/**
4754 * dev_new_index - allocate an ifindex
4755 * @net: the applicable net namespace
4756 *
4757 * Returns a suitable unique value for a new device interface
4758 * number. The caller must hold the rtnl semaphore or the
4759 * dev_base_lock to be sure it remains unique.
4760 */
4761static int dev_new_index(struct net *net)
4762{
4763 static int ifindex;
4764 for (;;) {
4765 if (++ifindex <= 0)
4766 ifindex = 1;
4767 if (!__dev_get_by_index(net, ifindex))
4768 return ifindex;
4769 }
4770}
4771
4772/* Delayed registration/unregisteration */
4773static LIST_HEAD(net_todo_list);
4774
4775static void net_set_todo(struct net_device *dev)
4776{
4777 list_add_tail(&dev->todo_list, &net_todo_list);
4778}
4779
4780static void rollback_registered_many(struct list_head *head)
4781{
4782 struct net_device *dev, *tmp;
4783
4784 BUG_ON(dev_boot_phase);
4785 ASSERT_RTNL();
4786
4787 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4788 /* Some devices call without registering
4789 * for initialization unwind. Remove those
4790 * devices and proceed with the remaining.
4791 */
4792 if (dev->reg_state == NETREG_UNINITIALIZED) {
4793 pr_debug("unregister_netdevice: device %s/%p never "
4794 "was registered\n", dev->name, dev);
4795
4796 WARN_ON(1);
4797 list_del(&dev->unreg_list);
4798 continue;
4799 }
4800
4801 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4802
4803 /* If device is running, close it first. */
4804 dev_close(dev);
4805
4806 /* And unlink it from device chain. */
4807 unlist_netdevice(dev);
4808
4809 dev->reg_state = NETREG_UNREGISTERING;
4810 }
4811
4812 synchronize_net();
4813
4814 list_for_each_entry(dev, head, unreg_list) {
4815 /* Shutdown queueing discipline. */
4816 dev_shutdown(dev);
4817
4818
4819 /* Notify protocols, that we are about to destroy
4820 this device. They should clean all the things.
4821 */
4822 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4823
4824 if (!dev->rtnl_link_ops ||
4825 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4826 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4827
4828 /*
4829 * Flush the unicast and multicast chains
4830 */
4831 dev_uc_flush(dev);
4832 dev_mc_flush(dev);
4833
4834 if (dev->netdev_ops->ndo_uninit)
4835 dev->netdev_ops->ndo_uninit(dev);
4836
4837 /* Notifier chain MUST detach us from master device. */
4838 WARN_ON(dev->master);
4839
4840 /* Remove entries from kobject tree */
4841 netdev_unregister_kobject(dev);
4842 }
4843
4844 /* Process any work delayed until the end of the batch */
4845 dev = list_first_entry(head, struct net_device, unreg_list);
4846 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4847
4848 synchronize_net();
4849
4850 list_for_each_entry(dev, head, unreg_list)
4851 dev_put(dev);
4852}
4853
4854static void rollback_registered(struct net_device *dev)
4855{
4856 LIST_HEAD(single);
4857
4858 list_add(&dev->unreg_list, &single);
4859 rollback_registered_many(&single);
4860}
4861
4862static void __netdev_init_queue_locks_one(struct net_device *dev,
4863 struct netdev_queue *dev_queue,
4864 void *_unused)
4865{
4866 spin_lock_init(&dev_queue->_xmit_lock);
4867 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4868 dev_queue->xmit_lock_owner = -1;
4869}
4870
4871static void netdev_init_queue_locks(struct net_device *dev)
4872{
4873 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4874 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4875}
4876
4877unsigned long netdev_fix_features(unsigned long features, const char *name)
4878{
4879 /* Fix illegal SG+CSUM combinations. */
4880 if ((features & NETIF_F_SG) &&
4881 !(features & NETIF_F_ALL_CSUM)) {
4882 if (name)
4883 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4884 "checksum feature.\n", name);
4885 features &= ~NETIF_F_SG;
4886 }
4887
4888 /* TSO requires that SG is present as well. */
4889 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4890 if (name)
4891 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4892 "SG feature.\n", name);
4893 features &= ~NETIF_F_TSO;
4894 }
4895
4896 if (features & NETIF_F_UFO) {
4897 if (!(features & NETIF_F_GEN_CSUM)) {
4898 if (name)
4899 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4900 "since no NETIF_F_HW_CSUM feature.\n",
4901 name);
4902 features &= ~NETIF_F_UFO;
4903 }
4904
4905 if (!(features & NETIF_F_SG)) {
4906 if (name)
4907 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4908 "since no NETIF_F_SG feature.\n", name);
4909 features &= ~NETIF_F_UFO;
4910 }
4911 }
4912
4913 return features;
4914}
4915EXPORT_SYMBOL(netdev_fix_features);
4916
4917/**
4918 * netif_stacked_transfer_operstate - transfer operstate
4919 * @rootdev: the root or lower level device to transfer state from
4920 * @dev: the device to transfer operstate to
4921 *
4922 * Transfer operational state from root to device. This is normally
4923 * called when a stacking relationship exists between the root
4924 * device and the device(a leaf device).
4925 */
4926void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4927 struct net_device *dev)
4928{
4929 if (rootdev->operstate == IF_OPER_DORMANT)
4930 netif_dormant_on(dev);
4931 else
4932 netif_dormant_off(dev);
4933
4934 if (netif_carrier_ok(rootdev)) {
4935 if (!netif_carrier_ok(dev))
4936 netif_carrier_on(dev);
4937 } else {
4938 if (netif_carrier_ok(dev))
4939 netif_carrier_off(dev);
4940 }
4941}
4942EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4943
4944/**
4945 * register_netdevice - register a network device
4946 * @dev: device to register
4947 *
4948 * Take a completed network device structure and add it to the kernel
4949 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4950 * chain. 0 is returned on success. A negative errno code is returned
4951 * on a failure to set up the device, or if the name is a duplicate.
4952 *
4953 * Callers must hold the rtnl semaphore. You may want
4954 * register_netdev() instead of this.
4955 *
4956 * BUGS:
4957 * The locking appears insufficient to guarantee two parallel registers
4958 * will not get the same name.
4959 */
4960
4961int register_netdevice(struct net_device *dev)
4962{
4963 int ret;
4964 struct net *net = dev_net(dev);
4965
4966 BUG_ON(dev_boot_phase);
4967 ASSERT_RTNL();
4968
4969 might_sleep();
4970
4971 /* When net_device's are persistent, this will be fatal. */
4972 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4973 BUG_ON(!net);
4974
4975 spin_lock_init(&dev->addr_list_lock);
4976 netdev_set_addr_lockdep_class(dev);
4977 netdev_init_queue_locks(dev);
4978
4979 dev->iflink = -1;
4980
4981#ifdef CONFIG_RPS
4982 if (!dev->num_rx_queues) {
4983 /*
4984 * Allocate a single RX queue if driver never called
4985 * alloc_netdev_mq
4986 */
4987
4988 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
4989 if (!dev->_rx) {
4990 ret = -ENOMEM;
4991 goto out;
4992 }
4993
4994 dev->_rx->first = dev->_rx;
4995 atomic_set(&dev->_rx->count, 1);
4996 dev->num_rx_queues = 1;
4997 }
4998#endif
4999 /* Init, if this function is available */
5000 if (dev->netdev_ops->ndo_init) {
5001 ret = dev->netdev_ops->ndo_init(dev);
5002 if (ret) {
5003 if (ret > 0)
5004 ret = -EIO;
5005 goto out;
5006 }
5007 }
5008
5009 ret = dev_get_valid_name(dev, dev->name, 0);
5010 if (ret)
5011 goto err_uninit;
5012
5013 dev->ifindex = dev_new_index(net);
5014 if (dev->iflink == -1)
5015 dev->iflink = dev->ifindex;
5016
5017 /* Fix illegal checksum combinations */
5018 if ((dev->features & NETIF_F_HW_CSUM) &&
5019 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5020 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5021 dev->name);
5022 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5023 }
5024
5025 if ((dev->features & NETIF_F_NO_CSUM) &&
5026 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5027 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5028 dev->name);
5029 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5030 }
5031
5032 dev->features = netdev_fix_features(dev->features, dev->name);
5033
5034 /* Enable software GSO if SG is supported. */
5035 if (dev->features & NETIF_F_SG)
5036 dev->features |= NETIF_F_GSO;
5037
5038 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5039 ret = notifier_to_errno(ret);
5040 if (ret)
5041 goto err_uninit;
5042
5043 ret = netdev_register_kobject(dev);
5044 if (ret)
5045 goto err_uninit;
5046 dev->reg_state = NETREG_REGISTERED;
5047
5048 /*
5049 * Default initial state at registry is that the
5050 * device is present.
5051 */
5052
5053 set_bit(__LINK_STATE_PRESENT, &dev->state);
5054
5055 dev_init_scheduler(dev);
5056 dev_hold(dev);
5057 list_netdevice(dev);
5058
5059 /* Notify protocols, that a new device appeared. */
5060 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5061 ret = notifier_to_errno(ret);
5062 if (ret) {
5063 rollback_registered(dev);
5064 dev->reg_state = NETREG_UNREGISTERED;
5065 }
5066 /*
5067 * Prevent userspace races by waiting until the network
5068 * device is fully setup before sending notifications.
5069 */
5070 if (!dev->rtnl_link_ops ||
5071 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5072 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5073
5074out:
5075 return ret;
5076
5077err_uninit:
5078 if (dev->netdev_ops->ndo_uninit)
5079 dev->netdev_ops->ndo_uninit(dev);
5080 goto out;
5081}
5082EXPORT_SYMBOL(register_netdevice);
5083
5084/**
5085 * init_dummy_netdev - init a dummy network device for NAPI
5086 * @dev: device to init
5087 *
5088 * This takes a network device structure and initialize the minimum
5089 * amount of fields so it can be used to schedule NAPI polls without
5090 * registering a full blown interface. This is to be used by drivers
5091 * that need to tie several hardware interfaces to a single NAPI
5092 * poll scheduler due to HW limitations.
5093 */
5094int init_dummy_netdev(struct net_device *dev)
5095{
5096 /* Clear everything. Note we don't initialize spinlocks
5097 * are they aren't supposed to be taken by any of the
5098 * NAPI code and this dummy netdev is supposed to be
5099 * only ever used for NAPI polls
5100 */
5101 memset(dev, 0, sizeof(struct net_device));
5102
5103 /* make sure we BUG if trying to hit standard
5104 * register/unregister code path
5105 */
5106 dev->reg_state = NETREG_DUMMY;
5107
5108 /* initialize the ref count */
5109 atomic_set(&dev->refcnt, 1);
5110
5111 /* NAPI wants this */
5112 INIT_LIST_HEAD(&dev->napi_list);
5113
5114 /* a dummy interface is started by default */
5115 set_bit(__LINK_STATE_PRESENT, &dev->state);
5116 set_bit(__LINK_STATE_START, &dev->state);
5117
5118 return 0;
5119}
5120EXPORT_SYMBOL_GPL(init_dummy_netdev);
5121
5122
5123/**
5124 * register_netdev - register a network device
5125 * @dev: device to register
5126 *
5127 * Take a completed network device structure and add it to the kernel
5128 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5129 * chain. 0 is returned on success. A negative errno code is returned
5130 * on a failure to set up the device, or if the name is a duplicate.
5131 *
5132 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5133 * and expands the device name if you passed a format string to
5134 * alloc_netdev.
5135 */
5136int register_netdev(struct net_device *dev)
5137{
5138 int err;
5139
5140 rtnl_lock();
5141
5142 /*
5143 * If the name is a format string the caller wants us to do a
5144 * name allocation.
5145 */
5146 if (strchr(dev->name, '%')) {
5147 err = dev_alloc_name(dev, dev->name);
5148 if (err < 0)
5149 goto out;
5150 }
5151
5152 err = register_netdevice(dev);
5153out:
5154 rtnl_unlock();
5155 return err;
5156}
5157EXPORT_SYMBOL(register_netdev);
5158
5159/*
5160 * netdev_wait_allrefs - wait until all references are gone.
5161 *
5162 * This is called when unregistering network devices.
5163 *
5164 * Any protocol or device that holds a reference should register
5165 * for netdevice notification, and cleanup and put back the
5166 * reference if they receive an UNREGISTER event.
5167 * We can get stuck here if buggy protocols don't correctly
5168 * call dev_put.
5169 */
5170static void netdev_wait_allrefs(struct net_device *dev)
5171{
5172 unsigned long rebroadcast_time, warning_time;
5173
5174 linkwatch_forget_dev(dev);
5175
5176 rebroadcast_time = warning_time = jiffies;
5177 while (atomic_read(&dev->refcnt) != 0) {
5178 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5179 rtnl_lock();
5180
5181 /* Rebroadcast unregister notification */
5182 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5183 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5184 * should have already handle it the first time */
5185
5186 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5187 &dev->state)) {
5188 /* We must not have linkwatch events
5189 * pending on unregister. If this
5190 * happens, we simply run the queue
5191 * unscheduled, resulting in a noop
5192 * for this device.
5193 */
5194 linkwatch_run_queue();
5195 }
5196
5197 __rtnl_unlock();
5198
5199 rebroadcast_time = jiffies;
5200 }
5201
5202 msleep(250);
5203
5204 if (time_after(jiffies, warning_time + 10 * HZ)) {
5205 printk(KERN_EMERG "unregister_netdevice: "
5206 "waiting for %s to become free. Usage "
5207 "count = %d\n",
5208 dev->name, atomic_read(&dev->refcnt));
5209 warning_time = jiffies;
5210 }
5211 }
5212}
5213
5214/* The sequence is:
5215 *
5216 * rtnl_lock();
5217 * ...
5218 * register_netdevice(x1);
5219 * register_netdevice(x2);
5220 * ...
5221 * unregister_netdevice(y1);
5222 * unregister_netdevice(y2);
5223 * ...
5224 * rtnl_unlock();
5225 * free_netdev(y1);
5226 * free_netdev(y2);
5227 *
5228 * We are invoked by rtnl_unlock().
5229 * This allows us to deal with problems:
5230 * 1) We can delete sysfs objects which invoke hotplug
5231 * without deadlocking with linkwatch via keventd.
5232 * 2) Since we run with the RTNL semaphore not held, we can sleep
5233 * safely in order to wait for the netdev refcnt to drop to zero.
5234 *
5235 * We must not return until all unregister events added during
5236 * the interval the lock was held have been completed.
5237 */
5238void netdev_run_todo(void)
5239{
5240 struct list_head list;
5241
5242 /* Snapshot list, allow later requests */
5243 list_replace_init(&net_todo_list, &list);
5244
5245 __rtnl_unlock();
5246
5247 while (!list_empty(&list)) {
5248 struct net_device *dev
5249 = list_first_entry(&list, struct net_device, todo_list);
5250 list_del(&dev->todo_list);
5251
5252 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5253 printk(KERN_ERR "network todo '%s' but state %d\n",
5254 dev->name, dev->reg_state);
5255 dump_stack();
5256 continue;
5257 }
5258
5259 dev->reg_state = NETREG_UNREGISTERED;
5260
5261 on_each_cpu(flush_backlog, dev, 1);
5262
5263 netdev_wait_allrefs(dev);
5264
5265 /* paranoia */
5266 BUG_ON(atomic_read(&dev->refcnt));
5267 WARN_ON(dev->ip_ptr);
5268 WARN_ON(dev->ip6_ptr);
5269 WARN_ON(dev->dn_ptr);
5270
5271 if (dev->destructor)
5272 dev->destructor(dev);
5273
5274 /* Free network device */
5275 kobject_put(&dev->dev.kobj);
5276 }
5277}
5278
5279/**
5280 * dev_txq_stats_fold - fold tx_queues stats
5281 * @dev: device to get statistics from
5282 * @stats: struct rtnl_link_stats64 to hold results
5283 */
5284void dev_txq_stats_fold(const struct net_device *dev,
5285 struct rtnl_link_stats64 *stats)
5286{
5287 u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5288 unsigned int i;
5289 struct netdev_queue *txq;
5290
5291 for (i = 0; i < dev->num_tx_queues; i++) {
5292 txq = netdev_get_tx_queue(dev, i);
5293 spin_lock_bh(&txq->_xmit_lock);
5294 tx_bytes += txq->tx_bytes;
5295 tx_packets += txq->tx_packets;
5296 tx_dropped += txq->tx_dropped;
5297 spin_unlock_bh(&txq->_xmit_lock);
5298 }
5299 if (tx_bytes || tx_packets || tx_dropped) {
5300 stats->tx_bytes = tx_bytes;
5301 stats->tx_packets = tx_packets;
5302 stats->tx_dropped = tx_dropped;
5303 }
5304}
5305EXPORT_SYMBOL(dev_txq_stats_fold);
5306
5307/* Convert net_device_stats to rtnl_link_stats64. They have the same
5308 * fields in the same order, with only the type differing.
5309 */
5310static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5311 const struct net_device_stats *netdev_stats)
5312{
5313#if BITS_PER_LONG == 64
5314 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5315 memcpy(stats64, netdev_stats, sizeof(*stats64));
5316#else
5317 size_t i, n = sizeof(*stats64) / sizeof(u64);
5318 const unsigned long *src = (const unsigned long *)netdev_stats;
5319 u64 *dst = (u64 *)stats64;
5320
5321 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5322 sizeof(*stats64) / sizeof(u64));
5323 for (i = 0; i < n; i++)
5324 dst[i] = src[i];
5325#endif
5326}
5327
5328/**
5329 * dev_get_stats - get network device statistics
5330 * @dev: device to get statistics from
5331 * @storage: place to store stats
5332 *
5333 * Get network statistics from device. Return @storage.
5334 * The device driver may provide its own method by setting
5335 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5336 * otherwise the internal statistics structure is used.
5337 */
5338struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5339 struct rtnl_link_stats64 *storage)
5340{
5341 const struct net_device_ops *ops = dev->netdev_ops;
5342
5343 if (ops->ndo_get_stats64) {
5344 memset(storage, 0, sizeof(*storage));
5345 return ops->ndo_get_stats64(dev, storage);
5346 }
5347 if (ops->ndo_get_stats) {
5348 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5349 return storage;
5350 }
5351 netdev_stats_to_stats64(storage, &dev->stats);
5352 dev_txq_stats_fold(dev, storage);
5353 return storage;
5354}
5355EXPORT_SYMBOL(dev_get_stats);
5356
5357static void netdev_init_one_queue(struct net_device *dev,
5358 struct netdev_queue *queue,
5359 void *_unused)
5360{
5361 queue->dev = dev;
5362}
5363
5364static void netdev_init_queues(struct net_device *dev)
5365{
5366 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5367 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5368 spin_lock_init(&dev->tx_global_lock);
5369}
5370
5371/**
5372 * alloc_netdev_mq - allocate network device
5373 * @sizeof_priv: size of private data to allocate space for
5374 * @name: device name format string
5375 * @setup: callback to initialize device
5376 * @queue_count: the number of subqueues to allocate
5377 *
5378 * Allocates a struct net_device with private data area for driver use
5379 * and performs basic initialization. Also allocates subquue structs
5380 * for each queue on the device at the end of the netdevice.
5381 */
5382struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5383 void (*setup)(struct net_device *), unsigned int queue_count)
5384{
5385 struct netdev_queue *tx;
5386 struct net_device *dev;
5387 size_t alloc_size;
5388 struct net_device *p;
5389#ifdef CONFIG_RPS
5390 struct netdev_rx_queue *rx;
5391 int i;
5392#endif
5393
5394 BUG_ON(strlen(name) >= sizeof(dev->name));
5395
5396 alloc_size = sizeof(struct net_device);
5397 if (sizeof_priv) {
5398 /* ensure 32-byte alignment of private area */
5399 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5400 alloc_size += sizeof_priv;
5401 }
5402 /* ensure 32-byte alignment of whole construct */
5403 alloc_size += NETDEV_ALIGN - 1;
5404
5405 p = kzalloc(alloc_size, GFP_KERNEL);
5406 if (!p) {
5407 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5408 return NULL;
5409 }
5410
5411 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5412 if (!tx) {
5413 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5414 "tx qdiscs.\n");
5415 goto free_p;
5416 }
5417
5418#ifdef CONFIG_RPS
5419 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5420 if (!rx) {
5421 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5422 "rx queues.\n");
5423 goto free_tx;
5424 }
5425
5426 atomic_set(&rx->count, queue_count);
5427
5428 /*
5429 * Set a pointer to first element in the array which holds the
5430 * reference count.
5431 */
5432 for (i = 0; i < queue_count; i++)
5433 rx[i].first = rx;
5434#endif
5435
5436 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5437 dev->padded = (char *)dev - (char *)p;
5438
5439 if (dev_addr_init(dev))
5440 goto free_rx;
5441
5442 dev_mc_init(dev);
5443 dev_uc_init(dev);
5444
5445 dev_net_set(dev, &init_net);
5446
5447 dev->_tx = tx;
5448 dev->num_tx_queues = queue_count;
5449 dev->real_num_tx_queues = queue_count;
5450
5451#ifdef CONFIG_RPS
5452 dev->_rx = rx;
5453 dev->num_rx_queues = queue_count;
5454#endif
5455
5456 dev->gso_max_size = GSO_MAX_SIZE;
5457
5458 netdev_init_queues(dev);
5459
5460 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5461 dev->ethtool_ntuple_list.count = 0;
5462 INIT_LIST_HEAD(&dev->napi_list);
5463 INIT_LIST_HEAD(&dev->unreg_list);
5464 INIT_LIST_HEAD(&dev->link_watch_list);
5465 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5466 setup(dev);
5467 strcpy(dev->name, name);
5468 return dev;
5469
5470free_rx:
5471#ifdef CONFIG_RPS
5472 kfree(rx);
5473free_tx:
5474#endif
5475 kfree(tx);
5476free_p:
5477 kfree(p);
5478 return NULL;
5479}
5480EXPORT_SYMBOL(alloc_netdev_mq);
5481
5482/**
5483 * free_netdev - free network device
5484 * @dev: device
5485 *
5486 * This function does the last stage of destroying an allocated device
5487 * interface. The reference to the device object is released.
5488 * If this is the last reference then it will be freed.
5489 */
5490void free_netdev(struct net_device *dev)
5491{
5492 struct napi_struct *p, *n;
5493
5494 release_net(dev_net(dev));
5495
5496 kfree(dev->_tx);
5497
5498 /* Flush device addresses */
5499 dev_addr_flush(dev);
5500
5501 /* Clear ethtool n-tuple list */
5502 ethtool_ntuple_flush(dev);
5503
5504 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5505 netif_napi_del(p);
5506
5507 /* Compatibility with error handling in drivers */
5508 if (dev->reg_state == NETREG_UNINITIALIZED) {
5509 kfree((char *)dev - dev->padded);
5510 return;
5511 }
5512
5513 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5514 dev->reg_state = NETREG_RELEASED;
5515
5516 /* will free via device release */
5517 put_device(&dev->dev);
5518}
5519EXPORT_SYMBOL(free_netdev);
5520
5521/**
5522 * synchronize_net - Synchronize with packet receive processing
5523 *
5524 * Wait for packets currently being received to be done.
5525 * Does not block later packets from starting.
5526 */
5527void synchronize_net(void)
5528{
5529 might_sleep();
5530 synchronize_rcu();
5531}
5532EXPORT_SYMBOL(synchronize_net);
5533
5534/**
5535 * unregister_netdevice_queue - remove device from the kernel
5536 * @dev: device
5537 * @head: list
5538 *
5539 * This function shuts down a device interface and removes it
5540 * from the kernel tables.
5541 * If head not NULL, device is queued to be unregistered later.
5542 *
5543 * Callers must hold the rtnl semaphore. You may want
5544 * unregister_netdev() instead of this.
5545 */
5546
5547void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5548{
5549 ASSERT_RTNL();
5550
5551 if (head) {
5552 list_move_tail(&dev->unreg_list, head);
5553 } else {
5554 rollback_registered(dev);
5555 /* Finish processing unregister after unlock */
5556 net_set_todo(dev);
5557 }
5558}
5559EXPORT_SYMBOL(unregister_netdevice_queue);
5560
5561/**
5562 * unregister_netdevice_many - unregister many devices
5563 * @head: list of devices
5564 */
5565void unregister_netdevice_many(struct list_head *head)
5566{
5567 struct net_device *dev;
5568
5569 if (!list_empty(head)) {
5570 rollback_registered_many(head);
5571 list_for_each_entry(dev, head, unreg_list)
5572 net_set_todo(dev);
5573 }
5574}
5575EXPORT_SYMBOL(unregister_netdevice_many);
5576
5577/**
5578 * unregister_netdev - remove device from the kernel
5579 * @dev: device
5580 *
5581 * This function shuts down a device interface and removes it
5582 * from the kernel tables.
5583 *
5584 * This is just a wrapper for unregister_netdevice that takes
5585 * the rtnl semaphore. In general you want to use this and not
5586 * unregister_netdevice.
5587 */
5588void unregister_netdev(struct net_device *dev)
5589{
5590 rtnl_lock();
5591 unregister_netdevice(dev);
5592 rtnl_unlock();
5593}
5594EXPORT_SYMBOL(unregister_netdev);
5595
5596/**
5597 * dev_change_net_namespace - move device to different nethost namespace
5598 * @dev: device
5599 * @net: network namespace
5600 * @pat: If not NULL name pattern to try if the current device name
5601 * is already taken in the destination network namespace.
5602 *
5603 * This function shuts down a device interface and moves it
5604 * to a new network namespace. On success 0 is returned, on
5605 * a failure a netagive errno code is returned.
5606 *
5607 * Callers must hold the rtnl semaphore.
5608 */
5609
5610int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5611{
5612 int err;
5613
5614 ASSERT_RTNL();
5615
5616 /* Don't allow namespace local devices to be moved. */
5617 err = -EINVAL;
5618 if (dev->features & NETIF_F_NETNS_LOCAL)
5619 goto out;
5620
5621 /* Ensure the device has been registrered */
5622 err = -EINVAL;
5623 if (dev->reg_state != NETREG_REGISTERED)
5624 goto out;
5625
5626 /* Get out if there is nothing todo */
5627 err = 0;
5628 if (net_eq(dev_net(dev), net))
5629 goto out;
5630
5631 /* Pick the destination device name, and ensure
5632 * we can use it in the destination network namespace.
5633 */
5634 err = -EEXIST;
5635 if (__dev_get_by_name(net, dev->name)) {
5636 /* We get here if we can't use the current device name */
5637 if (!pat)
5638 goto out;
5639 if (dev_get_valid_name(dev, pat, 1))
5640 goto out;
5641 }
5642
5643 /*
5644 * And now a mini version of register_netdevice unregister_netdevice.
5645 */
5646
5647 /* If device is running close it first. */
5648 dev_close(dev);
5649
5650 /* And unlink it from device chain */
5651 err = -ENODEV;
5652 unlist_netdevice(dev);
5653
5654 synchronize_net();
5655
5656 /* Shutdown queueing discipline. */
5657 dev_shutdown(dev);
5658
5659 /* Notify protocols, that we are about to destroy
5660 this device. They should clean all the things.
5661 */
5662 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5663 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5664
5665 /*
5666 * Flush the unicast and multicast chains
5667 */
5668 dev_uc_flush(dev);
5669 dev_mc_flush(dev);
5670
5671 /* Actually switch the network namespace */
5672 dev_net_set(dev, net);
5673
5674 /* If there is an ifindex conflict assign a new one */
5675 if (__dev_get_by_index(net, dev->ifindex)) {
5676 int iflink = (dev->iflink == dev->ifindex);
5677 dev->ifindex = dev_new_index(net);
5678 if (iflink)
5679 dev->iflink = dev->ifindex;
5680 }
5681
5682 /* Fixup kobjects */
5683 err = device_rename(&dev->dev, dev->name);
5684 WARN_ON(err);
5685
5686 /* Add the device back in the hashes */
5687 list_netdevice(dev);
5688
5689 /* Notify protocols, that a new device appeared. */
5690 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5691
5692 /*
5693 * Prevent userspace races by waiting until the network
5694 * device is fully setup before sending notifications.
5695 */
5696 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5697
5698 synchronize_net();
5699 err = 0;
5700out:
5701 return err;
5702}
5703EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5704
5705static int dev_cpu_callback(struct notifier_block *nfb,
5706 unsigned long action,
5707 void *ocpu)
5708{
5709 struct sk_buff **list_skb;
5710 struct sk_buff *skb;
5711 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5712 struct softnet_data *sd, *oldsd;
5713
5714 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5715 return NOTIFY_OK;
5716
5717 local_irq_disable();
5718 cpu = smp_processor_id();
5719 sd = &per_cpu(softnet_data, cpu);
5720 oldsd = &per_cpu(softnet_data, oldcpu);
5721
5722 /* Find end of our completion_queue. */
5723 list_skb = &sd->completion_queue;
5724 while (*list_skb)
5725 list_skb = &(*list_skb)->next;
5726 /* Append completion queue from offline CPU. */
5727 *list_skb = oldsd->completion_queue;
5728 oldsd->completion_queue = NULL;
5729
5730 /* Append output queue from offline CPU. */
5731 if (oldsd->output_queue) {
5732 *sd->output_queue_tailp = oldsd->output_queue;
5733 sd->output_queue_tailp = oldsd->output_queue_tailp;
5734 oldsd->output_queue = NULL;
5735 oldsd->output_queue_tailp = &oldsd->output_queue;
5736 }
5737
5738 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5739 local_irq_enable();
5740
5741 /* Process offline CPU's input_pkt_queue */
5742 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5743 netif_rx(skb);
5744 input_queue_head_incr(oldsd);
5745 }
5746 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5747 netif_rx(skb);
5748 input_queue_head_incr(oldsd);
5749 }
5750
5751 return NOTIFY_OK;
5752}
5753
5754
5755/**
5756 * netdev_increment_features - increment feature set by one
5757 * @all: current feature set
5758 * @one: new feature set
5759 * @mask: mask feature set
5760 *
5761 * Computes a new feature set after adding a device with feature set
5762 * @one to the master device with current feature set @all. Will not
5763 * enable anything that is off in @mask. Returns the new feature set.
5764 */
5765unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5766 unsigned long mask)
5767{
5768 /* If device needs checksumming, downgrade to it. */
5769 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5770 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5771 else if (mask & NETIF_F_ALL_CSUM) {
5772 /* If one device supports v4/v6 checksumming, set for all. */
5773 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5774 !(all & NETIF_F_GEN_CSUM)) {
5775 all &= ~NETIF_F_ALL_CSUM;
5776 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5777 }
5778
5779 /* If one device supports hw checksumming, set for all. */
5780 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5781 all &= ~NETIF_F_ALL_CSUM;
5782 all |= NETIF_F_HW_CSUM;
5783 }
5784 }
5785
5786 one |= NETIF_F_ALL_CSUM;
5787
5788 one |= all & NETIF_F_ONE_FOR_ALL;
5789 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5790 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5791
5792 return all;
5793}
5794EXPORT_SYMBOL(netdev_increment_features);
5795
5796static struct hlist_head *netdev_create_hash(void)
5797{
5798 int i;
5799 struct hlist_head *hash;
5800
5801 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5802 if (hash != NULL)
5803 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5804 INIT_HLIST_HEAD(&hash[i]);
5805
5806 return hash;
5807}
5808
5809/* Initialize per network namespace state */
5810static int __net_init netdev_init(struct net *net)
5811{
5812 INIT_LIST_HEAD(&net->dev_base_head);
5813
5814 net->dev_name_head = netdev_create_hash();
5815 if (net->dev_name_head == NULL)
5816 goto err_name;
5817
5818 net->dev_index_head = netdev_create_hash();
5819 if (net->dev_index_head == NULL)
5820 goto err_idx;
5821
5822 return 0;
5823
5824err_idx:
5825 kfree(net->dev_name_head);
5826err_name:
5827 return -ENOMEM;
5828}
5829
5830/**
5831 * netdev_drivername - network driver for the device
5832 * @dev: network device
5833 * @buffer: buffer for resulting name
5834 * @len: size of buffer
5835 *
5836 * Determine network driver for device.
5837 */
5838char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5839{
5840 const struct device_driver *driver;
5841 const struct device *parent;
5842
5843 if (len <= 0 || !buffer)
5844 return buffer;
5845 buffer[0] = 0;
5846
5847 parent = dev->dev.parent;
5848
5849 if (!parent)
5850 return buffer;
5851
5852 driver = parent->driver;
5853 if (driver && driver->name)
5854 strlcpy(buffer, driver->name, len);
5855 return buffer;
5856}
5857
5858static int __netdev_printk(const char *level, const struct net_device *dev,
5859 struct va_format *vaf)
5860{
5861 int r;
5862
5863 if (dev && dev->dev.parent)
5864 r = dev_printk(level, dev->dev.parent, "%s: %pV",
5865 netdev_name(dev), vaf);
5866 else if (dev)
5867 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
5868 else
5869 r = printk("%s(NULL net_device): %pV", level, vaf);
5870
5871 return r;
5872}
5873
5874int netdev_printk(const char *level, const struct net_device *dev,
5875 const char *format, ...)
5876{
5877 struct va_format vaf;
5878 va_list args;
5879 int r;
5880
5881 va_start(args, format);
5882
5883 vaf.fmt = format;
5884 vaf.va = &args;
5885
5886 r = __netdev_printk(level, dev, &vaf);
5887 va_end(args);
5888
5889 return r;
5890}
5891EXPORT_SYMBOL(netdev_printk);
5892
5893#define define_netdev_printk_level(func, level) \
5894int func(const struct net_device *dev, const char *fmt, ...) \
5895{ \
5896 int r; \
5897 struct va_format vaf; \
5898 va_list args; \
5899 \
5900 va_start(args, fmt); \
5901 \
5902 vaf.fmt = fmt; \
5903 vaf.va = &args; \
5904 \
5905 r = __netdev_printk(level, dev, &vaf); \
5906 va_end(args); \
5907 \
5908 return r; \
5909} \
5910EXPORT_SYMBOL(func);
5911
5912define_netdev_printk_level(netdev_emerg, KERN_EMERG);
5913define_netdev_printk_level(netdev_alert, KERN_ALERT);
5914define_netdev_printk_level(netdev_crit, KERN_CRIT);
5915define_netdev_printk_level(netdev_err, KERN_ERR);
5916define_netdev_printk_level(netdev_warn, KERN_WARNING);
5917define_netdev_printk_level(netdev_notice, KERN_NOTICE);
5918define_netdev_printk_level(netdev_info, KERN_INFO);
5919
5920static void __net_exit netdev_exit(struct net *net)
5921{
5922 kfree(net->dev_name_head);
5923 kfree(net->dev_index_head);
5924}
5925
5926static struct pernet_operations __net_initdata netdev_net_ops = {
5927 .init = netdev_init,
5928 .exit = netdev_exit,
5929};
5930
5931static void __net_exit default_device_exit(struct net *net)
5932{
5933 struct net_device *dev, *aux;
5934 /*
5935 * Push all migratable network devices back to the
5936 * initial network namespace
5937 */
5938 rtnl_lock();
5939 for_each_netdev_safe(net, dev, aux) {
5940 int err;
5941 char fb_name[IFNAMSIZ];
5942
5943 /* Ignore unmoveable devices (i.e. loopback) */
5944 if (dev->features & NETIF_F_NETNS_LOCAL)
5945 continue;
5946
5947 /* Leave virtual devices for the generic cleanup */
5948 if (dev->rtnl_link_ops)
5949 continue;
5950
5951 /* Push remaing network devices to init_net */
5952 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5953 err = dev_change_net_namespace(dev, &init_net, fb_name);
5954 if (err) {
5955 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5956 __func__, dev->name, err);
5957 BUG();
5958 }
5959 }
5960 rtnl_unlock();
5961}
5962
5963static void __net_exit default_device_exit_batch(struct list_head *net_list)
5964{
5965 /* At exit all network devices most be removed from a network
5966 * namespace. Do this in the reverse order of registeration.
5967 * Do this across as many network namespaces as possible to
5968 * improve batching efficiency.
5969 */
5970 struct net_device *dev;
5971 struct net *net;
5972 LIST_HEAD(dev_kill_list);
5973
5974 rtnl_lock();
5975 list_for_each_entry(net, net_list, exit_list) {
5976 for_each_netdev_reverse(net, dev) {
5977 if (dev->rtnl_link_ops)
5978 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5979 else
5980 unregister_netdevice_queue(dev, &dev_kill_list);
5981 }
5982 }
5983 unregister_netdevice_many(&dev_kill_list);
5984 rtnl_unlock();
5985}
5986
5987static struct pernet_operations __net_initdata default_device_ops = {
5988 .exit = default_device_exit,
5989 .exit_batch = default_device_exit_batch,
5990};
5991
5992/*
5993 * Initialize the DEV module. At boot time this walks the device list and
5994 * unhooks any devices that fail to initialise (normally hardware not
5995 * present) and leaves us with a valid list of present and active devices.
5996 *
5997 */
5998
5999/*
6000 * This is called single threaded during boot, so no need
6001 * to take the rtnl semaphore.
6002 */
6003static int __init net_dev_init(void)
6004{
6005 int i, rc = -ENOMEM;
6006
6007 BUG_ON(!dev_boot_phase);
6008
6009 if (dev_proc_init())
6010 goto out;
6011
6012 if (netdev_kobject_init())
6013 goto out;
6014
6015 INIT_LIST_HEAD(&ptype_all);
6016 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6017 INIT_LIST_HEAD(&ptype_base[i]);
6018
6019 if (register_pernet_subsys(&netdev_net_ops))
6020 goto out;
6021
6022 /*
6023 * Initialise the packet receive queues.
6024 */
6025
6026 for_each_possible_cpu(i) {
6027 struct softnet_data *sd = &per_cpu(softnet_data, i);
6028
6029 memset(sd, 0, sizeof(*sd));
6030 skb_queue_head_init(&sd->input_pkt_queue);
6031 skb_queue_head_init(&sd->process_queue);
6032 sd->completion_queue = NULL;
6033 INIT_LIST_HEAD(&sd->poll_list);
6034 sd->output_queue = NULL;
6035 sd->output_queue_tailp = &sd->output_queue;
6036#ifdef CONFIG_RPS
6037 sd->csd.func = rps_trigger_softirq;
6038 sd->csd.info = sd;
6039 sd->csd.flags = 0;
6040 sd->cpu = i;
6041#endif
6042
6043 sd->backlog.poll = process_backlog;
6044 sd->backlog.weight = weight_p;
6045 sd->backlog.gro_list = NULL;
6046 sd->backlog.gro_count = 0;
6047 }
6048
6049 dev_boot_phase = 0;
6050
6051 /* The loopback device is special if any other network devices
6052 * is present in a network namespace the loopback device must
6053 * be present. Since we now dynamically allocate and free the
6054 * loopback device ensure this invariant is maintained by
6055 * keeping the loopback device as the first device on the
6056 * list of network devices. Ensuring the loopback devices
6057 * is the first device that appears and the last network device
6058 * that disappears.
6059 */
6060 if (register_pernet_device(&loopback_net_ops))
6061 goto out;
6062
6063 if (register_pernet_device(&default_device_ops))
6064 goto out;
6065
6066 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6067 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6068
6069 hotcpu_notifier(dev_cpu_callback, 0);
6070 dst_init();
6071 dev_mcast_init();
6072 rc = 0;
6073out:
6074 return rc;
6075}
6076
6077subsys_initcall(net_dev_init);
6078
6079static int __init initialize_hashrnd(void)
6080{
6081 get_random_bytes(&hashrnd, sizeof(hashrnd));
6082 return 0;
6083}
6084
6085late_initcall_sync(initialize_hashrnd);
6086