]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - mm/slab.c
[PATCH] cpuset memory spread: slab cache format
[net-next-2.6.git] / mm / slab.c
... / ...
CommitLineData
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
97#include <linux/seq_file.h>
98#include <linux/notifier.h>
99#include <linux/kallsyms.h>
100#include <linux/cpu.h>
101#include <linux/sysctl.h>
102#include <linux/module.h>
103#include <linux/rcupdate.h>
104#include <linux/string.h>
105#include <linux/nodemask.h>
106#include <linux/mempolicy.h>
107#include <linux/mutex.h>
108
109#include <asm/uaccess.h>
110#include <asm/cacheflush.h>
111#include <asm/tlbflush.h>
112#include <asm/page.h>
113
114/*
115 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
116 * SLAB_RED_ZONE & SLAB_POISON.
117 * 0 for faster, smaller code (especially in the critical paths).
118 *
119 * STATS - 1 to collect stats for /proc/slabinfo.
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
123 */
124
125#ifdef CONFIG_DEBUG_SLAB
126#define DEBUG 1
127#define STATS 1
128#define FORCED_DEBUG 1
129#else
130#define DEBUG 0
131#define STATS 0
132#define FORCED_DEBUG 0
133#endif
134
135/* Shouldn't this be in a header file somewhere? */
136#define BYTES_PER_WORD sizeof(void *)
137
138#ifndef cache_line_size
139#define cache_line_size() L1_CACHE_BYTES
140#endif
141
142#ifndef ARCH_KMALLOC_MINALIGN
143/*
144 * Enforce a minimum alignment for the kmalloc caches.
145 * Usually, the kmalloc caches are cache_line_size() aligned, except when
146 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
147 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
148 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
149 * Note that this flag disables some debug features.
150 */
151#define ARCH_KMALLOC_MINALIGN 0
152#endif
153
154#ifndef ARCH_SLAB_MINALIGN
155/*
156 * Enforce a minimum alignment for all caches.
157 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
158 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
159 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
160 * some debug features.
161 */
162#define ARCH_SLAB_MINALIGN 0
163#endif
164
165#ifndef ARCH_KMALLOC_FLAGS
166#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
167#endif
168
169/* Legal flag mask for kmem_cache_create(). */
170#if DEBUG
171# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
173 SLAB_CACHE_DMA | \
174 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
175 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
176 SLAB_DESTROY_BY_RCU)
177#else
178# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
179 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181 SLAB_DESTROY_BY_RCU)
182#endif
183
184/*
185 * kmem_bufctl_t:
186 *
187 * Bufctl's are used for linking objs within a slab
188 * linked offsets.
189 *
190 * This implementation relies on "struct page" for locating the cache &
191 * slab an object belongs to.
192 * This allows the bufctl structure to be small (one int), but limits
193 * the number of objects a slab (not a cache) can contain when off-slab
194 * bufctls are used. The limit is the size of the largest general cache
195 * that does not use off-slab slabs.
196 * For 32bit archs with 4 kB pages, is this 56.
197 * This is not serious, as it is only for large objects, when it is unwise
198 * to have too many per slab.
199 * Note: This limit can be raised by introducing a general cache whose size
200 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
201 */
202
203typedef unsigned int kmem_bufctl_t;
204#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
205#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
206#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
207
208/* Max number of objs-per-slab for caches which use off-slab slabs.
209 * Needed to avoid a possible looping condition in cache_grow().
210 */
211static unsigned long offslab_limit;
212
213/*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220struct slab {
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
227};
228
229/*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245struct slab_rcu {
246 struct rcu_head head;
247 struct kmem_cache *cachep;
248 void *addr;
249};
250
251/*
252 * struct array_cache
253 *
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
268 spinlock_t lock;
269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
275};
276
277/*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
280 */
281#define BOOT_CPUCACHE_ENTRIES 1
282struct arraycache_init {
283 struct array_cache cache;
284 void *entries[BOOT_CPUCACHE_ENTRIES];
285};
286
287/*
288 * The slab lists for all objects.
289 */
290struct kmem_list3 {
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
295 unsigned int free_limit;
296 unsigned int colour_next; /* Per-node cache coloring */
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
302};
303
304/*
305 * Need this for bootstrapping a per node allocator.
306 */
307#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309#define CACHE_CACHE 0
310#define SIZE_AC 1
311#define SIZE_L3 (1 + MAX_NUMNODES)
312
313/*
314 * This function must be completely optimized away if a constant is passed to
315 * it. Mostly the same as what is in linux/slab.h except it returns an index.
316 */
317static __always_inline int index_of(const size_t size)
318{
319 extern void __bad_size(void);
320
321 if (__builtin_constant_p(size)) {
322 int i = 0;
323
324#define CACHE(x) \
325 if (size <=x) \
326 return i; \
327 else \
328 i++;
329#include "linux/kmalloc_sizes.h"
330#undef CACHE
331 __bad_size();
332 } else
333 __bad_size();
334 return 0;
335}
336
337#define INDEX_AC index_of(sizeof(struct arraycache_init))
338#define INDEX_L3 index_of(sizeof(struct kmem_list3))
339
340static void kmem_list3_init(struct kmem_list3 *parent)
341{
342 INIT_LIST_HEAD(&parent->slabs_full);
343 INIT_LIST_HEAD(&parent->slabs_partial);
344 INIT_LIST_HEAD(&parent->slabs_free);
345 parent->shared = NULL;
346 parent->alien = NULL;
347 parent->colour_next = 0;
348 spin_lock_init(&parent->list_lock);
349 parent->free_objects = 0;
350 parent->free_touched = 0;
351}
352
353#define MAKE_LIST(cachep, listp, slab, nodeid) \
354 do { \
355 INIT_LIST_HEAD(listp); \
356 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
357 } while (0)
358
359#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
360 do { \
361 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
362 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
363 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
364 } while (0)
365
366/*
367 * struct kmem_cache
368 *
369 * manages a cache.
370 */
371
372struct kmem_cache {
373/* 1) per-cpu data, touched during every alloc/free */
374 struct array_cache *array[NR_CPUS];
375/* 2) Cache tunables. Protected by cache_chain_mutex */
376 unsigned int batchcount;
377 unsigned int limit;
378 unsigned int shared;
379
380 unsigned int buffer_size;
381/* 3) touched by every alloc & free from the backend */
382 struct kmem_list3 *nodelists[MAX_NUMNODES];
383
384 unsigned int flags; /* constant flags */
385 unsigned int num; /* # of objs per slab */
386
387/* 4) cache_grow/shrink */
388 /* order of pgs per slab (2^n) */
389 unsigned int gfporder;
390
391 /* force GFP flags, e.g. GFP_DMA */
392 gfp_t gfpflags;
393
394 size_t colour; /* cache colouring range */
395 unsigned int colour_off; /* colour offset */
396 struct kmem_cache *slabp_cache;
397 unsigned int slab_size;
398 unsigned int dflags; /* dynamic flags */
399
400 /* constructor func */
401 void (*ctor) (void *, struct kmem_cache *, unsigned long);
402
403 /* de-constructor func */
404 void (*dtor) (void *, struct kmem_cache *, unsigned long);
405
406/* 5) cache creation/removal */
407 const char *name;
408 struct list_head next;
409
410/* 6) statistics */
411#if STATS
412 unsigned long num_active;
413 unsigned long num_allocations;
414 unsigned long high_mark;
415 unsigned long grown;
416 unsigned long reaped;
417 unsigned long errors;
418 unsigned long max_freeable;
419 unsigned long node_allocs;
420 unsigned long node_frees;
421 atomic_t allochit;
422 atomic_t allocmiss;
423 atomic_t freehit;
424 atomic_t freemiss;
425#endif
426#if DEBUG
427 /*
428 * If debugging is enabled, then the allocator can add additional
429 * fields and/or padding to every object. buffer_size contains the total
430 * object size including these internal fields, the following two
431 * variables contain the offset to the user object and its size.
432 */
433 int obj_offset;
434 int obj_size;
435#endif
436};
437
438#define CFLGS_OFF_SLAB (0x80000000UL)
439#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
440
441#define BATCHREFILL_LIMIT 16
442/*
443 * Optimization question: fewer reaps means less probability for unnessary
444 * cpucache drain/refill cycles.
445 *
446 * OTOH the cpuarrays can contain lots of objects,
447 * which could lock up otherwise freeable slabs.
448 */
449#define REAPTIMEOUT_CPUC (2*HZ)
450#define REAPTIMEOUT_LIST3 (4*HZ)
451
452#if STATS
453#define STATS_INC_ACTIVE(x) ((x)->num_active++)
454#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
455#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
456#define STATS_INC_GROWN(x) ((x)->grown++)
457#define STATS_INC_REAPED(x) ((x)->reaped++)
458#define STATS_SET_HIGH(x) \
459 do { \
460 if ((x)->num_active > (x)->high_mark) \
461 (x)->high_mark = (x)->num_active; \
462 } while (0)
463#define STATS_INC_ERR(x) ((x)->errors++)
464#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
465#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
466#define STATS_SET_FREEABLE(x, i) \
467 do { \
468 if ((x)->max_freeable < i) \
469 (x)->max_freeable = i; \
470 } while (0)
471#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
472#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
473#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
474#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
475#else
476#define STATS_INC_ACTIVE(x) do { } while (0)
477#define STATS_DEC_ACTIVE(x) do { } while (0)
478#define STATS_INC_ALLOCED(x) do { } while (0)
479#define STATS_INC_GROWN(x) do { } while (0)
480#define STATS_INC_REAPED(x) do { } while (0)
481#define STATS_SET_HIGH(x) do { } while (0)
482#define STATS_INC_ERR(x) do { } while (0)
483#define STATS_INC_NODEALLOCS(x) do { } while (0)
484#define STATS_INC_NODEFREES(x) do { } while (0)
485#define STATS_SET_FREEABLE(x, i) do { } while (0)
486#define STATS_INC_ALLOCHIT(x) do { } while (0)
487#define STATS_INC_ALLOCMISS(x) do { } while (0)
488#define STATS_INC_FREEHIT(x) do { } while (0)
489#define STATS_INC_FREEMISS(x) do { } while (0)
490#endif
491
492#if DEBUG
493/*
494 * Magic nums for obj red zoning.
495 * Placed in the first word before and the first word after an obj.
496 */
497#define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
498#define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
499
500/* ...and for poisoning */
501#define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
502#define POISON_FREE 0x6b /* for use-after-free poisoning */
503#define POISON_END 0xa5 /* end-byte of poisoning */
504
505/*
506 * memory layout of objects:
507 * 0 : objp
508 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
509 * the end of an object is aligned with the end of the real
510 * allocation. Catches writes behind the end of the allocation.
511 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
512 * redzone word.
513 * cachep->obj_offset: The real object.
514 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
515 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
516 * [BYTES_PER_WORD long]
517 */
518static int obj_offset(struct kmem_cache *cachep)
519{
520 return cachep->obj_offset;
521}
522
523static int obj_size(struct kmem_cache *cachep)
524{
525 return cachep->obj_size;
526}
527
528static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
529{
530 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
531 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
532}
533
534static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
535{
536 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
537 if (cachep->flags & SLAB_STORE_USER)
538 return (unsigned long *)(objp + cachep->buffer_size -
539 2 * BYTES_PER_WORD);
540 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
541}
542
543static void **dbg_userword(struct kmem_cache *cachep, void *objp)
544{
545 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
546 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
547}
548
549#else
550
551#define obj_offset(x) 0
552#define obj_size(cachep) (cachep->buffer_size)
553#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
555#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
556
557#endif
558
559/*
560 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
561 * order.
562 */
563#if defined(CONFIG_LARGE_ALLOCS)
564#define MAX_OBJ_ORDER 13 /* up to 32Mb */
565#define MAX_GFP_ORDER 13 /* up to 32Mb */
566#elif defined(CONFIG_MMU)
567#define MAX_OBJ_ORDER 5 /* 32 pages */
568#define MAX_GFP_ORDER 5 /* 32 pages */
569#else
570#define MAX_OBJ_ORDER 8 /* up to 1Mb */
571#define MAX_GFP_ORDER 8 /* up to 1Mb */
572#endif
573
574/*
575 * Do not go above this order unless 0 objects fit into the slab.
576 */
577#define BREAK_GFP_ORDER_HI 1
578#define BREAK_GFP_ORDER_LO 0
579static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
580
581/*
582 * Functions for storing/retrieving the cachep and or slab from the page
583 * allocator. These are used to find the slab an obj belongs to. With kfree(),
584 * these are used to find the cache which an obj belongs to.
585 */
586static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
587{
588 page->lru.next = (struct list_head *)cache;
589}
590
591static inline struct kmem_cache *page_get_cache(struct page *page)
592{
593 if (unlikely(PageCompound(page)))
594 page = (struct page *)page_private(page);
595 return (struct kmem_cache *)page->lru.next;
596}
597
598static inline void page_set_slab(struct page *page, struct slab *slab)
599{
600 page->lru.prev = (struct list_head *)slab;
601}
602
603static inline struct slab *page_get_slab(struct page *page)
604{
605 if (unlikely(PageCompound(page)))
606 page = (struct page *)page_private(page);
607 return (struct slab *)page->lru.prev;
608}
609
610static inline struct kmem_cache *virt_to_cache(const void *obj)
611{
612 struct page *page = virt_to_page(obj);
613 return page_get_cache(page);
614}
615
616static inline struct slab *virt_to_slab(const void *obj)
617{
618 struct page *page = virt_to_page(obj);
619 return page_get_slab(page);
620}
621
622static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
623 unsigned int idx)
624{
625 return slab->s_mem + cache->buffer_size * idx;
626}
627
628static inline unsigned int obj_to_index(struct kmem_cache *cache,
629 struct slab *slab, void *obj)
630{
631 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
632}
633
634/*
635 * These are the default caches for kmalloc. Custom caches can have other sizes.
636 */
637struct cache_sizes malloc_sizes[] = {
638#define CACHE(x) { .cs_size = (x) },
639#include <linux/kmalloc_sizes.h>
640 CACHE(ULONG_MAX)
641#undef CACHE
642};
643EXPORT_SYMBOL(malloc_sizes);
644
645/* Must match cache_sizes above. Out of line to keep cache footprint low. */
646struct cache_names {
647 char *name;
648 char *name_dma;
649};
650
651static struct cache_names __initdata cache_names[] = {
652#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
653#include <linux/kmalloc_sizes.h>
654 {NULL,}
655#undef CACHE
656};
657
658static struct arraycache_init initarray_cache __initdata =
659 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
660static struct arraycache_init initarray_generic =
661 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
662
663/* internal cache of cache description objs */
664static struct kmem_cache cache_cache = {
665 .batchcount = 1,
666 .limit = BOOT_CPUCACHE_ENTRIES,
667 .shared = 1,
668 .buffer_size = sizeof(struct kmem_cache),
669 .name = "kmem_cache",
670#if DEBUG
671 .obj_size = sizeof(struct kmem_cache),
672#endif
673};
674
675/* Guard access to the cache-chain. */
676static DEFINE_MUTEX(cache_chain_mutex);
677static struct list_head cache_chain;
678
679/*
680 * vm_enough_memory() looks at this to determine how many slab-allocated pages
681 * are possibly freeable under pressure
682 *
683 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
684 */
685atomic_t slab_reclaim_pages;
686
687/*
688 * chicken and egg problem: delay the per-cpu array allocation
689 * until the general caches are up.
690 */
691static enum {
692 NONE,
693 PARTIAL_AC,
694 PARTIAL_L3,
695 FULL
696} g_cpucache_up;
697
698static DEFINE_PER_CPU(struct work_struct, reap_work);
699
700static void free_block(struct kmem_cache *cachep, void **objpp, int len,
701 int node);
702static void enable_cpucache(struct kmem_cache *cachep);
703static void cache_reap(void *unused);
704static int __node_shrink(struct kmem_cache *cachep, int node);
705
706static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
707{
708 return cachep->array[smp_processor_id()];
709}
710
711static inline struct kmem_cache *__find_general_cachep(size_t size,
712 gfp_t gfpflags)
713{
714 struct cache_sizes *csizep = malloc_sizes;
715
716#if DEBUG
717 /* This happens if someone tries to call
718 * kmem_cache_create(), or __kmalloc(), before
719 * the generic caches are initialized.
720 */
721 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
722#endif
723 while (size > csizep->cs_size)
724 csizep++;
725
726 /*
727 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
728 * has cs_{dma,}cachep==NULL. Thus no special case
729 * for large kmalloc calls required.
730 */
731 if (unlikely(gfpflags & GFP_DMA))
732 return csizep->cs_dmacachep;
733 return csizep->cs_cachep;
734}
735
736struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
737{
738 return __find_general_cachep(size, gfpflags);
739}
740EXPORT_SYMBOL(kmem_find_general_cachep);
741
742static size_t slab_mgmt_size(size_t nr_objs, size_t align)
743{
744 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
745}
746
747/*
748 * Calculate the number of objects and left-over bytes for a given buffer size.
749 */
750static void cache_estimate(unsigned long gfporder, size_t buffer_size,
751 size_t align, int flags, size_t *left_over,
752 unsigned int *num)
753{
754 int nr_objs;
755 size_t mgmt_size;
756 size_t slab_size = PAGE_SIZE << gfporder;
757
758 /*
759 * The slab management structure can be either off the slab or
760 * on it. For the latter case, the memory allocated for a
761 * slab is used for:
762 *
763 * - The struct slab
764 * - One kmem_bufctl_t for each object
765 * - Padding to respect alignment of @align
766 * - @buffer_size bytes for each object
767 *
768 * If the slab management structure is off the slab, then the
769 * alignment will already be calculated into the size. Because
770 * the slabs are all pages aligned, the objects will be at the
771 * correct alignment when allocated.
772 */
773 if (flags & CFLGS_OFF_SLAB) {
774 mgmt_size = 0;
775 nr_objs = slab_size / buffer_size;
776
777 if (nr_objs > SLAB_LIMIT)
778 nr_objs = SLAB_LIMIT;
779 } else {
780 /*
781 * Ignore padding for the initial guess. The padding
782 * is at most @align-1 bytes, and @buffer_size is at
783 * least @align. In the worst case, this result will
784 * be one greater than the number of objects that fit
785 * into the memory allocation when taking the padding
786 * into account.
787 */
788 nr_objs = (slab_size - sizeof(struct slab)) /
789 (buffer_size + sizeof(kmem_bufctl_t));
790
791 /*
792 * This calculated number will be either the right
793 * amount, or one greater than what we want.
794 */
795 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
796 > slab_size)
797 nr_objs--;
798
799 if (nr_objs > SLAB_LIMIT)
800 nr_objs = SLAB_LIMIT;
801
802 mgmt_size = slab_mgmt_size(nr_objs, align);
803 }
804 *num = nr_objs;
805 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
806}
807
808#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
809
810static void __slab_error(const char *function, struct kmem_cache *cachep,
811 char *msg)
812{
813 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
814 function, cachep->name, msg);
815 dump_stack();
816}
817
818#ifdef CONFIG_NUMA
819/*
820 * Special reaping functions for NUMA systems called from cache_reap().
821 * These take care of doing round robin flushing of alien caches (containing
822 * objects freed on different nodes from which they were allocated) and the
823 * flushing of remote pcps by calling drain_node_pages.
824 */
825static DEFINE_PER_CPU(unsigned long, reap_node);
826
827static void init_reap_node(int cpu)
828{
829 int node;
830
831 node = next_node(cpu_to_node(cpu), node_online_map);
832 if (node == MAX_NUMNODES)
833 node = first_node(node_online_map);
834
835 __get_cpu_var(reap_node) = node;
836}
837
838static void next_reap_node(void)
839{
840 int node = __get_cpu_var(reap_node);
841
842 /*
843 * Also drain per cpu pages on remote zones
844 */
845 if (node != numa_node_id())
846 drain_node_pages(node);
847
848 node = next_node(node, node_online_map);
849 if (unlikely(node >= MAX_NUMNODES))
850 node = first_node(node_online_map);
851 __get_cpu_var(reap_node) = node;
852}
853
854#else
855#define init_reap_node(cpu) do { } while (0)
856#define next_reap_node(void) do { } while (0)
857#endif
858
859/*
860 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
861 * via the workqueue/eventd.
862 * Add the CPU number into the expiration time to minimize the possibility of
863 * the CPUs getting into lockstep and contending for the global cache chain
864 * lock.
865 */
866static void __devinit start_cpu_timer(int cpu)
867{
868 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
869
870 /*
871 * When this gets called from do_initcalls via cpucache_init(),
872 * init_workqueues() has already run, so keventd will be setup
873 * at that time.
874 */
875 if (keventd_up() && reap_work->func == NULL) {
876 init_reap_node(cpu);
877 INIT_WORK(reap_work, cache_reap, NULL);
878 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
879 }
880}
881
882static struct array_cache *alloc_arraycache(int node, int entries,
883 int batchcount)
884{
885 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
886 struct array_cache *nc = NULL;
887
888 nc = kmalloc_node(memsize, GFP_KERNEL, node);
889 if (nc) {
890 nc->avail = 0;
891 nc->limit = entries;
892 nc->batchcount = batchcount;
893 nc->touched = 0;
894 spin_lock_init(&nc->lock);
895 }
896 return nc;
897}
898
899#ifdef CONFIG_NUMA
900static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
901
902static struct array_cache **alloc_alien_cache(int node, int limit)
903{
904 struct array_cache **ac_ptr;
905 int memsize = sizeof(void *) * MAX_NUMNODES;
906 int i;
907
908 if (limit > 1)
909 limit = 12;
910 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
911 if (ac_ptr) {
912 for_each_node(i) {
913 if (i == node || !node_online(i)) {
914 ac_ptr[i] = NULL;
915 continue;
916 }
917 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
918 if (!ac_ptr[i]) {
919 for (i--; i <= 0; i--)
920 kfree(ac_ptr[i]);
921 kfree(ac_ptr);
922 return NULL;
923 }
924 }
925 }
926 return ac_ptr;
927}
928
929static void free_alien_cache(struct array_cache **ac_ptr)
930{
931 int i;
932
933 if (!ac_ptr)
934 return;
935 for_each_node(i)
936 kfree(ac_ptr[i]);
937 kfree(ac_ptr);
938}
939
940static void __drain_alien_cache(struct kmem_cache *cachep,
941 struct array_cache *ac, int node)
942{
943 struct kmem_list3 *rl3 = cachep->nodelists[node];
944
945 if (ac->avail) {
946 spin_lock(&rl3->list_lock);
947 free_block(cachep, ac->entry, ac->avail, node);
948 ac->avail = 0;
949 spin_unlock(&rl3->list_lock);
950 }
951}
952
953/*
954 * Called from cache_reap() to regularly drain alien caches round robin.
955 */
956static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
957{
958 int node = __get_cpu_var(reap_node);
959
960 if (l3->alien) {
961 struct array_cache *ac = l3->alien[node];
962 if (ac && ac->avail) {
963 spin_lock_irq(&ac->lock);
964 __drain_alien_cache(cachep, ac, node);
965 spin_unlock_irq(&ac->lock);
966 }
967 }
968}
969
970static void drain_alien_cache(struct kmem_cache *cachep,
971 struct array_cache **alien)
972{
973 int i = 0;
974 struct array_cache *ac;
975 unsigned long flags;
976
977 for_each_online_node(i) {
978 ac = alien[i];
979 if (ac) {
980 spin_lock_irqsave(&ac->lock, flags);
981 __drain_alien_cache(cachep, ac, i);
982 spin_unlock_irqrestore(&ac->lock, flags);
983 }
984 }
985}
986#else
987
988#define drain_alien_cache(cachep, alien) do { } while (0)
989#define reap_alien(cachep, l3) do { } while (0)
990
991static inline struct array_cache **alloc_alien_cache(int node, int limit)
992{
993 return (struct array_cache **) 0x01020304ul;
994}
995
996static inline void free_alien_cache(struct array_cache **ac_ptr)
997{
998}
999
1000#endif
1001
1002static int __devinit cpuup_callback(struct notifier_block *nfb,
1003 unsigned long action, void *hcpu)
1004{
1005 long cpu = (long)hcpu;
1006 struct kmem_cache *cachep;
1007 struct kmem_list3 *l3 = NULL;
1008 int node = cpu_to_node(cpu);
1009 int memsize = sizeof(struct kmem_list3);
1010
1011 switch (action) {
1012 case CPU_UP_PREPARE:
1013 mutex_lock(&cache_chain_mutex);
1014 /*
1015 * We need to do this right in the beginning since
1016 * alloc_arraycache's are going to use this list.
1017 * kmalloc_node allows us to add the slab to the right
1018 * kmem_list3 and not this cpu's kmem_list3
1019 */
1020
1021 list_for_each_entry(cachep, &cache_chain, next) {
1022 /*
1023 * Set up the size64 kmemlist for cpu before we can
1024 * begin anything. Make sure some other cpu on this
1025 * node has not already allocated this
1026 */
1027 if (!cachep->nodelists[node]) {
1028 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1029 if (!l3)
1030 goto bad;
1031 kmem_list3_init(l3);
1032 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1033 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1034
1035 /*
1036 * The l3s don't come and go as CPUs come and
1037 * go. cache_chain_mutex is sufficient
1038 * protection here.
1039 */
1040 cachep->nodelists[node] = l3;
1041 }
1042
1043 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1044 cachep->nodelists[node]->free_limit =
1045 (1 + nr_cpus_node(node)) *
1046 cachep->batchcount + cachep->num;
1047 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1048 }
1049
1050 /*
1051 * Now we can go ahead with allocating the shared arrays and
1052 * array caches
1053 */
1054 list_for_each_entry(cachep, &cache_chain, next) {
1055 struct array_cache *nc;
1056 struct array_cache *shared;
1057 struct array_cache **alien;
1058
1059 nc = alloc_arraycache(node, cachep->limit,
1060 cachep->batchcount);
1061 if (!nc)
1062 goto bad;
1063 shared = alloc_arraycache(node,
1064 cachep->shared * cachep->batchcount,
1065 0xbaadf00d);
1066 if (!shared)
1067 goto bad;
1068
1069 alien = alloc_alien_cache(node, cachep->limit);
1070 if (!alien)
1071 goto bad;
1072 cachep->array[cpu] = nc;
1073 l3 = cachep->nodelists[node];
1074 BUG_ON(!l3);
1075
1076 spin_lock_irq(&l3->list_lock);
1077 if (!l3->shared) {
1078 /*
1079 * We are serialised from CPU_DEAD or
1080 * CPU_UP_CANCELLED by the cpucontrol lock
1081 */
1082 l3->shared = shared;
1083 shared = NULL;
1084 }
1085#ifdef CONFIG_NUMA
1086 if (!l3->alien) {
1087 l3->alien = alien;
1088 alien = NULL;
1089 }
1090#endif
1091 spin_unlock_irq(&l3->list_lock);
1092 kfree(shared);
1093 free_alien_cache(alien);
1094 }
1095 mutex_unlock(&cache_chain_mutex);
1096 break;
1097 case CPU_ONLINE:
1098 start_cpu_timer(cpu);
1099 break;
1100#ifdef CONFIG_HOTPLUG_CPU
1101 case CPU_DEAD:
1102 /*
1103 * Even if all the cpus of a node are down, we don't free the
1104 * kmem_list3 of any cache. This to avoid a race between
1105 * cpu_down, and a kmalloc allocation from another cpu for
1106 * memory from the node of the cpu going down. The list3
1107 * structure is usually allocated from kmem_cache_create() and
1108 * gets destroyed at kmem_cache_destroy().
1109 */
1110 /* fall thru */
1111 case CPU_UP_CANCELED:
1112 mutex_lock(&cache_chain_mutex);
1113 list_for_each_entry(cachep, &cache_chain, next) {
1114 struct array_cache *nc;
1115 struct array_cache *shared;
1116 struct array_cache **alien;
1117 cpumask_t mask;
1118
1119 mask = node_to_cpumask(node);
1120 /* cpu is dead; no one can alloc from it. */
1121 nc = cachep->array[cpu];
1122 cachep->array[cpu] = NULL;
1123 l3 = cachep->nodelists[node];
1124
1125 if (!l3)
1126 goto free_array_cache;
1127
1128 spin_lock_irq(&l3->list_lock);
1129
1130 /* Free limit for this kmem_list3 */
1131 l3->free_limit -= cachep->batchcount;
1132 if (nc)
1133 free_block(cachep, nc->entry, nc->avail, node);
1134
1135 if (!cpus_empty(mask)) {
1136 spin_unlock_irq(&l3->list_lock);
1137 goto free_array_cache;
1138 }
1139
1140 shared = l3->shared;
1141 if (shared) {
1142 free_block(cachep, l3->shared->entry,
1143 l3->shared->avail, node);
1144 l3->shared = NULL;
1145 }
1146
1147 alien = l3->alien;
1148 l3->alien = NULL;
1149
1150 spin_unlock_irq(&l3->list_lock);
1151
1152 kfree(shared);
1153 if (alien) {
1154 drain_alien_cache(cachep, alien);
1155 free_alien_cache(alien);
1156 }
1157free_array_cache:
1158 kfree(nc);
1159 }
1160 /*
1161 * In the previous loop, all the objects were freed to
1162 * the respective cache's slabs, now we can go ahead and
1163 * shrink each nodelist to its limit.
1164 */
1165 list_for_each_entry(cachep, &cache_chain, next) {
1166 l3 = cachep->nodelists[node];
1167 if (!l3)
1168 continue;
1169 spin_lock_irq(&l3->list_lock);
1170 /* free slabs belonging to this node */
1171 __node_shrink(cachep, node);
1172 spin_unlock_irq(&l3->list_lock);
1173 }
1174 mutex_unlock(&cache_chain_mutex);
1175 break;
1176#endif
1177 }
1178 return NOTIFY_OK;
1179bad:
1180 mutex_unlock(&cache_chain_mutex);
1181 return NOTIFY_BAD;
1182}
1183
1184static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1185
1186/*
1187 * swap the static kmem_list3 with kmalloced memory
1188 */
1189static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1190 int nodeid)
1191{
1192 struct kmem_list3 *ptr;
1193
1194 BUG_ON(cachep->nodelists[nodeid] != list);
1195 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1196 BUG_ON(!ptr);
1197
1198 local_irq_disable();
1199 memcpy(ptr, list, sizeof(struct kmem_list3));
1200 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1201 cachep->nodelists[nodeid] = ptr;
1202 local_irq_enable();
1203}
1204
1205/*
1206 * Initialisation. Called after the page allocator have been initialised and
1207 * before smp_init().
1208 */
1209void __init kmem_cache_init(void)
1210{
1211 size_t left_over;
1212 struct cache_sizes *sizes;
1213 struct cache_names *names;
1214 int i;
1215 int order;
1216
1217 for (i = 0; i < NUM_INIT_LISTS; i++) {
1218 kmem_list3_init(&initkmem_list3[i]);
1219 if (i < MAX_NUMNODES)
1220 cache_cache.nodelists[i] = NULL;
1221 }
1222
1223 /*
1224 * Fragmentation resistance on low memory - only use bigger
1225 * page orders on machines with more than 32MB of memory.
1226 */
1227 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1228 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1229
1230 /* Bootstrap is tricky, because several objects are allocated
1231 * from caches that do not exist yet:
1232 * 1) initialize the cache_cache cache: it contains the struct
1233 * kmem_cache structures of all caches, except cache_cache itself:
1234 * cache_cache is statically allocated.
1235 * Initially an __init data area is used for the head array and the
1236 * kmem_list3 structures, it's replaced with a kmalloc allocated
1237 * array at the end of the bootstrap.
1238 * 2) Create the first kmalloc cache.
1239 * The struct kmem_cache for the new cache is allocated normally.
1240 * An __init data area is used for the head array.
1241 * 3) Create the remaining kmalloc caches, with minimally sized
1242 * head arrays.
1243 * 4) Replace the __init data head arrays for cache_cache and the first
1244 * kmalloc cache with kmalloc allocated arrays.
1245 * 5) Replace the __init data for kmem_list3 for cache_cache and
1246 * the other cache's with kmalloc allocated memory.
1247 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1248 */
1249
1250 /* 1) create the cache_cache */
1251 INIT_LIST_HEAD(&cache_chain);
1252 list_add(&cache_cache.next, &cache_chain);
1253 cache_cache.colour_off = cache_line_size();
1254 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1255 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1256
1257 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1258 cache_line_size());
1259
1260 for (order = 0; order < MAX_ORDER; order++) {
1261 cache_estimate(order, cache_cache.buffer_size,
1262 cache_line_size(), 0, &left_over, &cache_cache.num);
1263 if (cache_cache.num)
1264 break;
1265 }
1266 if (!cache_cache.num)
1267 BUG();
1268 cache_cache.gfporder = order;
1269 cache_cache.colour = left_over / cache_cache.colour_off;
1270 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1271 sizeof(struct slab), cache_line_size());
1272
1273 /* 2+3) create the kmalloc caches */
1274 sizes = malloc_sizes;
1275 names = cache_names;
1276
1277 /*
1278 * Initialize the caches that provide memory for the array cache and the
1279 * kmem_list3 structures first. Without this, further allocations will
1280 * bug.
1281 */
1282
1283 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1284 sizes[INDEX_AC].cs_size,
1285 ARCH_KMALLOC_MINALIGN,
1286 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1287 NULL, NULL);
1288
1289 if (INDEX_AC != INDEX_L3) {
1290 sizes[INDEX_L3].cs_cachep =
1291 kmem_cache_create(names[INDEX_L3].name,
1292 sizes[INDEX_L3].cs_size,
1293 ARCH_KMALLOC_MINALIGN,
1294 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1295 NULL, NULL);
1296 }
1297
1298 while (sizes->cs_size != ULONG_MAX) {
1299 /*
1300 * For performance, all the general caches are L1 aligned.
1301 * This should be particularly beneficial on SMP boxes, as it
1302 * eliminates "false sharing".
1303 * Note for systems short on memory removing the alignment will
1304 * allow tighter packing of the smaller caches.
1305 */
1306 if (!sizes->cs_cachep) {
1307 sizes->cs_cachep = kmem_cache_create(names->name,
1308 sizes->cs_size,
1309 ARCH_KMALLOC_MINALIGN,
1310 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1311 NULL, NULL);
1312 }
1313
1314 /* Inc off-slab bufctl limit until the ceiling is hit. */
1315 if (!(OFF_SLAB(sizes->cs_cachep))) {
1316 offslab_limit = sizes->cs_size - sizeof(struct slab);
1317 offslab_limit /= sizeof(kmem_bufctl_t);
1318 }
1319
1320 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1321 sizes->cs_size,
1322 ARCH_KMALLOC_MINALIGN,
1323 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1324 SLAB_PANIC,
1325 NULL, NULL);
1326 sizes++;
1327 names++;
1328 }
1329 /* 4) Replace the bootstrap head arrays */
1330 {
1331 void *ptr;
1332
1333 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1334
1335 local_irq_disable();
1336 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1337 memcpy(ptr, cpu_cache_get(&cache_cache),
1338 sizeof(struct arraycache_init));
1339 cache_cache.array[smp_processor_id()] = ptr;
1340 local_irq_enable();
1341
1342 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1343
1344 local_irq_disable();
1345 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1346 != &initarray_generic.cache);
1347 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1348 sizeof(struct arraycache_init));
1349 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1350 ptr;
1351 local_irq_enable();
1352 }
1353 /* 5) Replace the bootstrap kmem_list3's */
1354 {
1355 int node;
1356 /* Replace the static kmem_list3 structures for the boot cpu */
1357 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1358 numa_node_id());
1359
1360 for_each_online_node(node) {
1361 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1362 &initkmem_list3[SIZE_AC + node], node);
1363
1364 if (INDEX_AC != INDEX_L3) {
1365 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1366 &initkmem_list3[SIZE_L3 + node],
1367 node);
1368 }
1369 }
1370 }
1371
1372 /* 6) resize the head arrays to their final sizes */
1373 {
1374 struct kmem_cache *cachep;
1375 mutex_lock(&cache_chain_mutex);
1376 list_for_each_entry(cachep, &cache_chain, next)
1377 enable_cpucache(cachep);
1378 mutex_unlock(&cache_chain_mutex);
1379 }
1380
1381 /* Done! */
1382 g_cpucache_up = FULL;
1383
1384 /*
1385 * Register a cpu startup notifier callback that initializes
1386 * cpu_cache_get for all new cpus
1387 */
1388 register_cpu_notifier(&cpucache_notifier);
1389
1390 /*
1391 * The reap timers are started later, with a module init call: That part
1392 * of the kernel is not yet operational.
1393 */
1394}
1395
1396static int __init cpucache_init(void)
1397{
1398 int cpu;
1399
1400 /*
1401 * Register the timers that return unneeded pages to the page allocator
1402 */
1403 for_each_online_cpu(cpu)
1404 start_cpu_timer(cpu);
1405 return 0;
1406}
1407__initcall(cpucache_init);
1408
1409/*
1410 * Interface to system's page allocator. No need to hold the cache-lock.
1411 *
1412 * If we requested dmaable memory, we will get it. Even if we
1413 * did not request dmaable memory, we might get it, but that
1414 * would be relatively rare and ignorable.
1415 */
1416static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1417{
1418 struct page *page;
1419 void *addr;
1420 int i;
1421
1422 flags |= cachep->gfpflags;
1423 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1424 if (!page)
1425 return NULL;
1426 addr = page_address(page);
1427
1428 i = (1 << cachep->gfporder);
1429 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1430 atomic_add(i, &slab_reclaim_pages);
1431 add_page_state(nr_slab, i);
1432 while (i--) {
1433 __SetPageSlab(page);
1434 page++;
1435 }
1436 return addr;
1437}
1438
1439/*
1440 * Interface to system's page release.
1441 */
1442static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1443{
1444 unsigned long i = (1 << cachep->gfporder);
1445 struct page *page = virt_to_page(addr);
1446 const unsigned long nr_freed = i;
1447
1448 while (i--) {
1449 BUG_ON(!PageSlab(page));
1450 __ClearPageSlab(page);
1451 page++;
1452 }
1453 sub_page_state(nr_slab, nr_freed);
1454 if (current->reclaim_state)
1455 current->reclaim_state->reclaimed_slab += nr_freed;
1456 free_pages((unsigned long)addr, cachep->gfporder);
1457 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1458 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1459}
1460
1461static void kmem_rcu_free(struct rcu_head *head)
1462{
1463 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1464 struct kmem_cache *cachep = slab_rcu->cachep;
1465
1466 kmem_freepages(cachep, slab_rcu->addr);
1467 if (OFF_SLAB(cachep))
1468 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1469}
1470
1471#if DEBUG
1472
1473#ifdef CONFIG_DEBUG_PAGEALLOC
1474static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1475 unsigned long caller)
1476{
1477 int size = obj_size(cachep);
1478
1479 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1480
1481 if (size < 5 * sizeof(unsigned long))
1482 return;
1483
1484 *addr++ = 0x12345678;
1485 *addr++ = caller;
1486 *addr++ = smp_processor_id();
1487 size -= 3 * sizeof(unsigned long);
1488 {
1489 unsigned long *sptr = &caller;
1490 unsigned long svalue;
1491
1492 while (!kstack_end(sptr)) {
1493 svalue = *sptr++;
1494 if (kernel_text_address(svalue)) {
1495 *addr++ = svalue;
1496 size -= sizeof(unsigned long);
1497 if (size <= sizeof(unsigned long))
1498 break;
1499 }
1500 }
1501
1502 }
1503 *addr++ = 0x87654321;
1504}
1505#endif
1506
1507static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1508{
1509 int size = obj_size(cachep);
1510 addr = &((char *)addr)[obj_offset(cachep)];
1511
1512 memset(addr, val, size);
1513 *(unsigned char *)(addr + size - 1) = POISON_END;
1514}
1515
1516static void dump_line(char *data, int offset, int limit)
1517{
1518 int i;
1519 printk(KERN_ERR "%03x:", offset);
1520 for (i = 0; i < limit; i++)
1521 printk(" %02x", (unsigned char)data[offset + i]);
1522 printk("\n");
1523}
1524#endif
1525
1526#if DEBUG
1527
1528static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1529{
1530 int i, size;
1531 char *realobj;
1532
1533 if (cachep->flags & SLAB_RED_ZONE) {
1534 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1535 *dbg_redzone1(cachep, objp),
1536 *dbg_redzone2(cachep, objp));
1537 }
1538
1539 if (cachep->flags & SLAB_STORE_USER) {
1540 printk(KERN_ERR "Last user: [<%p>]",
1541 *dbg_userword(cachep, objp));
1542 print_symbol("(%s)",
1543 (unsigned long)*dbg_userword(cachep, objp));
1544 printk("\n");
1545 }
1546 realobj = (char *)objp + obj_offset(cachep);
1547 size = obj_size(cachep);
1548 for (i = 0; i < size && lines; i += 16, lines--) {
1549 int limit;
1550 limit = 16;
1551 if (i + limit > size)
1552 limit = size - i;
1553 dump_line(realobj, i, limit);
1554 }
1555}
1556
1557static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1558{
1559 char *realobj;
1560 int size, i;
1561 int lines = 0;
1562
1563 realobj = (char *)objp + obj_offset(cachep);
1564 size = obj_size(cachep);
1565
1566 for (i = 0; i < size; i++) {
1567 char exp = POISON_FREE;
1568 if (i == size - 1)
1569 exp = POISON_END;
1570 if (realobj[i] != exp) {
1571 int limit;
1572 /* Mismatch ! */
1573 /* Print header */
1574 if (lines == 0) {
1575 printk(KERN_ERR
1576 "Slab corruption: start=%p, len=%d\n",
1577 realobj, size);
1578 print_objinfo(cachep, objp, 0);
1579 }
1580 /* Hexdump the affected line */
1581 i = (i / 16) * 16;
1582 limit = 16;
1583 if (i + limit > size)
1584 limit = size - i;
1585 dump_line(realobj, i, limit);
1586 i += 16;
1587 lines++;
1588 /* Limit to 5 lines */
1589 if (lines > 5)
1590 break;
1591 }
1592 }
1593 if (lines != 0) {
1594 /* Print some data about the neighboring objects, if they
1595 * exist:
1596 */
1597 struct slab *slabp = virt_to_slab(objp);
1598 unsigned int objnr;
1599
1600 objnr = obj_to_index(cachep, slabp, objp);
1601 if (objnr) {
1602 objp = index_to_obj(cachep, slabp, objnr - 1);
1603 realobj = (char *)objp + obj_offset(cachep);
1604 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1605 realobj, size);
1606 print_objinfo(cachep, objp, 2);
1607 }
1608 if (objnr + 1 < cachep->num) {
1609 objp = index_to_obj(cachep, slabp, objnr + 1);
1610 realobj = (char *)objp + obj_offset(cachep);
1611 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1612 realobj, size);
1613 print_objinfo(cachep, objp, 2);
1614 }
1615 }
1616}
1617#endif
1618
1619#if DEBUG
1620/**
1621 * slab_destroy_objs - destroy a slab and its objects
1622 * @cachep: cache pointer being destroyed
1623 * @slabp: slab pointer being destroyed
1624 *
1625 * Call the registered destructor for each object in a slab that is being
1626 * destroyed.
1627 */
1628static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1629{
1630 int i;
1631 for (i = 0; i < cachep->num; i++) {
1632 void *objp = index_to_obj(cachep, slabp, i);
1633
1634 if (cachep->flags & SLAB_POISON) {
1635#ifdef CONFIG_DEBUG_PAGEALLOC
1636 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1637 OFF_SLAB(cachep))
1638 kernel_map_pages(virt_to_page(objp),
1639 cachep->buffer_size / PAGE_SIZE, 1);
1640 else
1641 check_poison_obj(cachep, objp);
1642#else
1643 check_poison_obj(cachep, objp);
1644#endif
1645 }
1646 if (cachep->flags & SLAB_RED_ZONE) {
1647 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1648 slab_error(cachep, "start of a freed object "
1649 "was overwritten");
1650 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1651 slab_error(cachep, "end of a freed object "
1652 "was overwritten");
1653 }
1654 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1655 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1656 }
1657}
1658#else
1659static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1660{
1661 if (cachep->dtor) {
1662 int i;
1663 for (i = 0; i < cachep->num; i++) {
1664 void *objp = index_to_obj(cachep, slabp, i);
1665 (cachep->dtor) (objp, cachep, 0);
1666 }
1667 }
1668}
1669#endif
1670
1671/**
1672 * slab_destroy - destroy and release all objects in a slab
1673 * @cachep: cache pointer being destroyed
1674 * @slabp: slab pointer being destroyed
1675 *
1676 * Destroy all the objs in a slab, and release the mem back to the system.
1677 * Before calling the slab must have been unlinked from the cache. The
1678 * cache-lock is not held/needed.
1679 */
1680static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1681{
1682 void *addr = slabp->s_mem - slabp->colouroff;
1683
1684 slab_destroy_objs(cachep, slabp);
1685 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1686 struct slab_rcu *slab_rcu;
1687
1688 slab_rcu = (struct slab_rcu *)slabp;
1689 slab_rcu->cachep = cachep;
1690 slab_rcu->addr = addr;
1691 call_rcu(&slab_rcu->head, kmem_rcu_free);
1692 } else {
1693 kmem_freepages(cachep, addr);
1694 if (OFF_SLAB(cachep))
1695 kmem_cache_free(cachep->slabp_cache, slabp);
1696 }
1697}
1698
1699/*
1700 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1701 * size of kmem_list3.
1702 */
1703static void set_up_list3s(struct kmem_cache *cachep, int index)
1704{
1705 int node;
1706
1707 for_each_online_node(node) {
1708 cachep->nodelists[node] = &initkmem_list3[index + node];
1709 cachep->nodelists[node]->next_reap = jiffies +
1710 REAPTIMEOUT_LIST3 +
1711 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1712 }
1713}
1714
1715/**
1716 * calculate_slab_order - calculate size (page order) of slabs
1717 * @cachep: pointer to the cache that is being created
1718 * @size: size of objects to be created in this cache.
1719 * @align: required alignment for the objects.
1720 * @flags: slab allocation flags
1721 *
1722 * Also calculates the number of objects per slab.
1723 *
1724 * This could be made much more intelligent. For now, try to avoid using
1725 * high order pages for slabs. When the gfp() functions are more friendly
1726 * towards high-order requests, this should be changed.
1727 */
1728static size_t calculate_slab_order(struct kmem_cache *cachep,
1729 size_t size, size_t align, unsigned long flags)
1730{
1731 size_t left_over = 0;
1732 int gfporder;
1733
1734 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1735 unsigned int num;
1736 size_t remainder;
1737
1738 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1739 if (!num)
1740 continue;
1741
1742 /* More than offslab_limit objects will cause problems */
1743 if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
1744 break;
1745
1746 /* Found something acceptable - save it away */
1747 cachep->num = num;
1748 cachep->gfporder = gfporder;
1749 left_over = remainder;
1750
1751 /*
1752 * A VFS-reclaimable slab tends to have most allocations
1753 * as GFP_NOFS and we really don't want to have to be allocating
1754 * higher-order pages when we are unable to shrink dcache.
1755 */
1756 if (flags & SLAB_RECLAIM_ACCOUNT)
1757 break;
1758
1759 /*
1760 * Large number of objects is good, but very large slabs are
1761 * currently bad for the gfp()s.
1762 */
1763 if (gfporder >= slab_break_gfp_order)
1764 break;
1765
1766 /*
1767 * Acceptable internal fragmentation?
1768 */
1769 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1770 break;
1771 }
1772 return left_over;
1773}
1774
1775static void setup_cpu_cache(struct kmem_cache *cachep)
1776{
1777 if (g_cpucache_up == FULL) {
1778 enable_cpucache(cachep);
1779 return;
1780 }
1781 if (g_cpucache_up == NONE) {
1782 /*
1783 * Note: the first kmem_cache_create must create the cache
1784 * that's used by kmalloc(24), otherwise the creation of
1785 * further caches will BUG().
1786 */
1787 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1788
1789 /*
1790 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1791 * the first cache, then we need to set up all its list3s,
1792 * otherwise the creation of further caches will BUG().
1793 */
1794 set_up_list3s(cachep, SIZE_AC);
1795 if (INDEX_AC == INDEX_L3)
1796 g_cpucache_up = PARTIAL_L3;
1797 else
1798 g_cpucache_up = PARTIAL_AC;
1799 } else {
1800 cachep->array[smp_processor_id()] =
1801 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1802
1803 if (g_cpucache_up == PARTIAL_AC) {
1804 set_up_list3s(cachep, SIZE_L3);
1805 g_cpucache_up = PARTIAL_L3;
1806 } else {
1807 int node;
1808 for_each_online_node(node) {
1809 cachep->nodelists[node] =
1810 kmalloc_node(sizeof(struct kmem_list3),
1811 GFP_KERNEL, node);
1812 BUG_ON(!cachep->nodelists[node]);
1813 kmem_list3_init(cachep->nodelists[node]);
1814 }
1815 }
1816 }
1817 cachep->nodelists[numa_node_id()]->next_reap =
1818 jiffies + REAPTIMEOUT_LIST3 +
1819 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1820
1821 cpu_cache_get(cachep)->avail = 0;
1822 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1823 cpu_cache_get(cachep)->batchcount = 1;
1824 cpu_cache_get(cachep)->touched = 0;
1825 cachep->batchcount = 1;
1826 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1827}
1828
1829/**
1830 * kmem_cache_create - Create a cache.
1831 * @name: A string which is used in /proc/slabinfo to identify this cache.
1832 * @size: The size of objects to be created in this cache.
1833 * @align: The required alignment for the objects.
1834 * @flags: SLAB flags
1835 * @ctor: A constructor for the objects.
1836 * @dtor: A destructor for the objects.
1837 *
1838 * Returns a ptr to the cache on success, NULL on failure.
1839 * Cannot be called within a int, but can be interrupted.
1840 * The @ctor is run when new pages are allocated by the cache
1841 * and the @dtor is run before the pages are handed back.
1842 *
1843 * @name must be valid until the cache is destroyed. This implies that
1844 * the module calling this has to destroy the cache before getting unloaded.
1845 *
1846 * The flags are
1847 *
1848 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1849 * to catch references to uninitialised memory.
1850 *
1851 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1852 * for buffer overruns.
1853 *
1854 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1855 * cacheline. This can be beneficial if you're counting cycles as closely
1856 * as davem.
1857 */
1858struct kmem_cache *
1859kmem_cache_create (const char *name, size_t size, size_t align,
1860 unsigned long flags,
1861 void (*ctor)(void*, struct kmem_cache *, unsigned long),
1862 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1863{
1864 size_t left_over, slab_size, ralign;
1865 struct kmem_cache *cachep = NULL;
1866 struct list_head *p;
1867
1868 /*
1869 * Sanity checks... these are all serious usage bugs.
1870 */
1871 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
1872 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
1873 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
1874 name);
1875 BUG();
1876 }
1877
1878 /*
1879 * Prevent CPUs from coming and going.
1880 * lock_cpu_hotplug() nests outside cache_chain_mutex
1881 */
1882 lock_cpu_hotplug();
1883
1884 mutex_lock(&cache_chain_mutex);
1885
1886 list_for_each(p, &cache_chain) {
1887 struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
1888 mm_segment_t old_fs = get_fs();
1889 char tmp;
1890 int res;
1891
1892 /*
1893 * This happens when the module gets unloaded and doesn't
1894 * destroy its slab cache and no-one else reuses the vmalloc
1895 * area of the module. Print a warning.
1896 */
1897 set_fs(KERNEL_DS);
1898 res = __get_user(tmp, pc->name);
1899 set_fs(old_fs);
1900 if (res) {
1901 printk("SLAB: cache with size %d has lost its name\n",
1902 pc->buffer_size);
1903 continue;
1904 }
1905
1906 if (!strcmp(pc->name, name)) {
1907 printk("kmem_cache_create: duplicate cache %s\n", name);
1908 dump_stack();
1909 goto oops;
1910 }
1911 }
1912
1913#if DEBUG
1914 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1915 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1916 /* No constructor, but inital state check requested */
1917 printk(KERN_ERR "%s: No con, but init state check "
1918 "requested - %s\n", __FUNCTION__, name);
1919 flags &= ~SLAB_DEBUG_INITIAL;
1920 }
1921#if FORCED_DEBUG
1922 /*
1923 * Enable redzoning and last user accounting, except for caches with
1924 * large objects, if the increased size would increase the object size
1925 * above the next power of two: caches with object sizes just above a
1926 * power of two have a significant amount of internal fragmentation.
1927 */
1928 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
1929 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1930 if (!(flags & SLAB_DESTROY_BY_RCU))
1931 flags |= SLAB_POISON;
1932#endif
1933 if (flags & SLAB_DESTROY_BY_RCU)
1934 BUG_ON(flags & SLAB_POISON);
1935#endif
1936 if (flags & SLAB_DESTROY_BY_RCU)
1937 BUG_ON(dtor);
1938
1939 /*
1940 * Always checks flags, a caller might be expecting debug support which
1941 * isn't available.
1942 */
1943 if (flags & ~CREATE_MASK)
1944 BUG();
1945
1946 /*
1947 * Check that size is in terms of words. This is needed to avoid
1948 * unaligned accesses for some archs when redzoning is used, and makes
1949 * sure any on-slab bufctl's are also correctly aligned.
1950 */
1951 if (size & (BYTES_PER_WORD - 1)) {
1952 size += (BYTES_PER_WORD - 1);
1953 size &= ~(BYTES_PER_WORD - 1);
1954 }
1955
1956 /* calculate the final buffer alignment: */
1957
1958 /* 1) arch recommendation: can be overridden for debug */
1959 if (flags & SLAB_HWCACHE_ALIGN) {
1960 /*
1961 * Default alignment: as specified by the arch code. Except if
1962 * an object is really small, then squeeze multiple objects into
1963 * one cacheline.
1964 */
1965 ralign = cache_line_size();
1966 while (size <= ralign / 2)
1967 ralign /= 2;
1968 } else {
1969 ralign = BYTES_PER_WORD;
1970 }
1971 /* 2) arch mandated alignment: disables debug if necessary */
1972 if (ralign < ARCH_SLAB_MINALIGN) {
1973 ralign = ARCH_SLAB_MINALIGN;
1974 if (ralign > BYTES_PER_WORD)
1975 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1976 }
1977 /* 3) caller mandated alignment: disables debug if necessary */
1978 if (ralign < align) {
1979 ralign = align;
1980 if (ralign > BYTES_PER_WORD)
1981 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1982 }
1983 /*
1984 * 4) Store it. Note that the debug code below can reduce
1985 * the alignment to BYTES_PER_WORD.
1986 */
1987 align = ralign;
1988
1989 /* Get cache's description obj. */
1990 cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
1991 if (!cachep)
1992 goto oops;
1993 memset(cachep, 0, sizeof(struct kmem_cache));
1994
1995#if DEBUG
1996 cachep->obj_size = size;
1997
1998 if (flags & SLAB_RED_ZONE) {
1999 /* redzoning only works with word aligned caches */
2000 align = BYTES_PER_WORD;
2001
2002 /* add space for red zone words */
2003 cachep->obj_offset += BYTES_PER_WORD;
2004 size += 2 * BYTES_PER_WORD;
2005 }
2006 if (flags & SLAB_STORE_USER) {
2007 /* user store requires word alignment and
2008 * one word storage behind the end of the real
2009 * object.
2010 */
2011 align = BYTES_PER_WORD;
2012 size += BYTES_PER_WORD;
2013 }
2014#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2015 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2016 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2017 cachep->obj_offset += PAGE_SIZE - size;
2018 size = PAGE_SIZE;
2019 }
2020#endif
2021#endif
2022
2023 /* Determine if the slab management is 'on' or 'off' slab. */
2024 if (size >= (PAGE_SIZE >> 3))
2025 /*
2026 * Size is large, assume best to place the slab management obj
2027 * off-slab (should allow better packing of objs).
2028 */
2029 flags |= CFLGS_OFF_SLAB;
2030
2031 size = ALIGN(size, align);
2032
2033 left_over = calculate_slab_order(cachep, size, align, flags);
2034
2035 if (!cachep->num) {
2036 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2037 kmem_cache_free(&cache_cache, cachep);
2038 cachep = NULL;
2039 goto oops;
2040 }
2041 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2042 + sizeof(struct slab), align);
2043
2044 /*
2045 * If the slab has been placed off-slab, and we have enough space then
2046 * move it on-slab. This is at the expense of any extra colouring.
2047 */
2048 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2049 flags &= ~CFLGS_OFF_SLAB;
2050 left_over -= slab_size;
2051 }
2052
2053 if (flags & CFLGS_OFF_SLAB) {
2054 /* really off slab. No need for manual alignment */
2055 slab_size =
2056 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2057 }
2058
2059 cachep->colour_off = cache_line_size();
2060 /* Offset must be a multiple of the alignment. */
2061 if (cachep->colour_off < align)
2062 cachep->colour_off = align;
2063 cachep->colour = left_over / cachep->colour_off;
2064 cachep->slab_size = slab_size;
2065 cachep->flags = flags;
2066 cachep->gfpflags = 0;
2067 if (flags & SLAB_CACHE_DMA)
2068 cachep->gfpflags |= GFP_DMA;
2069 cachep->buffer_size = size;
2070
2071 if (flags & CFLGS_OFF_SLAB)
2072 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2073 cachep->ctor = ctor;
2074 cachep->dtor = dtor;
2075 cachep->name = name;
2076
2077
2078 setup_cpu_cache(cachep);
2079
2080 /* cache setup completed, link it into the list */
2081 list_add(&cachep->next, &cache_chain);
2082oops:
2083 if (!cachep && (flags & SLAB_PANIC))
2084 panic("kmem_cache_create(): failed to create slab `%s'\n",
2085 name);
2086 mutex_unlock(&cache_chain_mutex);
2087 unlock_cpu_hotplug();
2088 return cachep;
2089}
2090EXPORT_SYMBOL(kmem_cache_create);
2091
2092#if DEBUG
2093static void check_irq_off(void)
2094{
2095 BUG_ON(!irqs_disabled());
2096}
2097
2098static void check_irq_on(void)
2099{
2100 BUG_ON(irqs_disabled());
2101}
2102
2103static void check_spinlock_acquired(struct kmem_cache *cachep)
2104{
2105#ifdef CONFIG_SMP
2106 check_irq_off();
2107 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2108#endif
2109}
2110
2111static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2112{
2113#ifdef CONFIG_SMP
2114 check_irq_off();
2115 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2116#endif
2117}
2118
2119#else
2120#define check_irq_off() do { } while(0)
2121#define check_irq_on() do { } while(0)
2122#define check_spinlock_acquired(x) do { } while(0)
2123#define check_spinlock_acquired_node(x, y) do { } while(0)
2124#endif
2125
2126static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2127 struct array_cache *ac,
2128 int force, int node);
2129
2130static void do_drain(void *arg)
2131{
2132 struct kmem_cache *cachep = arg;
2133 struct array_cache *ac;
2134 int node = numa_node_id();
2135
2136 check_irq_off();
2137 ac = cpu_cache_get(cachep);
2138 spin_lock(&cachep->nodelists[node]->list_lock);
2139 free_block(cachep, ac->entry, ac->avail, node);
2140 spin_unlock(&cachep->nodelists[node]->list_lock);
2141 ac->avail = 0;
2142}
2143
2144static void drain_cpu_caches(struct kmem_cache *cachep)
2145{
2146 struct kmem_list3 *l3;
2147 int node;
2148
2149 on_each_cpu(do_drain, cachep, 1, 1);
2150 check_irq_on();
2151 for_each_online_node(node) {
2152 l3 = cachep->nodelists[node];
2153 if (l3) {
2154 drain_array(cachep, l3, l3->shared, 1, node);
2155 if (l3->alien)
2156 drain_alien_cache(cachep, l3->alien);
2157 }
2158 }
2159}
2160
2161static int __node_shrink(struct kmem_cache *cachep, int node)
2162{
2163 struct slab *slabp;
2164 struct kmem_list3 *l3 = cachep->nodelists[node];
2165 int ret;
2166
2167 for (;;) {
2168 struct list_head *p;
2169
2170 p = l3->slabs_free.prev;
2171 if (p == &l3->slabs_free)
2172 break;
2173
2174 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
2175#if DEBUG
2176 if (slabp->inuse)
2177 BUG();
2178#endif
2179 list_del(&slabp->list);
2180
2181 l3->free_objects -= cachep->num;
2182 spin_unlock_irq(&l3->list_lock);
2183 slab_destroy(cachep, slabp);
2184 spin_lock_irq(&l3->list_lock);
2185 }
2186 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
2187 return ret;
2188}
2189
2190static int __cache_shrink(struct kmem_cache *cachep)
2191{
2192 int ret = 0, i = 0;
2193 struct kmem_list3 *l3;
2194
2195 drain_cpu_caches(cachep);
2196
2197 check_irq_on();
2198 for_each_online_node(i) {
2199 l3 = cachep->nodelists[i];
2200 if (l3) {
2201 spin_lock_irq(&l3->list_lock);
2202 ret += __node_shrink(cachep, i);
2203 spin_unlock_irq(&l3->list_lock);
2204 }
2205 }
2206 return (ret ? 1 : 0);
2207}
2208
2209/**
2210 * kmem_cache_shrink - Shrink a cache.
2211 * @cachep: The cache to shrink.
2212 *
2213 * Releases as many slabs as possible for a cache.
2214 * To help debugging, a zero exit status indicates all slabs were released.
2215 */
2216int kmem_cache_shrink(struct kmem_cache *cachep)
2217{
2218 if (!cachep || in_interrupt())
2219 BUG();
2220
2221 return __cache_shrink(cachep);
2222}
2223EXPORT_SYMBOL(kmem_cache_shrink);
2224
2225/**
2226 * kmem_cache_destroy - delete a cache
2227 * @cachep: the cache to destroy
2228 *
2229 * Remove a struct kmem_cache object from the slab cache.
2230 * Returns 0 on success.
2231 *
2232 * It is expected this function will be called by a module when it is
2233 * unloaded. This will remove the cache completely, and avoid a duplicate
2234 * cache being allocated each time a module is loaded and unloaded, if the
2235 * module doesn't have persistent in-kernel storage across loads and unloads.
2236 *
2237 * The cache must be empty before calling this function.
2238 *
2239 * The caller must guarantee that noone will allocate memory from the cache
2240 * during the kmem_cache_destroy().
2241 */
2242int kmem_cache_destroy(struct kmem_cache *cachep)
2243{
2244 int i;
2245 struct kmem_list3 *l3;
2246
2247 if (!cachep || in_interrupt())
2248 BUG();
2249
2250 /* Don't let CPUs to come and go */
2251 lock_cpu_hotplug();
2252
2253 /* Find the cache in the chain of caches. */
2254 mutex_lock(&cache_chain_mutex);
2255 /*
2256 * the chain is never empty, cache_cache is never destroyed
2257 */
2258 list_del(&cachep->next);
2259 mutex_unlock(&cache_chain_mutex);
2260
2261 if (__cache_shrink(cachep)) {
2262 slab_error(cachep, "Can't free all objects");
2263 mutex_lock(&cache_chain_mutex);
2264 list_add(&cachep->next, &cache_chain);
2265 mutex_unlock(&cache_chain_mutex);
2266 unlock_cpu_hotplug();
2267 return 1;
2268 }
2269
2270 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2271 synchronize_rcu();
2272
2273 for_each_online_cpu(i)
2274 kfree(cachep->array[i]);
2275
2276 /* NUMA: free the list3 structures */
2277 for_each_online_node(i) {
2278 l3 = cachep->nodelists[i];
2279 if (l3) {
2280 kfree(l3->shared);
2281 free_alien_cache(l3->alien);
2282 kfree(l3);
2283 }
2284 }
2285 kmem_cache_free(&cache_cache, cachep);
2286 unlock_cpu_hotplug();
2287 return 0;
2288}
2289EXPORT_SYMBOL(kmem_cache_destroy);
2290
2291/* Get the memory for a slab management obj. */
2292static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2293 int colour_off, gfp_t local_flags)
2294{
2295 struct slab *slabp;
2296
2297 if (OFF_SLAB(cachep)) {
2298 /* Slab management obj is off-slab. */
2299 slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2300 if (!slabp)
2301 return NULL;
2302 } else {
2303 slabp = objp + colour_off;
2304 colour_off += cachep->slab_size;
2305 }
2306 slabp->inuse = 0;
2307 slabp->colouroff = colour_off;
2308 slabp->s_mem = objp + colour_off;
2309 return slabp;
2310}
2311
2312static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2313{
2314 return (kmem_bufctl_t *) (slabp + 1);
2315}
2316
2317static void cache_init_objs(struct kmem_cache *cachep,
2318 struct slab *slabp, unsigned long ctor_flags)
2319{
2320 int i;
2321
2322 for (i = 0; i < cachep->num; i++) {
2323 void *objp = index_to_obj(cachep, slabp, i);
2324#if DEBUG
2325 /* need to poison the objs? */
2326 if (cachep->flags & SLAB_POISON)
2327 poison_obj(cachep, objp, POISON_FREE);
2328 if (cachep->flags & SLAB_STORE_USER)
2329 *dbg_userword(cachep, objp) = NULL;
2330
2331 if (cachep->flags & SLAB_RED_ZONE) {
2332 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2333 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2334 }
2335 /*
2336 * Constructors are not allowed to allocate memory from the same
2337 * cache which they are a constructor for. Otherwise, deadlock.
2338 * They must also be threaded.
2339 */
2340 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2341 cachep->ctor(objp + obj_offset(cachep), cachep,
2342 ctor_flags);
2343
2344 if (cachep->flags & SLAB_RED_ZONE) {
2345 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2346 slab_error(cachep, "constructor overwrote the"
2347 " end of an object");
2348 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2349 slab_error(cachep, "constructor overwrote the"
2350 " start of an object");
2351 }
2352 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2353 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2354 kernel_map_pages(virt_to_page(objp),
2355 cachep->buffer_size / PAGE_SIZE, 0);
2356#else
2357 if (cachep->ctor)
2358 cachep->ctor(objp, cachep, ctor_flags);
2359#endif
2360 slab_bufctl(slabp)[i] = i + 1;
2361 }
2362 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2363 slabp->free = 0;
2364}
2365
2366static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2367{
2368 if (flags & SLAB_DMA)
2369 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2370 else
2371 BUG_ON(cachep->gfpflags & GFP_DMA);
2372}
2373
2374static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2375 int nodeid)
2376{
2377 void *objp = index_to_obj(cachep, slabp, slabp->free);
2378 kmem_bufctl_t next;
2379
2380 slabp->inuse++;
2381 next = slab_bufctl(slabp)[slabp->free];
2382#if DEBUG
2383 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2384 WARN_ON(slabp->nodeid != nodeid);
2385#endif
2386 slabp->free = next;
2387
2388 return objp;
2389}
2390
2391static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2392 void *objp, int nodeid)
2393{
2394 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2395
2396#if DEBUG
2397 /* Verify that the slab belongs to the intended node */
2398 WARN_ON(slabp->nodeid != nodeid);
2399
2400 if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
2401 printk(KERN_ERR "slab: double free detected in cache "
2402 "'%s', objp %p\n", cachep->name, objp);
2403 BUG();
2404 }
2405#endif
2406 slab_bufctl(slabp)[objnr] = slabp->free;
2407 slabp->free = objnr;
2408 slabp->inuse--;
2409}
2410
2411static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
2412 void *objp)
2413{
2414 int i;
2415 struct page *page;
2416
2417 /* Nasty!!!!!! I hope this is OK. */
2418 page = virt_to_page(objp);
2419
2420 i = 1;
2421 if (likely(!PageCompound(page)))
2422 i <<= cachep->gfporder;
2423 do {
2424 page_set_cache(page, cachep);
2425 page_set_slab(page, slabp);
2426 page++;
2427 } while (--i);
2428}
2429
2430/*
2431 * Grow (by 1) the number of slabs within a cache. This is called by
2432 * kmem_cache_alloc() when there are no active objs left in a cache.
2433 */
2434static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2435{
2436 struct slab *slabp;
2437 void *objp;
2438 size_t offset;
2439 gfp_t local_flags;
2440 unsigned long ctor_flags;
2441 struct kmem_list3 *l3;
2442
2443 /*
2444 * Be lazy and only check for valid flags here, keeping it out of the
2445 * critical path in kmem_cache_alloc().
2446 */
2447 if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
2448 BUG();
2449 if (flags & SLAB_NO_GROW)
2450 return 0;
2451
2452 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2453 local_flags = (flags & SLAB_LEVEL_MASK);
2454 if (!(local_flags & __GFP_WAIT))
2455 /*
2456 * Not allowed to sleep. Need to tell a constructor about
2457 * this - it might need to know...
2458 */
2459 ctor_flags |= SLAB_CTOR_ATOMIC;
2460
2461 /* Take the l3 list lock to change the colour_next on this node */
2462 check_irq_off();
2463 l3 = cachep->nodelists[nodeid];
2464 spin_lock(&l3->list_lock);
2465
2466 /* Get colour for the slab, and cal the next value. */
2467 offset = l3->colour_next;
2468 l3->colour_next++;
2469 if (l3->colour_next >= cachep->colour)
2470 l3->colour_next = 0;
2471 spin_unlock(&l3->list_lock);
2472
2473 offset *= cachep->colour_off;
2474
2475 if (local_flags & __GFP_WAIT)
2476 local_irq_enable();
2477
2478 /*
2479 * The test for missing atomic flag is performed here, rather than
2480 * the more obvious place, simply to reduce the critical path length
2481 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2482 * will eventually be caught here (where it matters).
2483 */
2484 kmem_flagcheck(cachep, flags);
2485
2486 /*
2487 * Get mem for the objs. Attempt to allocate a physical page from
2488 * 'nodeid'.
2489 */
2490 objp = kmem_getpages(cachep, flags, nodeid);
2491 if (!objp)
2492 goto failed;
2493
2494 /* Get slab management. */
2495 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags);
2496 if (!slabp)
2497 goto opps1;
2498
2499 slabp->nodeid = nodeid;
2500 set_slab_attr(cachep, slabp, objp);
2501
2502 cache_init_objs(cachep, slabp, ctor_flags);
2503
2504 if (local_flags & __GFP_WAIT)
2505 local_irq_disable();
2506 check_irq_off();
2507 spin_lock(&l3->list_lock);
2508
2509 /* Make slab active. */
2510 list_add_tail(&slabp->list, &(l3->slabs_free));
2511 STATS_INC_GROWN(cachep);
2512 l3->free_objects += cachep->num;
2513 spin_unlock(&l3->list_lock);
2514 return 1;
2515opps1:
2516 kmem_freepages(cachep, objp);
2517failed:
2518 if (local_flags & __GFP_WAIT)
2519 local_irq_disable();
2520 return 0;
2521}
2522
2523#if DEBUG
2524
2525/*
2526 * Perform extra freeing checks:
2527 * - detect bad pointers.
2528 * - POISON/RED_ZONE checking
2529 * - destructor calls, for caches with POISON+dtor
2530 */
2531static void kfree_debugcheck(const void *objp)
2532{
2533 struct page *page;
2534
2535 if (!virt_addr_valid(objp)) {
2536 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2537 (unsigned long)objp);
2538 BUG();
2539 }
2540 page = virt_to_page(objp);
2541 if (!PageSlab(page)) {
2542 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2543 (unsigned long)objp);
2544 BUG();
2545 }
2546}
2547
2548static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2549 void *caller)
2550{
2551 struct page *page;
2552 unsigned int objnr;
2553 struct slab *slabp;
2554
2555 objp -= obj_offset(cachep);
2556 kfree_debugcheck(objp);
2557 page = virt_to_page(objp);
2558
2559 if (page_get_cache(page) != cachep) {
2560 printk(KERN_ERR "mismatch in kmem_cache_free: expected "
2561 "cache %p, got %p\n",
2562 page_get_cache(page), cachep);
2563 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
2564 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2565 page_get_cache(page)->name);
2566 WARN_ON(1);
2567 }
2568 slabp = page_get_slab(page);
2569
2570 if (cachep->flags & SLAB_RED_ZONE) {
2571 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
2572 *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2573 slab_error(cachep, "double free, or memory outside"
2574 " object was overwritten");
2575 printk(KERN_ERR "%p: redzone 1:0x%lx, "
2576 "redzone 2:0x%lx.\n",
2577 objp, *dbg_redzone1(cachep, objp),
2578 *dbg_redzone2(cachep, objp));
2579 }
2580 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2581 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2582 }
2583 if (cachep->flags & SLAB_STORE_USER)
2584 *dbg_userword(cachep, objp) = caller;
2585
2586 objnr = obj_to_index(cachep, slabp, objp);
2587
2588 BUG_ON(objnr >= cachep->num);
2589 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2590
2591 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2592 /*
2593 * Need to call the slab's constructor so the caller can
2594 * perform a verify of its state (debugging). Called without
2595 * the cache-lock held.
2596 */
2597 cachep->ctor(objp + obj_offset(cachep),
2598 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2599 }
2600 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2601 /* we want to cache poison the object,
2602 * call the destruction callback
2603 */
2604 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2605 }
2606 if (cachep->flags & SLAB_POISON) {
2607#ifdef CONFIG_DEBUG_PAGEALLOC
2608 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2609 store_stackinfo(cachep, objp, (unsigned long)caller);
2610 kernel_map_pages(virt_to_page(objp),
2611 cachep->buffer_size / PAGE_SIZE, 0);
2612 } else {
2613 poison_obj(cachep, objp, POISON_FREE);
2614 }
2615#else
2616 poison_obj(cachep, objp, POISON_FREE);
2617#endif
2618 }
2619 return objp;
2620}
2621
2622static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2623{
2624 kmem_bufctl_t i;
2625 int entries = 0;
2626
2627 /* Check slab's freelist to see if this obj is there. */
2628 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2629 entries++;
2630 if (entries > cachep->num || i >= cachep->num)
2631 goto bad;
2632 }
2633 if (entries != cachep->num - slabp->inuse) {
2634bad:
2635 printk(KERN_ERR "slab: Internal list corruption detected in "
2636 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2637 cachep->name, cachep->num, slabp, slabp->inuse);
2638 for (i = 0;
2639 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2640 i++) {
2641 if (i % 16 == 0)
2642 printk("\n%03x:", i);
2643 printk(" %02x", ((unsigned char *)slabp)[i]);
2644 }
2645 printk("\n");
2646 BUG();
2647 }
2648}
2649#else
2650#define kfree_debugcheck(x) do { } while(0)
2651#define cache_free_debugcheck(x,objp,z) (objp)
2652#define check_slabp(x,y) do { } while(0)
2653#endif
2654
2655static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2656{
2657 int batchcount;
2658 struct kmem_list3 *l3;
2659 struct array_cache *ac;
2660
2661 check_irq_off();
2662 ac = cpu_cache_get(cachep);
2663retry:
2664 batchcount = ac->batchcount;
2665 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2666 /*
2667 * If there was little recent activity on this cache, then
2668 * perform only a partial refill. Otherwise we could generate
2669 * refill bouncing.
2670 */
2671 batchcount = BATCHREFILL_LIMIT;
2672 }
2673 l3 = cachep->nodelists[numa_node_id()];
2674
2675 BUG_ON(ac->avail > 0 || !l3);
2676 spin_lock(&l3->list_lock);
2677
2678 if (l3->shared) {
2679 struct array_cache *shared_array = l3->shared;
2680 if (shared_array->avail) {
2681 if (batchcount > shared_array->avail)
2682 batchcount = shared_array->avail;
2683 shared_array->avail -= batchcount;
2684 ac->avail = batchcount;
2685 memcpy(ac->entry,
2686 &(shared_array->entry[shared_array->avail]),
2687 sizeof(void *) * batchcount);
2688 shared_array->touched = 1;
2689 goto alloc_done;
2690 }
2691 }
2692 while (batchcount > 0) {
2693 struct list_head *entry;
2694 struct slab *slabp;
2695 /* Get slab alloc is to come from. */
2696 entry = l3->slabs_partial.next;
2697 if (entry == &l3->slabs_partial) {
2698 l3->free_touched = 1;
2699 entry = l3->slabs_free.next;
2700 if (entry == &l3->slabs_free)
2701 goto must_grow;
2702 }
2703
2704 slabp = list_entry(entry, struct slab, list);
2705 check_slabp(cachep, slabp);
2706 check_spinlock_acquired(cachep);
2707 while (slabp->inuse < cachep->num && batchcount--) {
2708 STATS_INC_ALLOCED(cachep);
2709 STATS_INC_ACTIVE(cachep);
2710 STATS_SET_HIGH(cachep);
2711
2712 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2713 numa_node_id());
2714 }
2715 check_slabp(cachep, slabp);
2716
2717 /* move slabp to correct slabp list: */
2718 list_del(&slabp->list);
2719 if (slabp->free == BUFCTL_END)
2720 list_add(&slabp->list, &l3->slabs_full);
2721 else
2722 list_add(&slabp->list, &l3->slabs_partial);
2723 }
2724
2725must_grow:
2726 l3->free_objects -= ac->avail;
2727alloc_done:
2728 spin_unlock(&l3->list_lock);
2729
2730 if (unlikely(!ac->avail)) {
2731 int x;
2732 x = cache_grow(cachep, flags, numa_node_id());
2733
2734 /* cache_grow can reenable interrupts, then ac could change. */
2735 ac = cpu_cache_get(cachep);
2736 if (!x && ac->avail == 0) /* no objects in sight? abort */
2737 return NULL;
2738
2739 if (!ac->avail) /* objects refilled by interrupt? */
2740 goto retry;
2741 }
2742 ac->touched = 1;
2743 return ac->entry[--ac->avail];
2744}
2745
2746static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2747 gfp_t flags)
2748{
2749 might_sleep_if(flags & __GFP_WAIT);
2750#if DEBUG
2751 kmem_flagcheck(cachep, flags);
2752#endif
2753}
2754
2755#if DEBUG
2756static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2757 gfp_t flags, void *objp, void *caller)
2758{
2759 if (!objp)
2760 return objp;
2761 if (cachep->flags & SLAB_POISON) {
2762#ifdef CONFIG_DEBUG_PAGEALLOC
2763 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2764 kernel_map_pages(virt_to_page(objp),
2765 cachep->buffer_size / PAGE_SIZE, 1);
2766 else
2767 check_poison_obj(cachep, objp);
2768#else
2769 check_poison_obj(cachep, objp);
2770#endif
2771 poison_obj(cachep, objp, POISON_INUSE);
2772 }
2773 if (cachep->flags & SLAB_STORE_USER)
2774 *dbg_userword(cachep, objp) = caller;
2775
2776 if (cachep->flags & SLAB_RED_ZONE) {
2777 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2778 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2779 slab_error(cachep, "double free, or memory outside"
2780 " object was overwritten");
2781 printk(KERN_ERR
2782 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2783 objp, *dbg_redzone1(cachep, objp),
2784 *dbg_redzone2(cachep, objp));
2785 }
2786 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2787 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2788 }
2789 objp += obj_offset(cachep);
2790 if (cachep->ctor && cachep->flags & SLAB_POISON) {
2791 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2792
2793 if (!(flags & __GFP_WAIT))
2794 ctor_flags |= SLAB_CTOR_ATOMIC;
2795
2796 cachep->ctor(objp, cachep, ctor_flags);
2797 }
2798 return objp;
2799}
2800#else
2801#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2802#endif
2803
2804static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2805{
2806 void *objp;
2807 struct array_cache *ac;
2808
2809#ifdef CONFIG_NUMA
2810 if (unlikely(current->mempolicy && !in_interrupt())) {
2811 int nid = slab_node(current->mempolicy);
2812
2813 if (nid != numa_node_id())
2814 return __cache_alloc_node(cachep, flags, nid);
2815 }
2816#endif
2817
2818 check_irq_off();
2819 ac = cpu_cache_get(cachep);
2820 if (likely(ac->avail)) {
2821 STATS_INC_ALLOCHIT(cachep);
2822 ac->touched = 1;
2823 objp = ac->entry[--ac->avail];
2824 } else {
2825 STATS_INC_ALLOCMISS(cachep);
2826 objp = cache_alloc_refill(cachep, flags);
2827 }
2828 return objp;
2829}
2830
2831static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2832 gfp_t flags, void *caller)
2833{
2834 unsigned long save_flags;
2835 void *objp;
2836
2837 cache_alloc_debugcheck_before(cachep, flags);
2838
2839 local_irq_save(save_flags);
2840 objp = ____cache_alloc(cachep, flags);
2841 local_irq_restore(save_flags);
2842 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2843 caller);
2844 prefetchw(objp);
2845 return objp;
2846}
2847
2848#ifdef CONFIG_NUMA
2849/*
2850 * A interface to enable slab creation on nodeid
2851 */
2852static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
2853 int nodeid)
2854{
2855 struct list_head *entry;
2856 struct slab *slabp;
2857 struct kmem_list3 *l3;
2858 void *obj;
2859 int x;
2860
2861 l3 = cachep->nodelists[nodeid];
2862 BUG_ON(!l3);
2863
2864retry:
2865 check_irq_off();
2866 spin_lock(&l3->list_lock);
2867 entry = l3->slabs_partial.next;
2868 if (entry == &l3->slabs_partial) {
2869 l3->free_touched = 1;
2870 entry = l3->slabs_free.next;
2871 if (entry == &l3->slabs_free)
2872 goto must_grow;
2873 }
2874
2875 slabp = list_entry(entry, struct slab, list);
2876 check_spinlock_acquired_node(cachep, nodeid);
2877 check_slabp(cachep, slabp);
2878
2879 STATS_INC_NODEALLOCS(cachep);
2880 STATS_INC_ACTIVE(cachep);
2881 STATS_SET_HIGH(cachep);
2882
2883 BUG_ON(slabp->inuse == cachep->num);
2884
2885 obj = slab_get_obj(cachep, slabp, nodeid);
2886 check_slabp(cachep, slabp);
2887 l3->free_objects--;
2888 /* move slabp to correct slabp list: */
2889 list_del(&slabp->list);
2890
2891 if (slabp->free == BUFCTL_END)
2892 list_add(&slabp->list, &l3->slabs_full);
2893 else
2894 list_add(&slabp->list, &l3->slabs_partial);
2895
2896 spin_unlock(&l3->list_lock);
2897 goto done;
2898
2899must_grow:
2900 spin_unlock(&l3->list_lock);
2901 x = cache_grow(cachep, flags, nodeid);
2902
2903 if (!x)
2904 return NULL;
2905
2906 goto retry;
2907done:
2908 return obj;
2909}
2910#endif
2911
2912/*
2913 * Caller needs to acquire correct kmem_list's list_lock
2914 */
2915static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
2916 int node)
2917{
2918 int i;
2919 struct kmem_list3 *l3;
2920
2921 for (i = 0; i < nr_objects; i++) {
2922 void *objp = objpp[i];
2923 struct slab *slabp;
2924
2925 slabp = virt_to_slab(objp);
2926 l3 = cachep->nodelists[node];
2927 list_del(&slabp->list);
2928 check_spinlock_acquired_node(cachep, node);
2929 check_slabp(cachep, slabp);
2930 slab_put_obj(cachep, slabp, objp, node);
2931 STATS_DEC_ACTIVE(cachep);
2932 l3->free_objects++;
2933 check_slabp(cachep, slabp);
2934
2935 /* fixup slab chains */
2936 if (slabp->inuse == 0) {
2937 if (l3->free_objects > l3->free_limit) {
2938 l3->free_objects -= cachep->num;
2939 slab_destroy(cachep, slabp);
2940 } else {
2941 list_add(&slabp->list, &l3->slabs_free);
2942 }
2943 } else {
2944 /* Unconditionally move a slab to the end of the
2945 * partial list on free - maximum time for the
2946 * other objects to be freed, too.
2947 */
2948 list_add_tail(&slabp->list, &l3->slabs_partial);
2949 }
2950 }
2951}
2952
2953static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
2954{
2955 int batchcount;
2956 struct kmem_list3 *l3;
2957 int node = numa_node_id();
2958
2959 batchcount = ac->batchcount;
2960#if DEBUG
2961 BUG_ON(!batchcount || batchcount > ac->avail);
2962#endif
2963 check_irq_off();
2964 l3 = cachep->nodelists[node];
2965 spin_lock(&l3->list_lock);
2966 if (l3->shared) {
2967 struct array_cache *shared_array = l3->shared;
2968 int max = shared_array->limit - shared_array->avail;
2969 if (max) {
2970 if (batchcount > max)
2971 batchcount = max;
2972 memcpy(&(shared_array->entry[shared_array->avail]),
2973 ac->entry, sizeof(void *) * batchcount);
2974 shared_array->avail += batchcount;
2975 goto free_done;
2976 }
2977 }
2978
2979 free_block(cachep, ac->entry, batchcount, node);
2980free_done:
2981#if STATS
2982 {
2983 int i = 0;
2984 struct list_head *p;
2985
2986 p = l3->slabs_free.next;
2987 while (p != &(l3->slabs_free)) {
2988 struct slab *slabp;
2989
2990 slabp = list_entry(p, struct slab, list);
2991 BUG_ON(slabp->inuse);
2992
2993 i++;
2994 p = p->next;
2995 }
2996 STATS_SET_FREEABLE(cachep, i);
2997 }
2998#endif
2999 spin_unlock(&l3->list_lock);
3000 ac->avail -= batchcount;
3001 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3002}
3003
3004/*
3005 * Release an obj back to its cache. If the obj has a constructed state, it must
3006 * be in this state _before_ it is released. Called with disabled ints.
3007 */
3008static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3009{
3010 struct array_cache *ac = cpu_cache_get(cachep);
3011
3012 check_irq_off();
3013 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3014
3015 /* Make sure we are not freeing a object from another
3016 * node to the array cache on this cpu.
3017 */
3018#ifdef CONFIG_NUMA
3019 {
3020 struct slab *slabp;
3021 slabp = virt_to_slab(objp);
3022 if (unlikely(slabp->nodeid != numa_node_id())) {
3023 struct array_cache *alien = NULL;
3024 int nodeid = slabp->nodeid;
3025 struct kmem_list3 *l3;
3026
3027 l3 = cachep->nodelists[numa_node_id()];
3028 STATS_INC_NODEFREES(cachep);
3029 if (l3->alien && l3->alien[nodeid]) {
3030 alien = l3->alien[nodeid];
3031 spin_lock(&alien->lock);
3032 if (unlikely(alien->avail == alien->limit))
3033 __drain_alien_cache(cachep,
3034 alien, nodeid);
3035 alien->entry[alien->avail++] = objp;
3036 spin_unlock(&alien->lock);
3037 } else {
3038 spin_lock(&(cachep->nodelists[nodeid])->
3039 list_lock);
3040 free_block(cachep, &objp, 1, nodeid);
3041 spin_unlock(&(cachep->nodelists[nodeid])->
3042 list_lock);
3043 }
3044 return;
3045 }
3046 }
3047#endif
3048 if (likely(ac->avail < ac->limit)) {
3049 STATS_INC_FREEHIT(cachep);
3050 ac->entry[ac->avail++] = objp;
3051 return;
3052 } else {
3053 STATS_INC_FREEMISS(cachep);
3054 cache_flusharray(cachep, ac);
3055 ac->entry[ac->avail++] = objp;
3056 }
3057}
3058
3059/**
3060 * kmem_cache_alloc - Allocate an object
3061 * @cachep: The cache to allocate from.
3062 * @flags: See kmalloc().
3063 *
3064 * Allocate an object from this cache. The flags are only relevant
3065 * if the cache has no available objects.
3066 */
3067void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3068{
3069 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3070}
3071EXPORT_SYMBOL(kmem_cache_alloc);
3072
3073/**
3074 * kmem_ptr_validate - check if an untrusted pointer might
3075 * be a slab entry.
3076 * @cachep: the cache we're checking against
3077 * @ptr: pointer to validate
3078 *
3079 * This verifies that the untrusted pointer looks sane:
3080 * it is _not_ a guarantee that the pointer is actually
3081 * part of the slab cache in question, but it at least
3082 * validates that the pointer can be dereferenced and
3083 * looks half-way sane.
3084 *
3085 * Currently only used for dentry validation.
3086 */
3087int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
3088{
3089 unsigned long addr = (unsigned long)ptr;
3090 unsigned long min_addr = PAGE_OFFSET;
3091 unsigned long align_mask = BYTES_PER_WORD - 1;
3092 unsigned long size = cachep->buffer_size;
3093 struct page *page;
3094
3095 if (unlikely(addr < min_addr))
3096 goto out;
3097 if (unlikely(addr > (unsigned long)high_memory - size))
3098 goto out;
3099 if (unlikely(addr & align_mask))
3100 goto out;
3101 if (unlikely(!kern_addr_valid(addr)))
3102 goto out;
3103 if (unlikely(!kern_addr_valid(addr + size - 1)))
3104 goto out;
3105 page = virt_to_page(ptr);
3106 if (unlikely(!PageSlab(page)))
3107 goto out;
3108 if (unlikely(page_get_cache(page) != cachep))
3109 goto out;
3110 return 1;
3111out:
3112 return 0;
3113}
3114
3115#ifdef CONFIG_NUMA
3116/**
3117 * kmem_cache_alloc_node - Allocate an object on the specified node
3118 * @cachep: The cache to allocate from.
3119 * @flags: See kmalloc().
3120 * @nodeid: node number of the target node.
3121 *
3122 * Identical to kmem_cache_alloc, except that this function is slow
3123 * and can sleep. And it will allocate memory on the given node, which
3124 * can improve the performance for cpu bound structures.
3125 * New and improved: it will now make sure that the object gets
3126 * put on the correct node list so that there is no false sharing.
3127 */
3128void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3129{
3130 unsigned long save_flags;
3131 void *ptr;
3132
3133 cache_alloc_debugcheck_before(cachep, flags);
3134 local_irq_save(save_flags);
3135
3136 if (nodeid == -1 || nodeid == numa_node_id() ||
3137 !cachep->nodelists[nodeid])
3138 ptr = ____cache_alloc(cachep, flags);
3139 else
3140 ptr = __cache_alloc_node(cachep, flags, nodeid);
3141 local_irq_restore(save_flags);
3142
3143 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3144 __builtin_return_address(0));
3145
3146 return ptr;
3147}
3148EXPORT_SYMBOL(kmem_cache_alloc_node);
3149
3150void *kmalloc_node(size_t size, gfp_t flags, int node)
3151{
3152 struct kmem_cache *cachep;
3153
3154 cachep = kmem_find_general_cachep(size, flags);
3155 if (unlikely(cachep == NULL))
3156 return NULL;
3157 return kmem_cache_alloc_node(cachep, flags, node);
3158}
3159EXPORT_SYMBOL(kmalloc_node);
3160#endif
3161
3162/**
3163 * kmalloc - allocate memory
3164 * @size: how many bytes of memory are required.
3165 * @flags: the type of memory to allocate.
3166 * @caller: function caller for debug tracking of the caller
3167 *
3168 * kmalloc is the normal method of allocating memory
3169 * in the kernel.
3170 *
3171 * The @flags argument may be one of:
3172 *
3173 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3174 *
3175 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3176 *
3177 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3178 *
3179 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3180 * must be suitable for DMA. This can mean different things on different
3181 * platforms. For example, on i386, it means that the memory must come
3182 * from the first 16MB.
3183 */
3184static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3185 void *caller)
3186{
3187 struct kmem_cache *cachep;
3188
3189 /* If you want to save a few bytes .text space: replace
3190 * __ with kmem_.
3191 * Then kmalloc uses the uninlined functions instead of the inline
3192 * functions.
3193 */
3194 cachep = __find_general_cachep(size, flags);
3195 if (unlikely(cachep == NULL))
3196 return NULL;
3197 return __cache_alloc(cachep, flags, caller);
3198}
3199
3200#ifndef CONFIG_DEBUG_SLAB
3201
3202void *__kmalloc(size_t size, gfp_t flags)
3203{
3204 return __do_kmalloc(size, flags, NULL);
3205}
3206EXPORT_SYMBOL(__kmalloc);
3207
3208#else
3209
3210void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3211{
3212 return __do_kmalloc(size, flags, caller);
3213}
3214EXPORT_SYMBOL(__kmalloc_track_caller);
3215
3216#endif
3217
3218#ifdef CONFIG_SMP
3219/**
3220 * __alloc_percpu - allocate one copy of the object for every present
3221 * cpu in the system, zeroing them.
3222 * Objects should be dereferenced using the per_cpu_ptr macro only.
3223 *
3224 * @size: how many bytes of memory are required.
3225 */
3226void *__alloc_percpu(size_t size)
3227{
3228 int i;
3229 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
3230
3231 if (!pdata)
3232 return NULL;
3233
3234 /*
3235 * Cannot use for_each_online_cpu since a cpu may come online
3236 * and we have no way of figuring out how to fix the array
3237 * that we have allocated then....
3238 */
3239 for_each_cpu(i) {
3240 int node = cpu_to_node(i);
3241
3242 if (node_online(node))
3243 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3244 else
3245 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
3246
3247 if (!pdata->ptrs[i])
3248 goto unwind_oom;
3249 memset(pdata->ptrs[i], 0, size);
3250 }
3251
3252 /* Catch derefs w/o wrappers */
3253 return (void *)(~(unsigned long)pdata);
3254
3255unwind_oom:
3256 while (--i >= 0) {
3257 if (!cpu_possible(i))
3258 continue;
3259 kfree(pdata->ptrs[i]);
3260 }
3261 kfree(pdata);
3262 return NULL;
3263}
3264EXPORT_SYMBOL(__alloc_percpu);
3265#endif
3266
3267/**
3268 * kmem_cache_free - Deallocate an object
3269 * @cachep: The cache the allocation was from.
3270 * @objp: The previously allocated object.
3271 *
3272 * Free an object which was previously allocated from this
3273 * cache.
3274 */
3275void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3276{
3277 unsigned long flags;
3278
3279 local_irq_save(flags);
3280 __cache_free(cachep, objp);
3281 local_irq_restore(flags);
3282}
3283EXPORT_SYMBOL(kmem_cache_free);
3284
3285/**
3286 * kfree - free previously allocated memory
3287 * @objp: pointer returned by kmalloc.
3288 *
3289 * If @objp is NULL, no operation is performed.
3290 *
3291 * Don't free memory not originally allocated by kmalloc()
3292 * or you will run into trouble.
3293 */
3294void kfree(const void *objp)
3295{
3296 struct kmem_cache *c;
3297 unsigned long flags;
3298
3299 if (unlikely(!objp))
3300 return;
3301 local_irq_save(flags);
3302 kfree_debugcheck(objp);
3303 c = virt_to_cache(objp);
3304 mutex_debug_check_no_locks_freed(objp, obj_size(c));
3305 __cache_free(c, (void *)objp);
3306 local_irq_restore(flags);
3307}
3308EXPORT_SYMBOL(kfree);
3309
3310#ifdef CONFIG_SMP
3311/**
3312 * free_percpu - free previously allocated percpu memory
3313 * @objp: pointer returned by alloc_percpu.
3314 *
3315 * Don't free memory not originally allocated by alloc_percpu()
3316 * The complemented objp is to check for that.
3317 */
3318void free_percpu(const void *objp)
3319{
3320 int i;
3321 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
3322
3323 /*
3324 * We allocate for all cpus so we cannot use for online cpu here.
3325 */
3326 for_each_cpu(i)
3327 kfree(p->ptrs[i]);
3328 kfree(p);
3329}
3330EXPORT_SYMBOL(free_percpu);
3331#endif
3332
3333unsigned int kmem_cache_size(struct kmem_cache *cachep)
3334{
3335 return obj_size(cachep);
3336}
3337EXPORT_SYMBOL(kmem_cache_size);
3338
3339const char *kmem_cache_name(struct kmem_cache *cachep)
3340{
3341 return cachep->name;
3342}
3343EXPORT_SYMBOL_GPL(kmem_cache_name);
3344
3345/*
3346 * This initializes kmem_list3 for all nodes.
3347 */
3348static int alloc_kmemlist(struct kmem_cache *cachep)
3349{
3350 int node;
3351 struct kmem_list3 *l3;
3352 int err = 0;
3353
3354 for_each_online_node(node) {
3355 struct array_cache *nc = NULL, *new;
3356 struct array_cache **new_alien = NULL;
3357#ifdef CONFIG_NUMA
3358 new_alien = alloc_alien_cache(node, cachep->limit);
3359 if (!new_alien)
3360 goto fail;
3361#endif
3362 new = alloc_arraycache(node, cachep->shared*cachep->batchcount,
3363 0xbaadf00d);
3364 if (!new)
3365 goto fail;
3366 l3 = cachep->nodelists[node];
3367 if (l3) {
3368 spin_lock_irq(&l3->list_lock);
3369
3370 nc = cachep->nodelists[node]->shared;
3371 if (nc)
3372 free_block(cachep, nc->entry, nc->avail, node);
3373
3374 l3->shared = new;
3375 if (!cachep->nodelists[node]->alien) {
3376 l3->alien = new_alien;
3377 new_alien = NULL;
3378 }
3379 l3->free_limit = (1 + nr_cpus_node(node)) *
3380 cachep->batchcount + cachep->num;
3381 spin_unlock_irq(&l3->list_lock);
3382 kfree(nc);
3383 free_alien_cache(new_alien);
3384 continue;
3385 }
3386 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3387 if (!l3)
3388 goto fail;
3389
3390 kmem_list3_init(l3);
3391 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3392 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3393 l3->shared = new;
3394 l3->alien = new_alien;
3395 l3->free_limit = (1 + nr_cpus_node(node)) *
3396 cachep->batchcount + cachep->num;
3397 cachep->nodelists[node] = l3;
3398 }
3399 return err;
3400fail:
3401 err = -ENOMEM;
3402 return err;
3403}
3404
3405struct ccupdate_struct {
3406 struct kmem_cache *cachep;
3407 struct array_cache *new[NR_CPUS];
3408};
3409
3410static void do_ccupdate_local(void *info)
3411{
3412 struct ccupdate_struct *new = info;
3413 struct array_cache *old;
3414
3415 check_irq_off();
3416 old = cpu_cache_get(new->cachep);
3417
3418 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3419 new->new[smp_processor_id()] = old;
3420}
3421
3422/* Always called with the cache_chain_mutex held */
3423static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3424 int batchcount, int shared)
3425{
3426 struct ccupdate_struct new;
3427 int i, err;
3428
3429 memset(&new.new, 0, sizeof(new.new));
3430 for_each_online_cpu(i) {
3431 new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3432 batchcount);
3433 if (!new.new[i]) {
3434 for (i--; i >= 0; i--)
3435 kfree(new.new[i]);
3436 return -ENOMEM;
3437 }
3438 }
3439 new.cachep = cachep;
3440
3441 on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
3442
3443 check_irq_on();
3444 cachep->batchcount = batchcount;
3445 cachep->limit = limit;
3446 cachep->shared = shared;
3447
3448 for_each_online_cpu(i) {
3449 struct array_cache *ccold = new.new[i];
3450 if (!ccold)
3451 continue;
3452 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3453 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3454 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3455 kfree(ccold);
3456 }
3457
3458 err = alloc_kmemlist(cachep);
3459 if (err) {
3460 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
3461 cachep->name, -err);
3462 BUG();
3463 }
3464 return 0;
3465}
3466
3467/* Called with cache_chain_mutex held always */
3468static void enable_cpucache(struct kmem_cache *cachep)
3469{
3470 int err;
3471 int limit, shared;
3472
3473 /*
3474 * The head array serves three purposes:
3475 * - create a LIFO ordering, i.e. return objects that are cache-warm
3476 * - reduce the number of spinlock operations.
3477 * - reduce the number of linked list operations on the slab and
3478 * bufctl chains: array operations are cheaper.
3479 * The numbers are guessed, we should auto-tune as described by
3480 * Bonwick.
3481 */
3482 if (cachep->buffer_size > 131072)
3483 limit = 1;
3484 else if (cachep->buffer_size > PAGE_SIZE)
3485 limit = 8;
3486 else if (cachep->buffer_size > 1024)
3487 limit = 24;
3488 else if (cachep->buffer_size > 256)
3489 limit = 54;
3490 else
3491 limit = 120;
3492
3493 /*
3494 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3495 * allocation behaviour: Most allocs on one cpu, most free operations
3496 * on another cpu. For these cases, an efficient object passing between
3497 * cpus is necessary. This is provided by a shared array. The array
3498 * replaces Bonwick's magazine layer.
3499 * On uniprocessor, it's functionally equivalent (but less efficient)
3500 * to a larger limit. Thus disabled by default.
3501 */
3502 shared = 0;
3503#ifdef CONFIG_SMP
3504 if (cachep->buffer_size <= PAGE_SIZE)
3505 shared = 8;
3506#endif
3507
3508#if DEBUG
3509 /*
3510 * With debugging enabled, large batchcount lead to excessively long
3511 * periods with disabled local interrupts. Limit the batchcount
3512 */
3513 if (limit > 32)
3514 limit = 32;
3515#endif
3516 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3517 if (err)
3518 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3519 cachep->name, -err);
3520}
3521
3522/*
3523 * Drain an array if it contains any elements taking the l3 lock only if
3524 * necessary. Note that the l3 listlock also protects the array_cache
3525 * if drain_array() is used on the shared array.
3526 */
3527void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3528 struct array_cache *ac, int force, int node)
3529{
3530 int tofree;
3531
3532 if (!ac || !ac->avail)
3533 return;
3534 if (ac->touched && !force) {
3535 ac->touched = 0;
3536 } else {
3537 spin_lock_irq(&l3->list_lock);
3538 if (ac->avail) {
3539 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3540 if (tofree > ac->avail)
3541 tofree = (ac->avail + 1) / 2;
3542 free_block(cachep, ac->entry, tofree, node);
3543 ac->avail -= tofree;
3544 memmove(ac->entry, &(ac->entry[tofree]),
3545 sizeof(void *) * ac->avail);
3546 }
3547 spin_unlock_irq(&l3->list_lock);
3548 }
3549}
3550
3551/**
3552 * cache_reap - Reclaim memory from caches.
3553 * @unused: unused parameter
3554 *
3555 * Called from workqueue/eventd every few seconds.
3556 * Purpose:
3557 * - clear the per-cpu caches for this CPU.
3558 * - return freeable pages to the main free memory pool.
3559 *
3560 * If we cannot acquire the cache chain mutex then just give up - we'll try
3561 * again on the next iteration.
3562 */
3563static void cache_reap(void *unused)
3564{
3565 struct list_head *walk;
3566 struct kmem_list3 *l3;
3567 int node = numa_node_id();
3568
3569 if (!mutex_trylock(&cache_chain_mutex)) {
3570 /* Give up. Setup the next iteration. */
3571 schedule_delayed_work(&__get_cpu_var(reap_work),
3572 REAPTIMEOUT_CPUC);
3573 return;
3574 }
3575
3576 list_for_each(walk, &cache_chain) {
3577 struct kmem_cache *searchp;
3578 struct list_head *p;
3579 int tofree;
3580 struct slab *slabp;
3581
3582 searchp = list_entry(walk, struct kmem_cache, next);
3583 check_irq_on();
3584
3585 /*
3586 * We only take the l3 lock if absolutely necessary and we
3587 * have established with reasonable certainty that
3588 * we can do some work if the lock was obtained.
3589 */
3590 l3 = searchp->nodelists[node];
3591
3592 reap_alien(searchp, l3);
3593
3594 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
3595
3596 /*
3597 * These are racy checks but it does not matter
3598 * if we skip one check or scan twice.
3599 */
3600 if (time_after(l3->next_reap, jiffies))
3601 goto next;
3602
3603 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3604
3605 drain_array(searchp, l3, l3->shared, 0, node);
3606
3607 if (l3->free_touched) {
3608 l3->free_touched = 0;
3609 goto next;
3610 }
3611
3612 tofree = (l3->free_limit + 5 * searchp->num - 1) /
3613 (5 * searchp->num);
3614 do {
3615 /*
3616 * Do not lock if there are no free blocks.
3617 */
3618 if (list_empty(&l3->slabs_free))
3619 break;
3620
3621 spin_lock_irq(&l3->list_lock);
3622 p = l3->slabs_free.next;
3623 if (p == &(l3->slabs_free)) {
3624 spin_unlock_irq(&l3->list_lock);
3625 break;
3626 }
3627
3628 slabp = list_entry(p, struct slab, list);
3629 BUG_ON(slabp->inuse);
3630 list_del(&slabp->list);
3631 STATS_INC_REAPED(searchp);
3632
3633 /*
3634 * Safe to drop the lock. The slab is no longer linked
3635 * to the cache. searchp cannot disappear, we hold
3636 * cache_chain_lock
3637 */
3638 l3->free_objects -= searchp->num;
3639 spin_unlock_irq(&l3->list_lock);
3640 slab_destroy(searchp, slabp);
3641 } while (--tofree > 0);
3642next:
3643 cond_resched();
3644 }
3645 check_irq_on();
3646 mutex_unlock(&cache_chain_mutex);
3647 next_reap_node();
3648 /* Set up the next iteration */
3649 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3650}
3651
3652#ifdef CONFIG_PROC_FS
3653
3654static void print_slabinfo_header(struct seq_file *m)
3655{
3656 /*
3657 * Output format version, so at least we can change it
3658 * without _too_ many complaints.
3659 */
3660#if STATS
3661 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3662#else
3663 seq_puts(m, "slabinfo - version: 2.1\n");
3664#endif
3665 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3666 "<objperslab> <pagesperslab>");
3667 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3668 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3669#if STATS
3670 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3671 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
3672 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3673#endif
3674 seq_putc(m, '\n');
3675}
3676
3677static void *s_start(struct seq_file *m, loff_t *pos)
3678{
3679 loff_t n = *pos;
3680 struct list_head *p;
3681
3682 mutex_lock(&cache_chain_mutex);
3683 if (!n)
3684 print_slabinfo_header(m);
3685 p = cache_chain.next;
3686 while (n--) {
3687 p = p->next;
3688 if (p == &cache_chain)
3689 return NULL;
3690 }
3691 return list_entry(p, struct kmem_cache, next);
3692}
3693
3694static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3695{
3696 struct kmem_cache *cachep = p;
3697 ++*pos;
3698 return cachep->next.next == &cache_chain ?
3699 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
3700}
3701
3702static void s_stop(struct seq_file *m, void *p)
3703{
3704 mutex_unlock(&cache_chain_mutex);
3705}
3706
3707static int s_show(struct seq_file *m, void *p)
3708{
3709 struct kmem_cache *cachep = p;
3710 struct list_head *q;
3711 struct slab *slabp;
3712 unsigned long active_objs;
3713 unsigned long num_objs;
3714 unsigned long active_slabs = 0;
3715 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3716 const char *name;
3717 char *error = NULL;
3718 int node;
3719 struct kmem_list3 *l3;
3720
3721 active_objs = 0;
3722 num_slabs = 0;
3723 for_each_online_node(node) {
3724 l3 = cachep->nodelists[node];
3725 if (!l3)
3726 continue;
3727
3728 check_irq_on();
3729 spin_lock_irq(&l3->list_lock);
3730
3731 list_for_each(q, &l3->slabs_full) {
3732 slabp = list_entry(q, struct slab, list);
3733 if (slabp->inuse != cachep->num && !error)
3734 error = "slabs_full accounting error";
3735 active_objs += cachep->num;
3736 active_slabs++;
3737 }
3738 list_for_each(q, &l3->slabs_partial) {
3739 slabp = list_entry(q, struct slab, list);
3740 if (slabp->inuse == cachep->num && !error)
3741 error = "slabs_partial inuse accounting error";
3742 if (!slabp->inuse && !error)
3743 error = "slabs_partial/inuse accounting error";
3744 active_objs += slabp->inuse;
3745 active_slabs++;
3746 }
3747 list_for_each(q, &l3->slabs_free) {
3748 slabp = list_entry(q, struct slab, list);
3749 if (slabp->inuse && !error)
3750 error = "slabs_free/inuse accounting error";
3751 num_slabs++;
3752 }
3753 free_objects += l3->free_objects;
3754 if (l3->shared)
3755 shared_avail += l3->shared->avail;
3756
3757 spin_unlock_irq(&l3->list_lock);
3758 }
3759 num_slabs += active_slabs;
3760 num_objs = num_slabs * cachep->num;
3761 if (num_objs - active_objs != free_objects && !error)
3762 error = "free_objects accounting error";
3763
3764 name = cachep->name;
3765 if (error)
3766 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3767
3768 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3769 name, active_objs, num_objs, cachep->buffer_size,
3770 cachep->num, (1 << cachep->gfporder));
3771 seq_printf(m, " : tunables %4u %4u %4u",
3772 cachep->limit, cachep->batchcount, cachep->shared);
3773 seq_printf(m, " : slabdata %6lu %6lu %6lu",
3774 active_slabs, num_slabs, shared_avail);
3775#if STATS
3776 { /* list3 stats */
3777 unsigned long high = cachep->high_mark;
3778 unsigned long allocs = cachep->num_allocations;
3779 unsigned long grown = cachep->grown;
3780 unsigned long reaped = cachep->reaped;
3781 unsigned long errors = cachep->errors;
3782 unsigned long max_freeable = cachep->max_freeable;
3783 unsigned long node_allocs = cachep->node_allocs;
3784 unsigned long node_frees = cachep->node_frees;
3785
3786 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3787 %4lu %4lu %4lu %4lu", allocs, high, grown,
3788 reaped, errors, max_freeable, node_allocs,
3789 node_frees);
3790 }
3791 /* cpu stats */
3792 {
3793 unsigned long allochit = atomic_read(&cachep->allochit);
3794 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3795 unsigned long freehit = atomic_read(&cachep->freehit);
3796 unsigned long freemiss = atomic_read(&cachep->freemiss);
3797
3798 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3799 allochit, allocmiss, freehit, freemiss);
3800 }
3801#endif
3802 seq_putc(m, '\n');
3803 return 0;
3804}
3805
3806/*
3807 * slabinfo_op - iterator that generates /proc/slabinfo
3808 *
3809 * Output layout:
3810 * cache-name
3811 * num-active-objs
3812 * total-objs
3813 * object size
3814 * num-active-slabs
3815 * total-slabs
3816 * num-pages-per-slab
3817 * + further values on SMP and with statistics enabled
3818 */
3819
3820struct seq_operations slabinfo_op = {
3821 .start = s_start,
3822 .next = s_next,
3823 .stop = s_stop,
3824 .show = s_show,
3825};
3826
3827#define MAX_SLABINFO_WRITE 128
3828/**
3829 * slabinfo_write - Tuning for the slab allocator
3830 * @file: unused
3831 * @buffer: user buffer
3832 * @count: data length
3833 * @ppos: unused
3834 */
3835ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3836 size_t count, loff_t *ppos)
3837{
3838 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
3839 int limit, batchcount, shared, res;
3840 struct list_head *p;
3841
3842 if (count > MAX_SLABINFO_WRITE)
3843 return -EINVAL;
3844 if (copy_from_user(&kbuf, buffer, count))
3845 return -EFAULT;
3846 kbuf[MAX_SLABINFO_WRITE] = '\0';
3847
3848 tmp = strchr(kbuf, ' ');
3849 if (!tmp)
3850 return -EINVAL;
3851 *tmp = '\0';
3852 tmp++;
3853 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3854 return -EINVAL;
3855
3856 /* Find the cache in the chain of caches. */
3857 mutex_lock(&cache_chain_mutex);
3858 res = -EINVAL;
3859 list_for_each(p, &cache_chain) {
3860 struct kmem_cache *cachep;
3861
3862 cachep = list_entry(p, struct kmem_cache, next);
3863 if (!strcmp(cachep->name, kbuf)) {
3864 if (limit < 1 || batchcount < 1 ||
3865 batchcount > limit || shared < 0) {
3866 res = 0;
3867 } else {
3868 res = do_tune_cpucache(cachep, limit,
3869 batchcount, shared);
3870 }
3871 break;
3872 }
3873 }
3874 mutex_unlock(&cache_chain_mutex);
3875 if (res >= 0)
3876 res = count;
3877 return res;
3878}
3879#endif
3880
3881/**
3882 * ksize - get the actual amount of memory allocated for a given object
3883 * @objp: Pointer to the object
3884 *
3885 * kmalloc may internally round up allocations and return more memory
3886 * than requested. ksize() can be used to determine the actual amount of
3887 * memory allocated. The caller may use this additional memory, even though
3888 * a smaller amount of memory was initially specified with the kmalloc call.
3889 * The caller must guarantee that objp points to a valid object previously
3890 * allocated with either kmalloc() or kmem_cache_alloc(). The object
3891 * must not be freed during the duration of the call.
3892 */
3893unsigned int ksize(const void *objp)
3894{
3895 if (unlikely(objp == NULL))
3896 return 0;
3897
3898 return obj_size(virt_to_cache(objp));
3899}