]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - mm/page_alloc.c
fs/block_dev.c: use list_for_each_entry()
[net-next-2.6.git] / mm / page_alloc.c
... / ...
CommitLineData
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/memory_hotplug.h>
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
38#include <linux/mempolicy.h>
39#include <linux/stop_machine.h>
40#include <linux/sort.h>
41#include <linux/pfn.h>
42#include <linux/backing-dev.h>
43#include <linux/fault-inject.h>
44
45#include <asm/tlbflush.h>
46#include <asm/div64.h>
47#include "internal.h"
48
49/*
50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
51 * initializer cleaner
52 */
53nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
54EXPORT_SYMBOL(node_online_map);
55nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
56EXPORT_SYMBOL(node_possible_map);
57unsigned long totalram_pages __read_mostly;
58unsigned long totalreserve_pages __read_mostly;
59long nr_swap_pages;
60int percpu_pagelist_fraction;
61
62static void __free_pages_ok(struct page *page, unsigned int order);
63
64/*
65 * results with 256, 32 in the lowmem_reserve sysctl:
66 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67 * 1G machine -> (16M dma, 784M normal, 224M high)
68 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
71 *
72 * TBD: should special case ZONE_DMA32 machines here - in those we normally
73 * don't need any ZONE_NORMAL reservation
74 */
75int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
76#ifdef CONFIG_ZONE_DMA
77 256,
78#endif
79#ifdef CONFIG_ZONE_DMA32
80 256,
81#endif
82#ifdef CONFIG_HIGHMEM
83 32
84#endif
85};
86
87EXPORT_SYMBOL(totalram_pages);
88
89static char * const zone_names[MAX_NR_ZONES] = {
90#ifdef CONFIG_ZONE_DMA
91 "DMA",
92#endif
93#ifdef CONFIG_ZONE_DMA32
94 "DMA32",
95#endif
96 "Normal",
97#ifdef CONFIG_HIGHMEM
98 "HighMem"
99#endif
100};
101
102int min_free_kbytes = 1024;
103
104unsigned long __meminitdata nr_kernel_pages;
105unsigned long __meminitdata nr_all_pages;
106static unsigned long __meminitdata dma_reserve;
107
108#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
109 /*
110 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
111 * ranges of memory (RAM) that may be registered with add_active_range().
112 * Ranges passed to add_active_range() will be merged if possible
113 * so the number of times add_active_range() can be called is
114 * related to the number of nodes and the number of holes
115 */
116 #ifdef CONFIG_MAX_ACTIVE_REGIONS
117 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
118 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
119 #else
120 #if MAX_NUMNODES >= 32
121 /* If there can be many nodes, allow up to 50 holes per node */
122 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
123 #else
124 /* By default, allow up to 256 distinct regions */
125 #define MAX_ACTIVE_REGIONS 256
126 #endif
127 #endif
128
129 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
130 static int __meminitdata nr_nodemap_entries;
131 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
132 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
133#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
134 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
135 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
136#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
137#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
138
139#if MAX_NUMNODES > 1
140int nr_node_ids __read_mostly = MAX_NUMNODES;
141EXPORT_SYMBOL(nr_node_ids);
142#endif
143
144#ifdef CONFIG_DEBUG_VM
145static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
146{
147 int ret = 0;
148 unsigned seq;
149 unsigned long pfn = page_to_pfn(page);
150
151 do {
152 seq = zone_span_seqbegin(zone);
153 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
154 ret = 1;
155 else if (pfn < zone->zone_start_pfn)
156 ret = 1;
157 } while (zone_span_seqretry(zone, seq));
158
159 return ret;
160}
161
162static int page_is_consistent(struct zone *zone, struct page *page)
163{
164 if (!pfn_valid_within(page_to_pfn(page)))
165 return 0;
166 if (zone != page_zone(page))
167 return 0;
168
169 return 1;
170}
171/*
172 * Temporary debugging check for pages not lying within a given zone.
173 */
174static int bad_range(struct zone *zone, struct page *page)
175{
176 if (page_outside_zone_boundaries(zone, page))
177 return 1;
178 if (!page_is_consistent(zone, page))
179 return 1;
180
181 return 0;
182}
183#else
184static inline int bad_range(struct zone *zone, struct page *page)
185{
186 return 0;
187}
188#endif
189
190static void bad_page(struct page *page)
191{
192 printk(KERN_EMERG "Bad page state in process '%s'\n"
193 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
194 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
195 KERN_EMERG "Backtrace:\n",
196 current->comm, page, (int)(2*sizeof(unsigned long)),
197 (unsigned long)page->flags, page->mapping,
198 page_mapcount(page), page_count(page));
199 dump_stack();
200 page->flags &= ~(1 << PG_lru |
201 1 << PG_private |
202 1 << PG_locked |
203 1 << PG_active |
204 1 << PG_dirty |
205 1 << PG_reclaim |
206 1 << PG_slab |
207 1 << PG_swapcache |
208 1 << PG_writeback |
209 1 << PG_buddy );
210 set_page_count(page, 0);
211 reset_page_mapcount(page);
212 page->mapping = NULL;
213 add_taint(TAINT_BAD_PAGE);
214}
215
216/*
217 * Higher-order pages are called "compound pages". They are structured thusly:
218 *
219 * The first PAGE_SIZE page is called the "head page".
220 *
221 * The remaining PAGE_SIZE pages are called "tail pages".
222 *
223 * All pages have PG_compound set. All pages have their ->private pointing at
224 * the head page (even the head page has this).
225 *
226 * The first tail page's ->lru.next holds the address of the compound page's
227 * put_page() function. Its ->lru.prev holds the order of allocation.
228 * This usage means that zero-order pages may not be compound.
229 */
230
231static void free_compound_page(struct page *page)
232{
233 __free_pages_ok(page, compound_order(page));
234}
235
236static void prep_compound_page(struct page *page, unsigned long order)
237{
238 int i;
239 int nr_pages = 1 << order;
240
241 set_compound_page_dtor(page, free_compound_page);
242 set_compound_order(page, order);
243 __SetPageHead(page);
244 for (i = 1; i < nr_pages; i++) {
245 struct page *p = page + i;
246
247 __SetPageTail(p);
248 p->first_page = page;
249 }
250}
251
252static void destroy_compound_page(struct page *page, unsigned long order)
253{
254 int i;
255 int nr_pages = 1 << order;
256
257 if (unlikely(compound_order(page) != order))
258 bad_page(page);
259
260 if (unlikely(!PageHead(page)))
261 bad_page(page);
262 __ClearPageHead(page);
263 for (i = 1; i < nr_pages; i++) {
264 struct page *p = page + i;
265
266 if (unlikely(!PageTail(p) |
267 (p->first_page != page)))
268 bad_page(page);
269 __ClearPageTail(p);
270 }
271}
272
273static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
274{
275 int i;
276
277 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
278 /*
279 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
280 * and __GFP_HIGHMEM from hard or soft interrupt context.
281 */
282 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
283 for (i = 0; i < (1 << order); i++)
284 clear_highpage(page + i);
285}
286
287/*
288 * function for dealing with page's order in buddy system.
289 * zone->lock is already acquired when we use these.
290 * So, we don't need atomic page->flags operations here.
291 */
292static inline unsigned long page_order(struct page *page)
293{
294 return page_private(page);
295}
296
297static inline void set_page_order(struct page *page, int order)
298{
299 set_page_private(page, order);
300 __SetPageBuddy(page);
301}
302
303static inline void rmv_page_order(struct page *page)
304{
305 __ClearPageBuddy(page);
306 set_page_private(page, 0);
307}
308
309/*
310 * Locate the struct page for both the matching buddy in our
311 * pair (buddy1) and the combined O(n+1) page they form (page).
312 *
313 * 1) Any buddy B1 will have an order O twin B2 which satisfies
314 * the following equation:
315 * B2 = B1 ^ (1 << O)
316 * For example, if the starting buddy (buddy2) is #8 its order
317 * 1 buddy is #10:
318 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
319 *
320 * 2) Any buddy B will have an order O+1 parent P which
321 * satisfies the following equation:
322 * P = B & ~(1 << O)
323 *
324 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
325 */
326static inline struct page *
327__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
328{
329 unsigned long buddy_idx = page_idx ^ (1 << order);
330
331 return page + (buddy_idx - page_idx);
332}
333
334static inline unsigned long
335__find_combined_index(unsigned long page_idx, unsigned int order)
336{
337 return (page_idx & ~(1 << order));
338}
339
340/*
341 * This function checks whether a page is free && is the buddy
342 * we can do coalesce a page and its buddy if
343 * (a) the buddy is not in a hole &&
344 * (b) the buddy is in the buddy system &&
345 * (c) a page and its buddy have the same order &&
346 * (d) a page and its buddy are in the same zone.
347 *
348 * For recording whether a page is in the buddy system, we use PG_buddy.
349 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
350 *
351 * For recording page's order, we use page_private(page).
352 */
353static inline int page_is_buddy(struct page *page, struct page *buddy,
354 int order)
355{
356 if (!pfn_valid_within(page_to_pfn(buddy)))
357 return 0;
358
359 if (page_zone_id(page) != page_zone_id(buddy))
360 return 0;
361
362 if (PageBuddy(buddy) && page_order(buddy) == order) {
363 BUG_ON(page_count(buddy) != 0);
364 return 1;
365 }
366 return 0;
367}
368
369/*
370 * Freeing function for a buddy system allocator.
371 *
372 * The concept of a buddy system is to maintain direct-mapped table
373 * (containing bit values) for memory blocks of various "orders".
374 * The bottom level table contains the map for the smallest allocatable
375 * units of memory (here, pages), and each level above it describes
376 * pairs of units from the levels below, hence, "buddies".
377 * At a high level, all that happens here is marking the table entry
378 * at the bottom level available, and propagating the changes upward
379 * as necessary, plus some accounting needed to play nicely with other
380 * parts of the VM system.
381 * At each level, we keep a list of pages, which are heads of continuous
382 * free pages of length of (1 << order) and marked with PG_buddy. Page's
383 * order is recorded in page_private(page) field.
384 * So when we are allocating or freeing one, we can derive the state of the
385 * other. That is, if we allocate a small block, and both were
386 * free, the remainder of the region must be split into blocks.
387 * If a block is freed, and its buddy is also free, then this
388 * triggers coalescing into a block of larger size.
389 *
390 * -- wli
391 */
392
393static inline void __free_one_page(struct page *page,
394 struct zone *zone, unsigned int order)
395{
396 unsigned long page_idx;
397 int order_size = 1 << order;
398
399 if (unlikely(PageCompound(page)))
400 destroy_compound_page(page, order);
401
402 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
403
404 VM_BUG_ON(page_idx & (order_size - 1));
405 VM_BUG_ON(bad_range(zone, page));
406
407 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
408 while (order < MAX_ORDER-1) {
409 unsigned long combined_idx;
410 struct free_area *area;
411 struct page *buddy;
412
413 buddy = __page_find_buddy(page, page_idx, order);
414 if (!page_is_buddy(page, buddy, order))
415 break; /* Move the buddy up one level. */
416
417 list_del(&buddy->lru);
418 area = zone->free_area + order;
419 area->nr_free--;
420 rmv_page_order(buddy);
421 combined_idx = __find_combined_index(page_idx, order);
422 page = page + (combined_idx - page_idx);
423 page_idx = combined_idx;
424 order++;
425 }
426 set_page_order(page, order);
427 list_add(&page->lru, &zone->free_area[order].free_list);
428 zone->free_area[order].nr_free++;
429}
430
431static inline int free_pages_check(struct page *page)
432{
433 if (unlikely(page_mapcount(page) |
434 (page->mapping != NULL) |
435 (page_count(page) != 0) |
436 (page->flags & (
437 1 << PG_lru |
438 1 << PG_private |
439 1 << PG_locked |
440 1 << PG_active |
441 1 << PG_slab |
442 1 << PG_swapcache |
443 1 << PG_writeback |
444 1 << PG_reserved |
445 1 << PG_buddy ))))
446 bad_page(page);
447 /*
448 * PageReclaim == PageTail. It is only an error
449 * for PageReclaim to be set if PageCompound is clear.
450 */
451 if (unlikely(!PageCompound(page) && PageReclaim(page)))
452 bad_page(page);
453 if (PageDirty(page))
454 __ClearPageDirty(page);
455 /*
456 * For now, we report if PG_reserved was found set, but do not
457 * clear it, and do not free the page. But we shall soon need
458 * to do more, for when the ZERO_PAGE count wraps negative.
459 */
460 return PageReserved(page);
461}
462
463/*
464 * Frees a list of pages.
465 * Assumes all pages on list are in same zone, and of same order.
466 * count is the number of pages to free.
467 *
468 * If the zone was previously in an "all pages pinned" state then look to
469 * see if this freeing clears that state.
470 *
471 * And clear the zone's pages_scanned counter, to hold off the "all pages are
472 * pinned" detection logic.
473 */
474static void free_pages_bulk(struct zone *zone, int count,
475 struct list_head *list, int order)
476{
477 spin_lock(&zone->lock);
478 zone->all_unreclaimable = 0;
479 zone->pages_scanned = 0;
480 while (count--) {
481 struct page *page;
482
483 VM_BUG_ON(list_empty(list));
484 page = list_entry(list->prev, struct page, lru);
485 /* have to delete it as __free_one_page list manipulates */
486 list_del(&page->lru);
487 __free_one_page(page, zone, order);
488 }
489 spin_unlock(&zone->lock);
490}
491
492static void free_one_page(struct zone *zone, struct page *page, int order)
493{
494 spin_lock(&zone->lock);
495 zone->all_unreclaimable = 0;
496 zone->pages_scanned = 0;
497 __free_one_page(page, zone, order);
498 spin_unlock(&zone->lock);
499}
500
501static void __free_pages_ok(struct page *page, unsigned int order)
502{
503 unsigned long flags;
504 int i;
505 int reserved = 0;
506
507 for (i = 0 ; i < (1 << order) ; ++i)
508 reserved += free_pages_check(page + i);
509 if (reserved)
510 return;
511
512 if (!PageHighMem(page))
513 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
514 arch_free_page(page, order);
515 kernel_map_pages(page, 1 << order, 0);
516
517 local_irq_save(flags);
518 __count_vm_events(PGFREE, 1 << order);
519 free_one_page(page_zone(page), page, order);
520 local_irq_restore(flags);
521}
522
523/*
524 * permit the bootmem allocator to evade page validation on high-order frees
525 */
526void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
527{
528 if (order == 0) {
529 __ClearPageReserved(page);
530 set_page_count(page, 0);
531 set_page_refcounted(page);
532 __free_page(page);
533 } else {
534 int loop;
535
536 prefetchw(page);
537 for (loop = 0; loop < BITS_PER_LONG; loop++) {
538 struct page *p = &page[loop];
539
540 if (loop + 1 < BITS_PER_LONG)
541 prefetchw(p + 1);
542 __ClearPageReserved(p);
543 set_page_count(p, 0);
544 }
545
546 set_page_refcounted(page);
547 __free_pages(page, order);
548 }
549}
550
551
552/*
553 * The order of subdivision here is critical for the IO subsystem.
554 * Please do not alter this order without good reasons and regression
555 * testing. Specifically, as large blocks of memory are subdivided,
556 * the order in which smaller blocks are delivered depends on the order
557 * they're subdivided in this function. This is the primary factor
558 * influencing the order in which pages are delivered to the IO
559 * subsystem according to empirical testing, and this is also justified
560 * by considering the behavior of a buddy system containing a single
561 * large block of memory acted on by a series of small allocations.
562 * This behavior is a critical factor in sglist merging's success.
563 *
564 * -- wli
565 */
566static inline void expand(struct zone *zone, struct page *page,
567 int low, int high, struct free_area *area)
568{
569 unsigned long size = 1 << high;
570
571 while (high > low) {
572 area--;
573 high--;
574 size >>= 1;
575 VM_BUG_ON(bad_range(zone, &page[size]));
576 list_add(&page[size].lru, &area->free_list);
577 area->nr_free++;
578 set_page_order(&page[size], high);
579 }
580}
581
582/*
583 * This page is about to be returned from the page allocator
584 */
585static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
586{
587 if (unlikely(page_mapcount(page) |
588 (page->mapping != NULL) |
589 (page_count(page) != 0) |
590 (page->flags & (
591 1 << PG_lru |
592 1 << PG_private |
593 1 << PG_locked |
594 1 << PG_active |
595 1 << PG_dirty |
596 1 << PG_reclaim |
597 1 << PG_slab |
598 1 << PG_swapcache |
599 1 << PG_writeback |
600 1 << PG_reserved |
601 1 << PG_buddy ))))
602 bad_page(page);
603
604 /*
605 * For now, we report if PG_reserved was found set, but do not
606 * clear it, and do not allocate the page: as a safety net.
607 */
608 if (PageReserved(page))
609 return 1;
610
611 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
612 1 << PG_referenced | 1 << PG_arch_1 |
613 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
614 set_page_private(page, 0);
615 set_page_refcounted(page);
616
617 arch_alloc_page(page, order);
618 kernel_map_pages(page, 1 << order, 1);
619
620 if (gfp_flags & __GFP_ZERO)
621 prep_zero_page(page, order, gfp_flags);
622
623 if (order && (gfp_flags & __GFP_COMP))
624 prep_compound_page(page, order);
625
626 return 0;
627}
628
629/*
630 * Do the hard work of removing an element from the buddy allocator.
631 * Call me with the zone->lock already held.
632 */
633static struct page *__rmqueue(struct zone *zone, unsigned int order)
634{
635 struct free_area * area;
636 unsigned int current_order;
637 struct page *page;
638
639 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
640 area = zone->free_area + current_order;
641 if (list_empty(&area->free_list))
642 continue;
643
644 page = list_entry(area->free_list.next, struct page, lru);
645 list_del(&page->lru);
646 rmv_page_order(page);
647 area->nr_free--;
648 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
649 expand(zone, page, order, current_order, area);
650 return page;
651 }
652
653 return NULL;
654}
655
656/*
657 * Obtain a specified number of elements from the buddy allocator, all under
658 * a single hold of the lock, for efficiency. Add them to the supplied list.
659 * Returns the number of new pages which were placed at *list.
660 */
661static int rmqueue_bulk(struct zone *zone, unsigned int order,
662 unsigned long count, struct list_head *list)
663{
664 int i;
665
666 spin_lock(&zone->lock);
667 for (i = 0; i < count; ++i) {
668 struct page *page = __rmqueue(zone, order);
669 if (unlikely(page == NULL))
670 break;
671 list_add_tail(&page->lru, list);
672 }
673 spin_unlock(&zone->lock);
674 return i;
675}
676
677#ifdef CONFIG_NUMA
678/*
679 * Called from the vmstat counter updater to drain pagesets of this
680 * currently executing processor on remote nodes after they have
681 * expired.
682 *
683 * Note that this function must be called with the thread pinned to
684 * a single processor.
685 */
686void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
687{
688 unsigned long flags;
689 int to_drain;
690
691 local_irq_save(flags);
692 if (pcp->count >= pcp->batch)
693 to_drain = pcp->batch;
694 else
695 to_drain = pcp->count;
696 free_pages_bulk(zone, to_drain, &pcp->list, 0);
697 pcp->count -= to_drain;
698 local_irq_restore(flags);
699}
700#endif
701
702static void __drain_pages(unsigned int cpu)
703{
704 unsigned long flags;
705 struct zone *zone;
706 int i;
707
708 for_each_zone(zone) {
709 struct per_cpu_pageset *pset;
710
711 if (!populated_zone(zone))
712 continue;
713
714 pset = zone_pcp(zone, cpu);
715 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
716 struct per_cpu_pages *pcp;
717
718 pcp = &pset->pcp[i];
719 local_irq_save(flags);
720 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
721 pcp->count = 0;
722 local_irq_restore(flags);
723 }
724 }
725}
726
727#ifdef CONFIG_PM
728
729void mark_free_pages(struct zone *zone)
730{
731 unsigned long pfn, max_zone_pfn;
732 unsigned long flags;
733 int order;
734 struct list_head *curr;
735
736 if (!zone->spanned_pages)
737 return;
738
739 spin_lock_irqsave(&zone->lock, flags);
740
741 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
742 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
743 if (pfn_valid(pfn)) {
744 struct page *page = pfn_to_page(pfn);
745
746 if (!swsusp_page_is_forbidden(page))
747 swsusp_unset_page_free(page);
748 }
749
750 for (order = MAX_ORDER - 1; order >= 0; --order)
751 list_for_each(curr, &zone->free_area[order].free_list) {
752 unsigned long i;
753
754 pfn = page_to_pfn(list_entry(curr, struct page, lru));
755 for (i = 0; i < (1UL << order); i++)
756 swsusp_set_page_free(pfn_to_page(pfn + i));
757 }
758
759 spin_unlock_irqrestore(&zone->lock, flags);
760}
761
762/*
763 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
764 */
765void drain_local_pages(void)
766{
767 unsigned long flags;
768
769 local_irq_save(flags);
770 __drain_pages(smp_processor_id());
771 local_irq_restore(flags);
772}
773#endif /* CONFIG_PM */
774
775/*
776 * Free a 0-order page
777 */
778static void fastcall free_hot_cold_page(struct page *page, int cold)
779{
780 struct zone *zone = page_zone(page);
781 struct per_cpu_pages *pcp;
782 unsigned long flags;
783
784 if (PageAnon(page))
785 page->mapping = NULL;
786 if (free_pages_check(page))
787 return;
788
789 if (!PageHighMem(page))
790 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
791 arch_free_page(page, 0);
792 kernel_map_pages(page, 1, 0);
793
794 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
795 local_irq_save(flags);
796 __count_vm_event(PGFREE);
797 list_add(&page->lru, &pcp->list);
798 pcp->count++;
799 if (pcp->count >= pcp->high) {
800 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
801 pcp->count -= pcp->batch;
802 }
803 local_irq_restore(flags);
804 put_cpu();
805}
806
807void fastcall free_hot_page(struct page *page)
808{
809 free_hot_cold_page(page, 0);
810}
811
812void fastcall free_cold_page(struct page *page)
813{
814 free_hot_cold_page(page, 1);
815}
816
817/*
818 * split_page takes a non-compound higher-order page, and splits it into
819 * n (1<<order) sub-pages: page[0..n]
820 * Each sub-page must be freed individually.
821 *
822 * Note: this is probably too low level an operation for use in drivers.
823 * Please consult with lkml before using this in your driver.
824 */
825void split_page(struct page *page, unsigned int order)
826{
827 int i;
828
829 VM_BUG_ON(PageCompound(page));
830 VM_BUG_ON(!page_count(page));
831 for (i = 1; i < (1 << order); i++)
832 set_page_refcounted(page + i);
833}
834
835/*
836 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
837 * we cheat by calling it from here, in the order > 0 path. Saves a branch
838 * or two.
839 */
840static struct page *buffered_rmqueue(struct zonelist *zonelist,
841 struct zone *zone, int order, gfp_t gfp_flags)
842{
843 unsigned long flags;
844 struct page *page;
845 int cold = !!(gfp_flags & __GFP_COLD);
846 int cpu;
847
848again:
849 cpu = get_cpu();
850 if (likely(order == 0)) {
851 struct per_cpu_pages *pcp;
852
853 pcp = &zone_pcp(zone, cpu)->pcp[cold];
854 local_irq_save(flags);
855 if (!pcp->count) {
856 pcp->count = rmqueue_bulk(zone, 0,
857 pcp->batch, &pcp->list);
858 if (unlikely(!pcp->count))
859 goto failed;
860 }
861 page = list_entry(pcp->list.next, struct page, lru);
862 list_del(&page->lru);
863 pcp->count--;
864 } else {
865 spin_lock_irqsave(&zone->lock, flags);
866 page = __rmqueue(zone, order);
867 spin_unlock(&zone->lock);
868 if (!page)
869 goto failed;
870 }
871
872 __count_zone_vm_events(PGALLOC, zone, 1 << order);
873 zone_statistics(zonelist, zone);
874 local_irq_restore(flags);
875 put_cpu();
876
877 VM_BUG_ON(bad_range(zone, page));
878 if (prep_new_page(page, order, gfp_flags))
879 goto again;
880 return page;
881
882failed:
883 local_irq_restore(flags);
884 put_cpu();
885 return NULL;
886}
887
888#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
889#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
890#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
891#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
892#define ALLOC_HARDER 0x10 /* try to alloc harder */
893#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
894#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
895
896#ifdef CONFIG_FAIL_PAGE_ALLOC
897
898static struct fail_page_alloc_attr {
899 struct fault_attr attr;
900
901 u32 ignore_gfp_highmem;
902 u32 ignore_gfp_wait;
903
904#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
905
906 struct dentry *ignore_gfp_highmem_file;
907 struct dentry *ignore_gfp_wait_file;
908
909#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
910
911} fail_page_alloc = {
912 .attr = FAULT_ATTR_INITIALIZER,
913 .ignore_gfp_wait = 1,
914 .ignore_gfp_highmem = 1,
915};
916
917static int __init setup_fail_page_alloc(char *str)
918{
919 return setup_fault_attr(&fail_page_alloc.attr, str);
920}
921__setup("fail_page_alloc=", setup_fail_page_alloc);
922
923static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
924{
925 if (gfp_mask & __GFP_NOFAIL)
926 return 0;
927 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
928 return 0;
929 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
930 return 0;
931
932 return should_fail(&fail_page_alloc.attr, 1 << order);
933}
934
935#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
936
937static int __init fail_page_alloc_debugfs(void)
938{
939 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
940 struct dentry *dir;
941 int err;
942
943 err = init_fault_attr_dentries(&fail_page_alloc.attr,
944 "fail_page_alloc");
945 if (err)
946 return err;
947 dir = fail_page_alloc.attr.dentries.dir;
948
949 fail_page_alloc.ignore_gfp_wait_file =
950 debugfs_create_bool("ignore-gfp-wait", mode, dir,
951 &fail_page_alloc.ignore_gfp_wait);
952
953 fail_page_alloc.ignore_gfp_highmem_file =
954 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
955 &fail_page_alloc.ignore_gfp_highmem);
956
957 if (!fail_page_alloc.ignore_gfp_wait_file ||
958 !fail_page_alloc.ignore_gfp_highmem_file) {
959 err = -ENOMEM;
960 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
961 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
962 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
963 }
964
965 return err;
966}
967
968late_initcall(fail_page_alloc_debugfs);
969
970#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
971
972#else /* CONFIG_FAIL_PAGE_ALLOC */
973
974static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
975{
976 return 0;
977}
978
979#endif /* CONFIG_FAIL_PAGE_ALLOC */
980
981/*
982 * Return 1 if free pages are above 'mark'. This takes into account the order
983 * of the allocation.
984 */
985int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
986 int classzone_idx, int alloc_flags)
987{
988 /* free_pages my go negative - that's OK */
989 long min = mark;
990 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
991 int o;
992
993 if (alloc_flags & ALLOC_HIGH)
994 min -= min / 2;
995 if (alloc_flags & ALLOC_HARDER)
996 min -= min / 4;
997
998 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
999 return 0;
1000 for (o = 0; o < order; o++) {
1001 /* At the next order, this order's pages become unavailable */
1002 free_pages -= z->free_area[o].nr_free << o;
1003
1004 /* Require fewer higher order pages to be free */
1005 min >>= 1;
1006
1007 if (free_pages <= min)
1008 return 0;
1009 }
1010 return 1;
1011}
1012
1013#ifdef CONFIG_NUMA
1014/*
1015 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1016 * skip over zones that are not allowed by the cpuset, or that have
1017 * been recently (in last second) found to be nearly full. See further
1018 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1019 * that have to skip over alot of full or unallowed zones.
1020 *
1021 * If the zonelist cache is present in the passed in zonelist, then
1022 * returns a pointer to the allowed node mask (either the current
1023 * tasks mems_allowed, or node_online_map.)
1024 *
1025 * If the zonelist cache is not available for this zonelist, does
1026 * nothing and returns NULL.
1027 *
1028 * If the fullzones BITMAP in the zonelist cache is stale (more than
1029 * a second since last zap'd) then we zap it out (clear its bits.)
1030 *
1031 * We hold off even calling zlc_setup, until after we've checked the
1032 * first zone in the zonelist, on the theory that most allocations will
1033 * be satisfied from that first zone, so best to examine that zone as
1034 * quickly as we can.
1035 */
1036static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1037{
1038 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1039 nodemask_t *allowednodes; /* zonelist_cache approximation */
1040
1041 zlc = zonelist->zlcache_ptr;
1042 if (!zlc)
1043 return NULL;
1044
1045 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1046 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1047 zlc->last_full_zap = jiffies;
1048 }
1049
1050 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1051 &cpuset_current_mems_allowed :
1052 &node_online_map;
1053 return allowednodes;
1054}
1055
1056/*
1057 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1058 * if it is worth looking at further for free memory:
1059 * 1) Check that the zone isn't thought to be full (doesn't have its
1060 * bit set in the zonelist_cache fullzones BITMAP).
1061 * 2) Check that the zones node (obtained from the zonelist_cache
1062 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1063 * Return true (non-zero) if zone is worth looking at further, or
1064 * else return false (zero) if it is not.
1065 *
1066 * This check -ignores- the distinction between various watermarks,
1067 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1068 * found to be full for any variation of these watermarks, it will
1069 * be considered full for up to one second by all requests, unless
1070 * we are so low on memory on all allowed nodes that we are forced
1071 * into the second scan of the zonelist.
1072 *
1073 * In the second scan we ignore this zonelist cache and exactly
1074 * apply the watermarks to all zones, even it is slower to do so.
1075 * We are low on memory in the second scan, and should leave no stone
1076 * unturned looking for a free page.
1077 */
1078static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1079 nodemask_t *allowednodes)
1080{
1081 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1082 int i; /* index of *z in zonelist zones */
1083 int n; /* node that zone *z is on */
1084
1085 zlc = zonelist->zlcache_ptr;
1086 if (!zlc)
1087 return 1;
1088
1089 i = z - zonelist->zones;
1090 n = zlc->z_to_n[i];
1091
1092 /* This zone is worth trying if it is allowed but not full */
1093 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1094}
1095
1096/*
1097 * Given 'z' scanning a zonelist, set the corresponding bit in
1098 * zlc->fullzones, so that subsequent attempts to allocate a page
1099 * from that zone don't waste time re-examining it.
1100 */
1101static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1102{
1103 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1104 int i; /* index of *z in zonelist zones */
1105
1106 zlc = zonelist->zlcache_ptr;
1107 if (!zlc)
1108 return;
1109
1110 i = z - zonelist->zones;
1111
1112 set_bit(i, zlc->fullzones);
1113}
1114
1115#else /* CONFIG_NUMA */
1116
1117static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1118{
1119 return NULL;
1120}
1121
1122static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1123 nodemask_t *allowednodes)
1124{
1125 return 1;
1126}
1127
1128static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1129{
1130}
1131#endif /* CONFIG_NUMA */
1132
1133/*
1134 * get_page_from_freelist goes through the zonelist trying to allocate
1135 * a page.
1136 */
1137static struct page *
1138get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1139 struct zonelist *zonelist, int alloc_flags)
1140{
1141 struct zone **z;
1142 struct page *page = NULL;
1143 int classzone_idx = zone_idx(zonelist->zones[0]);
1144 struct zone *zone;
1145 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1146 int zlc_active = 0; /* set if using zonelist_cache */
1147 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1148
1149zonelist_scan:
1150 /*
1151 * Scan zonelist, looking for a zone with enough free.
1152 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1153 */
1154 z = zonelist->zones;
1155
1156 do {
1157 if (NUMA_BUILD && zlc_active &&
1158 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1159 continue;
1160 zone = *z;
1161 if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1162 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
1163 break;
1164 if ((alloc_flags & ALLOC_CPUSET) &&
1165 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1166 goto try_next_zone;
1167
1168 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1169 unsigned long mark;
1170 if (alloc_flags & ALLOC_WMARK_MIN)
1171 mark = zone->pages_min;
1172 else if (alloc_flags & ALLOC_WMARK_LOW)
1173 mark = zone->pages_low;
1174 else
1175 mark = zone->pages_high;
1176 if (!zone_watermark_ok(zone, order, mark,
1177 classzone_idx, alloc_flags)) {
1178 if (!zone_reclaim_mode ||
1179 !zone_reclaim(zone, gfp_mask, order))
1180 goto this_zone_full;
1181 }
1182 }
1183
1184 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1185 if (page)
1186 break;
1187this_zone_full:
1188 if (NUMA_BUILD)
1189 zlc_mark_zone_full(zonelist, z);
1190try_next_zone:
1191 if (NUMA_BUILD && !did_zlc_setup) {
1192 /* we do zlc_setup after the first zone is tried */
1193 allowednodes = zlc_setup(zonelist, alloc_flags);
1194 zlc_active = 1;
1195 did_zlc_setup = 1;
1196 }
1197 } while (*(++z) != NULL);
1198
1199 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1200 /* Disable zlc cache for second zonelist scan */
1201 zlc_active = 0;
1202 goto zonelist_scan;
1203 }
1204 return page;
1205}
1206
1207/*
1208 * This is the 'heart' of the zoned buddy allocator.
1209 */
1210struct page * fastcall
1211__alloc_pages(gfp_t gfp_mask, unsigned int order,
1212 struct zonelist *zonelist)
1213{
1214 const gfp_t wait = gfp_mask & __GFP_WAIT;
1215 struct zone **z;
1216 struct page *page;
1217 struct reclaim_state reclaim_state;
1218 struct task_struct *p = current;
1219 int do_retry;
1220 int alloc_flags;
1221 int did_some_progress;
1222
1223 might_sleep_if(wait);
1224
1225 if (should_fail_alloc_page(gfp_mask, order))
1226 return NULL;
1227
1228restart:
1229 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1230
1231 if (unlikely(*z == NULL)) {
1232 /* Should this ever happen?? */
1233 return NULL;
1234 }
1235
1236 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1237 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1238 if (page)
1239 goto got_pg;
1240
1241 /*
1242 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1243 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1244 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1245 * using a larger set of nodes after it has established that the
1246 * allowed per node queues are empty and that nodes are
1247 * over allocated.
1248 */
1249 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1250 goto nopage;
1251
1252 for (z = zonelist->zones; *z; z++)
1253 wakeup_kswapd(*z, order);
1254
1255 /*
1256 * OK, we're below the kswapd watermark and have kicked background
1257 * reclaim. Now things get more complex, so set up alloc_flags according
1258 * to how we want to proceed.
1259 *
1260 * The caller may dip into page reserves a bit more if the caller
1261 * cannot run direct reclaim, or if the caller has realtime scheduling
1262 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1263 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1264 */
1265 alloc_flags = ALLOC_WMARK_MIN;
1266 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1267 alloc_flags |= ALLOC_HARDER;
1268 if (gfp_mask & __GFP_HIGH)
1269 alloc_flags |= ALLOC_HIGH;
1270 if (wait)
1271 alloc_flags |= ALLOC_CPUSET;
1272
1273 /*
1274 * Go through the zonelist again. Let __GFP_HIGH and allocations
1275 * coming from realtime tasks go deeper into reserves.
1276 *
1277 * This is the last chance, in general, before the goto nopage.
1278 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1279 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1280 */
1281 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1282 if (page)
1283 goto got_pg;
1284
1285 /* This allocation should allow future memory freeing. */
1286
1287rebalance:
1288 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1289 && !in_interrupt()) {
1290 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1291nofail_alloc:
1292 /* go through the zonelist yet again, ignoring mins */
1293 page = get_page_from_freelist(gfp_mask, order,
1294 zonelist, ALLOC_NO_WATERMARKS);
1295 if (page)
1296 goto got_pg;
1297 if (gfp_mask & __GFP_NOFAIL) {
1298 congestion_wait(WRITE, HZ/50);
1299 goto nofail_alloc;
1300 }
1301 }
1302 goto nopage;
1303 }
1304
1305 /* Atomic allocations - we can't balance anything */
1306 if (!wait)
1307 goto nopage;
1308
1309 cond_resched();
1310
1311 /* We now go into synchronous reclaim */
1312 cpuset_memory_pressure_bump();
1313 p->flags |= PF_MEMALLOC;
1314 reclaim_state.reclaimed_slab = 0;
1315 p->reclaim_state = &reclaim_state;
1316
1317 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1318
1319 p->reclaim_state = NULL;
1320 p->flags &= ~PF_MEMALLOC;
1321
1322 cond_resched();
1323
1324 if (likely(did_some_progress)) {
1325 page = get_page_from_freelist(gfp_mask, order,
1326 zonelist, alloc_flags);
1327 if (page)
1328 goto got_pg;
1329 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1330 /*
1331 * Go through the zonelist yet one more time, keep
1332 * very high watermark here, this is only to catch
1333 * a parallel oom killing, we must fail if we're still
1334 * under heavy pressure.
1335 */
1336 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1337 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1338 if (page)
1339 goto got_pg;
1340
1341 out_of_memory(zonelist, gfp_mask, order);
1342 goto restart;
1343 }
1344
1345 /*
1346 * Don't let big-order allocations loop unless the caller explicitly
1347 * requests that. Wait for some write requests to complete then retry.
1348 *
1349 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1350 * <= 3, but that may not be true in other implementations.
1351 */
1352 do_retry = 0;
1353 if (!(gfp_mask & __GFP_NORETRY)) {
1354 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1355 do_retry = 1;
1356 if (gfp_mask & __GFP_NOFAIL)
1357 do_retry = 1;
1358 }
1359 if (do_retry) {
1360 congestion_wait(WRITE, HZ/50);
1361 goto rebalance;
1362 }
1363
1364nopage:
1365 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1366 printk(KERN_WARNING "%s: page allocation failure."
1367 " order:%d, mode:0x%x\n",
1368 p->comm, order, gfp_mask);
1369 dump_stack();
1370 show_mem();
1371 }
1372got_pg:
1373 return page;
1374}
1375
1376EXPORT_SYMBOL(__alloc_pages);
1377
1378/*
1379 * Common helper functions.
1380 */
1381fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1382{
1383 struct page * page;
1384 page = alloc_pages(gfp_mask, order);
1385 if (!page)
1386 return 0;
1387 return (unsigned long) page_address(page);
1388}
1389
1390EXPORT_SYMBOL(__get_free_pages);
1391
1392fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1393{
1394 struct page * page;
1395
1396 /*
1397 * get_zeroed_page() returns a 32-bit address, which cannot represent
1398 * a highmem page
1399 */
1400 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1401
1402 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1403 if (page)
1404 return (unsigned long) page_address(page);
1405 return 0;
1406}
1407
1408EXPORT_SYMBOL(get_zeroed_page);
1409
1410void __pagevec_free(struct pagevec *pvec)
1411{
1412 int i = pagevec_count(pvec);
1413
1414 while (--i >= 0)
1415 free_hot_cold_page(pvec->pages[i], pvec->cold);
1416}
1417
1418fastcall void __free_pages(struct page *page, unsigned int order)
1419{
1420 if (put_page_testzero(page)) {
1421 if (order == 0)
1422 free_hot_page(page);
1423 else
1424 __free_pages_ok(page, order);
1425 }
1426}
1427
1428EXPORT_SYMBOL(__free_pages);
1429
1430fastcall void free_pages(unsigned long addr, unsigned int order)
1431{
1432 if (addr != 0) {
1433 VM_BUG_ON(!virt_addr_valid((void *)addr));
1434 __free_pages(virt_to_page((void *)addr), order);
1435 }
1436}
1437
1438EXPORT_SYMBOL(free_pages);
1439
1440static unsigned int nr_free_zone_pages(int offset)
1441{
1442 /* Just pick one node, since fallback list is circular */
1443 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1444 unsigned int sum = 0;
1445
1446 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1447 struct zone **zonep = zonelist->zones;
1448 struct zone *zone;
1449
1450 for (zone = *zonep++; zone; zone = *zonep++) {
1451 unsigned long size = zone->present_pages;
1452 unsigned long high = zone->pages_high;
1453 if (size > high)
1454 sum += size - high;
1455 }
1456
1457 return sum;
1458}
1459
1460/*
1461 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1462 */
1463unsigned int nr_free_buffer_pages(void)
1464{
1465 return nr_free_zone_pages(gfp_zone(GFP_USER));
1466}
1467
1468/*
1469 * Amount of free RAM allocatable within all zones
1470 */
1471unsigned int nr_free_pagecache_pages(void)
1472{
1473 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1474}
1475
1476static inline void show_node(struct zone *zone)
1477{
1478 if (NUMA_BUILD)
1479 printk("Node %d ", zone_to_nid(zone));
1480}
1481
1482void si_meminfo(struct sysinfo *val)
1483{
1484 val->totalram = totalram_pages;
1485 val->sharedram = 0;
1486 val->freeram = global_page_state(NR_FREE_PAGES);
1487 val->bufferram = nr_blockdev_pages();
1488 val->totalhigh = totalhigh_pages;
1489 val->freehigh = nr_free_highpages();
1490 val->mem_unit = PAGE_SIZE;
1491}
1492
1493EXPORT_SYMBOL(si_meminfo);
1494
1495#ifdef CONFIG_NUMA
1496void si_meminfo_node(struct sysinfo *val, int nid)
1497{
1498 pg_data_t *pgdat = NODE_DATA(nid);
1499
1500 val->totalram = pgdat->node_present_pages;
1501 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1502#ifdef CONFIG_HIGHMEM
1503 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1504 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1505 NR_FREE_PAGES);
1506#else
1507 val->totalhigh = 0;
1508 val->freehigh = 0;
1509#endif
1510 val->mem_unit = PAGE_SIZE;
1511}
1512#endif
1513
1514#define K(x) ((x) << (PAGE_SHIFT-10))
1515
1516/*
1517 * Show free area list (used inside shift_scroll-lock stuff)
1518 * We also calculate the percentage fragmentation. We do this by counting the
1519 * memory on each free list with the exception of the first item on the list.
1520 */
1521void show_free_areas(void)
1522{
1523 int cpu;
1524 struct zone *zone;
1525
1526 for_each_zone(zone) {
1527 if (!populated_zone(zone))
1528 continue;
1529
1530 show_node(zone);
1531 printk("%s per-cpu:\n", zone->name);
1532
1533 for_each_online_cpu(cpu) {
1534 struct per_cpu_pageset *pageset;
1535
1536 pageset = zone_pcp(zone, cpu);
1537
1538 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1539 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1540 cpu, pageset->pcp[0].high,
1541 pageset->pcp[0].batch, pageset->pcp[0].count,
1542 pageset->pcp[1].high, pageset->pcp[1].batch,
1543 pageset->pcp[1].count);
1544 }
1545 }
1546
1547 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1548 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1549 global_page_state(NR_ACTIVE),
1550 global_page_state(NR_INACTIVE),
1551 global_page_state(NR_FILE_DIRTY),
1552 global_page_state(NR_WRITEBACK),
1553 global_page_state(NR_UNSTABLE_NFS),
1554 global_page_state(NR_FREE_PAGES),
1555 global_page_state(NR_SLAB_RECLAIMABLE) +
1556 global_page_state(NR_SLAB_UNRECLAIMABLE),
1557 global_page_state(NR_FILE_MAPPED),
1558 global_page_state(NR_PAGETABLE),
1559 global_page_state(NR_BOUNCE));
1560
1561 for_each_zone(zone) {
1562 int i;
1563
1564 if (!populated_zone(zone))
1565 continue;
1566
1567 show_node(zone);
1568 printk("%s"
1569 " free:%lukB"
1570 " min:%lukB"
1571 " low:%lukB"
1572 " high:%lukB"
1573 " active:%lukB"
1574 " inactive:%lukB"
1575 " present:%lukB"
1576 " pages_scanned:%lu"
1577 " all_unreclaimable? %s"
1578 "\n",
1579 zone->name,
1580 K(zone_page_state(zone, NR_FREE_PAGES)),
1581 K(zone->pages_min),
1582 K(zone->pages_low),
1583 K(zone->pages_high),
1584 K(zone_page_state(zone, NR_ACTIVE)),
1585 K(zone_page_state(zone, NR_INACTIVE)),
1586 K(zone->present_pages),
1587 zone->pages_scanned,
1588 (zone->all_unreclaimable ? "yes" : "no")
1589 );
1590 printk("lowmem_reserve[]:");
1591 for (i = 0; i < MAX_NR_ZONES; i++)
1592 printk(" %lu", zone->lowmem_reserve[i]);
1593 printk("\n");
1594 }
1595
1596 for_each_zone(zone) {
1597 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1598
1599 if (!populated_zone(zone))
1600 continue;
1601
1602 show_node(zone);
1603 printk("%s: ", zone->name);
1604
1605 spin_lock_irqsave(&zone->lock, flags);
1606 for (order = 0; order < MAX_ORDER; order++) {
1607 nr[order] = zone->free_area[order].nr_free;
1608 total += nr[order] << order;
1609 }
1610 spin_unlock_irqrestore(&zone->lock, flags);
1611 for (order = 0; order < MAX_ORDER; order++)
1612 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1613 printk("= %lukB\n", K(total));
1614 }
1615
1616 show_swap_cache_info();
1617}
1618
1619/*
1620 * Builds allocation fallback zone lists.
1621 *
1622 * Add all populated zones of a node to the zonelist.
1623 */
1624static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1625 int nr_zones, enum zone_type zone_type)
1626{
1627 struct zone *zone;
1628
1629 BUG_ON(zone_type >= MAX_NR_ZONES);
1630 zone_type++;
1631
1632 do {
1633 zone_type--;
1634 zone = pgdat->node_zones + zone_type;
1635 if (populated_zone(zone)) {
1636 zonelist->zones[nr_zones++] = zone;
1637 check_highest_zone(zone_type);
1638 }
1639
1640 } while (zone_type);
1641 return nr_zones;
1642}
1643
1644
1645/*
1646 * zonelist_order:
1647 * 0 = automatic detection of better ordering.
1648 * 1 = order by ([node] distance, -zonetype)
1649 * 2 = order by (-zonetype, [node] distance)
1650 *
1651 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1652 * the same zonelist. So only NUMA can configure this param.
1653 */
1654#define ZONELIST_ORDER_DEFAULT 0
1655#define ZONELIST_ORDER_NODE 1
1656#define ZONELIST_ORDER_ZONE 2
1657
1658/* zonelist order in the kernel.
1659 * set_zonelist_order() will set this to NODE or ZONE.
1660 */
1661static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1662static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1663
1664
1665#ifdef CONFIG_NUMA
1666/* The value user specified ....changed by config */
1667static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1668/* string for sysctl */
1669#define NUMA_ZONELIST_ORDER_LEN 16
1670char numa_zonelist_order[16] = "default";
1671
1672/*
1673 * interface for configure zonelist ordering.
1674 * command line option "numa_zonelist_order"
1675 * = "[dD]efault - default, automatic configuration.
1676 * = "[nN]ode - order by node locality, then by zone within node
1677 * = "[zZ]one - order by zone, then by locality within zone
1678 */
1679
1680static int __parse_numa_zonelist_order(char *s)
1681{
1682 if (*s == 'd' || *s == 'D') {
1683 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1684 } else if (*s == 'n' || *s == 'N') {
1685 user_zonelist_order = ZONELIST_ORDER_NODE;
1686 } else if (*s == 'z' || *s == 'Z') {
1687 user_zonelist_order = ZONELIST_ORDER_ZONE;
1688 } else {
1689 printk(KERN_WARNING
1690 "Ignoring invalid numa_zonelist_order value: "
1691 "%s\n", s);
1692 return -EINVAL;
1693 }
1694 return 0;
1695}
1696
1697static __init int setup_numa_zonelist_order(char *s)
1698{
1699 if (s)
1700 return __parse_numa_zonelist_order(s);
1701 return 0;
1702}
1703early_param("numa_zonelist_order", setup_numa_zonelist_order);
1704
1705/*
1706 * sysctl handler for numa_zonelist_order
1707 */
1708int numa_zonelist_order_handler(ctl_table *table, int write,
1709 struct file *file, void __user *buffer, size_t *length,
1710 loff_t *ppos)
1711{
1712 char saved_string[NUMA_ZONELIST_ORDER_LEN];
1713 int ret;
1714
1715 if (write)
1716 strncpy(saved_string, (char*)table->data,
1717 NUMA_ZONELIST_ORDER_LEN);
1718 ret = proc_dostring(table, write, file, buffer, length, ppos);
1719 if (ret)
1720 return ret;
1721 if (write) {
1722 int oldval = user_zonelist_order;
1723 if (__parse_numa_zonelist_order((char*)table->data)) {
1724 /*
1725 * bogus value. restore saved string
1726 */
1727 strncpy((char*)table->data, saved_string,
1728 NUMA_ZONELIST_ORDER_LEN);
1729 user_zonelist_order = oldval;
1730 } else if (oldval != user_zonelist_order)
1731 build_all_zonelists();
1732 }
1733 return 0;
1734}
1735
1736
1737#define MAX_NODE_LOAD (num_online_nodes())
1738static int node_load[MAX_NUMNODES];
1739
1740/**
1741 * find_next_best_node - find the next node that should appear in a given node's fallback list
1742 * @node: node whose fallback list we're appending
1743 * @used_node_mask: nodemask_t of already used nodes
1744 *
1745 * We use a number of factors to determine which is the next node that should
1746 * appear on a given node's fallback list. The node should not have appeared
1747 * already in @node's fallback list, and it should be the next closest node
1748 * according to the distance array (which contains arbitrary distance values
1749 * from each node to each node in the system), and should also prefer nodes
1750 * with no CPUs, since presumably they'll have very little allocation pressure
1751 * on them otherwise.
1752 * It returns -1 if no node is found.
1753 */
1754static int find_next_best_node(int node, nodemask_t *used_node_mask)
1755{
1756 int n, val;
1757 int min_val = INT_MAX;
1758 int best_node = -1;
1759
1760 /* Use the local node if we haven't already */
1761 if (!node_isset(node, *used_node_mask)) {
1762 node_set(node, *used_node_mask);
1763 return node;
1764 }
1765
1766 for_each_online_node(n) {
1767 cpumask_t tmp;
1768
1769 /* Don't want a node to appear more than once */
1770 if (node_isset(n, *used_node_mask))
1771 continue;
1772
1773 /* Use the distance array to find the distance */
1774 val = node_distance(node, n);
1775
1776 /* Penalize nodes under us ("prefer the next node") */
1777 val += (n < node);
1778
1779 /* Give preference to headless and unused nodes */
1780 tmp = node_to_cpumask(n);
1781 if (!cpus_empty(tmp))
1782 val += PENALTY_FOR_NODE_WITH_CPUS;
1783
1784 /* Slight preference for less loaded node */
1785 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1786 val += node_load[n];
1787
1788 if (val < min_val) {
1789 min_val = val;
1790 best_node = n;
1791 }
1792 }
1793
1794 if (best_node >= 0)
1795 node_set(best_node, *used_node_mask);
1796
1797 return best_node;
1798}
1799
1800
1801/*
1802 * Build zonelists ordered by node and zones within node.
1803 * This results in maximum locality--normal zone overflows into local
1804 * DMA zone, if any--but risks exhausting DMA zone.
1805 */
1806static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1807{
1808 enum zone_type i;
1809 int j;
1810 struct zonelist *zonelist;
1811
1812 for (i = 0; i < MAX_NR_ZONES; i++) {
1813 zonelist = pgdat->node_zonelists + i;
1814 for (j = 0; zonelist->zones[j] != NULL; j++)
1815 ;
1816 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1817 zonelist->zones[j] = NULL;
1818 }
1819}
1820
1821/*
1822 * Build zonelists ordered by zone and nodes within zones.
1823 * This results in conserving DMA zone[s] until all Normal memory is
1824 * exhausted, but results in overflowing to remote node while memory
1825 * may still exist in local DMA zone.
1826 */
1827static int node_order[MAX_NUMNODES];
1828
1829static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
1830{
1831 enum zone_type i;
1832 int pos, j, node;
1833 int zone_type; /* needs to be signed */
1834 struct zone *z;
1835 struct zonelist *zonelist;
1836
1837 for (i = 0; i < MAX_NR_ZONES; i++) {
1838 zonelist = pgdat->node_zonelists + i;
1839 pos = 0;
1840 for (zone_type = i; zone_type >= 0; zone_type--) {
1841 for (j = 0; j < nr_nodes; j++) {
1842 node = node_order[j];
1843 z = &NODE_DATA(node)->node_zones[zone_type];
1844 if (populated_zone(z)) {
1845 zonelist->zones[pos++] = z;
1846 check_highest_zone(zone_type);
1847 }
1848 }
1849 }
1850 zonelist->zones[pos] = NULL;
1851 }
1852}
1853
1854static int default_zonelist_order(void)
1855{
1856 int nid, zone_type;
1857 unsigned long low_kmem_size,total_size;
1858 struct zone *z;
1859 int average_size;
1860 /*
1861 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
1862 * If they are really small and used heavily, the system can fall
1863 * into OOM very easily.
1864 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
1865 */
1866 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
1867 low_kmem_size = 0;
1868 total_size = 0;
1869 for_each_online_node(nid) {
1870 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1871 z = &NODE_DATA(nid)->node_zones[zone_type];
1872 if (populated_zone(z)) {
1873 if (zone_type < ZONE_NORMAL)
1874 low_kmem_size += z->present_pages;
1875 total_size += z->present_pages;
1876 }
1877 }
1878 }
1879 if (!low_kmem_size || /* there are no DMA area. */
1880 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
1881 return ZONELIST_ORDER_NODE;
1882 /*
1883 * look into each node's config.
1884 * If there is a node whose DMA/DMA32 memory is very big area on
1885 * local memory, NODE_ORDER may be suitable.
1886 */
1887 average_size = total_size / (num_online_nodes() + 1);
1888 for_each_online_node(nid) {
1889 low_kmem_size = 0;
1890 total_size = 0;
1891 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1892 z = &NODE_DATA(nid)->node_zones[zone_type];
1893 if (populated_zone(z)) {
1894 if (zone_type < ZONE_NORMAL)
1895 low_kmem_size += z->present_pages;
1896 total_size += z->present_pages;
1897 }
1898 }
1899 if (low_kmem_size &&
1900 total_size > average_size && /* ignore small node */
1901 low_kmem_size > total_size * 70/100)
1902 return ZONELIST_ORDER_NODE;
1903 }
1904 return ZONELIST_ORDER_ZONE;
1905}
1906
1907static void set_zonelist_order(void)
1908{
1909 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
1910 current_zonelist_order = default_zonelist_order();
1911 else
1912 current_zonelist_order = user_zonelist_order;
1913}
1914
1915static void build_zonelists(pg_data_t *pgdat)
1916{
1917 int j, node, load;
1918 enum zone_type i;
1919 nodemask_t used_mask;
1920 int local_node, prev_node;
1921 struct zonelist *zonelist;
1922 int order = current_zonelist_order;
1923
1924 /* initialize zonelists */
1925 for (i = 0; i < MAX_NR_ZONES; i++) {
1926 zonelist = pgdat->node_zonelists + i;
1927 zonelist->zones[0] = NULL;
1928 }
1929
1930 /* NUMA-aware ordering of nodes */
1931 local_node = pgdat->node_id;
1932 load = num_online_nodes();
1933 prev_node = local_node;
1934 nodes_clear(used_mask);
1935
1936 memset(node_load, 0, sizeof(node_load));
1937 memset(node_order, 0, sizeof(node_order));
1938 j = 0;
1939
1940 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1941 int distance = node_distance(local_node, node);
1942
1943 /*
1944 * If another node is sufficiently far away then it is better
1945 * to reclaim pages in a zone before going off node.
1946 */
1947 if (distance > RECLAIM_DISTANCE)
1948 zone_reclaim_mode = 1;
1949
1950 /*
1951 * We don't want to pressure a particular node.
1952 * So adding penalty to the first node in same
1953 * distance group to make it round-robin.
1954 */
1955 if (distance != node_distance(local_node, prev_node))
1956 node_load[node] = load;
1957
1958 prev_node = node;
1959 load--;
1960 if (order == ZONELIST_ORDER_NODE)
1961 build_zonelists_in_node_order(pgdat, node);
1962 else
1963 node_order[j++] = node; /* remember order */
1964 }
1965
1966 if (order == ZONELIST_ORDER_ZONE) {
1967 /* calculate node order -- i.e., DMA last! */
1968 build_zonelists_in_zone_order(pgdat, j);
1969 }
1970}
1971
1972/* Construct the zonelist performance cache - see further mmzone.h */
1973static void build_zonelist_cache(pg_data_t *pgdat)
1974{
1975 int i;
1976
1977 for (i = 0; i < MAX_NR_ZONES; i++) {
1978 struct zonelist *zonelist;
1979 struct zonelist_cache *zlc;
1980 struct zone **z;
1981
1982 zonelist = pgdat->node_zonelists + i;
1983 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
1984 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1985 for (z = zonelist->zones; *z; z++)
1986 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
1987 }
1988}
1989
1990
1991#else /* CONFIG_NUMA */
1992
1993static void set_zonelist_order(void)
1994{
1995 current_zonelist_order = ZONELIST_ORDER_ZONE;
1996}
1997
1998static void build_zonelists(pg_data_t *pgdat)
1999{
2000 int node, local_node;
2001 enum zone_type i,j;
2002
2003 local_node = pgdat->node_id;
2004 for (i = 0; i < MAX_NR_ZONES; i++) {
2005 struct zonelist *zonelist;
2006
2007 zonelist = pgdat->node_zonelists + i;
2008
2009 j = build_zonelists_node(pgdat, zonelist, 0, i);
2010 /*
2011 * Now we build the zonelist so that it contains the zones
2012 * of all the other nodes.
2013 * We don't want to pressure a particular node, so when
2014 * building the zones for node N, we make sure that the
2015 * zones coming right after the local ones are those from
2016 * node N+1 (modulo N)
2017 */
2018 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2019 if (!node_online(node))
2020 continue;
2021 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2022 }
2023 for (node = 0; node < local_node; node++) {
2024 if (!node_online(node))
2025 continue;
2026 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2027 }
2028
2029 zonelist->zones[j] = NULL;
2030 }
2031}
2032
2033/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2034static void build_zonelist_cache(pg_data_t *pgdat)
2035{
2036 int i;
2037
2038 for (i = 0; i < MAX_NR_ZONES; i++)
2039 pgdat->node_zonelists[i].zlcache_ptr = NULL;
2040}
2041
2042#endif /* CONFIG_NUMA */
2043
2044/* return values int ....just for stop_machine_run() */
2045static int __build_all_zonelists(void *dummy)
2046{
2047 int nid;
2048
2049 for_each_online_node(nid) {
2050 build_zonelists(NODE_DATA(nid));
2051 build_zonelist_cache(NODE_DATA(nid));
2052 }
2053 return 0;
2054}
2055
2056void build_all_zonelists(void)
2057{
2058 set_zonelist_order();
2059
2060 if (system_state == SYSTEM_BOOTING) {
2061 __build_all_zonelists(NULL);
2062 cpuset_init_current_mems_allowed();
2063 } else {
2064 /* we have to stop all cpus to guaranntee there is no user
2065 of zonelist */
2066 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2067 /* cpuset refresh routine should be here */
2068 }
2069 vm_total_pages = nr_free_pagecache_pages();
2070 printk("Built %i zonelists in %s order. Total pages: %ld\n",
2071 num_online_nodes(),
2072 zonelist_order_name[current_zonelist_order],
2073 vm_total_pages);
2074#ifdef CONFIG_NUMA
2075 printk("Policy zone: %s\n", zone_names[policy_zone]);
2076#endif
2077}
2078
2079/*
2080 * Helper functions to size the waitqueue hash table.
2081 * Essentially these want to choose hash table sizes sufficiently
2082 * large so that collisions trying to wait on pages are rare.
2083 * But in fact, the number of active page waitqueues on typical
2084 * systems is ridiculously low, less than 200. So this is even
2085 * conservative, even though it seems large.
2086 *
2087 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2088 * waitqueues, i.e. the size of the waitq table given the number of pages.
2089 */
2090#define PAGES_PER_WAITQUEUE 256
2091
2092#ifndef CONFIG_MEMORY_HOTPLUG
2093static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2094{
2095 unsigned long size = 1;
2096
2097 pages /= PAGES_PER_WAITQUEUE;
2098
2099 while (size < pages)
2100 size <<= 1;
2101
2102 /*
2103 * Once we have dozens or even hundreds of threads sleeping
2104 * on IO we've got bigger problems than wait queue collision.
2105 * Limit the size of the wait table to a reasonable size.
2106 */
2107 size = min(size, 4096UL);
2108
2109 return max(size, 4UL);
2110}
2111#else
2112/*
2113 * A zone's size might be changed by hot-add, so it is not possible to determine
2114 * a suitable size for its wait_table. So we use the maximum size now.
2115 *
2116 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2117 *
2118 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2119 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2120 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2121 *
2122 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2123 * or more by the traditional way. (See above). It equals:
2124 *
2125 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2126 * ia64(16K page size) : = ( 8G + 4M)byte.
2127 * powerpc (64K page size) : = (32G +16M)byte.
2128 */
2129static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2130{
2131 return 4096UL;
2132}
2133#endif
2134
2135/*
2136 * This is an integer logarithm so that shifts can be used later
2137 * to extract the more random high bits from the multiplicative
2138 * hash function before the remainder is taken.
2139 */
2140static inline unsigned long wait_table_bits(unsigned long size)
2141{
2142 return ffz(~size);
2143}
2144
2145#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2146
2147/*
2148 * Initially all pages are reserved - free ones are freed
2149 * up by free_all_bootmem() once the early boot process is
2150 * done. Non-atomic initialization, single-pass.
2151 */
2152void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2153 unsigned long start_pfn, enum memmap_context context)
2154{
2155 struct page *page;
2156 unsigned long end_pfn = start_pfn + size;
2157 unsigned long pfn;
2158
2159 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2160 /*
2161 * There can be holes in boot-time mem_map[]s
2162 * handed to this function. They do not
2163 * exist on hotplugged memory.
2164 */
2165 if (context == MEMMAP_EARLY) {
2166 if (!early_pfn_valid(pfn))
2167 continue;
2168 if (!early_pfn_in_nid(pfn, nid))
2169 continue;
2170 }
2171 page = pfn_to_page(pfn);
2172 set_page_links(page, zone, nid, pfn);
2173 init_page_count(page);
2174 reset_page_mapcount(page);
2175 SetPageReserved(page);
2176 INIT_LIST_HEAD(&page->lru);
2177#ifdef WANT_PAGE_VIRTUAL
2178 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2179 if (!is_highmem_idx(zone))
2180 set_page_address(page, __va(pfn << PAGE_SHIFT));
2181#endif
2182 }
2183}
2184
2185static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2186 struct zone *zone, unsigned long size)
2187{
2188 int order;
2189 for (order = 0; order < MAX_ORDER ; order++) {
2190 INIT_LIST_HEAD(&zone->free_area[order].free_list);
2191 zone->free_area[order].nr_free = 0;
2192 }
2193}
2194
2195#ifndef __HAVE_ARCH_MEMMAP_INIT
2196#define memmap_init(size, nid, zone, start_pfn) \
2197 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2198#endif
2199
2200static int __devinit zone_batchsize(struct zone *zone)
2201{
2202 int batch;
2203
2204 /*
2205 * The per-cpu-pages pools are set to around 1000th of the
2206 * size of the zone. But no more than 1/2 of a meg.
2207 *
2208 * OK, so we don't know how big the cache is. So guess.
2209 */
2210 batch = zone->present_pages / 1024;
2211 if (batch * PAGE_SIZE > 512 * 1024)
2212 batch = (512 * 1024) / PAGE_SIZE;
2213 batch /= 4; /* We effectively *= 4 below */
2214 if (batch < 1)
2215 batch = 1;
2216
2217 /*
2218 * Clamp the batch to a 2^n - 1 value. Having a power
2219 * of 2 value was found to be more likely to have
2220 * suboptimal cache aliasing properties in some cases.
2221 *
2222 * For example if 2 tasks are alternately allocating
2223 * batches of pages, one task can end up with a lot
2224 * of pages of one half of the possible page colors
2225 * and the other with pages of the other colors.
2226 */
2227 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2228
2229 return batch;
2230}
2231
2232inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2233{
2234 struct per_cpu_pages *pcp;
2235
2236 memset(p, 0, sizeof(*p));
2237
2238 pcp = &p->pcp[0]; /* hot */
2239 pcp->count = 0;
2240 pcp->high = 6 * batch;
2241 pcp->batch = max(1UL, 1 * batch);
2242 INIT_LIST_HEAD(&pcp->list);
2243
2244 pcp = &p->pcp[1]; /* cold*/
2245 pcp->count = 0;
2246 pcp->high = 2 * batch;
2247 pcp->batch = max(1UL, batch/2);
2248 INIT_LIST_HEAD(&pcp->list);
2249}
2250
2251/*
2252 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2253 * to the value high for the pageset p.
2254 */
2255
2256static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2257 unsigned long high)
2258{
2259 struct per_cpu_pages *pcp;
2260
2261 pcp = &p->pcp[0]; /* hot list */
2262 pcp->high = high;
2263 pcp->batch = max(1UL, high/4);
2264 if ((high/4) > (PAGE_SHIFT * 8))
2265 pcp->batch = PAGE_SHIFT * 8;
2266}
2267
2268
2269#ifdef CONFIG_NUMA
2270/*
2271 * Boot pageset table. One per cpu which is going to be used for all
2272 * zones and all nodes. The parameters will be set in such a way
2273 * that an item put on a list will immediately be handed over to
2274 * the buddy list. This is safe since pageset manipulation is done
2275 * with interrupts disabled.
2276 *
2277 * Some NUMA counter updates may also be caught by the boot pagesets.
2278 *
2279 * The boot_pagesets must be kept even after bootup is complete for
2280 * unused processors and/or zones. They do play a role for bootstrapping
2281 * hotplugged processors.
2282 *
2283 * zoneinfo_show() and maybe other functions do
2284 * not check if the processor is online before following the pageset pointer.
2285 * Other parts of the kernel may not check if the zone is available.
2286 */
2287static struct per_cpu_pageset boot_pageset[NR_CPUS];
2288
2289/*
2290 * Dynamically allocate memory for the
2291 * per cpu pageset array in struct zone.
2292 */
2293static int __cpuinit process_zones(int cpu)
2294{
2295 struct zone *zone, *dzone;
2296
2297 for_each_zone(zone) {
2298
2299 if (!populated_zone(zone))
2300 continue;
2301
2302 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2303 GFP_KERNEL, cpu_to_node(cpu));
2304 if (!zone_pcp(zone, cpu))
2305 goto bad;
2306
2307 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2308
2309 if (percpu_pagelist_fraction)
2310 setup_pagelist_highmark(zone_pcp(zone, cpu),
2311 (zone->present_pages / percpu_pagelist_fraction));
2312 }
2313
2314 return 0;
2315bad:
2316 for_each_zone(dzone) {
2317 if (dzone == zone)
2318 break;
2319 kfree(zone_pcp(dzone, cpu));
2320 zone_pcp(dzone, cpu) = NULL;
2321 }
2322 return -ENOMEM;
2323}
2324
2325static inline void free_zone_pagesets(int cpu)
2326{
2327 struct zone *zone;
2328
2329 for_each_zone(zone) {
2330 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2331
2332 /* Free per_cpu_pageset if it is slab allocated */
2333 if (pset != &boot_pageset[cpu])
2334 kfree(pset);
2335 zone_pcp(zone, cpu) = NULL;
2336 }
2337}
2338
2339static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2340 unsigned long action,
2341 void *hcpu)
2342{
2343 int cpu = (long)hcpu;
2344 int ret = NOTIFY_OK;
2345
2346 switch (action) {
2347 case CPU_UP_PREPARE:
2348 case CPU_UP_PREPARE_FROZEN:
2349 if (process_zones(cpu))
2350 ret = NOTIFY_BAD;
2351 break;
2352 case CPU_UP_CANCELED:
2353 case CPU_UP_CANCELED_FROZEN:
2354 case CPU_DEAD:
2355 case CPU_DEAD_FROZEN:
2356 free_zone_pagesets(cpu);
2357 break;
2358 default:
2359 break;
2360 }
2361 return ret;
2362}
2363
2364static struct notifier_block __cpuinitdata pageset_notifier =
2365 { &pageset_cpuup_callback, NULL, 0 };
2366
2367void __init setup_per_cpu_pageset(void)
2368{
2369 int err;
2370
2371 /* Initialize per_cpu_pageset for cpu 0.
2372 * A cpuup callback will do this for every cpu
2373 * as it comes online
2374 */
2375 err = process_zones(smp_processor_id());
2376 BUG_ON(err);
2377 register_cpu_notifier(&pageset_notifier);
2378}
2379
2380#endif
2381
2382static noinline __init_refok
2383int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2384{
2385 int i;
2386 struct pglist_data *pgdat = zone->zone_pgdat;
2387 size_t alloc_size;
2388
2389 /*
2390 * The per-page waitqueue mechanism uses hashed waitqueues
2391 * per zone.
2392 */
2393 zone->wait_table_hash_nr_entries =
2394 wait_table_hash_nr_entries(zone_size_pages);
2395 zone->wait_table_bits =
2396 wait_table_bits(zone->wait_table_hash_nr_entries);
2397 alloc_size = zone->wait_table_hash_nr_entries
2398 * sizeof(wait_queue_head_t);
2399
2400 if (system_state == SYSTEM_BOOTING) {
2401 zone->wait_table = (wait_queue_head_t *)
2402 alloc_bootmem_node(pgdat, alloc_size);
2403 } else {
2404 /*
2405 * This case means that a zone whose size was 0 gets new memory
2406 * via memory hot-add.
2407 * But it may be the case that a new node was hot-added. In
2408 * this case vmalloc() will not be able to use this new node's
2409 * memory - this wait_table must be initialized to use this new
2410 * node itself as well.
2411 * To use this new node's memory, further consideration will be
2412 * necessary.
2413 */
2414 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2415 }
2416 if (!zone->wait_table)
2417 return -ENOMEM;
2418
2419 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2420 init_waitqueue_head(zone->wait_table + i);
2421
2422 return 0;
2423}
2424
2425static __meminit void zone_pcp_init(struct zone *zone)
2426{
2427 int cpu;
2428 unsigned long batch = zone_batchsize(zone);
2429
2430 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2431#ifdef CONFIG_NUMA
2432 /* Early boot. Slab allocator not functional yet */
2433 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2434 setup_pageset(&boot_pageset[cpu],0);
2435#else
2436 setup_pageset(zone_pcp(zone,cpu), batch);
2437#endif
2438 }
2439 if (zone->present_pages)
2440 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2441 zone->name, zone->present_pages, batch);
2442}
2443
2444__meminit int init_currently_empty_zone(struct zone *zone,
2445 unsigned long zone_start_pfn,
2446 unsigned long size,
2447 enum memmap_context context)
2448{
2449 struct pglist_data *pgdat = zone->zone_pgdat;
2450 int ret;
2451 ret = zone_wait_table_init(zone, size);
2452 if (ret)
2453 return ret;
2454 pgdat->nr_zones = zone_idx(zone) + 1;
2455
2456 zone->zone_start_pfn = zone_start_pfn;
2457
2458 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2459
2460 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2461
2462 return 0;
2463}
2464
2465#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2466/*
2467 * Basic iterator support. Return the first range of PFNs for a node
2468 * Note: nid == MAX_NUMNODES returns first region regardless of node
2469 */
2470static int __meminit first_active_region_index_in_nid(int nid)
2471{
2472 int i;
2473
2474 for (i = 0; i < nr_nodemap_entries; i++)
2475 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2476 return i;
2477
2478 return -1;
2479}
2480
2481/*
2482 * Basic iterator support. Return the next active range of PFNs for a node
2483 * Note: nid == MAX_NUMNODES returns next region regardles of node
2484 */
2485static int __meminit next_active_region_index_in_nid(int index, int nid)
2486{
2487 for (index = index + 1; index < nr_nodemap_entries; index++)
2488 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2489 return index;
2490
2491 return -1;
2492}
2493
2494#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2495/*
2496 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2497 * Architectures may implement their own version but if add_active_range()
2498 * was used and there are no special requirements, this is a convenient
2499 * alternative
2500 */
2501int __meminit early_pfn_to_nid(unsigned long pfn)
2502{
2503 int i;
2504
2505 for (i = 0; i < nr_nodemap_entries; i++) {
2506 unsigned long start_pfn = early_node_map[i].start_pfn;
2507 unsigned long end_pfn = early_node_map[i].end_pfn;
2508
2509 if (start_pfn <= pfn && pfn < end_pfn)
2510 return early_node_map[i].nid;
2511 }
2512
2513 return 0;
2514}
2515#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2516
2517/* Basic iterator support to walk early_node_map[] */
2518#define for_each_active_range_index_in_nid(i, nid) \
2519 for (i = first_active_region_index_in_nid(nid); i != -1; \
2520 i = next_active_region_index_in_nid(i, nid))
2521
2522/**
2523 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2524 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2525 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2526 *
2527 * If an architecture guarantees that all ranges registered with
2528 * add_active_ranges() contain no holes and may be freed, this
2529 * this function may be used instead of calling free_bootmem() manually.
2530 */
2531void __init free_bootmem_with_active_regions(int nid,
2532 unsigned long max_low_pfn)
2533{
2534 int i;
2535
2536 for_each_active_range_index_in_nid(i, nid) {
2537 unsigned long size_pages = 0;
2538 unsigned long end_pfn = early_node_map[i].end_pfn;
2539
2540 if (early_node_map[i].start_pfn >= max_low_pfn)
2541 continue;
2542
2543 if (end_pfn > max_low_pfn)
2544 end_pfn = max_low_pfn;
2545
2546 size_pages = end_pfn - early_node_map[i].start_pfn;
2547 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2548 PFN_PHYS(early_node_map[i].start_pfn),
2549 size_pages << PAGE_SHIFT);
2550 }
2551}
2552
2553/**
2554 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2555 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2556 *
2557 * If an architecture guarantees that all ranges registered with
2558 * add_active_ranges() contain no holes and may be freed, this
2559 * function may be used instead of calling memory_present() manually.
2560 */
2561void __init sparse_memory_present_with_active_regions(int nid)
2562{
2563 int i;
2564
2565 for_each_active_range_index_in_nid(i, nid)
2566 memory_present(early_node_map[i].nid,
2567 early_node_map[i].start_pfn,
2568 early_node_map[i].end_pfn);
2569}
2570
2571/**
2572 * push_node_boundaries - Push node boundaries to at least the requested boundary
2573 * @nid: The nid of the node to push the boundary for
2574 * @start_pfn: The start pfn of the node
2575 * @end_pfn: The end pfn of the node
2576 *
2577 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2578 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2579 * be hotplugged even though no physical memory exists. This function allows
2580 * an arch to push out the node boundaries so mem_map is allocated that can
2581 * be used later.
2582 */
2583#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2584void __init push_node_boundaries(unsigned int nid,
2585 unsigned long start_pfn, unsigned long end_pfn)
2586{
2587 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2588 nid, start_pfn, end_pfn);
2589
2590 /* Initialise the boundary for this node if necessary */
2591 if (node_boundary_end_pfn[nid] == 0)
2592 node_boundary_start_pfn[nid] = -1UL;
2593
2594 /* Update the boundaries */
2595 if (node_boundary_start_pfn[nid] > start_pfn)
2596 node_boundary_start_pfn[nid] = start_pfn;
2597 if (node_boundary_end_pfn[nid] < end_pfn)
2598 node_boundary_end_pfn[nid] = end_pfn;
2599}
2600
2601/* If necessary, push the node boundary out for reserve hotadd */
2602static void __meminit account_node_boundary(unsigned int nid,
2603 unsigned long *start_pfn, unsigned long *end_pfn)
2604{
2605 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2606 nid, *start_pfn, *end_pfn);
2607
2608 /* Return if boundary information has not been provided */
2609 if (node_boundary_end_pfn[nid] == 0)
2610 return;
2611
2612 /* Check the boundaries and update if necessary */
2613 if (node_boundary_start_pfn[nid] < *start_pfn)
2614 *start_pfn = node_boundary_start_pfn[nid];
2615 if (node_boundary_end_pfn[nid] > *end_pfn)
2616 *end_pfn = node_boundary_end_pfn[nid];
2617}
2618#else
2619void __init push_node_boundaries(unsigned int nid,
2620 unsigned long start_pfn, unsigned long end_pfn) {}
2621
2622static void __meminit account_node_boundary(unsigned int nid,
2623 unsigned long *start_pfn, unsigned long *end_pfn) {}
2624#endif
2625
2626
2627/**
2628 * get_pfn_range_for_nid - Return the start and end page frames for a node
2629 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2630 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2631 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2632 *
2633 * It returns the start and end page frame of a node based on information
2634 * provided by an arch calling add_active_range(). If called for a node
2635 * with no available memory, a warning is printed and the start and end
2636 * PFNs will be 0.
2637 */
2638void __meminit get_pfn_range_for_nid(unsigned int nid,
2639 unsigned long *start_pfn, unsigned long *end_pfn)
2640{
2641 int i;
2642 *start_pfn = -1UL;
2643 *end_pfn = 0;
2644
2645 for_each_active_range_index_in_nid(i, nid) {
2646 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2647 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2648 }
2649
2650 if (*start_pfn == -1UL) {
2651 printk(KERN_WARNING "Node %u active with no memory\n", nid);
2652 *start_pfn = 0;
2653 }
2654
2655 /* Push the node boundaries out if requested */
2656 account_node_boundary(nid, start_pfn, end_pfn);
2657}
2658
2659/*
2660 * Return the number of pages a zone spans in a node, including holes
2661 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2662 */
2663static unsigned long __meminit zone_spanned_pages_in_node(int nid,
2664 unsigned long zone_type,
2665 unsigned long *ignored)
2666{
2667 unsigned long node_start_pfn, node_end_pfn;
2668 unsigned long zone_start_pfn, zone_end_pfn;
2669
2670 /* Get the start and end of the node and zone */
2671 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2672 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2673 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2674
2675 /* Check that this node has pages within the zone's required range */
2676 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2677 return 0;
2678
2679 /* Move the zone boundaries inside the node if necessary */
2680 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2681 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2682
2683 /* Return the spanned pages */
2684 return zone_end_pfn - zone_start_pfn;
2685}
2686
2687/*
2688 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2689 * then all holes in the requested range will be accounted for.
2690 */
2691unsigned long __meminit __absent_pages_in_range(int nid,
2692 unsigned long range_start_pfn,
2693 unsigned long range_end_pfn)
2694{
2695 int i = 0;
2696 unsigned long prev_end_pfn = 0, hole_pages = 0;
2697 unsigned long start_pfn;
2698
2699 /* Find the end_pfn of the first active range of pfns in the node */
2700 i = first_active_region_index_in_nid(nid);
2701 if (i == -1)
2702 return 0;
2703
2704 /* Account for ranges before physical memory on this node */
2705 if (early_node_map[i].start_pfn > range_start_pfn)
2706 hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2707
2708 prev_end_pfn = early_node_map[i].start_pfn;
2709
2710 /* Find all holes for the zone within the node */
2711 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2712
2713 /* No need to continue if prev_end_pfn is outside the zone */
2714 if (prev_end_pfn >= range_end_pfn)
2715 break;
2716
2717 /* Make sure the end of the zone is not within the hole */
2718 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2719 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2720
2721 /* Update the hole size cound and move on */
2722 if (start_pfn > range_start_pfn) {
2723 BUG_ON(prev_end_pfn > start_pfn);
2724 hole_pages += start_pfn - prev_end_pfn;
2725 }
2726 prev_end_pfn = early_node_map[i].end_pfn;
2727 }
2728
2729 /* Account for ranges past physical memory on this node */
2730 if (range_end_pfn > prev_end_pfn)
2731 hole_pages += range_end_pfn -
2732 max(range_start_pfn, prev_end_pfn);
2733
2734 return hole_pages;
2735}
2736
2737/**
2738 * absent_pages_in_range - Return number of page frames in holes within a range
2739 * @start_pfn: The start PFN to start searching for holes
2740 * @end_pfn: The end PFN to stop searching for holes
2741 *
2742 * It returns the number of pages frames in memory holes within a range.
2743 */
2744unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2745 unsigned long end_pfn)
2746{
2747 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2748}
2749
2750/* Return the number of page frames in holes in a zone on a node */
2751static unsigned long __meminit zone_absent_pages_in_node(int nid,
2752 unsigned long zone_type,
2753 unsigned long *ignored)
2754{
2755 unsigned long node_start_pfn, node_end_pfn;
2756 unsigned long zone_start_pfn, zone_end_pfn;
2757
2758 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2759 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2760 node_start_pfn);
2761 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2762 node_end_pfn);
2763
2764 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2765}
2766
2767#else
2768static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
2769 unsigned long zone_type,
2770 unsigned long *zones_size)
2771{
2772 return zones_size[zone_type];
2773}
2774
2775static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
2776 unsigned long zone_type,
2777 unsigned long *zholes_size)
2778{
2779 if (!zholes_size)
2780 return 0;
2781
2782 return zholes_size[zone_type];
2783}
2784
2785#endif
2786
2787static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
2788 unsigned long *zones_size, unsigned long *zholes_size)
2789{
2790 unsigned long realtotalpages, totalpages = 0;
2791 enum zone_type i;
2792
2793 for (i = 0; i < MAX_NR_ZONES; i++)
2794 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2795 zones_size);
2796 pgdat->node_spanned_pages = totalpages;
2797
2798 realtotalpages = totalpages;
2799 for (i = 0; i < MAX_NR_ZONES; i++)
2800 realtotalpages -=
2801 zone_absent_pages_in_node(pgdat->node_id, i,
2802 zholes_size);
2803 pgdat->node_present_pages = realtotalpages;
2804 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2805 realtotalpages);
2806}
2807
2808/*
2809 * Set up the zone data structures:
2810 * - mark all pages reserved
2811 * - mark all memory queues empty
2812 * - clear the memory bitmaps
2813 */
2814static void __meminit free_area_init_core(struct pglist_data *pgdat,
2815 unsigned long *zones_size, unsigned long *zholes_size)
2816{
2817 enum zone_type j;
2818 int nid = pgdat->node_id;
2819 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2820 int ret;
2821
2822 pgdat_resize_init(pgdat);
2823 pgdat->nr_zones = 0;
2824 init_waitqueue_head(&pgdat->kswapd_wait);
2825 pgdat->kswapd_max_order = 0;
2826
2827 for (j = 0; j < MAX_NR_ZONES; j++) {
2828 struct zone *zone = pgdat->node_zones + j;
2829 unsigned long size, realsize, memmap_pages;
2830
2831 size = zone_spanned_pages_in_node(nid, j, zones_size);
2832 realsize = size - zone_absent_pages_in_node(nid, j,
2833 zholes_size);
2834
2835 /*
2836 * Adjust realsize so that it accounts for how much memory
2837 * is used by this zone for memmap. This affects the watermark
2838 * and per-cpu initialisations
2839 */
2840 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2841 if (realsize >= memmap_pages) {
2842 realsize -= memmap_pages;
2843 printk(KERN_DEBUG
2844 " %s zone: %lu pages used for memmap\n",
2845 zone_names[j], memmap_pages);
2846 } else
2847 printk(KERN_WARNING
2848 " %s zone: %lu pages exceeds realsize %lu\n",
2849 zone_names[j], memmap_pages, realsize);
2850
2851 /* Account for reserved pages */
2852 if (j == 0 && realsize > dma_reserve) {
2853 realsize -= dma_reserve;
2854 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
2855 zone_names[0], dma_reserve);
2856 }
2857
2858 if (!is_highmem_idx(j))
2859 nr_kernel_pages += realsize;
2860 nr_all_pages += realsize;
2861
2862 zone->spanned_pages = size;
2863 zone->present_pages = realsize;
2864#ifdef CONFIG_NUMA
2865 zone->node = nid;
2866 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2867 / 100;
2868 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2869#endif
2870 zone->name = zone_names[j];
2871 spin_lock_init(&zone->lock);
2872 spin_lock_init(&zone->lru_lock);
2873 zone_seqlock_init(zone);
2874 zone->zone_pgdat = pgdat;
2875
2876 zone->prev_priority = DEF_PRIORITY;
2877
2878 zone_pcp_init(zone);
2879 INIT_LIST_HEAD(&zone->active_list);
2880 INIT_LIST_HEAD(&zone->inactive_list);
2881 zone->nr_scan_active = 0;
2882 zone->nr_scan_inactive = 0;
2883 zap_zone_vm_stats(zone);
2884 atomic_set(&zone->reclaim_in_progress, 0);
2885 if (!size)
2886 continue;
2887
2888 ret = init_currently_empty_zone(zone, zone_start_pfn,
2889 size, MEMMAP_EARLY);
2890 BUG_ON(ret);
2891 zone_start_pfn += size;
2892 }
2893}
2894
2895static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
2896{
2897 /* Skip empty nodes */
2898 if (!pgdat->node_spanned_pages)
2899 return;
2900
2901#ifdef CONFIG_FLAT_NODE_MEM_MAP
2902 /* ia64 gets its own node_mem_map, before this, without bootmem */
2903 if (!pgdat->node_mem_map) {
2904 unsigned long size, start, end;
2905 struct page *map;
2906
2907 /*
2908 * The zone's endpoints aren't required to be MAX_ORDER
2909 * aligned but the node_mem_map endpoints must be in order
2910 * for the buddy allocator to function correctly.
2911 */
2912 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2913 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2914 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2915 size = (end - start) * sizeof(struct page);
2916 map = alloc_remap(pgdat->node_id, size);
2917 if (!map)
2918 map = alloc_bootmem_node(pgdat, size);
2919 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2920 }
2921#ifndef CONFIG_NEED_MULTIPLE_NODES
2922 /*
2923 * With no DISCONTIG, the global mem_map is just set as node 0's
2924 */
2925 if (pgdat == NODE_DATA(0)) {
2926 mem_map = NODE_DATA(0)->node_mem_map;
2927#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2928 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
2929 mem_map -= pgdat->node_start_pfn;
2930#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2931 }
2932#endif
2933#endif /* CONFIG_FLAT_NODE_MEM_MAP */
2934}
2935
2936void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2937 unsigned long *zones_size, unsigned long node_start_pfn,
2938 unsigned long *zholes_size)
2939{
2940 pgdat->node_id = nid;
2941 pgdat->node_start_pfn = node_start_pfn;
2942 calculate_node_totalpages(pgdat, zones_size, zholes_size);
2943
2944 alloc_node_mem_map(pgdat);
2945
2946 free_area_init_core(pgdat, zones_size, zholes_size);
2947}
2948
2949#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2950
2951#if MAX_NUMNODES > 1
2952/*
2953 * Figure out the number of possible node ids.
2954 */
2955static void __init setup_nr_node_ids(void)
2956{
2957 unsigned int node;
2958 unsigned int highest = 0;
2959
2960 for_each_node_mask(node, node_possible_map)
2961 highest = node;
2962 nr_node_ids = highest + 1;
2963}
2964#else
2965static inline void setup_nr_node_ids(void)
2966{
2967}
2968#endif
2969
2970/**
2971 * add_active_range - Register a range of PFNs backed by physical memory
2972 * @nid: The node ID the range resides on
2973 * @start_pfn: The start PFN of the available physical memory
2974 * @end_pfn: The end PFN of the available physical memory
2975 *
2976 * These ranges are stored in an early_node_map[] and later used by
2977 * free_area_init_nodes() to calculate zone sizes and holes. If the
2978 * range spans a memory hole, it is up to the architecture to ensure
2979 * the memory is not freed by the bootmem allocator. If possible
2980 * the range being registered will be merged with existing ranges.
2981 */
2982void __init add_active_range(unsigned int nid, unsigned long start_pfn,
2983 unsigned long end_pfn)
2984{
2985 int i;
2986
2987 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
2988 "%d entries of %d used\n",
2989 nid, start_pfn, end_pfn,
2990 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
2991
2992 /* Merge with existing active regions if possible */
2993 for (i = 0; i < nr_nodemap_entries; i++) {
2994 if (early_node_map[i].nid != nid)
2995 continue;
2996
2997 /* Skip if an existing region covers this new one */
2998 if (start_pfn >= early_node_map[i].start_pfn &&
2999 end_pfn <= early_node_map[i].end_pfn)
3000 return;
3001
3002 /* Merge forward if suitable */
3003 if (start_pfn <= early_node_map[i].end_pfn &&
3004 end_pfn > early_node_map[i].end_pfn) {
3005 early_node_map[i].end_pfn = end_pfn;
3006 return;
3007 }
3008
3009 /* Merge backward if suitable */
3010 if (start_pfn < early_node_map[i].end_pfn &&
3011 end_pfn >= early_node_map[i].start_pfn) {
3012 early_node_map[i].start_pfn = start_pfn;
3013 return;
3014 }
3015 }
3016
3017 /* Check that early_node_map is large enough */
3018 if (i >= MAX_ACTIVE_REGIONS) {
3019 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3020 MAX_ACTIVE_REGIONS);
3021 return;
3022 }
3023
3024 early_node_map[i].nid = nid;
3025 early_node_map[i].start_pfn = start_pfn;
3026 early_node_map[i].end_pfn = end_pfn;
3027 nr_nodemap_entries = i + 1;
3028}
3029
3030/**
3031 * shrink_active_range - Shrink an existing registered range of PFNs
3032 * @nid: The node id the range is on that should be shrunk
3033 * @old_end_pfn: The old end PFN of the range
3034 * @new_end_pfn: The new PFN of the range
3035 *
3036 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3037 * The map is kept at the end physical page range that has already been
3038 * registered with add_active_range(). This function allows an arch to shrink
3039 * an existing registered range.
3040 */
3041void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3042 unsigned long new_end_pfn)
3043{
3044 int i;
3045
3046 /* Find the old active region end and shrink */
3047 for_each_active_range_index_in_nid(i, nid)
3048 if (early_node_map[i].end_pfn == old_end_pfn) {
3049 early_node_map[i].end_pfn = new_end_pfn;
3050 break;
3051 }
3052}
3053
3054/**
3055 * remove_all_active_ranges - Remove all currently registered regions
3056 *
3057 * During discovery, it may be found that a table like SRAT is invalid
3058 * and an alternative discovery method must be used. This function removes
3059 * all currently registered regions.
3060 */
3061void __init remove_all_active_ranges(void)
3062{
3063 memset(early_node_map, 0, sizeof(early_node_map));
3064 nr_nodemap_entries = 0;
3065#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3066 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3067 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3068#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3069}
3070
3071/* Compare two active node_active_regions */
3072static int __init cmp_node_active_region(const void *a, const void *b)
3073{
3074 struct node_active_region *arange = (struct node_active_region *)a;
3075 struct node_active_region *brange = (struct node_active_region *)b;
3076
3077 /* Done this way to avoid overflows */
3078 if (arange->start_pfn > brange->start_pfn)
3079 return 1;
3080 if (arange->start_pfn < brange->start_pfn)
3081 return -1;
3082
3083 return 0;
3084}
3085
3086/* sort the node_map by start_pfn */
3087static void __init sort_node_map(void)
3088{
3089 sort(early_node_map, (size_t)nr_nodemap_entries,
3090 sizeof(struct node_active_region),
3091 cmp_node_active_region, NULL);
3092}
3093
3094/* Find the lowest pfn for a node */
3095unsigned long __init find_min_pfn_for_node(unsigned long nid)
3096{
3097 int i;
3098 unsigned long min_pfn = ULONG_MAX;
3099
3100 /* Assuming a sorted map, the first range found has the starting pfn */
3101 for_each_active_range_index_in_nid(i, nid)
3102 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3103
3104 if (min_pfn == ULONG_MAX) {
3105 printk(KERN_WARNING
3106 "Could not find start_pfn for node %lu\n", nid);
3107 return 0;
3108 }
3109
3110 return min_pfn;
3111}
3112
3113/**
3114 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3115 *
3116 * It returns the minimum PFN based on information provided via
3117 * add_active_range().
3118 */
3119unsigned long __init find_min_pfn_with_active_regions(void)
3120{
3121 return find_min_pfn_for_node(MAX_NUMNODES);
3122}
3123
3124/**
3125 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3126 *
3127 * It returns the maximum PFN based on information provided via
3128 * add_active_range().
3129 */
3130unsigned long __init find_max_pfn_with_active_regions(void)
3131{
3132 int i;
3133 unsigned long max_pfn = 0;
3134
3135 for (i = 0; i < nr_nodemap_entries; i++)
3136 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3137
3138 return max_pfn;
3139}
3140
3141/**
3142 * free_area_init_nodes - Initialise all pg_data_t and zone data
3143 * @max_zone_pfn: an array of max PFNs for each zone
3144 *
3145 * This will call free_area_init_node() for each active node in the system.
3146 * Using the page ranges provided by add_active_range(), the size of each
3147 * zone in each node and their holes is calculated. If the maximum PFN
3148 * between two adjacent zones match, it is assumed that the zone is empty.
3149 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3150 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3151 * starts where the previous one ended. For example, ZONE_DMA32 starts
3152 * at arch_max_dma_pfn.
3153 */
3154void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3155{
3156 unsigned long nid;
3157 enum zone_type i;
3158
3159 /* Sort early_node_map as initialisation assumes it is sorted */
3160 sort_node_map();
3161
3162 /* Record where the zone boundaries are */
3163 memset(arch_zone_lowest_possible_pfn, 0,
3164 sizeof(arch_zone_lowest_possible_pfn));
3165 memset(arch_zone_highest_possible_pfn, 0,
3166 sizeof(arch_zone_highest_possible_pfn));
3167 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3168 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3169 for (i = 1; i < MAX_NR_ZONES; i++) {
3170 arch_zone_lowest_possible_pfn[i] =
3171 arch_zone_highest_possible_pfn[i-1];
3172 arch_zone_highest_possible_pfn[i] =
3173 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3174 }
3175
3176 /* Print out the zone ranges */
3177 printk("Zone PFN ranges:\n");
3178 for (i = 0; i < MAX_NR_ZONES; i++)
3179 printk(" %-8s %8lu -> %8lu\n",
3180 zone_names[i],
3181 arch_zone_lowest_possible_pfn[i],
3182 arch_zone_highest_possible_pfn[i]);
3183
3184 /* Print out the early_node_map[] */
3185 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3186 for (i = 0; i < nr_nodemap_entries; i++)
3187 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3188 early_node_map[i].start_pfn,
3189 early_node_map[i].end_pfn);
3190
3191 /* Initialise every node */
3192 setup_nr_node_ids();
3193 for_each_online_node(nid) {
3194 pg_data_t *pgdat = NODE_DATA(nid);
3195 free_area_init_node(nid, pgdat, NULL,
3196 find_min_pfn_for_node(nid), NULL);
3197 }
3198}
3199#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3200
3201/**
3202 * set_dma_reserve - set the specified number of pages reserved in the first zone
3203 * @new_dma_reserve: The number of pages to mark reserved
3204 *
3205 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3206 * In the DMA zone, a significant percentage may be consumed by kernel image
3207 * and other unfreeable allocations which can skew the watermarks badly. This
3208 * function may optionally be used to account for unfreeable pages in the
3209 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3210 * smaller per-cpu batchsize.
3211 */
3212void __init set_dma_reserve(unsigned long new_dma_reserve)
3213{
3214 dma_reserve = new_dma_reserve;
3215}
3216
3217#ifndef CONFIG_NEED_MULTIPLE_NODES
3218static bootmem_data_t contig_bootmem_data;
3219struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3220
3221EXPORT_SYMBOL(contig_page_data);
3222#endif
3223
3224void __init free_area_init(unsigned long *zones_size)
3225{
3226 free_area_init_node(0, NODE_DATA(0), zones_size,
3227 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3228}
3229
3230static int page_alloc_cpu_notify(struct notifier_block *self,
3231 unsigned long action, void *hcpu)
3232{
3233 int cpu = (unsigned long)hcpu;
3234
3235 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3236 local_irq_disable();
3237 __drain_pages(cpu);
3238 vm_events_fold_cpu(cpu);
3239 local_irq_enable();
3240 refresh_cpu_vm_stats(cpu);
3241 }
3242 return NOTIFY_OK;
3243}
3244
3245void __init page_alloc_init(void)
3246{
3247 hotcpu_notifier(page_alloc_cpu_notify, 0);
3248}
3249
3250/*
3251 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3252 * or min_free_kbytes changes.
3253 */
3254static void calculate_totalreserve_pages(void)
3255{
3256 struct pglist_data *pgdat;
3257 unsigned long reserve_pages = 0;
3258 enum zone_type i, j;
3259
3260 for_each_online_pgdat(pgdat) {
3261 for (i = 0; i < MAX_NR_ZONES; i++) {
3262 struct zone *zone = pgdat->node_zones + i;
3263 unsigned long max = 0;
3264
3265 /* Find valid and maximum lowmem_reserve in the zone */
3266 for (j = i; j < MAX_NR_ZONES; j++) {
3267 if (zone->lowmem_reserve[j] > max)
3268 max = zone->lowmem_reserve[j];
3269 }
3270
3271 /* we treat pages_high as reserved pages. */
3272 max += zone->pages_high;
3273
3274 if (max > zone->present_pages)
3275 max = zone->present_pages;
3276 reserve_pages += max;
3277 }
3278 }
3279 totalreserve_pages = reserve_pages;
3280}
3281
3282/*
3283 * setup_per_zone_lowmem_reserve - called whenever
3284 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
3285 * has a correct pages reserved value, so an adequate number of
3286 * pages are left in the zone after a successful __alloc_pages().
3287 */
3288static void setup_per_zone_lowmem_reserve(void)
3289{
3290 struct pglist_data *pgdat;
3291 enum zone_type j, idx;
3292
3293 for_each_online_pgdat(pgdat) {
3294 for (j = 0; j < MAX_NR_ZONES; j++) {
3295 struct zone *zone = pgdat->node_zones + j;
3296 unsigned long present_pages = zone->present_pages;
3297
3298 zone->lowmem_reserve[j] = 0;
3299
3300 idx = j;
3301 while (idx) {
3302 struct zone *lower_zone;
3303
3304 idx--;
3305
3306 if (sysctl_lowmem_reserve_ratio[idx] < 1)
3307 sysctl_lowmem_reserve_ratio[idx] = 1;
3308
3309 lower_zone = pgdat->node_zones + idx;
3310 lower_zone->lowmem_reserve[j] = present_pages /
3311 sysctl_lowmem_reserve_ratio[idx];
3312 present_pages += lower_zone->present_pages;
3313 }
3314 }
3315 }
3316
3317 /* update totalreserve_pages */
3318 calculate_totalreserve_pages();
3319}
3320
3321/**
3322 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3323 *
3324 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3325 * with respect to min_free_kbytes.
3326 */
3327void setup_per_zone_pages_min(void)
3328{
3329 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3330 unsigned long lowmem_pages = 0;
3331 struct zone *zone;
3332 unsigned long flags;
3333
3334 /* Calculate total number of !ZONE_HIGHMEM pages */
3335 for_each_zone(zone) {
3336 if (!is_highmem(zone))
3337 lowmem_pages += zone->present_pages;
3338 }
3339
3340 for_each_zone(zone) {
3341 u64 tmp;
3342
3343 spin_lock_irqsave(&zone->lru_lock, flags);
3344 tmp = (u64)pages_min * zone->present_pages;
3345 do_div(tmp, lowmem_pages);
3346 if (is_highmem(zone)) {
3347 /*
3348 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3349 * need highmem pages, so cap pages_min to a small
3350 * value here.
3351 *
3352 * The (pages_high-pages_low) and (pages_low-pages_min)
3353 * deltas controls asynch page reclaim, and so should
3354 * not be capped for highmem.
3355 */
3356 int min_pages;
3357
3358 min_pages = zone->present_pages / 1024;
3359 if (min_pages < SWAP_CLUSTER_MAX)
3360 min_pages = SWAP_CLUSTER_MAX;
3361 if (min_pages > 128)
3362 min_pages = 128;
3363 zone->pages_min = min_pages;
3364 } else {
3365 /*
3366 * If it's a lowmem zone, reserve a number of pages
3367 * proportionate to the zone's size.
3368 */
3369 zone->pages_min = tmp;
3370 }
3371
3372 zone->pages_low = zone->pages_min + (tmp >> 2);
3373 zone->pages_high = zone->pages_min + (tmp >> 1);
3374 spin_unlock_irqrestore(&zone->lru_lock, flags);
3375 }
3376
3377 /* update totalreserve_pages */
3378 calculate_totalreserve_pages();
3379}
3380
3381/*
3382 * Initialise min_free_kbytes.
3383 *
3384 * For small machines we want it small (128k min). For large machines
3385 * we want it large (64MB max). But it is not linear, because network
3386 * bandwidth does not increase linearly with machine size. We use
3387 *
3388 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3389 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
3390 *
3391 * which yields
3392 *
3393 * 16MB: 512k
3394 * 32MB: 724k
3395 * 64MB: 1024k
3396 * 128MB: 1448k
3397 * 256MB: 2048k
3398 * 512MB: 2896k
3399 * 1024MB: 4096k
3400 * 2048MB: 5792k
3401 * 4096MB: 8192k
3402 * 8192MB: 11584k
3403 * 16384MB: 16384k
3404 */
3405static int __init init_per_zone_pages_min(void)
3406{
3407 unsigned long lowmem_kbytes;
3408
3409 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3410
3411 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3412 if (min_free_kbytes < 128)
3413 min_free_kbytes = 128;
3414 if (min_free_kbytes > 65536)
3415 min_free_kbytes = 65536;
3416 setup_per_zone_pages_min();
3417 setup_per_zone_lowmem_reserve();
3418 return 0;
3419}
3420module_init(init_per_zone_pages_min)
3421
3422/*
3423 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3424 * that we can call two helper functions whenever min_free_kbytes
3425 * changes.
3426 */
3427int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3428 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3429{
3430 proc_dointvec(table, write, file, buffer, length, ppos);
3431 if (write)
3432 setup_per_zone_pages_min();
3433 return 0;
3434}
3435
3436#ifdef CONFIG_NUMA
3437int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3438 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3439{
3440 struct zone *zone;
3441 int rc;
3442
3443 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3444 if (rc)
3445 return rc;
3446
3447 for_each_zone(zone)
3448 zone->min_unmapped_pages = (zone->present_pages *
3449 sysctl_min_unmapped_ratio) / 100;
3450 return 0;
3451}
3452
3453int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3454 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3455{
3456 struct zone *zone;
3457 int rc;
3458
3459 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3460 if (rc)
3461 return rc;
3462
3463 for_each_zone(zone)
3464 zone->min_slab_pages = (zone->present_pages *
3465 sysctl_min_slab_ratio) / 100;
3466 return 0;
3467}
3468#endif
3469
3470/*
3471 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3472 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3473 * whenever sysctl_lowmem_reserve_ratio changes.
3474 *
3475 * The reserve ratio obviously has absolutely no relation with the
3476 * pages_min watermarks. The lowmem reserve ratio can only make sense
3477 * if in function of the boot time zone sizes.
3478 */
3479int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3480 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3481{
3482 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3483 setup_per_zone_lowmem_reserve();
3484 return 0;
3485}
3486
3487/*
3488 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3489 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
3490 * can have before it gets flushed back to buddy allocator.
3491 */
3492
3493int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3494 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3495{
3496 struct zone *zone;
3497 unsigned int cpu;
3498 int ret;
3499
3500 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3501 if (!write || (ret == -EINVAL))
3502 return ret;
3503 for_each_zone(zone) {
3504 for_each_online_cpu(cpu) {
3505 unsigned long high;
3506 high = zone->present_pages / percpu_pagelist_fraction;
3507 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3508 }
3509 }
3510 return 0;
3511}
3512
3513int hashdist = HASHDIST_DEFAULT;
3514
3515#ifdef CONFIG_NUMA
3516static int __init set_hashdist(char *str)
3517{
3518 if (!str)
3519 return 0;
3520 hashdist = simple_strtoul(str, &str, 0);
3521 return 1;
3522}
3523__setup("hashdist=", set_hashdist);
3524#endif
3525
3526/*
3527 * allocate a large system hash table from bootmem
3528 * - it is assumed that the hash table must contain an exact power-of-2
3529 * quantity of entries
3530 * - limit is the number of hash buckets, not the total allocation size
3531 */
3532void *__init alloc_large_system_hash(const char *tablename,
3533 unsigned long bucketsize,
3534 unsigned long numentries,
3535 int scale,
3536 int flags,
3537 unsigned int *_hash_shift,
3538 unsigned int *_hash_mask,
3539 unsigned long limit)
3540{
3541 unsigned long long max = limit;
3542 unsigned long log2qty, size;
3543 void *table = NULL;
3544
3545 /* allow the kernel cmdline to have a say */
3546 if (!numentries) {
3547 /* round applicable memory size up to nearest megabyte */
3548 numentries = nr_kernel_pages;
3549 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3550 numentries >>= 20 - PAGE_SHIFT;
3551 numentries <<= 20 - PAGE_SHIFT;
3552
3553 /* limit to 1 bucket per 2^scale bytes of low memory */
3554 if (scale > PAGE_SHIFT)
3555 numentries >>= (scale - PAGE_SHIFT);
3556 else
3557 numentries <<= (PAGE_SHIFT - scale);
3558
3559 /* Make sure we've got at least a 0-order allocation.. */
3560 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
3561 numentries = PAGE_SIZE / bucketsize;
3562 }
3563 numentries = roundup_pow_of_two(numentries);
3564
3565 /* limit allocation size to 1/16 total memory by default */
3566 if (max == 0) {
3567 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3568 do_div(max, bucketsize);
3569 }
3570
3571 if (numentries > max)
3572 numentries = max;
3573
3574 log2qty = ilog2(numentries);
3575
3576 do {
3577 size = bucketsize << log2qty;
3578 if (flags & HASH_EARLY)
3579 table = alloc_bootmem(size);
3580 else if (hashdist)
3581 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3582 else {
3583 unsigned long order;
3584 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3585 ;
3586 table = (void*) __get_free_pages(GFP_ATOMIC, order);
3587 /*
3588 * If bucketsize is not a power-of-two, we may free
3589 * some pages at the end of hash table.
3590 */
3591 if (table) {
3592 unsigned long alloc_end = (unsigned long)table +
3593 (PAGE_SIZE << order);
3594 unsigned long used = (unsigned long)table +
3595 PAGE_ALIGN(size);
3596 split_page(virt_to_page(table), order);
3597 while (used < alloc_end) {
3598 free_page(used);
3599 used += PAGE_SIZE;
3600 }
3601 }
3602 }
3603 } while (!table && size > PAGE_SIZE && --log2qty);
3604
3605 if (!table)
3606 panic("Failed to allocate %s hash table\n", tablename);
3607
3608 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
3609 tablename,
3610 (1U << log2qty),
3611 ilog2(size) - PAGE_SHIFT,
3612 size);
3613
3614 if (_hash_shift)
3615 *_hash_shift = log2qty;
3616 if (_hash_mask)
3617 *_hash_mask = (1 << log2qty) - 1;
3618
3619 return table;
3620}
3621
3622#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3623struct page *pfn_to_page(unsigned long pfn)
3624{
3625 return __pfn_to_page(pfn);
3626}
3627unsigned long page_to_pfn(struct page *page)
3628{
3629 return __page_to_pfn(page);
3630}
3631EXPORT_SYMBOL(pfn_to_page);
3632EXPORT_SYMBOL(page_to_pfn);
3633#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
3634
3635