]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - mm/oom_kill.c
Prevent freeing uninitialized pointer in compat_do_readv_writev
[net-next-2.6.git] / mm / oom_kill.c
... / ...
CommitLineData
1/*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 * Copyright (C) 2010 Google, Inc.
8 * Rewritten by David Rientjes
9 *
10 * The routines in this file are used to kill a process when
11 * we're seriously out of memory. This gets called from __alloc_pages()
12 * in mm/page_alloc.c when we really run out of memory.
13 *
14 * Since we won't call these routines often (on a well-configured
15 * machine) this file will double as a 'coding guide' and a signpost
16 * for newbie kernel hackers. It features several pointers to major
17 * kernel subsystems and hints as to where to find out what things do.
18 */
19
20#include <linux/oom.h>
21#include <linux/mm.h>
22#include <linux/err.h>
23#include <linux/gfp.h>
24#include <linux/sched.h>
25#include <linux/swap.h>
26#include <linux/timex.h>
27#include <linux/jiffies.h>
28#include <linux/cpuset.h>
29#include <linux/module.h>
30#include <linux/notifier.h>
31#include <linux/memcontrol.h>
32#include <linux/mempolicy.h>
33#include <linux/security.h>
34
35int sysctl_panic_on_oom;
36int sysctl_oom_kill_allocating_task;
37int sysctl_oom_dump_tasks = 1;
38static DEFINE_SPINLOCK(zone_scan_lock);
39
40#ifdef CONFIG_NUMA
41/**
42 * has_intersects_mems_allowed() - check task eligiblity for kill
43 * @tsk: task struct of which task to consider
44 * @mask: nodemask passed to page allocator for mempolicy ooms
45 *
46 * Task eligibility is determined by whether or not a candidate task, @tsk,
47 * shares the same mempolicy nodes as current if it is bound by such a policy
48 * and whether or not it has the same set of allowed cpuset nodes.
49 */
50static bool has_intersects_mems_allowed(struct task_struct *tsk,
51 const nodemask_t *mask)
52{
53 struct task_struct *start = tsk;
54
55 do {
56 if (mask) {
57 /*
58 * If this is a mempolicy constrained oom, tsk's
59 * cpuset is irrelevant. Only return true if its
60 * mempolicy intersects current, otherwise it may be
61 * needlessly killed.
62 */
63 if (mempolicy_nodemask_intersects(tsk, mask))
64 return true;
65 } else {
66 /*
67 * This is not a mempolicy constrained oom, so only
68 * check the mems of tsk's cpuset.
69 */
70 if (cpuset_mems_allowed_intersects(current, tsk))
71 return true;
72 }
73 } while_each_thread(start, tsk);
74
75 return false;
76}
77#else
78static bool has_intersects_mems_allowed(struct task_struct *tsk,
79 const nodemask_t *mask)
80{
81 return true;
82}
83#endif /* CONFIG_NUMA */
84
85/*
86 * If this is a system OOM (not a memcg OOM) and the task selected to be
87 * killed is not already running at high (RT) priorities, speed up the
88 * recovery by boosting the dying task to the lowest FIFO priority.
89 * That helps with the recovery and avoids interfering with RT tasks.
90 */
91static void boost_dying_task_prio(struct task_struct *p,
92 struct mem_cgroup *mem)
93{
94 struct sched_param param = { .sched_priority = 1 };
95
96 if (mem)
97 return;
98
99 if (!rt_task(p))
100 sched_setscheduler_nocheck(p, SCHED_FIFO, &param);
101}
102
103/*
104 * The process p may have detached its own ->mm while exiting or through
105 * use_mm(), but one or more of its subthreads may still have a valid
106 * pointer. Return p, or any of its subthreads with a valid ->mm, with
107 * task_lock() held.
108 */
109struct task_struct *find_lock_task_mm(struct task_struct *p)
110{
111 struct task_struct *t = p;
112
113 do {
114 task_lock(t);
115 if (likely(t->mm))
116 return t;
117 task_unlock(t);
118 } while_each_thread(p, t);
119
120 return NULL;
121}
122
123/* return true if the task is not adequate as candidate victim task. */
124static bool oom_unkillable_task(struct task_struct *p, struct mem_cgroup *mem,
125 const nodemask_t *nodemask)
126{
127 if (is_global_init(p))
128 return true;
129 if (p->flags & PF_KTHREAD)
130 return true;
131
132 /* When mem_cgroup_out_of_memory() and p is not member of the group */
133 if (mem && !task_in_mem_cgroup(p, mem))
134 return true;
135
136 /* p may not have freeable memory in nodemask */
137 if (!has_intersects_mems_allowed(p, nodemask))
138 return true;
139
140 return false;
141}
142
143/**
144 * oom_badness - heuristic function to determine which candidate task to kill
145 * @p: task struct of which task we should calculate
146 * @totalpages: total present RAM allowed for page allocation
147 *
148 * The heuristic for determining which task to kill is made to be as simple and
149 * predictable as possible. The goal is to return the highest value for the
150 * task consuming the most memory to avoid subsequent oom failures.
151 */
152unsigned int oom_badness(struct task_struct *p, struct mem_cgroup *mem,
153 const nodemask_t *nodemask, unsigned long totalpages)
154{
155 int points;
156
157 if (oom_unkillable_task(p, mem, nodemask))
158 return 0;
159
160 p = find_lock_task_mm(p);
161 if (!p)
162 return 0;
163
164 /*
165 * Shortcut check for OOM_SCORE_ADJ_MIN so the entire heuristic doesn't
166 * need to be executed for something that cannot be killed.
167 */
168 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
169 task_unlock(p);
170 return 0;
171 }
172
173 /*
174 * When the PF_OOM_ORIGIN bit is set, it indicates the task should have
175 * priority for oom killing.
176 */
177 if (p->flags & PF_OOM_ORIGIN) {
178 task_unlock(p);
179 return 1000;
180 }
181
182 /*
183 * The memory controller may have a limit of 0 bytes, so avoid a divide
184 * by zero, if necessary.
185 */
186 if (!totalpages)
187 totalpages = 1;
188
189 /*
190 * The baseline for the badness score is the proportion of RAM that each
191 * task's rss and swap space use.
192 */
193 points = (get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS)) * 1000 /
194 totalpages;
195 task_unlock(p);
196
197 /*
198 * Root processes get 3% bonus, just like the __vm_enough_memory()
199 * implementation used by LSMs.
200 */
201 if (has_capability_noaudit(p, CAP_SYS_ADMIN))
202 points -= 30;
203
204 /*
205 * /proc/pid/oom_score_adj ranges from -1000 to +1000 such that it may
206 * either completely disable oom killing or always prefer a certain
207 * task.
208 */
209 points += p->signal->oom_score_adj;
210
211 if (points < 0)
212 return 0;
213 return (points < 1000) ? points : 1000;
214}
215
216/*
217 * Determine the type of allocation constraint.
218 */
219#ifdef CONFIG_NUMA
220static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
221 gfp_t gfp_mask, nodemask_t *nodemask,
222 unsigned long *totalpages)
223{
224 struct zone *zone;
225 struct zoneref *z;
226 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
227 bool cpuset_limited = false;
228 int nid;
229
230 /* Default to all available memory */
231 *totalpages = totalram_pages + total_swap_pages;
232
233 if (!zonelist)
234 return CONSTRAINT_NONE;
235 /*
236 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
237 * to kill current.We have to random task kill in this case.
238 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
239 */
240 if (gfp_mask & __GFP_THISNODE)
241 return CONSTRAINT_NONE;
242
243 /*
244 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
245 * the page allocator means a mempolicy is in effect. Cpuset policy
246 * is enforced in get_page_from_freelist().
247 */
248 if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask)) {
249 *totalpages = total_swap_pages;
250 for_each_node_mask(nid, *nodemask)
251 *totalpages += node_spanned_pages(nid);
252 return CONSTRAINT_MEMORY_POLICY;
253 }
254
255 /* Check this allocation failure is caused by cpuset's wall function */
256 for_each_zone_zonelist_nodemask(zone, z, zonelist,
257 high_zoneidx, nodemask)
258 if (!cpuset_zone_allowed_softwall(zone, gfp_mask))
259 cpuset_limited = true;
260
261 if (cpuset_limited) {
262 *totalpages = total_swap_pages;
263 for_each_node_mask(nid, cpuset_current_mems_allowed)
264 *totalpages += node_spanned_pages(nid);
265 return CONSTRAINT_CPUSET;
266 }
267 return CONSTRAINT_NONE;
268}
269#else
270static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
271 gfp_t gfp_mask, nodemask_t *nodemask,
272 unsigned long *totalpages)
273{
274 *totalpages = totalram_pages + total_swap_pages;
275 return CONSTRAINT_NONE;
276}
277#endif
278
279/*
280 * Simple selection loop. We chose the process with the highest
281 * number of 'points'. We expect the caller will lock the tasklist.
282 *
283 * (not docbooked, we don't want this one cluttering up the manual)
284 */
285static struct task_struct *select_bad_process(unsigned int *ppoints,
286 unsigned long totalpages, struct mem_cgroup *mem,
287 const nodemask_t *nodemask)
288{
289 struct task_struct *p;
290 struct task_struct *chosen = NULL;
291 *ppoints = 0;
292
293 for_each_process(p) {
294 unsigned int points;
295
296 if (oom_unkillable_task(p, mem, nodemask))
297 continue;
298
299 /*
300 * This task already has access to memory reserves and is
301 * being killed. Don't allow any other task access to the
302 * memory reserve.
303 *
304 * Note: this may have a chance of deadlock if it gets
305 * blocked waiting for another task which itself is waiting
306 * for memory. Is there a better alternative?
307 */
308 if (test_tsk_thread_flag(p, TIF_MEMDIE))
309 return ERR_PTR(-1UL);
310
311 /*
312 * This is in the process of releasing memory so wait for it
313 * to finish before killing some other task by mistake.
314 *
315 * However, if p is the current task, we allow the 'kill' to
316 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
317 * which will allow it to gain access to memory reserves in
318 * the process of exiting and releasing its resources.
319 * Otherwise we could get an easy OOM deadlock.
320 */
321 if (thread_group_empty(p) && (p->flags & PF_EXITING) && p->mm) {
322 if (p != current)
323 return ERR_PTR(-1UL);
324
325 chosen = p;
326 *ppoints = 1000;
327 }
328
329 points = oom_badness(p, mem, nodemask, totalpages);
330 if (points > *ppoints) {
331 chosen = p;
332 *ppoints = points;
333 }
334 }
335
336 return chosen;
337}
338
339/**
340 * dump_tasks - dump current memory state of all system tasks
341 * @mem: current's memory controller, if constrained
342 *
343 * Dumps the current memory state of all system tasks, excluding kernel threads.
344 * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
345 * value, oom_score_adj value, and name.
346 *
347 * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are
348 * shown.
349 *
350 * Call with tasklist_lock read-locked.
351 */
352static void dump_tasks(const struct mem_cgroup *mem)
353{
354 struct task_struct *p;
355 struct task_struct *task;
356
357 pr_info("[ pid ] uid tgid total_vm rss cpu oom_adj oom_score_adj name\n");
358 for_each_process(p) {
359 if (p->flags & PF_KTHREAD)
360 continue;
361 if (mem && !task_in_mem_cgroup(p, mem))
362 continue;
363
364 task = find_lock_task_mm(p);
365 if (!task) {
366 /*
367 * This is a kthread or all of p's threads have already
368 * detached their mm's. There's no need to report
369 * them; they can't be oom killed anyway.
370 */
371 continue;
372 }
373
374 pr_info("[%5d] %5d %5d %8lu %8lu %3u %3d %5d %s\n",
375 task->pid, task_uid(task), task->tgid,
376 task->mm->total_vm, get_mm_rss(task->mm),
377 task_cpu(task), task->signal->oom_adj,
378 task->signal->oom_score_adj, task->comm);
379 task_unlock(task);
380 }
381}
382
383static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order,
384 struct mem_cgroup *mem)
385{
386 task_lock(current);
387 pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, "
388 "oom_adj=%d, oom_score_adj=%d\n",
389 current->comm, gfp_mask, order, current->signal->oom_adj,
390 current->signal->oom_score_adj);
391 cpuset_print_task_mems_allowed(current);
392 task_unlock(current);
393 dump_stack();
394 mem_cgroup_print_oom_info(mem, p);
395 show_mem();
396 if (sysctl_oom_dump_tasks)
397 dump_tasks(mem);
398}
399
400#define K(x) ((x) << (PAGE_SHIFT-10))
401static int oom_kill_task(struct task_struct *p, struct mem_cgroup *mem)
402{
403 p = find_lock_task_mm(p);
404 if (!p)
405 return 1;
406
407 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n",
408 task_pid_nr(p), p->comm, K(p->mm->total_vm),
409 K(get_mm_counter(p->mm, MM_ANONPAGES)),
410 K(get_mm_counter(p->mm, MM_FILEPAGES)));
411 task_unlock(p);
412
413
414 set_tsk_thread_flag(p, TIF_MEMDIE);
415 force_sig(SIGKILL, p);
416
417 /*
418 * We give our sacrificial lamb high priority and access to
419 * all the memory it needs. That way it should be able to
420 * exit() and clear out its resources quickly...
421 */
422 boost_dying_task_prio(p, mem);
423
424 return 0;
425}
426#undef K
427
428static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
429 unsigned int points, unsigned long totalpages,
430 struct mem_cgroup *mem, nodemask_t *nodemask,
431 const char *message)
432{
433 struct task_struct *victim = p;
434 struct task_struct *child;
435 struct task_struct *t = p;
436 unsigned int victim_points = 0;
437
438 if (printk_ratelimit())
439 dump_header(p, gfp_mask, order, mem);
440
441 /*
442 * If the task is already exiting, don't alarm the sysadmin or kill
443 * its children or threads, just set TIF_MEMDIE so it can die quickly
444 */
445 if (p->flags & PF_EXITING) {
446 set_tsk_thread_flag(p, TIF_MEMDIE);
447 boost_dying_task_prio(p, mem);
448 return 0;
449 }
450
451 task_lock(p);
452 pr_err("%s: Kill process %d (%s) score %d or sacrifice child\n",
453 message, task_pid_nr(p), p->comm, points);
454 task_unlock(p);
455
456 /*
457 * If any of p's children has a different mm and is eligible for kill,
458 * the one with the highest badness() score is sacrificed for its
459 * parent. This attempts to lose the minimal amount of work done while
460 * still freeing memory.
461 */
462 do {
463 list_for_each_entry(child, &t->children, sibling) {
464 unsigned int child_points;
465
466 /*
467 * oom_badness() returns 0 if the thread is unkillable
468 */
469 child_points = oom_badness(child, mem, nodemask,
470 totalpages);
471 if (child_points > victim_points) {
472 victim = child;
473 victim_points = child_points;
474 }
475 }
476 } while_each_thread(p, t);
477
478 return oom_kill_task(victim, mem);
479}
480
481/*
482 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
483 */
484static void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask,
485 int order)
486{
487 if (likely(!sysctl_panic_on_oom))
488 return;
489 if (sysctl_panic_on_oom != 2) {
490 /*
491 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
492 * does not panic for cpuset, mempolicy, or memcg allocation
493 * failures.
494 */
495 if (constraint != CONSTRAINT_NONE)
496 return;
497 }
498 read_lock(&tasklist_lock);
499 dump_header(NULL, gfp_mask, order, NULL);
500 read_unlock(&tasklist_lock);
501 panic("Out of memory: %s panic_on_oom is enabled\n",
502 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
503}
504
505#ifdef CONFIG_CGROUP_MEM_RES_CTLR
506void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
507{
508 unsigned long limit;
509 unsigned int points = 0;
510 struct task_struct *p;
511
512 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, 0);
513 limit = mem_cgroup_get_limit(mem) >> PAGE_SHIFT;
514 read_lock(&tasklist_lock);
515retry:
516 p = select_bad_process(&points, limit, mem, NULL);
517 if (!p || PTR_ERR(p) == -1UL)
518 goto out;
519
520 if (oom_kill_process(p, gfp_mask, 0, points, limit, mem, NULL,
521 "Memory cgroup out of memory"))
522 goto retry;
523out:
524 read_unlock(&tasklist_lock);
525}
526#endif
527
528static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
529
530int register_oom_notifier(struct notifier_block *nb)
531{
532 return blocking_notifier_chain_register(&oom_notify_list, nb);
533}
534EXPORT_SYMBOL_GPL(register_oom_notifier);
535
536int unregister_oom_notifier(struct notifier_block *nb)
537{
538 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
539}
540EXPORT_SYMBOL_GPL(unregister_oom_notifier);
541
542/*
543 * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero
544 * if a parallel OOM killing is already taking place that includes a zone in
545 * the zonelist. Otherwise, locks all zones in the zonelist and returns 1.
546 */
547int try_set_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
548{
549 struct zoneref *z;
550 struct zone *zone;
551 int ret = 1;
552
553 spin_lock(&zone_scan_lock);
554 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
555 if (zone_is_oom_locked(zone)) {
556 ret = 0;
557 goto out;
558 }
559 }
560
561 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
562 /*
563 * Lock each zone in the zonelist under zone_scan_lock so a
564 * parallel invocation of try_set_zonelist_oom() doesn't succeed
565 * when it shouldn't.
566 */
567 zone_set_flag(zone, ZONE_OOM_LOCKED);
568 }
569
570out:
571 spin_unlock(&zone_scan_lock);
572 return ret;
573}
574
575/*
576 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
577 * allocation attempts with zonelists containing them may now recall the OOM
578 * killer, if necessary.
579 */
580void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
581{
582 struct zoneref *z;
583 struct zone *zone;
584
585 spin_lock(&zone_scan_lock);
586 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
587 zone_clear_flag(zone, ZONE_OOM_LOCKED);
588 }
589 spin_unlock(&zone_scan_lock);
590}
591
592/*
593 * Try to acquire the oom killer lock for all system zones. Returns zero if a
594 * parallel oom killing is taking place, otherwise locks all zones and returns
595 * non-zero.
596 */
597static int try_set_system_oom(void)
598{
599 struct zone *zone;
600 int ret = 1;
601
602 spin_lock(&zone_scan_lock);
603 for_each_populated_zone(zone)
604 if (zone_is_oom_locked(zone)) {
605 ret = 0;
606 goto out;
607 }
608 for_each_populated_zone(zone)
609 zone_set_flag(zone, ZONE_OOM_LOCKED);
610out:
611 spin_unlock(&zone_scan_lock);
612 return ret;
613}
614
615/*
616 * Clears ZONE_OOM_LOCKED for all system zones so that failed allocation
617 * attempts or page faults may now recall the oom killer, if necessary.
618 */
619static void clear_system_oom(void)
620{
621 struct zone *zone;
622
623 spin_lock(&zone_scan_lock);
624 for_each_populated_zone(zone)
625 zone_clear_flag(zone, ZONE_OOM_LOCKED);
626 spin_unlock(&zone_scan_lock);
627}
628
629/**
630 * out_of_memory - kill the "best" process when we run out of memory
631 * @zonelist: zonelist pointer
632 * @gfp_mask: memory allocation flags
633 * @order: amount of memory being requested as a power of 2
634 * @nodemask: nodemask passed to page allocator
635 *
636 * If we run out of memory, we have the choice between either
637 * killing a random task (bad), letting the system crash (worse)
638 * OR try to be smart about which process to kill. Note that we
639 * don't have to be perfect here, we just have to be good.
640 */
641void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask,
642 int order, nodemask_t *nodemask)
643{
644 struct task_struct *p;
645 unsigned long totalpages;
646 unsigned long freed = 0;
647 unsigned int points;
648 enum oom_constraint constraint = CONSTRAINT_NONE;
649 int killed = 0;
650
651 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
652 if (freed > 0)
653 /* Got some memory back in the last second. */
654 return;
655
656 /*
657 * If current has a pending SIGKILL, then automatically select it. The
658 * goal is to allow it to allocate so that it may quickly exit and free
659 * its memory.
660 */
661 if (fatal_signal_pending(current)) {
662 set_thread_flag(TIF_MEMDIE);
663 boost_dying_task_prio(current, NULL);
664 return;
665 }
666
667 /*
668 * Check if there were limitations on the allocation (only relevant for
669 * NUMA) that may require different handling.
670 */
671 constraint = constrained_alloc(zonelist, gfp_mask, nodemask,
672 &totalpages);
673 check_panic_on_oom(constraint, gfp_mask, order);
674
675 read_lock(&tasklist_lock);
676 if (sysctl_oom_kill_allocating_task &&
677 !oom_unkillable_task(current, NULL, nodemask) &&
678 (current->signal->oom_adj != OOM_DISABLE)) {
679 /*
680 * oom_kill_process() needs tasklist_lock held. If it returns
681 * non-zero, current could not be killed so we must fallback to
682 * the tasklist scan.
683 */
684 if (!oom_kill_process(current, gfp_mask, order, 0, totalpages,
685 NULL, nodemask,
686 "Out of memory (oom_kill_allocating_task)"))
687 goto out;
688 }
689
690retry:
691 p = select_bad_process(&points, totalpages, NULL,
692 constraint == CONSTRAINT_MEMORY_POLICY ? nodemask :
693 NULL);
694 if (PTR_ERR(p) == -1UL)
695 goto out;
696
697 /* Found nothing?!?! Either we hang forever, or we panic. */
698 if (!p) {
699 dump_header(NULL, gfp_mask, order, NULL);
700 read_unlock(&tasklist_lock);
701 panic("Out of memory and no killable processes...\n");
702 }
703
704 if (oom_kill_process(p, gfp_mask, order, points, totalpages, NULL,
705 nodemask, "Out of memory"))
706 goto retry;
707 killed = 1;
708out:
709 read_unlock(&tasklist_lock);
710
711 /*
712 * Give "p" a good chance of killing itself before we
713 * retry to allocate memory unless "p" is current
714 */
715 if (killed && !test_thread_flag(TIF_MEMDIE))
716 schedule_timeout_uninterruptible(1);
717}
718
719/*
720 * The pagefault handler calls here because it is out of memory, so kill a
721 * memory-hogging task. If a populated zone has ZONE_OOM_LOCKED set, a parallel
722 * oom killing is already in progress so do nothing. If a task is found with
723 * TIF_MEMDIE set, it has been killed so do nothing and allow it to exit.
724 */
725void pagefault_out_of_memory(void)
726{
727 if (try_set_system_oom()) {
728 out_of_memory(NULL, 0, 0, NULL);
729 clear_system_oom();
730 }
731 if (!test_thread_flag(TIF_MEMDIE))
732 schedule_timeout_uninterruptible(1);
733}