]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - mm/mempolicy.c
mempolicy: restructure rebinding-mempolicy functions
[net-next-2.6.git] / mm / mempolicy.c
... / ...
CommitLineData
1/*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56/* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66*/
67
68#include <linux/mempolicy.h>
69#include <linux/mm.h>
70#include <linux/highmem.h>
71#include <linux/hugetlb.h>
72#include <linux/kernel.h>
73#include <linux/sched.h>
74#include <linux/nodemask.h>
75#include <linux/cpuset.h>
76#include <linux/slab.h>
77#include <linux/string.h>
78#include <linux/module.h>
79#include <linux/nsproxy.h>
80#include <linux/interrupt.h>
81#include <linux/init.h>
82#include <linux/compat.h>
83#include <linux/swap.h>
84#include <linux/seq_file.h>
85#include <linux/proc_fs.h>
86#include <linux/migrate.h>
87#include <linux/ksm.h>
88#include <linux/rmap.h>
89#include <linux/security.h>
90#include <linux/syscalls.h>
91#include <linux/ctype.h>
92#include <linux/mm_inline.h>
93
94#include <asm/tlbflush.h>
95#include <asm/uaccess.h>
96
97#include "internal.h"
98
99/* Internal flags */
100#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
101#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
102#define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */
103
104static struct kmem_cache *policy_cache;
105static struct kmem_cache *sn_cache;
106
107/* Highest zone. An specific allocation for a zone below that is not
108 policied. */
109enum zone_type policy_zone = 0;
110
111/*
112 * run-time system-wide default policy => local allocation
113 */
114struct mempolicy default_policy = {
115 .refcnt = ATOMIC_INIT(1), /* never free it */
116 .mode = MPOL_PREFERRED,
117 .flags = MPOL_F_LOCAL,
118};
119
120static const struct mempolicy_operations {
121 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
122 /*
123 * If read-side task has no lock to protect task->mempolicy, write-side
124 * task will rebind the task->mempolicy by two step. The first step is
125 * setting all the newly nodes, and the second step is cleaning all the
126 * disallowed nodes. In this way, we can avoid finding no node to alloc
127 * page.
128 * If we have a lock to protect task->mempolicy in read-side, we do
129 * rebind directly.
130 *
131 * step:
132 * MPOL_REBIND_ONCE - do rebind work at once
133 * MPOL_REBIND_STEP1 - set all the newly nodes
134 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
135 */
136 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
137 enum mpol_rebind_step step);
138} mpol_ops[MPOL_MAX];
139
140/* Check that the nodemask contains at least one populated zone */
141static int is_valid_nodemask(const nodemask_t *nodemask)
142{
143 int nd, k;
144
145 for_each_node_mask(nd, *nodemask) {
146 struct zone *z;
147
148 for (k = 0; k <= policy_zone; k++) {
149 z = &NODE_DATA(nd)->node_zones[k];
150 if (z->present_pages > 0)
151 return 1;
152 }
153 }
154
155 return 0;
156}
157
158static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
159{
160 return pol->flags & MPOL_MODE_FLAGS;
161}
162
163static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
164 const nodemask_t *rel)
165{
166 nodemask_t tmp;
167 nodes_fold(tmp, *orig, nodes_weight(*rel));
168 nodes_onto(*ret, tmp, *rel);
169}
170
171static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
172{
173 if (nodes_empty(*nodes))
174 return -EINVAL;
175 pol->v.nodes = *nodes;
176 return 0;
177}
178
179static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
180{
181 if (!nodes)
182 pol->flags |= MPOL_F_LOCAL; /* local allocation */
183 else if (nodes_empty(*nodes))
184 return -EINVAL; /* no allowed nodes */
185 else
186 pol->v.preferred_node = first_node(*nodes);
187 return 0;
188}
189
190static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
191{
192 if (!is_valid_nodemask(nodes))
193 return -EINVAL;
194 pol->v.nodes = *nodes;
195 return 0;
196}
197
198/*
199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
200 * any, for the new policy. mpol_new() has already validated the nodes
201 * parameter with respect to the policy mode and flags. But, we need to
202 * handle an empty nodemask with MPOL_PREFERRED here.
203 *
204 * Must be called holding task's alloc_lock to protect task's mems_allowed
205 * and mempolicy. May also be called holding the mmap_semaphore for write.
206 */
207static int mpol_set_nodemask(struct mempolicy *pol,
208 const nodemask_t *nodes, struct nodemask_scratch *nsc)
209{
210 int ret;
211
212 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
213 if (pol == NULL)
214 return 0;
215 /* Check N_HIGH_MEMORY */
216 nodes_and(nsc->mask1,
217 cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
218
219 VM_BUG_ON(!nodes);
220 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
221 nodes = NULL; /* explicit local allocation */
222 else {
223 if (pol->flags & MPOL_F_RELATIVE_NODES)
224 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
225 else
226 nodes_and(nsc->mask2, *nodes, nsc->mask1);
227
228 if (mpol_store_user_nodemask(pol))
229 pol->w.user_nodemask = *nodes;
230 else
231 pol->w.cpuset_mems_allowed =
232 cpuset_current_mems_allowed;
233 }
234
235 if (nodes)
236 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
237 else
238 ret = mpol_ops[pol->mode].create(pol, NULL);
239 return ret;
240}
241
242/*
243 * This function just creates a new policy, does some check and simple
244 * initialization. You must invoke mpol_set_nodemask() to set nodes.
245 */
246static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
247 nodemask_t *nodes)
248{
249 struct mempolicy *policy;
250
251 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
252 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
253
254 if (mode == MPOL_DEFAULT) {
255 if (nodes && !nodes_empty(*nodes))
256 return ERR_PTR(-EINVAL);
257 return NULL; /* simply delete any existing policy */
258 }
259 VM_BUG_ON(!nodes);
260
261 /*
262 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
263 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
264 * All other modes require a valid pointer to a non-empty nodemask.
265 */
266 if (mode == MPOL_PREFERRED) {
267 if (nodes_empty(*nodes)) {
268 if (((flags & MPOL_F_STATIC_NODES) ||
269 (flags & MPOL_F_RELATIVE_NODES)))
270 return ERR_PTR(-EINVAL);
271 }
272 } else if (nodes_empty(*nodes))
273 return ERR_PTR(-EINVAL);
274 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
275 if (!policy)
276 return ERR_PTR(-ENOMEM);
277 atomic_set(&policy->refcnt, 1);
278 policy->mode = mode;
279 policy->flags = flags;
280
281 return policy;
282}
283
284/* Slow path of a mpol destructor. */
285void __mpol_put(struct mempolicy *p)
286{
287 if (!atomic_dec_and_test(&p->refcnt))
288 return;
289 kmem_cache_free(policy_cache, p);
290}
291
292static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
293 enum mpol_rebind_step step)
294{
295}
296
297/*
298 * step:
299 * MPOL_REBIND_ONCE - do rebind work at once
300 * MPOL_REBIND_STEP1 - set all the newly nodes
301 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
302 */
303static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
304 enum mpol_rebind_step step)
305{
306 nodemask_t tmp;
307
308 if (pol->flags & MPOL_F_STATIC_NODES)
309 nodes_and(tmp, pol->w.user_nodemask, *nodes);
310 else if (pol->flags & MPOL_F_RELATIVE_NODES)
311 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
312 else {
313 /*
314 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
315 * result
316 */
317 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
318 nodes_remap(tmp, pol->v.nodes,
319 pol->w.cpuset_mems_allowed, *nodes);
320 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
321 } else if (step == MPOL_REBIND_STEP2) {
322 tmp = pol->w.cpuset_mems_allowed;
323 pol->w.cpuset_mems_allowed = *nodes;
324 } else
325 BUG();
326 }
327
328 if (nodes_empty(tmp))
329 tmp = *nodes;
330
331 if (step == MPOL_REBIND_STEP1)
332 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
333 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
334 pol->v.nodes = tmp;
335 else
336 BUG();
337
338 if (!node_isset(current->il_next, tmp)) {
339 current->il_next = next_node(current->il_next, tmp);
340 if (current->il_next >= MAX_NUMNODES)
341 current->il_next = first_node(tmp);
342 if (current->il_next >= MAX_NUMNODES)
343 current->il_next = numa_node_id();
344 }
345}
346
347static void mpol_rebind_preferred(struct mempolicy *pol,
348 const nodemask_t *nodes,
349 enum mpol_rebind_step step)
350{
351 nodemask_t tmp;
352
353 if (pol->flags & MPOL_F_STATIC_NODES) {
354 int node = first_node(pol->w.user_nodemask);
355
356 if (node_isset(node, *nodes)) {
357 pol->v.preferred_node = node;
358 pol->flags &= ~MPOL_F_LOCAL;
359 } else
360 pol->flags |= MPOL_F_LOCAL;
361 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
362 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 pol->v.preferred_node = first_node(tmp);
364 } else if (!(pol->flags & MPOL_F_LOCAL)) {
365 pol->v.preferred_node = node_remap(pol->v.preferred_node,
366 pol->w.cpuset_mems_allowed,
367 *nodes);
368 pol->w.cpuset_mems_allowed = *nodes;
369 }
370}
371
372/*
373 * mpol_rebind_policy - Migrate a policy to a different set of nodes
374 *
375 * If read-side task has no lock to protect task->mempolicy, write-side
376 * task will rebind the task->mempolicy by two step. The first step is
377 * setting all the newly nodes, and the second step is cleaning all the
378 * disallowed nodes. In this way, we can avoid finding no node to alloc
379 * page.
380 * If we have a lock to protect task->mempolicy in read-side, we do
381 * rebind directly.
382 *
383 * step:
384 * MPOL_REBIND_ONCE - do rebind work at once
385 * MPOL_REBIND_STEP1 - set all the newly nodes
386 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
387 */
388static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
389 enum mpol_rebind_step step)
390{
391 if (!pol)
392 return;
393 if (!mpol_store_user_nodemask(pol) && step == 0 &&
394 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
395 return;
396
397 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
398 return;
399
400 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
401 BUG();
402
403 if (step == MPOL_REBIND_STEP1)
404 pol->flags |= MPOL_F_REBINDING;
405 else if (step == MPOL_REBIND_STEP2)
406 pol->flags &= ~MPOL_F_REBINDING;
407 else if (step >= MPOL_REBIND_NSTEP)
408 BUG();
409
410 mpol_ops[pol->mode].rebind(pol, newmask, step);
411}
412
413/*
414 * Wrapper for mpol_rebind_policy() that just requires task
415 * pointer, and updates task mempolicy.
416 *
417 * Called with task's alloc_lock held.
418 */
419
420void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
421 enum mpol_rebind_step step)
422{
423 mpol_rebind_policy(tsk->mempolicy, new, step);
424}
425
426/*
427 * Rebind each vma in mm to new nodemask.
428 *
429 * Call holding a reference to mm. Takes mm->mmap_sem during call.
430 */
431
432void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
433{
434 struct vm_area_struct *vma;
435
436 down_write(&mm->mmap_sem);
437 for (vma = mm->mmap; vma; vma = vma->vm_next)
438 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
439 up_write(&mm->mmap_sem);
440}
441
442static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
443 [MPOL_DEFAULT] = {
444 .rebind = mpol_rebind_default,
445 },
446 [MPOL_INTERLEAVE] = {
447 .create = mpol_new_interleave,
448 .rebind = mpol_rebind_nodemask,
449 },
450 [MPOL_PREFERRED] = {
451 .create = mpol_new_preferred,
452 .rebind = mpol_rebind_preferred,
453 },
454 [MPOL_BIND] = {
455 .create = mpol_new_bind,
456 .rebind = mpol_rebind_nodemask,
457 },
458};
459
460static void gather_stats(struct page *, void *, int pte_dirty);
461static void migrate_page_add(struct page *page, struct list_head *pagelist,
462 unsigned long flags);
463
464/* Scan through pages checking if pages follow certain conditions. */
465static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
466 unsigned long addr, unsigned long end,
467 const nodemask_t *nodes, unsigned long flags,
468 void *private)
469{
470 pte_t *orig_pte;
471 pte_t *pte;
472 spinlock_t *ptl;
473
474 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
475 do {
476 struct page *page;
477 int nid;
478
479 if (!pte_present(*pte))
480 continue;
481 page = vm_normal_page(vma, addr, *pte);
482 if (!page)
483 continue;
484 /*
485 * vm_normal_page() filters out zero pages, but there might
486 * still be PageReserved pages to skip, perhaps in a VDSO.
487 * And we cannot move PageKsm pages sensibly or safely yet.
488 */
489 if (PageReserved(page) || PageKsm(page))
490 continue;
491 nid = page_to_nid(page);
492 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
493 continue;
494
495 if (flags & MPOL_MF_STATS)
496 gather_stats(page, private, pte_dirty(*pte));
497 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
498 migrate_page_add(page, private, flags);
499 else
500 break;
501 } while (pte++, addr += PAGE_SIZE, addr != end);
502 pte_unmap_unlock(orig_pte, ptl);
503 return addr != end;
504}
505
506static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
507 unsigned long addr, unsigned long end,
508 const nodemask_t *nodes, unsigned long flags,
509 void *private)
510{
511 pmd_t *pmd;
512 unsigned long next;
513
514 pmd = pmd_offset(pud, addr);
515 do {
516 next = pmd_addr_end(addr, end);
517 if (pmd_none_or_clear_bad(pmd))
518 continue;
519 if (check_pte_range(vma, pmd, addr, next, nodes,
520 flags, private))
521 return -EIO;
522 } while (pmd++, addr = next, addr != end);
523 return 0;
524}
525
526static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
527 unsigned long addr, unsigned long end,
528 const nodemask_t *nodes, unsigned long flags,
529 void *private)
530{
531 pud_t *pud;
532 unsigned long next;
533
534 pud = pud_offset(pgd, addr);
535 do {
536 next = pud_addr_end(addr, end);
537 if (pud_none_or_clear_bad(pud))
538 continue;
539 if (check_pmd_range(vma, pud, addr, next, nodes,
540 flags, private))
541 return -EIO;
542 } while (pud++, addr = next, addr != end);
543 return 0;
544}
545
546static inline int check_pgd_range(struct vm_area_struct *vma,
547 unsigned long addr, unsigned long end,
548 const nodemask_t *nodes, unsigned long flags,
549 void *private)
550{
551 pgd_t *pgd;
552 unsigned long next;
553
554 pgd = pgd_offset(vma->vm_mm, addr);
555 do {
556 next = pgd_addr_end(addr, end);
557 if (pgd_none_or_clear_bad(pgd))
558 continue;
559 if (check_pud_range(vma, pgd, addr, next, nodes,
560 flags, private))
561 return -EIO;
562 } while (pgd++, addr = next, addr != end);
563 return 0;
564}
565
566/*
567 * Check if all pages in a range are on a set of nodes.
568 * If pagelist != NULL then isolate pages from the LRU and
569 * put them on the pagelist.
570 */
571static struct vm_area_struct *
572check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
573 const nodemask_t *nodes, unsigned long flags, void *private)
574{
575 int err;
576 struct vm_area_struct *first, *vma, *prev;
577
578
579 first = find_vma(mm, start);
580 if (!first)
581 return ERR_PTR(-EFAULT);
582 prev = NULL;
583 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
584 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
585 if (!vma->vm_next && vma->vm_end < end)
586 return ERR_PTR(-EFAULT);
587 if (prev && prev->vm_end < vma->vm_start)
588 return ERR_PTR(-EFAULT);
589 }
590 if (!is_vm_hugetlb_page(vma) &&
591 ((flags & MPOL_MF_STRICT) ||
592 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
593 vma_migratable(vma)))) {
594 unsigned long endvma = vma->vm_end;
595
596 if (endvma > end)
597 endvma = end;
598 if (vma->vm_start > start)
599 start = vma->vm_start;
600 err = check_pgd_range(vma, start, endvma, nodes,
601 flags, private);
602 if (err) {
603 first = ERR_PTR(err);
604 break;
605 }
606 }
607 prev = vma;
608 }
609 return first;
610}
611
612/* Apply policy to a single VMA */
613static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
614{
615 int err = 0;
616 struct mempolicy *old = vma->vm_policy;
617
618 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
619 vma->vm_start, vma->vm_end, vma->vm_pgoff,
620 vma->vm_ops, vma->vm_file,
621 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
622
623 if (vma->vm_ops && vma->vm_ops->set_policy)
624 err = vma->vm_ops->set_policy(vma, new);
625 if (!err) {
626 mpol_get(new);
627 vma->vm_policy = new;
628 mpol_put(old);
629 }
630 return err;
631}
632
633/* Step 2: apply policy to a range and do splits. */
634static int mbind_range(struct mm_struct *mm, unsigned long start,
635 unsigned long end, struct mempolicy *new_pol)
636{
637 struct vm_area_struct *next;
638 struct vm_area_struct *prev;
639 struct vm_area_struct *vma;
640 int err = 0;
641 pgoff_t pgoff;
642 unsigned long vmstart;
643 unsigned long vmend;
644
645 vma = find_vma_prev(mm, start, &prev);
646 if (!vma || vma->vm_start > start)
647 return -EFAULT;
648
649 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
650 next = vma->vm_next;
651 vmstart = max(start, vma->vm_start);
652 vmend = min(end, vma->vm_end);
653
654 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
655 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
656 vma->anon_vma, vma->vm_file, pgoff, new_pol);
657 if (prev) {
658 vma = prev;
659 next = vma->vm_next;
660 continue;
661 }
662 if (vma->vm_start != vmstart) {
663 err = split_vma(vma->vm_mm, vma, vmstart, 1);
664 if (err)
665 goto out;
666 }
667 if (vma->vm_end != vmend) {
668 err = split_vma(vma->vm_mm, vma, vmend, 0);
669 if (err)
670 goto out;
671 }
672 err = policy_vma(vma, new_pol);
673 if (err)
674 goto out;
675 }
676
677 out:
678 return err;
679}
680
681/*
682 * Update task->flags PF_MEMPOLICY bit: set iff non-default
683 * mempolicy. Allows more rapid checking of this (combined perhaps
684 * with other PF_* flag bits) on memory allocation hot code paths.
685 *
686 * If called from outside this file, the task 'p' should -only- be
687 * a newly forked child not yet visible on the task list, because
688 * manipulating the task flags of a visible task is not safe.
689 *
690 * The above limitation is why this routine has the funny name
691 * mpol_fix_fork_child_flag().
692 *
693 * It is also safe to call this with a task pointer of current,
694 * which the static wrapper mpol_set_task_struct_flag() does,
695 * for use within this file.
696 */
697
698void mpol_fix_fork_child_flag(struct task_struct *p)
699{
700 if (p->mempolicy)
701 p->flags |= PF_MEMPOLICY;
702 else
703 p->flags &= ~PF_MEMPOLICY;
704}
705
706static void mpol_set_task_struct_flag(void)
707{
708 mpol_fix_fork_child_flag(current);
709}
710
711/* Set the process memory policy */
712static long do_set_mempolicy(unsigned short mode, unsigned short flags,
713 nodemask_t *nodes)
714{
715 struct mempolicy *new, *old;
716 struct mm_struct *mm = current->mm;
717 NODEMASK_SCRATCH(scratch);
718 int ret;
719
720 if (!scratch)
721 return -ENOMEM;
722
723 new = mpol_new(mode, flags, nodes);
724 if (IS_ERR(new)) {
725 ret = PTR_ERR(new);
726 goto out;
727 }
728 /*
729 * prevent changing our mempolicy while show_numa_maps()
730 * is using it.
731 * Note: do_set_mempolicy() can be called at init time
732 * with no 'mm'.
733 */
734 if (mm)
735 down_write(&mm->mmap_sem);
736 task_lock(current);
737 ret = mpol_set_nodemask(new, nodes, scratch);
738 if (ret) {
739 task_unlock(current);
740 if (mm)
741 up_write(&mm->mmap_sem);
742 mpol_put(new);
743 goto out;
744 }
745 old = current->mempolicy;
746 current->mempolicy = new;
747 mpol_set_task_struct_flag();
748 if (new && new->mode == MPOL_INTERLEAVE &&
749 nodes_weight(new->v.nodes))
750 current->il_next = first_node(new->v.nodes);
751 task_unlock(current);
752 if (mm)
753 up_write(&mm->mmap_sem);
754
755 mpol_put(old);
756 ret = 0;
757out:
758 NODEMASK_SCRATCH_FREE(scratch);
759 return ret;
760}
761
762/*
763 * Return nodemask for policy for get_mempolicy() query
764 *
765 * Called with task's alloc_lock held
766 */
767static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
768{
769 nodes_clear(*nodes);
770 if (p == &default_policy)
771 return;
772
773 switch (p->mode) {
774 case MPOL_BIND:
775 /* Fall through */
776 case MPOL_INTERLEAVE:
777 *nodes = p->v.nodes;
778 break;
779 case MPOL_PREFERRED:
780 if (!(p->flags & MPOL_F_LOCAL))
781 node_set(p->v.preferred_node, *nodes);
782 /* else return empty node mask for local allocation */
783 break;
784 default:
785 BUG();
786 }
787}
788
789static int lookup_node(struct mm_struct *mm, unsigned long addr)
790{
791 struct page *p;
792 int err;
793
794 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
795 if (err >= 0) {
796 err = page_to_nid(p);
797 put_page(p);
798 }
799 return err;
800}
801
802/* Retrieve NUMA policy */
803static long do_get_mempolicy(int *policy, nodemask_t *nmask,
804 unsigned long addr, unsigned long flags)
805{
806 int err;
807 struct mm_struct *mm = current->mm;
808 struct vm_area_struct *vma = NULL;
809 struct mempolicy *pol = current->mempolicy;
810
811 if (flags &
812 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
813 return -EINVAL;
814
815 if (flags & MPOL_F_MEMS_ALLOWED) {
816 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
817 return -EINVAL;
818 *policy = 0; /* just so it's initialized */
819 task_lock(current);
820 *nmask = cpuset_current_mems_allowed;
821 task_unlock(current);
822 return 0;
823 }
824
825 if (flags & MPOL_F_ADDR) {
826 /*
827 * Do NOT fall back to task policy if the
828 * vma/shared policy at addr is NULL. We
829 * want to return MPOL_DEFAULT in this case.
830 */
831 down_read(&mm->mmap_sem);
832 vma = find_vma_intersection(mm, addr, addr+1);
833 if (!vma) {
834 up_read(&mm->mmap_sem);
835 return -EFAULT;
836 }
837 if (vma->vm_ops && vma->vm_ops->get_policy)
838 pol = vma->vm_ops->get_policy(vma, addr);
839 else
840 pol = vma->vm_policy;
841 } else if (addr)
842 return -EINVAL;
843
844 if (!pol)
845 pol = &default_policy; /* indicates default behavior */
846
847 if (flags & MPOL_F_NODE) {
848 if (flags & MPOL_F_ADDR) {
849 err = lookup_node(mm, addr);
850 if (err < 0)
851 goto out;
852 *policy = err;
853 } else if (pol == current->mempolicy &&
854 pol->mode == MPOL_INTERLEAVE) {
855 *policy = current->il_next;
856 } else {
857 err = -EINVAL;
858 goto out;
859 }
860 } else {
861 *policy = pol == &default_policy ? MPOL_DEFAULT :
862 pol->mode;
863 /*
864 * Internal mempolicy flags must be masked off before exposing
865 * the policy to userspace.
866 */
867 *policy |= (pol->flags & MPOL_MODE_FLAGS);
868 }
869
870 if (vma) {
871 up_read(&current->mm->mmap_sem);
872 vma = NULL;
873 }
874
875 err = 0;
876 if (nmask) {
877 if (mpol_store_user_nodemask(pol)) {
878 *nmask = pol->w.user_nodemask;
879 } else {
880 task_lock(current);
881 get_policy_nodemask(pol, nmask);
882 task_unlock(current);
883 }
884 }
885
886 out:
887 mpol_cond_put(pol);
888 if (vma)
889 up_read(&current->mm->mmap_sem);
890 return err;
891}
892
893#ifdef CONFIG_MIGRATION
894/*
895 * page migration
896 */
897static void migrate_page_add(struct page *page, struct list_head *pagelist,
898 unsigned long flags)
899{
900 /*
901 * Avoid migrating a page that is shared with others.
902 */
903 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
904 if (!isolate_lru_page(page)) {
905 list_add_tail(&page->lru, pagelist);
906 inc_zone_page_state(page, NR_ISOLATED_ANON +
907 page_is_file_cache(page));
908 }
909 }
910}
911
912static struct page *new_node_page(struct page *page, unsigned long node, int **x)
913{
914 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
915}
916
917/*
918 * Migrate pages from one node to a target node.
919 * Returns error or the number of pages not migrated.
920 */
921static int migrate_to_node(struct mm_struct *mm, int source, int dest,
922 int flags)
923{
924 nodemask_t nmask;
925 LIST_HEAD(pagelist);
926 int err = 0;
927
928 nodes_clear(nmask);
929 node_set(source, nmask);
930
931 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
932 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
933
934 if (!list_empty(&pagelist))
935 err = migrate_pages(&pagelist, new_node_page, dest, 0);
936
937 return err;
938}
939
940/*
941 * Move pages between the two nodesets so as to preserve the physical
942 * layout as much as possible.
943 *
944 * Returns the number of page that could not be moved.
945 */
946int do_migrate_pages(struct mm_struct *mm,
947 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
948{
949 int busy = 0;
950 int err;
951 nodemask_t tmp;
952
953 err = migrate_prep();
954 if (err)
955 return err;
956
957 down_read(&mm->mmap_sem);
958
959 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
960 if (err)
961 goto out;
962
963 /*
964 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
965 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
966 * bit in 'tmp', and return that <source, dest> pair for migration.
967 * The pair of nodemasks 'to' and 'from' define the map.
968 *
969 * If no pair of bits is found that way, fallback to picking some
970 * pair of 'source' and 'dest' bits that are not the same. If the
971 * 'source' and 'dest' bits are the same, this represents a node
972 * that will be migrating to itself, so no pages need move.
973 *
974 * If no bits are left in 'tmp', or if all remaining bits left
975 * in 'tmp' correspond to the same bit in 'to', return false
976 * (nothing left to migrate).
977 *
978 * This lets us pick a pair of nodes to migrate between, such that
979 * if possible the dest node is not already occupied by some other
980 * source node, minimizing the risk of overloading the memory on a
981 * node that would happen if we migrated incoming memory to a node
982 * before migrating outgoing memory source that same node.
983 *
984 * A single scan of tmp is sufficient. As we go, we remember the
985 * most recent <s, d> pair that moved (s != d). If we find a pair
986 * that not only moved, but what's better, moved to an empty slot
987 * (d is not set in tmp), then we break out then, with that pair.
988 * Otherwise when we finish scannng from_tmp, we at least have the
989 * most recent <s, d> pair that moved. If we get all the way through
990 * the scan of tmp without finding any node that moved, much less
991 * moved to an empty node, then there is nothing left worth migrating.
992 */
993
994 tmp = *from_nodes;
995 while (!nodes_empty(tmp)) {
996 int s,d;
997 int source = -1;
998 int dest = 0;
999
1000 for_each_node_mask(s, tmp) {
1001 d = node_remap(s, *from_nodes, *to_nodes);
1002 if (s == d)
1003 continue;
1004
1005 source = s; /* Node moved. Memorize */
1006 dest = d;
1007
1008 /* dest not in remaining from nodes? */
1009 if (!node_isset(dest, tmp))
1010 break;
1011 }
1012 if (source == -1)
1013 break;
1014
1015 node_clear(source, tmp);
1016 err = migrate_to_node(mm, source, dest, flags);
1017 if (err > 0)
1018 busy += err;
1019 if (err < 0)
1020 break;
1021 }
1022out:
1023 up_read(&mm->mmap_sem);
1024 if (err < 0)
1025 return err;
1026 return busy;
1027
1028}
1029
1030/*
1031 * Allocate a new page for page migration based on vma policy.
1032 * Start assuming that page is mapped by vma pointed to by @private.
1033 * Search forward from there, if not. N.B., this assumes that the
1034 * list of pages handed to migrate_pages()--which is how we get here--
1035 * is in virtual address order.
1036 */
1037static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1038{
1039 struct vm_area_struct *vma = (struct vm_area_struct *)private;
1040 unsigned long uninitialized_var(address);
1041
1042 while (vma) {
1043 address = page_address_in_vma(page, vma);
1044 if (address != -EFAULT)
1045 break;
1046 vma = vma->vm_next;
1047 }
1048
1049 /*
1050 * if !vma, alloc_page_vma() will use task or system default policy
1051 */
1052 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1053}
1054#else
1055
1056static void migrate_page_add(struct page *page, struct list_head *pagelist,
1057 unsigned long flags)
1058{
1059}
1060
1061int do_migrate_pages(struct mm_struct *mm,
1062 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
1063{
1064 return -ENOSYS;
1065}
1066
1067static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1068{
1069 return NULL;
1070}
1071#endif
1072
1073static long do_mbind(unsigned long start, unsigned long len,
1074 unsigned short mode, unsigned short mode_flags,
1075 nodemask_t *nmask, unsigned long flags)
1076{
1077 struct vm_area_struct *vma;
1078 struct mm_struct *mm = current->mm;
1079 struct mempolicy *new;
1080 unsigned long end;
1081 int err;
1082 LIST_HEAD(pagelist);
1083
1084 if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1085 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1086 return -EINVAL;
1087 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1088 return -EPERM;
1089
1090 if (start & ~PAGE_MASK)
1091 return -EINVAL;
1092
1093 if (mode == MPOL_DEFAULT)
1094 flags &= ~MPOL_MF_STRICT;
1095
1096 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1097 end = start + len;
1098
1099 if (end < start)
1100 return -EINVAL;
1101 if (end == start)
1102 return 0;
1103
1104 new = mpol_new(mode, mode_flags, nmask);
1105 if (IS_ERR(new))
1106 return PTR_ERR(new);
1107
1108 /*
1109 * If we are using the default policy then operation
1110 * on discontinuous address spaces is okay after all
1111 */
1112 if (!new)
1113 flags |= MPOL_MF_DISCONTIG_OK;
1114
1115 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1116 start, start + len, mode, mode_flags,
1117 nmask ? nodes_addr(*nmask)[0] : -1);
1118
1119 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1120
1121 err = migrate_prep();
1122 if (err)
1123 goto mpol_out;
1124 }
1125 {
1126 NODEMASK_SCRATCH(scratch);
1127 if (scratch) {
1128 down_write(&mm->mmap_sem);
1129 task_lock(current);
1130 err = mpol_set_nodemask(new, nmask, scratch);
1131 task_unlock(current);
1132 if (err)
1133 up_write(&mm->mmap_sem);
1134 } else
1135 err = -ENOMEM;
1136 NODEMASK_SCRATCH_FREE(scratch);
1137 }
1138 if (err)
1139 goto mpol_out;
1140
1141 vma = check_range(mm, start, end, nmask,
1142 flags | MPOL_MF_INVERT, &pagelist);
1143
1144 err = PTR_ERR(vma);
1145 if (!IS_ERR(vma)) {
1146 int nr_failed = 0;
1147
1148 err = mbind_range(mm, start, end, new);
1149
1150 if (!list_empty(&pagelist))
1151 nr_failed = migrate_pages(&pagelist, new_vma_page,
1152 (unsigned long)vma, 0);
1153
1154 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1155 err = -EIO;
1156 } else
1157 putback_lru_pages(&pagelist);
1158
1159 up_write(&mm->mmap_sem);
1160 mpol_out:
1161 mpol_put(new);
1162 return err;
1163}
1164
1165/*
1166 * User space interface with variable sized bitmaps for nodelists.
1167 */
1168
1169/* Copy a node mask from user space. */
1170static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1171 unsigned long maxnode)
1172{
1173 unsigned long k;
1174 unsigned long nlongs;
1175 unsigned long endmask;
1176
1177 --maxnode;
1178 nodes_clear(*nodes);
1179 if (maxnode == 0 || !nmask)
1180 return 0;
1181 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1182 return -EINVAL;
1183
1184 nlongs = BITS_TO_LONGS(maxnode);
1185 if ((maxnode % BITS_PER_LONG) == 0)
1186 endmask = ~0UL;
1187 else
1188 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1189
1190 /* When the user specified more nodes than supported just check
1191 if the non supported part is all zero. */
1192 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1193 if (nlongs > PAGE_SIZE/sizeof(long))
1194 return -EINVAL;
1195 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1196 unsigned long t;
1197 if (get_user(t, nmask + k))
1198 return -EFAULT;
1199 if (k == nlongs - 1) {
1200 if (t & endmask)
1201 return -EINVAL;
1202 } else if (t)
1203 return -EINVAL;
1204 }
1205 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1206 endmask = ~0UL;
1207 }
1208
1209 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1210 return -EFAULT;
1211 nodes_addr(*nodes)[nlongs-1] &= endmask;
1212 return 0;
1213}
1214
1215/* Copy a kernel node mask to user space */
1216static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1217 nodemask_t *nodes)
1218{
1219 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1220 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1221
1222 if (copy > nbytes) {
1223 if (copy > PAGE_SIZE)
1224 return -EINVAL;
1225 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1226 return -EFAULT;
1227 copy = nbytes;
1228 }
1229 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1230}
1231
1232SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1233 unsigned long, mode, unsigned long __user *, nmask,
1234 unsigned long, maxnode, unsigned, flags)
1235{
1236 nodemask_t nodes;
1237 int err;
1238 unsigned short mode_flags;
1239
1240 mode_flags = mode & MPOL_MODE_FLAGS;
1241 mode &= ~MPOL_MODE_FLAGS;
1242 if (mode >= MPOL_MAX)
1243 return -EINVAL;
1244 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1245 (mode_flags & MPOL_F_RELATIVE_NODES))
1246 return -EINVAL;
1247 err = get_nodes(&nodes, nmask, maxnode);
1248 if (err)
1249 return err;
1250 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1251}
1252
1253/* Set the process memory policy */
1254SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1255 unsigned long, maxnode)
1256{
1257 int err;
1258 nodemask_t nodes;
1259 unsigned short flags;
1260
1261 flags = mode & MPOL_MODE_FLAGS;
1262 mode &= ~MPOL_MODE_FLAGS;
1263 if ((unsigned int)mode >= MPOL_MAX)
1264 return -EINVAL;
1265 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1266 return -EINVAL;
1267 err = get_nodes(&nodes, nmask, maxnode);
1268 if (err)
1269 return err;
1270 return do_set_mempolicy(mode, flags, &nodes);
1271}
1272
1273SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1274 const unsigned long __user *, old_nodes,
1275 const unsigned long __user *, new_nodes)
1276{
1277 const struct cred *cred = current_cred(), *tcred;
1278 struct mm_struct *mm;
1279 struct task_struct *task;
1280 nodemask_t old;
1281 nodemask_t new;
1282 nodemask_t task_nodes;
1283 int err;
1284
1285 err = get_nodes(&old, old_nodes, maxnode);
1286 if (err)
1287 return err;
1288
1289 err = get_nodes(&new, new_nodes, maxnode);
1290 if (err)
1291 return err;
1292
1293 /* Find the mm_struct */
1294 read_lock(&tasklist_lock);
1295 task = pid ? find_task_by_vpid(pid) : current;
1296 if (!task) {
1297 read_unlock(&tasklist_lock);
1298 return -ESRCH;
1299 }
1300 mm = get_task_mm(task);
1301 read_unlock(&tasklist_lock);
1302
1303 if (!mm)
1304 return -EINVAL;
1305
1306 /*
1307 * Check if this process has the right to modify the specified
1308 * process. The right exists if the process has administrative
1309 * capabilities, superuser privileges or the same
1310 * userid as the target process.
1311 */
1312 rcu_read_lock();
1313 tcred = __task_cred(task);
1314 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1315 cred->uid != tcred->suid && cred->uid != tcred->uid &&
1316 !capable(CAP_SYS_NICE)) {
1317 rcu_read_unlock();
1318 err = -EPERM;
1319 goto out;
1320 }
1321 rcu_read_unlock();
1322
1323 task_nodes = cpuset_mems_allowed(task);
1324 /* Is the user allowed to access the target nodes? */
1325 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
1326 err = -EPERM;
1327 goto out;
1328 }
1329
1330 if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) {
1331 err = -EINVAL;
1332 goto out;
1333 }
1334
1335 err = security_task_movememory(task);
1336 if (err)
1337 goto out;
1338
1339 err = do_migrate_pages(mm, &old, &new,
1340 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1341out:
1342 mmput(mm);
1343 return err;
1344}
1345
1346
1347/* Retrieve NUMA policy */
1348SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1349 unsigned long __user *, nmask, unsigned long, maxnode,
1350 unsigned long, addr, unsigned long, flags)
1351{
1352 int err;
1353 int uninitialized_var(pval);
1354 nodemask_t nodes;
1355
1356 if (nmask != NULL && maxnode < MAX_NUMNODES)
1357 return -EINVAL;
1358
1359 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1360
1361 if (err)
1362 return err;
1363
1364 if (policy && put_user(pval, policy))
1365 return -EFAULT;
1366
1367 if (nmask)
1368 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1369
1370 return err;
1371}
1372
1373#ifdef CONFIG_COMPAT
1374
1375asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1376 compat_ulong_t __user *nmask,
1377 compat_ulong_t maxnode,
1378 compat_ulong_t addr, compat_ulong_t flags)
1379{
1380 long err;
1381 unsigned long __user *nm = NULL;
1382 unsigned long nr_bits, alloc_size;
1383 DECLARE_BITMAP(bm, MAX_NUMNODES);
1384
1385 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1386 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1387
1388 if (nmask)
1389 nm = compat_alloc_user_space(alloc_size);
1390
1391 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1392
1393 if (!err && nmask) {
1394 err = copy_from_user(bm, nm, alloc_size);
1395 /* ensure entire bitmap is zeroed */
1396 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1397 err |= compat_put_bitmap(nmask, bm, nr_bits);
1398 }
1399
1400 return err;
1401}
1402
1403asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1404 compat_ulong_t maxnode)
1405{
1406 long err = 0;
1407 unsigned long __user *nm = NULL;
1408 unsigned long nr_bits, alloc_size;
1409 DECLARE_BITMAP(bm, MAX_NUMNODES);
1410
1411 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1412 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1413
1414 if (nmask) {
1415 err = compat_get_bitmap(bm, nmask, nr_bits);
1416 nm = compat_alloc_user_space(alloc_size);
1417 err |= copy_to_user(nm, bm, alloc_size);
1418 }
1419
1420 if (err)
1421 return -EFAULT;
1422
1423 return sys_set_mempolicy(mode, nm, nr_bits+1);
1424}
1425
1426asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1427 compat_ulong_t mode, compat_ulong_t __user *nmask,
1428 compat_ulong_t maxnode, compat_ulong_t flags)
1429{
1430 long err = 0;
1431 unsigned long __user *nm = NULL;
1432 unsigned long nr_bits, alloc_size;
1433 nodemask_t bm;
1434
1435 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1436 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1437
1438 if (nmask) {
1439 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1440 nm = compat_alloc_user_space(alloc_size);
1441 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1442 }
1443
1444 if (err)
1445 return -EFAULT;
1446
1447 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1448}
1449
1450#endif
1451
1452/*
1453 * get_vma_policy(@task, @vma, @addr)
1454 * @task - task for fallback if vma policy == default
1455 * @vma - virtual memory area whose policy is sought
1456 * @addr - address in @vma for shared policy lookup
1457 *
1458 * Returns effective policy for a VMA at specified address.
1459 * Falls back to @task or system default policy, as necessary.
1460 * Current or other task's task mempolicy and non-shared vma policies
1461 * are protected by the task's mmap_sem, which must be held for read by
1462 * the caller.
1463 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1464 * count--added by the get_policy() vm_op, as appropriate--to protect against
1465 * freeing by another task. It is the caller's responsibility to free the
1466 * extra reference for shared policies.
1467 */
1468static struct mempolicy *get_vma_policy(struct task_struct *task,
1469 struct vm_area_struct *vma, unsigned long addr)
1470{
1471 struct mempolicy *pol = task->mempolicy;
1472
1473 if (vma) {
1474 if (vma->vm_ops && vma->vm_ops->get_policy) {
1475 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1476 addr);
1477 if (vpol)
1478 pol = vpol;
1479 } else if (vma->vm_policy)
1480 pol = vma->vm_policy;
1481 }
1482 if (!pol)
1483 pol = &default_policy;
1484 return pol;
1485}
1486
1487/*
1488 * Return a nodemask representing a mempolicy for filtering nodes for
1489 * page allocation
1490 */
1491static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1492{
1493 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1494 if (unlikely(policy->mode == MPOL_BIND) &&
1495 gfp_zone(gfp) >= policy_zone &&
1496 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1497 return &policy->v.nodes;
1498
1499 return NULL;
1500}
1501
1502/* Return a zonelist indicated by gfp for node representing a mempolicy */
1503static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy)
1504{
1505 int nd = numa_node_id();
1506
1507 switch (policy->mode) {
1508 case MPOL_PREFERRED:
1509 if (!(policy->flags & MPOL_F_LOCAL))
1510 nd = policy->v.preferred_node;
1511 break;
1512 case MPOL_BIND:
1513 /*
1514 * Normally, MPOL_BIND allocations are node-local within the
1515 * allowed nodemask. However, if __GFP_THISNODE is set and the
1516 * current node isn't part of the mask, we use the zonelist for
1517 * the first node in the mask instead.
1518 */
1519 if (unlikely(gfp & __GFP_THISNODE) &&
1520 unlikely(!node_isset(nd, policy->v.nodes)))
1521 nd = first_node(policy->v.nodes);
1522 break;
1523 default:
1524 BUG();
1525 }
1526 return node_zonelist(nd, gfp);
1527}
1528
1529/* Do dynamic interleaving for a process */
1530static unsigned interleave_nodes(struct mempolicy *policy)
1531{
1532 unsigned nid, next;
1533 struct task_struct *me = current;
1534
1535 nid = me->il_next;
1536 next = next_node(nid, policy->v.nodes);
1537 if (next >= MAX_NUMNODES)
1538 next = first_node(policy->v.nodes);
1539 if (next < MAX_NUMNODES)
1540 me->il_next = next;
1541 return nid;
1542}
1543
1544/*
1545 * Depending on the memory policy provide a node from which to allocate the
1546 * next slab entry.
1547 * @policy must be protected by freeing by the caller. If @policy is
1548 * the current task's mempolicy, this protection is implicit, as only the
1549 * task can change it's policy. The system default policy requires no
1550 * such protection.
1551 */
1552unsigned slab_node(struct mempolicy *policy)
1553{
1554 if (!policy || policy->flags & MPOL_F_LOCAL)
1555 return numa_node_id();
1556
1557 switch (policy->mode) {
1558 case MPOL_PREFERRED:
1559 /*
1560 * handled MPOL_F_LOCAL above
1561 */
1562 return policy->v.preferred_node;
1563
1564 case MPOL_INTERLEAVE:
1565 return interleave_nodes(policy);
1566
1567 case MPOL_BIND: {
1568 /*
1569 * Follow bind policy behavior and start allocation at the
1570 * first node.
1571 */
1572 struct zonelist *zonelist;
1573 struct zone *zone;
1574 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1575 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1576 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1577 &policy->v.nodes,
1578 &zone);
1579 return zone->node;
1580 }
1581
1582 default:
1583 BUG();
1584 }
1585}
1586
1587/* Do static interleaving for a VMA with known offset. */
1588static unsigned offset_il_node(struct mempolicy *pol,
1589 struct vm_area_struct *vma, unsigned long off)
1590{
1591 unsigned nnodes = nodes_weight(pol->v.nodes);
1592 unsigned target;
1593 int c;
1594 int nid = -1;
1595
1596 if (!nnodes)
1597 return numa_node_id();
1598 target = (unsigned int)off % nnodes;
1599 c = 0;
1600 do {
1601 nid = next_node(nid, pol->v.nodes);
1602 c++;
1603 } while (c <= target);
1604 return nid;
1605}
1606
1607/* Determine a node number for interleave */
1608static inline unsigned interleave_nid(struct mempolicy *pol,
1609 struct vm_area_struct *vma, unsigned long addr, int shift)
1610{
1611 if (vma) {
1612 unsigned long off;
1613
1614 /*
1615 * for small pages, there is no difference between
1616 * shift and PAGE_SHIFT, so the bit-shift is safe.
1617 * for huge pages, since vm_pgoff is in units of small
1618 * pages, we need to shift off the always 0 bits to get
1619 * a useful offset.
1620 */
1621 BUG_ON(shift < PAGE_SHIFT);
1622 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1623 off += (addr - vma->vm_start) >> shift;
1624 return offset_il_node(pol, vma, off);
1625 } else
1626 return interleave_nodes(pol);
1627}
1628
1629#ifdef CONFIG_HUGETLBFS
1630/*
1631 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1632 * @vma = virtual memory area whose policy is sought
1633 * @addr = address in @vma for shared policy lookup and interleave policy
1634 * @gfp_flags = for requested zone
1635 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1636 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1637 *
1638 * Returns a zonelist suitable for a huge page allocation and a pointer
1639 * to the struct mempolicy for conditional unref after allocation.
1640 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1641 * @nodemask for filtering the zonelist.
1642 */
1643struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1644 gfp_t gfp_flags, struct mempolicy **mpol,
1645 nodemask_t **nodemask)
1646{
1647 struct zonelist *zl;
1648
1649 *mpol = get_vma_policy(current, vma, addr);
1650 *nodemask = NULL; /* assume !MPOL_BIND */
1651
1652 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1653 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1654 huge_page_shift(hstate_vma(vma))), gfp_flags);
1655 } else {
1656 zl = policy_zonelist(gfp_flags, *mpol);
1657 if ((*mpol)->mode == MPOL_BIND)
1658 *nodemask = &(*mpol)->v.nodes;
1659 }
1660 return zl;
1661}
1662
1663/*
1664 * init_nodemask_of_mempolicy
1665 *
1666 * If the current task's mempolicy is "default" [NULL], return 'false'
1667 * to indicate default policy. Otherwise, extract the policy nodemask
1668 * for 'bind' or 'interleave' policy into the argument nodemask, or
1669 * initialize the argument nodemask to contain the single node for
1670 * 'preferred' or 'local' policy and return 'true' to indicate presence
1671 * of non-default mempolicy.
1672 *
1673 * We don't bother with reference counting the mempolicy [mpol_get/put]
1674 * because the current task is examining it's own mempolicy and a task's
1675 * mempolicy is only ever changed by the task itself.
1676 *
1677 * N.B., it is the caller's responsibility to free a returned nodemask.
1678 */
1679bool init_nodemask_of_mempolicy(nodemask_t *mask)
1680{
1681 struct mempolicy *mempolicy;
1682 int nid;
1683
1684 if (!(mask && current->mempolicy))
1685 return false;
1686
1687 mempolicy = current->mempolicy;
1688 switch (mempolicy->mode) {
1689 case MPOL_PREFERRED:
1690 if (mempolicy->flags & MPOL_F_LOCAL)
1691 nid = numa_node_id();
1692 else
1693 nid = mempolicy->v.preferred_node;
1694 init_nodemask_of_node(mask, nid);
1695 break;
1696
1697 case MPOL_BIND:
1698 /* Fall through */
1699 case MPOL_INTERLEAVE:
1700 *mask = mempolicy->v.nodes;
1701 break;
1702
1703 default:
1704 BUG();
1705 }
1706
1707 return true;
1708}
1709#endif
1710
1711/* Allocate a page in interleaved policy.
1712 Own path because it needs to do special accounting. */
1713static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1714 unsigned nid)
1715{
1716 struct zonelist *zl;
1717 struct page *page;
1718
1719 zl = node_zonelist(nid, gfp);
1720 page = __alloc_pages(gfp, order, zl);
1721 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1722 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1723 return page;
1724}
1725
1726/**
1727 * alloc_page_vma - Allocate a page for a VMA.
1728 *
1729 * @gfp:
1730 * %GFP_USER user allocation.
1731 * %GFP_KERNEL kernel allocations,
1732 * %GFP_HIGHMEM highmem/user allocations,
1733 * %GFP_FS allocation should not call back into a file system.
1734 * %GFP_ATOMIC don't sleep.
1735 *
1736 * @vma: Pointer to VMA or NULL if not available.
1737 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1738 *
1739 * This function allocates a page from the kernel page pool and applies
1740 * a NUMA policy associated with the VMA or the current process.
1741 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1742 * mm_struct of the VMA to prevent it from going away. Should be used for
1743 * all allocations for pages that will be mapped into
1744 * user space. Returns NULL when no page can be allocated.
1745 *
1746 * Should be called with the mm_sem of the vma hold.
1747 */
1748struct page *
1749alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1750{
1751 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1752 struct zonelist *zl;
1753
1754 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1755 unsigned nid;
1756
1757 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1758 mpol_cond_put(pol);
1759 return alloc_page_interleave(gfp, 0, nid);
1760 }
1761 zl = policy_zonelist(gfp, pol);
1762 if (unlikely(mpol_needs_cond_ref(pol))) {
1763 /*
1764 * slow path: ref counted shared policy
1765 */
1766 struct page *page = __alloc_pages_nodemask(gfp, 0,
1767 zl, policy_nodemask(gfp, pol));
1768 __mpol_put(pol);
1769 return page;
1770 }
1771 /*
1772 * fast path: default or task policy
1773 */
1774 return __alloc_pages_nodemask(gfp, 0, zl, policy_nodemask(gfp, pol));
1775}
1776
1777/**
1778 * alloc_pages_current - Allocate pages.
1779 *
1780 * @gfp:
1781 * %GFP_USER user allocation,
1782 * %GFP_KERNEL kernel allocation,
1783 * %GFP_HIGHMEM highmem allocation,
1784 * %GFP_FS don't call back into a file system.
1785 * %GFP_ATOMIC don't sleep.
1786 * @order: Power of two of allocation size in pages. 0 is a single page.
1787 *
1788 * Allocate a page from the kernel page pool. When not in
1789 * interrupt context and apply the current process NUMA policy.
1790 * Returns NULL when no page can be allocated.
1791 *
1792 * Don't call cpuset_update_task_memory_state() unless
1793 * 1) it's ok to take cpuset_sem (can WAIT), and
1794 * 2) allocating for current task (not interrupt).
1795 */
1796struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1797{
1798 struct mempolicy *pol = current->mempolicy;
1799
1800 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1801 pol = &default_policy;
1802
1803 /*
1804 * No reference counting needed for current->mempolicy
1805 * nor system default_policy
1806 */
1807 if (pol->mode == MPOL_INTERLEAVE)
1808 return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1809 return __alloc_pages_nodemask(gfp, order,
1810 policy_zonelist(gfp, pol), policy_nodemask(gfp, pol));
1811}
1812EXPORT_SYMBOL(alloc_pages_current);
1813
1814/*
1815 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1816 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1817 * with the mems_allowed returned by cpuset_mems_allowed(). This
1818 * keeps mempolicies cpuset relative after its cpuset moves. See
1819 * further kernel/cpuset.c update_nodemask().
1820 *
1821 * current's mempolicy may be rebinded by the other task(the task that changes
1822 * cpuset's mems), so we needn't do rebind work for current task.
1823 */
1824
1825/* Slow path of a mempolicy duplicate */
1826struct mempolicy *__mpol_dup(struct mempolicy *old)
1827{
1828 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1829
1830 if (!new)
1831 return ERR_PTR(-ENOMEM);
1832
1833 /* task's mempolicy is protected by alloc_lock */
1834 if (old == current->mempolicy) {
1835 task_lock(current);
1836 *new = *old;
1837 task_unlock(current);
1838 } else
1839 *new = *old;
1840
1841 rcu_read_lock();
1842 if (current_cpuset_is_being_rebound()) {
1843 nodemask_t mems = cpuset_mems_allowed(current);
1844 if (new->flags & MPOL_F_REBINDING)
1845 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
1846 else
1847 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
1848 }
1849 rcu_read_unlock();
1850 atomic_set(&new->refcnt, 1);
1851 return new;
1852}
1853
1854/*
1855 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1856 * eliminate the * MPOL_F_* flags that require conditional ref and
1857 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
1858 * after return. Use the returned value.
1859 *
1860 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1861 * policy lookup, even if the policy needs/has extra ref on lookup.
1862 * shmem_readahead needs this.
1863 */
1864struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1865 struct mempolicy *frompol)
1866{
1867 if (!mpol_needs_cond_ref(frompol))
1868 return frompol;
1869
1870 *tompol = *frompol;
1871 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */
1872 __mpol_put(frompol);
1873 return tompol;
1874}
1875
1876/* Slow path of a mempolicy comparison */
1877int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1878{
1879 if (!a || !b)
1880 return 0;
1881 if (a->mode != b->mode)
1882 return 0;
1883 if (a->flags != b->flags)
1884 return 0;
1885 if (mpol_store_user_nodemask(a))
1886 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
1887 return 0;
1888
1889 switch (a->mode) {
1890 case MPOL_BIND:
1891 /* Fall through */
1892 case MPOL_INTERLEAVE:
1893 return nodes_equal(a->v.nodes, b->v.nodes);
1894 case MPOL_PREFERRED:
1895 return a->v.preferred_node == b->v.preferred_node &&
1896 a->flags == b->flags;
1897 default:
1898 BUG();
1899 return 0;
1900 }
1901}
1902
1903/*
1904 * Shared memory backing store policy support.
1905 *
1906 * Remember policies even when nobody has shared memory mapped.
1907 * The policies are kept in Red-Black tree linked from the inode.
1908 * They are protected by the sp->lock spinlock, which should be held
1909 * for any accesses to the tree.
1910 */
1911
1912/* lookup first element intersecting start-end */
1913/* Caller holds sp->lock */
1914static struct sp_node *
1915sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1916{
1917 struct rb_node *n = sp->root.rb_node;
1918
1919 while (n) {
1920 struct sp_node *p = rb_entry(n, struct sp_node, nd);
1921
1922 if (start >= p->end)
1923 n = n->rb_right;
1924 else if (end <= p->start)
1925 n = n->rb_left;
1926 else
1927 break;
1928 }
1929 if (!n)
1930 return NULL;
1931 for (;;) {
1932 struct sp_node *w = NULL;
1933 struct rb_node *prev = rb_prev(n);
1934 if (!prev)
1935 break;
1936 w = rb_entry(prev, struct sp_node, nd);
1937 if (w->end <= start)
1938 break;
1939 n = prev;
1940 }
1941 return rb_entry(n, struct sp_node, nd);
1942}
1943
1944/* Insert a new shared policy into the list. */
1945/* Caller holds sp->lock */
1946static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1947{
1948 struct rb_node **p = &sp->root.rb_node;
1949 struct rb_node *parent = NULL;
1950 struct sp_node *nd;
1951
1952 while (*p) {
1953 parent = *p;
1954 nd = rb_entry(parent, struct sp_node, nd);
1955 if (new->start < nd->start)
1956 p = &(*p)->rb_left;
1957 else if (new->end > nd->end)
1958 p = &(*p)->rb_right;
1959 else
1960 BUG();
1961 }
1962 rb_link_node(&new->nd, parent, p);
1963 rb_insert_color(&new->nd, &sp->root);
1964 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
1965 new->policy ? new->policy->mode : 0);
1966}
1967
1968/* Find shared policy intersecting idx */
1969struct mempolicy *
1970mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1971{
1972 struct mempolicy *pol = NULL;
1973 struct sp_node *sn;
1974
1975 if (!sp->root.rb_node)
1976 return NULL;
1977 spin_lock(&sp->lock);
1978 sn = sp_lookup(sp, idx, idx+1);
1979 if (sn) {
1980 mpol_get(sn->policy);
1981 pol = sn->policy;
1982 }
1983 spin_unlock(&sp->lock);
1984 return pol;
1985}
1986
1987static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1988{
1989 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
1990 rb_erase(&n->nd, &sp->root);
1991 mpol_put(n->policy);
1992 kmem_cache_free(sn_cache, n);
1993}
1994
1995static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
1996 struct mempolicy *pol)
1997{
1998 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1999
2000 if (!n)
2001 return NULL;
2002 n->start = start;
2003 n->end = end;
2004 mpol_get(pol);
2005 pol->flags |= MPOL_F_SHARED; /* for unref */
2006 n->policy = pol;
2007 return n;
2008}
2009
2010/* Replace a policy range. */
2011static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2012 unsigned long end, struct sp_node *new)
2013{
2014 struct sp_node *n, *new2 = NULL;
2015
2016restart:
2017 spin_lock(&sp->lock);
2018 n = sp_lookup(sp, start, end);
2019 /* Take care of old policies in the same range. */
2020 while (n && n->start < end) {
2021 struct rb_node *next = rb_next(&n->nd);
2022 if (n->start >= start) {
2023 if (n->end <= end)
2024 sp_delete(sp, n);
2025 else
2026 n->start = end;
2027 } else {
2028 /* Old policy spanning whole new range. */
2029 if (n->end > end) {
2030 if (!new2) {
2031 spin_unlock(&sp->lock);
2032 new2 = sp_alloc(end, n->end, n->policy);
2033 if (!new2)
2034 return -ENOMEM;
2035 goto restart;
2036 }
2037 n->end = start;
2038 sp_insert(sp, new2);
2039 new2 = NULL;
2040 break;
2041 } else
2042 n->end = start;
2043 }
2044 if (!next)
2045 break;
2046 n = rb_entry(next, struct sp_node, nd);
2047 }
2048 if (new)
2049 sp_insert(sp, new);
2050 spin_unlock(&sp->lock);
2051 if (new2) {
2052 mpol_put(new2->policy);
2053 kmem_cache_free(sn_cache, new2);
2054 }
2055 return 0;
2056}
2057
2058/**
2059 * mpol_shared_policy_init - initialize shared policy for inode
2060 * @sp: pointer to inode shared policy
2061 * @mpol: struct mempolicy to install
2062 *
2063 * Install non-NULL @mpol in inode's shared policy rb-tree.
2064 * On entry, the current task has a reference on a non-NULL @mpol.
2065 * This must be released on exit.
2066 * This is called at get_inode() calls and we can use GFP_KERNEL.
2067 */
2068void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2069{
2070 int ret;
2071
2072 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2073 spin_lock_init(&sp->lock);
2074
2075 if (mpol) {
2076 struct vm_area_struct pvma;
2077 struct mempolicy *new;
2078 NODEMASK_SCRATCH(scratch);
2079
2080 if (!scratch)
2081 return;
2082 /* contextualize the tmpfs mount point mempolicy */
2083 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2084 if (IS_ERR(new))
2085 goto put_free; /* no valid nodemask intersection */
2086
2087 task_lock(current);
2088 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2089 task_unlock(current);
2090 mpol_put(mpol); /* drop our ref on sb mpol */
2091 if (ret)
2092 goto put_free;
2093
2094 /* Create pseudo-vma that contains just the policy */
2095 memset(&pvma, 0, sizeof(struct vm_area_struct));
2096 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2097 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2098
2099put_free:
2100 mpol_put(new); /* drop initial ref */
2101 NODEMASK_SCRATCH_FREE(scratch);
2102 }
2103}
2104
2105int mpol_set_shared_policy(struct shared_policy *info,
2106 struct vm_area_struct *vma, struct mempolicy *npol)
2107{
2108 int err;
2109 struct sp_node *new = NULL;
2110 unsigned long sz = vma_pages(vma);
2111
2112 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2113 vma->vm_pgoff,
2114 sz, npol ? npol->mode : -1,
2115 npol ? npol->flags : -1,
2116 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2117
2118 if (npol) {
2119 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2120 if (!new)
2121 return -ENOMEM;
2122 }
2123 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2124 if (err && new)
2125 kmem_cache_free(sn_cache, new);
2126 return err;
2127}
2128
2129/* Free a backing policy store on inode delete. */
2130void mpol_free_shared_policy(struct shared_policy *p)
2131{
2132 struct sp_node *n;
2133 struct rb_node *next;
2134
2135 if (!p->root.rb_node)
2136 return;
2137 spin_lock(&p->lock);
2138 next = rb_first(&p->root);
2139 while (next) {
2140 n = rb_entry(next, struct sp_node, nd);
2141 next = rb_next(&n->nd);
2142 rb_erase(&n->nd, &p->root);
2143 mpol_put(n->policy);
2144 kmem_cache_free(sn_cache, n);
2145 }
2146 spin_unlock(&p->lock);
2147}
2148
2149/* assumes fs == KERNEL_DS */
2150void __init numa_policy_init(void)
2151{
2152 nodemask_t interleave_nodes;
2153 unsigned long largest = 0;
2154 int nid, prefer = 0;
2155
2156 policy_cache = kmem_cache_create("numa_policy",
2157 sizeof(struct mempolicy),
2158 0, SLAB_PANIC, NULL);
2159
2160 sn_cache = kmem_cache_create("shared_policy_node",
2161 sizeof(struct sp_node),
2162 0, SLAB_PANIC, NULL);
2163
2164 /*
2165 * Set interleaving policy for system init. Interleaving is only
2166 * enabled across suitably sized nodes (default is >= 16MB), or
2167 * fall back to the largest node if they're all smaller.
2168 */
2169 nodes_clear(interleave_nodes);
2170 for_each_node_state(nid, N_HIGH_MEMORY) {
2171 unsigned long total_pages = node_present_pages(nid);
2172
2173 /* Preserve the largest node */
2174 if (largest < total_pages) {
2175 largest = total_pages;
2176 prefer = nid;
2177 }
2178
2179 /* Interleave this node? */
2180 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2181 node_set(nid, interleave_nodes);
2182 }
2183
2184 /* All too small, use the largest */
2185 if (unlikely(nodes_empty(interleave_nodes)))
2186 node_set(prefer, interleave_nodes);
2187
2188 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2189 printk("numa_policy_init: interleaving failed\n");
2190}
2191
2192/* Reset policy of current process to default */
2193void numa_default_policy(void)
2194{
2195 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2196}
2197
2198/*
2199 * Parse and format mempolicy from/to strings
2200 */
2201
2202/*
2203 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
2204 * Used only for mpol_parse_str() and mpol_to_str()
2205 */
2206#define MPOL_LOCAL MPOL_MAX
2207static const char * const policy_modes[] =
2208{
2209 [MPOL_DEFAULT] = "default",
2210 [MPOL_PREFERRED] = "prefer",
2211 [MPOL_BIND] = "bind",
2212 [MPOL_INTERLEAVE] = "interleave",
2213 [MPOL_LOCAL] = "local"
2214};
2215
2216
2217#ifdef CONFIG_TMPFS
2218/**
2219 * mpol_parse_str - parse string to mempolicy
2220 * @str: string containing mempolicy to parse
2221 * @mpol: pointer to struct mempolicy pointer, returned on success.
2222 * @no_context: flag whether to "contextualize" the mempolicy
2223 *
2224 * Format of input:
2225 * <mode>[=<flags>][:<nodelist>]
2226 *
2227 * if @no_context is true, save the input nodemask in w.user_nodemask in
2228 * the returned mempolicy. This will be used to "clone" the mempolicy in
2229 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol
2230 * mount option. Note that if 'static' or 'relative' mode flags were
2231 * specified, the input nodemask will already have been saved. Saving
2232 * it again is redundant, but safe.
2233 *
2234 * On success, returns 0, else 1
2235 */
2236int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2237{
2238 struct mempolicy *new = NULL;
2239 unsigned short mode;
2240 unsigned short uninitialized_var(mode_flags);
2241 nodemask_t nodes;
2242 char *nodelist = strchr(str, ':');
2243 char *flags = strchr(str, '=');
2244 int err = 1;
2245
2246 if (nodelist) {
2247 /* NUL-terminate mode or flags string */
2248 *nodelist++ = '\0';
2249 if (nodelist_parse(nodelist, nodes))
2250 goto out;
2251 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2252 goto out;
2253 } else
2254 nodes_clear(nodes);
2255
2256 if (flags)
2257 *flags++ = '\0'; /* terminate mode string */
2258
2259 for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2260 if (!strcmp(str, policy_modes[mode])) {
2261 break;
2262 }
2263 }
2264 if (mode > MPOL_LOCAL)
2265 goto out;
2266
2267 switch (mode) {
2268 case MPOL_PREFERRED:
2269 /*
2270 * Insist on a nodelist of one node only
2271 */
2272 if (nodelist) {
2273 char *rest = nodelist;
2274 while (isdigit(*rest))
2275 rest++;
2276 if (*rest)
2277 goto out;
2278 }
2279 break;
2280 case MPOL_INTERLEAVE:
2281 /*
2282 * Default to online nodes with memory if no nodelist
2283 */
2284 if (!nodelist)
2285 nodes = node_states[N_HIGH_MEMORY];
2286 break;
2287 case MPOL_LOCAL:
2288 /*
2289 * Don't allow a nodelist; mpol_new() checks flags
2290 */
2291 if (nodelist)
2292 goto out;
2293 mode = MPOL_PREFERRED;
2294 break;
2295 case MPOL_DEFAULT:
2296 /*
2297 * Insist on a empty nodelist
2298 */
2299 if (!nodelist)
2300 err = 0;
2301 goto out;
2302 case MPOL_BIND:
2303 /*
2304 * Insist on a nodelist
2305 */
2306 if (!nodelist)
2307 goto out;
2308 }
2309
2310 mode_flags = 0;
2311 if (flags) {
2312 /*
2313 * Currently, we only support two mutually exclusive
2314 * mode flags.
2315 */
2316 if (!strcmp(flags, "static"))
2317 mode_flags |= MPOL_F_STATIC_NODES;
2318 else if (!strcmp(flags, "relative"))
2319 mode_flags |= MPOL_F_RELATIVE_NODES;
2320 else
2321 goto out;
2322 }
2323
2324 new = mpol_new(mode, mode_flags, &nodes);
2325 if (IS_ERR(new))
2326 goto out;
2327
2328 if (no_context) {
2329 /* save for contextualization */
2330 new->w.user_nodemask = nodes;
2331 } else {
2332 int ret;
2333 NODEMASK_SCRATCH(scratch);
2334 if (scratch) {
2335 task_lock(current);
2336 ret = mpol_set_nodemask(new, &nodes, scratch);
2337 task_unlock(current);
2338 } else
2339 ret = -ENOMEM;
2340 NODEMASK_SCRATCH_FREE(scratch);
2341 if (ret) {
2342 mpol_put(new);
2343 goto out;
2344 }
2345 }
2346 err = 0;
2347
2348out:
2349 /* Restore string for error message */
2350 if (nodelist)
2351 *--nodelist = ':';
2352 if (flags)
2353 *--flags = '=';
2354 if (!err)
2355 *mpol = new;
2356 return err;
2357}
2358#endif /* CONFIG_TMPFS */
2359
2360/**
2361 * mpol_to_str - format a mempolicy structure for printing
2362 * @buffer: to contain formatted mempolicy string
2363 * @maxlen: length of @buffer
2364 * @pol: pointer to mempolicy to be formatted
2365 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask
2366 *
2367 * Convert a mempolicy into a string.
2368 * Returns the number of characters in buffer (if positive)
2369 * or an error (negative)
2370 */
2371int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2372{
2373 char *p = buffer;
2374 int l;
2375 nodemask_t nodes;
2376 unsigned short mode;
2377 unsigned short flags = pol ? pol->flags : 0;
2378
2379 /*
2380 * Sanity check: room for longest mode, flag and some nodes
2381 */
2382 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2383
2384 if (!pol || pol == &default_policy)
2385 mode = MPOL_DEFAULT;
2386 else
2387 mode = pol->mode;
2388
2389 switch (mode) {
2390 case MPOL_DEFAULT:
2391 nodes_clear(nodes);
2392 break;
2393
2394 case MPOL_PREFERRED:
2395 nodes_clear(nodes);
2396 if (flags & MPOL_F_LOCAL)
2397 mode = MPOL_LOCAL; /* pseudo-policy */
2398 else
2399 node_set(pol->v.preferred_node, nodes);
2400 break;
2401
2402 case MPOL_BIND:
2403 /* Fall through */
2404 case MPOL_INTERLEAVE:
2405 if (no_context)
2406 nodes = pol->w.user_nodemask;
2407 else
2408 nodes = pol->v.nodes;
2409 break;
2410
2411 default:
2412 BUG();
2413 }
2414
2415 l = strlen(policy_modes[mode]);
2416 if (buffer + maxlen < p + l + 1)
2417 return -ENOSPC;
2418
2419 strcpy(p, policy_modes[mode]);
2420 p += l;
2421
2422 if (flags & MPOL_MODE_FLAGS) {
2423 if (buffer + maxlen < p + 2)
2424 return -ENOSPC;
2425 *p++ = '=';
2426
2427 /*
2428 * Currently, the only defined flags are mutually exclusive
2429 */
2430 if (flags & MPOL_F_STATIC_NODES)
2431 p += snprintf(p, buffer + maxlen - p, "static");
2432 else if (flags & MPOL_F_RELATIVE_NODES)
2433 p += snprintf(p, buffer + maxlen - p, "relative");
2434 }
2435
2436 if (!nodes_empty(nodes)) {
2437 if (buffer + maxlen < p + 2)
2438 return -ENOSPC;
2439 *p++ = ':';
2440 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2441 }
2442 return p - buffer;
2443}
2444
2445struct numa_maps {
2446 unsigned long pages;
2447 unsigned long anon;
2448 unsigned long active;
2449 unsigned long writeback;
2450 unsigned long mapcount_max;
2451 unsigned long dirty;
2452 unsigned long swapcache;
2453 unsigned long node[MAX_NUMNODES];
2454};
2455
2456static void gather_stats(struct page *page, void *private, int pte_dirty)
2457{
2458 struct numa_maps *md = private;
2459 int count = page_mapcount(page);
2460
2461 md->pages++;
2462 if (pte_dirty || PageDirty(page))
2463 md->dirty++;
2464
2465 if (PageSwapCache(page))
2466 md->swapcache++;
2467
2468 if (PageActive(page) || PageUnevictable(page))
2469 md->active++;
2470
2471 if (PageWriteback(page))
2472 md->writeback++;
2473
2474 if (PageAnon(page))
2475 md->anon++;
2476
2477 if (count > md->mapcount_max)
2478 md->mapcount_max = count;
2479
2480 md->node[page_to_nid(page)]++;
2481}
2482
2483#ifdef CONFIG_HUGETLB_PAGE
2484static void check_huge_range(struct vm_area_struct *vma,
2485 unsigned long start, unsigned long end,
2486 struct numa_maps *md)
2487{
2488 unsigned long addr;
2489 struct page *page;
2490 struct hstate *h = hstate_vma(vma);
2491 unsigned long sz = huge_page_size(h);
2492
2493 for (addr = start; addr < end; addr += sz) {
2494 pte_t *ptep = huge_pte_offset(vma->vm_mm,
2495 addr & huge_page_mask(h));
2496 pte_t pte;
2497
2498 if (!ptep)
2499 continue;
2500
2501 pte = *ptep;
2502 if (pte_none(pte))
2503 continue;
2504
2505 page = pte_page(pte);
2506 if (!page)
2507 continue;
2508
2509 gather_stats(page, md, pte_dirty(*ptep));
2510 }
2511}
2512#else
2513static inline void check_huge_range(struct vm_area_struct *vma,
2514 unsigned long start, unsigned long end,
2515 struct numa_maps *md)
2516{
2517}
2518#endif
2519
2520/*
2521 * Display pages allocated per node and memory policy via /proc.
2522 */
2523int show_numa_map(struct seq_file *m, void *v)
2524{
2525 struct proc_maps_private *priv = m->private;
2526 struct vm_area_struct *vma = v;
2527 struct numa_maps *md;
2528 struct file *file = vma->vm_file;
2529 struct mm_struct *mm = vma->vm_mm;
2530 struct mempolicy *pol;
2531 int n;
2532 char buffer[50];
2533
2534 if (!mm)
2535 return 0;
2536
2537 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
2538 if (!md)
2539 return 0;
2540
2541 pol = get_vma_policy(priv->task, vma, vma->vm_start);
2542 mpol_to_str(buffer, sizeof(buffer), pol, 0);
2543 mpol_cond_put(pol);
2544
2545 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2546
2547 if (file) {
2548 seq_printf(m, " file=");
2549 seq_path(m, &file->f_path, "\n\t= ");
2550 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
2551 seq_printf(m, " heap");
2552 } else if (vma->vm_start <= mm->start_stack &&
2553 vma->vm_end >= mm->start_stack) {
2554 seq_printf(m, " stack");
2555 }
2556
2557 if (is_vm_hugetlb_page(vma)) {
2558 check_huge_range(vma, vma->vm_start, vma->vm_end, md);
2559 seq_printf(m, " huge");
2560 } else {
2561 check_pgd_range(vma, vma->vm_start, vma->vm_end,
2562 &node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
2563 }
2564
2565 if (!md->pages)
2566 goto out;
2567
2568 if (md->anon)
2569 seq_printf(m," anon=%lu",md->anon);
2570
2571 if (md->dirty)
2572 seq_printf(m," dirty=%lu",md->dirty);
2573
2574 if (md->pages != md->anon && md->pages != md->dirty)
2575 seq_printf(m, " mapped=%lu", md->pages);
2576
2577 if (md->mapcount_max > 1)
2578 seq_printf(m, " mapmax=%lu", md->mapcount_max);
2579
2580 if (md->swapcache)
2581 seq_printf(m," swapcache=%lu", md->swapcache);
2582
2583 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2584 seq_printf(m," active=%lu", md->active);
2585
2586 if (md->writeback)
2587 seq_printf(m," writeback=%lu", md->writeback);
2588
2589 for_each_node_state(n, N_HIGH_MEMORY)
2590 if (md->node[n])
2591 seq_printf(m, " N%d=%lu", n, md->node[n]);
2592out:
2593 seq_putc(m, '\n');
2594 kfree(md);
2595
2596 if (m->count < m->size)
2597 m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
2598 return 0;
2599}