]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - mm/mempolicy.c
mempolicy: remove redundant code
[net-next-2.6.git] / mm / mempolicy.c
... / ...
CommitLineData
1/*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56/* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66*/
67
68#include <linux/mempolicy.h>
69#include <linux/mm.h>
70#include <linux/highmem.h>
71#include <linux/hugetlb.h>
72#include <linux/kernel.h>
73#include <linux/sched.h>
74#include <linux/nodemask.h>
75#include <linux/cpuset.h>
76#include <linux/slab.h>
77#include <linux/string.h>
78#include <linux/module.h>
79#include <linux/nsproxy.h>
80#include <linux/interrupt.h>
81#include <linux/init.h>
82#include <linux/compat.h>
83#include <linux/swap.h>
84#include <linux/seq_file.h>
85#include <linux/proc_fs.h>
86#include <linux/migrate.h>
87#include <linux/ksm.h>
88#include <linux/rmap.h>
89#include <linux/security.h>
90#include <linux/syscalls.h>
91#include <linux/ctype.h>
92#include <linux/mm_inline.h>
93
94#include <asm/tlbflush.h>
95#include <asm/uaccess.h>
96
97#include "internal.h"
98
99/* Internal flags */
100#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
101#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
102#define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */
103
104static struct kmem_cache *policy_cache;
105static struct kmem_cache *sn_cache;
106
107/* Highest zone. An specific allocation for a zone below that is not
108 policied. */
109enum zone_type policy_zone = 0;
110
111/*
112 * run-time system-wide default policy => local allocation
113 */
114struct mempolicy default_policy = {
115 .refcnt = ATOMIC_INIT(1), /* never free it */
116 .mode = MPOL_PREFERRED,
117 .flags = MPOL_F_LOCAL,
118};
119
120static const struct mempolicy_operations {
121 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
122 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
123} mpol_ops[MPOL_MAX];
124
125/* Check that the nodemask contains at least one populated zone */
126static int is_valid_nodemask(const nodemask_t *nodemask)
127{
128 int nd, k;
129
130 for_each_node_mask(nd, *nodemask) {
131 struct zone *z;
132
133 for (k = 0; k <= policy_zone; k++) {
134 z = &NODE_DATA(nd)->node_zones[k];
135 if (z->present_pages > 0)
136 return 1;
137 }
138 }
139
140 return 0;
141}
142
143static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
144{
145 return pol->flags & MPOL_MODE_FLAGS;
146}
147
148static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
149 const nodemask_t *rel)
150{
151 nodemask_t tmp;
152 nodes_fold(tmp, *orig, nodes_weight(*rel));
153 nodes_onto(*ret, tmp, *rel);
154}
155
156static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
157{
158 if (nodes_empty(*nodes))
159 return -EINVAL;
160 pol->v.nodes = *nodes;
161 return 0;
162}
163
164static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
165{
166 if (!nodes)
167 pol->flags |= MPOL_F_LOCAL; /* local allocation */
168 else if (nodes_empty(*nodes))
169 return -EINVAL; /* no allowed nodes */
170 else
171 pol->v.preferred_node = first_node(*nodes);
172 return 0;
173}
174
175static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
176{
177 if (!is_valid_nodemask(nodes))
178 return -EINVAL;
179 pol->v.nodes = *nodes;
180 return 0;
181}
182
183/*
184 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
185 * any, for the new policy. mpol_new() has already validated the nodes
186 * parameter with respect to the policy mode and flags. But, we need to
187 * handle an empty nodemask with MPOL_PREFERRED here.
188 *
189 * Must be called holding task's alloc_lock to protect task's mems_allowed
190 * and mempolicy. May also be called holding the mmap_semaphore for write.
191 */
192static int mpol_set_nodemask(struct mempolicy *pol,
193 const nodemask_t *nodes, struct nodemask_scratch *nsc)
194{
195 int ret;
196
197 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
198 if (pol == NULL)
199 return 0;
200 /* Check N_HIGH_MEMORY */
201 nodes_and(nsc->mask1,
202 cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
203
204 VM_BUG_ON(!nodes);
205 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
206 nodes = NULL; /* explicit local allocation */
207 else {
208 if (pol->flags & MPOL_F_RELATIVE_NODES)
209 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
210 else
211 nodes_and(nsc->mask2, *nodes, nsc->mask1);
212
213 if (mpol_store_user_nodemask(pol))
214 pol->w.user_nodemask = *nodes;
215 else
216 pol->w.cpuset_mems_allowed =
217 cpuset_current_mems_allowed;
218 }
219
220 if (nodes)
221 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
222 else
223 ret = mpol_ops[pol->mode].create(pol, NULL);
224 return ret;
225}
226
227/*
228 * This function just creates a new policy, does some check and simple
229 * initialization. You must invoke mpol_set_nodemask() to set nodes.
230 */
231static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
232 nodemask_t *nodes)
233{
234 struct mempolicy *policy;
235
236 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
237 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
238
239 if (mode == MPOL_DEFAULT) {
240 if (nodes && !nodes_empty(*nodes))
241 return ERR_PTR(-EINVAL);
242 return NULL; /* simply delete any existing policy */
243 }
244 VM_BUG_ON(!nodes);
245
246 /*
247 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
248 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
249 * All other modes require a valid pointer to a non-empty nodemask.
250 */
251 if (mode == MPOL_PREFERRED) {
252 if (nodes_empty(*nodes)) {
253 if (((flags & MPOL_F_STATIC_NODES) ||
254 (flags & MPOL_F_RELATIVE_NODES)))
255 return ERR_PTR(-EINVAL);
256 }
257 } else if (nodes_empty(*nodes))
258 return ERR_PTR(-EINVAL);
259 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
260 if (!policy)
261 return ERR_PTR(-ENOMEM);
262 atomic_set(&policy->refcnt, 1);
263 policy->mode = mode;
264 policy->flags = flags;
265
266 return policy;
267}
268
269/* Slow path of a mpol destructor. */
270void __mpol_put(struct mempolicy *p)
271{
272 if (!atomic_dec_and_test(&p->refcnt))
273 return;
274 kmem_cache_free(policy_cache, p);
275}
276
277static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
278{
279}
280
281static void mpol_rebind_nodemask(struct mempolicy *pol,
282 const nodemask_t *nodes)
283{
284 nodemask_t tmp;
285
286 if (pol->flags & MPOL_F_STATIC_NODES)
287 nodes_and(tmp, pol->w.user_nodemask, *nodes);
288 else if (pol->flags & MPOL_F_RELATIVE_NODES)
289 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
290 else {
291 nodes_remap(tmp, pol->v.nodes, pol->w.cpuset_mems_allowed,
292 *nodes);
293 pol->w.cpuset_mems_allowed = *nodes;
294 }
295
296 pol->v.nodes = tmp;
297 if (!node_isset(current->il_next, tmp)) {
298 current->il_next = next_node(current->il_next, tmp);
299 if (current->il_next >= MAX_NUMNODES)
300 current->il_next = first_node(tmp);
301 if (current->il_next >= MAX_NUMNODES)
302 current->il_next = numa_node_id();
303 }
304}
305
306static void mpol_rebind_preferred(struct mempolicy *pol,
307 const nodemask_t *nodes)
308{
309 nodemask_t tmp;
310
311 if (pol->flags & MPOL_F_STATIC_NODES) {
312 int node = first_node(pol->w.user_nodemask);
313
314 if (node_isset(node, *nodes)) {
315 pol->v.preferred_node = node;
316 pol->flags &= ~MPOL_F_LOCAL;
317 } else
318 pol->flags |= MPOL_F_LOCAL;
319 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
320 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
321 pol->v.preferred_node = first_node(tmp);
322 } else if (!(pol->flags & MPOL_F_LOCAL)) {
323 pol->v.preferred_node = node_remap(pol->v.preferred_node,
324 pol->w.cpuset_mems_allowed,
325 *nodes);
326 pol->w.cpuset_mems_allowed = *nodes;
327 }
328}
329
330/* Migrate a policy to a different set of nodes */
331static void mpol_rebind_policy(struct mempolicy *pol,
332 const nodemask_t *newmask)
333{
334 if (!pol)
335 return;
336 if (!mpol_store_user_nodemask(pol) &&
337 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
338 return;
339 mpol_ops[pol->mode].rebind(pol, newmask);
340}
341
342/*
343 * Wrapper for mpol_rebind_policy() that just requires task
344 * pointer, and updates task mempolicy.
345 *
346 * Called with task's alloc_lock held.
347 */
348
349void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
350{
351 mpol_rebind_policy(tsk->mempolicy, new);
352}
353
354/*
355 * Rebind each vma in mm to new nodemask.
356 *
357 * Call holding a reference to mm. Takes mm->mmap_sem during call.
358 */
359
360void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
361{
362 struct vm_area_struct *vma;
363
364 down_write(&mm->mmap_sem);
365 for (vma = mm->mmap; vma; vma = vma->vm_next)
366 mpol_rebind_policy(vma->vm_policy, new);
367 up_write(&mm->mmap_sem);
368}
369
370static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
371 [MPOL_DEFAULT] = {
372 .rebind = mpol_rebind_default,
373 },
374 [MPOL_INTERLEAVE] = {
375 .create = mpol_new_interleave,
376 .rebind = mpol_rebind_nodemask,
377 },
378 [MPOL_PREFERRED] = {
379 .create = mpol_new_preferred,
380 .rebind = mpol_rebind_preferred,
381 },
382 [MPOL_BIND] = {
383 .create = mpol_new_bind,
384 .rebind = mpol_rebind_nodemask,
385 },
386};
387
388static void gather_stats(struct page *, void *, int pte_dirty);
389static void migrate_page_add(struct page *page, struct list_head *pagelist,
390 unsigned long flags);
391
392/* Scan through pages checking if pages follow certain conditions. */
393static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
394 unsigned long addr, unsigned long end,
395 const nodemask_t *nodes, unsigned long flags,
396 void *private)
397{
398 pte_t *orig_pte;
399 pte_t *pte;
400 spinlock_t *ptl;
401
402 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
403 do {
404 struct page *page;
405 int nid;
406
407 if (!pte_present(*pte))
408 continue;
409 page = vm_normal_page(vma, addr, *pte);
410 if (!page)
411 continue;
412 /*
413 * vm_normal_page() filters out zero pages, but there might
414 * still be PageReserved pages to skip, perhaps in a VDSO.
415 * And we cannot move PageKsm pages sensibly or safely yet.
416 */
417 if (PageReserved(page) || PageKsm(page))
418 continue;
419 nid = page_to_nid(page);
420 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
421 continue;
422
423 if (flags & MPOL_MF_STATS)
424 gather_stats(page, private, pte_dirty(*pte));
425 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
426 migrate_page_add(page, private, flags);
427 else
428 break;
429 } while (pte++, addr += PAGE_SIZE, addr != end);
430 pte_unmap_unlock(orig_pte, ptl);
431 return addr != end;
432}
433
434static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
435 unsigned long addr, unsigned long end,
436 const nodemask_t *nodes, unsigned long flags,
437 void *private)
438{
439 pmd_t *pmd;
440 unsigned long next;
441
442 pmd = pmd_offset(pud, addr);
443 do {
444 next = pmd_addr_end(addr, end);
445 if (pmd_none_or_clear_bad(pmd))
446 continue;
447 if (check_pte_range(vma, pmd, addr, next, nodes,
448 flags, private))
449 return -EIO;
450 } while (pmd++, addr = next, addr != end);
451 return 0;
452}
453
454static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
455 unsigned long addr, unsigned long end,
456 const nodemask_t *nodes, unsigned long flags,
457 void *private)
458{
459 pud_t *pud;
460 unsigned long next;
461
462 pud = pud_offset(pgd, addr);
463 do {
464 next = pud_addr_end(addr, end);
465 if (pud_none_or_clear_bad(pud))
466 continue;
467 if (check_pmd_range(vma, pud, addr, next, nodes,
468 flags, private))
469 return -EIO;
470 } while (pud++, addr = next, addr != end);
471 return 0;
472}
473
474static inline int check_pgd_range(struct vm_area_struct *vma,
475 unsigned long addr, unsigned long end,
476 const nodemask_t *nodes, unsigned long flags,
477 void *private)
478{
479 pgd_t *pgd;
480 unsigned long next;
481
482 pgd = pgd_offset(vma->vm_mm, addr);
483 do {
484 next = pgd_addr_end(addr, end);
485 if (pgd_none_or_clear_bad(pgd))
486 continue;
487 if (check_pud_range(vma, pgd, addr, next, nodes,
488 flags, private))
489 return -EIO;
490 } while (pgd++, addr = next, addr != end);
491 return 0;
492}
493
494/*
495 * Check if all pages in a range are on a set of nodes.
496 * If pagelist != NULL then isolate pages from the LRU and
497 * put them on the pagelist.
498 */
499static struct vm_area_struct *
500check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
501 const nodemask_t *nodes, unsigned long flags, void *private)
502{
503 int err;
504 struct vm_area_struct *first, *vma, *prev;
505
506
507 first = find_vma(mm, start);
508 if (!first)
509 return ERR_PTR(-EFAULT);
510 prev = NULL;
511 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
512 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
513 if (!vma->vm_next && vma->vm_end < end)
514 return ERR_PTR(-EFAULT);
515 if (prev && prev->vm_end < vma->vm_start)
516 return ERR_PTR(-EFAULT);
517 }
518 if (!is_vm_hugetlb_page(vma) &&
519 ((flags & MPOL_MF_STRICT) ||
520 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
521 vma_migratable(vma)))) {
522 unsigned long endvma = vma->vm_end;
523
524 if (endvma > end)
525 endvma = end;
526 if (vma->vm_start > start)
527 start = vma->vm_start;
528 err = check_pgd_range(vma, start, endvma, nodes,
529 flags, private);
530 if (err) {
531 first = ERR_PTR(err);
532 break;
533 }
534 }
535 prev = vma;
536 }
537 return first;
538}
539
540/* Apply policy to a single VMA */
541static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
542{
543 int err = 0;
544 struct mempolicy *old = vma->vm_policy;
545
546 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
547 vma->vm_start, vma->vm_end, vma->vm_pgoff,
548 vma->vm_ops, vma->vm_file,
549 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
550
551 if (vma->vm_ops && vma->vm_ops->set_policy)
552 err = vma->vm_ops->set_policy(vma, new);
553 if (!err) {
554 mpol_get(new);
555 vma->vm_policy = new;
556 mpol_put(old);
557 }
558 return err;
559}
560
561/* Step 2: apply policy to a range and do splits. */
562static int mbind_range(struct mm_struct *mm, unsigned long start,
563 unsigned long end, struct mempolicy *new_pol)
564{
565 struct vm_area_struct *next;
566 struct vm_area_struct *prev;
567 struct vm_area_struct *vma;
568 int err = 0;
569 pgoff_t pgoff;
570 unsigned long vmstart;
571 unsigned long vmend;
572
573 vma = find_vma_prev(mm, start, &prev);
574 if (!vma || vma->vm_start > start)
575 return -EFAULT;
576
577 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
578 next = vma->vm_next;
579 vmstart = max(start, vma->vm_start);
580 vmend = min(end, vma->vm_end);
581
582 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
583 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
584 vma->anon_vma, vma->vm_file, pgoff, new_pol);
585 if (prev) {
586 vma = prev;
587 next = vma->vm_next;
588 continue;
589 }
590 if (vma->vm_start != vmstart) {
591 err = split_vma(vma->vm_mm, vma, vmstart, 1);
592 if (err)
593 goto out;
594 }
595 if (vma->vm_end != vmend) {
596 err = split_vma(vma->vm_mm, vma, vmend, 0);
597 if (err)
598 goto out;
599 }
600 err = policy_vma(vma, new_pol);
601 if (err)
602 goto out;
603 }
604
605 out:
606 return err;
607}
608
609/*
610 * Update task->flags PF_MEMPOLICY bit: set iff non-default
611 * mempolicy. Allows more rapid checking of this (combined perhaps
612 * with other PF_* flag bits) on memory allocation hot code paths.
613 *
614 * If called from outside this file, the task 'p' should -only- be
615 * a newly forked child not yet visible on the task list, because
616 * manipulating the task flags of a visible task is not safe.
617 *
618 * The above limitation is why this routine has the funny name
619 * mpol_fix_fork_child_flag().
620 *
621 * It is also safe to call this with a task pointer of current,
622 * which the static wrapper mpol_set_task_struct_flag() does,
623 * for use within this file.
624 */
625
626void mpol_fix_fork_child_flag(struct task_struct *p)
627{
628 if (p->mempolicy)
629 p->flags |= PF_MEMPOLICY;
630 else
631 p->flags &= ~PF_MEMPOLICY;
632}
633
634static void mpol_set_task_struct_flag(void)
635{
636 mpol_fix_fork_child_flag(current);
637}
638
639/* Set the process memory policy */
640static long do_set_mempolicy(unsigned short mode, unsigned short flags,
641 nodemask_t *nodes)
642{
643 struct mempolicy *new, *old;
644 struct mm_struct *mm = current->mm;
645 NODEMASK_SCRATCH(scratch);
646 int ret;
647
648 if (!scratch)
649 return -ENOMEM;
650
651 new = mpol_new(mode, flags, nodes);
652 if (IS_ERR(new)) {
653 ret = PTR_ERR(new);
654 goto out;
655 }
656 /*
657 * prevent changing our mempolicy while show_numa_maps()
658 * is using it.
659 * Note: do_set_mempolicy() can be called at init time
660 * with no 'mm'.
661 */
662 if (mm)
663 down_write(&mm->mmap_sem);
664 task_lock(current);
665 ret = mpol_set_nodemask(new, nodes, scratch);
666 if (ret) {
667 task_unlock(current);
668 if (mm)
669 up_write(&mm->mmap_sem);
670 mpol_put(new);
671 goto out;
672 }
673 old = current->mempolicy;
674 current->mempolicy = new;
675 mpol_set_task_struct_flag();
676 if (new && new->mode == MPOL_INTERLEAVE &&
677 nodes_weight(new->v.nodes))
678 current->il_next = first_node(new->v.nodes);
679 task_unlock(current);
680 if (mm)
681 up_write(&mm->mmap_sem);
682
683 mpol_put(old);
684 ret = 0;
685out:
686 NODEMASK_SCRATCH_FREE(scratch);
687 return ret;
688}
689
690/*
691 * Return nodemask for policy for get_mempolicy() query
692 *
693 * Called with task's alloc_lock held
694 */
695static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
696{
697 nodes_clear(*nodes);
698 if (p == &default_policy)
699 return;
700
701 switch (p->mode) {
702 case MPOL_BIND:
703 /* Fall through */
704 case MPOL_INTERLEAVE:
705 *nodes = p->v.nodes;
706 break;
707 case MPOL_PREFERRED:
708 if (!(p->flags & MPOL_F_LOCAL))
709 node_set(p->v.preferred_node, *nodes);
710 /* else return empty node mask for local allocation */
711 break;
712 default:
713 BUG();
714 }
715}
716
717static int lookup_node(struct mm_struct *mm, unsigned long addr)
718{
719 struct page *p;
720 int err;
721
722 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
723 if (err >= 0) {
724 err = page_to_nid(p);
725 put_page(p);
726 }
727 return err;
728}
729
730/* Retrieve NUMA policy */
731static long do_get_mempolicy(int *policy, nodemask_t *nmask,
732 unsigned long addr, unsigned long flags)
733{
734 int err;
735 struct mm_struct *mm = current->mm;
736 struct vm_area_struct *vma = NULL;
737 struct mempolicy *pol = current->mempolicy;
738
739 if (flags &
740 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
741 return -EINVAL;
742
743 if (flags & MPOL_F_MEMS_ALLOWED) {
744 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
745 return -EINVAL;
746 *policy = 0; /* just so it's initialized */
747 task_lock(current);
748 *nmask = cpuset_current_mems_allowed;
749 task_unlock(current);
750 return 0;
751 }
752
753 if (flags & MPOL_F_ADDR) {
754 /*
755 * Do NOT fall back to task policy if the
756 * vma/shared policy at addr is NULL. We
757 * want to return MPOL_DEFAULT in this case.
758 */
759 down_read(&mm->mmap_sem);
760 vma = find_vma_intersection(mm, addr, addr+1);
761 if (!vma) {
762 up_read(&mm->mmap_sem);
763 return -EFAULT;
764 }
765 if (vma->vm_ops && vma->vm_ops->get_policy)
766 pol = vma->vm_ops->get_policy(vma, addr);
767 else
768 pol = vma->vm_policy;
769 } else if (addr)
770 return -EINVAL;
771
772 if (!pol)
773 pol = &default_policy; /* indicates default behavior */
774
775 if (flags & MPOL_F_NODE) {
776 if (flags & MPOL_F_ADDR) {
777 err = lookup_node(mm, addr);
778 if (err < 0)
779 goto out;
780 *policy = err;
781 } else if (pol == current->mempolicy &&
782 pol->mode == MPOL_INTERLEAVE) {
783 *policy = current->il_next;
784 } else {
785 err = -EINVAL;
786 goto out;
787 }
788 } else {
789 *policy = pol == &default_policy ? MPOL_DEFAULT :
790 pol->mode;
791 /*
792 * Internal mempolicy flags must be masked off before exposing
793 * the policy to userspace.
794 */
795 *policy |= (pol->flags & MPOL_MODE_FLAGS);
796 }
797
798 if (vma) {
799 up_read(&current->mm->mmap_sem);
800 vma = NULL;
801 }
802
803 err = 0;
804 if (nmask) {
805 if (mpol_store_user_nodemask(pol)) {
806 *nmask = pol->w.user_nodemask;
807 } else {
808 task_lock(current);
809 get_policy_nodemask(pol, nmask);
810 task_unlock(current);
811 }
812 }
813
814 out:
815 mpol_cond_put(pol);
816 if (vma)
817 up_read(&current->mm->mmap_sem);
818 return err;
819}
820
821#ifdef CONFIG_MIGRATION
822/*
823 * page migration
824 */
825static void migrate_page_add(struct page *page, struct list_head *pagelist,
826 unsigned long flags)
827{
828 /*
829 * Avoid migrating a page that is shared with others.
830 */
831 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
832 if (!isolate_lru_page(page)) {
833 list_add_tail(&page->lru, pagelist);
834 inc_zone_page_state(page, NR_ISOLATED_ANON +
835 page_is_file_cache(page));
836 }
837 }
838}
839
840static struct page *new_node_page(struct page *page, unsigned long node, int **x)
841{
842 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
843}
844
845/*
846 * Migrate pages from one node to a target node.
847 * Returns error or the number of pages not migrated.
848 */
849static int migrate_to_node(struct mm_struct *mm, int source, int dest,
850 int flags)
851{
852 nodemask_t nmask;
853 LIST_HEAD(pagelist);
854 int err = 0;
855
856 nodes_clear(nmask);
857 node_set(source, nmask);
858
859 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
860 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
861
862 if (!list_empty(&pagelist))
863 err = migrate_pages(&pagelist, new_node_page, dest, 0);
864
865 return err;
866}
867
868/*
869 * Move pages between the two nodesets so as to preserve the physical
870 * layout as much as possible.
871 *
872 * Returns the number of page that could not be moved.
873 */
874int do_migrate_pages(struct mm_struct *mm,
875 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
876{
877 int busy = 0;
878 int err;
879 nodemask_t tmp;
880
881 err = migrate_prep();
882 if (err)
883 return err;
884
885 down_read(&mm->mmap_sem);
886
887 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
888 if (err)
889 goto out;
890
891 /*
892 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
893 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
894 * bit in 'tmp', and return that <source, dest> pair for migration.
895 * The pair of nodemasks 'to' and 'from' define the map.
896 *
897 * If no pair of bits is found that way, fallback to picking some
898 * pair of 'source' and 'dest' bits that are not the same. If the
899 * 'source' and 'dest' bits are the same, this represents a node
900 * that will be migrating to itself, so no pages need move.
901 *
902 * If no bits are left in 'tmp', or if all remaining bits left
903 * in 'tmp' correspond to the same bit in 'to', return false
904 * (nothing left to migrate).
905 *
906 * This lets us pick a pair of nodes to migrate between, such that
907 * if possible the dest node is not already occupied by some other
908 * source node, minimizing the risk of overloading the memory on a
909 * node that would happen if we migrated incoming memory to a node
910 * before migrating outgoing memory source that same node.
911 *
912 * A single scan of tmp is sufficient. As we go, we remember the
913 * most recent <s, d> pair that moved (s != d). If we find a pair
914 * that not only moved, but what's better, moved to an empty slot
915 * (d is not set in tmp), then we break out then, with that pair.
916 * Otherwise when we finish scannng from_tmp, we at least have the
917 * most recent <s, d> pair that moved. If we get all the way through
918 * the scan of tmp without finding any node that moved, much less
919 * moved to an empty node, then there is nothing left worth migrating.
920 */
921
922 tmp = *from_nodes;
923 while (!nodes_empty(tmp)) {
924 int s,d;
925 int source = -1;
926 int dest = 0;
927
928 for_each_node_mask(s, tmp) {
929 d = node_remap(s, *from_nodes, *to_nodes);
930 if (s == d)
931 continue;
932
933 source = s; /* Node moved. Memorize */
934 dest = d;
935
936 /* dest not in remaining from nodes? */
937 if (!node_isset(dest, tmp))
938 break;
939 }
940 if (source == -1)
941 break;
942
943 node_clear(source, tmp);
944 err = migrate_to_node(mm, source, dest, flags);
945 if (err > 0)
946 busy += err;
947 if (err < 0)
948 break;
949 }
950out:
951 up_read(&mm->mmap_sem);
952 if (err < 0)
953 return err;
954 return busy;
955
956}
957
958/*
959 * Allocate a new page for page migration based on vma policy.
960 * Start assuming that page is mapped by vma pointed to by @private.
961 * Search forward from there, if not. N.B., this assumes that the
962 * list of pages handed to migrate_pages()--which is how we get here--
963 * is in virtual address order.
964 */
965static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
966{
967 struct vm_area_struct *vma = (struct vm_area_struct *)private;
968 unsigned long uninitialized_var(address);
969
970 while (vma) {
971 address = page_address_in_vma(page, vma);
972 if (address != -EFAULT)
973 break;
974 vma = vma->vm_next;
975 }
976
977 /*
978 * if !vma, alloc_page_vma() will use task or system default policy
979 */
980 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
981}
982#else
983
984static void migrate_page_add(struct page *page, struct list_head *pagelist,
985 unsigned long flags)
986{
987}
988
989int do_migrate_pages(struct mm_struct *mm,
990 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
991{
992 return -ENOSYS;
993}
994
995static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
996{
997 return NULL;
998}
999#endif
1000
1001static long do_mbind(unsigned long start, unsigned long len,
1002 unsigned short mode, unsigned short mode_flags,
1003 nodemask_t *nmask, unsigned long flags)
1004{
1005 struct vm_area_struct *vma;
1006 struct mm_struct *mm = current->mm;
1007 struct mempolicy *new;
1008 unsigned long end;
1009 int err;
1010 LIST_HEAD(pagelist);
1011
1012 if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1013 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1014 return -EINVAL;
1015 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1016 return -EPERM;
1017
1018 if (start & ~PAGE_MASK)
1019 return -EINVAL;
1020
1021 if (mode == MPOL_DEFAULT)
1022 flags &= ~MPOL_MF_STRICT;
1023
1024 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1025 end = start + len;
1026
1027 if (end < start)
1028 return -EINVAL;
1029 if (end == start)
1030 return 0;
1031
1032 new = mpol_new(mode, mode_flags, nmask);
1033 if (IS_ERR(new))
1034 return PTR_ERR(new);
1035
1036 /*
1037 * If we are using the default policy then operation
1038 * on discontinuous address spaces is okay after all
1039 */
1040 if (!new)
1041 flags |= MPOL_MF_DISCONTIG_OK;
1042
1043 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1044 start, start + len, mode, mode_flags,
1045 nmask ? nodes_addr(*nmask)[0] : -1);
1046
1047 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1048
1049 err = migrate_prep();
1050 if (err)
1051 goto mpol_out;
1052 }
1053 {
1054 NODEMASK_SCRATCH(scratch);
1055 if (scratch) {
1056 down_write(&mm->mmap_sem);
1057 task_lock(current);
1058 err = mpol_set_nodemask(new, nmask, scratch);
1059 task_unlock(current);
1060 if (err)
1061 up_write(&mm->mmap_sem);
1062 } else
1063 err = -ENOMEM;
1064 NODEMASK_SCRATCH_FREE(scratch);
1065 }
1066 if (err)
1067 goto mpol_out;
1068
1069 vma = check_range(mm, start, end, nmask,
1070 flags | MPOL_MF_INVERT, &pagelist);
1071
1072 err = PTR_ERR(vma);
1073 if (!IS_ERR(vma)) {
1074 int nr_failed = 0;
1075
1076 err = mbind_range(mm, start, end, new);
1077
1078 if (!list_empty(&pagelist))
1079 nr_failed = migrate_pages(&pagelist, new_vma_page,
1080 (unsigned long)vma, 0);
1081
1082 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1083 err = -EIO;
1084 } else
1085 putback_lru_pages(&pagelist);
1086
1087 up_write(&mm->mmap_sem);
1088 mpol_out:
1089 mpol_put(new);
1090 return err;
1091}
1092
1093/*
1094 * User space interface with variable sized bitmaps for nodelists.
1095 */
1096
1097/* Copy a node mask from user space. */
1098static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1099 unsigned long maxnode)
1100{
1101 unsigned long k;
1102 unsigned long nlongs;
1103 unsigned long endmask;
1104
1105 --maxnode;
1106 nodes_clear(*nodes);
1107 if (maxnode == 0 || !nmask)
1108 return 0;
1109 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1110 return -EINVAL;
1111
1112 nlongs = BITS_TO_LONGS(maxnode);
1113 if ((maxnode % BITS_PER_LONG) == 0)
1114 endmask = ~0UL;
1115 else
1116 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1117
1118 /* When the user specified more nodes than supported just check
1119 if the non supported part is all zero. */
1120 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1121 if (nlongs > PAGE_SIZE/sizeof(long))
1122 return -EINVAL;
1123 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1124 unsigned long t;
1125 if (get_user(t, nmask + k))
1126 return -EFAULT;
1127 if (k == nlongs - 1) {
1128 if (t & endmask)
1129 return -EINVAL;
1130 } else if (t)
1131 return -EINVAL;
1132 }
1133 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1134 endmask = ~0UL;
1135 }
1136
1137 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1138 return -EFAULT;
1139 nodes_addr(*nodes)[nlongs-1] &= endmask;
1140 return 0;
1141}
1142
1143/* Copy a kernel node mask to user space */
1144static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1145 nodemask_t *nodes)
1146{
1147 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1148 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1149
1150 if (copy > nbytes) {
1151 if (copy > PAGE_SIZE)
1152 return -EINVAL;
1153 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1154 return -EFAULT;
1155 copy = nbytes;
1156 }
1157 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1158}
1159
1160SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1161 unsigned long, mode, unsigned long __user *, nmask,
1162 unsigned long, maxnode, unsigned, flags)
1163{
1164 nodemask_t nodes;
1165 int err;
1166 unsigned short mode_flags;
1167
1168 mode_flags = mode & MPOL_MODE_FLAGS;
1169 mode &= ~MPOL_MODE_FLAGS;
1170 if (mode >= MPOL_MAX)
1171 return -EINVAL;
1172 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1173 (mode_flags & MPOL_F_RELATIVE_NODES))
1174 return -EINVAL;
1175 err = get_nodes(&nodes, nmask, maxnode);
1176 if (err)
1177 return err;
1178 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1179}
1180
1181/* Set the process memory policy */
1182SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1183 unsigned long, maxnode)
1184{
1185 int err;
1186 nodemask_t nodes;
1187 unsigned short flags;
1188
1189 flags = mode & MPOL_MODE_FLAGS;
1190 mode &= ~MPOL_MODE_FLAGS;
1191 if ((unsigned int)mode >= MPOL_MAX)
1192 return -EINVAL;
1193 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1194 return -EINVAL;
1195 err = get_nodes(&nodes, nmask, maxnode);
1196 if (err)
1197 return err;
1198 return do_set_mempolicy(mode, flags, &nodes);
1199}
1200
1201SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1202 const unsigned long __user *, old_nodes,
1203 const unsigned long __user *, new_nodes)
1204{
1205 const struct cred *cred = current_cred(), *tcred;
1206 struct mm_struct *mm;
1207 struct task_struct *task;
1208 nodemask_t old;
1209 nodemask_t new;
1210 nodemask_t task_nodes;
1211 int err;
1212
1213 err = get_nodes(&old, old_nodes, maxnode);
1214 if (err)
1215 return err;
1216
1217 err = get_nodes(&new, new_nodes, maxnode);
1218 if (err)
1219 return err;
1220
1221 /* Find the mm_struct */
1222 read_lock(&tasklist_lock);
1223 task = pid ? find_task_by_vpid(pid) : current;
1224 if (!task) {
1225 read_unlock(&tasklist_lock);
1226 return -ESRCH;
1227 }
1228 mm = get_task_mm(task);
1229 read_unlock(&tasklist_lock);
1230
1231 if (!mm)
1232 return -EINVAL;
1233
1234 /*
1235 * Check if this process has the right to modify the specified
1236 * process. The right exists if the process has administrative
1237 * capabilities, superuser privileges or the same
1238 * userid as the target process.
1239 */
1240 rcu_read_lock();
1241 tcred = __task_cred(task);
1242 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1243 cred->uid != tcred->suid && cred->uid != tcred->uid &&
1244 !capable(CAP_SYS_NICE)) {
1245 rcu_read_unlock();
1246 err = -EPERM;
1247 goto out;
1248 }
1249 rcu_read_unlock();
1250
1251 task_nodes = cpuset_mems_allowed(task);
1252 /* Is the user allowed to access the target nodes? */
1253 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
1254 err = -EPERM;
1255 goto out;
1256 }
1257
1258 if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) {
1259 err = -EINVAL;
1260 goto out;
1261 }
1262
1263 err = security_task_movememory(task);
1264 if (err)
1265 goto out;
1266
1267 err = do_migrate_pages(mm, &old, &new,
1268 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1269out:
1270 mmput(mm);
1271 return err;
1272}
1273
1274
1275/* Retrieve NUMA policy */
1276SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1277 unsigned long __user *, nmask, unsigned long, maxnode,
1278 unsigned long, addr, unsigned long, flags)
1279{
1280 int err;
1281 int uninitialized_var(pval);
1282 nodemask_t nodes;
1283
1284 if (nmask != NULL && maxnode < MAX_NUMNODES)
1285 return -EINVAL;
1286
1287 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1288
1289 if (err)
1290 return err;
1291
1292 if (policy && put_user(pval, policy))
1293 return -EFAULT;
1294
1295 if (nmask)
1296 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1297
1298 return err;
1299}
1300
1301#ifdef CONFIG_COMPAT
1302
1303asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1304 compat_ulong_t __user *nmask,
1305 compat_ulong_t maxnode,
1306 compat_ulong_t addr, compat_ulong_t flags)
1307{
1308 long err;
1309 unsigned long __user *nm = NULL;
1310 unsigned long nr_bits, alloc_size;
1311 DECLARE_BITMAP(bm, MAX_NUMNODES);
1312
1313 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1314 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1315
1316 if (nmask)
1317 nm = compat_alloc_user_space(alloc_size);
1318
1319 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1320
1321 if (!err && nmask) {
1322 err = copy_from_user(bm, nm, alloc_size);
1323 /* ensure entire bitmap is zeroed */
1324 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1325 err |= compat_put_bitmap(nmask, bm, nr_bits);
1326 }
1327
1328 return err;
1329}
1330
1331asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1332 compat_ulong_t maxnode)
1333{
1334 long err = 0;
1335 unsigned long __user *nm = NULL;
1336 unsigned long nr_bits, alloc_size;
1337 DECLARE_BITMAP(bm, MAX_NUMNODES);
1338
1339 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1340 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1341
1342 if (nmask) {
1343 err = compat_get_bitmap(bm, nmask, nr_bits);
1344 nm = compat_alloc_user_space(alloc_size);
1345 err |= copy_to_user(nm, bm, alloc_size);
1346 }
1347
1348 if (err)
1349 return -EFAULT;
1350
1351 return sys_set_mempolicy(mode, nm, nr_bits+1);
1352}
1353
1354asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1355 compat_ulong_t mode, compat_ulong_t __user *nmask,
1356 compat_ulong_t maxnode, compat_ulong_t flags)
1357{
1358 long err = 0;
1359 unsigned long __user *nm = NULL;
1360 unsigned long nr_bits, alloc_size;
1361 nodemask_t bm;
1362
1363 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1364 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1365
1366 if (nmask) {
1367 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1368 nm = compat_alloc_user_space(alloc_size);
1369 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1370 }
1371
1372 if (err)
1373 return -EFAULT;
1374
1375 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1376}
1377
1378#endif
1379
1380/*
1381 * get_vma_policy(@task, @vma, @addr)
1382 * @task - task for fallback if vma policy == default
1383 * @vma - virtual memory area whose policy is sought
1384 * @addr - address in @vma for shared policy lookup
1385 *
1386 * Returns effective policy for a VMA at specified address.
1387 * Falls back to @task or system default policy, as necessary.
1388 * Current or other task's task mempolicy and non-shared vma policies
1389 * are protected by the task's mmap_sem, which must be held for read by
1390 * the caller.
1391 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1392 * count--added by the get_policy() vm_op, as appropriate--to protect against
1393 * freeing by another task. It is the caller's responsibility to free the
1394 * extra reference for shared policies.
1395 */
1396static struct mempolicy *get_vma_policy(struct task_struct *task,
1397 struct vm_area_struct *vma, unsigned long addr)
1398{
1399 struct mempolicy *pol = task->mempolicy;
1400
1401 if (vma) {
1402 if (vma->vm_ops && vma->vm_ops->get_policy) {
1403 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1404 addr);
1405 if (vpol)
1406 pol = vpol;
1407 } else if (vma->vm_policy)
1408 pol = vma->vm_policy;
1409 }
1410 if (!pol)
1411 pol = &default_policy;
1412 return pol;
1413}
1414
1415/*
1416 * Return a nodemask representing a mempolicy for filtering nodes for
1417 * page allocation
1418 */
1419static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1420{
1421 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1422 if (unlikely(policy->mode == MPOL_BIND) &&
1423 gfp_zone(gfp) >= policy_zone &&
1424 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1425 return &policy->v.nodes;
1426
1427 return NULL;
1428}
1429
1430/* Return a zonelist indicated by gfp for node representing a mempolicy */
1431static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy)
1432{
1433 int nd = numa_node_id();
1434
1435 switch (policy->mode) {
1436 case MPOL_PREFERRED:
1437 if (!(policy->flags & MPOL_F_LOCAL))
1438 nd = policy->v.preferred_node;
1439 break;
1440 case MPOL_BIND:
1441 /*
1442 * Normally, MPOL_BIND allocations are node-local within the
1443 * allowed nodemask. However, if __GFP_THISNODE is set and the
1444 * current node is part of the mask, we use the zonelist for
1445 * the first node in the mask instead.
1446 */
1447 if (unlikely(gfp & __GFP_THISNODE) &&
1448 unlikely(!node_isset(nd, policy->v.nodes)))
1449 nd = first_node(policy->v.nodes);
1450 break;
1451 case MPOL_INTERLEAVE: /* should not happen */
1452 break;
1453 default:
1454 BUG();
1455 }
1456 return node_zonelist(nd, gfp);
1457}
1458
1459/* Do dynamic interleaving for a process */
1460static unsigned interleave_nodes(struct mempolicy *policy)
1461{
1462 unsigned nid, next;
1463 struct task_struct *me = current;
1464
1465 nid = me->il_next;
1466 next = next_node(nid, policy->v.nodes);
1467 if (next >= MAX_NUMNODES)
1468 next = first_node(policy->v.nodes);
1469 if (next < MAX_NUMNODES)
1470 me->il_next = next;
1471 return nid;
1472}
1473
1474/*
1475 * Depending on the memory policy provide a node from which to allocate the
1476 * next slab entry.
1477 * @policy must be protected by freeing by the caller. If @policy is
1478 * the current task's mempolicy, this protection is implicit, as only the
1479 * task can change it's policy. The system default policy requires no
1480 * such protection.
1481 */
1482unsigned slab_node(struct mempolicy *policy)
1483{
1484 if (!policy || policy->flags & MPOL_F_LOCAL)
1485 return numa_node_id();
1486
1487 switch (policy->mode) {
1488 case MPOL_PREFERRED:
1489 /*
1490 * handled MPOL_F_LOCAL above
1491 */
1492 return policy->v.preferred_node;
1493
1494 case MPOL_INTERLEAVE:
1495 return interleave_nodes(policy);
1496
1497 case MPOL_BIND: {
1498 /*
1499 * Follow bind policy behavior and start allocation at the
1500 * first node.
1501 */
1502 struct zonelist *zonelist;
1503 struct zone *zone;
1504 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1505 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1506 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1507 &policy->v.nodes,
1508 &zone);
1509 return zone->node;
1510 }
1511
1512 default:
1513 BUG();
1514 }
1515}
1516
1517/* Do static interleaving for a VMA with known offset. */
1518static unsigned offset_il_node(struct mempolicy *pol,
1519 struct vm_area_struct *vma, unsigned long off)
1520{
1521 unsigned nnodes = nodes_weight(pol->v.nodes);
1522 unsigned target;
1523 int c;
1524 int nid = -1;
1525
1526 if (!nnodes)
1527 return numa_node_id();
1528 target = (unsigned int)off % nnodes;
1529 c = 0;
1530 do {
1531 nid = next_node(nid, pol->v.nodes);
1532 c++;
1533 } while (c <= target);
1534 return nid;
1535}
1536
1537/* Determine a node number for interleave */
1538static inline unsigned interleave_nid(struct mempolicy *pol,
1539 struct vm_area_struct *vma, unsigned long addr, int shift)
1540{
1541 if (vma) {
1542 unsigned long off;
1543
1544 /*
1545 * for small pages, there is no difference between
1546 * shift and PAGE_SHIFT, so the bit-shift is safe.
1547 * for huge pages, since vm_pgoff is in units of small
1548 * pages, we need to shift off the always 0 bits to get
1549 * a useful offset.
1550 */
1551 BUG_ON(shift < PAGE_SHIFT);
1552 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1553 off += (addr - vma->vm_start) >> shift;
1554 return offset_il_node(pol, vma, off);
1555 } else
1556 return interleave_nodes(pol);
1557}
1558
1559#ifdef CONFIG_HUGETLBFS
1560/*
1561 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1562 * @vma = virtual memory area whose policy is sought
1563 * @addr = address in @vma for shared policy lookup and interleave policy
1564 * @gfp_flags = for requested zone
1565 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1566 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1567 *
1568 * Returns a zonelist suitable for a huge page allocation and a pointer
1569 * to the struct mempolicy for conditional unref after allocation.
1570 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1571 * @nodemask for filtering the zonelist.
1572 */
1573struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1574 gfp_t gfp_flags, struct mempolicy **mpol,
1575 nodemask_t **nodemask)
1576{
1577 struct zonelist *zl;
1578
1579 *mpol = get_vma_policy(current, vma, addr);
1580 *nodemask = NULL; /* assume !MPOL_BIND */
1581
1582 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1583 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1584 huge_page_shift(hstate_vma(vma))), gfp_flags);
1585 } else {
1586 zl = policy_zonelist(gfp_flags, *mpol);
1587 if ((*mpol)->mode == MPOL_BIND)
1588 *nodemask = &(*mpol)->v.nodes;
1589 }
1590 return zl;
1591}
1592
1593/*
1594 * init_nodemask_of_mempolicy
1595 *
1596 * If the current task's mempolicy is "default" [NULL], return 'false'
1597 * to indicate default policy. Otherwise, extract the policy nodemask
1598 * for 'bind' or 'interleave' policy into the argument nodemask, or
1599 * initialize the argument nodemask to contain the single node for
1600 * 'preferred' or 'local' policy and return 'true' to indicate presence
1601 * of non-default mempolicy.
1602 *
1603 * We don't bother with reference counting the mempolicy [mpol_get/put]
1604 * because the current task is examining it's own mempolicy and a task's
1605 * mempolicy is only ever changed by the task itself.
1606 *
1607 * N.B., it is the caller's responsibility to free a returned nodemask.
1608 */
1609bool init_nodemask_of_mempolicy(nodemask_t *mask)
1610{
1611 struct mempolicy *mempolicy;
1612 int nid;
1613
1614 if (!(mask && current->mempolicy))
1615 return false;
1616
1617 mempolicy = current->mempolicy;
1618 switch (mempolicy->mode) {
1619 case MPOL_PREFERRED:
1620 if (mempolicy->flags & MPOL_F_LOCAL)
1621 nid = numa_node_id();
1622 else
1623 nid = mempolicy->v.preferred_node;
1624 init_nodemask_of_node(mask, nid);
1625 break;
1626
1627 case MPOL_BIND:
1628 /* Fall through */
1629 case MPOL_INTERLEAVE:
1630 *mask = mempolicy->v.nodes;
1631 break;
1632
1633 default:
1634 BUG();
1635 }
1636
1637 return true;
1638}
1639#endif
1640
1641/* Allocate a page in interleaved policy.
1642 Own path because it needs to do special accounting. */
1643static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1644 unsigned nid)
1645{
1646 struct zonelist *zl;
1647 struct page *page;
1648
1649 zl = node_zonelist(nid, gfp);
1650 page = __alloc_pages(gfp, order, zl);
1651 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1652 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1653 return page;
1654}
1655
1656/**
1657 * alloc_page_vma - Allocate a page for a VMA.
1658 *
1659 * @gfp:
1660 * %GFP_USER user allocation.
1661 * %GFP_KERNEL kernel allocations,
1662 * %GFP_HIGHMEM highmem/user allocations,
1663 * %GFP_FS allocation should not call back into a file system.
1664 * %GFP_ATOMIC don't sleep.
1665 *
1666 * @vma: Pointer to VMA or NULL if not available.
1667 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1668 *
1669 * This function allocates a page from the kernel page pool and applies
1670 * a NUMA policy associated with the VMA or the current process.
1671 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1672 * mm_struct of the VMA to prevent it from going away. Should be used for
1673 * all allocations for pages that will be mapped into
1674 * user space. Returns NULL when no page can be allocated.
1675 *
1676 * Should be called with the mm_sem of the vma hold.
1677 */
1678struct page *
1679alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1680{
1681 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1682 struct zonelist *zl;
1683
1684 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1685 unsigned nid;
1686
1687 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1688 mpol_cond_put(pol);
1689 return alloc_page_interleave(gfp, 0, nid);
1690 }
1691 zl = policy_zonelist(gfp, pol);
1692 if (unlikely(mpol_needs_cond_ref(pol))) {
1693 /*
1694 * slow path: ref counted shared policy
1695 */
1696 struct page *page = __alloc_pages_nodemask(gfp, 0,
1697 zl, policy_nodemask(gfp, pol));
1698 __mpol_put(pol);
1699 return page;
1700 }
1701 /*
1702 * fast path: default or task policy
1703 */
1704 return __alloc_pages_nodemask(gfp, 0, zl, policy_nodemask(gfp, pol));
1705}
1706
1707/**
1708 * alloc_pages_current - Allocate pages.
1709 *
1710 * @gfp:
1711 * %GFP_USER user allocation,
1712 * %GFP_KERNEL kernel allocation,
1713 * %GFP_HIGHMEM highmem allocation,
1714 * %GFP_FS don't call back into a file system.
1715 * %GFP_ATOMIC don't sleep.
1716 * @order: Power of two of allocation size in pages. 0 is a single page.
1717 *
1718 * Allocate a page from the kernel page pool. When not in
1719 * interrupt context and apply the current process NUMA policy.
1720 * Returns NULL when no page can be allocated.
1721 *
1722 * Don't call cpuset_update_task_memory_state() unless
1723 * 1) it's ok to take cpuset_sem (can WAIT), and
1724 * 2) allocating for current task (not interrupt).
1725 */
1726struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1727{
1728 struct mempolicy *pol = current->mempolicy;
1729
1730 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1731 pol = &default_policy;
1732
1733 /*
1734 * No reference counting needed for current->mempolicy
1735 * nor system default_policy
1736 */
1737 if (pol->mode == MPOL_INTERLEAVE)
1738 return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1739 return __alloc_pages_nodemask(gfp, order,
1740 policy_zonelist(gfp, pol), policy_nodemask(gfp, pol));
1741}
1742EXPORT_SYMBOL(alloc_pages_current);
1743
1744/*
1745 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1746 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1747 * with the mems_allowed returned by cpuset_mems_allowed(). This
1748 * keeps mempolicies cpuset relative after its cpuset moves. See
1749 * further kernel/cpuset.c update_nodemask().
1750 */
1751
1752/* Slow path of a mempolicy duplicate */
1753struct mempolicy *__mpol_dup(struct mempolicy *old)
1754{
1755 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1756
1757 if (!new)
1758 return ERR_PTR(-ENOMEM);
1759 rcu_read_lock();
1760 if (current_cpuset_is_being_rebound()) {
1761 nodemask_t mems = cpuset_mems_allowed(current);
1762 mpol_rebind_policy(old, &mems);
1763 }
1764 rcu_read_unlock();
1765 *new = *old;
1766 atomic_set(&new->refcnt, 1);
1767 return new;
1768}
1769
1770/*
1771 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1772 * eliminate the * MPOL_F_* flags that require conditional ref and
1773 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
1774 * after return. Use the returned value.
1775 *
1776 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1777 * policy lookup, even if the policy needs/has extra ref on lookup.
1778 * shmem_readahead needs this.
1779 */
1780struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1781 struct mempolicy *frompol)
1782{
1783 if (!mpol_needs_cond_ref(frompol))
1784 return frompol;
1785
1786 *tompol = *frompol;
1787 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */
1788 __mpol_put(frompol);
1789 return tompol;
1790}
1791
1792static int mpol_match_intent(const struct mempolicy *a,
1793 const struct mempolicy *b)
1794{
1795 if (a->flags != b->flags)
1796 return 0;
1797 if (!mpol_store_user_nodemask(a))
1798 return 1;
1799 return nodes_equal(a->w.user_nodemask, b->w.user_nodemask);
1800}
1801
1802/* Slow path of a mempolicy comparison */
1803int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1804{
1805 if (!a || !b)
1806 return 0;
1807 if (a->mode != b->mode)
1808 return 0;
1809 if (a->mode != MPOL_DEFAULT && !mpol_match_intent(a, b))
1810 return 0;
1811 switch (a->mode) {
1812 case MPOL_BIND:
1813 /* Fall through */
1814 case MPOL_INTERLEAVE:
1815 return nodes_equal(a->v.nodes, b->v.nodes);
1816 case MPOL_PREFERRED:
1817 return a->v.preferred_node == b->v.preferred_node &&
1818 a->flags == b->flags;
1819 default:
1820 BUG();
1821 return 0;
1822 }
1823}
1824
1825/*
1826 * Shared memory backing store policy support.
1827 *
1828 * Remember policies even when nobody has shared memory mapped.
1829 * The policies are kept in Red-Black tree linked from the inode.
1830 * They are protected by the sp->lock spinlock, which should be held
1831 * for any accesses to the tree.
1832 */
1833
1834/* lookup first element intersecting start-end */
1835/* Caller holds sp->lock */
1836static struct sp_node *
1837sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1838{
1839 struct rb_node *n = sp->root.rb_node;
1840
1841 while (n) {
1842 struct sp_node *p = rb_entry(n, struct sp_node, nd);
1843
1844 if (start >= p->end)
1845 n = n->rb_right;
1846 else if (end <= p->start)
1847 n = n->rb_left;
1848 else
1849 break;
1850 }
1851 if (!n)
1852 return NULL;
1853 for (;;) {
1854 struct sp_node *w = NULL;
1855 struct rb_node *prev = rb_prev(n);
1856 if (!prev)
1857 break;
1858 w = rb_entry(prev, struct sp_node, nd);
1859 if (w->end <= start)
1860 break;
1861 n = prev;
1862 }
1863 return rb_entry(n, struct sp_node, nd);
1864}
1865
1866/* Insert a new shared policy into the list. */
1867/* Caller holds sp->lock */
1868static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1869{
1870 struct rb_node **p = &sp->root.rb_node;
1871 struct rb_node *parent = NULL;
1872 struct sp_node *nd;
1873
1874 while (*p) {
1875 parent = *p;
1876 nd = rb_entry(parent, struct sp_node, nd);
1877 if (new->start < nd->start)
1878 p = &(*p)->rb_left;
1879 else if (new->end > nd->end)
1880 p = &(*p)->rb_right;
1881 else
1882 BUG();
1883 }
1884 rb_link_node(&new->nd, parent, p);
1885 rb_insert_color(&new->nd, &sp->root);
1886 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
1887 new->policy ? new->policy->mode : 0);
1888}
1889
1890/* Find shared policy intersecting idx */
1891struct mempolicy *
1892mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1893{
1894 struct mempolicy *pol = NULL;
1895 struct sp_node *sn;
1896
1897 if (!sp->root.rb_node)
1898 return NULL;
1899 spin_lock(&sp->lock);
1900 sn = sp_lookup(sp, idx, idx+1);
1901 if (sn) {
1902 mpol_get(sn->policy);
1903 pol = sn->policy;
1904 }
1905 spin_unlock(&sp->lock);
1906 return pol;
1907}
1908
1909static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1910{
1911 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
1912 rb_erase(&n->nd, &sp->root);
1913 mpol_put(n->policy);
1914 kmem_cache_free(sn_cache, n);
1915}
1916
1917static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
1918 struct mempolicy *pol)
1919{
1920 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1921
1922 if (!n)
1923 return NULL;
1924 n->start = start;
1925 n->end = end;
1926 mpol_get(pol);
1927 pol->flags |= MPOL_F_SHARED; /* for unref */
1928 n->policy = pol;
1929 return n;
1930}
1931
1932/* Replace a policy range. */
1933static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1934 unsigned long end, struct sp_node *new)
1935{
1936 struct sp_node *n, *new2 = NULL;
1937
1938restart:
1939 spin_lock(&sp->lock);
1940 n = sp_lookup(sp, start, end);
1941 /* Take care of old policies in the same range. */
1942 while (n && n->start < end) {
1943 struct rb_node *next = rb_next(&n->nd);
1944 if (n->start >= start) {
1945 if (n->end <= end)
1946 sp_delete(sp, n);
1947 else
1948 n->start = end;
1949 } else {
1950 /* Old policy spanning whole new range. */
1951 if (n->end > end) {
1952 if (!new2) {
1953 spin_unlock(&sp->lock);
1954 new2 = sp_alloc(end, n->end, n->policy);
1955 if (!new2)
1956 return -ENOMEM;
1957 goto restart;
1958 }
1959 n->end = start;
1960 sp_insert(sp, new2);
1961 new2 = NULL;
1962 break;
1963 } else
1964 n->end = start;
1965 }
1966 if (!next)
1967 break;
1968 n = rb_entry(next, struct sp_node, nd);
1969 }
1970 if (new)
1971 sp_insert(sp, new);
1972 spin_unlock(&sp->lock);
1973 if (new2) {
1974 mpol_put(new2->policy);
1975 kmem_cache_free(sn_cache, new2);
1976 }
1977 return 0;
1978}
1979
1980/**
1981 * mpol_shared_policy_init - initialize shared policy for inode
1982 * @sp: pointer to inode shared policy
1983 * @mpol: struct mempolicy to install
1984 *
1985 * Install non-NULL @mpol in inode's shared policy rb-tree.
1986 * On entry, the current task has a reference on a non-NULL @mpol.
1987 * This must be released on exit.
1988 * This is called at get_inode() calls and we can use GFP_KERNEL.
1989 */
1990void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
1991{
1992 int ret;
1993
1994 sp->root = RB_ROOT; /* empty tree == default mempolicy */
1995 spin_lock_init(&sp->lock);
1996
1997 if (mpol) {
1998 struct vm_area_struct pvma;
1999 struct mempolicy *new;
2000 NODEMASK_SCRATCH(scratch);
2001
2002 if (!scratch)
2003 return;
2004 /* contextualize the tmpfs mount point mempolicy */
2005 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2006 if (IS_ERR(new)) {
2007 mpol_put(mpol); /* drop our ref on sb mpol */
2008 NODEMASK_SCRATCH_FREE(scratch);
2009 return; /* no valid nodemask intersection */
2010 }
2011
2012 task_lock(current);
2013 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2014 task_unlock(current);
2015 mpol_put(mpol); /* drop our ref on sb mpol */
2016 if (ret) {
2017 NODEMASK_SCRATCH_FREE(scratch);
2018 mpol_put(new);
2019 return;
2020 }
2021
2022 /* Create pseudo-vma that contains just the policy */
2023 memset(&pvma, 0, sizeof(struct vm_area_struct));
2024 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2025 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2026 mpol_put(new); /* drop initial ref */
2027 NODEMASK_SCRATCH_FREE(scratch);
2028 }
2029}
2030
2031int mpol_set_shared_policy(struct shared_policy *info,
2032 struct vm_area_struct *vma, struct mempolicy *npol)
2033{
2034 int err;
2035 struct sp_node *new = NULL;
2036 unsigned long sz = vma_pages(vma);
2037
2038 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2039 vma->vm_pgoff,
2040 sz, npol ? npol->mode : -1,
2041 npol ? npol->flags : -1,
2042 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2043
2044 if (npol) {
2045 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2046 if (!new)
2047 return -ENOMEM;
2048 }
2049 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2050 if (err && new)
2051 kmem_cache_free(sn_cache, new);
2052 return err;
2053}
2054
2055/* Free a backing policy store on inode delete. */
2056void mpol_free_shared_policy(struct shared_policy *p)
2057{
2058 struct sp_node *n;
2059 struct rb_node *next;
2060
2061 if (!p->root.rb_node)
2062 return;
2063 spin_lock(&p->lock);
2064 next = rb_first(&p->root);
2065 while (next) {
2066 n = rb_entry(next, struct sp_node, nd);
2067 next = rb_next(&n->nd);
2068 rb_erase(&n->nd, &p->root);
2069 mpol_put(n->policy);
2070 kmem_cache_free(sn_cache, n);
2071 }
2072 spin_unlock(&p->lock);
2073}
2074
2075/* assumes fs == KERNEL_DS */
2076void __init numa_policy_init(void)
2077{
2078 nodemask_t interleave_nodes;
2079 unsigned long largest = 0;
2080 int nid, prefer = 0;
2081
2082 policy_cache = kmem_cache_create("numa_policy",
2083 sizeof(struct mempolicy),
2084 0, SLAB_PANIC, NULL);
2085
2086 sn_cache = kmem_cache_create("shared_policy_node",
2087 sizeof(struct sp_node),
2088 0, SLAB_PANIC, NULL);
2089
2090 /*
2091 * Set interleaving policy for system init. Interleaving is only
2092 * enabled across suitably sized nodes (default is >= 16MB), or
2093 * fall back to the largest node if they're all smaller.
2094 */
2095 nodes_clear(interleave_nodes);
2096 for_each_node_state(nid, N_HIGH_MEMORY) {
2097 unsigned long total_pages = node_present_pages(nid);
2098
2099 /* Preserve the largest node */
2100 if (largest < total_pages) {
2101 largest = total_pages;
2102 prefer = nid;
2103 }
2104
2105 /* Interleave this node? */
2106 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2107 node_set(nid, interleave_nodes);
2108 }
2109
2110 /* All too small, use the largest */
2111 if (unlikely(nodes_empty(interleave_nodes)))
2112 node_set(prefer, interleave_nodes);
2113
2114 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2115 printk("numa_policy_init: interleaving failed\n");
2116}
2117
2118/* Reset policy of current process to default */
2119void numa_default_policy(void)
2120{
2121 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2122}
2123
2124/*
2125 * Parse and format mempolicy from/to strings
2126 */
2127
2128/*
2129 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
2130 * Used only for mpol_parse_str() and mpol_to_str()
2131 */
2132#define MPOL_LOCAL (MPOL_INTERLEAVE + 1)
2133static const char * const policy_types[] =
2134 { "default", "prefer", "bind", "interleave", "local" };
2135
2136
2137#ifdef CONFIG_TMPFS
2138/**
2139 * mpol_parse_str - parse string to mempolicy
2140 * @str: string containing mempolicy to parse
2141 * @mpol: pointer to struct mempolicy pointer, returned on success.
2142 * @no_context: flag whether to "contextualize" the mempolicy
2143 *
2144 * Format of input:
2145 * <mode>[=<flags>][:<nodelist>]
2146 *
2147 * if @no_context is true, save the input nodemask in w.user_nodemask in
2148 * the returned mempolicy. This will be used to "clone" the mempolicy in
2149 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol
2150 * mount option. Note that if 'static' or 'relative' mode flags were
2151 * specified, the input nodemask will already have been saved. Saving
2152 * it again is redundant, but safe.
2153 *
2154 * On success, returns 0, else 1
2155 */
2156int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2157{
2158 struct mempolicy *new = NULL;
2159 unsigned short uninitialized_var(mode);
2160 unsigned short uninitialized_var(mode_flags);
2161 nodemask_t nodes;
2162 char *nodelist = strchr(str, ':');
2163 char *flags = strchr(str, '=');
2164 int i;
2165 int err = 1;
2166
2167 if (nodelist) {
2168 /* NUL-terminate mode or flags string */
2169 *nodelist++ = '\0';
2170 if (nodelist_parse(nodelist, nodes))
2171 goto out;
2172 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2173 goto out;
2174 } else
2175 nodes_clear(nodes);
2176
2177 if (flags)
2178 *flags++ = '\0'; /* terminate mode string */
2179
2180 for (i = 0; i <= MPOL_LOCAL; i++) {
2181 if (!strcmp(str, policy_types[i])) {
2182 mode = i;
2183 break;
2184 }
2185 }
2186 if (i > MPOL_LOCAL)
2187 goto out;
2188
2189 switch (mode) {
2190 case MPOL_PREFERRED:
2191 /*
2192 * Insist on a nodelist of one node only
2193 */
2194 if (nodelist) {
2195 char *rest = nodelist;
2196 while (isdigit(*rest))
2197 rest++;
2198 if (*rest)
2199 goto out;
2200 }
2201 break;
2202 case MPOL_INTERLEAVE:
2203 /*
2204 * Default to online nodes with memory if no nodelist
2205 */
2206 if (!nodelist)
2207 nodes = node_states[N_HIGH_MEMORY];
2208 break;
2209 case MPOL_LOCAL:
2210 /*
2211 * Don't allow a nodelist; mpol_new() checks flags
2212 */
2213 if (nodelist)
2214 goto out;
2215 mode = MPOL_PREFERRED;
2216 break;
2217 case MPOL_DEFAULT:
2218 /*
2219 * Insist on a empty nodelist
2220 */
2221 if (!nodelist)
2222 err = 0;
2223 goto out;
2224 case MPOL_BIND:
2225 /*
2226 * Insist on a nodelist
2227 */
2228 if (!nodelist)
2229 goto out;
2230 }
2231
2232 mode_flags = 0;
2233 if (flags) {
2234 /*
2235 * Currently, we only support two mutually exclusive
2236 * mode flags.
2237 */
2238 if (!strcmp(flags, "static"))
2239 mode_flags |= MPOL_F_STATIC_NODES;
2240 else if (!strcmp(flags, "relative"))
2241 mode_flags |= MPOL_F_RELATIVE_NODES;
2242 else
2243 goto out;
2244 }
2245
2246 new = mpol_new(mode, mode_flags, &nodes);
2247 if (IS_ERR(new))
2248 goto out;
2249
2250 {
2251 int ret;
2252 NODEMASK_SCRATCH(scratch);
2253 if (scratch) {
2254 task_lock(current);
2255 ret = mpol_set_nodemask(new, &nodes, scratch);
2256 task_unlock(current);
2257 } else
2258 ret = -ENOMEM;
2259 NODEMASK_SCRATCH_FREE(scratch);
2260 if (ret) {
2261 mpol_put(new);
2262 goto out;
2263 }
2264 }
2265 err = 0;
2266 if (no_context) {
2267 /* save for contextualization */
2268 new->w.user_nodemask = nodes;
2269 }
2270
2271out:
2272 /* Restore string for error message */
2273 if (nodelist)
2274 *--nodelist = ':';
2275 if (flags)
2276 *--flags = '=';
2277 if (!err)
2278 *mpol = new;
2279 return err;
2280}
2281#endif /* CONFIG_TMPFS */
2282
2283/**
2284 * mpol_to_str - format a mempolicy structure for printing
2285 * @buffer: to contain formatted mempolicy string
2286 * @maxlen: length of @buffer
2287 * @pol: pointer to mempolicy to be formatted
2288 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask
2289 *
2290 * Convert a mempolicy into a string.
2291 * Returns the number of characters in buffer (if positive)
2292 * or an error (negative)
2293 */
2294int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2295{
2296 char *p = buffer;
2297 int l;
2298 nodemask_t nodes;
2299 unsigned short mode;
2300 unsigned short flags = pol ? pol->flags : 0;
2301
2302 /*
2303 * Sanity check: room for longest mode, flag and some nodes
2304 */
2305 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2306
2307 if (!pol || pol == &default_policy)
2308 mode = MPOL_DEFAULT;
2309 else
2310 mode = pol->mode;
2311
2312 switch (mode) {
2313 case MPOL_DEFAULT:
2314 nodes_clear(nodes);
2315 break;
2316
2317 case MPOL_PREFERRED:
2318 nodes_clear(nodes);
2319 if (flags & MPOL_F_LOCAL)
2320 mode = MPOL_LOCAL; /* pseudo-policy */
2321 else
2322 node_set(pol->v.preferred_node, nodes);
2323 break;
2324
2325 case MPOL_BIND:
2326 /* Fall through */
2327 case MPOL_INTERLEAVE:
2328 if (no_context)
2329 nodes = pol->w.user_nodemask;
2330 else
2331 nodes = pol->v.nodes;
2332 break;
2333
2334 default:
2335 BUG();
2336 }
2337
2338 l = strlen(policy_types[mode]);
2339 if (buffer + maxlen < p + l + 1)
2340 return -ENOSPC;
2341
2342 strcpy(p, policy_types[mode]);
2343 p += l;
2344
2345 if (flags & MPOL_MODE_FLAGS) {
2346 if (buffer + maxlen < p + 2)
2347 return -ENOSPC;
2348 *p++ = '=';
2349
2350 /*
2351 * Currently, the only defined flags are mutually exclusive
2352 */
2353 if (flags & MPOL_F_STATIC_NODES)
2354 p += snprintf(p, buffer + maxlen - p, "static");
2355 else if (flags & MPOL_F_RELATIVE_NODES)
2356 p += snprintf(p, buffer + maxlen - p, "relative");
2357 }
2358
2359 if (!nodes_empty(nodes)) {
2360 if (buffer + maxlen < p + 2)
2361 return -ENOSPC;
2362 *p++ = ':';
2363 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2364 }
2365 return p - buffer;
2366}
2367
2368struct numa_maps {
2369 unsigned long pages;
2370 unsigned long anon;
2371 unsigned long active;
2372 unsigned long writeback;
2373 unsigned long mapcount_max;
2374 unsigned long dirty;
2375 unsigned long swapcache;
2376 unsigned long node[MAX_NUMNODES];
2377};
2378
2379static void gather_stats(struct page *page, void *private, int pte_dirty)
2380{
2381 struct numa_maps *md = private;
2382 int count = page_mapcount(page);
2383
2384 md->pages++;
2385 if (pte_dirty || PageDirty(page))
2386 md->dirty++;
2387
2388 if (PageSwapCache(page))
2389 md->swapcache++;
2390
2391 if (PageActive(page) || PageUnevictable(page))
2392 md->active++;
2393
2394 if (PageWriteback(page))
2395 md->writeback++;
2396
2397 if (PageAnon(page))
2398 md->anon++;
2399
2400 if (count > md->mapcount_max)
2401 md->mapcount_max = count;
2402
2403 md->node[page_to_nid(page)]++;
2404}
2405
2406#ifdef CONFIG_HUGETLB_PAGE
2407static void check_huge_range(struct vm_area_struct *vma,
2408 unsigned long start, unsigned long end,
2409 struct numa_maps *md)
2410{
2411 unsigned long addr;
2412 struct page *page;
2413 struct hstate *h = hstate_vma(vma);
2414 unsigned long sz = huge_page_size(h);
2415
2416 for (addr = start; addr < end; addr += sz) {
2417 pte_t *ptep = huge_pte_offset(vma->vm_mm,
2418 addr & huge_page_mask(h));
2419 pte_t pte;
2420
2421 if (!ptep)
2422 continue;
2423
2424 pte = *ptep;
2425 if (pte_none(pte))
2426 continue;
2427
2428 page = pte_page(pte);
2429 if (!page)
2430 continue;
2431
2432 gather_stats(page, md, pte_dirty(*ptep));
2433 }
2434}
2435#else
2436static inline void check_huge_range(struct vm_area_struct *vma,
2437 unsigned long start, unsigned long end,
2438 struct numa_maps *md)
2439{
2440}
2441#endif
2442
2443/*
2444 * Display pages allocated per node and memory policy via /proc.
2445 */
2446int show_numa_map(struct seq_file *m, void *v)
2447{
2448 struct proc_maps_private *priv = m->private;
2449 struct vm_area_struct *vma = v;
2450 struct numa_maps *md;
2451 struct file *file = vma->vm_file;
2452 struct mm_struct *mm = vma->vm_mm;
2453 struct mempolicy *pol;
2454 int n;
2455 char buffer[50];
2456
2457 if (!mm)
2458 return 0;
2459
2460 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
2461 if (!md)
2462 return 0;
2463
2464 pol = get_vma_policy(priv->task, vma, vma->vm_start);
2465 mpol_to_str(buffer, sizeof(buffer), pol, 0);
2466 mpol_cond_put(pol);
2467
2468 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2469
2470 if (file) {
2471 seq_printf(m, " file=");
2472 seq_path(m, &file->f_path, "\n\t= ");
2473 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
2474 seq_printf(m, " heap");
2475 } else if (vma->vm_start <= mm->start_stack &&
2476 vma->vm_end >= mm->start_stack) {
2477 seq_printf(m, " stack");
2478 }
2479
2480 if (is_vm_hugetlb_page(vma)) {
2481 check_huge_range(vma, vma->vm_start, vma->vm_end, md);
2482 seq_printf(m, " huge");
2483 } else {
2484 check_pgd_range(vma, vma->vm_start, vma->vm_end,
2485 &node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
2486 }
2487
2488 if (!md->pages)
2489 goto out;
2490
2491 if (md->anon)
2492 seq_printf(m," anon=%lu",md->anon);
2493
2494 if (md->dirty)
2495 seq_printf(m," dirty=%lu",md->dirty);
2496
2497 if (md->pages != md->anon && md->pages != md->dirty)
2498 seq_printf(m, " mapped=%lu", md->pages);
2499
2500 if (md->mapcount_max > 1)
2501 seq_printf(m, " mapmax=%lu", md->mapcount_max);
2502
2503 if (md->swapcache)
2504 seq_printf(m," swapcache=%lu", md->swapcache);
2505
2506 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2507 seq_printf(m," active=%lu", md->active);
2508
2509 if (md->writeback)
2510 seq_printf(m," writeback=%lu", md->writeback);
2511
2512 for_each_node_state(n, N_HIGH_MEMORY)
2513 if (md->node[n])
2514 seq_printf(m, " N%d=%lu", n, md->node[n]);
2515out:
2516 seq_putc(m, '\n');
2517 kfree(md);
2518
2519 if (m->count < m->size)
2520 m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
2521 return 0;
2522}