]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - mm/memcontrol.c
oom: move badness() declaration into oom.h
[net-next-2.6.git] / mm / memcontrol.c
... / ...
CommitLineData
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
27#include <linux/mm.h>
28#include <linux/hugetlb.h>
29#include <linux/pagemap.h>
30#include <linux/smp.h>
31#include <linux/page-flags.h>
32#include <linux/backing-dev.h>
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
35#include <linux/limits.h>
36#include <linux/mutex.h>
37#include <linux/rbtree.h>
38#include <linux/slab.h>
39#include <linux/swap.h>
40#include <linux/swapops.h>
41#include <linux/spinlock.h>
42#include <linux/eventfd.h>
43#include <linux/sort.h>
44#include <linux/fs.h>
45#include <linux/seq_file.h>
46#include <linux/vmalloc.h>
47#include <linux/mm_inline.h>
48#include <linux/page_cgroup.h>
49#include <linux/cpu.h>
50#include "internal.h"
51
52#include <asm/uaccess.h>
53
54struct cgroup_subsys mem_cgroup_subsys __read_mostly;
55#define MEM_CGROUP_RECLAIM_RETRIES 5
56struct mem_cgroup *root_mem_cgroup __read_mostly;
57
58#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
59/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
60int do_swap_account __read_mostly;
61static int really_do_swap_account __initdata = 1; /* for remember boot option*/
62#else
63#define do_swap_account (0)
64#endif
65
66/*
67 * Per memcg event counter is incremented at every pagein/pageout. This counter
68 * is used for trigger some periodic events. This is straightforward and better
69 * than using jiffies etc. to handle periodic memcg event.
70 *
71 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
72 */
73#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
74#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
75
76/*
77 * Statistics for memory cgroup.
78 */
79enum mem_cgroup_stat_index {
80 /*
81 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
82 */
83 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
84 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
85 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
86 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
87 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
88 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89 MEM_CGROUP_EVENTS, /* incremented at every pagein/pageout */
90
91 MEM_CGROUP_STAT_NSTATS,
92};
93
94struct mem_cgroup_stat_cpu {
95 s64 count[MEM_CGROUP_STAT_NSTATS];
96};
97
98/*
99 * per-zone information in memory controller.
100 */
101struct mem_cgroup_per_zone {
102 /*
103 * spin_lock to protect the per cgroup LRU
104 */
105 struct list_head lists[NR_LRU_LISTS];
106 unsigned long count[NR_LRU_LISTS];
107
108 struct zone_reclaim_stat reclaim_stat;
109 struct rb_node tree_node; /* RB tree node */
110 unsigned long long usage_in_excess;/* Set to the value by which */
111 /* the soft limit is exceeded*/
112 bool on_tree;
113 struct mem_cgroup *mem; /* Back pointer, we cannot */
114 /* use container_of */
115};
116/* Macro for accessing counter */
117#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
118
119struct mem_cgroup_per_node {
120 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
121};
122
123struct mem_cgroup_lru_info {
124 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
125};
126
127/*
128 * Cgroups above their limits are maintained in a RB-Tree, independent of
129 * their hierarchy representation
130 */
131
132struct mem_cgroup_tree_per_zone {
133 struct rb_root rb_root;
134 spinlock_t lock;
135};
136
137struct mem_cgroup_tree_per_node {
138 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
139};
140
141struct mem_cgroup_tree {
142 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
143};
144
145static struct mem_cgroup_tree soft_limit_tree __read_mostly;
146
147struct mem_cgroup_threshold {
148 struct eventfd_ctx *eventfd;
149 u64 threshold;
150};
151
152/* For threshold */
153struct mem_cgroup_threshold_ary {
154 /* An array index points to threshold just below usage. */
155 int current_threshold;
156 /* Size of entries[] */
157 unsigned int size;
158 /* Array of thresholds */
159 struct mem_cgroup_threshold entries[0];
160};
161
162struct mem_cgroup_thresholds {
163 /* Primary thresholds array */
164 struct mem_cgroup_threshold_ary *primary;
165 /*
166 * Spare threshold array.
167 * This is needed to make mem_cgroup_unregister_event() "never fail".
168 * It must be able to store at least primary->size - 1 entries.
169 */
170 struct mem_cgroup_threshold_ary *spare;
171};
172
173/* for OOM */
174struct mem_cgroup_eventfd_list {
175 struct list_head list;
176 struct eventfd_ctx *eventfd;
177};
178
179static void mem_cgroup_threshold(struct mem_cgroup *mem);
180static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
181
182/*
183 * The memory controller data structure. The memory controller controls both
184 * page cache and RSS per cgroup. We would eventually like to provide
185 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
186 * to help the administrator determine what knobs to tune.
187 *
188 * TODO: Add a water mark for the memory controller. Reclaim will begin when
189 * we hit the water mark. May be even add a low water mark, such that
190 * no reclaim occurs from a cgroup at it's low water mark, this is
191 * a feature that will be implemented much later in the future.
192 */
193struct mem_cgroup {
194 struct cgroup_subsys_state css;
195 /*
196 * the counter to account for memory usage
197 */
198 struct res_counter res;
199 /*
200 * the counter to account for mem+swap usage.
201 */
202 struct res_counter memsw;
203 /*
204 * Per cgroup active and inactive list, similar to the
205 * per zone LRU lists.
206 */
207 struct mem_cgroup_lru_info info;
208
209 /*
210 protect against reclaim related member.
211 */
212 spinlock_t reclaim_param_lock;
213
214 /*
215 * While reclaiming in a hierarchy, we cache the last child we
216 * reclaimed from.
217 */
218 int last_scanned_child;
219 /*
220 * Should the accounting and control be hierarchical, per subtree?
221 */
222 bool use_hierarchy;
223 atomic_t oom_lock;
224 atomic_t refcnt;
225
226 unsigned int swappiness;
227 /* OOM-Killer disable */
228 int oom_kill_disable;
229
230 /* set when res.limit == memsw.limit */
231 bool memsw_is_minimum;
232
233 /* protect arrays of thresholds */
234 struct mutex thresholds_lock;
235
236 /* thresholds for memory usage. RCU-protected */
237 struct mem_cgroup_thresholds thresholds;
238
239 /* thresholds for mem+swap usage. RCU-protected */
240 struct mem_cgroup_thresholds memsw_thresholds;
241
242 /* For oom notifier event fd */
243 struct list_head oom_notify;
244
245 /*
246 * Should we move charges of a task when a task is moved into this
247 * mem_cgroup ? And what type of charges should we move ?
248 */
249 unsigned long move_charge_at_immigrate;
250 /*
251 * percpu counter.
252 */
253 struct mem_cgroup_stat_cpu *stat;
254};
255
256/* Stuffs for move charges at task migration. */
257/*
258 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
259 * left-shifted bitmap of these types.
260 */
261enum move_type {
262 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
263 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
264 NR_MOVE_TYPE,
265};
266
267/* "mc" and its members are protected by cgroup_mutex */
268static struct move_charge_struct {
269 struct mem_cgroup *from;
270 struct mem_cgroup *to;
271 unsigned long precharge;
272 unsigned long moved_charge;
273 unsigned long moved_swap;
274 struct task_struct *moving_task; /* a task moving charges */
275 wait_queue_head_t waitq; /* a waitq for other context */
276} mc = {
277 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
278};
279
280static bool move_anon(void)
281{
282 return test_bit(MOVE_CHARGE_TYPE_ANON,
283 &mc.to->move_charge_at_immigrate);
284}
285
286static bool move_file(void)
287{
288 return test_bit(MOVE_CHARGE_TYPE_FILE,
289 &mc.to->move_charge_at_immigrate);
290}
291
292/*
293 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
294 * limit reclaim to prevent infinite loops, if they ever occur.
295 */
296#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
297#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
298
299enum charge_type {
300 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
301 MEM_CGROUP_CHARGE_TYPE_MAPPED,
302 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
303 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
304 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
305 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
306 NR_CHARGE_TYPE,
307};
308
309/* only for here (for easy reading.) */
310#define PCGF_CACHE (1UL << PCG_CACHE)
311#define PCGF_USED (1UL << PCG_USED)
312#define PCGF_LOCK (1UL << PCG_LOCK)
313/* Not used, but added here for completeness */
314#define PCGF_ACCT (1UL << PCG_ACCT)
315
316/* for encoding cft->private value on file */
317#define _MEM (0)
318#define _MEMSWAP (1)
319#define _OOM_TYPE (2)
320#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
321#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
322#define MEMFILE_ATTR(val) ((val) & 0xffff)
323/* Used for OOM nofiier */
324#define OOM_CONTROL (0)
325
326/*
327 * Reclaim flags for mem_cgroup_hierarchical_reclaim
328 */
329#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
330#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
331#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
332#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
333#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
334#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
335
336static void mem_cgroup_get(struct mem_cgroup *mem);
337static void mem_cgroup_put(struct mem_cgroup *mem);
338static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
339static void drain_all_stock_async(void);
340
341static struct mem_cgroup_per_zone *
342mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
343{
344 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
345}
346
347struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
348{
349 return &mem->css;
350}
351
352static struct mem_cgroup_per_zone *
353page_cgroup_zoneinfo(struct page_cgroup *pc)
354{
355 struct mem_cgroup *mem = pc->mem_cgroup;
356 int nid = page_cgroup_nid(pc);
357 int zid = page_cgroup_zid(pc);
358
359 if (!mem)
360 return NULL;
361
362 return mem_cgroup_zoneinfo(mem, nid, zid);
363}
364
365static struct mem_cgroup_tree_per_zone *
366soft_limit_tree_node_zone(int nid, int zid)
367{
368 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
369}
370
371static struct mem_cgroup_tree_per_zone *
372soft_limit_tree_from_page(struct page *page)
373{
374 int nid = page_to_nid(page);
375 int zid = page_zonenum(page);
376
377 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
378}
379
380static void
381__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
382 struct mem_cgroup_per_zone *mz,
383 struct mem_cgroup_tree_per_zone *mctz,
384 unsigned long long new_usage_in_excess)
385{
386 struct rb_node **p = &mctz->rb_root.rb_node;
387 struct rb_node *parent = NULL;
388 struct mem_cgroup_per_zone *mz_node;
389
390 if (mz->on_tree)
391 return;
392
393 mz->usage_in_excess = new_usage_in_excess;
394 if (!mz->usage_in_excess)
395 return;
396 while (*p) {
397 parent = *p;
398 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
399 tree_node);
400 if (mz->usage_in_excess < mz_node->usage_in_excess)
401 p = &(*p)->rb_left;
402 /*
403 * We can't avoid mem cgroups that are over their soft
404 * limit by the same amount
405 */
406 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
407 p = &(*p)->rb_right;
408 }
409 rb_link_node(&mz->tree_node, parent, p);
410 rb_insert_color(&mz->tree_node, &mctz->rb_root);
411 mz->on_tree = true;
412}
413
414static void
415__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
416 struct mem_cgroup_per_zone *mz,
417 struct mem_cgroup_tree_per_zone *mctz)
418{
419 if (!mz->on_tree)
420 return;
421 rb_erase(&mz->tree_node, &mctz->rb_root);
422 mz->on_tree = false;
423}
424
425static void
426mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
427 struct mem_cgroup_per_zone *mz,
428 struct mem_cgroup_tree_per_zone *mctz)
429{
430 spin_lock(&mctz->lock);
431 __mem_cgroup_remove_exceeded(mem, mz, mctz);
432 spin_unlock(&mctz->lock);
433}
434
435
436static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
437{
438 unsigned long long excess;
439 struct mem_cgroup_per_zone *mz;
440 struct mem_cgroup_tree_per_zone *mctz;
441 int nid = page_to_nid(page);
442 int zid = page_zonenum(page);
443 mctz = soft_limit_tree_from_page(page);
444
445 /*
446 * Necessary to update all ancestors when hierarchy is used.
447 * because their event counter is not touched.
448 */
449 for (; mem; mem = parent_mem_cgroup(mem)) {
450 mz = mem_cgroup_zoneinfo(mem, nid, zid);
451 excess = res_counter_soft_limit_excess(&mem->res);
452 /*
453 * We have to update the tree if mz is on RB-tree or
454 * mem is over its softlimit.
455 */
456 if (excess || mz->on_tree) {
457 spin_lock(&mctz->lock);
458 /* if on-tree, remove it */
459 if (mz->on_tree)
460 __mem_cgroup_remove_exceeded(mem, mz, mctz);
461 /*
462 * Insert again. mz->usage_in_excess will be updated.
463 * If excess is 0, no tree ops.
464 */
465 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
466 spin_unlock(&mctz->lock);
467 }
468 }
469}
470
471static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
472{
473 int node, zone;
474 struct mem_cgroup_per_zone *mz;
475 struct mem_cgroup_tree_per_zone *mctz;
476
477 for_each_node_state(node, N_POSSIBLE) {
478 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
479 mz = mem_cgroup_zoneinfo(mem, node, zone);
480 mctz = soft_limit_tree_node_zone(node, zone);
481 mem_cgroup_remove_exceeded(mem, mz, mctz);
482 }
483 }
484}
485
486static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
487{
488 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
489}
490
491static struct mem_cgroup_per_zone *
492__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
493{
494 struct rb_node *rightmost = NULL;
495 struct mem_cgroup_per_zone *mz;
496
497retry:
498 mz = NULL;
499 rightmost = rb_last(&mctz->rb_root);
500 if (!rightmost)
501 goto done; /* Nothing to reclaim from */
502
503 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
504 /*
505 * Remove the node now but someone else can add it back,
506 * we will to add it back at the end of reclaim to its correct
507 * position in the tree.
508 */
509 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
510 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
511 !css_tryget(&mz->mem->css))
512 goto retry;
513done:
514 return mz;
515}
516
517static struct mem_cgroup_per_zone *
518mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
519{
520 struct mem_cgroup_per_zone *mz;
521
522 spin_lock(&mctz->lock);
523 mz = __mem_cgroup_largest_soft_limit_node(mctz);
524 spin_unlock(&mctz->lock);
525 return mz;
526}
527
528static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
529 enum mem_cgroup_stat_index idx)
530{
531 int cpu;
532 s64 val = 0;
533
534 for_each_possible_cpu(cpu)
535 val += per_cpu(mem->stat->count[idx], cpu);
536 return val;
537}
538
539static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
540{
541 s64 ret;
542
543 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
544 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
545 return ret;
546}
547
548static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
549 bool charge)
550{
551 int val = (charge) ? 1 : -1;
552 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
553}
554
555static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
556 struct page_cgroup *pc,
557 bool charge)
558{
559 int val = (charge) ? 1 : -1;
560
561 preempt_disable();
562
563 if (PageCgroupCache(pc))
564 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
565 else
566 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
567
568 if (charge)
569 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
570 else
571 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
572 __this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
573
574 preempt_enable();
575}
576
577static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
578 enum lru_list idx)
579{
580 int nid, zid;
581 struct mem_cgroup_per_zone *mz;
582 u64 total = 0;
583
584 for_each_online_node(nid)
585 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
586 mz = mem_cgroup_zoneinfo(mem, nid, zid);
587 total += MEM_CGROUP_ZSTAT(mz, idx);
588 }
589 return total;
590}
591
592static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
593{
594 s64 val;
595
596 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
597
598 return !(val & ((1 << event_mask_shift) - 1));
599}
600
601/*
602 * Check events in order.
603 *
604 */
605static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
606{
607 /* threshold event is triggered in finer grain than soft limit */
608 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
609 mem_cgroup_threshold(mem);
610 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
611 mem_cgroup_update_tree(mem, page);
612 }
613}
614
615static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
616{
617 return container_of(cgroup_subsys_state(cont,
618 mem_cgroup_subsys_id), struct mem_cgroup,
619 css);
620}
621
622struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
623{
624 /*
625 * mm_update_next_owner() may clear mm->owner to NULL
626 * if it races with swapoff, page migration, etc.
627 * So this can be called with p == NULL.
628 */
629 if (unlikely(!p))
630 return NULL;
631
632 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
633 struct mem_cgroup, css);
634}
635
636static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
637{
638 struct mem_cgroup *mem = NULL;
639
640 if (!mm)
641 return NULL;
642 /*
643 * Because we have no locks, mm->owner's may be being moved to other
644 * cgroup. We use css_tryget() here even if this looks
645 * pessimistic (rather than adding locks here).
646 */
647 rcu_read_lock();
648 do {
649 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
650 if (unlikely(!mem))
651 break;
652 } while (!css_tryget(&mem->css));
653 rcu_read_unlock();
654 return mem;
655}
656
657/*
658 * Call callback function against all cgroup under hierarchy tree.
659 */
660static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
661 int (*func)(struct mem_cgroup *, void *))
662{
663 int found, ret, nextid;
664 struct cgroup_subsys_state *css;
665 struct mem_cgroup *mem;
666
667 if (!root->use_hierarchy)
668 return (*func)(root, data);
669
670 nextid = 1;
671 do {
672 ret = 0;
673 mem = NULL;
674
675 rcu_read_lock();
676 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
677 &found);
678 if (css && css_tryget(css))
679 mem = container_of(css, struct mem_cgroup, css);
680 rcu_read_unlock();
681
682 if (mem) {
683 ret = (*func)(mem, data);
684 css_put(&mem->css);
685 }
686 nextid = found + 1;
687 } while (!ret && css);
688
689 return ret;
690}
691
692static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
693{
694 return (mem == root_mem_cgroup);
695}
696
697/*
698 * Following LRU functions are allowed to be used without PCG_LOCK.
699 * Operations are called by routine of global LRU independently from memcg.
700 * What we have to take care of here is validness of pc->mem_cgroup.
701 *
702 * Changes to pc->mem_cgroup happens when
703 * 1. charge
704 * 2. moving account
705 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
706 * It is added to LRU before charge.
707 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
708 * When moving account, the page is not on LRU. It's isolated.
709 */
710
711void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
712{
713 struct page_cgroup *pc;
714 struct mem_cgroup_per_zone *mz;
715
716 if (mem_cgroup_disabled())
717 return;
718 pc = lookup_page_cgroup(page);
719 /* can happen while we handle swapcache. */
720 if (!TestClearPageCgroupAcctLRU(pc))
721 return;
722 VM_BUG_ON(!pc->mem_cgroup);
723 /*
724 * We don't check PCG_USED bit. It's cleared when the "page" is finally
725 * removed from global LRU.
726 */
727 mz = page_cgroup_zoneinfo(pc);
728 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
729 if (mem_cgroup_is_root(pc->mem_cgroup))
730 return;
731 VM_BUG_ON(list_empty(&pc->lru));
732 list_del_init(&pc->lru);
733 return;
734}
735
736void mem_cgroup_del_lru(struct page *page)
737{
738 mem_cgroup_del_lru_list(page, page_lru(page));
739}
740
741void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
742{
743 struct mem_cgroup_per_zone *mz;
744 struct page_cgroup *pc;
745
746 if (mem_cgroup_disabled())
747 return;
748
749 pc = lookup_page_cgroup(page);
750 /*
751 * Used bit is set without atomic ops but after smp_wmb().
752 * For making pc->mem_cgroup visible, insert smp_rmb() here.
753 */
754 smp_rmb();
755 /* unused or root page is not rotated. */
756 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
757 return;
758 mz = page_cgroup_zoneinfo(pc);
759 list_move(&pc->lru, &mz->lists[lru]);
760}
761
762void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
763{
764 struct page_cgroup *pc;
765 struct mem_cgroup_per_zone *mz;
766
767 if (mem_cgroup_disabled())
768 return;
769 pc = lookup_page_cgroup(page);
770 VM_BUG_ON(PageCgroupAcctLRU(pc));
771 /*
772 * Used bit is set without atomic ops but after smp_wmb().
773 * For making pc->mem_cgroup visible, insert smp_rmb() here.
774 */
775 smp_rmb();
776 if (!PageCgroupUsed(pc))
777 return;
778
779 mz = page_cgroup_zoneinfo(pc);
780 MEM_CGROUP_ZSTAT(mz, lru) += 1;
781 SetPageCgroupAcctLRU(pc);
782 if (mem_cgroup_is_root(pc->mem_cgroup))
783 return;
784 list_add(&pc->lru, &mz->lists[lru]);
785}
786
787/*
788 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
789 * lru because the page may.be reused after it's fully uncharged (because of
790 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
791 * it again. This function is only used to charge SwapCache. It's done under
792 * lock_page and expected that zone->lru_lock is never held.
793 */
794static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
795{
796 unsigned long flags;
797 struct zone *zone = page_zone(page);
798 struct page_cgroup *pc = lookup_page_cgroup(page);
799
800 spin_lock_irqsave(&zone->lru_lock, flags);
801 /*
802 * Forget old LRU when this page_cgroup is *not* used. This Used bit
803 * is guarded by lock_page() because the page is SwapCache.
804 */
805 if (!PageCgroupUsed(pc))
806 mem_cgroup_del_lru_list(page, page_lru(page));
807 spin_unlock_irqrestore(&zone->lru_lock, flags);
808}
809
810static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
811{
812 unsigned long flags;
813 struct zone *zone = page_zone(page);
814 struct page_cgroup *pc = lookup_page_cgroup(page);
815
816 spin_lock_irqsave(&zone->lru_lock, flags);
817 /* link when the page is linked to LRU but page_cgroup isn't */
818 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
819 mem_cgroup_add_lru_list(page, page_lru(page));
820 spin_unlock_irqrestore(&zone->lru_lock, flags);
821}
822
823
824void mem_cgroup_move_lists(struct page *page,
825 enum lru_list from, enum lru_list to)
826{
827 if (mem_cgroup_disabled())
828 return;
829 mem_cgroup_del_lru_list(page, from);
830 mem_cgroup_add_lru_list(page, to);
831}
832
833int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
834{
835 int ret;
836 struct mem_cgroup *curr = NULL;
837
838 task_lock(task);
839 rcu_read_lock();
840 curr = try_get_mem_cgroup_from_mm(task->mm);
841 rcu_read_unlock();
842 task_unlock(task);
843 if (!curr)
844 return 0;
845 /*
846 * We should check use_hierarchy of "mem" not "curr". Because checking
847 * use_hierarchy of "curr" here make this function true if hierarchy is
848 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
849 * hierarchy(even if use_hierarchy is disabled in "mem").
850 */
851 if (mem->use_hierarchy)
852 ret = css_is_ancestor(&curr->css, &mem->css);
853 else
854 ret = (curr == mem);
855 css_put(&curr->css);
856 return ret;
857}
858
859static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
860{
861 unsigned long active;
862 unsigned long inactive;
863 unsigned long gb;
864 unsigned long inactive_ratio;
865
866 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
867 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
868
869 gb = (inactive + active) >> (30 - PAGE_SHIFT);
870 if (gb)
871 inactive_ratio = int_sqrt(10 * gb);
872 else
873 inactive_ratio = 1;
874
875 if (present_pages) {
876 present_pages[0] = inactive;
877 present_pages[1] = active;
878 }
879
880 return inactive_ratio;
881}
882
883int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
884{
885 unsigned long active;
886 unsigned long inactive;
887 unsigned long present_pages[2];
888 unsigned long inactive_ratio;
889
890 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
891
892 inactive = present_pages[0];
893 active = present_pages[1];
894
895 if (inactive * inactive_ratio < active)
896 return 1;
897
898 return 0;
899}
900
901int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
902{
903 unsigned long active;
904 unsigned long inactive;
905
906 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
907 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
908
909 return (active > inactive);
910}
911
912unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
913 struct zone *zone,
914 enum lru_list lru)
915{
916 int nid = zone->zone_pgdat->node_id;
917 int zid = zone_idx(zone);
918 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
919
920 return MEM_CGROUP_ZSTAT(mz, lru);
921}
922
923struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
924 struct zone *zone)
925{
926 int nid = zone->zone_pgdat->node_id;
927 int zid = zone_idx(zone);
928 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
929
930 return &mz->reclaim_stat;
931}
932
933struct zone_reclaim_stat *
934mem_cgroup_get_reclaim_stat_from_page(struct page *page)
935{
936 struct page_cgroup *pc;
937 struct mem_cgroup_per_zone *mz;
938
939 if (mem_cgroup_disabled())
940 return NULL;
941
942 pc = lookup_page_cgroup(page);
943 /*
944 * Used bit is set without atomic ops but after smp_wmb().
945 * For making pc->mem_cgroup visible, insert smp_rmb() here.
946 */
947 smp_rmb();
948 if (!PageCgroupUsed(pc))
949 return NULL;
950
951 mz = page_cgroup_zoneinfo(pc);
952 if (!mz)
953 return NULL;
954
955 return &mz->reclaim_stat;
956}
957
958unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
959 struct list_head *dst,
960 unsigned long *scanned, int order,
961 int mode, struct zone *z,
962 struct mem_cgroup *mem_cont,
963 int active, int file)
964{
965 unsigned long nr_taken = 0;
966 struct page *page;
967 unsigned long scan;
968 LIST_HEAD(pc_list);
969 struct list_head *src;
970 struct page_cgroup *pc, *tmp;
971 int nid = z->zone_pgdat->node_id;
972 int zid = zone_idx(z);
973 struct mem_cgroup_per_zone *mz;
974 int lru = LRU_FILE * file + active;
975 int ret;
976
977 BUG_ON(!mem_cont);
978 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
979 src = &mz->lists[lru];
980
981 scan = 0;
982 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
983 if (scan >= nr_to_scan)
984 break;
985
986 page = pc->page;
987 if (unlikely(!PageCgroupUsed(pc)))
988 continue;
989 if (unlikely(!PageLRU(page)))
990 continue;
991
992 scan++;
993 ret = __isolate_lru_page(page, mode, file);
994 switch (ret) {
995 case 0:
996 list_move(&page->lru, dst);
997 mem_cgroup_del_lru(page);
998 nr_taken++;
999 break;
1000 case -EBUSY:
1001 /* we don't affect global LRU but rotate in our LRU */
1002 mem_cgroup_rotate_lru_list(page, page_lru(page));
1003 break;
1004 default:
1005 break;
1006 }
1007 }
1008
1009 *scanned = scan;
1010 return nr_taken;
1011}
1012
1013#define mem_cgroup_from_res_counter(counter, member) \
1014 container_of(counter, struct mem_cgroup, member)
1015
1016static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1017{
1018 if (do_swap_account) {
1019 if (res_counter_check_under_limit(&mem->res) &&
1020 res_counter_check_under_limit(&mem->memsw))
1021 return true;
1022 } else
1023 if (res_counter_check_under_limit(&mem->res))
1024 return true;
1025 return false;
1026}
1027
1028static unsigned int get_swappiness(struct mem_cgroup *memcg)
1029{
1030 struct cgroup *cgrp = memcg->css.cgroup;
1031 unsigned int swappiness;
1032
1033 /* root ? */
1034 if (cgrp->parent == NULL)
1035 return vm_swappiness;
1036
1037 spin_lock(&memcg->reclaim_param_lock);
1038 swappiness = memcg->swappiness;
1039 spin_unlock(&memcg->reclaim_param_lock);
1040
1041 return swappiness;
1042}
1043
1044static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
1045{
1046 int *val = data;
1047 (*val)++;
1048 return 0;
1049}
1050
1051/**
1052 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1053 * @memcg: The memory cgroup that went over limit
1054 * @p: Task that is going to be killed
1055 *
1056 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1057 * enabled
1058 */
1059void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1060{
1061 struct cgroup *task_cgrp;
1062 struct cgroup *mem_cgrp;
1063 /*
1064 * Need a buffer in BSS, can't rely on allocations. The code relies
1065 * on the assumption that OOM is serialized for memory controller.
1066 * If this assumption is broken, revisit this code.
1067 */
1068 static char memcg_name[PATH_MAX];
1069 int ret;
1070
1071 if (!memcg || !p)
1072 return;
1073
1074
1075 rcu_read_lock();
1076
1077 mem_cgrp = memcg->css.cgroup;
1078 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1079
1080 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1081 if (ret < 0) {
1082 /*
1083 * Unfortunately, we are unable to convert to a useful name
1084 * But we'll still print out the usage information
1085 */
1086 rcu_read_unlock();
1087 goto done;
1088 }
1089 rcu_read_unlock();
1090
1091 printk(KERN_INFO "Task in %s killed", memcg_name);
1092
1093 rcu_read_lock();
1094 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1095 if (ret < 0) {
1096 rcu_read_unlock();
1097 goto done;
1098 }
1099 rcu_read_unlock();
1100
1101 /*
1102 * Continues from above, so we don't need an KERN_ level
1103 */
1104 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1105done:
1106
1107 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1108 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1109 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1110 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1111 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1112 "failcnt %llu\n",
1113 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1114 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1115 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1116}
1117
1118/*
1119 * This function returns the number of memcg under hierarchy tree. Returns
1120 * 1(self count) if no children.
1121 */
1122static int mem_cgroup_count_children(struct mem_cgroup *mem)
1123{
1124 int num = 0;
1125 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1126 return num;
1127}
1128
1129/*
1130 * Visit the first child (need not be the first child as per the ordering
1131 * of the cgroup list, since we track last_scanned_child) of @mem and use
1132 * that to reclaim free pages from.
1133 */
1134static struct mem_cgroup *
1135mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1136{
1137 struct mem_cgroup *ret = NULL;
1138 struct cgroup_subsys_state *css;
1139 int nextid, found;
1140
1141 if (!root_mem->use_hierarchy) {
1142 css_get(&root_mem->css);
1143 ret = root_mem;
1144 }
1145
1146 while (!ret) {
1147 rcu_read_lock();
1148 nextid = root_mem->last_scanned_child + 1;
1149 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1150 &found);
1151 if (css && css_tryget(css))
1152 ret = container_of(css, struct mem_cgroup, css);
1153
1154 rcu_read_unlock();
1155 /* Updates scanning parameter */
1156 spin_lock(&root_mem->reclaim_param_lock);
1157 if (!css) {
1158 /* this means start scan from ID:1 */
1159 root_mem->last_scanned_child = 0;
1160 } else
1161 root_mem->last_scanned_child = found;
1162 spin_unlock(&root_mem->reclaim_param_lock);
1163 }
1164
1165 return ret;
1166}
1167
1168/*
1169 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1170 * we reclaimed from, so that we don't end up penalizing one child extensively
1171 * based on its position in the children list.
1172 *
1173 * root_mem is the original ancestor that we've been reclaim from.
1174 *
1175 * We give up and return to the caller when we visit root_mem twice.
1176 * (other groups can be removed while we're walking....)
1177 *
1178 * If shrink==true, for avoiding to free too much, this returns immedieately.
1179 */
1180static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1181 struct zone *zone,
1182 gfp_t gfp_mask,
1183 unsigned long reclaim_options)
1184{
1185 struct mem_cgroup *victim;
1186 int ret, total = 0;
1187 int loop = 0;
1188 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1189 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1190 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1191 unsigned long excess = mem_cgroup_get_excess(root_mem);
1192
1193 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1194 if (root_mem->memsw_is_minimum)
1195 noswap = true;
1196
1197 while (1) {
1198 victim = mem_cgroup_select_victim(root_mem);
1199 if (victim == root_mem) {
1200 loop++;
1201 if (loop >= 1)
1202 drain_all_stock_async();
1203 if (loop >= 2) {
1204 /*
1205 * If we have not been able to reclaim
1206 * anything, it might because there are
1207 * no reclaimable pages under this hierarchy
1208 */
1209 if (!check_soft || !total) {
1210 css_put(&victim->css);
1211 break;
1212 }
1213 /*
1214 * We want to do more targetted reclaim.
1215 * excess >> 2 is not to excessive so as to
1216 * reclaim too much, nor too less that we keep
1217 * coming back to reclaim from this cgroup
1218 */
1219 if (total >= (excess >> 2) ||
1220 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1221 css_put(&victim->css);
1222 break;
1223 }
1224 }
1225 }
1226 if (!mem_cgroup_local_usage(victim)) {
1227 /* this cgroup's local usage == 0 */
1228 css_put(&victim->css);
1229 continue;
1230 }
1231 /* we use swappiness of local cgroup */
1232 if (check_soft)
1233 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1234 noswap, get_swappiness(victim), zone,
1235 zone->zone_pgdat->node_id);
1236 else
1237 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1238 noswap, get_swappiness(victim));
1239 css_put(&victim->css);
1240 /*
1241 * At shrinking usage, we can't check we should stop here or
1242 * reclaim more. It's depends on callers. last_scanned_child
1243 * will work enough for keeping fairness under tree.
1244 */
1245 if (shrink)
1246 return ret;
1247 total += ret;
1248 if (check_soft) {
1249 if (res_counter_check_under_soft_limit(&root_mem->res))
1250 return total;
1251 } else if (mem_cgroup_check_under_limit(root_mem))
1252 return 1 + total;
1253 }
1254 return total;
1255}
1256
1257static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data)
1258{
1259 int *val = (int *)data;
1260 int x;
1261 /*
1262 * Logically, we can stop scanning immediately when we find
1263 * a memcg is already locked. But condidering unlock ops and
1264 * creation/removal of memcg, scan-all is simple operation.
1265 */
1266 x = atomic_inc_return(&mem->oom_lock);
1267 *val = max(x, *val);
1268 return 0;
1269}
1270/*
1271 * Check OOM-Killer is already running under our hierarchy.
1272 * If someone is running, return false.
1273 */
1274static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1275{
1276 int lock_count = 0;
1277
1278 mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb);
1279
1280 if (lock_count == 1)
1281 return true;
1282 return false;
1283}
1284
1285static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data)
1286{
1287 /*
1288 * When a new child is created while the hierarchy is under oom,
1289 * mem_cgroup_oom_lock() may not be called. We have to use
1290 * atomic_add_unless() here.
1291 */
1292 atomic_add_unless(&mem->oom_lock, -1, 0);
1293 return 0;
1294}
1295
1296static void mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1297{
1298 mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_unlock_cb);
1299}
1300
1301static DEFINE_MUTEX(memcg_oom_mutex);
1302static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1303
1304struct oom_wait_info {
1305 struct mem_cgroup *mem;
1306 wait_queue_t wait;
1307};
1308
1309static int memcg_oom_wake_function(wait_queue_t *wait,
1310 unsigned mode, int sync, void *arg)
1311{
1312 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1313 struct oom_wait_info *oom_wait_info;
1314
1315 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1316
1317 if (oom_wait_info->mem == wake_mem)
1318 goto wakeup;
1319 /* if no hierarchy, no match */
1320 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1321 return 0;
1322 /*
1323 * Both of oom_wait_info->mem and wake_mem are stable under us.
1324 * Then we can use css_is_ancestor without taking care of RCU.
1325 */
1326 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1327 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1328 return 0;
1329
1330wakeup:
1331 return autoremove_wake_function(wait, mode, sync, arg);
1332}
1333
1334static void memcg_wakeup_oom(struct mem_cgroup *mem)
1335{
1336 /* for filtering, pass "mem" as argument. */
1337 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1338}
1339
1340static void memcg_oom_recover(struct mem_cgroup *mem)
1341{
1342 if (atomic_read(&mem->oom_lock))
1343 memcg_wakeup_oom(mem);
1344}
1345
1346/*
1347 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1348 */
1349bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1350{
1351 struct oom_wait_info owait;
1352 bool locked, need_to_kill;
1353
1354 owait.mem = mem;
1355 owait.wait.flags = 0;
1356 owait.wait.func = memcg_oom_wake_function;
1357 owait.wait.private = current;
1358 INIT_LIST_HEAD(&owait.wait.task_list);
1359 need_to_kill = true;
1360 /* At first, try to OOM lock hierarchy under mem.*/
1361 mutex_lock(&memcg_oom_mutex);
1362 locked = mem_cgroup_oom_lock(mem);
1363 /*
1364 * Even if signal_pending(), we can't quit charge() loop without
1365 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1366 * under OOM is always welcomed, use TASK_KILLABLE here.
1367 */
1368 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1369 if (!locked || mem->oom_kill_disable)
1370 need_to_kill = false;
1371 if (locked)
1372 mem_cgroup_oom_notify(mem);
1373 mutex_unlock(&memcg_oom_mutex);
1374
1375 if (need_to_kill) {
1376 finish_wait(&memcg_oom_waitq, &owait.wait);
1377 mem_cgroup_out_of_memory(mem, mask);
1378 } else {
1379 schedule();
1380 finish_wait(&memcg_oom_waitq, &owait.wait);
1381 }
1382 mutex_lock(&memcg_oom_mutex);
1383 mem_cgroup_oom_unlock(mem);
1384 memcg_wakeup_oom(mem);
1385 mutex_unlock(&memcg_oom_mutex);
1386
1387 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1388 return false;
1389 /* Give chance to dying process */
1390 schedule_timeout(1);
1391 return true;
1392}
1393
1394/*
1395 * Currently used to update mapped file statistics, but the routine can be
1396 * generalized to update other statistics as well.
1397 */
1398void mem_cgroup_update_file_mapped(struct page *page, int val)
1399{
1400 struct mem_cgroup *mem;
1401 struct page_cgroup *pc;
1402
1403 pc = lookup_page_cgroup(page);
1404 if (unlikely(!pc))
1405 return;
1406
1407 lock_page_cgroup(pc);
1408 mem = pc->mem_cgroup;
1409 if (!mem || !PageCgroupUsed(pc))
1410 goto done;
1411
1412 /*
1413 * Preemption is already disabled. We can use __this_cpu_xxx
1414 */
1415 if (val > 0) {
1416 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1417 SetPageCgroupFileMapped(pc);
1418 } else {
1419 __this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1420 ClearPageCgroupFileMapped(pc);
1421 }
1422
1423done:
1424 unlock_page_cgroup(pc);
1425}
1426
1427/*
1428 * size of first charge trial. "32" comes from vmscan.c's magic value.
1429 * TODO: maybe necessary to use big numbers in big irons.
1430 */
1431#define CHARGE_SIZE (32 * PAGE_SIZE)
1432struct memcg_stock_pcp {
1433 struct mem_cgroup *cached; /* this never be root cgroup */
1434 int charge;
1435 struct work_struct work;
1436};
1437static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1438static atomic_t memcg_drain_count;
1439
1440/*
1441 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1442 * from local stock and true is returned. If the stock is 0 or charges from a
1443 * cgroup which is not current target, returns false. This stock will be
1444 * refilled.
1445 */
1446static bool consume_stock(struct mem_cgroup *mem)
1447{
1448 struct memcg_stock_pcp *stock;
1449 bool ret = true;
1450
1451 stock = &get_cpu_var(memcg_stock);
1452 if (mem == stock->cached && stock->charge)
1453 stock->charge -= PAGE_SIZE;
1454 else /* need to call res_counter_charge */
1455 ret = false;
1456 put_cpu_var(memcg_stock);
1457 return ret;
1458}
1459
1460/*
1461 * Returns stocks cached in percpu to res_counter and reset cached information.
1462 */
1463static void drain_stock(struct memcg_stock_pcp *stock)
1464{
1465 struct mem_cgroup *old = stock->cached;
1466
1467 if (stock->charge) {
1468 res_counter_uncharge(&old->res, stock->charge);
1469 if (do_swap_account)
1470 res_counter_uncharge(&old->memsw, stock->charge);
1471 }
1472 stock->cached = NULL;
1473 stock->charge = 0;
1474}
1475
1476/*
1477 * This must be called under preempt disabled or must be called by
1478 * a thread which is pinned to local cpu.
1479 */
1480static void drain_local_stock(struct work_struct *dummy)
1481{
1482 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1483 drain_stock(stock);
1484}
1485
1486/*
1487 * Cache charges(val) which is from res_counter, to local per_cpu area.
1488 * This will be consumed by consume_stock() function, later.
1489 */
1490static void refill_stock(struct mem_cgroup *mem, int val)
1491{
1492 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1493
1494 if (stock->cached != mem) { /* reset if necessary */
1495 drain_stock(stock);
1496 stock->cached = mem;
1497 }
1498 stock->charge += val;
1499 put_cpu_var(memcg_stock);
1500}
1501
1502/*
1503 * Tries to drain stocked charges in other cpus. This function is asynchronous
1504 * and just put a work per cpu for draining localy on each cpu. Caller can
1505 * expects some charges will be back to res_counter later but cannot wait for
1506 * it.
1507 */
1508static void drain_all_stock_async(void)
1509{
1510 int cpu;
1511 /* This function is for scheduling "drain" in asynchronous way.
1512 * The result of "drain" is not directly handled by callers. Then,
1513 * if someone is calling drain, we don't have to call drain more.
1514 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1515 * there is a race. We just do loose check here.
1516 */
1517 if (atomic_read(&memcg_drain_count))
1518 return;
1519 /* Notify other cpus that system-wide "drain" is running */
1520 atomic_inc(&memcg_drain_count);
1521 get_online_cpus();
1522 for_each_online_cpu(cpu) {
1523 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1524 schedule_work_on(cpu, &stock->work);
1525 }
1526 put_online_cpus();
1527 atomic_dec(&memcg_drain_count);
1528 /* We don't wait for flush_work */
1529}
1530
1531/* This is a synchronous drain interface. */
1532static void drain_all_stock_sync(void)
1533{
1534 /* called when force_empty is called */
1535 atomic_inc(&memcg_drain_count);
1536 schedule_on_each_cpu(drain_local_stock);
1537 atomic_dec(&memcg_drain_count);
1538}
1539
1540static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
1541 unsigned long action,
1542 void *hcpu)
1543{
1544 int cpu = (unsigned long)hcpu;
1545 struct memcg_stock_pcp *stock;
1546
1547 if (action != CPU_DEAD)
1548 return NOTIFY_OK;
1549 stock = &per_cpu(memcg_stock, cpu);
1550 drain_stock(stock);
1551 return NOTIFY_OK;
1552}
1553
1554/*
1555 * Unlike exported interface, "oom" parameter is added. if oom==true,
1556 * oom-killer can be invoked.
1557 */
1558static int __mem_cgroup_try_charge(struct mm_struct *mm,
1559 gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1560{
1561 struct mem_cgroup *mem, *mem_over_limit;
1562 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1563 struct res_counter *fail_res;
1564 int csize = CHARGE_SIZE;
1565
1566 /*
1567 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1568 * in system level. So, allow to go ahead dying process in addition to
1569 * MEMDIE process.
1570 */
1571 if (unlikely(test_thread_flag(TIF_MEMDIE)
1572 || fatal_signal_pending(current)))
1573 goto bypass;
1574
1575 /*
1576 * We always charge the cgroup the mm_struct belongs to.
1577 * The mm_struct's mem_cgroup changes on task migration if the
1578 * thread group leader migrates. It's possible that mm is not
1579 * set, if so charge the init_mm (happens for pagecache usage).
1580 */
1581 mem = *memcg;
1582 if (likely(!mem)) {
1583 mem = try_get_mem_cgroup_from_mm(mm);
1584 *memcg = mem;
1585 } else {
1586 css_get(&mem->css);
1587 }
1588 if (unlikely(!mem))
1589 return 0;
1590
1591 VM_BUG_ON(css_is_removed(&mem->css));
1592 if (mem_cgroup_is_root(mem))
1593 goto done;
1594
1595 while (1) {
1596 int ret = 0;
1597 unsigned long flags = 0;
1598
1599 if (consume_stock(mem))
1600 goto done;
1601
1602 ret = res_counter_charge(&mem->res, csize, &fail_res);
1603 if (likely(!ret)) {
1604 if (!do_swap_account)
1605 break;
1606 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1607 if (likely(!ret))
1608 break;
1609 /* mem+swap counter fails */
1610 res_counter_uncharge(&mem->res, csize);
1611 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1612 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1613 memsw);
1614 } else
1615 /* mem counter fails */
1616 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1617 res);
1618
1619 /* reduce request size and retry */
1620 if (csize > PAGE_SIZE) {
1621 csize = PAGE_SIZE;
1622 continue;
1623 }
1624 if (!(gfp_mask & __GFP_WAIT))
1625 goto nomem;
1626
1627 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1628 gfp_mask, flags);
1629 if (ret)
1630 continue;
1631
1632 /*
1633 * try_to_free_mem_cgroup_pages() might not give us a full
1634 * picture of reclaim. Some pages are reclaimed and might be
1635 * moved to swap cache or just unmapped from the cgroup.
1636 * Check the limit again to see if the reclaim reduced the
1637 * current usage of the cgroup before giving up
1638 *
1639 */
1640 if (mem_cgroup_check_under_limit(mem_over_limit))
1641 continue;
1642
1643 /* try to avoid oom while someone is moving charge */
1644 if (mc.moving_task && current != mc.moving_task) {
1645 struct mem_cgroup *from, *to;
1646 bool do_continue = false;
1647 /*
1648 * There is a small race that "from" or "to" can be
1649 * freed by rmdir, so we use css_tryget().
1650 */
1651 from = mc.from;
1652 to = mc.to;
1653 if (from && css_tryget(&from->css)) {
1654 if (mem_over_limit->use_hierarchy)
1655 do_continue = css_is_ancestor(
1656 &from->css,
1657 &mem_over_limit->css);
1658 else
1659 do_continue = (from == mem_over_limit);
1660 css_put(&from->css);
1661 }
1662 if (!do_continue && to && css_tryget(&to->css)) {
1663 if (mem_over_limit->use_hierarchy)
1664 do_continue = css_is_ancestor(
1665 &to->css,
1666 &mem_over_limit->css);
1667 else
1668 do_continue = (to == mem_over_limit);
1669 css_put(&to->css);
1670 }
1671 if (do_continue) {
1672 DEFINE_WAIT(wait);
1673 prepare_to_wait(&mc.waitq, &wait,
1674 TASK_INTERRUPTIBLE);
1675 /* moving charge context might have finished. */
1676 if (mc.moving_task)
1677 schedule();
1678 finish_wait(&mc.waitq, &wait);
1679 continue;
1680 }
1681 }
1682
1683 if (!nr_retries--) {
1684 if (!oom)
1685 goto nomem;
1686 if (mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) {
1687 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1688 continue;
1689 }
1690 /* When we reach here, current task is dying .*/
1691 css_put(&mem->css);
1692 goto bypass;
1693 }
1694 }
1695 if (csize > PAGE_SIZE)
1696 refill_stock(mem, csize - PAGE_SIZE);
1697done:
1698 return 0;
1699nomem:
1700 css_put(&mem->css);
1701 return -ENOMEM;
1702bypass:
1703 *memcg = NULL;
1704 return 0;
1705}
1706
1707/*
1708 * Somemtimes we have to undo a charge we got by try_charge().
1709 * This function is for that and do uncharge, put css's refcnt.
1710 * gotten by try_charge().
1711 */
1712static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
1713 unsigned long count)
1714{
1715 if (!mem_cgroup_is_root(mem)) {
1716 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1717 if (do_swap_account)
1718 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
1719 VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
1720 WARN_ON_ONCE(count > INT_MAX);
1721 __css_put(&mem->css, (int)count);
1722 }
1723 /* we don't need css_put for root */
1724}
1725
1726static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
1727{
1728 __mem_cgroup_cancel_charge(mem, 1);
1729}
1730
1731/*
1732 * A helper function to get mem_cgroup from ID. must be called under
1733 * rcu_read_lock(). The caller must check css_is_removed() or some if
1734 * it's concern. (dropping refcnt from swap can be called against removed
1735 * memcg.)
1736 */
1737static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1738{
1739 struct cgroup_subsys_state *css;
1740
1741 /* ID 0 is unused ID */
1742 if (!id)
1743 return NULL;
1744 css = css_lookup(&mem_cgroup_subsys, id);
1745 if (!css)
1746 return NULL;
1747 return container_of(css, struct mem_cgroup, css);
1748}
1749
1750struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1751{
1752 struct mem_cgroup *mem = NULL;
1753 struct page_cgroup *pc;
1754 unsigned short id;
1755 swp_entry_t ent;
1756
1757 VM_BUG_ON(!PageLocked(page));
1758
1759 pc = lookup_page_cgroup(page);
1760 lock_page_cgroup(pc);
1761 if (PageCgroupUsed(pc)) {
1762 mem = pc->mem_cgroup;
1763 if (mem && !css_tryget(&mem->css))
1764 mem = NULL;
1765 } else if (PageSwapCache(page)) {
1766 ent.val = page_private(page);
1767 id = lookup_swap_cgroup(ent);
1768 rcu_read_lock();
1769 mem = mem_cgroup_lookup(id);
1770 if (mem && !css_tryget(&mem->css))
1771 mem = NULL;
1772 rcu_read_unlock();
1773 }
1774 unlock_page_cgroup(pc);
1775 return mem;
1776}
1777
1778/*
1779 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1780 * USED state. If already USED, uncharge and return.
1781 */
1782
1783static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1784 struct page_cgroup *pc,
1785 enum charge_type ctype)
1786{
1787 /* try_charge() can return NULL to *memcg, taking care of it. */
1788 if (!mem)
1789 return;
1790
1791 lock_page_cgroup(pc);
1792 if (unlikely(PageCgroupUsed(pc))) {
1793 unlock_page_cgroup(pc);
1794 mem_cgroup_cancel_charge(mem);
1795 return;
1796 }
1797
1798 pc->mem_cgroup = mem;
1799 /*
1800 * We access a page_cgroup asynchronously without lock_page_cgroup().
1801 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1802 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1803 * before USED bit, we need memory barrier here.
1804 * See mem_cgroup_add_lru_list(), etc.
1805 */
1806 smp_wmb();
1807 switch (ctype) {
1808 case MEM_CGROUP_CHARGE_TYPE_CACHE:
1809 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1810 SetPageCgroupCache(pc);
1811 SetPageCgroupUsed(pc);
1812 break;
1813 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1814 ClearPageCgroupCache(pc);
1815 SetPageCgroupUsed(pc);
1816 break;
1817 default:
1818 break;
1819 }
1820
1821 mem_cgroup_charge_statistics(mem, pc, true);
1822
1823 unlock_page_cgroup(pc);
1824 /*
1825 * "charge_statistics" updated event counter. Then, check it.
1826 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1827 * if they exceeds softlimit.
1828 */
1829 memcg_check_events(mem, pc->page);
1830}
1831
1832/**
1833 * __mem_cgroup_move_account - move account of the page
1834 * @pc: page_cgroup of the page.
1835 * @from: mem_cgroup which the page is moved from.
1836 * @to: mem_cgroup which the page is moved to. @from != @to.
1837 * @uncharge: whether we should call uncharge and css_put against @from.
1838 *
1839 * The caller must confirm following.
1840 * - page is not on LRU (isolate_page() is useful.)
1841 * - the pc is locked, used, and ->mem_cgroup points to @from.
1842 *
1843 * This function doesn't do "charge" nor css_get to new cgroup. It should be
1844 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
1845 * true, this function does "uncharge" from old cgroup, but it doesn't if
1846 * @uncharge is false, so a caller should do "uncharge".
1847 */
1848
1849static void __mem_cgroup_move_account(struct page_cgroup *pc,
1850 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1851{
1852 VM_BUG_ON(from == to);
1853 VM_BUG_ON(PageLRU(pc->page));
1854 VM_BUG_ON(!PageCgroupLocked(pc));
1855 VM_BUG_ON(!PageCgroupUsed(pc));
1856 VM_BUG_ON(pc->mem_cgroup != from);
1857
1858 if (PageCgroupFileMapped(pc)) {
1859 /* Update mapped_file data for mem_cgroup */
1860 preempt_disable();
1861 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1862 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1863 preempt_enable();
1864 }
1865 mem_cgroup_charge_statistics(from, pc, false);
1866 if (uncharge)
1867 /* This is not "cancel", but cancel_charge does all we need. */
1868 mem_cgroup_cancel_charge(from);
1869
1870 /* caller should have done css_get */
1871 pc->mem_cgroup = to;
1872 mem_cgroup_charge_statistics(to, pc, true);
1873 /*
1874 * We charges against "to" which may not have any tasks. Then, "to"
1875 * can be under rmdir(). But in current implementation, caller of
1876 * this function is just force_empty() and move charge, so it's
1877 * garanteed that "to" is never removed. So, we don't check rmdir
1878 * status here.
1879 */
1880}
1881
1882/*
1883 * check whether the @pc is valid for moving account and call
1884 * __mem_cgroup_move_account()
1885 */
1886static int mem_cgroup_move_account(struct page_cgroup *pc,
1887 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1888{
1889 int ret = -EINVAL;
1890 lock_page_cgroup(pc);
1891 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
1892 __mem_cgroup_move_account(pc, from, to, uncharge);
1893 ret = 0;
1894 }
1895 unlock_page_cgroup(pc);
1896 /*
1897 * check events
1898 */
1899 memcg_check_events(to, pc->page);
1900 memcg_check_events(from, pc->page);
1901 return ret;
1902}
1903
1904/*
1905 * move charges to its parent.
1906 */
1907
1908static int mem_cgroup_move_parent(struct page_cgroup *pc,
1909 struct mem_cgroup *child,
1910 gfp_t gfp_mask)
1911{
1912 struct page *page = pc->page;
1913 struct cgroup *cg = child->css.cgroup;
1914 struct cgroup *pcg = cg->parent;
1915 struct mem_cgroup *parent;
1916 int ret;
1917
1918 /* Is ROOT ? */
1919 if (!pcg)
1920 return -EINVAL;
1921
1922 ret = -EBUSY;
1923 if (!get_page_unless_zero(page))
1924 goto out;
1925 if (isolate_lru_page(page))
1926 goto put;
1927
1928 parent = mem_cgroup_from_cont(pcg);
1929 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1930 if (ret || !parent)
1931 goto put_back;
1932
1933 ret = mem_cgroup_move_account(pc, child, parent, true);
1934 if (ret)
1935 mem_cgroup_cancel_charge(parent);
1936put_back:
1937 putback_lru_page(page);
1938put:
1939 put_page(page);
1940out:
1941 return ret;
1942}
1943
1944/*
1945 * Charge the memory controller for page usage.
1946 * Return
1947 * 0 if the charge was successful
1948 * < 0 if the cgroup is over its limit
1949 */
1950static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1951 gfp_t gfp_mask, enum charge_type ctype,
1952 struct mem_cgroup *memcg)
1953{
1954 struct mem_cgroup *mem;
1955 struct page_cgroup *pc;
1956 int ret;
1957
1958 pc = lookup_page_cgroup(page);
1959 /* can happen at boot */
1960 if (unlikely(!pc))
1961 return 0;
1962 prefetchw(pc);
1963
1964 mem = memcg;
1965 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1966 if (ret || !mem)
1967 return ret;
1968
1969 __mem_cgroup_commit_charge(mem, pc, ctype);
1970 return 0;
1971}
1972
1973int mem_cgroup_newpage_charge(struct page *page,
1974 struct mm_struct *mm, gfp_t gfp_mask)
1975{
1976 if (mem_cgroup_disabled())
1977 return 0;
1978 if (PageCompound(page))
1979 return 0;
1980 /*
1981 * If already mapped, we don't have to account.
1982 * If page cache, page->mapping has address_space.
1983 * But page->mapping may have out-of-use anon_vma pointer,
1984 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1985 * is NULL.
1986 */
1987 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1988 return 0;
1989 if (unlikely(!mm))
1990 mm = &init_mm;
1991 return mem_cgroup_charge_common(page, mm, gfp_mask,
1992 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1993}
1994
1995static void
1996__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1997 enum charge_type ctype);
1998
1999int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2000 gfp_t gfp_mask)
2001{
2002 struct mem_cgroup *mem = NULL;
2003 int ret;
2004
2005 if (mem_cgroup_disabled())
2006 return 0;
2007 if (PageCompound(page))
2008 return 0;
2009 /*
2010 * Corner case handling. This is called from add_to_page_cache()
2011 * in usual. But some FS (shmem) precharges this page before calling it
2012 * and call add_to_page_cache() with GFP_NOWAIT.
2013 *
2014 * For GFP_NOWAIT case, the page may be pre-charged before calling
2015 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2016 * charge twice. (It works but has to pay a bit larger cost.)
2017 * And when the page is SwapCache, it should take swap information
2018 * into account. This is under lock_page() now.
2019 */
2020 if (!(gfp_mask & __GFP_WAIT)) {
2021 struct page_cgroup *pc;
2022
2023
2024 pc = lookup_page_cgroup(page);
2025 if (!pc)
2026 return 0;
2027 lock_page_cgroup(pc);
2028 if (PageCgroupUsed(pc)) {
2029 unlock_page_cgroup(pc);
2030 return 0;
2031 }
2032 unlock_page_cgroup(pc);
2033 }
2034
2035 if (unlikely(!mm && !mem))
2036 mm = &init_mm;
2037
2038 if (page_is_file_cache(page))
2039 return mem_cgroup_charge_common(page, mm, gfp_mask,
2040 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
2041
2042 /* shmem */
2043 if (PageSwapCache(page)) {
2044 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2045 if (!ret)
2046 __mem_cgroup_commit_charge_swapin(page, mem,
2047 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2048 } else
2049 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2050 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
2051
2052 return ret;
2053}
2054
2055/*
2056 * While swap-in, try_charge -> commit or cancel, the page is locked.
2057 * And when try_charge() successfully returns, one refcnt to memcg without
2058 * struct page_cgroup is acquired. This refcnt will be consumed by
2059 * "commit()" or removed by "cancel()"
2060 */
2061int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2062 struct page *page,
2063 gfp_t mask, struct mem_cgroup **ptr)
2064{
2065 struct mem_cgroup *mem;
2066 int ret;
2067
2068 if (mem_cgroup_disabled())
2069 return 0;
2070
2071 if (!do_swap_account)
2072 goto charge_cur_mm;
2073 /*
2074 * A racing thread's fault, or swapoff, may have already updated
2075 * the pte, and even removed page from swap cache: in those cases
2076 * do_swap_page()'s pte_same() test will fail; but there's also a
2077 * KSM case which does need to charge the page.
2078 */
2079 if (!PageSwapCache(page))
2080 goto charge_cur_mm;
2081 mem = try_get_mem_cgroup_from_page(page);
2082 if (!mem)
2083 goto charge_cur_mm;
2084 *ptr = mem;
2085 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2086 /* drop extra refcnt from tryget */
2087 css_put(&mem->css);
2088 return ret;
2089charge_cur_mm:
2090 if (unlikely(!mm))
2091 mm = &init_mm;
2092 return __mem_cgroup_try_charge(mm, mask, ptr, true);
2093}
2094
2095static void
2096__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2097 enum charge_type ctype)
2098{
2099 struct page_cgroup *pc;
2100
2101 if (mem_cgroup_disabled())
2102 return;
2103 if (!ptr)
2104 return;
2105 cgroup_exclude_rmdir(&ptr->css);
2106 pc = lookup_page_cgroup(page);
2107 mem_cgroup_lru_del_before_commit_swapcache(page);
2108 __mem_cgroup_commit_charge(ptr, pc, ctype);
2109 mem_cgroup_lru_add_after_commit_swapcache(page);
2110 /*
2111 * Now swap is on-memory. This means this page may be
2112 * counted both as mem and swap....double count.
2113 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2114 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2115 * may call delete_from_swap_cache() before reach here.
2116 */
2117 if (do_swap_account && PageSwapCache(page)) {
2118 swp_entry_t ent = {.val = page_private(page)};
2119 unsigned short id;
2120 struct mem_cgroup *memcg;
2121
2122 id = swap_cgroup_record(ent, 0);
2123 rcu_read_lock();
2124 memcg = mem_cgroup_lookup(id);
2125 if (memcg) {
2126 /*
2127 * This recorded memcg can be obsolete one. So, avoid
2128 * calling css_tryget
2129 */
2130 if (!mem_cgroup_is_root(memcg))
2131 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2132 mem_cgroup_swap_statistics(memcg, false);
2133 mem_cgroup_put(memcg);
2134 }
2135 rcu_read_unlock();
2136 }
2137 /*
2138 * At swapin, we may charge account against cgroup which has no tasks.
2139 * So, rmdir()->pre_destroy() can be called while we do this charge.
2140 * In that case, we need to call pre_destroy() again. check it here.
2141 */
2142 cgroup_release_and_wakeup_rmdir(&ptr->css);
2143}
2144
2145void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2146{
2147 __mem_cgroup_commit_charge_swapin(page, ptr,
2148 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2149}
2150
2151void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2152{
2153 if (mem_cgroup_disabled())
2154 return;
2155 if (!mem)
2156 return;
2157 mem_cgroup_cancel_charge(mem);
2158}
2159
2160static void
2161__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
2162{
2163 struct memcg_batch_info *batch = NULL;
2164 bool uncharge_memsw = true;
2165 /* If swapout, usage of swap doesn't decrease */
2166 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2167 uncharge_memsw = false;
2168
2169 batch = &current->memcg_batch;
2170 /*
2171 * In usual, we do css_get() when we remember memcg pointer.
2172 * But in this case, we keep res->usage until end of a series of
2173 * uncharges. Then, it's ok to ignore memcg's refcnt.
2174 */
2175 if (!batch->memcg)
2176 batch->memcg = mem;
2177 /*
2178 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2179 * In those cases, all pages freed continously can be expected to be in
2180 * the same cgroup and we have chance to coalesce uncharges.
2181 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2182 * because we want to do uncharge as soon as possible.
2183 */
2184
2185 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2186 goto direct_uncharge;
2187
2188 /*
2189 * In typical case, batch->memcg == mem. This means we can
2190 * merge a series of uncharges to an uncharge of res_counter.
2191 * If not, we uncharge res_counter ony by one.
2192 */
2193 if (batch->memcg != mem)
2194 goto direct_uncharge;
2195 /* remember freed charge and uncharge it later */
2196 batch->bytes += PAGE_SIZE;
2197 if (uncharge_memsw)
2198 batch->memsw_bytes += PAGE_SIZE;
2199 return;
2200direct_uncharge:
2201 res_counter_uncharge(&mem->res, PAGE_SIZE);
2202 if (uncharge_memsw)
2203 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2204 if (unlikely(batch->memcg != mem))
2205 memcg_oom_recover(mem);
2206 return;
2207}
2208
2209/*
2210 * uncharge if !page_mapped(page)
2211 */
2212static struct mem_cgroup *
2213__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2214{
2215 struct page_cgroup *pc;
2216 struct mem_cgroup *mem = NULL;
2217 struct mem_cgroup_per_zone *mz;
2218
2219 if (mem_cgroup_disabled())
2220 return NULL;
2221
2222 if (PageSwapCache(page))
2223 return NULL;
2224
2225 /*
2226 * Check if our page_cgroup is valid
2227 */
2228 pc = lookup_page_cgroup(page);
2229 if (unlikely(!pc || !PageCgroupUsed(pc)))
2230 return NULL;
2231
2232 lock_page_cgroup(pc);
2233
2234 mem = pc->mem_cgroup;
2235
2236 if (!PageCgroupUsed(pc))
2237 goto unlock_out;
2238
2239 switch (ctype) {
2240 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2241 case MEM_CGROUP_CHARGE_TYPE_DROP:
2242 /* See mem_cgroup_prepare_migration() */
2243 if (page_mapped(page) || PageCgroupMigration(pc))
2244 goto unlock_out;
2245 break;
2246 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2247 if (!PageAnon(page)) { /* Shared memory */
2248 if (page->mapping && !page_is_file_cache(page))
2249 goto unlock_out;
2250 } else if (page_mapped(page)) /* Anon */
2251 goto unlock_out;
2252 break;
2253 default:
2254 break;
2255 }
2256
2257 if (!mem_cgroup_is_root(mem))
2258 __do_uncharge(mem, ctype);
2259 if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2260 mem_cgroup_swap_statistics(mem, true);
2261 mem_cgroup_charge_statistics(mem, pc, false);
2262
2263 ClearPageCgroupUsed(pc);
2264 /*
2265 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2266 * freed from LRU. This is safe because uncharged page is expected not
2267 * to be reused (freed soon). Exception is SwapCache, it's handled by
2268 * special functions.
2269 */
2270
2271 mz = page_cgroup_zoneinfo(pc);
2272 unlock_page_cgroup(pc);
2273
2274 memcg_check_events(mem, page);
2275 /* at swapout, this memcg will be accessed to record to swap */
2276 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2277 css_put(&mem->css);
2278
2279 return mem;
2280
2281unlock_out:
2282 unlock_page_cgroup(pc);
2283 return NULL;
2284}
2285
2286void mem_cgroup_uncharge_page(struct page *page)
2287{
2288 /* early check. */
2289 if (page_mapped(page))
2290 return;
2291 if (page->mapping && !PageAnon(page))
2292 return;
2293 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2294}
2295
2296void mem_cgroup_uncharge_cache_page(struct page *page)
2297{
2298 VM_BUG_ON(page_mapped(page));
2299 VM_BUG_ON(page->mapping);
2300 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2301}
2302
2303/*
2304 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2305 * In that cases, pages are freed continuously and we can expect pages
2306 * are in the same memcg. All these calls itself limits the number of
2307 * pages freed at once, then uncharge_start/end() is called properly.
2308 * This may be called prural(2) times in a context,
2309 */
2310
2311void mem_cgroup_uncharge_start(void)
2312{
2313 current->memcg_batch.do_batch++;
2314 /* We can do nest. */
2315 if (current->memcg_batch.do_batch == 1) {
2316 current->memcg_batch.memcg = NULL;
2317 current->memcg_batch.bytes = 0;
2318 current->memcg_batch.memsw_bytes = 0;
2319 }
2320}
2321
2322void mem_cgroup_uncharge_end(void)
2323{
2324 struct memcg_batch_info *batch = &current->memcg_batch;
2325
2326 if (!batch->do_batch)
2327 return;
2328
2329 batch->do_batch--;
2330 if (batch->do_batch) /* If stacked, do nothing. */
2331 return;
2332
2333 if (!batch->memcg)
2334 return;
2335 /*
2336 * This "batch->memcg" is valid without any css_get/put etc...
2337 * bacause we hide charges behind us.
2338 */
2339 if (batch->bytes)
2340 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2341 if (batch->memsw_bytes)
2342 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2343 memcg_oom_recover(batch->memcg);
2344 /* forget this pointer (for sanity check) */
2345 batch->memcg = NULL;
2346}
2347
2348#ifdef CONFIG_SWAP
2349/*
2350 * called after __delete_from_swap_cache() and drop "page" account.
2351 * memcg information is recorded to swap_cgroup of "ent"
2352 */
2353void
2354mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2355{
2356 struct mem_cgroup *memcg;
2357 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2358
2359 if (!swapout) /* this was a swap cache but the swap is unused ! */
2360 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2361
2362 memcg = __mem_cgroup_uncharge_common(page, ctype);
2363
2364 /* record memcg information */
2365 if (do_swap_account && swapout && memcg) {
2366 swap_cgroup_record(ent, css_id(&memcg->css));
2367 mem_cgroup_get(memcg);
2368 }
2369 if (swapout && memcg)
2370 css_put(&memcg->css);
2371}
2372#endif
2373
2374#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2375/*
2376 * called from swap_entry_free(). remove record in swap_cgroup and
2377 * uncharge "memsw" account.
2378 */
2379void mem_cgroup_uncharge_swap(swp_entry_t ent)
2380{
2381 struct mem_cgroup *memcg;
2382 unsigned short id;
2383
2384 if (!do_swap_account)
2385 return;
2386
2387 id = swap_cgroup_record(ent, 0);
2388 rcu_read_lock();
2389 memcg = mem_cgroup_lookup(id);
2390 if (memcg) {
2391 /*
2392 * We uncharge this because swap is freed.
2393 * This memcg can be obsolete one. We avoid calling css_tryget
2394 */
2395 if (!mem_cgroup_is_root(memcg))
2396 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2397 mem_cgroup_swap_statistics(memcg, false);
2398 mem_cgroup_put(memcg);
2399 }
2400 rcu_read_unlock();
2401}
2402
2403/**
2404 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2405 * @entry: swap entry to be moved
2406 * @from: mem_cgroup which the entry is moved from
2407 * @to: mem_cgroup which the entry is moved to
2408 * @need_fixup: whether we should fixup res_counters and refcounts.
2409 *
2410 * It succeeds only when the swap_cgroup's record for this entry is the same
2411 * as the mem_cgroup's id of @from.
2412 *
2413 * Returns 0 on success, -EINVAL on failure.
2414 *
2415 * The caller must have charged to @to, IOW, called res_counter_charge() about
2416 * both res and memsw, and called css_get().
2417 */
2418static int mem_cgroup_move_swap_account(swp_entry_t entry,
2419 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2420{
2421 unsigned short old_id, new_id;
2422
2423 old_id = css_id(&from->css);
2424 new_id = css_id(&to->css);
2425
2426 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2427 mem_cgroup_swap_statistics(from, false);
2428 mem_cgroup_swap_statistics(to, true);
2429 /*
2430 * This function is only called from task migration context now.
2431 * It postpones res_counter and refcount handling till the end
2432 * of task migration(mem_cgroup_clear_mc()) for performance
2433 * improvement. But we cannot postpone mem_cgroup_get(to)
2434 * because if the process that has been moved to @to does
2435 * swap-in, the refcount of @to might be decreased to 0.
2436 */
2437 mem_cgroup_get(to);
2438 if (need_fixup) {
2439 if (!mem_cgroup_is_root(from))
2440 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2441 mem_cgroup_put(from);
2442 /*
2443 * we charged both to->res and to->memsw, so we should
2444 * uncharge to->res.
2445 */
2446 if (!mem_cgroup_is_root(to))
2447 res_counter_uncharge(&to->res, PAGE_SIZE);
2448 css_put(&to->css);
2449 }
2450 return 0;
2451 }
2452 return -EINVAL;
2453}
2454#else
2455static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2456 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2457{
2458 return -EINVAL;
2459}
2460#endif
2461
2462/*
2463 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2464 * page belongs to.
2465 */
2466int mem_cgroup_prepare_migration(struct page *page,
2467 struct page *newpage, struct mem_cgroup **ptr)
2468{
2469 struct page_cgroup *pc;
2470 struct mem_cgroup *mem = NULL;
2471 enum charge_type ctype;
2472 int ret = 0;
2473
2474 if (mem_cgroup_disabled())
2475 return 0;
2476
2477 pc = lookup_page_cgroup(page);
2478 lock_page_cgroup(pc);
2479 if (PageCgroupUsed(pc)) {
2480 mem = pc->mem_cgroup;
2481 css_get(&mem->css);
2482 /*
2483 * At migrating an anonymous page, its mapcount goes down
2484 * to 0 and uncharge() will be called. But, even if it's fully
2485 * unmapped, migration may fail and this page has to be
2486 * charged again. We set MIGRATION flag here and delay uncharge
2487 * until end_migration() is called
2488 *
2489 * Corner Case Thinking
2490 * A)
2491 * When the old page was mapped as Anon and it's unmap-and-freed
2492 * while migration was ongoing.
2493 * If unmap finds the old page, uncharge() of it will be delayed
2494 * until end_migration(). If unmap finds a new page, it's
2495 * uncharged when it make mapcount to be 1->0. If unmap code
2496 * finds swap_migration_entry, the new page will not be mapped
2497 * and end_migration() will find it(mapcount==0).
2498 *
2499 * B)
2500 * When the old page was mapped but migraion fails, the kernel
2501 * remaps it. A charge for it is kept by MIGRATION flag even
2502 * if mapcount goes down to 0. We can do remap successfully
2503 * without charging it again.
2504 *
2505 * C)
2506 * The "old" page is under lock_page() until the end of
2507 * migration, so, the old page itself will not be swapped-out.
2508 * If the new page is swapped out before end_migraton, our
2509 * hook to usual swap-out path will catch the event.
2510 */
2511 if (PageAnon(page))
2512 SetPageCgroupMigration(pc);
2513 }
2514 unlock_page_cgroup(pc);
2515 /*
2516 * If the page is not charged at this point,
2517 * we return here.
2518 */
2519 if (!mem)
2520 return 0;
2521
2522 *ptr = mem;
2523 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
2524 css_put(&mem->css);/* drop extra refcnt */
2525 if (ret || *ptr == NULL) {
2526 if (PageAnon(page)) {
2527 lock_page_cgroup(pc);
2528 ClearPageCgroupMigration(pc);
2529 unlock_page_cgroup(pc);
2530 /*
2531 * The old page may be fully unmapped while we kept it.
2532 */
2533 mem_cgroup_uncharge_page(page);
2534 }
2535 return -ENOMEM;
2536 }
2537 /*
2538 * We charge new page before it's used/mapped. So, even if unlock_page()
2539 * is called before end_migration, we can catch all events on this new
2540 * page. In the case new page is migrated but not remapped, new page's
2541 * mapcount will be finally 0 and we call uncharge in end_migration().
2542 */
2543 pc = lookup_page_cgroup(newpage);
2544 if (PageAnon(page))
2545 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2546 else if (page_is_file_cache(page))
2547 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2548 else
2549 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2550 __mem_cgroup_commit_charge(mem, pc, ctype);
2551 return ret;
2552}
2553
2554/* remove redundant charge if migration failed*/
2555void mem_cgroup_end_migration(struct mem_cgroup *mem,
2556 struct page *oldpage, struct page *newpage)
2557{
2558 struct page *used, *unused;
2559 struct page_cgroup *pc;
2560
2561 if (!mem)
2562 return;
2563 /* blocks rmdir() */
2564 cgroup_exclude_rmdir(&mem->css);
2565 /* at migration success, oldpage->mapping is NULL. */
2566 if (oldpage->mapping) {
2567 used = oldpage;
2568 unused = newpage;
2569 } else {
2570 used = newpage;
2571 unused = oldpage;
2572 }
2573 /*
2574 * We disallowed uncharge of pages under migration because mapcount
2575 * of the page goes down to zero, temporarly.
2576 * Clear the flag and check the page should be charged.
2577 */
2578 pc = lookup_page_cgroup(oldpage);
2579 lock_page_cgroup(pc);
2580 ClearPageCgroupMigration(pc);
2581 unlock_page_cgroup(pc);
2582
2583 if (unused != oldpage)
2584 pc = lookup_page_cgroup(unused);
2585 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2586
2587 pc = lookup_page_cgroup(used);
2588 /*
2589 * If a page is a file cache, radix-tree replacement is very atomic
2590 * and we can skip this check. When it was an Anon page, its mapcount
2591 * goes down to 0. But because we added MIGRATION flage, it's not
2592 * uncharged yet. There are several case but page->mapcount check
2593 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2594 * check. (see prepare_charge() also)
2595 */
2596 if (PageAnon(used))
2597 mem_cgroup_uncharge_page(used);
2598 /*
2599 * At migration, we may charge account against cgroup which has no
2600 * tasks.
2601 * So, rmdir()->pre_destroy() can be called while we do this charge.
2602 * In that case, we need to call pre_destroy() again. check it here.
2603 */
2604 cgroup_release_and_wakeup_rmdir(&mem->css);
2605}
2606
2607/*
2608 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2609 * Calling hierarchical_reclaim is not enough because we should update
2610 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2611 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2612 * not from the memcg which this page would be charged to.
2613 * try_charge_swapin does all of these works properly.
2614 */
2615int mem_cgroup_shmem_charge_fallback(struct page *page,
2616 struct mm_struct *mm,
2617 gfp_t gfp_mask)
2618{
2619 struct mem_cgroup *mem = NULL;
2620 int ret;
2621
2622 if (mem_cgroup_disabled())
2623 return 0;
2624
2625 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2626 if (!ret)
2627 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2628
2629 return ret;
2630}
2631
2632static DEFINE_MUTEX(set_limit_mutex);
2633
2634static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2635 unsigned long long val)
2636{
2637 int retry_count;
2638 u64 memswlimit, memlimit;
2639 int ret = 0;
2640 int children = mem_cgroup_count_children(memcg);
2641 u64 curusage, oldusage;
2642 int enlarge;
2643
2644 /*
2645 * For keeping hierarchical_reclaim simple, how long we should retry
2646 * is depends on callers. We set our retry-count to be function
2647 * of # of children which we should visit in this loop.
2648 */
2649 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2650
2651 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2652
2653 enlarge = 0;
2654 while (retry_count) {
2655 if (signal_pending(current)) {
2656 ret = -EINTR;
2657 break;
2658 }
2659 /*
2660 * Rather than hide all in some function, I do this in
2661 * open coded manner. You see what this really does.
2662 * We have to guarantee mem->res.limit < mem->memsw.limit.
2663 */
2664 mutex_lock(&set_limit_mutex);
2665 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2666 if (memswlimit < val) {
2667 ret = -EINVAL;
2668 mutex_unlock(&set_limit_mutex);
2669 break;
2670 }
2671
2672 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2673 if (memlimit < val)
2674 enlarge = 1;
2675
2676 ret = res_counter_set_limit(&memcg->res, val);
2677 if (!ret) {
2678 if (memswlimit == val)
2679 memcg->memsw_is_minimum = true;
2680 else
2681 memcg->memsw_is_minimum = false;
2682 }
2683 mutex_unlock(&set_limit_mutex);
2684
2685 if (!ret)
2686 break;
2687
2688 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2689 MEM_CGROUP_RECLAIM_SHRINK);
2690 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2691 /* Usage is reduced ? */
2692 if (curusage >= oldusage)
2693 retry_count--;
2694 else
2695 oldusage = curusage;
2696 }
2697 if (!ret && enlarge)
2698 memcg_oom_recover(memcg);
2699
2700 return ret;
2701}
2702
2703static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2704 unsigned long long val)
2705{
2706 int retry_count;
2707 u64 memlimit, memswlimit, oldusage, curusage;
2708 int children = mem_cgroup_count_children(memcg);
2709 int ret = -EBUSY;
2710 int enlarge = 0;
2711
2712 /* see mem_cgroup_resize_res_limit */
2713 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2714 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2715 while (retry_count) {
2716 if (signal_pending(current)) {
2717 ret = -EINTR;
2718 break;
2719 }
2720 /*
2721 * Rather than hide all in some function, I do this in
2722 * open coded manner. You see what this really does.
2723 * We have to guarantee mem->res.limit < mem->memsw.limit.
2724 */
2725 mutex_lock(&set_limit_mutex);
2726 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2727 if (memlimit > val) {
2728 ret = -EINVAL;
2729 mutex_unlock(&set_limit_mutex);
2730 break;
2731 }
2732 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2733 if (memswlimit < val)
2734 enlarge = 1;
2735 ret = res_counter_set_limit(&memcg->memsw, val);
2736 if (!ret) {
2737 if (memlimit == val)
2738 memcg->memsw_is_minimum = true;
2739 else
2740 memcg->memsw_is_minimum = false;
2741 }
2742 mutex_unlock(&set_limit_mutex);
2743
2744 if (!ret)
2745 break;
2746
2747 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2748 MEM_CGROUP_RECLAIM_NOSWAP |
2749 MEM_CGROUP_RECLAIM_SHRINK);
2750 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2751 /* Usage is reduced ? */
2752 if (curusage >= oldusage)
2753 retry_count--;
2754 else
2755 oldusage = curusage;
2756 }
2757 if (!ret && enlarge)
2758 memcg_oom_recover(memcg);
2759 return ret;
2760}
2761
2762unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2763 gfp_t gfp_mask, int nid,
2764 int zid)
2765{
2766 unsigned long nr_reclaimed = 0;
2767 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2768 unsigned long reclaimed;
2769 int loop = 0;
2770 struct mem_cgroup_tree_per_zone *mctz;
2771 unsigned long long excess;
2772
2773 if (order > 0)
2774 return 0;
2775
2776 mctz = soft_limit_tree_node_zone(nid, zid);
2777 /*
2778 * This loop can run a while, specially if mem_cgroup's continuously
2779 * keep exceeding their soft limit and putting the system under
2780 * pressure
2781 */
2782 do {
2783 if (next_mz)
2784 mz = next_mz;
2785 else
2786 mz = mem_cgroup_largest_soft_limit_node(mctz);
2787 if (!mz)
2788 break;
2789
2790 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2791 gfp_mask,
2792 MEM_CGROUP_RECLAIM_SOFT);
2793 nr_reclaimed += reclaimed;
2794 spin_lock(&mctz->lock);
2795
2796 /*
2797 * If we failed to reclaim anything from this memory cgroup
2798 * it is time to move on to the next cgroup
2799 */
2800 next_mz = NULL;
2801 if (!reclaimed) {
2802 do {
2803 /*
2804 * Loop until we find yet another one.
2805 *
2806 * By the time we get the soft_limit lock
2807 * again, someone might have aded the
2808 * group back on the RB tree. Iterate to
2809 * make sure we get a different mem.
2810 * mem_cgroup_largest_soft_limit_node returns
2811 * NULL if no other cgroup is present on
2812 * the tree
2813 */
2814 next_mz =
2815 __mem_cgroup_largest_soft_limit_node(mctz);
2816 if (next_mz == mz) {
2817 css_put(&next_mz->mem->css);
2818 next_mz = NULL;
2819 } else /* next_mz == NULL or other memcg */
2820 break;
2821 } while (1);
2822 }
2823 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2824 excess = res_counter_soft_limit_excess(&mz->mem->res);
2825 /*
2826 * One school of thought says that we should not add
2827 * back the node to the tree if reclaim returns 0.
2828 * But our reclaim could return 0, simply because due
2829 * to priority we are exposing a smaller subset of
2830 * memory to reclaim from. Consider this as a longer
2831 * term TODO.
2832 */
2833 /* If excess == 0, no tree ops */
2834 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2835 spin_unlock(&mctz->lock);
2836 css_put(&mz->mem->css);
2837 loop++;
2838 /*
2839 * Could not reclaim anything and there are no more
2840 * mem cgroups to try or we seem to be looping without
2841 * reclaiming anything.
2842 */
2843 if (!nr_reclaimed &&
2844 (next_mz == NULL ||
2845 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2846 break;
2847 } while (!nr_reclaimed);
2848 if (next_mz)
2849 css_put(&next_mz->mem->css);
2850 return nr_reclaimed;
2851}
2852
2853/*
2854 * This routine traverse page_cgroup in given list and drop them all.
2855 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2856 */
2857static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
2858 int node, int zid, enum lru_list lru)
2859{
2860 struct zone *zone;
2861 struct mem_cgroup_per_zone *mz;
2862 struct page_cgroup *pc, *busy;
2863 unsigned long flags, loop;
2864 struct list_head *list;
2865 int ret = 0;
2866
2867 zone = &NODE_DATA(node)->node_zones[zid];
2868 mz = mem_cgroup_zoneinfo(mem, node, zid);
2869 list = &mz->lists[lru];
2870
2871 loop = MEM_CGROUP_ZSTAT(mz, lru);
2872 /* give some margin against EBUSY etc...*/
2873 loop += 256;
2874 busy = NULL;
2875 while (loop--) {
2876 ret = 0;
2877 spin_lock_irqsave(&zone->lru_lock, flags);
2878 if (list_empty(list)) {
2879 spin_unlock_irqrestore(&zone->lru_lock, flags);
2880 break;
2881 }
2882 pc = list_entry(list->prev, struct page_cgroup, lru);
2883 if (busy == pc) {
2884 list_move(&pc->lru, list);
2885 busy = NULL;
2886 spin_unlock_irqrestore(&zone->lru_lock, flags);
2887 continue;
2888 }
2889 spin_unlock_irqrestore(&zone->lru_lock, flags);
2890
2891 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2892 if (ret == -ENOMEM)
2893 break;
2894
2895 if (ret == -EBUSY || ret == -EINVAL) {
2896 /* found lock contention or "pc" is obsolete. */
2897 busy = pc;
2898 cond_resched();
2899 } else
2900 busy = NULL;
2901 }
2902
2903 if (!ret && !list_empty(list))
2904 return -EBUSY;
2905 return ret;
2906}
2907
2908/*
2909 * make mem_cgroup's charge to be 0 if there is no task.
2910 * This enables deleting this mem_cgroup.
2911 */
2912static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2913{
2914 int ret;
2915 int node, zid, shrink;
2916 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2917 struct cgroup *cgrp = mem->css.cgroup;
2918
2919 css_get(&mem->css);
2920
2921 shrink = 0;
2922 /* should free all ? */
2923 if (free_all)
2924 goto try_to_free;
2925move_account:
2926 do {
2927 ret = -EBUSY;
2928 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
2929 goto out;
2930 ret = -EINTR;
2931 if (signal_pending(current))
2932 goto out;
2933 /* This is for making all *used* pages to be on LRU. */
2934 lru_add_drain_all();
2935 drain_all_stock_sync();
2936 ret = 0;
2937 for_each_node_state(node, N_HIGH_MEMORY) {
2938 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2939 enum lru_list l;
2940 for_each_lru(l) {
2941 ret = mem_cgroup_force_empty_list(mem,
2942 node, zid, l);
2943 if (ret)
2944 break;
2945 }
2946 }
2947 if (ret)
2948 break;
2949 }
2950 memcg_oom_recover(mem);
2951 /* it seems parent cgroup doesn't have enough mem */
2952 if (ret == -ENOMEM)
2953 goto try_to_free;
2954 cond_resched();
2955 /* "ret" should also be checked to ensure all lists are empty. */
2956 } while (mem->res.usage > 0 || ret);
2957out:
2958 css_put(&mem->css);
2959 return ret;
2960
2961try_to_free:
2962 /* returns EBUSY if there is a task or if we come here twice. */
2963 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2964 ret = -EBUSY;
2965 goto out;
2966 }
2967 /* we call try-to-free pages for make this cgroup empty */
2968 lru_add_drain_all();
2969 /* try to free all pages in this cgroup */
2970 shrink = 1;
2971 while (nr_retries && mem->res.usage > 0) {
2972 int progress;
2973
2974 if (signal_pending(current)) {
2975 ret = -EINTR;
2976 goto out;
2977 }
2978 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
2979 false, get_swappiness(mem));
2980 if (!progress) {
2981 nr_retries--;
2982 /* maybe some writeback is necessary */
2983 congestion_wait(BLK_RW_ASYNC, HZ/10);
2984 }
2985
2986 }
2987 lru_add_drain();
2988 /* try move_account...there may be some *locked* pages. */
2989 goto move_account;
2990}
2991
2992int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
2993{
2994 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
2995}
2996
2997
2998static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
2999{
3000 return mem_cgroup_from_cont(cont)->use_hierarchy;
3001}
3002
3003static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3004 u64 val)
3005{
3006 int retval = 0;
3007 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3008 struct cgroup *parent = cont->parent;
3009 struct mem_cgroup *parent_mem = NULL;
3010
3011 if (parent)
3012 parent_mem = mem_cgroup_from_cont(parent);
3013
3014 cgroup_lock();
3015 /*
3016 * If parent's use_hierarchy is set, we can't make any modifications
3017 * in the child subtrees. If it is unset, then the change can
3018 * occur, provided the current cgroup has no children.
3019 *
3020 * For the root cgroup, parent_mem is NULL, we allow value to be
3021 * set if there are no children.
3022 */
3023 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3024 (val == 1 || val == 0)) {
3025 if (list_empty(&cont->children))
3026 mem->use_hierarchy = val;
3027 else
3028 retval = -EBUSY;
3029 } else
3030 retval = -EINVAL;
3031 cgroup_unlock();
3032
3033 return retval;
3034}
3035
3036struct mem_cgroup_idx_data {
3037 s64 val;
3038 enum mem_cgroup_stat_index idx;
3039};
3040
3041static int
3042mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
3043{
3044 struct mem_cgroup_idx_data *d = data;
3045 d->val += mem_cgroup_read_stat(mem, d->idx);
3046 return 0;
3047}
3048
3049static void
3050mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3051 enum mem_cgroup_stat_index idx, s64 *val)
3052{
3053 struct mem_cgroup_idx_data d;
3054 d.idx = idx;
3055 d.val = 0;
3056 mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
3057 *val = d.val;
3058}
3059
3060static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3061{
3062 u64 idx_val, val;
3063
3064 if (!mem_cgroup_is_root(mem)) {
3065 if (!swap)
3066 return res_counter_read_u64(&mem->res, RES_USAGE);
3067 else
3068 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3069 }
3070
3071 mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
3072 val = idx_val;
3073 mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
3074 val += idx_val;
3075
3076 if (swap) {
3077 mem_cgroup_get_recursive_idx_stat(mem,
3078 MEM_CGROUP_STAT_SWAPOUT, &idx_val);
3079 val += idx_val;
3080 }
3081
3082 return val << PAGE_SHIFT;
3083}
3084
3085static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3086{
3087 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3088 u64 val;
3089 int type, name;
3090
3091 type = MEMFILE_TYPE(cft->private);
3092 name = MEMFILE_ATTR(cft->private);
3093 switch (type) {
3094 case _MEM:
3095 if (name == RES_USAGE)
3096 val = mem_cgroup_usage(mem, false);
3097 else
3098 val = res_counter_read_u64(&mem->res, name);
3099 break;
3100 case _MEMSWAP:
3101 if (name == RES_USAGE)
3102 val = mem_cgroup_usage(mem, true);
3103 else
3104 val = res_counter_read_u64(&mem->memsw, name);
3105 break;
3106 default:
3107 BUG();
3108 break;
3109 }
3110 return val;
3111}
3112/*
3113 * The user of this function is...
3114 * RES_LIMIT.
3115 */
3116static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3117 const char *buffer)
3118{
3119 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3120 int type, name;
3121 unsigned long long val;
3122 int ret;
3123
3124 type = MEMFILE_TYPE(cft->private);
3125 name = MEMFILE_ATTR(cft->private);
3126 switch (name) {
3127 case RES_LIMIT:
3128 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3129 ret = -EINVAL;
3130 break;
3131 }
3132 /* This function does all necessary parse...reuse it */
3133 ret = res_counter_memparse_write_strategy(buffer, &val);
3134 if (ret)
3135 break;
3136 if (type == _MEM)
3137 ret = mem_cgroup_resize_limit(memcg, val);
3138 else
3139 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3140 break;
3141 case RES_SOFT_LIMIT:
3142 ret = res_counter_memparse_write_strategy(buffer, &val);
3143 if (ret)
3144 break;
3145 /*
3146 * For memsw, soft limits are hard to implement in terms
3147 * of semantics, for now, we support soft limits for
3148 * control without swap
3149 */
3150 if (type == _MEM)
3151 ret = res_counter_set_soft_limit(&memcg->res, val);
3152 else
3153 ret = -EINVAL;
3154 break;
3155 default:
3156 ret = -EINVAL; /* should be BUG() ? */
3157 break;
3158 }
3159 return ret;
3160}
3161
3162static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3163 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3164{
3165 struct cgroup *cgroup;
3166 unsigned long long min_limit, min_memsw_limit, tmp;
3167
3168 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3169 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3170 cgroup = memcg->css.cgroup;
3171 if (!memcg->use_hierarchy)
3172 goto out;
3173
3174 while (cgroup->parent) {
3175 cgroup = cgroup->parent;
3176 memcg = mem_cgroup_from_cont(cgroup);
3177 if (!memcg->use_hierarchy)
3178 break;
3179 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3180 min_limit = min(min_limit, tmp);
3181 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3182 min_memsw_limit = min(min_memsw_limit, tmp);
3183 }
3184out:
3185 *mem_limit = min_limit;
3186 *memsw_limit = min_memsw_limit;
3187 return;
3188}
3189
3190static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3191{
3192 struct mem_cgroup *mem;
3193 int type, name;
3194
3195 mem = mem_cgroup_from_cont(cont);
3196 type = MEMFILE_TYPE(event);
3197 name = MEMFILE_ATTR(event);
3198 switch (name) {
3199 case RES_MAX_USAGE:
3200 if (type == _MEM)
3201 res_counter_reset_max(&mem->res);
3202 else
3203 res_counter_reset_max(&mem->memsw);
3204 break;
3205 case RES_FAILCNT:
3206 if (type == _MEM)
3207 res_counter_reset_failcnt(&mem->res);
3208 else
3209 res_counter_reset_failcnt(&mem->memsw);
3210 break;
3211 }
3212
3213 return 0;
3214}
3215
3216static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3217 struct cftype *cft)
3218{
3219 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3220}
3221
3222#ifdef CONFIG_MMU
3223static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3224 struct cftype *cft, u64 val)
3225{
3226 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3227
3228 if (val >= (1 << NR_MOVE_TYPE))
3229 return -EINVAL;
3230 /*
3231 * We check this value several times in both in can_attach() and
3232 * attach(), so we need cgroup lock to prevent this value from being
3233 * inconsistent.
3234 */
3235 cgroup_lock();
3236 mem->move_charge_at_immigrate = val;
3237 cgroup_unlock();
3238
3239 return 0;
3240}
3241#else
3242static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3243 struct cftype *cft, u64 val)
3244{
3245 return -ENOSYS;
3246}
3247#endif
3248
3249
3250/* For read statistics */
3251enum {
3252 MCS_CACHE,
3253 MCS_RSS,
3254 MCS_FILE_MAPPED,
3255 MCS_PGPGIN,
3256 MCS_PGPGOUT,
3257 MCS_SWAP,
3258 MCS_INACTIVE_ANON,
3259 MCS_ACTIVE_ANON,
3260 MCS_INACTIVE_FILE,
3261 MCS_ACTIVE_FILE,
3262 MCS_UNEVICTABLE,
3263 NR_MCS_STAT,
3264};
3265
3266struct mcs_total_stat {
3267 s64 stat[NR_MCS_STAT];
3268};
3269
3270struct {
3271 char *local_name;
3272 char *total_name;
3273} memcg_stat_strings[NR_MCS_STAT] = {
3274 {"cache", "total_cache"},
3275 {"rss", "total_rss"},
3276 {"mapped_file", "total_mapped_file"},
3277 {"pgpgin", "total_pgpgin"},
3278 {"pgpgout", "total_pgpgout"},
3279 {"swap", "total_swap"},
3280 {"inactive_anon", "total_inactive_anon"},
3281 {"active_anon", "total_active_anon"},
3282 {"inactive_file", "total_inactive_file"},
3283 {"active_file", "total_active_file"},
3284 {"unevictable", "total_unevictable"}
3285};
3286
3287
3288static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
3289{
3290 struct mcs_total_stat *s = data;
3291 s64 val;
3292
3293 /* per cpu stat */
3294 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3295 s->stat[MCS_CACHE] += val * PAGE_SIZE;
3296 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3297 s->stat[MCS_RSS] += val * PAGE_SIZE;
3298 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3299 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3300 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3301 s->stat[MCS_PGPGIN] += val;
3302 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3303 s->stat[MCS_PGPGOUT] += val;
3304 if (do_swap_account) {
3305 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3306 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3307 }
3308
3309 /* per zone stat */
3310 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3311 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3312 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3313 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3314 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3315 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3316 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3317 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3318 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3319 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3320 return 0;
3321}
3322
3323static void
3324mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3325{
3326 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
3327}
3328
3329static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3330 struct cgroup_map_cb *cb)
3331{
3332 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3333 struct mcs_total_stat mystat;
3334 int i;
3335
3336 memset(&mystat, 0, sizeof(mystat));
3337 mem_cgroup_get_local_stat(mem_cont, &mystat);
3338
3339 for (i = 0; i < NR_MCS_STAT; i++) {
3340 if (i == MCS_SWAP && !do_swap_account)
3341 continue;
3342 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3343 }
3344
3345 /* Hierarchical information */
3346 {
3347 unsigned long long limit, memsw_limit;
3348 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3349 cb->fill(cb, "hierarchical_memory_limit", limit);
3350 if (do_swap_account)
3351 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3352 }
3353
3354 memset(&mystat, 0, sizeof(mystat));
3355 mem_cgroup_get_total_stat(mem_cont, &mystat);
3356 for (i = 0; i < NR_MCS_STAT; i++) {
3357 if (i == MCS_SWAP && !do_swap_account)
3358 continue;
3359 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3360 }
3361
3362#ifdef CONFIG_DEBUG_VM
3363 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3364
3365 {
3366 int nid, zid;
3367 struct mem_cgroup_per_zone *mz;
3368 unsigned long recent_rotated[2] = {0, 0};
3369 unsigned long recent_scanned[2] = {0, 0};
3370
3371 for_each_online_node(nid)
3372 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3373 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3374
3375 recent_rotated[0] +=
3376 mz->reclaim_stat.recent_rotated[0];
3377 recent_rotated[1] +=
3378 mz->reclaim_stat.recent_rotated[1];
3379 recent_scanned[0] +=
3380 mz->reclaim_stat.recent_scanned[0];
3381 recent_scanned[1] +=
3382 mz->reclaim_stat.recent_scanned[1];
3383 }
3384 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3385 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3386 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3387 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3388 }
3389#endif
3390
3391 return 0;
3392}
3393
3394static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3395{
3396 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3397
3398 return get_swappiness(memcg);
3399}
3400
3401static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3402 u64 val)
3403{
3404 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3405 struct mem_cgroup *parent;
3406
3407 if (val > 100)
3408 return -EINVAL;
3409
3410 if (cgrp->parent == NULL)
3411 return -EINVAL;
3412
3413 parent = mem_cgroup_from_cont(cgrp->parent);
3414
3415 cgroup_lock();
3416
3417 /* If under hierarchy, only empty-root can set this value */
3418 if ((parent->use_hierarchy) ||
3419 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3420 cgroup_unlock();
3421 return -EINVAL;
3422 }
3423
3424 spin_lock(&memcg->reclaim_param_lock);
3425 memcg->swappiness = val;
3426 spin_unlock(&memcg->reclaim_param_lock);
3427
3428 cgroup_unlock();
3429
3430 return 0;
3431}
3432
3433static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3434{
3435 struct mem_cgroup_threshold_ary *t;
3436 u64 usage;
3437 int i;
3438
3439 rcu_read_lock();
3440 if (!swap)
3441 t = rcu_dereference(memcg->thresholds.primary);
3442 else
3443 t = rcu_dereference(memcg->memsw_thresholds.primary);
3444
3445 if (!t)
3446 goto unlock;
3447
3448 usage = mem_cgroup_usage(memcg, swap);
3449
3450 /*
3451 * current_threshold points to threshold just below usage.
3452 * If it's not true, a threshold was crossed after last
3453 * call of __mem_cgroup_threshold().
3454 */
3455 i = t->current_threshold;
3456
3457 /*
3458 * Iterate backward over array of thresholds starting from
3459 * current_threshold and check if a threshold is crossed.
3460 * If none of thresholds below usage is crossed, we read
3461 * only one element of the array here.
3462 */
3463 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3464 eventfd_signal(t->entries[i].eventfd, 1);
3465
3466 /* i = current_threshold + 1 */
3467 i++;
3468
3469 /*
3470 * Iterate forward over array of thresholds starting from
3471 * current_threshold+1 and check if a threshold is crossed.
3472 * If none of thresholds above usage is crossed, we read
3473 * only one element of the array here.
3474 */
3475 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3476 eventfd_signal(t->entries[i].eventfd, 1);
3477
3478 /* Update current_threshold */
3479 t->current_threshold = i - 1;
3480unlock:
3481 rcu_read_unlock();
3482}
3483
3484static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3485{
3486 __mem_cgroup_threshold(memcg, false);
3487 if (do_swap_account)
3488 __mem_cgroup_threshold(memcg, true);
3489}
3490
3491static int compare_thresholds(const void *a, const void *b)
3492{
3493 const struct mem_cgroup_threshold *_a = a;
3494 const struct mem_cgroup_threshold *_b = b;
3495
3496 return _a->threshold - _b->threshold;
3497}
3498
3499static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem, void *data)
3500{
3501 struct mem_cgroup_eventfd_list *ev;
3502
3503 list_for_each_entry(ev, &mem->oom_notify, list)
3504 eventfd_signal(ev->eventfd, 1);
3505 return 0;
3506}
3507
3508static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3509{
3510 mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_notify_cb);
3511}
3512
3513static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3514 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3515{
3516 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3517 struct mem_cgroup_thresholds *thresholds;
3518 struct mem_cgroup_threshold_ary *new;
3519 int type = MEMFILE_TYPE(cft->private);
3520 u64 threshold, usage;
3521 int i, size, ret;
3522
3523 ret = res_counter_memparse_write_strategy(args, &threshold);
3524 if (ret)
3525 return ret;
3526
3527 mutex_lock(&memcg->thresholds_lock);
3528
3529 if (type == _MEM)
3530 thresholds = &memcg->thresholds;
3531 else if (type == _MEMSWAP)
3532 thresholds = &memcg->memsw_thresholds;
3533 else
3534 BUG();
3535
3536 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3537
3538 /* Check if a threshold crossed before adding a new one */
3539 if (thresholds->primary)
3540 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3541
3542 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3543
3544 /* Allocate memory for new array of thresholds */
3545 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3546 GFP_KERNEL);
3547 if (!new) {
3548 ret = -ENOMEM;
3549 goto unlock;
3550 }
3551 new->size = size;
3552
3553 /* Copy thresholds (if any) to new array */
3554 if (thresholds->primary) {
3555 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3556 sizeof(struct mem_cgroup_threshold));
3557 }
3558
3559 /* Add new threshold */
3560 new->entries[size - 1].eventfd = eventfd;
3561 new->entries[size - 1].threshold = threshold;
3562
3563 /* Sort thresholds. Registering of new threshold isn't time-critical */
3564 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3565 compare_thresholds, NULL);
3566
3567 /* Find current threshold */
3568 new->current_threshold = -1;
3569 for (i = 0; i < size; i++) {
3570 if (new->entries[i].threshold < usage) {
3571 /*
3572 * new->current_threshold will not be used until
3573 * rcu_assign_pointer(), so it's safe to increment
3574 * it here.
3575 */
3576 ++new->current_threshold;
3577 }
3578 }
3579
3580 /* Free old spare buffer and save old primary buffer as spare */
3581 kfree(thresholds->spare);
3582 thresholds->spare = thresholds->primary;
3583
3584 rcu_assign_pointer(thresholds->primary, new);
3585
3586 /* To be sure that nobody uses thresholds */
3587 synchronize_rcu();
3588
3589unlock:
3590 mutex_unlock(&memcg->thresholds_lock);
3591
3592 return ret;
3593}
3594
3595static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
3596 struct cftype *cft, struct eventfd_ctx *eventfd)
3597{
3598 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3599 struct mem_cgroup_thresholds *thresholds;
3600 struct mem_cgroup_threshold_ary *new;
3601 int type = MEMFILE_TYPE(cft->private);
3602 u64 usage;
3603 int i, j, size;
3604
3605 mutex_lock(&memcg->thresholds_lock);
3606 if (type == _MEM)
3607 thresholds = &memcg->thresholds;
3608 else if (type == _MEMSWAP)
3609 thresholds = &memcg->memsw_thresholds;
3610 else
3611 BUG();
3612
3613 /*
3614 * Something went wrong if we trying to unregister a threshold
3615 * if we don't have thresholds
3616 */
3617 BUG_ON(!thresholds);
3618
3619 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3620
3621 /* Check if a threshold crossed before removing */
3622 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3623
3624 /* Calculate new number of threshold */
3625 size = 0;
3626 for (i = 0; i < thresholds->primary->size; i++) {
3627 if (thresholds->primary->entries[i].eventfd != eventfd)
3628 size++;
3629 }
3630
3631 new = thresholds->spare;
3632
3633 /* Set thresholds array to NULL if we don't have thresholds */
3634 if (!size) {
3635 kfree(new);
3636 new = NULL;
3637 goto swap_buffers;
3638 }
3639
3640 new->size = size;
3641
3642 /* Copy thresholds and find current threshold */
3643 new->current_threshold = -1;
3644 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3645 if (thresholds->primary->entries[i].eventfd == eventfd)
3646 continue;
3647
3648 new->entries[j] = thresholds->primary->entries[i];
3649 if (new->entries[j].threshold < usage) {
3650 /*
3651 * new->current_threshold will not be used
3652 * until rcu_assign_pointer(), so it's safe to increment
3653 * it here.
3654 */
3655 ++new->current_threshold;
3656 }
3657 j++;
3658 }
3659
3660swap_buffers:
3661 /* Swap primary and spare array */
3662 thresholds->spare = thresholds->primary;
3663 rcu_assign_pointer(thresholds->primary, new);
3664
3665 /* To be sure that nobody uses thresholds */
3666 synchronize_rcu();
3667
3668 mutex_unlock(&memcg->thresholds_lock);
3669}
3670
3671static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
3672 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3673{
3674 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3675 struct mem_cgroup_eventfd_list *event;
3676 int type = MEMFILE_TYPE(cft->private);
3677
3678 BUG_ON(type != _OOM_TYPE);
3679 event = kmalloc(sizeof(*event), GFP_KERNEL);
3680 if (!event)
3681 return -ENOMEM;
3682
3683 mutex_lock(&memcg_oom_mutex);
3684
3685 event->eventfd = eventfd;
3686 list_add(&event->list, &memcg->oom_notify);
3687
3688 /* already in OOM ? */
3689 if (atomic_read(&memcg->oom_lock))
3690 eventfd_signal(eventfd, 1);
3691 mutex_unlock(&memcg_oom_mutex);
3692
3693 return 0;
3694}
3695
3696static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
3697 struct cftype *cft, struct eventfd_ctx *eventfd)
3698{
3699 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3700 struct mem_cgroup_eventfd_list *ev, *tmp;
3701 int type = MEMFILE_TYPE(cft->private);
3702
3703 BUG_ON(type != _OOM_TYPE);
3704
3705 mutex_lock(&memcg_oom_mutex);
3706
3707 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
3708 if (ev->eventfd == eventfd) {
3709 list_del(&ev->list);
3710 kfree(ev);
3711 }
3712 }
3713
3714 mutex_unlock(&memcg_oom_mutex);
3715}
3716
3717static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
3718 struct cftype *cft, struct cgroup_map_cb *cb)
3719{
3720 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3721
3722 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
3723
3724 if (atomic_read(&mem->oom_lock))
3725 cb->fill(cb, "under_oom", 1);
3726 else
3727 cb->fill(cb, "under_oom", 0);
3728 return 0;
3729}
3730
3731/*
3732 */
3733static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
3734 struct cftype *cft, u64 val)
3735{
3736 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3737 struct mem_cgroup *parent;
3738
3739 /* cannot set to root cgroup and only 0 and 1 are allowed */
3740 if (!cgrp->parent || !((val == 0) || (val == 1)))
3741 return -EINVAL;
3742
3743 parent = mem_cgroup_from_cont(cgrp->parent);
3744
3745 cgroup_lock();
3746 /* oom-kill-disable is a flag for subhierarchy. */
3747 if ((parent->use_hierarchy) ||
3748 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
3749 cgroup_unlock();
3750 return -EINVAL;
3751 }
3752 mem->oom_kill_disable = val;
3753 if (!val)
3754 memcg_oom_recover(mem);
3755 cgroup_unlock();
3756 return 0;
3757}
3758
3759static struct cftype mem_cgroup_files[] = {
3760 {
3761 .name = "usage_in_bytes",
3762 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3763 .read_u64 = mem_cgroup_read,
3764 .register_event = mem_cgroup_usage_register_event,
3765 .unregister_event = mem_cgroup_usage_unregister_event,
3766 },
3767 {
3768 .name = "max_usage_in_bytes",
3769 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3770 .trigger = mem_cgroup_reset,
3771 .read_u64 = mem_cgroup_read,
3772 },
3773 {
3774 .name = "limit_in_bytes",
3775 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3776 .write_string = mem_cgroup_write,
3777 .read_u64 = mem_cgroup_read,
3778 },
3779 {
3780 .name = "soft_limit_in_bytes",
3781 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3782 .write_string = mem_cgroup_write,
3783 .read_u64 = mem_cgroup_read,
3784 },
3785 {
3786 .name = "failcnt",
3787 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3788 .trigger = mem_cgroup_reset,
3789 .read_u64 = mem_cgroup_read,
3790 },
3791 {
3792 .name = "stat",
3793 .read_map = mem_control_stat_show,
3794 },
3795 {
3796 .name = "force_empty",
3797 .trigger = mem_cgroup_force_empty_write,
3798 },
3799 {
3800 .name = "use_hierarchy",
3801 .write_u64 = mem_cgroup_hierarchy_write,
3802 .read_u64 = mem_cgroup_hierarchy_read,
3803 },
3804 {
3805 .name = "swappiness",
3806 .read_u64 = mem_cgroup_swappiness_read,
3807 .write_u64 = mem_cgroup_swappiness_write,
3808 },
3809 {
3810 .name = "move_charge_at_immigrate",
3811 .read_u64 = mem_cgroup_move_charge_read,
3812 .write_u64 = mem_cgroup_move_charge_write,
3813 },
3814 {
3815 .name = "oom_control",
3816 .read_map = mem_cgroup_oom_control_read,
3817 .write_u64 = mem_cgroup_oom_control_write,
3818 .register_event = mem_cgroup_oom_register_event,
3819 .unregister_event = mem_cgroup_oom_unregister_event,
3820 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3821 },
3822};
3823
3824#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3825static struct cftype memsw_cgroup_files[] = {
3826 {
3827 .name = "memsw.usage_in_bytes",
3828 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
3829 .read_u64 = mem_cgroup_read,
3830 .register_event = mem_cgroup_usage_register_event,
3831 .unregister_event = mem_cgroup_usage_unregister_event,
3832 },
3833 {
3834 .name = "memsw.max_usage_in_bytes",
3835 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
3836 .trigger = mem_cgroup_reset,
3837 .read_u64 = mem_cgroup_read,
3838 },
3839 {
3840 .name = "memsw.limit_in_bytes",
3841 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
3842 .write_string = mem_cgroup_write,
3843 .read_u64 = mem_cgroup_read,
3844 },
3845 {
3846 .name = "memsw.failcnt",
3847 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
3848 .trigger = mem_cgroup_reset,
3849 .read_u64 = mem_cgroup_read,
3850 },
3851};
3852
3853static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3854{
3855 if (!do_swap_account)
3856 return 0;
3857 return cgroup_add_files(cont, ss, memsw_cgroup_files,
3858 ARRAY_SIZE(memsw_cgroup_files));
3859};
3860#else
3861static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3862{
3863 return 0;
3864}
3865#endif
3866
3867static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3868{
3869 struct mem_cgroup_per_node *pn;
3870 struct mem_cgroup_per_zone *mz;
3871 enum lru_list l;
3872 int zone, tmp = node;
3873 /*
3874 * This routine is called against possible nodes.
3875 * But it's BUG to call kmalloc() against offline node.
3876 *
3877 * TODO: this routine can waste much memory for nodes which will
3878 * never be onlined. It's better to use memory hotplug callback
3879 * function.
3880 */
3881 if (!node_state(node, N_NORMAL_MEMORY))
3882 tmp = -1;
3883 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3884 if (!pn)
3885 return 1;
3886
3887 mem->info.nodeinfo[node] = pn;
3888 memset(pn, 0, sizeof(*pn));
3889
3890 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3891 mz = &pn->zoneinfo[zone];
3892 for_each_lru(l)
3893 INIT_LIST_HEAD(&mz->lists[l]);
3894 mz->usage_in_excess = 0;
3895 mz->on_tree = false;
3896 mz->mem = mem;
3897 }
3898 return 0;
3899}
3900
3901static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3902{
3903 kfree(mem->info.nodeinfo[node]);
3904}
3905
3906static struct mem_cgroup *mem_cgroup_alloc(void)
3907{
3908 struct mem_cgroup *mem;
3909 int size = sizeof(struct mem_cgroup);
3910
3911 /* Can be very big if MAX_NUMNODES is very big */
3912 if (size < PAGE_SIZE)
3913 mem = kmalloc(size, GFP_KERNEL);
3914 else
3915 mem = vmalloc(size);
3916
3917 if (!mem)
3918 return NULL;
3919
3920 memset(mem, 0, size);
3921 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
3922 if (!mem->stat) {
3923 if (size < PAGE_SIZE)
3924 kfree(mem);
3925 else
3926 vfree(mem);
3927 mem = NULL;
3928 }
3929 return mem;
3930}
3931
3932/*
3933 * At destroying mem_cgroup, references from swap_cgroup can remain.
3934 * (scanning all at force_empty is too costly...)
3935 *
3936 * Instead of clearing all references at force_empty, we remember
3937 * the number of reference from swap_cgroup and free mem_cgroup when
3938 * it goes down to 0.
3939 *
3940 * Removal of cgroup itself succeeds regardless of refs from swap.
3941 */
3942
3943static void __mem_cgroup_free(struct mem_cgroup *mem)
3944{
3945 int node;
3946
3947 mem_cgroup_remove_from_trees(mem);
3948 free_css_id(&mem_cgroup_subsys, &mem->css);
3949
3950 for_each_node_state(node, N_POSSIBLE)
3951 free_mem_cgroup_per_zone_info(mem, node);
3952
3953 free_percpu(mem->stat);
3954 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
3955 kfree(mem);
3956 else
3957 vfree(mem);
3958}
3959
3960static void mem_cgroup_get(struct mem_cgroup *mem)
3961{
3962 atomic_inc(&mem->refcnt);
3963}
3964
3965static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
3966{
3967 if (atomic_sub_and_test(count, &mem->refcnt)) {
3968 struct mem_cgroup *parent = parent_mem_cgroup(mem);
3969 __mem_cgroup_free(mem);
3970 if (parent)
3971 mem_cgroup_put(parent);
3972 }
3973}
3974
3975static void mem_cgroup_put(struct mem_cgroup *mem)
3976{
3977 __mem_cgroup_put(mem, 1);
3978}
3979
3980/*
3981 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
3982 */
3983static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
3984{
3985 if (!mem->res.parent)
3986 return NULL;
3987 return mem_cgroup_from_res_counter(mem->res.parent, res);
3988}
3989
3990#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3991static void __init enable_swap_cgroup(void)
3992{
3993 if (!mem_cgroup_disabled() && really_do_swap_account)
3994 do_swap_account = 1;
3995}
3996#else
3997static void __init enable_swap_cgroup(void)
3998{
3999}
4000#endif
4001
4002static int mem_cgroup_soft_limit_tree_init(void)
4003{
4004 struct mem_cgroup_tree_per_node *rtpn;
4005 struct mem_cgroup_tree_per_zone *rtpz;
4006 int tmp, node, zone;
4007
4008 for_each_node_state(node, N_POSSIBLE) {
4009 tmp = node;
4010 if (!node_state(node, N_NORMAL_MEMORY))
4011 tmp = -1;
4012 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4013 if (!rtpn)
4014 return 1;
4015
4016 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4017
4018 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4019 rtpz = &rtpn->rb_tree_per_zone[zone];
4020 rtpz->rb_root = RB_ROOT;
4021 spin_lock_init(&rtpz->lock);
4022 }
4023 }
4024 return 0;
4025}
4026
4027static struct cgroup_subsys_state * __ref
4028mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4029{
4030 struct mem_cgroup *mem, *parent;
4031 long error = -ENOMEM;
4032 int node;
4033
4034 mem = mem_cgroup_alloc();
4035 if (!mem)
4036 return ERR_PTR(error);
4037
4038 for_each_node_state(node, N_POSSIBLE)
4039 if (alloc_mem_cgroup_per_zone_info(mem, node))
4040 goto free_out;
4041
4042 /* root ? */
4043 if (cont->parent == NULL) {
4044 int cpu;
4045 enable_swap_cgroup();
4046 parent = NULL;
4047 root_mem_cgroup = mem;
4048 if (mem_cgroup_soft_limit_tree_init())
4049 goto free_out;
4050 for_each_possible_cpu(cpu) {
4051 struct memcg_stock_pcp *stock =
4052 &per_cpu(memcg_stock, cpu);
4053 INIT_WORK(&stock->work, drain_local_stock);
4054 }
4055 hotcpu_notifier(memcg_stock_cpu_callback, 0);
4056 } else {
4057 parent = mem_cgroup_from_cont(cont->parent);
4058 mem->use_hierarchy = parent->use_hierarchy;
4059 mem->oom_kill_disable = parent->oom_kill_disable;
4060 }
4061
4062 if (parent && parent->use_hierarchy) {
4063 res_counter_init(&mem->res, &parent->res);
4064 res_counter_init(&mem->memsw, &parent->memsw);
4065 /*
4066 * We increment refcnt of the parent to ensure that we can
4067 * safely access it on res_counter_charge/uncharge.
4068 * This refcnt will be decremented when freeing this
4069 * mem_cgroup(see mem_cgroup_put).
4070 */
4071 mem_cgroup_get(parent);
4072 } else {
4073 res_counter_init(&mem->res, NULL);
4074 res_counter_init(&mem->memsw, NULL);
4075 }
4076 mem->last_scanned_child = 0;
4077 spin_lock_init(&mem->reclaim_param_lock);
4078 INIT_LIST_HEAD(&mem->oom_notify);
4079
4080 if (parent)
4081 mem->swappiness = get_swappiness(parent);
4082 atomic_set(&mem->refcnt, 1);
4083 mem->move_charge_at_immigrate = 0;
4084 mutex_init(&mem->thresholds_lock);
4085 return &mem->css;
4086free_out:
4087 __mem_cgroup_free(mem);
4088 root_mem_cgroup = NULL;
4089 return ERR_PTR(error);
4090}
4091
4092static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4093 struct cgroup *cont)
4094{
4095 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4096
4097 return mem_cgroup_force_empty(mem, false);
4098}
4099
4100static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4101 struct cgroup *cont)
4102{
4103 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4104
4105 mem_cgroup_put(mem);
4106}
4107
4108static int mem_cgroup_populate(struct cgroup_subsys *ss,
4109 struct cgroup *cont)
4110{
4111 int ret;
4112
4113 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4114 ARRAY_SIZE(mem_cgroup_files));
4115
4116 if (!ret)
4117 ret = register_memsw_files(cont, ss);
4118 return ret;
4119}
4120
4121#ifdef CONFIG_MMU
4122/* Handlers for move charge at task migration. */
4123#define PRECHARGE_COUNT_AT_ONCE 256
4124static int mem_cgroup_do_precharge(unsigned long count)
4125{
4126 int ret = 0;
4127 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4128 struct mem_cgroup *mem = mc.to;
4129
4130 if (mem_cgroup_is_root(mem)) {
4131 mc.precharge += count;
4132 /* we don't need css_get for root */
4133 return ret;
4134 }
4135 /* try to charge at once */
4136 if (count > 1) {
4137 struct res_counter *dummy;
4138 /*
4139 * "mem" cannot be under rmdir() because we've already checked
4140 * by cgroup_lock_live_cgroup() that it is not removed and we
4141 * are still under the same cgroup_mutex. So we can postpone
4142 * css_get().
4143 */
4144 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4145 goto one_by_one;
4146 if (do_swap_account && res_counter_charge(&mem->memsw,
4147 PAGE_SIZE * count, &dummy)) {
4148 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4149 goto one_by_one;
4150 }
4151 mc.precharge += count;
4152 VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
4153 WARN_ON_ONCE(count > INT_MAX);
4154 __css_get(&mem->css, (int)count);
4155 return ret;
4156 }
4157one_by_one:
4158 /* fall back to one by one charge */
4159 while (count--) {
4160 if (signal_pending(current)) {
4161 ret = -EINTR;
4162 break;
4163 }
4164 if (!batch_count--) {
4165 batch_count = PRECHARGE_COUNT_AT_ONCE;
4166 cond_resched();
4167 }
4168 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
4169 if (ret || !mem)
4170 /* mem_cgroup_clear_mc() will do uncharge later */
4171 return -ENOMEM;
4172 mc.precharge++;
4173 }
4174 return ret;
4175}
4176
4177/**
4178 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4179 * @vma: the vma the pte to be checked belongs
4180 * @addr: the address corresponding to the pte to be checked
4181 * @ptent: the pte to be checked
4182 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4183 *
4184 * Returns
4185 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4186 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4187 * move charge. if @target is not NULL, the page is stored in target->page
4188 * with extra refcnt got(Callers should handle it).
4189 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4190 * target for charge migration. if @target is not NULL, the entry is stored
4191 * in target->ent.
4192 *
4193 * Called with pte lock held.
4194 */
4195union mc_target {
4196 struct page *page;
4197 swp_entry_t ent;
4198};
4199
4200enum mc_target_type {
4201 MC_TARGET_NONE, /* not used */
4202 MC_TARGET_PAGE,
4203 MC_TARGET_SWAP,
4204};
4205
4206static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4207 unsigned long addr, pte_t ptent)
4208{
4209 struct page *page = vm_normal_page(vma, addr, ptent);
4210
4211 if (!page || !page_mapped(page))
4212 return NULL;
4213 if (PageAnon(page)) {
4214 /* we don't move shared anon */
4215 if (!move_anon() || page_mapcount(page) > 2)
4216 return NULL;
4217 } else if (!move_file())
4218 /* we ignore mapcount for file pages */
4219 return NULL;
4220 if (!get_page_unless_zero(page))
4221 return NULL;
4222
4223 return page;
4224}
4225
4226static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4227 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4228{
4229 int usage_count;
4230 struct page *page = NULL;
4231 swp_entry_t ent = pte_to_swp_entry(ptent);
4232
4233 if (!move_anon() || non_swap_entry(ent))
4234 return NULL;
4235 usage_count = mem_cgroup_count_swap_user(ent, &page);
4236 if (usage_count > 1) { /* we don't move shared anon */
4237 if (page)
4238 put_page(page);
4239 return NULL;
4240 }
4241 if (do_swap_account)
4242 entry->val = ent.val;
4243
4244 return page;
4245}
4246
4247static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4248 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4249{
4250 struct page *page = NULL;
4251 struct inode *inode;
4252 struct address_space *mapping;
4253 pgoff_t pgoff;
4254
4255 if (!vma->vm_file) /* anonymous vma */
4256 return NULL;
4257 if (!move_file())
4258 return NULL;
4259
4260 inode = vma->vm_file->f_path.dentry->d_inode;
4261 mapping = vma->vm_file->f_mapping;
4262 if (pte_none(ptent))
4263 pgoff = linear_page_index(vma, addr);
4264 else /* pte_file(ptent) is true */
4265 pgoff = pte_to_pgoff(ptent);
4266
4267 /* page is moved even if it's not RSS of this task(page-faulted). */
4268 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4269 page = find_get_page(mapping, pgoff);
4270 } else { /* shmem/tmpfs file. we should take account of swap too. */
4271 swp_entry_t ent;
4272 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4273 if (do_swap_account)
4274 entry->val = ent.val;
4275 }
4276
4277 return page;
4278}
4279
4280static int is_target_pte_for_mc(struct vm_area_struct *vma,
4281 unsigned long addr, pte_t ptent, union mc_target *target)
4282{
4283 struct page *page = NULL;
4284 struct page_cgroup *pc;
4285 int ret = 0;
4286 swp_entry_t ent = { .val = 0 };
4287
4288 if (pte_present(ptent))
4289 page = mc_handle_present_pte(vma, addr, ptent);
4290 else if (is_swap_pte(ptent))
4291 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4292 else if (pte_none(ptent) || pte_file(ptent))
4293 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4294
4295 if (!page && !ent.val)
4296 return 0;
4297 if (page) {
4298 pc = lookup_page_cgroup(page);
4299 /*
4300 * Do only loose check w/o page_cgroup lock.
4301 * mem_cgroup_move_account() checks the pc is valid or not under
4302 * the lock.
4303 */
4304 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4305 ret = MC_TARGET_PAGE;
4306 if (target)
4307 target->page = page;
4308 }
4309 if (!ret || !target)
4310 put_page(page);
4311 }
4312 /* There is a swap entry and a page doesn't exist or isn't charged */
4313 if (ent.val && !ret &&
4314 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4315 ret = MC_TARGET_SWAP;
4316 if (target)
4317 target->ent = ent;
4318 }
4319 return ret;
4320}
4321
4322static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4323 unsigned long addr, unsigned long end,
4324 struct mm_walk *walk)
4325{
4326 struct vm_area_struct *vma = walk->private;
4327 pte_t *pte;
4328 spinlock_t *ptl;
4329
4330 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4331 for (; addr != end; pte++, addr += PAGE_SIZE)
4332 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4333 mc.precharge++; /* increment precharge temporarily */
4334 pte_unmap_unlock(pte - 1, ptl);
4335 cond_resched();
4336
4337 return 0;
4338}
4339
4340static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4341{
4342 unsigned long precharge;
4343 struct vm_area_struct *vma;
4344
4345 down_read(&mm->mmap_sem);
4346 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4347 struct mm_walk mem_cgroup_count_precharge_walk = {
4348 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4349 .mm = mm,
4350 .private = vma,
4351 };
4352 if (is_vm_hugetlb_page(vma))
4353 continue;
4354 walk_page_range(vma->vm_start, vma->vm_end,
4355 &mem_cgroup_count_precharge_walk);
4356 }
4357 up_read(&mm->mmap_sem);
4358
4359 precharge = mc.precharge;
4360 mc.precharge = 0;
4361
4362 return precharge;
4363}
4364
4365static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4366{
4367 return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4368}
4369
4370static void mem_cgroup_clear_mc(void)
4371{
4372 /* we must uncharge all the leftover precharges from mc.to */
4373 if (mc.precharge) {
4374 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4375 mc.precharge = 0;
4376 memcg_oom_recover(mc.to);
4377 }
4378 /*
4379 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4380 * we must uncharge here.
4381 */
4382 if (mc.moved_charge) {
4383 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4384 mc.moved_charge = 0;
4385 memcg_oom_recover(mc.from);
4386 }
4387 /* we must fixup refcnts and charges */
4388 if (mc.moved_swap) {
4389 WARN_ON_ONCE(mc.moved_swap > INT_MAX);
4390 /* uncharge swap account from the old cgroup */
4391 if (!mem_cgroup_is_root(mc.from))
4392 res_counter_uncharge(&mc.from->memsw,
4393 PAGE_SIZE * mc.moved_swap);
4394 __mem_cgroup_put(mc.from, mc.moved_swap);
4395
4396 if (!mem_cgroup_is_root(mc.to)) {
4397 /*
4398 * we charged both to->res and to->memsw, so we should
4399 * uncharge to->res.
4400 */
4401 res_counter_uncharge(&mc.to->res,
4402 PAGE_SIZE * mc.moved_swap);
4403 VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags));
4404 __css_put(&mc.to->css, mc.moved_swap);
4405 }
4406 /* we've already done mem_cgroup_get(mc.to) */
4407
4408 mc.moved_swap = 0;
4409 }
4410 mc.from = NULL;
4411 mc.to = NULL;
4412 mc.moving_task = NULL;
4413 wake_up_all(&mc.waitq);
4414}
4415
4416static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4417 struct cgroup *cgroup,
4418 struct task_struct *p,
4419 bool threadgroup)
4420{
4421 int ret = 0;
4422 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4423
4424 if (mem->move_charge_at_immigrate) {
4425 struct mm_struct *mm;
4426 struct mem_cgroup *from = mem_cgroup_from_task(p);
4427
4428 VM_BUG_ON(from == mem);
4429
4430 mm = get_task_mm(p);
4431 if (!mm)
4432 return 0;
4433 /* We move charges only when we move a owner of the mm */
4434 if (mm->owner == p) {
4435 VM_BUG_ON(mc.from);
4436 VM_BUG_ON(mc.to);
4437 VM_BUG_ON(mc.precharge);
4438 VM_BUG_ON(mc.moved_charge);
4439 VM_BUG_ON(mc.moved_swap);
4440 VM_BUG_ON(mc.moving_task);
4441 mc.from = from;
4442 mc.to = mem;
4443 mc.precharge = 0;
4444 mc.moved_charge = 0;
4445 mc.moved_swap = 0;
4446 mc.moving_task = current;
4447
4448 ret = mem_cgroup_precharge_mc(mm);
4449 if (ret)
4450 mem_cgroup_clear_mc();
4451 }
4452 mmput(mm);
4453 }
4454 return ret;
4455}
4456
4457static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4458 struct cgroup *cgroup,
4459 struct task_struct *p,
4460 bool threadgroup)
4461{
4462 mem_cgroup_clear_mc();
4463}
4464
4465static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4466 unsigned long addr, unsigned long end,
4467 struct mm_walk *walk)
4468{
4469 int ret = 0;
4470 struct vm_area_struct *vma = walk->private;
4471 pte_t *pte;
4472 spinlock_t *ptl;
4473
4474retry:
4475 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4476 for (; addr != end; addr += PAGE_SIZE) {
4477 pte_t ptent = *(pte++);
4478 union mc_target target;
4479 int type;
4480 struct page *page;
4481 struct page_cgroup *pc;
4482 swp_entry_t ent;
4483
4484 if (!mc.precharge)
4485 break;
4486
4487 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4488 switch (type) {
4489 case MC_TARGET_PAGE:
4490 page = target.page;
4491 if (isolate_lru_page(page))
4492 goto put;
4493 pc = lookup_page_cgroup(page);
4494 if (!mem_cgroup_move_account(pc,
4495 mc.from, mc.to, false)) {
4496 mc.precharge--;
4497 /* we uncharge from mc.from later. */
4498 mc.moved_charge++;
4499 }
4500 putback_lru_page(page);
4501put: /* is_target_pte_for_mc() gets the page */
4502 put_page(page);
4503 break;
4504 case MC_TARGET_SWAP:
4505 ent = target.ent;
4506 if (!mem_cgroup_move_swap_account(ent,
4507 mc.from, mc.to, false)) {
4508 mc.precharge--;
4509 /* we fixup refcnts and charges later. */
4510 mc.moved_swap++;
4511 }
4512 break;
4513 default:
4514 break;
4515 }
4516 }
4517 pte_unmap_unlock(pte - 1, ptl);
4518 cond_resched();
4519
4520 if (addr != end) {
4521 /*
4522 * We have consumed all precharges we got in can_attach().
4523 * We try charge one by one, but don't do any additional
4524 * charges to mc.to if we have failed in charge once in attach()
4525 * phase.
4526 */
4527 ret = mem_cgroup_do_precharge(1);
4528 if (!ret)
4529 goto retry;
4530 }
4531
4532 return ret;
4533}
4534
4535static void mem_cgroup_move_charge(struct mm_struct *mm)
4536{
4537 struct vm_area_struct *vma;
4538
4539 lru_add_drain_all();
4540 down_read(&mm->mmap_sem);
4541 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4542 int ret;
4543 struct mm_walk mem_cgroup_move_charge_walk = {
4544 .pmd_entry = mem_cgroup_move_charge_pte_range,
4545 .mm = mm,
4546 .private = vma,
4547 };
4548 if (is_vm_hugetlb_page(vma))
4549 continue;
4550 ret = walk_page_range(vma->vm_start, vma->vm_end,
4551 &mem_cgroup_move_charge_walk);
4552 if (ret)
4553 /*
4554 * means we have consumed all precharges and failed in
4555 * doing additional charge. Just abandon here.
4556 */
4557 break;
4558 }
4559 up_read(&mm->mmap_sem);
4560}
4561
4562static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4563 struct cgroup *cont,
4564 struct cgroup *old_cont,
4565 struct task_struct *p,
4566 bool threadgroup)
4567{
4568 struct mm_struct *mm;
4569
4570 if (!mc.to)
4571 /* no need to move charge */
4572 return;
4573
4574 mm = get_task_mm(p);
4575 if (mm) {
4576 mem_cgroup_move_charge(mm);
4577 mmput(mm);
4578 }
4579 mem_cgroup_clear_mc();
4580}
4581#else /* !CONFIG_MMU */
4582static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4583 struct cgroup *cgroup,
4584 struct task_struct *p,
4585 bool threadgroup)
4586{
4587 return 0;
4588}
4589static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4590 struct cgroup *cgroup,
4591 struct task_struct *p,
4592 bool threadgroup)
4593{
4594}
4595static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4596 struct cgroup *cont,
4597 struct cgroup *old_cont,
4598 struct task_struct *p,
4599 bool threadgroup)
4600{
4601}
4602#endif
4603
4604struct cgroup_subsys mem_cgroup_subsys = {
4605 .name = "memory",
4606 .subsys_id = mem_cgroup_subsys_id,
4607 .create = mem_cgroup_create,
4608 .pre_destroy = mem_cgroup_pre_destroy,
4609 .destroy = mem_cgroup_destroy,
4610 .populate = mem_cgroup_populate,
4611 .can_attach = mem_cgroup_can_attach,
4612 .cancel_attach = mem_cgroup_cancel_attach,
4613 .attach = mem_cgroup_move_task,
4614 .early_init = 0,
4615 .use_id = 1,
4616};
4617
4618#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4619
4620static int __init disable_swap_account(char *s)
4621{
4622 really_do_swap_account = 0;
4623 return 1;
4624}
4625__setup("noswapaccount", disable_swap_account);
4626#endif