]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - mm/memcontrol.c
memcg: fix LRU accounting for SwapCache
[net-next-2.6.git] / mm / memcontrol.c
... / ...
CommitLineData
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
23#include <linux/mm.h>
24#include <linux/pagemap.h>
25#include <linux/smp.h>
26#include <linux/page-flags.h>
27#include <linux/backing-dev.h>
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
30#include <linux/mutex.h>
31#include <linux/slab.h>
32#include <linux/swap.h>
33#include <linux/spinlock.h>
34#include <linux/fs.h>
35#include <linux/seq_file.h>
36#include <linux/vmalloc.h>
37#include <linux/mm_inline.h>
38#include <linux/page_cgroup.h>
39#include "internal.h"
40
41#include <asm/uaccess.h>
42
43struct cgroup_subsys mem_cgroup_subsys __read_mostly;
44#define MEM_CGROUP_RECLAIM_RETRIES 5
45
46#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48int do_swap_account __read_mostly;
49static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50#else
51#define do_swap_account (0)
52#endif
53
54static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */
55
56/*
57 * Statistics for memory cgroup.
58 */
59enum mem_cgroup_stat_index {
60 /*
61 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
62 */
63 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
64 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
65 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
66 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
67
68 MEM_CGROUP_STAT_NSTATS,
69};
70
71struct mem_cgroup_stat_cpu {
72 s64 count[MEM_CGROUP_STAT_NSTATS];
73} ____cacheline_aligned_in_smp;
74
75struct mem_cgroup_stat {
76 struct mem_cgroup_stat_cpu cpustat[0];
77};
78
79/*
80 * For accounting under irq disable, no need for increment preempt count.
81 */
82static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
83 enum mem_cgroup_stat_index idx, int val)
84{
85 stat->count[idx] += val;
86}
87
88static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
89 enum mem_cgroup_stat_index idx)
90{
91 int cpu;
92 s64 ret = 0;
93 for_each_possible_cpu(cpu)
94 ret += stat->cpustat[cpu].count[idx];
95 return ret;
96}
97
98/*
99 * per-zone information in memory controller.
100 */
101struct mem_cgroup_per_zone {
102 /*
103 * spin_lock to protect the per cgroup LRU
104 */
105 struct list_head lists[NR_LRU_LISTS];
106 unsigned long count[NR_LRU_LISTS];
107
108 struct zone_reclaim_stat reclaim_stat;
109};
110/* Macro for accessing counter */
111#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
112
113struct mem_cgroup_per_node {
114 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
115};
116
117struct mem_cgroup_lru_info {
118 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
119};
120
121/*
122 * The memory controller data structure. The memory controller controls both
123 * page cache and RSS per cgroup. We would eventually like to provide
124 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
125 * to help the administrator determine what knobs to tune.
126 *
127 * TODO: Add a water mark for the memory controller. Reclaim will begin when
128 * we hit the water mark. May be even add a low water mark, such that
129 * no reclaim occurs from a cgroup at it's low water mark, this is
130 * a feature that will be implemented much later in the future.
131 */
132struct mem_cgroup {
133 struct cgroup_subsys_state css;
134 /*
135 * the counter to account for memory usage
136 */
137 struct res_counter res;
138 /*
139 * the counter to account for mem+swap usage.
140 */
141 struct res_counter memsw;
142 /*
143 * Per cgroup active and inactive list, similar to the
144 * per zone LRU lists.
145 */
146 struct mem_cgroup_lru_info info;
147
148 /*
149 protect against reclaim related member.
150 */
151 spinlock_t reclaim_param_lock;
152
153 int prev_priority; /* for recording reclaim priority */
154
155 /*
156 * While reclaiming in a hiearchy, we cache the last child we
157 * reclaimed from. Protected by cgroup_lock()
158 */
159 struct mem_cgroup *last_scanned_child;
160 /*
161 * Should the accounting and control be hierarchical, per subtree?
162 */
163 bool use_hierarchy;
164 unsigned long last_oom_jiffies;
165 atomic_t refcnt;
166
167 unsigned int swappiness;
168
169 /*
170 * statistics. This must be placed at the end of memcg.
171 */
172 struct mem_cgroup_stat stat;
173};
174
175enum charge_type {
176 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
177 MEM_CGROUP_CHARGE_TYPE_MAPPED,
178 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
179 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
180 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
181 NR_CHARGE_TYPE,
182};
183
184/* only for here (for easy reading.) */
185#define PCGF_CACHE (1UL << PCG_CACHE)
186#define PCGF_USED (1UL << PCG_USED)
187#define PCGF_LOCK (1UL << PCG_LOCK)
188static const unsigned long
189pcg_default_flags[NR_CHARGE_TYPE] = {
190 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
191 PCGF_USED | PCGF_LOCK, /* Anon */
192 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
193 0, /* FORCE */
194};
195
196/* for encoding cft->private value on file */
197#define _MEM (0)
198#define _MEMSWAP (1)
199#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
200#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
201#define MEMFILE_ATTR(val) ((val) & 0xffff)
202
203static void mem_cgroup_get(struct mem_cgroup *mem);
204static void mem_cgroup_put(struct mem_cgroup *mem);
205
206static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
207 struct page_cgroup *pc,
208 bool charge)
209{
210 int val = (charge)? 1 : -1;
211 struct mem_cgroup_stat *stat = &mem->stat;
212 struct mem_cgroup_stat_cpu *cpustat;
213 int cpu = get_cpu();
214
215 cpustat = &stat->cpustat[cpu];
216 if (PageCgroupCache(pc))
217 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
218 else
219 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
220
221 if (charge)
222 __mem_cgroup_stat_add_safe(cpustat,
223 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
224 else
225 __mem_cgroup_stat_add_safe(cpustat,
226 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
227 put_cpu();
228}
229
230static struct mem_cgroup_per_zone *
231mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
232{
233 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
234}
235
236static struct mem_cgroup_per_zone *
237page_cgroup_zoneinfo(struct page_cgroup *pc)
238{
239 struct mem_cgroup *mem = pc->mem_cgroup;
240 int nid = page_cgroup_nid(pc);
241 int zid = page_cgroup_zid(pc);
242
243 if (!mem)
244 return NULL;
245
246 return mem_cgroup_zoneinfo(mem, nid, zid);
247}
248
249static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
250 enum lru_list idx)
251{
252 int nid, zid;
253 struct mem_cgroup_per_zone *mz;
254 u64 total = 0;
255
256 for_each_online_node(nid)
257 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
258 mz = mem_cgroup_zoneinfo(mem, nid, zid);
259 total += MEM_CGROUP_ZSTAT(mz, idx);
260 }
261 return total;
262}
263
264static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
265{
266 return container_of(cgroup_subsys_state(cont,
267 mem_cgroup_subsys_id), struct mem_cgroup,
268 css);
269}
270
271struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
272{
273 /*
274 * mm_update_next_owner() may clear mm->owner to NULL
275 * if it races with swapoff, page migration, etc.
276 * So this can be called with p == NULL.
277 */
278 if (unlikely(!p))
279 return NULL;
280
281 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
282 struct mem_cgroup, css);
283}
284
285static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
286{
287 struct mem_cgroup *mem = NULL;
288 /*
289 * Because we have no locks, mm->owner's may be being moved to other
290 * cgroup. We use css_tryget() here even if this looks
291 * pessimistic (rather than adding locks here).
292 */
293 rcu_read_lock();
294 do {
295 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
296 if (unlikely(!mem))
297 break;
298 } while (!css_tryget(&mem->css));
299 rcu_read_unlock();
300 return mem;
301}
302
303static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem)
304{
305 if (!mem)
306 return true;
307 return css_is_removed(&mem->css);
308}
309
310/*
311 * Following LRU functions are allowed to be used without PCG_LOCK.
312 * Operations are called by routine of global LRU independently from memcg.
313 * What we have to take care of here is validness of pc->mem_cgroup.
314 *
315 * Changes to pc->mem_cgroup happens when
316 * 1. charge
317 * 2. moving account
318 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
319 * It is added to LRU before charge.
320 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
321 * When moving account, the page is not on LRU. It's isolated.
322 */
323
324void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
325{
326 struct page_cgroup *pc;
327 struct mem_cgroup *mem;
328 struct mem_cgroup_per_zone *mz;
329
330 if (mem_cgroup_disabled())
331 return;
332 pc = lookup_page_cgroup(page);
333 /* can happen while we handle swapcache. */
334 if (list_empty(&pc->lru) || !pc->mem_cgroup)
335 return;
336 /*
337 * We don't check PCG_USED bit. It's cleared when the "page" is finally
338 * removed from global LRU.
339 */
340 mz = page_cgroup_zoneinfo(pc);
341 mem = pc->mem_cgroup;
342 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
343 list_del_init(&pc->lru);
344 return;
345}
346
347void mem_cgroup_del_lru(struct page *page)
348{
349 mem_cgroup_del_lru_list(page, page_lru(page));
350}
351
352void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
353{
354 struct mem_cgroup_per_zone *mz;
355 struct page_cgroup *pc;
356
357 if (mem_cgroup_disabled())
358 return;
359
360 pc = lookup_page_cgroup(page);
361 smp_rmb();
362 /* unused page is not rotated. */
363 if (!PageCgroupUsed(pc))
364 return;
365 mz = page_cgroup_zoneinfo(pc);
366 list_move(&pc->lru, &mz->lists[lru]);
367}
368
369void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
370{
371 struct page_cgroup *pc;
372 struct mem_cgroup_per_zone *mz;
373
374 if (mem_cgroup_disabled())
375 return;
376 pc = lookup_page_cgroup(page);
377 /* barrier to sync with "charge" */
378 smp_rmb();
379 if (!PageCgroupUsed(pc))
380 return;
381
382 mz = page_cgroup_zoneinfo(pc);
383 MEM_CGROUP_ZSTAT(mz, lru) += 1;
384 list_add(&pc->lru, &mz->lists[lru]);
385}
386
387/*
388 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
389 * lru because the page may.be reused after it's fully uncharged (because of
390 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
391 * it again. This function is only used to charge SwapCache. It's done under
392 * lock_page and expected that zone->lru_lock is never held.
393 */
394static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
395{
396 unsigned long flags;
397 struct zone *zone = page_zone(page);
398 struct page_cgroup *pc = lookup_page_cgroup(page);
399
400 spin_lock_irqsave(&zone->lru_lock, flags);
401 /*
402 * Forget old LRU when this page_cgroup is *not* used. This Used bit
403 * is guarded by lock_page() because the page is SwapCache.
404 */
405 if (!PageCgroupUsed(pc))
406 mem_cgroup_del_lru_list(page, page_lru(page));
407 spin_unlock_irqrestore(&zone->lru_lock, flags);
408}
409
410static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
411{
412 unsigned long flags;
413 struct zone *zone = page_zone(page);
414 struct page_cgroup *pc = lookup_page_cgroup(page);
415
416 spin_lock_irqsave(&zone->lru_lock, flags);
417 /* link when the page is linked to LRU but page_cgroup isn't */
418 if (PageLRU(page) && list_empty(&pc->lru))
419 mem_cgroup_add_lru_list(page, page_lru(page));
420 spin_unlock_irqrestore(&zone->lru_lock, flags);
421}
422
423
424void mem_cgroup_move_lists(struct page *page,
425 enum lru_list from, enum lru_list to)
426{
427 if (mem_cgroup_disabled())
428 return;
429 mem_cgroup_del_lru_list(page, from);
430 mem_cgroup_add_lru_list(page, to);
431}
432
433int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
434{
435 int ret;
436
437 task_lock(task);
438 ret = task->mm && mm_match_cgroup(task->mm, mem);
439 task_unlock(task);
440 return ret;
441}
442
443/*
444 * Calculate mapped_ratio under memory controller. This will be used in
445 * vmscan.c for deteremining we have to reclaim mapped pages.
446 */
447int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
448{
449 long total, rss;
450
451 /*
452 * usage is recorded in bytes. But, here, we assume the number of
453 * physical pages can be represented by "long" on any arch.
454 */
455 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
456 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
457 return (int)((rss * 100L) / total);
458}
459
460/*
461 * prev_priority control...this will be used in memory reclaim path.
462 */
463int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
464{
465 int prev_priority;
466
467 spin_lock(&mem->reclaim_param_lock);
468 prev_priority = mem->prev_priority;
469 spin_unlock(&mem->reclaim_param_lock);
470
471 return prev_priority;
472}
473
474void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
475{
476 spin_lock(&mem->reclaim_param_lock);
477 if (priority < mem->prev_priority)
478 mem->prev_priority = priority;
479 spin_unlock(&mem->reclaim_param_lock);
480}
481
482void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
483{
484 spin_lock(&mem->reclaim_param_lock);
485 mem->prev_priority = priority;
486 spin_unlock(&mem->reclaim_param_lock);
487}
488
489static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
490{
491 unsigned long active;
492 unsigned long inactive;
493 unsigned long gb;
494 unsigned long inactive_ratio;
495
496 inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON);
497 active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON);
498
499 gb = (inactive + active) >> (30 - PAGE_SHIFT);
500 if (gb)
501 inactive_ratio = int_sqrt(10 * gb);
502 else
503 inactive_ratio = 1;
504
505 if (present_pages) {
506 present_pages[0] = inactive;
507 present_pages[1] = active;
508 }
509
510 return inactive_ratio;
511}
512
513int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
514{
515 unsigned long active;
516 unsigned long inactive;
517 unsigned long present_pages[2];
518 unsigned long inactive_ratio;
519
520 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
521
522 inactive = present_pages[0];
523 active = present_pages[1];
524
525 if (inactive * inactive_ratio < active)
526 return 1;
527
528 return 0;
529}
530
531unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
532 struct zone *zone,
533 enum lru_list lru)
534{
535 int nid = zone->zone_pgdat->node_id;
536 int zid = zone_idx(zone);
537 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
538
539 return MEM_CGROUP_ZSTAT(mz, lru);
540}
541
542struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
543 struct zone *zone)
544{
545 int nid = zone->zone_pgdat->node_id;
546 int zid = zone_idx(zone);
547 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
548
549 return &mz->reclaim_stat;
550}
551
552struct zone_reclaim_stat *
553mem_cgroup_get_reclaim_stat_from_page(struct page *page)
554{
555 struct page_cgroup *pc;
556 struct mem_cgroup_per_zone *mz;
557
558 if (mem_cgroup_disabled())
559 return NULL;
560
561 pc = lookup_page_cgroup(page);
562 mz = page_cgroup_zoneinfo(pc);
563 if (!mz)
564 return NULL;
565
566 return &mz->reclaim_stat;
567}
568
569unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
570 struct list_head *dst,
571 unsigned long *scanned, int order,
572 int mode, struct zone *z,
573 struct mem_cgroup *mem_cont,
574 int active, int file)
575{
576 unsigned long nr_taken = 0;
577 struct page *page;
578 unsigned long scan;
579 LIST_HEAD(pc_list);
580 struct list_head *src;
581 struct page_cgroup *pc, *tmp;
582 int nid = z->zone_pgdat->node_id;
583 int zid = zone_idx(z);
584 struct mem_cgroup_per_zone *mz;
585 int lru = LRU_FILE * !!file + !!active;
586
587 BUG_ON(!mem_cont);
588 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
589 src = &mz->lists[lru];
590
591 scan = 0;
592 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
593 if (scan >= nr_to_scan)
594 break;
595
596 page = pc->page;
597 if (unlikely(!PageCgroupUsed(pc)))
598 continue;
599 if (unlikely(!PageLRU(page)))
600 continue;
601
602 scan++;
603 if (__isolate_lru_page(page, mode, file) == 0) {
604 list_move(&page->lru, dst);
605 nr_taken++;
606 }
607 }
608
609 *scanned = scan;
610 return nr_taken;
611}
612
613#define mem_cgroup_from_res_counter(counter, member) \
614 container_of(counter, struct mem_cgroup, member)
615
616/*
617 * This routine finds the DFS walk successor. This routine should be
618 * called with cgroup_mutex held
619 */
620static struct mem_cgroup *
621mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
622{
623 struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
624
625 curr_cgroup = curr->css.cgroup;
626 root_cgroup = root_mem->css.cgroup;
627
628 if (!list_empty(&curr_cgroup->children)) {
629 /*
630 * Walk down to children
631 */
632 mem_cgroup_put(curr);
633 cgroup = list_entry(curr_cgroup->children.next,
634 struct cgroup, sibling);
635 curr = mem_cgroup_from_cont(cgroup);
636 mem_cgroup_get(curr);
637 goto done;
638 }
639
640visit_parent:
641 if (curr_cgroup == root_cgroup) {
642 mem_cgroup_put(curr);
643 curr = root_mem;
644 mem_cgroup_get(curr);
645 goto done;
646 }
647
648 /*
649 * Goto next sibling
650 */
651 if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
652 mem_cgroup_put(curr);
653 cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
654 sibling);
655 curr = mem_cgroup_from_cont(cgroup);
656 mem_cgroup_get(curr);
657 goto done;
658 }
659
660 /*
661 * Go up to next parent and next parent's sibling if need be
662 */
663 curr_cgroup = curr_cgroup->parent;
664 goto visit_parent;
665
666done:
667 root_mem->last_scanned_child = curr;
668 return curr;
669}
670
671/*
672 * Visit the first child (need not be the first child as per the ordering
673 * of the cgroup list, since we track last_scanned_child) of @mem and use
674 * that to reclaim free pages from.
675 */
676static struct mem_cgroup *
677mem_cgroup_get_first_node(struct mem_cgroup *root_mem)
678{
679 struct cgroup *cgroup;
680 struct mem_cgroup *ret;
681 bool obsolete;
682
683 obsolete = mem_cgroup_is_obsolete(root_mem->last_scanned_child);
684
685 /*
686 * Scan all children under the mem_cgroup mem
687 */
688 cgroup_lock();
689 if (list_empty(&root_mem->css.cgroup->children)) {
690 ret = root_mem;
691 goto done;
692 }
693
694 if (!root_mem->last_scanned_child || obsolete) {
695
696 if (obsolete && root_mem->last_scanned_child)
697 mem_cgroup_put(root_mem->last_scanned_child);
698
699 cgroup = list_first_entry(&root_mem->css.cgroup->children,
700 struct cgroup, sibling);
701 ret = mem_cgroup_from_cont(cgroup);
702 mem_cgroup_get(ret);
703 } else
704 ret = mem_cgroup_get_next_node(root_mem->last_scanned_child,
705 root_mem);
706
707done:
708 root_mem->last_scanned_child = ret;
709 cgroup_unlock();
710 return ret;
711}
712
713static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
714{
715 if (do_swap_account) {
716 if (res_counter_check_under_limit(&mem->res) &&
717 res_counter_check_under_limit(&mem->memsw))
718 return true;
719 } else
720 if (res_counter_check_under_limit(&mem->res))
721 return true;
722 return false;
723}
724
725static unsigned int get_swappiness(struct mem_cgroup *memcg)
726{
727 struct cgroup *cgrp = memcg->css.cgroup;
728 unsigned int swappiness;
729
730 /* root ? */
731 if (cgrp->parent == NULL)
732 return vm_swappiness;
733
734 spin_lock(&memcg->reclaim_param_lock);
735 swappiness = memcg->swappiness;
736 spin_unlock(&memcg->reclaim_param_lock);
737
738 return swappiness;
739}
740
741/*
742 * Dance down the hierarchy if needed to reclaim memory. We remember the
743 * last child we reclaimed from, so that we don't end up penalizing
744 * one child extensively based on its position in the children list.
745 *
746 * root_mem is the original ancestor that we've been reclaim from.
747 */
748static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
749 gfp_t gfp_mask, bool noswap)
750{
751 struct mem_cgroup *next_mem;
752 int ret = 0;
753
754 /*
755 * Reclaim unconditionally and don't check for return value.
756 * We need to reclaim in the current group and down the tree.
757 * One might think about checking for children before reclaiming,
758 * but there might be left over accounting, even after children
759 * have left.
760 */
761 ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap,
762 get_swappiness(root_mem));
763 if (mem_cgroup_check_under_limit(root_mem))
764 return 0;
765 if (!root_mem->use_hierarchy)
766 return ret;
767
768 next_mem = mem_cgroup_get_first_node(root_mem);
769
770 while (next_mem != root_mem) {
771 if (mem_cgroup_is_obsolete(next_mem)) {
772 mem_cgroup_put(next_mem);
773 cgroup_lock();
774 next_mem = mem_cgroup_get_first_node(root_mem);
775 cgroup_unlock();
776 continue;
777 }
778 ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap,
779 get_swappiness(next_mem));
780 if (mem_cgroup_check_under_limit(root_mem))
781 return 0;
782 cgroup_lock();
783 next_mem = mem_cgroup_get_next_node(next_mem, root_mem);
784 cgroup_unlock();
785 }
786 return ret;
787}
788
789bool mem_cgroup_oom_called(struct task_struct *task)
790{
791 bool ret = false;
792 struct mem_cgroup *mem;
793 struct mm_struct *mm;
794
795 rcu_read_lock();
796 mm = task->mm;
797 if (!mm)
798 mm = &init_mm;
799 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
800 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
801 ret = true;
802 rcu_read_unlock();
803 return ret;
804}
805/*
806 * Unlike exported interface, "oom" parameter is added. if oom==true,
807 * oom-killer can be invoked.
808 */
809static int __mem_cgroup_try_charge(struct mm_struct *mm,
810 gfp_t gfp_mask, struct mem_cgroup **memcg,
811 bool oom)
812{
813 struct mem_cgroup *mem, *mem_over_limit;
814 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
815 struct res_counter *fail_res;
816
817 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
818 /* Don't account this! */
819 *memcg = NULL;
820 return 0;
821 }
822
823 /*
824 * We always charge the cgroup the mm_struct belongs to.
825 * The mm_struct's mem_cgroup changes on task migration if the
826 * thread group leader migrates. It's possible that mm is not
827 * set, if so charge the init_mm (happens for pagecache usage).
828 */
829 mem = *memcg;
830 if (likely(!mem)) {
831 mem = try_get_mem_cgroup_from_mm(mm);
832 *memcg = mem;
833 } else {
834 css_get(&mem->css);
835 }
836 if (unlikely(!mem))
837 return 0;
838
839 VM_BUG_ON(mem_cgroup_is_obsolete(mem));
840
841 while (1) {
842 int ret;
843 bool noswap = false;
844
845 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
846 if (likely(!ret)) {
847 if (!do_swap_account)
848 break;
849 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
850 &fail_res);
851 if (likely(!ret))
852 break;
853 /* mem+swap counter fails */
854 res_counter_uncharge(&mem->res, PAGE_SIZE);
855 noswap = true;
856 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
857 memsw);
858 } else
859 /* mem counter fails */
860 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
861 res);
862
863 if (!(gfp_mask & __GFP_WAIT))
864 goto nomem;
865
866 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
867 noswap);
868
869 /*
870 * try_to_free_mem_cgroup_pages() might not give us a full
871 * picture of reclaim. Some pages are reclaimed and might be
872 * moved to swap cache or just unmapped from the cgroup.
873 * Check the limit again to see if the reclaim reduced the
874 * current usage of the cgroup before giving up
875 *
876 */
877 if (mem_cgroup_check_under_limit(mem_over_limit))
878 continue;
879
880 if (!nr_retries--) {
881 if (oom) {
882 mutex_lock(&memcg_tasklist);
883 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
884 mutex_unlock(&memcg_tasklist);
885 mem_over_limit->last_oom_jiffies = jiffies;
886 }
887 goto nomem;
888 }
889 }
890 return 0;
891nomem:
892 css_put(&mem->css);
893 return -ENOMEM;
894}
895
896/*
897 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
898 * USED state. If already USED, uncharge and return.
899 */
900
901static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
902 struct page_cgroup *pc,
903 enum charge_type ctype)
904{
905 /* try_charge() can return NULL to *memcg, taking care of it. */
906 if (!mem)
907 return;
908
909 lock_page_cgroup(pc);
910 if (unlikely(PageCgroupUsed(pc))) {
911 unlock_page_cgroup(pc);
912 res_counter_uncharge(&mem->res, PAGE_SIZE);
913 if (do_swap_account)
914 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
915 css_put(&mem->css);
916 return;
917 }
918 pc->mem_cgroup = mem;
919 smp_wmb();
920 pc->flags = pcg_default_flags[ctype];
921
922 mem_cgroup_charge_statistics(mem, pc, true);
923
924 unlock_page_cgroup(pc);
925}
926
927/**
928 * mem_cgroup_move_account - move account of the page
929 * @pc: page_cgroup of the page.
930 * @from: mem_cgroup which the page is moved from.
931 * @to: mem_cgroup which the page is moved to. @from != @to.
932 *
933 * The caller must confirm following.
934 * - page is not on LRU (isolate_page() is useful.)
935 *
936 * returns 0 at success,
937 * returns -EBUSY when lock is busy or "pc" is unstable.
938 *
939 * This function does "uncharge" from old cgroup but doesn't do "charge" to
940 * new cgroup. It should be done by a caller.
941 */
942
943static int mem_cgroup_move_account(struct page_cgroup *pc,
944 struct mem_cgroup *from, struct mem_cgroup *to)
945{
946 struct mem_cgroup_per_zone *from_mz, *to_mz;
947 int nid, zid;
948 int ret = -EBUSY;
949
950 VM_BUG_ON(from == to);
951 VM_BUG_ON(PageLRU(pc->page));
952
953 nid = page_cgroup_nid(pc);
954 zid = page_cgroup_zid(pc);
955 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
956 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
957
958 if (!trylock_page_cgroup(pc))
959 return ret;
960
961 if (!PageCgroupUsed(pc))
962 goto out;
963
964 if (pc->mem_cgroup != from)
965 goto out;
966
967 css_put(&from->css);
968 res_counter_uncharge(&from->res, PAGE_SIZE);
969 mem_cgroup_charge_statistics(from, pc, false);
970 if (do_swap_account)
971 res_counter_uncharge(&from->memsw, PAGE_SIZE);
972 pc->mem_cgroup = to;
973 mem_cgroup_charge_statistics(to, pc, true);
974 css_get(&to->css);
975 ret = 0;
976out:
977 unlock_page_cgroup(pc);
978 return ret;
979}
980
981/*
982 * move charges to its parent.
983 */
984
985static int mem_cgroup_move_parent(struct page_cgroup *pc,
986 struct mem_cgroup *child,
987 gfp_t gfp_mask)
988{
989 struct page *page = pc->page;
990 struct cgroup *cg = child->css.cgroup;
991 struct cgroup *pcg = cg->parent;
992 struct mem_cgroup *parent;
993 int ret;
994
995 /* Is ROOT ? */
996 if (!pcg)
997 return -EINVAL;
998
999
1000 parent = mem_cgroup_from_cont(pcg);
1001
1002
1003 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1004 if (ret || !parent)
1005 return ret;
1006
1007 if (!get_page_unless_zero(page))
1008 return -EBUSY;
1009
1010 ret = isolate_lru_page(page);
1011
1012 if (ret)
1013 goto cancel;
1014
1015 ret = mem_cgroup_move_account(pc, child, parent);
1016
1017 /* drop extra refcnt by try_charge() (move_account increment one) */
1018 css_put(&parent->css);
1019 putback_lru_page(page);
1020 if (!ret) {
1021 put_page(page);
1022 return 0;
1023 }
1024 /* uncharge if move fails */
1025cancel:
1026 res_counter_uncharge(&parent->res, PAGE_SIZE);
1027 if (do_swap_account)
1028 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1029 put_page(page);
1030 return ret;
1031}
1032
1033/*
1034 * Charge the memory controller for page usage.
1035 * Return
1036 * 0 if the charge was successful
1037 * < 0 if the cgroup is over its limit
1038 */
1039static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1040 gfp_t gfp_mask, enum charge_type ctype,
1041 struct mem_cgroup *memcg)
1042{
1043 struct mem_cgroup *mem;
1044 struct page_cgroup *pc;
1045 int ret;
1046
1047 pc = lookup_page_cgroup(page);
1048 /* can happen at boot */
1049 if (unlikely(!pc))
1050 return 0;
1051 prefetchw(pc);
1052
1053 mem = memcg;
1054 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1055 if (ret || !mem)
1056 return ret;
1057
1058 __mem_cgroup_commit_charge(mem, pc, ctype);
1059 return 0;
1060}
1061
1062int mem_cgroup_newpage_charge(struct page *page,
1063 struct mm_struct *mm, gfp_t gfp_mask)
1064{
1065 if (mem_cgroup_disabled())
1066 return 0;
1067 if (PageCompound(page))
1068 return 0;
1069 /*
1070 * If already mapped, we don't have to account.
1071 * If page cache, page->mapping has address_space.
1072 * But page->mapping may have out-of-use anon_vma pointer,
1073 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1074 * is NULL.
1075 */
1076 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1077 return 0;
1078 if (unlikely(!mm))
1079 mm = &init_mm;
1080 return mem_cgroup_charge_common(page, mm, gfp_mask,
1081 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1082}
1083
1084int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1085 gfp_t gfp_mask)
1086{
1087 if (mem_cgroup_disabled())
1088 return 0;
1089 if (PageCompound(page))
1090 return 0;
1091 /*
1092 * Corner case handling. This is called from add_to_page_cache()
1093 * in usual. But some FS (shmem) precharges this page before calling it
1094 * and call add_to_page_cache() with GFP_NOWAIT.
1095 *
1096 * For GFP_NOWAIT case, the page may be pre-charged before calling
1097 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1098 * charge twice. (It works but has to pay a bit larger cost.)
1099 */
1100 if (!(gfp_mask & __GFP_WAIT)) {
1101 struct page_cgroup *pc;
1102
1103
1104 pc = lookup_page_cgroup(page);
1105 if (!pc)
1106 return 0;
1107 lock_page_cgroup(pc);
1108 if (PageCgroupUsed(pc)) {
1109 unlock_page_cgroup(pc);
1110 return 0;
1111 }
1112 unlock_page_cgroup(pc);
1113 }
1114
1115 if (unlikely(!mm))
1116 mm = &init_mm;
1117
1118 if (page_is_file_cache(page))
1119 return mem_cgroup_charge_common(page, mm, gfp_mask,
1120 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1121 else
1122 return mem_cgroup_charge_common(page, mm, gfp_mask,
1123 MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
1124}
1125
1126/*
1127 * While swap-in, try_charge -> commit or cancel, the page is locked.
1128 * And when try_charge() successfully returns, one refcnt to memcg without
1129 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1130 * "commit()" or removed by "cancel()"
1131 */
1132int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1133 struct page *page,
1134 gfp_t mask, struct mem_cgroup **ptr)
1135{
1136 struct mem_cgroup *mem;
1137 swp_entry_t ent;
1138 int ret;
1139
1140 if (mem_cgroup_disabled())
1141 return 0;
1142
1143 if (!do_swap_account)
1144 goto charge_cur_mm;
1145
1146 /*
1147 * A racing thread's fault, or swapoff, may have already updated
1148 * the pte, and even removed page from swap cache: return success
1149 * to go on to do_swap_page()'s pte_same() test, which should fail.
1150 */
1151 if (!PageSwapCache(page))
1152 return 0;
1153
1154 ent.val = page_private(page);
1155
1156 mem = lookup_swap_cgroup(ent);
1157 if (!mem)
1158 goto charge_cur_mm;
1159 if (!css_tryget(&mem->css))
1160 goto charge_cur_mm;
1161 *ptr = mem;
1162 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1163 /* drop extra refcnt from tryget */
1164 css_put(&mem->css);
1165 return ret;
1166charge_cur_mm:
1167 if (unlikely(!mm))
1168 mm = &init_mm;
1169 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1170}
1171
1172#ifdef CONFIG_SWAP
1173
1174int mem_cgroup_cache_charge_swapin(struct page *page,
1175 struct mm_struct *mm, gfp_t mask, bool locked)
1176{
1177 int ret = 0;
1178
1179 if (mem_cgroup_disabled())
1180 return 0;
1181 if (unlikely(!mm))
1182 mm = &init_mm;
1183 if (!locked)
1184 lock_page(page);
1185 /*
1186 * If not locked, the page can be dropped from SwapCache until
1187 * we reach here.
1188 */
1189 if (PageSwapCache(page)) {
1190 struct mem_cgroup *mem = NULL;
1191 swp_entry_t ent;
1192
1193 ent.val = page_private(page);
1194 if (do_swap_account) {
1195 mem = lookup_swap_cgroup(ent);
1196 if (mem) {
1197 if (css_tryget(&mem->css))
1198 mm = NULL; /* charge to recorded */
1199 else
1200 mem = NULL; /* charge to current */
1201 }
1202 }
1203 /* SwapCache may be still linked to LRU now. */
1204 mem_cgroup_lru_del_before_commit_swapcache(page);
1205 ret = mem_cgroup_charge_common(page, mm, mask,
1206 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1207 mem_cgroup_lru_add_after_commit_swapcache(page);
1208 /* drop extra refcnt from tryget */
1209 if (mem)
1210 css_put(&mem->css);
1211
1212 if (!ret && do_swap_account) {
1213 /* avoid double counting */
1214 mem = swap_cgroup_record(ent, NULL);
1215 if (mem) {
1216 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1217 mem_cgroup_put(mem);
1218 }
1219 }
1220 }
1221 if (!locked)
1222 unlock_page(page);
1223
1224 return ret;
1225}
1226#endif
1227
1228void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1229{
1230 struct page_cgroup *pc;
1231
1232 if (mem_cgroup_disabled())
1233 return;
1234 if (!ptr)
1235 return;
1236 pc = lookup_page_cgroup(page);
1237 mem_cgroup_lru_del_before_commit_swapcache(page);
1238 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1239 mem_cgroup_lru_add_after_commit_swapcache(page);
1240 /*
1241 * Now swap is on-memory. This means this page may be
1242 * counted both as mem and swap....double count.
1243 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1244 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1245 * may call delete_from_swap_cache() before reach here.
1246 */
1247 if (do_swap_account && PageSwapCache(page)) {
1248 swp_entry_t ent = {.val = page_private(page)};
1249 struct mem_cgroup *memcg;
1250 memcg = swap_cgroup_record(ent, NULL);
1251 if (memcg) {
1252 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1253 mem_cgroup_put(memcg);
1254 }
1255
1256 }
1257 /* add this page(page_cgroup) to the LRU we want. */
1258
1259}
1260
1261void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1262{
1263 if (mem_cgroup_disabled())
1264 return;
1265 if (!mem)
1266 return;
1267 res_counter_uncharge(&mem->res, PAGE_SIZE);
1268 if (do_swap_account)
1269 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1270 css_put(&mem->css);
1271}
1272
1273
1274/*
1275 * uncharge if !page_mapped(page)
1276 */
1277static struct mem_cgroup *
1278__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1279{
1280 struct page_cgroup *pc;
1281 struct mem_cgroup *mem = NULL;
1282 struct mem_cgroup_per_zone *mz;
1283
1284 if (mem_cgroup_disabled())
1285 return NULL;
1286
1287 if (PageSwapCache(page))
1288 return NULL;
1289
1290 /*
1291 * Check if our page_cgroup is valid
1292 */
1293 pc = lookup_page_cgroup(page);
1294 if (unlikely(!pc || !PageCgroupUsed(pc)))
1295 return NULL;
1296
1297 lock_page_cgroup(pc);
1298
1299 mem = pc->mem_cgroup;
1300
1301 if (!PageCgroupUsed(pc))
1302 goto unlock_out;
1303
1304 switch (ctype) {
1305 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1306 if (page_mapped(page))
1307 goto unlock_out;
1308 break;
1309 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1310 if (!PageAnon(page)) { /* Shared memory */
1311 if (page->mapping && !page_is_file_cache(page))
1312 goto unlock_out;
1313 } else if (page_mapped(page)) /* Anon */
1314 goto unlock_out;
1315 break;
1316 default:
1317 break;
1318 }
1319
1320 res_counter_uncharge(&mem->res, PAGE_SIZE);
1321 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1322 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1323
1324 mem_cgroup_charge_statistics(mem, pc, false);
1325 ClearPageCgroupUsed(pc);
1326 /*
1327 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1328 * freed from LRU. This is safe because uncharged page is expected not
1329 * to be reused (freed soon). Exception is SwapCache, it's handled by
1330 * special functions.
1331 */
1332
1333 mz = page_cgroup_zoneinfo(pc);
1334 unlock_page_cgroup(pc);
1335
1336 /* at swapout, this memcg will be accessed to record to swap */
1337 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1338 css_put(&mem->css);
1339
1340 return mem;
1341
1342unlock_out:
1343 unlock_page_cgroup(pc);
1344 return NULL;
1345}
1346
1347void mem_cgroup_uncharge_page(struct page *page)
1348{
1349 /* early check. */
1350 if (page_mapped(page))
1351 return;
1352 if (page->mapping && !PageAnon(page))
1353 return;
1354 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1355}
1356
1357void mem_cgroup_uncharge_cache_page(struct page *page)
1358{
1359 VM_BUG_ON(page_mapped(page));
1360 VM_BUG_ON(page->mapping);
1361 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1362}
1363
1364/*
1365 * called from __delete_from_swap_cache() and drop "page" account.
1366 * memcg information is recorded to swap_cgroup of "ent"
1367 */
1368void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1369{
1370 struct mem_cgroup *memcg;
1371
1372 memcg = __mem_cgroup_uncharge_common(page,
1373 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1374 /* record memcg information */
1375 if (do_swap_account && memcg) {
1376 swap_cgroup_record(ent, memcg);
1377 mem_cgroup_get(memcg);
1378 }
1379 if (memcg)
1380 css_put(&memcg->css);
1381}
1382
1383#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1384/*
1385 * called from swap_entry_free(). remove record in swap_cgroup and
1386 * uncharge "memsw" account.
1387 */
1388void mem_cgroup_uncharge_swap(swp_entry_t ent)
1389{
1390 struct mem_cgroup *memcg;
1391
1392 if (!do_swap_account)
1393 return;
1394
1395 memcg = swap_cgroup_record(ent, NULL);
1396 if (memcg) {
1397 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1398 mem_cgroup_put(memcg);
1399 }
1400}
1401#endif
1402
1403/*
1404 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1405 * page belongs to.
1406 */
1407int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1408{
1409 struct page_cgroup *pc;
1410 struct mem_cgroup *mem = NULL;
1411 int ret = 0;
1412
1413 if (mem_cgroup_disabled())
1414 return 0;
1415
1416 pc = lookup_page_cgroup(page);
1417 lock_page_cgroup(pc);
1418 if (PageCgroupUsed(pc)) {
1419 mem = pc->mem_cgroup;
1420 css_get(&mem->css);
1421 }
1422 unlock_page_cgroup(pc);
1423
1424 if (mem) {
1425 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
1426 css_put(&mem->css);
1427 }
1428 *ptr = mem;
1429 return ret;
1430}
1431
1432/* remove redundant charge if migration failed*/
1433void mem_cgroup_end_migration(struct mem_cgroup *mem,
1434 struct page *oldpage, struct page *newpage)
1435{
1436 struct page *target, *unused;
1437 struct page_cgroup *pc;
1438 enum charge_type ctype;
1439
1440 if (!mem)
1441 return;
1442
1443 /* at migration success, oldpage->mapping is NULL. */
1444 if (oldpage->mapping) {
1445 target = oldpage;
1446 unused = NULL;
1447 } else {
1448 target = newpage;
1449 unused = oldpage;
1450 }
1451
1452 if (PageAnon(target))
1453 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1454 else if (page_is_file_cache(target))
1455 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1456 else
1457 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1458
1459 /* unused page is not on radix-tree now. */
1460 if (unused)
1461 __mem_cgroup_uncharge_common(unused, ctype);
1462
1463 pc = lookup_page_cgroup(target);
1464 /*
1465 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1466 * So, double-counting is effectively avoided.
1467 */
1468 __mem_cgroup_commit_charge(mem, pc, ctype);
1469
1470 /*
1471 * Both of oldpage and newpage are still under lock_page().
1472 * Then, we don't have to care about race in radix-tree.
1473 * But we have to be careful that this page is unmapped or not.
1474 *
1475 * There is a case for !page_mapped(). At the start of
1476 * migration, oldpage was mapped. But now, it's zapped.
1477 * But we know *target* page is not freed/reused under us.
1478 * mem_cgroup_uncharge_page() does all necessary checks.
1479 */
1480 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1481 mem_cgroup_uncharge_page(target);
1482}
1483
1484/*
1485 * A call to try to shrink memory usage under specified resource controller.
1486 * This is typically used for page reclaiming for shmem for reducing side
1487 * effect of page allocation from shmem, which is used by some mem_cgroup.
1488 */
1489int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
1490{
1491 struct mem_cgroup *mem;
1492 int progress = 0;
1493 int retry = MEM_CGROUP_RECLAIM_RETRIES;
1494
1495 if (mem_cgroup_disabled())
1496 return 0;
1497 if (!mm)
1498 return 0;
1499
1500 mem = try_get_mem_cgroup_from_mm(mm);
1501 if (unlikely(!mem))
1502 return 0;
1503
1504 do {
1505 progress = mem_cgroup_hierarchical_reclaim(mem, gfp_mask, true);
1506 progress += mem_cgroup_check_under_limit(mem);
1507 } while (!progress && --retry);
1508
1509 css_put(&mem->css);
1510 if (!retry)
1511 return -ENOMEM;
1512 return 0;
1513}
1514
1515static DEFINE_MUTEX(set_limit_mutex);
1516
1517static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1518 unsigned long long val)
1519{
1520
1521 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1522 int progress;
1523 u64 memswlimit;
1524 int ret = 0;
1525
1526 while (retry_count) {
1527 if (signal_pending(current)) {
1528 ret = -EINTR;
1529 break;
1530 }
1531 /*
1532 * Rather than hide all in some function, I do this in
1533 * open coded manner. You see what this really does.
1534 * We have to guarantee mem->res.limit < mem->memsw.limit.
1535 */
1536 mutex_lock(&set_limit_mutex);
1537 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1538 if (memswlimit < val) {
1539 ret = -EINVAL;
1540 mutex_unlock(&set_limit_mutex);
1541 break;
1542 }
1543 ret = res_counter_set_limit(&memcg->res, val);
1544 mutex_unlock(&set_limit_mutex);
1545
1546 if (!ret)
1547 break;
1548
1549 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1550 false);
1551 if (!progress) retry_count--;
1552 }
1553
1554 return ret;
1555}
1556
1557int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1558 unsigned long long val)
1559{
1560 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1561 u64 memlimit, oldusage, curusage;
1562 int ret;
1563
1564 if (!do_swap_account)
1565 return -EINVAL;
1566
1567 while (retry_count) {
1568 if (signal_pending(current)) {
1569 ret = -EINTR;
1570 break;
1571 }
1572 /*
1573 * Rather than hide all in some function, I do this in
1574 * open coded manner. You see what this really does.
1575 * We have to guarantee mem->res.limit < mem->memsw.limit.
1576 */
1577 mutex_lock(&set_limit_mutex);
1578 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1579 if (memlimit > val) {
1580 ret = -EINVAL;
1581 mutex_unlock(&set_limit_mutex);
1582 break;
1583 }
1584 ret = res_counter_set_limit(&memcg->memsw, val);
1585 mutex_unlock(&set_limit_mutex);
1586
1587 if (!ret)
1588 break;
1589
1590 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1591 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true);
1592 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1593 if (curusage >= oldusage)
1594 retry_count--;
1595 }
1596 return ret;
1597}
1598
1599/*
1600 * This routine traverse page_cgroup in given list and drop them all.
1601 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1602 */
1603static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1604 int node, int zid, enum lru_list lru)
1605{
1606 struct zone *zone;
1607 struct mem_cgroup_per_zone *mz;
1608 struct page_cgroup *pc, *busy;
1609 unsigned long flags, loop;
1610 struct list_head *list;
1611 int ret = 0;
1612
1613 zone = &NODE_DATA(node)->node_zones[zid];
1614 mz = mem_cgroup_zoneinfo(mem, node, zid);
1615 list = &mz->lists[lru];
1616
1617 loop = MEM_CGROUP_ZSTAT(mz, lru);
1618 /* give some margin against EBUSY etc...*/
1619 loop += 256;
1620 busy = NULL;
1621 while (loop--) {
1622 ret = 0;
1623 spin_lock_irqsave(&zone->lru_lock, flags);
1624 if (list_empty(list)) {
1625 spin_unlock_irqrestore(&zone->lru_lock, flags);
1626 break;
1627 }
1628 pc = list_entry(list->prev, struct page_cgroup, lru);
1629 if (busy == pc) {
1630 list_move(&pc->lru, list);
1631 busy = 0;
1632 spin_unlock_irqrestore(&zone->lru_lock, flags);
1633 continue;
1634 }
1635 spin_unlock_irqrestore(&zone->lru_lock, flags);
1636
1637 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1638 if (ret == -ENOMEM)
1639 break;
1640
1641 if (ret == -EBUSY || ret == -EINVAL) {
1642 /* found lock contention or "pc" is obsolete. */
1643 busy = pc;
1644 cond_resched();
1645 } else
1646 busy = NULL;
1647 }
1648
1649 if (!ret && !list_empty(list))
1650 return -EBUSY;
1651 return ret;
1652}
1653
1654/*
1655 * make mem_cgroup's charge to be 0 if there is no task.
1656 * This enables deleting this mem_cgroup.
1657 */
1658static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1659{
1660 int ret;
1661 int node, zid, shrink;
1662 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1663 struct cgroup *cgrp = mem->css.cgroup;
1664
1665 css_get(&mem->css);
1666
1667 shrink = 0;
1668 /* should free all ? */
1669 if (free_all)
1670 goto try_to_free;
1671move_account:
1672 while (mem->res.usage > 0) {
1673 ret = -EBUSY;
1674 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1675 goto out;
1676 ret = -EINTR;
1677 if (signal_pending(current))
1678 goto out;
1679 /* This is for making all *used* pages to be on LRU. */
1680 lru_add_drain_all();
1681 ret = 0;
1682 for_each_node_state(node, N_POSSIBLE) {
1683 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1684 enum lru_list l;
1685 for_each_lru(l) {
1686 ret = mem_cgroup_force_empty_list(mem,
1687 node, zid, l);
1688 if (ret)
1689 break;
1690 }
1691 }
1692 if (ret)
1693 break;
1694 }
1695 /* it seems parent cgroup doesn't have enough mem */
1696 if (ret == -ENOMEM)
1697 goto try_to_free;
1698 cond_resched();
1699 }
1700 ret = 0;
1701out:
1702 css_put(&mem->css);
1703 return ret;
1704
1705try_to_free:
1706 /* returns EBUSY if there is a task or if we come here twice. */
1707 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1708 ret = -EBUSY;
1709 goto out;
1710 }
1711 /* we call try-to-free pages for make this cgroup empty */
1712 lru_add_drain_all();
1713 /* try to free all pages in this cgroup */
1714 shrink = 1;
1715 while (nr_retries && mem->res.usage > 0) {
1716 int progress;
1717
1718 if (signal_pending(current)) {
1719 ret = -EINTR;
1720 goto out;
1721 }
1722 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1723 false, get_swappiness(mem));
1724 if (!progress) {
1725 nr_retries--;
1726 /* maybe some writeback is necessary */
1727 congestion_wait(WRITE, HZ/10);
1728 }
1729
1730 }
1731 lru_add_drain();
1732 /* try move_account...there may be some *locked* pages. */
1733 if (mem->res.usage)
1734 goto move_account;
1735 ret = 0;
1736 goto out;
1737}
1738
1739int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1740{
1741 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1742}
1743
1744
1745static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1746{
1747 return mem_cgroup_from_cont(cont)->use_hierarchy;
1748}
1749
1750static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1751 u64 val)
1752{
1753 int retval = 0;
1754 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1755 struct cgroup *parent = cont->parent;
1756 struct mem_cgroup *parent_mem = NULL;
1757
1758 if (parent)
1759 parent_mem = mem_cgroup_from_cont(parent);
1760
1761 cgroup_lock();
1762 /*
1763 * If parent's use_hiearchy is set, we can't make any modifications
1764 * in the child subtrees. If it is unset, then the change can
1765 * occur, provided the current cgroup has no children.
1766 *
1767 * For the root cgroup, parent_mem is NULL, we allow value to be
1768 * set if there are no children.
1769 */
1770 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1771 (val == 1 || val == 0)) {
1772 if (list_empty(&cont->children))
1773 mem->use_hierarchy = val;
1774 else
1775 retval = -EBUSY;
1776 } else
1777 retval = -EINVAL;
1778 cgroup_unlock();
1779
1780 return retval;
1781}
1782
1783static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
1784{
1785 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1786 u64 val = 0;
1787 int type, name;
1788
1789 type = MEMFILE_TYPE(cft->private);
1790 name = MEMFILE_ATTR(cft->private);
1791 switch (type) {
1792 case _MEM:
1793 val = res_counter_read_u64(&mem->res, name);
1794 break;
1795 case _MEMSWAP:
1796 if (do_swap_account)
1797 val = res_counter_read_u64(&mem->memsw, name);
1798 break;
1799 default:
1800 BUG();
1801 break;
1802 }
1803 return val;
1804}
1805/*
1806 * The user of this function is...
1807 * RES_LIMIT.
1808 */
1809static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1810 const char *buffer)
1811{
1812 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1813 int type, name;
1814 unsigned long long val;
1815 int ret;
1816
1817 type = MEMFILE_TYPE(cft->private);
1818 name = MEMFILE_ATTR(cft->private);
1819 switch (name) {
1820 case RES_LIMIT:
1821 /* This function does all necessary parse...reuse it */
1822 ret = res_counter_memparse_write_strategy(buffer, &val);
1823 if (ret)
1824 break;
1825 if (type == _MEM)
1826 ret = mem_cgroup_resize_limit(memcg, val);
1827 else
1828 ret = mem_cgroup_resize_memsw_limit(memcg, val);
1829 break;
1830 default:
1831 ret = -EINVAL; /* should be BUG() ? */
1832 break;
1833 }
1834 return ret;
1835}
1836
1837static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
1838 unsigned long long *mem_limit, unsigned long long *memsw_limit)
1839{
1840 struct cgroup *cgroup;
1841 unsigned long long min_limit, min_memsw_limit, tmp;
1842
1843 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1844 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1845 cgroup = memcg->css.cgroup;
1846 if (!memcg->use_hierarchy)
1847 goto out;
1848
1849 while (cgroup->parent) {
1850 cgroup = cgroup->parent;
1851 memcg = mem_cgroup_from_cont(cgroup);
1852 if (!memcg->use_hierarchy)
1853 break;
1854 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
1855 min_limit = min(min_limit, tmp);
1856 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1857 min_memsw_limit = min(min_memsw_limit, tmp);
1858 }
1859out:
1860 *mem_limit = min_limit;
1861 *memsw_limit = min_memsw_limit;
1862 return;
1863}
1864
1865static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
1866{
1867 struct mem_cgroup *mem;
1868 int type, name;
1869
1870 mem = mem_cgroup_from_cont(cont);
1871 type = MEMFILE_TYPE(event);
1872 name = MEMFILE_ATTR(event);
1873 switch (name) {
1874 case RES_MAX_USAGE:
1875 if (type == _MEM)
1876 res_counter_reset_max(&mem->res);
1877 else
1878 res_counter_reset_max(&mem->memsw);
1879 break;
1880 case RES_FAILCNT:
1881 if (type == _MEM)
1882 res_counter_reset_failcnt(&mem->res);
1883 else
1884 res_counter_reset_failcnt(&mem->memsw);
1885 break;
1886 }
1887 return 0;
1888}
1889
1890static const struct mem_cgroup_stat_desc {
1891 const char *msg;
1892 u64 unit;
1893} mem_cgroup_stat_desc[] = {
1894 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1895 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
1896 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1897 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
1898};
1899
1900static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1901 struct cgroup_map_cb *cb)
1902{
1903 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1904 struct mem_cgroup_stat *stat = &mem_cont->stat;
1905 int i;
1906
1907 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1908 s64 val;
1909
1910 val = mem_cgroup_read_stat(stat, i);
1911 val *= mem_cgroup_stat_desc[i].unit;
1912 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
1913 }
1914 /* showing # of active pages */
1915 {
1916 unsigned long active_anon, inactive_anon;
1917 unsigned long active_file, inactive_file;
1918 unsigned long unevictable;
1919
1920 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1921 LRU_INACTIVE_ANON);
1922 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1923 LRU_ACTIVE_ANON);
1924 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1925 LRU_INACTIVE_FILE);
1926 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1927 LRU_ACTIVE_FILE);
1928 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1929 LRU_UNEVICTABLE);
1930
1931 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1932 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1933 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1934 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
1935 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1936
1937 }
1938 {
1939 unsigned long long limit, memsw_limit;
1940 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
1941 cb->fill(cb, "hierarchical_memory_limit", limit);
1942 if (do_swap_account)
1943 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
1944 }
1945
1946#ifdef CONFIG_DEBUG_VM
1947 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
1948
1949 {
1950 int nid, zid;
1951 struct mem_cgroup_per_zone *mz;
1952 unsigned long recent_rotated[2] = {0, 0};
1953 unsigned long recent_scanned[2] = {0, 0};
1954
1955 for_each_online_node(nid)
1956 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1957 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1958
1959 recent_rotated[0] +=
1960 mz->reclaim_stat.recent_rotated[0];
1961 recent_rotated[1] +=
1962 mz->reclaim_stat.recent_rotated[1];
1963 recent_scanned[0] +=
1964 mz->reclaim_stat.recent_scanned[0];
1965 recent_scanned[1] +=
1966 mz->reclaim_stat.recent_scanned[1];
1967 }
1968 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
1969 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
1970 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
1971 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
1972 }
1973#endif
1974
1975 return 0;
1976}
1977
1978static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
1979{
1980 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1981
1982 return get_swappiness(memcg);
1983}
1984
1985static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
1986 u64 val)
1987{
1988 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1989 struct mem_cgroup *parent;
1990 if (val > 100)
1991 return -EINVAL;
1992
1993 if (cgrp->parent == NULL)
1994 return -EINVAL;
1995
1996 parent = mem_cgroup_from_cont(cgrp->parent);
1997 /* If under hierarchy, only empty-root can set this value */
1998 if ((parent->use_hierarchy) ||
1999 (memcg->use_hierarchy && !list_empty(&cgrp->children)))
2000 return -EINVAL;
2001
2002 spin_lock(&memcg->reclaim_param_lock);
2003 memcg->swappiness = val;
2004 spin_unlock(&memcg->reclaim_param_lock);
2005
2006 return 0;
2007}
2008
2009
2010static struct cftype mem_cgroup_files[] = {
2011 {
2012 .name = "usage_in_bytes",
2013 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2014 .read_u64 = mem_cgroup_read,
2015 },
2016 {
2017 .name = "max_usage_in_bytes",
2018 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2019 .trigger = mem_cgroup_reset,
2020 .read_u64 = mem_cgroup_read,
2021 },
2022 {
2023 .name = "limit_in_bytes",
2024 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2025 .write_string = mem_cgroup_write,
2026 .read_u64 = mem_cgroup_read,
2027 },
2028 {
2029 .name = "failcnt",
2030 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2031 .trigger = mem_cgroup_reset,
2032 .read_u64 = mem_cgroup_read,
2033 },
2034 {
2035 .name = "stat",
2036 .read_map = mem_control_stat_show,
2037 },
2038 {
2039 .name = "force_empty",
2040 .trigger = mem_cgroup_force_empty_write,
2041 },
2042 {
2043 .name = "use_hierarchy",
2044 .write_u64 = mem_cgroup_hierarchy_write,
2045 .read_u64 = mem_cgroup_hierarchy_read,
2046 },
2047 {
2048 .name = "swappiness",
2049 .read_u64 = mem_cgroup_swappiness_read,
2050 .write_u64 = mem_cgroup_swappiness_write,
2051 },
2052};
2053
2054#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2055static struct cftype memsw_cgroup_files[] = {
2056 {
2057 .name = "memsw.usage_in_bytes",
2058 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2059 .read_u64 = mem_cgroup_read,
2060 },
2061 {
2062 .name = "memsw.max_usage_in_bytes",
2063 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2064 .trigger = mem_cgroup_reset,
2065 .read_u64 = mem_cgroup_read,
2066 },
2067 {
2068 .name = "memsw.limit_in_bytes",
2069 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2070 .write_string = mem_cgroup_write,
2071 .read_u64 = mem_cgroup_read,
2072 },
2073 {
2074 .name = "memsw.failcnt",
2075 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2076 .trigger = mem_cgroup_reset,
2077 .read_u64 = mem_cgroup_read,
2078 },
2079};
2080
2081static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2082{
2083 if (!do_swap_account)
2084 return 0;
2085 return cgroup_add_files(cont, ss, memsw_cgroup_files,
2086 ARRAY_SIZE(memsw_cgroup_files));
2087};
2088#else
2089static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2090{
2091 return 0;
2092}
2093#endif
2094
2095static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2096{
2097 struct mem_cgroup_per_node *pn;
2098 struct mem_cgroup_per_zone *mz;
2099 enum lru_list l;
2100 int zone, tmp = node;
2101 /*
2102 * This routine is called against possible nodes.
2103 * But it's BUG to call kmalloc() against offline node.
2104 *
2105 * TODO: this routine can waste much memory for nodes which will
2106 * never be onlined. It's better to use memory hotplug callback
2107 * function.
2108 */
2109 if (!node_state(node, N_NORMAL_MEMORY))
2110 tmp = -1;
2111 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2112 if (!pn)
2113 return 1;
2114
2115 mem->info.nodeinfo[node] = pn;
2116 memset(pn, 0, sizeof(*pn));
2117
2118 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2119 mz = &pn->zoneinfo[zone];
2120 for_each_lru(l)
2121 INIT_LIST_HEAD(&mz->lists[l]);
2122 }
2123 return 0;
2124}
2125
2126static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2127{
2128 kfree(mem->info.nodeinfo[node]);
2129}
2130
2131static int mem_cgroup_size(void)
2132{
2133 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2134 return sizeof(struct mem_cgroup) + cpustat_size;
2135}
2136
2137static struct mem_cgroup *mem_cgroup_alloc(void)
2138{
2139 struct mem_cgroup *mem;
2140 int size = mem_cgroup_size();
2141
2142 if (size < PAGE_SIZE)
2143 mem = kmalloc(size, GFP_KERNEL);
2144 else
2145 mem = vmalloc(size);
2146
2147 if (mem)
2148 memset(mem, 0, size);
2149 return mem;
2150}
2151
2152/*
2153 * At destroying mem_cgroup, references from swap_cgroup can remain.
2154 * (scanning all at force_empty is too costly...)
2155 *
2156 * Instead of clearing all references at force_empty, we remember
2157 * the number of reference from swap_cgroup and free mem_cgroup when
2158 * it goes down to 0.
2159 *
2160 * Removal of cgroup itself succeeds regardless of refs from swap.
2161 */
2162
2163static void __mem_cgroup_free(struct mem_cgroup *mem)
2164{
2165 int node;
2166
2167 for_each_node_state(node, N_POSSIBLE)
2168 free_mem_cgroup_per_zone_info(mem, node);
2169
2170 if (mem_cgroup_size() < PAGE_SIZE)
2171 kfree(mem);
2172 else
2173 vfree(mem);
2174}
2175
2176static void mem_cgroup_get(struct mem_cgroup *mem)
2177{
2178 atomic_inc(&mem->refcnt);
2179}
2180
2181static void mem_cgroup_put(struct mem_cgroup *mem)
2182{
2183 if (atomic_dec_and_test(&mem->refcnt))
2184 __mem_cgroup_free(mem);
2185}
2186
2187
2188#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2189static void __init enable_swap_cgroup(void)
2190{
2191 if (!mem_cgroup_disabled() && really_do_swap_account)
2192 do_swap_account = 1;
2193}
2194#else
2195static void __init enable_swap_cgroup(void)
2196{
2197}
2198#endif
2199
2200static struct cgroup_subsys_state *
2201mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2202{
2203 struct mem_cgroup *mem, *parent;
2204 int node;
2205
2206 mem = mem_cgroup_alloc();
2207 if (!mem)
2208 return ERR_PTR(-ENOMEM);
2209
2210 for_each_node_state(node, N_POSSIBLE)
2211 if (alloc_mem_cgroup_per_zone_info(mem, node))
2212 goto free_out;
2213 /* root ? */
2214 if (cont->parent == NULL) {
2215 enable_swap_cgroup();
2216 parent = NULL;
2217 } else {
2218 parent = mem_cgroup_from_cont(cont->parent);
2219 mem->use_hierarchy = parent->use_hierarchy;
2220 }
2221
2222 if (parent && parent->use_hierarchy) {
2223 res_counter_init(&mem->res, &parent->res);
2224 res_counter_init(&mem->memsw, &parent->memsw);
2225 } else {
2226 res_counter_init(&mem->res, NULL);
2227 res_counter_init(&mem->memsw, NULL);
2228 }
2229 mem->last_scanned_child = NULL;
2230 spin_lock_init(&mem->reclaim_param_lock);
2231
2232 if (parent)
2233 mem->swappiness = get_swappiness(parent);
2234 atomic_set(&mem->refcnt, 1);
2235 return &mem->css;
2236free_out:
2237 __mem_cgroup_free(mem);
2238 return ERR_PTR(-ENOMEM);
2239}
2240
2241static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2242 struct cgroup *cont)
2243{
2244 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2245 mem_cgroup_force_empty(mem, false);
2246}
2247
2248static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2249 struct cgroup *cont)
2250{
2251 mem_cgroup_put(mem_cgroup_from_cont(cont));
2252}
2253
2254static int mem_cgroup_populate(struct cgroup_subsys *ss,
2255 struct cgroup *cont)
2256{
2257 int ret;
2258
2259 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2260 ARRAY_SIZE(mem_cgroup_files));
2261
2262 if (!ret)
2263 ret = register_memsw_files(cont, ss);
2264 return ret;
2265}
2266
2267static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2268 struct cgroup *cont,
2269 struct cgroup *old_cont,
2270 struct task_struct *p)
2271{
2272 mutex_lock(&memcg_tasklist);
2273 /*
2274 * FIXME: It's better to move charges of this process from old
2275 * memcg to new memcg. But it's just on TODO-List now.
2276 */
2277 mutex_unlock(&memcg_tasklist);
2278}
2279
2280struct cgroup_subsys mem_cgroup_subsys = {
2281 .name = "memory",
2282 .subsys_id = mem_cgroup_subsys_id,
2283 .create = mem_cgroup_create,
2284 .pre_destroy = mem_cgroup_pre_destroy,
2285 .destroy = mem_cgroup_destroy,
2286 .populate = mem_cgroup_populate,
2287 .attach = mem_cgroup_move_task,
2288 .early_init = 0,
2289};
2290
2291#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2292
2293static int __init disable_swap_account(char *s)
2294{
2295 really_do_swap_account = 0;
2296 return 1;
2297}
2298__setup("noswapaccount", disable_swap_account);
2299#endif