]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - mm/memcontrol.c
memcg: use CSS ID
[net-next-2.6.git] / mm / memcontrol.c
... / ...
CommitLineData
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
23#include <linux/mm.h>
24#include <linux/pagemap.h>
25#include <linux/smp.h>
26#include <linux/page-flags.h>
27#include <linux/backing-dev.h>
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
30#include <linux/mutex.h>
31#include <linux/slab.h>
32#include <linux/swap.h>
33#include <linux/spinlock.h>
34#include <linux/fs.h>
35#include <linux/seq_file.h>
36#include <linux/vmalloc.h>
37#include <linux/mm_inline.h>
38#include <linux/page_cgroup.h>
39#include "internal.h"
40
41#include <asm/uaccess.h>
42
43struct cgroup_subsys mem_cgroup_subsys __read_mostly;
44#define MEM_CGROUP_RECLAIM_RETRIES 5
45
46#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48int do_swap_account __read_mostly;
49static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50#else
51#define do_swap_account (0)
52#endif
53
54static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */
55
56/*
57 * Statistics for memory cgroup.
58 */
59enum mem_cgroup_stat_index {
60 /*
61 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
62 */
63 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
64 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
65 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
66 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
67
68 MEM_CGROUP_STAT_NSTATS,
69};
70
71struct mem_cgroup_stat_cpu {
72 s64 count[MEM_CGROUP_STAT_NSTATS];
73} ____cacheline_aligned_in_smp;
74
75struct mem_cgroup_stat {
76 struct mem_cgroup_stat_cpu cpustat[0];
77};
78
79/*
80 * For accounting under irq disable, no need for increment preempt count.
81 */
82static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
83 enum mem_cgroup_stat_index idx, int val)
84{
85 stat->count[idx] += val;
86}
87
88static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
89 enum mem_cgroup_stat_index idx)
90{
91 int cpu;
92 s64 ret = 0;
93 for_each_possible_cpu(cpu)
94 ret += stat->cpustat[cpu].count[idx];
95 return ret;
96}
97
98static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
99{
100 s64 ret;
101
102 ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
103 ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
104 return ret;
105}
106
107/*
108 * per-zone information in memory controller.
109 */
110struct mem_cgroup_per_zone {
111 /*
112 * spin_lock to protect the per cgroup LRU
113 */
114 struct list_head lists[NR_LRU_LISTS];
115 unsigned long count[NR_LRU_LISTS];
116
117 struct zone_reclaim_stat reclaim_stat;
118};
119/* Macro for accessing counter */
120#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
121
122struct mem_cgroup_per_node {
123 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
124};
125
126struct mem_cgroup_lru_info {
127 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
128};
129
130/*
131 * The memory controller data structure. The memory controller controls both
132 * page cache and RSS per cgroup. We would eventually like to provide
133 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
134 * to help the administrator determine what knobs to tune.
135 *
136 * TODO: Add a water mark for the memory controller. Reclaim will begin when
137 * we hit the water mark. May be even add a low water mark, such that
138 * no reclaim occurs from a cgroup at it's low water mark, this is
139 * a feature that will be implemented much later in the future.
140 */
141struct mem_cgroup {
142 struct cgroup_subsys_state css;
143 /*
144 * the counter to account for memory usage
145 */
146 struct res_counter res;
147 /*
148 * the counter to account for mem+swap usage.
149 */
150 struct res_counter memsw;
151 /*
152 * Per cgroup active and inactive list, similar to the
153 * per zone LRU lists.
154 */
155 struct mem_cgroup_lru_info info;
156
157 /*
158 protect against reclaim related member.
159 */
160 spinlock_t reclaim_param_lock;
161
162 int prev_priority; /* for recording reclaim priority */
163
164 /*
165 * While reclaiming in a hiearchy, we cache the last child we
166 * reclaimed from.
167 */
168 int last_scanned_child;
169 /*
170 * Should the accounting and control be hierarchical, per subtree?
171 */
172 bool use_hierarchy;
173 unsigned long last_oom_jiffies;
174 atomic_t refcnt;
175
176 unsigned int swappiness;
177
178 /*
179 * statistics. This must be placed at the end of memcg.
180 */
181 struct mem_cgroup_stat stat;
182};
183
184enum charge_type {
185 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
186 MEM_CGROUP_CHARGE_TYPE_MAPPED,
187 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
188 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
189 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
190 NR_CHARGE_TYPE,
191};
192
193/* only for here (for easy reading.) */
194#define PCGF_CACHE (1UL << PCG_CACHE)
195#define PCGF_USED (1UL << PCG_USED)
196#define PCGF_LOCK (1UL << PCG_LOCK)
197static const unsigned long
198pcg_default_flags[NR_CHARGE_TYPE] = {
199 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
200 PCGF_USED | PCGF_LOCK, /* Anon */
201 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
202 0, /* FORCE */
203};
204
205/* for encoding cft->private value on file */
206#define _MEM (0)
207#define _MEMSWAP (1)
208#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
209#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
210#define MEMFILE_ATTR(val) ((val) & 0xffff)
211
212static void mem_cgroup_get(struct mem_cgroup *mem);
213static void mem_cgroup_put(struct mem_cgroup *mem);
214static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
215
216static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
217 struct page_cgroup *pc,
218 bool charge)
219{
220 int val = (charge)? 1 : -1;
221 struct mem_cgroup_stat *stat = &mem->stat;
222 struct mem_cgroup_stat_cpu *cpustat;
223 int cpu = get_cpu();
224
225 cpustat = &stat->cpustat[cpu];
226 if (PageCgroupCache(pc))
227 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
228 else
229 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
230
231 if (charge)
232 __mem_cgroup_stat_add_safe(cpustat,
233 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
234 else
235 __mem_cgroup_stat_add_safe(cpustat,
236 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
237 put_cpu();
238}
239
240static struct mem_cgroup_per_zone *
241mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
242{
243 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
244}
245
246static struct mem_cgroup_per_zone *
247page_cgroup_zoneinfo(struct page_cgroup *pc)
248{
249 struct mem_cgroup *mem = pc->mem_cgroup;
250 int nid = page_cgroup_nid(pc);
251 int zid = page_cgroup_zid(pc);
252
253 if (!mem)
254 return NULL;
255
256 return mem_cgroup_zoneinfo(mem, nid, zid);
257}
258
259static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
260 enum lru_list idx)
261{
262 int nid, zid;
263 struct mem_cgroup_per_zone *mz;
264 u64 total = 0;
265
266 for_each_online_node(nid)
267 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
268 mz = mem_cgroup_zoneinfo(mem, nid, zid);
269 total += MEM_CGROUP_ZSTAT(mz, idx);
270 }
271 return total;
272}
273
274static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
275{
276 return container_of(cgroup_subsys_state(cont,
277 mem_cgroup_subsys_id), struct mem_cgroup,
278 css);
279}
280
281struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
282{
283 /*
284 * mm_update_next_owner() may clear mm->owner to NULL
285 * if it races with swapoff, page migration, etc.
286 * So this can be called with p == NULL.
287 */
288 if (unlikely(!p))
289 return NULL;
290
291 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
292 struct mem_cgroup, css);
293}
294
295static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
296{
297 struct mem_cgroup *mem = NULL;
298 /*
299 * Because we have no locks, mm->owner's may be being moved to other
300 * cgroup. We use css_tryget() here even if this looks
301 * pessimistic (rather than adding locks here).
302 */
303 rcu_read_lock();
304 do {
305 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
306 if (unlikely(!mem))
307 break;
308 } while (!css_tryget(&mem->css));
309 rcu_read_unlock();
310 return mem;
311}
312
313static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem)
314{
315 if (!mem)
316 return true;
317 return css_is_removed(&mem->css);
318}
319
320/*
321 * Following LRU functions are allowed to be used without PCG_LOCK.
322 * Operations are called by routine of global LRU independently from memcg.
323 * What we have to take care of here is validness of pc->mem_cgroup.
324 *
325 * Changes to pc->mem_cgroup happens when
326 * 1. charge
327 * 2. moving account
328 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
329 * It is added to LRU before charge.
330 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
331 * When moving account, the page is not on LRU. It's isolated.
332 */
333
334void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
335{
336 struct page_cgroup *pc;
337 struct mem_cgroup *mem;
338 struct mem_cgroup_per_zone *mz;
339
340 if (mem_cgroup_disabled())
341 return;
342 pc = lookup_page_cgroup(page);
343 /* can happen while we handle swapcache. */
344 if (list_empty(&pc->lru) || !pc->mem_cgroup)
345 return;
346 /*
347 * We don't check PCG_USED bit. It's cleared when the "page" is finally
348 * removed from global LRU.
349 */
350 mz = page_cgroup_zoneinfo(pc);
351 mem = pc->mem_cgroup;
352 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
353 list_del_init(&pc->lru);
354 return;
355}
356
357void mem_cgroup_del_lru(struct page *page)
358{
359 mem_cgroup_del_lru_list(page, page_lru(page));
360}
361
362void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
363{
364 struct mem_cgroup_per_zone *mz;
365 struct page_cgroup *pc;
366
367 if (mem_cgroup_disabled())
368 return;
369
370 pc = lookup_page_cgroup(page);
371 /*
372 * Used bit is set without atomic ops but after smp_wmb().
373 * For making pc->mem_cgroup visible, insert smp_rmb() here.
374 */
375 smp_rmb();
376 /* unused page is not rotated. */
377 if (!PageCgroupUsed(pc))
378 return;
379 mz = page_cgroup_zoneinfo(pc);
380 list_move(&pc->lru, &mz->lists[lru]);
381}
382
383void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
384{
385 struct page_cgroup *pc;
386 struct mem_cgroup_per_zone *mz;
387
388 if (mem_cgroup_disabled())
389 return;
390 pc = lookup_page_cgroup(page);
391 /*
392 * Used bit is set without atomic ops but after smp_wmb().
393 * For making pc->mem_cgroup visible, insert smp_rmb() here.
394 */
395 smp_rmb();
396 if (!PageCgroupUsed(pc))
397 return;
398
399 mz = page_cgroup_zoneinfo(pc);
400 MEM_CGROUP_ZSTAT(mz, lru) += 1;
401 list_add(&pc->lru, &mz->lists[lru]);
402}
403
404/*
405 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
406 * lru because the page may.be reused after it's fully uncharged (because of
407 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
408 * it again. This function is only used to charge SwapCache. It's done under
409 * lock_page and expected that zone->lru_lock is never held.
410 */
411static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
412{
413 unsigned long flags;
414 struct zone *zone = page_zone(page);
415 struct page_cgroup *pc = lookup_page_cgroup(page);
416
417 spin_lock_irqsave(&zone->lru_lock, flags);
418 /*
419 * Forget old LRU when this page_cgroup is *not* used. This Used bit
420 * is guarded by lock_page() because the page is SwapCache.
421 */
422 if (!PageCgroupUsed(pc))
423 mem_cgroup_del_lru_list(page, page_lru(page));
424 spin_unlock_irqrestore(&zone->lru_lock, flags);
425}
426
427static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
428{
429 unsigned long flags;
430 struct zone *zone = page_zone(page);
431 struct page_cgroup *pc = lookup_page_cgroup(page);
432
433 spin_lock_irqsave(&zone->lru_lock, flags);
434 /* link when the page is linked to LRU but page_cgroup isn't */
435 if (PageLRU(page) && list_empty(&pc->lru))
436 mem_cgroup_add_lru_list(page, page_lru(page));
437 spin_unlock_irqrestore(&zone->lru_lock, flags);
438}
439
440
441void mem_cgroup_move_lists(struct page *page,
442 enum lru_list from, enum lru_list to)
443{
444 if (mem_cgroup_disabled())
445 return;
446 mem_cgroup_del_lru_list(page, from);
447 mem_cgroup_add_lru_list(page, to);
448}
449
450int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
451{
452 int ret;
453
454 task_lock(task);
455 ret = task->mm && mm_match_cgroup(task->mm, mem);
456 task_unlock(task);
457 return ret;
458}
459
460/*
461 * Calculate mapped_ratio under memory controller. This will be used in
462 * vmscan.c for deteremining we have to reclaim mapped pages.
463 */
464int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
465{
466 long total, rss;
467
468 /*
469 * usage is recorded in bytes. But, here, we assume the number of
470 * physical pages can be represented by "long" on any arch.
471 */
472 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
473 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
474 return (int)((rss * 100L) / total);
475}
476
477/*
478 * prev_priority control...this will be used in memory reclaim path.
479 */
480int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
481{
482 int prev_priority;
483
484 spin_lock(&mem->reclaim_param_lock);
485 prev_priority = mem->prev_priority;
486 spin_unlock(&mem->reclaim_param_lock);
487
488 return prev_priority;
489}
490
491void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
492{
493 spin_lock(&mem->reclaim_param_lock);
494 if (priority < mem->prev_priority)
495 mem->prev_priority = priority;
496 spin_unlock(&mem->reclaim_param_lock);
497}
498
499void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
500{
501 spin_lock(&mem->reclaim_param_lock);
502 mem->prev_priority = priority;
503 spin_unlock(&mem->reclaim_param_lock);
504}
505
506static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
507{
508 unsigned long active;
509 unsigned long inactive;
510 unsigned long gb;
511 unsigned long inactive_ratio;
512
513 inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON);
514 active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON);
515
516 gb = (inactive + active) >> (30 - PAGE_SHIFT);
517 if (gb)
518 inactive_ratio = int_sqrt(10 * gb);
519 else
520 inactive_ratio = 1;
521
522 if (present_pages) {
523 present_pages[0] = inactive;
524 present_pages[1] = active;
525 }
526
527 return inactive_ratio;
528}
529
530int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
531{
532 unsigned long active;
533 unsigned long inactive;
534 unsigned long present_pages[2];
535 unsigned long inactive_ratio;
536
537 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
538
539 inactive = present_pages[0];
540 active = present_pages[1];
541
542 if (inactive * inactive_ratio < active)
543 return 1;
544
545 return 0;
546}
547
548unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
549 struct zone *zone,
550 enum lru_list lru)
551{
552 int nid = zone->zone_pgdat->node_id;
553 int zid = zone_idx(zone);
554 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
555
556 return MEM_CGROUP_ZSTAT(mz, lru);
557}
558
559struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
560 struct zone *zone)
561{
562 int nid = zone->zone_pgdat->node_id;
563 int zid = zone_idx(zone);
564 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
565
566 return &mz->reclaim_stat;
567}
568
569struct zone_reclaim_stat *
570mem_cgroup_get_reclaim_stat_from_page(struct page *page)
571{
572 struct page_cgroup *pc;
573 struct mem_cgroup_per_zone *mz;
574
575 if (mem_cgroup_disabled())
576 return NULL;
577
578 pc = lookup_page_cgroup(page);
579 /*
580 * Used bit is set without atomic ops but after smp_wmb().
581 * For making pc->mem_cgroup visible, insert smp_rmb() here.
582 */
583 smp_rmb();
584 if (!PageCgroupUsed(pc))
585 return NULL;
586
587 mz = page_cgroup_zoneinfo(pc);
588 if (!mz)
589 return NULL;
590
591 return &mz->reclaim_stat;
592}
593
594unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
595 struct list_head *dst,
596 unsigned long *scanned, int order,
597 int mode, struct zone *z,
598 struct mem_cgroup *mem_cont,
599 int active, int file)
600{
601 unsigned long nr_taken = 0;
602 struct page *page;
603 unsigned long scan;
604 LIST_HEAD(pc_list);
605 struct list_head *src;
606 struct page_cgroup *pc, *tmp;
607 int nid = z->zone_pgdat->node_id;
608 int zid = zone_idx(z);
609 struct mem_cgroup_per_zone *mz;
610 int lru = LRU_FILE * !!file + !!active;
611
612 BUG_ON(!mem_cont);
613 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
614 src = &mz->lists[lru];
615
616 scan = 0;
617 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
618 if (scan >= nr_to_scan)
619 break;
620
621 page = pc->page;
622 if (unlikely(!PageCgroupUsed(pc)))
623 continue;
624 if (unlikely(!PageLRU(page)))
625 continue;
626
627 scan++;
628 if (__isolate_lru_page(page, mode, file) == 0) {
629 list_move(&page->lru, dst);
630 nr_taken++;
631 }
632 }
633
634 *scanned = scan;
635 return nr_taken;
636}
637
638#define mem_cgroup_from_res_counter(counter, member) \
639 container_of(counter, struct mem_cgroup, member)
640
641static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
642{
643 if (do_swap_account) {
644 if (res_counter_check_under_limit(&mem->res) &&
645 res_counter_check_under_limit(&mem->memsw))
646 return true;
647 } else
648 if (res_counter_check_under_limit(&mem->res))
649 return true;
650 return false;
651}
652
653static unsigned int get_swappiness(struct mem_cgroup *memcg)
654{
655 struct cgroup *cgrp = memcg->css.cgroup;
656 unsigned int swappiness;
657
658 /* root ? */
659 if (cgrp->parent == NULL)
660 return vm_swappiness;
661
662 spin_lock(&memcg->reclaim_param_lock);
663 swappiness = memcg->swappiness;
664 spin_unlock(&memcg->reclaim_param_lock);
665
666 return swappiness;
667}
668
669/*
670 * Visit the first child (need not be the first child as per the ordering
671 * of the cgroup list, since we track last_scanned_child) of @mem and use
672 * that to reclaim free pages from.
673 */
674static struct mem_cgroup *
675mem_cgroup_select_victim(struct mem_cgroup *root_mem)
676{
677 struct mem_cgroup *ret = NULL;
678 struct cgroup_subsys_state *css;
679 int nextid, found;
680
681 if (!root_mem->use_hierarchy) {
682 css_get(&root_mem->css);
683 ret = root_mem;
684 }
685
686 while (!ret) {
687 rcu_read_lock();
688 nextid = root_mem->last_scanned_child + 1;
689 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
690 &found);
691 if (css && css_tryget(css))
692 ret = container_of(css, struct mem_cgroup, css);
693
694 rcu_read_unlock();
695 /* Updates scanning parameter */
696 spin_lock(&root_mem->reclaim_param_lock);
697 if (!css) {
698 /* this means start scan from ID:1 */
699 root_mem->last_scanned_child = 0;
700 } else
701 root_mem->last_scanned_child = found;
702 spin_unlock(&root_mem->reclaim_param_lock);
703 }
704
705 return ret;
706}
707
708/*
709 * Scan the hierarchy if needed to reclaim memory. We remember the last child
710 * we reclaimed from, so that we don't end up penalizing one child extensively
711 * based on its position in the children list.
712 *
713 * root_mem is the original ancestor that we've been reclaim from.
714 *
715 * We give up and return to the caller when we visit root_mem twice.
716 * (other groups can be removed while we're walking....)
717 */
718static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
719 gfp_t gfp_mask, bool noswap)
720{
721 struct mem_cgroup *victim;
722 int ret, total = 0;
723 int loop = 0;
724
725 while (loop < 2) {
726 victim = mem_cgroup_select_victim(root_mem);
727 if (victim == root_mem)
728 loop++;
729 if (!mem_cgroup_local_usage(&victim->stat)) {
730 /* this cgroup's local usage == 0 */
731 css_put(&victim->css);
732 continue;
733 }
734 /* we use swappiness of local cgroup */
735 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap,
736 get_swappiness(victim));
737 css_put(&victim->css);
738 total += ret;
739 if (mem_cgroup_check_under_limit(root_mem))
740 return 1 + total;
741 }
742 return total;
743}
744
745bool mem_cgroup_oom_called(struct task_struct *task)
746{
747 bool ret = false;
748 struct mem_cgroup *mem;
749 struct mm_struct *mm;
750
751 rcu_read_lock();
752 mm = task->mm;
753 if (!mm)
754 mm = &init_mm;
755 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
756 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
757 ret = true;
758 rcu_read_unlock();
759 return ret;
760}
761/*
762 * Unlike exported interface, "oom" parameter is added. if oom==true,
763 * oom-killer can be invoked.
764 */
765static int __mem_cgroup_try_charge(struct mm_struct *mm,
766 gfp_t gfp_mask, struct mem_cgroup **memcg,
767 bool oom)
768{
769 struct mem_cgroup *mem, *mem_over_limit;
770 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
771 struct res_counter *fail_res;
772
773 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
774 /* Don't account this! */
775 *memcg = NULL;
776 return 0;
777 }
778
779 /*
780 * We always charge the cgroup the mm_struct belongs to.
781 * The mm_struct's mem_cgroup changes on task migration if the
782 * thread group leader migrates. It's possible that mm is not
783 * set, if so charge the init_mm (happens for pagecache usage).
784 */
785 mem = *memcg;
786 if (likely(!mem)) {
787 mem = try_get_mem_cgroup_from_mm(mm);
788 *memcg = mem;
789 } else {
790 css_get(&mem->css);
791 }
792 if (unlikely(!mem))
793 return 0;
794
795 VM_BUG_ON(mem_cgroup_is_obsolete(mem));
796
797 while (1) {
798 int ret;
799 bool noswap = false;
800
801 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
802 if (likely(!ret)) {
803 if (!do_swap_account)
804 break;
805 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
806 &fail_res);
807 if (likely(!ret))
808 break;
809 /* mem+swap counter fails */
810 res_counter_uncharge(&mem->res, PAGE_SIZE);
811 noswap = true;
812 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
813 memsw);
814 } else
815 /* mem counter fails */
816 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
817 res);
818
819 if (!(gfp_mask & __GFP_WAIT))
820 goto nomem;
821
822 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
823 noswap);
824 if (ret)
825 continue;
826
827 /*
828 * try_to_free_mem_cgroup_pages() might not give us a full
829 * picture of reclaim. Some pages are reclaimed and might be
830 * moved to swap cache or just unmapped from the cgroup.
831 * Check the limit again to see if the reclaim reduced the
832 * current usage of the cgroup before giving up
833 *
834 */
835 if (mem_cgroup_check_under_limit(mem_over_limit))
836 continue;
837
838 if (!nr_retries--) {
839 if (oom) {
840 mutex_lock(&memcg_tasklist);
841 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
842 mutex_unlock(&memcg_tasklist);
843 mem_over_limit->last_oom_jiffies = jiffies;
844 }
845 goto nomem;
846 }
847 }
848 return 0;
849nomem:
850 css_put(&mem->css);
851 return -ENOMEM;
852}
853
854static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
855{
856 struct mem_cgroup *mem;
857 swp_entry_t ent;
858
859 if (!PageSwapCache(page))
860 return NULL;
861
862 ent.val = page_private(page);
863 mem = lookup_swap_cgroup(ent);
864 if (!mem)
865 return NULL;
866 if (!css_tryget(&mem->css))
867 return NULL;
868 return mem;
869}
870
871/*
872 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
873 * USED state. If already USED, uncharge and return.
874 */
875
876static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
877 struct page_cgroup *pc,
878 enum charge_type ctype)
879{
880 /* try_charge() can return NULL to *memcg, taking care of it. */
881 if (!mem)
882 return;
883
884 lock_page_cgroup(pc);
885 if (unlikely(PageCgroupUsed(pc))) {
886 unlock_page_cgroup(pc);
887 res_counter_uncharge(&mem->res, PAGE_SIZE);
888 if (do_swap_account)
889 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
890 css_put(&mem->css);
891 return;
892 }
893 pc->mem_cgroup = mem;
894 smp_wmb();
895 pc->flags = pcg_default_flags[ctype];
896
897 mem_cgroup_charge_statistics(mem, pc, true);
898
899 unlock_page_cgroup(pc);
900}
901
902/**
903 * mem_cgroup_move_account - move account of the page
904 * @pc: page_cgroup of the page.
905 * @from: mem_cgroup which the page is moved from.
906 * @to: mem_cgroup which the page is moved to. @from != @to.
907 *
908 * The caller must confirm following.
909 * - page is not on LRU (isolate_page() is useful.)
910 *
911 * returns 0 at success,
912 * returns -EBUSY when lock is busy or "pc" is unstable.
913 *
914 * This function does "uncharge" from old cgroup but doesn't do "charge" to
915 * new cgroup. It should be done by a caller.
916 */
917
918static int mem_cgroup_move_account(struct page_cgroup *pc,
919 struct mem_cgroup *from, struct mem_cgroup *to)
920{
921 struct mem_cgroup_per_zone *from_mz, *to_mz;
922 int nid, zid;
923 int ret = -EBUSY;
924
925 VM_BUG_ON(from == to);
926 VM_BUG_ON(PageLRU(pc->page));
927
928 nid = page_cgroup_nid(pc);
929 zid = page_cgroup_zid(pc);
930 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
931 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
932
933 if (!trylock_page_cgroup(pc))
934 return ret;
935
936 if (!PageCgroupUsed(pc))
937 goto out;
938
939 if (pc->mem_cgroup != from)
940 goto out;
941
942 res_counter_uncharge(&from->res, PAGE_SIZE);
943 mem_cgroup_charge_statistics(from, pc, false);
944 if (do_swap_account)
945 res_counter_uncharge(&from->memsw, PAGE_SIZE);
946 css_put(&from->css);
947
948 css_get(&to->css);
949 pc->mem_cgroup = to;
950 mem_cgroup_charge_statistics(to, pc, true);
951 ret = 0;
952out:
953 unlock_page_cgroup(pc);
954 return ret;
955}
956
957/*
958 * move charges to its parent.
959 */
960
961static int mem_cgroup_move_parent(struct page_cgroup *pc,
962 struct mem_cgroup *child,
963 gfp_t gfp_mask)
964{
965 struct page *page = pc->page;
966 struct cgroup *cg = child->css.cgroup;
967 struct cgroup *pcg = cg->parent;
968 struct mem_cgroup *parent;
969 int ret;
970
971 /* Is ROOT ? */
972 if (!pcg)
973 return -EINVAL;
974
975
976 parent = mem_cgroup_from_cont(pcg);
977
978
979 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
980 if (ret || !parent)
981 return ret;
982
983 if (!get_page_unless_zero(page)) {
984 ret = -EBUSY;
985 goto uncharge;
986 }
987
988 ret = isolate_lru_page(page);
989
990 if (ret)
991 goto cancel;
992
993 ret = mem_cgroup_move_account(pc, child, parent);
994
995 putback_lru_page(page);
996 if (!ret) {
997 put_page(page);
998 /* drop extra refcnt by try_charge() */
999 css_put(&parent->css);
1000 return 0;
1001 }
1002
1003cancel:
1004 put_page(page);
1005uncharge:
1006 /* drop extra refcnt by try_charge() */
1007 css_put(&parent->css);
1008 /* uncharge if move fails */
1009 res_counter_uncharge(&parent->res, PAGE_SIZE);
1010 if (do_swap_account)
1011 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1012 return ret;
1013}
1014
1015/*
1016 * Charge the memory controller for page usage.
1017 * Return
1018 * 0 if the charge was successful
1019 * < 0 if the cgroup is over its limit
1020 */
1021static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1022 gfp_t gfp_mask, enum charge_type ctype,
1023 struct mem_cgroup *memcg)
1024{
1025 struct mem_cgroup *mem;
1026 struct page_cgroup *pc;
1027 int ret;
1028
1029 pc = lookup_page_cgroup(page);
1030 /* can happen at boot */
1031 if (unlikely(!pc))
1032 return 0;
1033 prefetchw(pc);
1034
1035 mem = memcg;
1036 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1037 if (ret || !mem)
1038 return ret;
1039
1040 __mem_cgroup_commit_charge(mem, pc, ctype);
1041 return 0;
1042}
1043
1044int mem_cgroup_newpage_charge(struct page *page,
1045 struct mm_struct *mm, gfp_t gfp_mask)
1046{
1047 if (mem_cgroup_disabled())
1048 return 0;
1049 if (PageCompound(page))
1050 return 0;
1051 /*
1052 * If already mapped, we don't have to account.
1053 * If page cache, page->mapping has address_space.
1054 * But page->mapping may have out-of-use anon_vma pointer,
1055 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1056 * is NULL.
1057 */
1058 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1059 return 0;
1060 if (unlikely(!mm))
1061 mm = &init_mm;
1062 return mem_cgroup_charge_common(page, mm, gfp_mask,
1063 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1064}
1065
1066int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1067 gfp_t gfp_mask)
1068{
1069 struct mem_cgroup *mem = NULL;
1070 int ret;
1071
1072 if (mem_cgroup_disabled())
1073 return 0;
1074 if (PageCompound(page))
1075 return 0;
1076 /*
1077 * Corner case handling. This is called from add_to_page_cache()
1078 * in usual. But some FS (shmem) precharges this page before calling it
1079 * and call add_to_page_cache() with GFP_NOWAIT.
1080 *
1081 * For GFP_NOWAIT case, the page may be pre-charged before calling
1082 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1083 * charge twice. (It works but has to pay a bit larger cost.)
1084 * And when the page is SwapCache, it should take swap information
1085 * into account. This is under lock_page() now.
1086 */
1087 if (!(gfp_mask & __GFP_WAIT)) {
1088 struct page_cgroup *pc;
1089
1090
1091 pc = lookup_page_cgroup(page);
1092 if (!pc)
1093 return 0;
1094 lock_page_cgroup(pc);
1095 if (PageCgroupUsed(pc)) {
1096 unlock_page_cgroup(pc);
1097 return 0;
1098 }
1099 unlock_page_cgroup(pc);
1100 }
1101
1102 if (do_swap_account && PageSwapCache(page)) {
1103 mem = try_get_mem_cgroup_from_swapcache(page);
1104 if (mem)
1105 mm = NULL;
1106 else
1107 mem = NULL;
1108 /* SwapCache may be still linked to LRU now. */
1109 mem_cgroup_lru_del_before_commit_swapcache(page);
1110 }
1111
1112 if (unlikely(!mm && !mem))
1113 mm = &init_mm;
1114
1115 if (page_is_file_cache(page))
1116 return mem_cgroup_charge_common(page, mm, gfp_mask,
1117 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1118
1119 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1120 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1121 if (mem)
1122 css_put(&mem->css);
1123 if (PageSwapCache(page))
1124 mem_cgroup_lru_add_after_commit_swapcache(page);
1125
1126 if (do_swap_account && !ret && PageSwapCache(page)) {
1127 swp_entry_t ent = {.val = page_private(page)};
1128 /* avoid double counting */
1129 mem = swap_cgroup_record(ent, NULL);
1130 if (mem) {
1131 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1132 mem_cgroup_put(mem);
1133 }
1134 }
1135 return ret;
1136}
1137
1138/*
1139 * While swap-in, try_charge -> commit or cancel, the page is locked.
1140 * And when try_charge() successfully returns, one refcnt to memcg without
1141 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1142 * "commit()" or removed by "cancel()"
1143 */
1144int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1145 struct page *page,
1146 gfp_t mask, struct mem_cgroup **ptr)
1147{
1148 struct mem_cgroup *mem;
1149 int ret;
1150
1151 if (mem_cgroup_disabled())
1152 return 0;
1153
1154 if (!do_swap_account)
1155 goto charge_cur_mm;
1156 /*
1157 * A racing thread's fault, or swapoff, may have already updated
1158 * the pte, and even removed page from swap cache: return success
1159 * to go on to do_swap_page()'s pte_same() test, which should fail.
1160 */
1161 if (!PageSwapCache(page))
1162 return 0;
1163 mem = try_get_mem_cgroup_from_swapcache(page);
1164 if (!mem)
1165 goto charge_cur_mm;
1166 *ptr = mem;
1167 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1168 /* drop extra refcnt from tryget */
1169 css_put(&mem->css);
1170 return ret;
1171charge_cur_mm:
1172 if (unlikely(!mm))
1173 mm = &init_mm;
1174 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1175}
1176
1177void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1178{
1179 struct page_cgroup *pc;
1180
1181 if (mem_cgroup_disabled())
1182 return;
1183 if (!ptr)
1184 return;
1185 pc = lookup_page_cgroup(page);
1186 mem_cgroup_lru_del_before_commit_swapcache(page);
1187 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1188 mem_cgroup_lru_add_after_commit_swapcache(page);
1189 /*
1190 * Now swap is on-memory. This means this page may be
1191 * counted both as mem and swap....double count.
1192 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1193 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1194 * may call delete_from_swap_cache() before reach here.
1195 */
1196 if (do_swap_account && PageSwapCache(page)) {
1197 swp_entry_t ent = {.val = page_private(page)};
1198 struct mem_cgroup *memcg;
1199 memcg = swap_cgroup_record(ent, NULL);
1200 if (memcg) {
1201 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1202 mem_cgroup_put(memcg);
1203 }
1204
1205 }
1206 /* add this page(page_cgroup) to the LRU we want. */
1207
1208}
1209
1210void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1211{
1212 if (mem_cgroup_disabled())
1213 return;
1214 if (!mem)
1215 return;
1216 res_counter_uncharge(&mem->res, PAGE_SIZE);
1217 if (do_swap_account)
1218 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1219 css_put(&mem->css);
1220}
1221
1222
1223/*
1224 * uncharge if !page_mapped(page)
1225 */
1226static struct mem_cgroup *
1227__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1228{
1229 struct page_cgroup *pc;
1230 struct mem_cgroup *mem = NULL;
1231 struct mem_cgroup_per_zone *mz;
1232
1233 if (mem_cgroup_disabled())
1234 return NULL;
1235
1236 if (PageSwapCache(page))
1237 return NULL;
1238
1239 /*
1240 * Check if our page_cgroup is valid
1241 */
1242 pc = lookup_page_cgroup(page);
1243 if (unlikely(!pc || !PageCgroupUsed(pc)))
1244 return NULL;
1245
1246 lock_page_cgroup(pc);
1247
1248 mem = pc->mem_cgroup;
1249
1250 if (!PageCgroupUsed(pc))
1251 goto unlock_out;
1252
1253 switch (ctype) {
1254 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1255 if (page_mapped(page))
1256 goto unlock_out;
1257 break;
1258 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1259 if (!PageAnon(page)) { /* Shared memory */
1260 if (page->mapping && !page_is_file_cache(page))
1261 goto unlock_out;
1262 } else if (page_mapped(page)) /* Anon */
1263 goto unlock_out;
1264 break;
1265 default:
1266 break;
1267 }
1268
1269 res_counter_uncharge(&mem->res, PAGE_SIZE);
1270 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1271 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1272 mem_cgroup_charge_statistics(mem, pc, false);
1273
1274 ClearPageCgroupUsed(pc);
1275 /*
1276 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1277 * freed from LRU. This is safe because uncharged page is expected not
1278 * to be reused (freed soon). Exception is SwapCache, it's handled by
1279 * special functions.
1280 */
1281
1282 mz = page_cgroup_zoneinfo(pc);
1283 unlock_page_cgroup(pc);
1284
1285 /* at swapout, this memcg will be accessed to record to swap */
1286 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1287 css_put(&mem->css);
1288
1289 return mem;
1290
1291unlock_out:
1292 unlock_page_cgroup(pc);
1293 return NULL;
1294}
1295
1296void mem_cgroup_uncharge_page(struct page *page)
1297{
1298 /* early check. */
1299 if (page_mapped(page))
1300 return;
1301 if (page->mapping && !PageAnon(page))
1302 return;
1303 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1304}
1305
1306void mem_cgroup_uncharge_cache_page(struct page *page)
1307{
1308 VM_BUG_ON(page_mapped(page));
1309 VM_BUG_ON(page->mapping);
1310 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1311}
1312
1313/*
1314 * called from __delete_from_swap_cache() and drop "page" account.
1315 * memcg information is recorded to swap_cgroup of "ent"
1316 */
1317void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1318{
1319 struct mem_cgroup *memcg;
1320
1321 memcg = __mem_cgroup_uncharge_common(page,
1322 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1323 /* record memcg information */
1324 if (do_swap_account && memcg) {
1325 swap_cgroup_record(ent, memcg);
1326 mem_cgroup_get(memcg);
1327 }
1328 if (memcg)
1329 css_put(&memcg->css);
1330}
1331
1332#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1333/*
1334 * called from swap_entry_free(). remove record in swap_cgroup and
1335 * uncharge "memsw" account.
1336 */
1337void mem_cgroup_uncharge_swap(swp_entry_t ent)
1338{
1339 struct mem_cgroup *memcg;
1340
1341 if (!do_swap_account)
1342 return;
1343
1344 memcg = swap_cgroup_record(ent, NULL);
1345 if (memcg) {
1346 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1347 mem_cgroup_put(memcg);
1348 }
1349}
1350#endif
1351
1352/*
1353 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1354 * page belongs to.
1355 */
1356int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1357{
1358 struct page_cgroup *pc;
1359 struct mem_cgroup *mem = NULL;
1360 int ret = 0;
1361
1362 if (mem_cgroup_disabled())
1363 return 0;
1364
1365 pc = lookup_page_cgroup(page);
1366 lock_page_cgroup(pc);
1367 if (PageCgroupUsed(pc)) {
1368 mem = pc->mem_cgroup;
1369 css_get(&mem->css);
1370 }
1371 unlock_page_cgroup(pc);
1372
1373 if (mem) {
1374 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
1375 css_put(&mem->css);
1376 }
1377 *ptr = mem;
1378 return ret;
1379}
1380
1381/* remove redundant charge if migration failed*/
1382void mem_cgroup_end_migration(struct mem_cgroup *mem,
1383 struct page *oldpage, struct page *newpage)
1384{
1385 struct page *target, *unused;
1386 struct page_cgroup *pc;
1387 enum charge_type ctype;
1388
1389 if (!mem)
1390 return;
1391
1392 /* at migration success, oldpage->mapping is NULL. */
1393 if (oldpage->mapping) {
1394 target = oldpage;
1395 unused = NULL;
1396 } else {
1397 target = newpage;
1398 unused = oldpage;
1399 }
1400
1401 if (PageAnon(target))
1402 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1403 else if (page_is_file_cache(target))
1404 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1405 else
1406 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1407
1408 /* unused page is not on radix-tree now. */
1409 if (unused)
1410 __mem_cgroup_uncharge_common(unused, ctype);
1411
1412 pc = lookup_page_cgroup(target);
1413 /*
1414 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1415 * So, double-counting is effectively avoided.
1416 */
1417 __mem_cgroup_commit_charge(mem, pc, ctype);
1418
1419 /*
1420 * Both of oldpage and newpage are still under lock_page().
1421 * Then, we don't have to care about race in radix-tree.
1422 * But we have to be careful that this page is unmapped or not.
1423 *
1424 * There is a case for !page_mapped(). At the start of
1425 * migration, oldpage was mapped. But now, it's zapped.
1426 * But we know *target* page is not freed/reused under us.
1427 * mem_cgroup_uncharge_page() does all necessary checks.
1428 */
1429 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1430 mem_cgroup_uncharge_page(target);
1431}
1432
1433/*
1434 * A call to try to shrink memory usage under specified resource controller.
1435 * This is typically used for page reclaiming for shmem for reducing side
1436 * effect of page allocation from shmem, which is used by some mem_cgroup.
1437 */
1438int mem_cgroup_shrink_usage(struct page *page,
1439 struct mm_struct *mm,
1440 gfp_t gfp_mask)
1441{
1442 struct mem_cgroup *mem = NULL;
1443 int progress = 0;
1444 int retry = MEM_CGROUP_RECLAIM_RETRIES;
1445
1446 if (mem_cgroup_disabled())
1447 return 0;
1448 if (page)
1449 mem = try_get_mem_cgroup_from_swapcache(page);
1450 if (!mem && mm)
1451 mem = try_get_mem_cgroup_from_mm(mm);
1452 if (unlikely(!mem))
1453 return 0;
1454
1455 do {
1456 progress = mem_cgroup_hierarchical_reclaim(mem, gfp_mask, true);
1457 progress += mem_cgroup_check_under_limit(mem);
1458 } while (!progress && --retry);
1459
1460 css_put(&mem->css);
1461 if (!retry)
1462 return -ENOMEM;
1463 return 0;
1464}
1465
1466static DEFINE_MUTEX(set_limit_mutex);
1467
1468static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1469 unsigned long long val)
1470{
1471
1472 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1473 int progress;
1474 u64 memswlimit;
1475 int ret = 0;
1476
1477 while (retry_count) {
1478 if (signal_pending(current)) {
1479 ret = -EINTR;
1480 break;
1481 }
1482 /*
1483 * Rather than hide all in some function, I do this in
1484 * open coded manner. You see what this really does.
1485 * We have to guarantee mem->res.limit < mem->memsw.limit.
1486 */
1487 mutex_lock(&set_limit_mutex);
1488 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1489 if (memswlimit < val) {
1490 ret = -EINVAL;
1491 mutex_unlock(&set_limit_mutex);
1492 break;
1493 }
1494 ret = res_counter_set_limit(&memcg->res, val);
1495 mutex_unlock(&set_limit_mutex);
1496
1497 if (!ret)
1498 break;
1499
1500 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1501 false);
1502 if (!progress) retry_count--;
1503 }
1504
1505 return ret;
1506}
1507
1508int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1509 unsigned long long val)
1510{
1511 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1512 u64 memlimit, oldusage, curusage;
1513 int ret;
1514
1515 if (!do_swap_account)
1516 return -EINVAL;
1517
1518 while (retry_count) {
1519 if (signal_pending(current)) {
1520 ret = -EINTR;
1521 break;
1522 }
1523 /*
1524 * Rather than hide all in some function, I do this in
1525 * open coded manner. You see what this really does.
1526 * We have to guarantee mem->res.limit < mem->memsw.limit.
1527 */
1528 mutex_lock(&set_limit_mutex);
1529 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1530 if (memlimit > val) {
1531 ret = -EINVAL;
1532 mutex_unlock(&set_limit_mutex);
1533 break;
1534 }
1535 ret = res_counter_set_limit(&memcg->memsw, val);
1536 mutex_unlock(&set_limit_mutex);
1537
1538 if (!ret)
1539 break;
1540
1541 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1542 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true);
1543 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1544 if (curusage >= oldusage)
1545 retry_count--;
1546 }
1547 return ret;
1548}
1549
1550/*
1551 * This routine traverse page_cgroup in given list and drop them all.
1552 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1553 */
1554static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1555 int node, int zid, enum lru_list lru)
1556{
1557 struct zone *zone;
1558 struct mem_cgroup_per_zone *mz;
1559 struct page_cgroup *pc, *busy;
1560 unsigned long flags, loop;
1561 struct list_head *list;
1562 int ret = 0;
1563
1564 zone = &NODE_DATA(node)->node_zones[zid];
1565 mz = mem_cgroup_zoneinfo(mem, node, zid);
1566 list = &mz->lists[lru];
1567
1568 loop = MEM_CGROUP_ZSTAT(mz, lru);
1569 /* give some margin against EBUSY etc...*/
1570 loop += 256;
1571 busy = NULL;
1572 while (loop--) {
1573 ret = 0;
1574 spin_lock_irqsave(&zone->lru_lock, flags);
1575 if (list_empty(list)) {
1576 spin_unlock_irqrestore(&zone->lru_lock, flags);
1577 break;
1578 }
1579 pc = list_entry(list->prev, struct page_cgroup, lru);
1580 if (busy == pc) {
1581 list_move(&pc->lru, list);
1582 busy = 0;
1583 spin_unlock_irqrestore(&zone->lru_lock, flags);
1584 continue;
1585 }
1586 spin_unlock_irqrestore(&zone->lru_lock, flags);
1587
1588 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1589 if (ret == -ENOMEM)
1590 break;
1591
1592 if (ret == -EBUSY || ret == -EINVAL) {
1593 /* found lock contention or "pc" is obsolete. */
1594 busy = pc;
1595 cond_resched();
1596 } else
1597 busy = NULL;
1598 }
1599
1600 if (!ret && !list_empty(list))
1601 return -EBUSY;
1602 return ret;
1603}
1604
1605/*
1606 * make mem_cgroup's charge to be 0 if there is no task.
1607 * This enables deleting this mem_cgroup.
1608 */
1609static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1610{
1611 int ret;
1612 int node, zid, shrink;
1613 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1614 struct cgroup *cgrp = mem->css.cgroup;
1615
1616 css_get(&mem->css);
1617
1618 shrink = 0;
1619 /* should free all ? */
1620 if (free_all)
1621 goto try_to_free;
1622move_account:
1623 while (mem->res.usage > 0) {
1624 ret = -EBUSY;
1625 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1626 goto out;
1627 ret = -EINTR;
1628 if (signal_pending(current))
1629 goto out;
1630 /* This is for making all *used* pages to be on LRU. */
1631 lru_add_drain_all();
1632 ret = 0;
1633 for_each_node_state(node, N_HIGH_MEMORY) {
1634 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1635 enum lru_list l;
1636 for_each_lru(l) {
1637 ret = mem_cgroup_force_empty_list(mem,
1638 node, zid, l);
1639 if (ret)
1640 break;
1641 }
1642 }
1643 if (ret)
1644 break;
1645 }
1646 /* it seems parent cgroup doesn't have enough mem */
1647 if (ret == -ENOMEM)
1648 goto try_to_free;
1649 cond_resched();
1650 }
1651 ret = 0;
1652out:
1653 css_put(&mem->css);
1654 return ret;
1655
1656try_to_free:
1657 /* returns EBUSY if there is a task or if we come here twice. */
1658 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1659 ret = -EBUSY;
1660 goto out;
1661 }
1662 /* we call try-to-free pages for make this cgroup empty */
1663 lru_add_drain_all();
1664 /* try to free all pages in this cgroup */
1665 shrink = 1;
1666 while (nr_retries && mem->res.usage > 0) {
1667 int progress;
1668
1669 if (signal_pending(current)) {
1670 ret = -EINTR;
1671 goto out;
1672 }
1673 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1674 false, get_swappiness(mem));
1675 if (!progress) {
1676 nr_retries--;
1677 /* maybe some writeback is necessary */
1678 congestion_wait(WRITE, HZ/10);
1679 }
1680
1681 }
1682 lru_add_drain();
1683 /* try move_account...there may be some *locked* pages. */
1684 if (mem->res.usage)
1685 goto move_account;
1686 ret = 0;
1687 goto out;
1688}
1689
1690int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1691{
1692 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1693}
1694
1695
1696static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1697{
1698 return mem_cgroup_from_cont(cont)->use_hierarchy;
1699}
1700
1701static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1702 u64 val)
1703{
1704 int retval = 0;
1705 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1706 struct cgroup *parent = cont->parent;
1707 struct mem_cgroup *parent_mem = NULL;
1708
1709 if (parent)
1710 parent_mem = mem_cgroup_from_cont(parent);
1711
1712 cgroup_lock();
1713 /*
1714 * If parent's use_hiearchy is set, we can't make any modifications
1715 * in the child subtrees. If it is unset, then the change can
1716 * occur, provided the current cgroup has no children.
1717 *
1718 * For the root cgroup, parent_mem is NULL, we allow value to be
1719 * set if there are no children.
1720 */
1721 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1722 (val == 1 || val == 0)) {
1723 if (list_empty(&cont->children))
1724 mem->use_hierarchy = val;
1725 else
1726 retval = -EBUSY;
1727 } else
1728 retval = -EINVAL;
1729 cgroup_unlock();
1730
1731 return retval;
1732}
1733
1734static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
1735{
1736 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1737 u64 val = 0;
1738 int type, name;
1739
1740 type = MEMFILE_TYPE(cft->private);
1741 name = MEMFILE_ATTR(cft->private);
1742 switch (type) {
1743 case _MEM:
1744 val = res_counter_read_u64(&mem->res, name);
1745 break;
1746 case _MEMSWAP:
1747 if (do_swap_account)
1748 val = res_counter_read_u64(&mem->memsw, name);
1749 break;
1750 default:
1751 BUG();
1752 break;
1753 }
1754 return val;
1755}
1756/*
1757 * The user of this function is...
1758 * RES_LIMIT.
1759 */
1760static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1761 const char *buffer)
1762{
1763 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1764 int type, name;
1765 unsigned long long val;
1766 int ret;
1767
1768 type = MEMFILE_TYPE(cft->private);
1769 name = MEMFILE_ATTR(cft->private);
1770 switch (name) {
1771 case RES_LIMIT:
1772 /* This function does all necessary parse...reuse it */
1773 ret = res_counter_memparse_write_strategy(buffer, &val);
1774 if (ret)
1775 break;
1776 if (type == _MEM)
1777 ret = mem_cgroup_resize_limit(memcg, val);
1778 else
1779 ret = mem_cgroup_resize_memsw_limit(memcg, val);
1780 break;
1781 default:
1782 ret = -EINVAL; /* should be BUG() ? */
1783 break;
1784 }
1785 return ret;
1786}
1787
1788static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
1789 unsigned long long *mem_limit, unsigned long long *memsw_limit)
1790{
1791 struct cgroup *cgroup;
1792 unsigned long long min_limit, min_memsw_limit, tmp;
1793
1794 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1795 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1796 cgroup = memcg->css.cgroup;
1797 if (!memcg->use_hierarchy)
1798 goto out;
1799
1800 while (cgroup->parent) {
1801 cgroup = cgroup->parent;
1802 memcg = mem_cgroup_from_cont(cgroup);
1803 if (!memcg->use_hierarchy)
1804 break;
1805 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
1806 min_limit = min(min_limit, tmp);
1807 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1808 min_memsw_limit = min(min_memsw_limit, tmp);
1809 }
1810out:
1811 *mem_limit = min_limit;
1812 *memsw_limit = min_memsw_limit;
1813 return;
1814}
1815
1816static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
1817{
1818 struct mem_cgroup *mem;
1819 int type, name;
1820
1821 mem = mem_cgroup_from_cont(cont);
1822 type = MEMFILE_TYPE(event);
1823 name = MEMFILE_ATTR(event);
1824 switch (name) {
1825 case RES_MAX_USAGE:
1826 if (type == _MEM)
1827 res_counter_reset_max(&mem->res);
1828 else
1829 res_counter_reset_max(&mem->memsw);
1830 break;
1831 case RES_FAILCNT:
1832 if (type == _MEM)
1833 res_counter_reset_failcnt(&mem->res);
1834 else
1835 res_counter_reset_failcnt(&mem->memsw);
1836 break;
1837 }
1838 return 0;
1839}
1840
1841static const struct mem_cgroup_stat_desc {
1842 const char *msg;
1843 u64 unit;
1844} mem_cgroup_stat_desc[] = {
1845 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1846 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
1847 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1848 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
1849};
1850
1851static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1852 struct cgroup_map_cb *cb)
1853{
1854 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1855 struct mem_cgroup_stat *stat = &mem_cont->stat;
1856 int i;
1857
1858 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1859 s64 val;
1860
1861 val = mem_cgroup_read_stat(stat, i);
1862 val *= mem_cgroup_stat_desc[i].unit;
1863 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
1864 }
1865 /* showing # of active pages */
1866 {
1867 unsigned long active_anon, inactive_anon;
1868 unsigned long active_file, inactive_file;
1869 unsigned long unevictable;
1870
1871 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1872 LRU_INACTIVE_ANON);
1873 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1874 LRU_ACTIVE_ANON);
1875 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1876 LRU_INACTIVE_FILE);
1877 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1878 LRU_ACTIVE_FILE);
1879 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1880 LRU_UNEVICTABLE);
1881
1882 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1883 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1884 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1885 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
1886 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1887
1888 }
1889 {
1890 unsigned long long limit, memsw_limit;
1891 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
1892 cb->fill(cb, "hierarchical_memory_limit", limit);
1893 if (do_swap_account)
1894 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
1895 }
1896
1897#ifdef CONFIG_DEBUG_VM
1898 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
1899
1900 {
1901 int nid, zid;
1902 struct mem_cgroup_per_zone *mz;
1903 unsigned long recent_rotated[2] = {0, 0};
1904 unsigned long recent_scanned[2] = {0, 0};
1905
1906 for_each_online_node(nid)
1907 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1908 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1909
1910 recent_rotated[0] +=
1911 mz->reclaim_stat.recent_rotated[0];
1912 recent_rotated[1] +=
1913 mz->reclaim_stat.recent_rotated[1];
1914 recent_scanned[0] +=
1915 mz->reclaim_stat.recent_scanned[0];
1916 recent_scanned[1] +=
1917 mz->reclaim_stat.recent_scanned[1];
1918 }
1919 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
1920 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
1921 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
1922 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
1923 }
1924#endif
1925
1926 return 0;
1927}
1928
1929static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
1930{
1931 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1932
1933 return get_swappiness(memcg);
1934}
1935
1936static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
1937 u64 val)
1938{
1939 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1940 struct mem_cgroup *parent;
1941
1942 if (val > 100)
1943 return -EINVAL;
1944
1945 if (cgrp->parent == NULL)
1946 return -EINVAL;
1947
1948 parent = mem_cgroup_from_cont(cgrp->parent);
1949
1950 cgroup_lock();
1951
1952 /* If under hierarchy, only empty-root can set this value */
1953 if ((parent->use_hierarchy) ||
1954 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
1955 cgroup_unlock();
1956 return -EINVAL;
1957 }
1958
1959 spin_lock(&memcg->reclaim_param_lock);
1960 memcg->swappiness = val;
1961 spin_unlock(&memcg->reclaim_param_lock);
1962
1963 cgroup_unlock();
1964
1965 return 0;
1966}
1967
1968
1969static struct cftype mem_cgroup_files[] = {
1970 {
1971 .name = "usage_in_bytes",
1972 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
1973 .read_u64 = mem_cgroup_read,
1974 },
1975 {
1976 .name = "max_usage_in_bytes",
1977 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
1978 .trigger = mem_cgroup_reset,
1979 .read_u64 = mem_cgroup_read,
1980 },
1981 {
1982 .name = "limit_in_bytes",
1983 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
1984 .write_string = mem_cgroup_write,
1985 .read_u64 = mem_cgroup_read,
1986 },
1987 {
1988 .name = "failcnt",
1989 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
1990 .trigger = mem_cgroup_reset,
1991 .read_u64 = mem_cgroup_read,
1992 },
1993 {
1994 .name = "stat",
1995 .read_map = mem_control_stat_show,
1996 },
1997 {
1998 .name = "force_empty",
1999 .trigger = mem_cgroup_force_empty_write,
2000 },
2001 {
2002 .name = "use_hierarchy",
2003 .write_u64 = mem_cgroup_hierarchy_write,
2004 .read_u64 = mem_cgroup_hierarchy_read,
2005 },
2006 {
2007 .name = "swappiness",
2008 .read_u64 = mem_cgroup_swappiness_read,
2009 .write_u64 = mem_cgroup_swappiness_write,
2010 },
2011};
2012
2013#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2014static struct cftype memsw_cgroup_files[] = {
2015 {
2016 .name = "memsw.usage_in_bytes",
2017 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2018 .read_u64 = mem_cgroup_read,
2019 },
2020 {
2021 .name = "memsw.max_usage_in_bytes",
2022 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2023 .trigger = mem_cgroup_reset,
2024 .read_u64 = mem_cgroup_read,
2025 },
2026 {
2027 .name = "memsw.limit_in_bytes",
2028 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2029 .write_string = mem_cgroup_write,
2030 .read_u64 = mem_cgroup_read,
2031 },
2032 {
2033 .name = "memsw.failcnt",
2034 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2035 .trigger = mem_cgroup_reset,
2036 .read_u64 = mem_cgroup_read,
2037 },
2038};
2039
2040static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2041{
2042 if (!do_swap_account)
2043 return 0;
2044 return cgroup_add_files(cont, ss, memsw_cgroup_files,
2045 ARRAY_SIZE(memsw_cgroup_files));
2046};
2047#else
2048static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2049{
2050 return 0;
2051}
2052#endif
2053
2054static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2055{
2056 struct mem_cgroup_per_node *pn;
2057 struct mem_cgroup_per_zone *mz;
2058 enum lru_list l;
2059 int zone, tmp = node;
2060 /*
2061 * This routine is called against possible nodes.
2062 * But it's BUG to call kmalloc() against offline node.
2063 *
2064 * TODO: this routine can waste much memory for nodes which will
2065 * never be onlined. It's better to use memory hotplug callback
2066 * function.
2067 */
2068 if (!node_state(node, N_NORMAL_MEMORY))
2069 tmp = -1;
2070 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2071 if (!pn)
2072 return 1;
2073
2074 mem->info.nodeinfo[node] = pn;
2075 memset(pn, 0, sizeof(*pn));
2076
2077 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2078 mz = &pn->zoneinfo[zone];
2079 for_each_lru(l)
2080 INIT_LIST_HEAD(&mz->lists[l]);
2081 }
2082 return 0;
2083}
2084
2085static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2086{
2087 kfree(mem->info.nodeinfo[node]);
2088}
2089
2090static int mem_cgroup_size(void)
2091{
2092 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2093 return sizeof(struct mem_cgroup) + cpustat_size;
2094}
2095
2096static struct mem_cgroup *mem_cgroup_alloc(void)
2097{
2098 struct mem_cgroup *mem;
2099 int size = mem_cgroup_size();
2100
2101 if (size < PAGE_SIZE)
2102 mem = kmalloc(size, GFP_KERNEL);
2103 else
2104 mem = vmalloc(size);
2105
2106 if (mem)
2107 memset(mem, 0, size);
2108 return mem;
2109}
2110
2111/*
2112 * At destroying mem_cgroup, references from swap_cgroup can remain.
2113 * (scanning all at force_empty is too costly...)
2114 *
2115 * Instead of clearing all references at force_empty, we remember
2116 * the number of reference from swap_cgroup and free mem_cgroup when
2117 * it goes down to 0.
2118 *
2119 * Removal of cgroup itself succeeds regardless of refs from swap.
2120 */
2121
2122static void __mem_cgroup_free(struct mem_cgroup *mem)
2123{
2124 int node;
2125
2126 free_css_id(&mem_cgroup_subsys, &mem->css);
2127
2128 for_each_node_state(node, N_POSSIBLE)
2129 free_mem_cgroup_per_zone_info(mem, node);
2130
2131 if (mem_cgroup_size() < PAGE_SIZE)
2132 kfree(mem);
2133 else
2134 vfree(mem);
2135}
2136
2137static void mem_cgroup_get(struct mem_cgroup *mem)
2138{
2139 atomic_inc(&mem->refcnt);
2140}
2141
2142static void mem_cgroup_put(struct mem_cgroup *mem)
2143{
2144 if (atomic_dec_and_test(&mem->refcnt)) {
2145 struct mem_cgroup *parent = parent_mem_cgroup(mem);
2146 __mem_cgroup_free(mem);
2147 if (parent)
2148 mem_cgroup_put(parent);
2149 }
2150}
2151
2152/*
2153 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
2154 */
2155static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
2156{
2157 if (!mem->res.parent)
2158 return NULL;
2159 return mem_cgroup_from_res_counter(mem->res.parent, res);
2160}
2161
2162#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2163static void __init enable_swap_cgroup(void)
2164{
2165 if (!mem_cgroup_disabled() && really_do_swap_account)
2166 do_swap_account = 1;
2167}
2168#else
2169static void __init enable_swap_cgroup(void)
2170{
2171}
2172#endif
2173
2174static struct cgroup_subsys_state * __ref
2175mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2176{
2177 struct mem_cgroup *mem, *parent;
2178 long error = -ENOMEM;
2179 int node;
2180
2181 mem = mem_cgroup_alloc();
2182 if (!mem)
2183 return ERR_PTR(error);
2184
2185 for_each_node_state(node, N_POSSIBLE)
2186 if (alloc_mem_cgroup_per_zone_info(mem, node))
2187 goto free_out;
2188 /* root ? */
2189 if (cont->parent == NULL) {
2190 enable_swap_cgroup();
2191 parent = NULL;
2192 } else {
2193 parent = mem_cgroup_from_cont(cont->parent);
2194 mem->use_hierarchy = parent->use_hierarchy;
2195 }
2196
2197 if (parent && parent->use_hierarchy) {
2198 res_counter_init(&mem->res, &parent->res);
2199 res_counter_init(&mem->memsw, &parent->memsw);
2200 /*
2201 * We increment refcnt of the parent to ensure that we can
2202 * safely access it on res_counter_charge/uncharge.
2203 * This refcnt will be decremented when freeing this
2204 * mem_cgroup(see mem_cgroup_put).
2205 */
2206 mem_cgroup_get(parent);
2207 } else {
2208 res_counter_init(&mem->res, NULL);
2209 res_counter_init(&mem->memsw, NULL);
2210 }
2211 mem->last_scanned_child = 0;
2212 spin_lock_init(&mem->reclaim_param_lock);
2213
2214 if (parent)
2215 mem->swappiness = get_swappiness(parent);
2216 atomic_set(&mem->refcnt, 1);
2217 return &mem->css;
2218free_out:
2219 __mem_cgroup_free(mem);
2220 return ERR_PTR(error);
2221}
2222
2223static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2224 struct cgroup *cont)
2225{
2226 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2227
2228 return mem_cgroup_force_empty(mem, false);
2229}
2230
2231static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2232 struct cgroup *cont)
2233{
2234 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2235
2236 mem_cgroup_put(mem);
2237}
2238
2239static int mem_cgroup_populate(struct cgroup_subsys *ss,
2240 struct cgroup *cont)
2241{
2242 int ret;
2243
2244 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2245 ARRAY_SIZE(mem_cgroup_files));
2246
2247 if (!ret)
2248 ret = register_memsw_files(cont, ss);
2249 return ret;
2250}
2251
2252static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2253 struct cgroup *cont,
2254 struct cgroup *old_cont,
2255 struct task_struct *p)
2256{
2257 mutex_lock(&memcg_tasklist);
2258 /*
2259 * FIXME: It's better to move charges of this process from old
2260 * memcg to new memcg. But it's just on TODO-List now.
2261 */
2262 mutex_unlock(&memcg_tasklist);
2263}
2264
2265struct cgroup_subsys mem_cgroup_subsys = {
2266 .name = "memory",
2267 .subsys_id = mem_cgroup_subsys_id,
2268 .create = mem_cgroup_create,
2269 .pre_destroy = mem_cgroup_pre_destroy,
2270 .destroy = mem_cgroup_destroy,
2271 .populate = mem_cgroup_populate,
2272 .attach = mem_cgroup_move_task,
2273 .early_init = 0,
2274 .use_id = 1,
2275};
2276
2277#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2278
2279static int __init disable_swap_account(char *s)
2280{
2281 really_do_swap_account = 0;
2282 return 1;
2283}
2284__setup("noswapaccount", disable_swap_account);
2285#endif