]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - kernel/signal.c
exit: Use task_is_*
[net-next-2.6.git] / kernel / signal.c
... / ...
CommitLineData
1/*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13#include <linux/slab.h>
14#include <linux/module.h>
15#include <linux/init.h>
16#include <linux/sched.h>
17#include <linux/fs.h>
18#include <linux/tty.h>
19#include <linux/binfmts.h>
20#include <linux/security.h>
21#include <linux/syscalls.h>
22#include <linux/ptrace.h>
23#include <linux/signal.h>
24#include <linux/signalfd.h>
25#include <linux/capability.h>
26#include <linux/freezer.h>
27#include <linux/pid_namespace.h>
28#include <linux/nsproxy.h>
29
30#include <asm/param.h>
31#include <asm/uaccess.h>
32#include <asm/unistd.h>
33#include <asm/siginfo.h>
34#include "audit.h" /* audit_signal_info() */
35
36/*
37 * SLAB caches for signal bits.
38 */
39
40static struct kmem_cache *sigqueue_cachep;
41
42
43static int sig_ignored(struct task_struct *t, int sig)
44{
45 void __user * handler;
46
47 /*
48 * Tracers always want to know about signals..
49 */
50 if (t->ptrace & PT_PTRACED)
51 return 0;
52
53 /*
54 * Blocked signals are never ignored, since the
55 * signal handler may change by the time it is
56 * unblocked.
57 */
58 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
59 return 0;
60
61 /* Is it explicitly or implicitly ignored? */
62 handler = t->sighand->action[sig-1].sa.sa_handler;
63 return handler == SIG_IGN ||
64 (handler == SIG_DFL && sig_kernel_ignore(sig));
65}
66
67/*
68 * Re-calculate pending state from the set of locally pending
69 * signals, globally pending signals, and blocked signals.
70 */
71static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
72{
73 unsigned long ready;
74 long i;
75
76 switch (_NSIG_WORDS) {
77 default:
78 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
79 ready |= signal->sig[i] &~ blocked->sig[i];
80 break;
81
82 case 4: ready = signal->sig[3] &~ blocked->sig[3];
83 ready |= signal->sig[2] &~ blocked->sig[2];
84 ready |= signal->sig[1] &~ blocked->sig[1];
85 ready |= signal->sig[0] &~ blocked->sig[0];
86 break;
87
88 case 2: ready = signal->sig[1] &~ blocked->sig[1];
89 ready |= signal->sig[0] &~ blocked->sig[0];
90 break;
91
92 case 1: ready = signal->sig[0] &~ blocked->sig[0];
93 }
94 return ready != 0;
95}
96
97#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
98
99static int recalc_sigpending_tsk(struct task_struct *t)
100{
101 if (t->signal->group_stop_count > 0 ||
102 PENDING(&t->pending, &t->blocked) ||
103 PENDING(&t->signal->shared_pending, &t->blocked)) {
104 set_tsk_thread_flag(t, TIF_SIGPENDING);
105 return 1;
106 }
107 /*
108 * We must never clear the flag in another thread, or in current
109 * when it's possible the current syscall is returning -ERESTART*.
110 * So we don't clear it here, and only callers who know they should do.
111 */
112 return 0;
113}
114
115/*
116 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
117 * This is superfluous when called on current, the wakeup is a harmless no-op.
118 */
119void recalc_sigpending_and_wake(struct task_struct *t)
120{
121 if (recalc_sigpending_tsk(t))
122 signal_wake_up(t, 0);
123}
124
125void recalc_sigpending(void)
126{
127 if (!recalc_sigpending_tsk(current) && !freezing(current))
128 clear_thread_flag(TIF_SIGPENDING);
129
130}
131
132/* Given the mask, find the first available signal that should be serviced. */
133
134int next_signal(struct sigpending *pending, sigset_t *mask)
135{
136 unsigned long i, *s, *m, x;
137 int sig = 0;
138
139 s = pending->signal.sig;
140 m = mask->sig;
141 switch (_NSIG_WORDS) {
142 default:
143 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
144 if ((x = *s &~ *m) != 0) {
145 sig = ffz(~x) + i*_NSIG_BPW + 1;
146 break;
147 }
148 break;
149
150 case 2: if ((x = s[0] &~ m[0]) != 0)
151 sig = 1;
152 else if ((x = s[1] &~ m[1]) != 0)
153 sig = _NSIG_BPW + 1;
154 else
155 break;
156 sig += ffz(~x);
157 break;
158
159 case 1: if ((x = *s &~ *m) != 0)
160 sig = ffz(~x) + 1;
161 break;
162 }
163
164 return sig;
165}
166
167static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
168 int override_rlimit)
169{
170 struct sigqueue *q = NULL;
171 struct user_struct *user;
172
173 /*
174 * In order to avoid problems with "switch_user()", we want to make
175 * sure that the compiler doesn't re-load "t->user"
176 */
177 user = t->user;
178 barrier();
179 atomic_inc(&user->sigpending);
180 if (override_rlimit ||
181 atomic_read(&user->sigpending) <=
182 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
183 q = kmem_cache_alloc(sigqueue_cachep, flags);
184 if (unlikely(q == NULL)) {
185 atomic_dec(&user->sigpending);
186 } else {
187 INIT_LIST_HEAD(&q->list);
188 q->flags = 0;
189 q->user = get_uid(user);
190 }
191 return(q);
192}
193
194static void __sigqueue_free(struct sigqueue *q)
195{
196 if (q->flags & SIGQUEUE_PREALLOC)
197 return;
198 atomic_dec(&q->user->sigpending);
199 free_uid(q->user);
200 kmem_cache_free(sigqueue_cachep, q);
201}
202
203void flush_sigqueue(struct sigpending *queue)
204{
205 struct sigqueue *q;
206
207 sigemptyset(&queue->signal);
208 while (!list_empty(&queue->list)) {
209 q = list_entry(queue->list.next, struct sigqueue , list);
210 list_del_init(&q->list);
211 __sigqueue_free(q);
212 }
213}
214
215/*
216 * Flush all pending signals for a task.
217 */
218void flush_signals(struct task_struct *t)
219{
220 unsigned long flags;
221
222 spin_lock_irqsave(&t->sighand->siglock, flags);
223 clear_tsk_thread_flag(t,TIF_SIGPENDING);
224 flush_sigqueue(&t->pending);
225 flush_sigqueue(&t->signal->shared_pending);
226 spin_unlock_irqrestore(&t->sighand->siglock, flags);
227}
228
229void ignore_signals(struct task_struct *t)
230{
231 int i;
232
233 for (i = 0; i < _NSIG; ++i)
234 t->sighand->action[i].sa.sa_handler = SIG_IGN;
235
236 flush_signals(t);
237}
238
239/*
240 * Flush all handlers for a task.
241 */
242
243void
244flush_signal_handlers(struct task_struct *t, int force_default)
245{
246 int i;
247 struct k_sigaction *ka = &t->sighand->action[0];
248 for (i = _NSIG ; i != 0 ; i--) {
249 if (force_default || ka->sa.sa_handler != SIG_IGN)
250 ka->sa.sa_handler = SIG_DFL;
251 ka->sa.sa_flags = 0;
252 sigemptyset(&ka->sa.sa_mask);
253 ka++;
254 }
255}
256
257int unhandled_signal(struct task_struct *tsk, int sig)
258{
259 if (is_global_init(tsk))
260 return 1;
261 if (tsk->ptrace & PT_PTRACED)
262 return 0;
263 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
264 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
265}
266
267
268/* Notify the system that a driver wants to block all signals for this
269 * process, and wants to be notified if any signals at all were to be
270 * sent/acted upon. If the notifier routine returns non-zero, then the
271 * signal will be acted upon after all. If the notifier routine returns 0,
272 * then then signal will be blocked. Only one block per process is
273 * allowed. priv is a pointer to private data that the notifier routine
274 * can use to determine if the signal should be blocked or not. */
275
276void
277block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
278{
279 unsigned long flags;
280
281 spin_lock_irqsave(&current->sighand->siglock, flags);
282 current->notifier_mask = mask;
283 current->notifier_data = priv;
284 current->notifier = notifier;
285 spin_unlock_irqrestore(&current->sighand->siglock, flags);
286}
287
288/* Notify the system that blocking has ended. */
289
290void
291unblock_all_signals(void)
292{
293 unsigned long flags;
294
295 spin_lock_irqsave(&current->sighand->siglock, flags);
296 current->notifier = NULL;
297 current->notifier_data = NULL;
298 recalc_sigpending();
299 spin_unlock_irqrestore(&current->sighand->siglock, flags);
300}
301
302static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
303{
304 struct sigqueue *q, *first = NULL;
305 int still_pending = 0;
306
307 if (unlikely(!sigismember(&list->signal, sig)))
308 return 0;
309
310 /*
311 * Collect the siginfo appropriate to this signal. Check if
312 * there is another siginfo for the same signal.
313 */
314 list_for_each_entry(q, &list->list, list) {
315 if (q->info.si_signo == sig) {
316 if (first) {
317 still_pending = 1;
318 break;
319 }
320 first = q;
321 }
322 }
323 if (first) {
324 list_del_init(&first->list);
325 copy_siginfo(info, &first->info);
326 __sigqueue_free(first);
327 if (!still_pending)
328 sigdelset(&list->signal, sig);
329 } else {
330
331 /* Ok, it wasn't in the queue. This must be
332 a fast-pathed signal or we must have been
333 out of queue space. So zero out the info.
334 */
335 sigdelset(&list->signal, sig);
336 info->si_signo = sig;
337 info->si_errno = 0;
338 info->si_code = 0;
339 info->si_pid = 0;
340 info->si_uid = 0;
341 }
342 return 1;
343}
344
345static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
346 siginfo_t *info)
347{
348 int sig = next_signal(pending, mask);
349
350 if (sig) {
351 if (current->notifier) {
352 if (sigismember(current->notifier_mask, sig)) {
353 if (!(current->notifier)(current->notifier_data)) {
354 clear_thread_flag(TIF_SIGPENDING);
355 return 0;
356 }
357 }
358 }
359
360 if (!collect_signal(sig, pending, info))
361 sig = 0;
362 }
363
364 return sig;
365}
366
367/*
368 * Dequeue a signal and return the element to the caller, which is
369 * expected to free it.
370 *
371 * All callers have to hold the siglock.
372 */
373int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
374{
375 int signr = 0;
376
377 /* We only dequeue private signals from ourselves, we don't let
378 * signalfd steal them
379 */
380 signr = __dequeue_signal(&tsk->pending, mask, info);
381 if (!signr) {
382 signr = __dequeue_signal(&tsk->signal->shared_pending,
383 mask, info);
384 /*
385 * itimer signal ?
386 *
387 * itimers are process shared and we restart periodic
388 * itimers in the signal delivery path to prevent DoS
389 * attacks in the high resolution timer case. This is
390 * compliant with the old way of self restarting
391 * itimers, as the SIGALRM is a legacy signal and only
392 * queued once. Changing the restart behaviour to
393 * restart the timer in the signal dequeue path is
394 * reducing the timer noise on heavy loaded !highres
395 * systems too.
396 */
397 if (unlikely(signr == SIGALRM)) {
398 struct hrtimer *tmr = &tsk->signal->real_timer;
399
400 if (!hrtimer_is_queued(tmr) &&
401 tsk->signal->it_real_incr.tv64 != 0) {
402 hrtimer_forward(tmr, tmr->base->get_time(),
403 tsk->signal->it_real_incr);
404 hrtimer_restart(tmr);
405 }
406 }
407 }
408 recalc_sigpending();
409 if (signr && unlikely(sig_kernel_stop(signr))) {
410 /*
411 * Set a marker that we have dequeued a stop signal. Our
412 * caller might release the siglock and then the pending
413 * stop signal it is about to process is no longer in the
414 * pending bitmasks, but must still be cleared by a SIGCONT
415 * (and overruled by a SIGKILL). So those cases clear this
416 * shared flag after we've set it. Note that this flag may
417 * remain set after the signal we return is ignored or
418 * handled. That doesn't matter because its only purpose
419 * is to alert stop-signal processing code when another
420 * processor has come along and cleared the flag.
421 */
422 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
423 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
424 }
425 if (signr &&
426 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
427 info->si_sys_private){
428 /*
429 * Release the siglock to ensure proper locking order
430 * of timer locks outside of siglocks. Note, we leave
431 * irqs disabled here, since the posix-timers code is
432 * about to disable them again anyway.
433 */
434 spin_unlock(&tsk->sighand->siglock);
435 do_schedule_next_timer(info);
436 spin_lock(&tsk->sighand->siglock);
437 }
438 return signr;
439}
440
441/*
442 * Tell a process that it has a new active signal..
443 *
444 * NOTE! we rely on the previous spin_lock to
445 * lock interrupts for us! We can only be called with
446 * "siglock" held, and the local interrupt must
447 * have been disabled when that got acquired!
448 *
449 * No need to set need_resched since signal event passing
450 * goes through ->blocked
451 */
452void signal_wake_up(struct task_struct *t, int resume)
453{
454 unsigned int mask;
455
456 set_tsk_thread_flag(t, TIF_SIGPENDING);
457
458 /*
459 * For SIGKILL, we want to wake it up in the stopped/traced case.
460 * We don't check t->state here because there is a race with it
461 * executing another processor and just now entering stopped state.
462 * By using wake_up_state, we ensure the process will wake up and
463 * handle its death signal.
464 */
465 mask = TASK_INTERRUPTIBLE;
466 if (resume)
467 mask |= TASK_STOPPED | TASK_TRACED;
468 if (!wake_up_state(t, mask))
469 kick_process(t);
470}
471
472/*
473 * Remove signals in mask from the pending set and queue.
474 * Returns 1 if any signals were found.
475 *
476 * All callers must be holding the siglock.
477 *
478 * This version takes a sigset mask and looks at all signals,
479 * not just those in the first mask word.
480 */
481static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
482{
483 struct sigqueue *q, *n;
484 sigset_t m;
485
486 sigandsets(&m, mask, &s->signal);
487 if (sigisemptyset(&m))
488 return 0;
489
490 signandsets(&s->signal, &s->signal, mask);
491 list_for_each_entry_safe(q, n, &s->list, list) {
492 if (sigismember(mask, q->info.si_signo)) {
493 list_del_init(&q->list);
494 __sigqueue_free(q);
495 }
496 }
497 return 1;
498}
499/*
500 * Remove signals in mask from the pending set and queue.
501 * Returns 1 if any signals were found.
502 *
503 * All callers must be holding the siglock.
504 */
505static int rm_from_queue(unsigned long mask, struct sigpending *s)
506{
507 struct sigqueue *q, *n;
508
509 if (!sigtestsetmask(&s->signal, mask))
510 return 0;
511
512 sigdelsetmask(&s->signal, mask);
513 list_for_each_entry_safe(q, n, &s->list, list) {
514 if (q->info.si_signo < SIGRTMIN &&
515 (mask & sigmask(q->info.si_signo))) {
516 list_del_init(&q->list);
517 __sigqueue_free(q);
518 }
519 }
520 return 1;
521}
522
523/*
524 * Bad permissions for sending the signal
525 */
526static int check_kill_permission(int sig, struct siginfo *info,
527 struct task_struct *t)
528{
529 int error = -EINVAL;
530 if (!valid_signal(sig))
531 return error;
532
533 if (info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) {
534 error = audit_signal_info(sig, t); /* Let audit system see the signal */
535 if (error)
536 return error;
537 error = -EPERM;
538 if (((sig != SIGCONT) ||
539 (task_session_nr(current) != task_session_nr(t)))
540 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
541 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
542 && !capable(CAP_KILL))
543 return error;
544 }
545
546 return security_task_kill(t, info, sig, 0);
547}
548
549/* forward decl */
550static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
551
552/*
553 * Handle magic process-wide effects of stop/continue signals.
554 * Unlike the signal actions, these happen immediately at signal-generation
555 * time regardless of blocking, ignoring, or handling. This does the
556 * actual continuing for SIGCONT, but not the actual stopping for stop
557 * signals. The process stop is done as a signal action for SIG_DFL.
558 */
559static void handle_stop_signal(int sig, struct task_struct *p)
560{
561 struct task_struct *t;
562
563 if (p->signal->flags & SIGNAL_GROUP_EXIT)
564 /*
565 * The process is in the middle of dying already.
566 */
567 return;
568
569 if (sig_kernel_stop(sig)) {
570 /*
571 * This is a stop signal. Remove SIGCONT from all queues.
572 */
573 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
574 t = p;
575 do {
576 rm_from_queue(sigmask(SIGCONT), &t->pending);
577 t = next_thread(t);
578 } while (t != p);
579 } else if (sig == SIGCONT) {
580 /*
581 * Remove all stop signals from all queues,
582 * and wake all threads.
583 */
584 if (unlikely(p->signal->group_stop_count > 0)) {
585 /*
586 * There was a group stop in progress. We'll
587 * pretend it finished before we got here. We are
588 * obliged to report it to the parent: if the
589 * SIGSTOP happened "after" this SIGCONT, then it
590 * would have cleared this pending SIGCONT. If it
591 * happened "before" this SIGCONT, then the parent
592 * got the SIGCHLD about the stop finishing before
593 * the continue happened. We do the notification
594 * now, and it's as if the stop had finished and
595 * the SIGCHLD was pending on entry to this kill.
596 */
597 p->signal->group_stop_count = 0;
598 p->signal->flags = SIGNAL_STOP_CONTINUED;
599 spin_unlock(&p->sighand->siglock);
600 do_notify_parent_cldstop(p, CLD_STOPPED);
601 spin_lock(&p->sighand->siglock);
602 }
603 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
604 t = p;
605 do {
606 unsigned int state;
607 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
608
609 /*
610 * If there is a handler for SIGCONT, we must make
611 * sure that no thread returns to user mode before
612 * we post the signal, in case it was the only
613 * thread eligible to run the signal handler--then
614 * it must not do anything between resuming and
615 * running the handler. With the TIF_SIGPENDING
616 * flag set, the thread will pause and acquire the
617 * siglock that we hold now and until we've queued
618 * the pending signal.
619 *
620 * Wake up the stopped thread _after_ setting
621 * TIF_SIGPENDING
622 */
623 state = TASK_STOPPED;
624 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
625 set_tsk_thread_flag(t, TIF_SIGPENDING);
626 state |= TASK_INTERRUPTIBLE;
627 }
628 wake_up_state(t, state);
629
630 t = next_thread(t);
631 } while (t != p);
632
633 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
634 /*
635 * We were in fact stopped, and are now continued.
636 * Notify the parent with CLD_CONTINUED.
637 */
638 p->signal->flags = SIGNAL_STOP_CONTINUED;
639 p->signal->group_exit_code = 0;
640 spin_unlock(&p->sighand->siglock);
641 do_notify_parent_cldstop(p, CLD_CONTINUED);
642 spin_lock(&p->sighand->siglock);
643 } else {
644 /*
645 * We are not stopped, but there could be a stop
646 * signal in the middle of being processed after
647 * being removed from the queue. Clear that too.
648 */
649 p->signal->flags = 0;
650 }
651 } else if (sig == SIGKILL) {
652 /*
653 * Make sure that any pending stop signal already dequeued
654 * is undone by the wakeup for SIGKILL.
655 */
656 p->signal->flags = 0;
657 }
658}
659
660static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
661 struct sigpending *signals)
662{
663 struct sigqueue * q = NULL;
664 int ret = 0;
665
666 /*
667 * Deliver the signal to listening signalfds. This must be called
668 * with the sighand lock held.
669 */
670 signalfd_notify(t, sig);
671
672 /*
673 * fast-pathed signals for kernel-internal things like SIGSTOP
674 * or SIGKILL.
675 */
676 if (info == SEND_SIG_FORCED)
677 goto out_set;
678
679 /* Real-time signals must be queued if sent by sigqueue, or
680 some other real-time mechanism. It is implementation
681 defined whether kill() does so. We attempt to do so, on
682 the principle of least surprise, but since kill is not
683 allowed to fail with EAGAIN when low on memory we just
684 make sure at least one signal gets delivered and don't
685 pass on the info struct. */
686
687 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
688 (is_si_special(info) ||
689 info->si_code >= 0)));
690 if (q) {
691 list_add_tail(&q->list, &signals->list);
692 switch ((unsigned long) info) {
693 case (unsigned long) SEND_SIG_NOINFO:
694 q->info.si_signo = sig;
695 q->info.si_errno = 0;
696 q->info.si_code = SI_USER;
697 q->info.si_pid = task_pid_vnr(current);
698 q->info.si_uid = current->uid;
699 break;
700 case (unsigned long) SEND_SIG_PRIV:
701 q->info.si_signo = sig;
702 q->info.si_errno = 0;
703 q->info.si_code = SI_KERNEL;
704 q->info.si_pid = 0;
705 q->info.si_uid = 0;
706 break;
707 default:
708 copy_siginfo(&q->info, info);
709 break;
710 }
711 } else if (!is_si_special(info)) {
712 if (sig >= SIGRTMIN && info->si_code != SI_USER)
713 /*
714 * Queue overflow, abort. We may abort if the signal was rt
715 * and sent by user using something other than kill().
716 */
717 return -EAGAIN;
718 }
719
720out_set:
721 sigaddset(&signals->signal, sig);
722 return ret;
723}
724
725#define LEGACY_QUEUE(sigptr, sig) \
726 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
727
728int print_fatal_signals;
729
730static void print_fatal_signal(struct pt_regs *regs, int signr)
731{
732 printk("%s/%d: potentially unexpected fatal signal %d.\n",
733 current->comm, task_pid_nr(current), signr);
734
735#if defined(__i386__) && !defined(__arch_um__)
736 printk("code at %08lx: ", regs->eip);
737 {
738 int i;
739 for (i = 0; i < 16; i++) {
740 unsigned char insn;
741
742 __get_user(insn, (unsigned char *)(regs->eip + i));
743 printk("%02x ", insn);
744 }
745 }
746#endif
747 printk("\n");
748 show_regs(regs);
749}
750
751static int __init setup_print_fatal_signals(char *str)
752{
753 get_option (&str, &print_fatal_signals);
754
755 return 1;
756}
757
758__setup("print-fatal-signals=", setup_print_fatal_signals);
759
760static int
761specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
762{
763 int ret = 0;
764
765 BUG_ON(!irqs_disabled());
766 assert_spin_locked(&t->sighand->siglock);
767
768 /* Short-circuit ignored signals. */
769 if (sig_ignored(t, sig))
770 goto out;
771
772 /* Support queueing exactly one non-rt signal, so that we
773 can get more detailed information about the cause of
774 the signal. */
775 if (LEGACY_QUEUE(&t->pending, sig))
776 goto out;
777
778 ret = send_signal(sig, info, t, &t->pending);
779 if (!ret && !sigismember(&t->blocked, sig))
780 signal_wake_up(t, sig == SIGKILL);
781out:
782 return ret;
783}
784
785/*
786 * Force a signal that the process can't ignore: if necessary
787 * we unblock the signal and change any SIG_IGN to SIG_DFL.
788 *
789 * Note: If we unblock the signal, we always reset it to SIG_DFL,
790 * since we do not want to have a signal handler that was blocked
791 * be invoked when user space had explicitly blocked it.
792 *
793 * We don't want to have recursive SIGSEGV's etc, for example.
794 */
795int
796force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
797{
798 unsigned long int flags;
799 int ret, blocked, ignored;
800 struct k_sigaction *action;
801
802 spin_lock_irqsave(&t->sighand->siglock, flags);
803 action = &t->sighand->action[sig-1];
804 ignored = action->sa.sa_handler == SIG_IGN;
805 blocked = sigismember(&t->blocked, sig);
806 if (blocked || ignored) {
807 action->sa.sa_handler = SIG_DFL;
808 if (blocked) {
809 sigdelset(&t->blocked, sig);
810 recalc_sigpending_and_wake(t);
811 }
812 }
813 ret = specific_send_sig_info(sig, info, t);
814 spin_unlock_irqrestore(&t->sighand->siglock, flags);
815
816 return ret;
817}
818
819void
820force_sig_specific(int sig, struct task_struct *t)
821{
822 force_sig_info(sig, SEND_SIG_FORCED, t);
823}
824
825/*
826 * Test if P wants to take SIG. After we've checked all threads with this,
827 * it's equivalent to finding no threads not blocking SIG. Any threads not
828 * blocking SIG were ruled out because they are not running and already
829 * have pending signals. Such threads will dequeue from the shared queue
830 * as soon as they're available, so putting the signal on the shared queue
831 * will be equivalent to sending it to one such thread.
832 */
833static inline int wants_signal(int sig, struct task_struct *p)
834{
835 if (sigismember(&p->blocked, sig))
836 return 0;
837 if (p->flags & PF_EXITING)
838 return 0;
839 if (sig == SIGKILL)
840 return 1;
841 if (task_is_stopped_or_traced(p))
842 return 0;
843 return task_curr(p) || !signal_pending(p);
844}
845
846static void
847__group_complete_signal(int sig, struct task_struct *p)
848{
849 struct task_struct *t;
850
851 /*
852 * Now find a thread we can wake up to take the signal off the queue.
853 *
854 * If the main thread wants the signal, it gets first crack.
855 * Probably the least surprising to the average bear.
856 */
857 if (wants_signal(sig, p))
858 t = p;
859 else if (thread_group_empty(p))
860 /*
861 * There is just one thread and it does not need to be woken.
862 * It will dequeue unblocked signals before it runs again.
863 */
864 return;
865 else {
866 /*
867 * Otherwise try to find a suitable thread.
868 */
869 t = p->signal->curr_target;
870 if (t == NULL)
871 /* restart balancing at this thread */
872 t = p->signal->curr_target = p;
873
874 while (!wants_signal(sig, t)) {
875 t = next_thread(t);
876 if (t == p->signal->curr_target)
877 /*
878 * No thread needs to be woken.
879 * Any eligible threads will see
880 * the signal in the queue soon.
881 */
882 return;
883 }
884 p->signal->curr_target = t;
885 }
886
887 /*
888 * Found a killable thread. If the signal will be fatal,
889 * then start taking the whole group down immediately.
890 */
891 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
892 !sigismember(&t->real_blocked, sig) &&
893 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
894 /*
895 * This signal will be fatal to the whole group.
896 */
897 if (!sig_kernel_coredump(sig)) {
898 /*
899 * Start a group exit and wake everybody up.
900 * This way we don't have other threads
901 * running and doing things after a slower
902 * thread has the fatal signal pending.
903 */
904 p->signal->flags = SIGNAL_GROUP_EXIT;
905 p->signal->group_exit_code = sig;
906 p->signal->group_stop_count = 0;
907 t = p;
908 do {
909 sigaddset(&t->pending.signal, SIGKILL);
910 signal_wake_up(t, 1);
911 } while_each_thread(p, t);
912 return;
913 }
914
915 /*
916 * There will be a core dump. We make all threads other
917 * than the chosen one go into a group stop so that nothing
918 * happens until it gets scheduled, takes the signal off
919 * the shared queue, and does the core dump. This is a
920 * little more complicated than strictly necessary, but it
921 * keeps the signal state that winds up in the core dump
922 * unchanged from the death state, e.g. which thread had
923 * the core-dump signal unblocked.
924 */
925 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
926 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
927 p->signal->group_stop_count = 0;
928 p->signal->group_exit_task = t;
929 p = t;
930 do {
931 p->signal->group_stop_count++;
932 signal_wake_up(t, t == p);
933 } while_each_thread(p, t);
934 return;
935 }
936
937 /*
938 * The signal is already in the shared-pending queue.
939 * Tell the chosen thread to wake up and dequeue it.
940 */
941 signal_wake_up(t, sig == SIGKILL);
942 return;
943}
944
945int
946__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
947{
948 int ret = 0;
949
950 assert_spin_locked(&p->sighand->siglock);
951 handle_stop_signal(sig, p);
952
953 /* Short-circuit ignored signals. */
954 if (sig_ignored(p, sig))
955 return ret;
956
957 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
958 /* This is a non-RT signal and we already have one queued. */
959 return ret;
960
961 /*
962 * Put this signal on the shared-pending queue, or fail with EAGAIN.
963 * We always use the shared queue for process-wide signals,
964 * to avoid several races.
965 */
966 ret = send_signal(sig, info, p, &p->signal->shared_pending);
967 if (unlikely(ret))
968 return ret;
969
970 __group_complete_signal(sig, p);
971 return 0;
972}
973
974/*
975 * Nuke all other threads in the group.
976 */
977void zap_other_threads(struct task_struct *p)
978{
979 struct task_struct *t;
980
981 p->signal->flags = SIGNAL_GROUP_EXIT;
982 p->signal->group_stop_count = 0;
983
984 for (t = next_thread(p); t != p; t = next_thread(t)) {
985 /*
986 * Don't bother with already dead threads
987 */
988 if (t->exit_state)
989 continue;
990
991 /* SIGKILL will be handled before any pending SIGSTOP */
992 sigaddset(&t->pending.signal, SIGKILL);
993 signal_wake_up(t, 1);
994 }
995}
996
997/*
998 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
999 */
1000struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1001{
1002 struct sighand_struct *sighand;
1003
1004 for (;;) {
1005 sighand = rcu_dereference(tsk->sighand);
1006 if (unlikely(sighand == NULL))
1007 break;
1008
1009 spin_lock_irqsave(&sighand->siglock, *flags);
1010 if (likely(sighand == tsk->sighand))
1011 break;
1012 spin_unlock_irqrestore(&sighand->siglock, *flags);
1013 }
1014
1015 return sighand;
1016}
1017
1018int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1019{
1020 unsigned long flags;
1021 int ret;
1022
1023 ret = check_kill_permission(sig, info, p);
1024
1025 if (!ret && sig) {
1026 ret = -ESRCH;
1027 if (lock_task_sighand(p, &flags)) {
1028 ret = __group_send_sig_info(sig, info, p);
1029 unlock_task_sighand(p, &flags);
1030 }
1031 }
1032
1033 return ret;
1034}
1035
1036/*
1037 * kill_pgrp_info() sends a signal to a process group: this is what the tty
1038 * control characters do (^C, ^Z etc)
1039 */
1040
1041int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1042{
1043 struct task_struct *p = NULL;
1044 int retval, success;
1045
1046 success = 0;
1047 retval = -ESRCH;
1048 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1049 int err = group_send_sig_info(sig, info, p);
1050 success |= !err;
1051 retval = err;
1052 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1053 return success ? 0 : retval;
1054}
1055
1056int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1057{
1058 int retval;
1059
1060 read_lock(&tasklist_lock);
1061 retval = __kill_pgrp_info(sig, info, pgrp);
1062 read_unlock(&tasklist_lock);
1063
1064 return retval;
1065}
1066
1067int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1068{
1069 int error;
1070 struct task_struct *p;
1071
1072 rcu_read_lock();
1073 if (unlikely(sig_needs_tasklist(sig)))
1074 read_lock(&tasklist_lock);
1075
1076 p = pid_task(pid, PIDTYPE_PID);
1077 error = -ESRCH;
1078 if (p)
1079 error = group_send_sig_info(sig, info, p);
1080
1081 if (unlikely(sig_needs_tasklist(sig)))
1082 read_unlock(&tasklist_lock);
1083 rcu_read_unlock();
1084 return error;
1085}
1086
1087int
1088kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1089{
1090 int error;
1091 rcu_read_lock();
1092 error = kill_pid_info(sig, info, find_vpid(pid));
1093 rcu_read_unlock();
1094 return error;
1095}
1096
1097/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1098int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1099 uid_t uid, uid_t euid, u32 secid)
1100{
1101 int ret = -EINVAL;
1102 struct task_struct *p;
1103
1104 if (!valid_signal(sig))
1105 return ret;
1106
1107 read_lock(&tasklist_lock);
1108 p = pid_task(pid, PIDTYPE_PID);
1109 if (!p) {
1110 ret = -ESRCH;
1111 goto out_unlock;
1112 }
1113 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1114 && (euid != p->suid) && (euid != p->uid)
1115 && (uid != p->suid) && (uid != p->uid)) {
1116 ret = -EPERM;
1117 goto out_unlock;
1118 }
1119 ret = security_task_kill(p, info, sig, secid);
1120 if (ret)
1121 goto out_unlock;
1122 if (sig && p->sighand) {
1123 unsigned long flags;
1124 spin_lock_irqsave(&p->sighand->siglock, flags);
1125 ret = __group_send_sig_info(sig, info, p);
1126 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1127 }
1128out_unlock:
1129 read_unlock(&tasklist_lock);
1130 return ret;
1131}
1132EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1133
1134/*
1135 * kill_something_info() interprets pid in interesting ways just like kill(2).
1136 *
1137 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1138 * is probably wrong. Should make it like BSD or SYSV.
1139 */
1140
1141static int kill_something_info(int sig, struct siginfo *info, int pid)
1142{
1143 int ret;
1144 rcu_read_lock();
1145 if (!pid) {
1146 ret = kill_pgrp_info(sig, info, task_pgrp(current));
1147 } else if (pid == -1) {
1148 int retval = 0, count = 0;
1149 struct task_struct * p;
1150
1151 read_lock(&tasklist_lock);
1152 for_each_process(p) {
1153 if (p->pid > 1 && !same_thread_group(p, current)) {
1154 int err = group_send_sig_info(sig, info, p);
1155 ++count;
1156 if (err != -EPERM)
1157 retval = err;
1158 }
1159 }
1160 read_unlock(&tasklist_lock);
1161 ret = count ? retval : -ESRCH;
1162 } else if (pid < 0) {
1163 ret = kill_pgrp_info(sig, info, find_vpid(-pid));
1164 } else {
1165 ret = kill_pid_info(sig, info, find_vpid(pid));
1166 }
1167 rcu_read_unlock();
1168 return ret;
1169}
1170
1171/*
1172 * These are for backward compatibility with the rest of the kernel source.
1173 */
1174
1175/*
1176 * These two are the most common entry points. They send a signal
1177 * just to the specific thread.
1178 */
1179int
1180send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1181{
1182 int ret;
1183 unsigned long flags;
1184
1185 /*
1186 * Make sure legacy kernel users don't send in bad values
1187 * (normal paths check this in check_kill_permission).
1188 */
1189 if (!valid_signal(sig))
1190 return -EINVAL;
1191
1192 /*
1193 * We need the tasklist lock even for the specific
1194 * thread case (when we don't need to follow the group
1195 * lists) in order to avoid races with "p->sighand"
1196 * going away or changing from under us.
1197 */
1198 read_lock(&tasklist_lock);
1199 spin_lock_irqsave(&p->sighand->siglock, flags);
1200 ret = specific_send_sig_info(sig, info, p);
1201 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1202 read_unlock(&tasklist_lock);
1203 return ret;
1204}
1205
1206#define __si_special(priv) \
1207 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1208
1209int
1210send_sig(int sig, struct task_struct *p, int priv)
1211{
1212 return send_sig_info(sig, __si_special(priv), p);
1213}
1214
1215/*
1216 * This is the entry point for "process-wide" signals.
1217 * They will go to an appropriate thread in the thread group.
1218 */
1219int
1220send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1221{
1222 int ret;
1223 read_lock(&tasklist_lock);
1224 ret = group_send_sig_info(sig, info, p);
1225 read_unlock(&tasklist_lock);
1226 return ret;
1227}
1228
1229void
1230force_sig(int sig, struct task_struct *p)
1231{
1232 force_sig_info(sig, SEND_SIG_PRIV, p);
1233}
1234
1235/*
1236 * When things go south during signal handling, we
1237 * will force a SIGSEGV. And if the signal that caused
1238 * the problem was already a SIGSEGV, we'll want to
1239 * make sure we don't even try to deliver the signal..
1240 */
1241int
1242force_sigsegv(int sig, struct task_struct *p)
1243{
1244 if (sig == SIGSEGV) {
1245 unsigned long flags;
1246 spin_lock_irqsave(&p->sighand->siglock, flags);
1247 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1248 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1249 }
1250 force_sig(SIGSEGV, p);
1251 return 0;
1252}
1253
1254int kill_pgrp(struct pid *pid, int sig, int priv)
1255{
1256 return kill_pgrp_info(sig, __si_special(priv), pid);
1257}
1258EXPORT_SYMBOL(kill_pgrp);
1259
1260int kill_pid(struct pid *pid, int sig, int priv)
1261{
1262 return kill_pid_info(sig, __si_special(priv), pid);
1263}
1264EXPORT_SYMBOL(kill_pid);
1265
1266int
1267kill_proc(pid_t pid, int sig, int priv)
1268{
1269 int ret;
1270
1271 rcu_read_lock();
1272 ret = kill_pid_info(sig, __si_special(priv), find_pid(pid));
1273 rcu_read_unlock();
1274 return ret;
1275}
1276
1277/*
1278 * These functions support sending signals using preallocated sigqueue
1279 * structures. This is needed "because realtime applications cannot
1280 * afford to lose notifications of asynchronous events, like timer
1281 * expirations or I/O completions". In the case of Posix Timers
1282 * we allocate the sigqueue structure from the timer_create. If this
1283 * allocation fails we are able to report the failure to the application
1284 * with an EAGAIN error.
1285 */
1286
1287struct sigqueue *sigqueue_alloc(void)
1288{
1289 struct sigqueue *q;
1290
1291 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1292 q->flags |= SIGQUEUE_PREALLOC;
1293 return(q);
1294}
1295
1296void sigqueue_free(struct sigqueue *q)
1297{
1298 unsigned long flags;
1299 spinlock_t *lock = &current->sighand->siglock;
1300
1301 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1302 /*
1303 * If the signal is still pending remove it from the
1304 * pending queue. We must hold ->siglock while testing
1305 * q->list to serialize with collect_signal().
1306 */
1307 spin_lock_irqsave(lock, flags);
1308 if (!list_empty(&q->list))
1309 list_del_init(&q->list);
1310 spin_unlock_irqrestore(lock, flags);
1311
1312 q->flags &= ~SIGQUEUE_PREALLOC;
1313 __sigqueue_free(q);
1314}
1315
1316int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1317{
1318 unsigned long flags;
1319 int ret = 0;
1320
1321 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1322
1323 /*
1324 * The rcu based delayed sighand destroy makes it possible to
1325 * run this without tasklist lock held. The task struct itself
1326 * cannot go away as create_timer did get_task_struct().
1327 *
1328 * We return -1, when the task is marked exiting, so
1329 * posix_timer_event can redirect it to the group leader
1330 */
1331 rcu_read_lock();
1332
1333 if (!likely(lock_task_sighand(p, &flags))) {
1334 ret = -1;
1335 goto out_err;
1336 }
1337
1338 if (unlikely(!list_empty(&q->list))) {
1339 /*
1340 * If an SI_TIMER entry is already queue just increment
1341 * the overrun count.
1342 */
1343 BUG_ON(q->info.si_code != SI_TIMER);
1344 q->info.si_overrun++;
1345 goto out;
1346 }
1347 /* Short-circuit ignored signals. */
1348 if (sig_ignored(p, sig)) {
1349 ret = 1;
1350 goto out;
1351 }
1352 /*
1353 * Deliver the signal to listening signalfds. This must be called
1354 * with the sighand lock held.
1355 */
1356 signalfd_notify(p, sig);
1357
1358 list_add_tail(&q->list, &p->pending.list);
1359 sigaddset(&p->pending.signal, sig);
1360 if (!sigismember(&p->blocked, sig))
1361 signal_wake_up(p, sig == SIGKILL);
1362
1363out:
1364 unlock_task_sighand(p, &flags);
1365out_err:
1366 rcu_read_unlock();
1367
1368 return ret;
1369}
1370
1371int
1372send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1373{
1374 unsigned long flags;
1375 int ret = 0;
1376
1377 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1378
1379 read_lock(&tasklist_lock);
1380 /* Since it_lock is held, p->sighand cannot be NULL. */
1381 spin_lock_irqsave(&p->sighand->siglock, flags);
1382 handle_stop_signal(sig, p);
1383
1384 /* Short-circuit ignored signals. */
1385 if (sig_ignored(p, sig)) {
1386 ret = 1;
1387 goto out;
1388 }
1389
1390 if (unlikely(!list_empty(&q->list))) {
1391 /*
1392 * If an SI_TIMER entry is already queue just increment
1393 * the overrun count. Other uses should not try to
1394 * send the signal multiple times.
1395 */
1396 BUG_ON(q->info.si_code != SI_TIMER);
1397 q->info.si_overrun++;
1398 goto out;
1399 }
1400 /*
1401 * Deliver the signal to listening signalfds. This must be called
1402 * with the sighand lock held.
1403 */
1404 signalfd_notify(p, sig);
1405
1406 /*
1407 * Put this signal on the shared-pending queue.
1408 * We always use the shared queue for process-wide signals,
1409 * to avoid several races.
1410 */
1411 list_add_tail(&q->list, &p->signal->shared_pending.list);
1412 sigaddset(&p->signal->shared_pending.signal, sig);
1413
1414 __group_complete_signal(sig, p);
1415out:
1416 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1417 read_unlock(&tasklist_lock);
1418 return ret;
1419}
1420
1421/*
1422 * Wake up any threads in the parent blocked in wait* syscalls.
1423 */
1424static inline void __wake_up_parent(struct task_struct *p,
1425 struct task_struct *parent)
1426{
1427 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1428}
1429
1430/*
1431 * Let a parent know about the death of a child.
1432 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1433 */
1434
1435void do_notify_parent(struct task_struct *tsk, int sig)
1436{
1437 struct siginfo info;
1438 unsigned long flags;
1439 struct sighand_struct *psig;
1440
1441 BUG_ON(sig == -1);
1442
1443 /* do_notify_parent_cldstop should have been called instead. */
1444 BUG_ON(task_is_stopped_or_traced(tsk));
1445
1446 BUG_ON(!tsk->ptrace &&
1447 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1448
1449 info.si_signo = sig;
1450 info.si_errno = 0;
1451 /*
1452 * we are under tasklist_lock here so our parent is tied to
1453 * us and cannot exit and release its namespace.
1454 *
1455 * the only it can is to switch its nsproxy with sys_unshare,
1456 * bu uncharing pid namespaces is not allowed, so we'll always
1457 * see relevant namespace
1458 *
1459 * write_lock() currently calls preempt_disable() which is the
1460 * same as rcu_read_lock(), but according to Oleg, this is not
1461 * correct to rely on this
1462 */
1463 rcu_read_lock();
1464 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1465 rcu_read_unlock();
1466
1467 info.si_uid = tsk->uid;
1468
1469 /* FIXME: find out whether or not this is supposed to be c*time. */
1470 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1471 tsk->signal->utime));
1472 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1473 tsk->signal->stime));
1474
1475 info.si_status = tsk->exit_code & 0x7f;
1476 if (tsk->exit_code & 0x80)
1477 info.si_code = CLD_DUMPED;
1478 else if (tsk->exit_code & 0x7f)
1479 info.si_code = CLD_KILLED;
1480 else {
1481 info.si_code = CLD_EXITED;
1482 info.si_status = tsk->exit_code >> 8;
1483 }
1484
1485 psig = tsk->parent->sighand;
1486 spin_lock_irqsave(&psig->siglock, flags);
1487 if (!tsk->ptrace && sig == SIGCHLD &&
1488 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1489 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1490 /*
1491 * We are exiting and our parent doesn't care. POSIX.1
1492 * defines special semantics for setting SIGCHLD to SIG_IGN
1493 * or setting the SA_NOCLDWAIT flag: we should be reaped
1494 * automatically and not left for our parent's wait4 call.
1495 * Rather than having the parent do it as a magic kind of
1496 * signal handler, we just set this to tell do_exit that we
1497 * can be cleaned up without becoming a zombie. Note that
1498 * we still call __wake_up_parent in this case, because a
1499 * blocked sys_wait4 might now return -ECHILD.
1500 *
1501 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1502 * is implementation-defined: we do (if you don't want
1503 * it, just use SIG_IGN instead).
1504 */
1505 tsk->exit_signal = -1;
1506 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1507 sig = 0;
1508 }
1509 if (valid_signal(sig) && sig > 0)
1510 __group_send_sig_info(sig, &info, tsk->parent);
1511 __wake_up_parent(tsk, tsk->parent);
1512 spin_unlock_irqrestore(&psig->siglock, flags);
1513}
1514
1515static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1516{
1517 struct siginfo info;
1518 unsigned long flags;
1519 struct task_struct *parent;
1520 struct sighand_struct *sighand;
1521
1522 if (tsk->ptrace & PT_PTRACED)
1523 parent = tsk->parent;
1524 else {
1525 tsk = tsk->group_leader;
1526 parent = tsk->real_parent;
1527 }
1528
1529 info.si_signo = SIGCHLD;
1530 info.si_errno = 0;
1531 /*
1532 * see comment in do_notify_parent() abot the following 3 lines
1533 */
1534 rcu_read_lock();
1535 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1536 rcu_read_unlock();
1537
1538 info.si_uid = tsk->uid;
1539
1540 /* FIXME: find out whether or not this is supposed to be c*time. */
1541 info.si_utime = cputime_to_jiffies(tsk->utime);
1542 info.si_stime = cputime_to_jiffies(tsk->stime);
1543
1544 info.si_code = why;
1545 switch (why) {
1546 case CLD_CONTINUED:
1547 info.si_status = SIGCONT;
1548 break;
1549 case CLD_STOPPED:
1550 info.si_status = tsk->signal->group_exit_code & 0x7f;
1551 break;
1552 case CLD_TRAPPED:
1553 info.si_status = tsk->exit_code & 0x7f;
1554 break;
1555 default:
1556 BUG();
1557 }
1558
1559 sighand = parent->sighand;
1560 spin_lock_irqsave(&sighand->siglock, flags);
1561 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1562 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1563 __group_send_sig_info(SIGCHLD, &info, parent);
1564 /*
1565 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1566 */
1567 __wake_up_parent(tsk, parent);
1568 spin_unlock_irqrestore(&sighand->siglock, flags);
1569}
1570
1571static inline int may_ptrace_stop(void)
1572{
1573 if (!likely(current->ptrace & PT_PTRACED))
1574 return 0;
1575
1576 if (unlikely(current->parent == current->real_parent &&
1577 (current->ptrace & PT_ATTACHED)))
1578 return 0;
1579
1580 /*
1581 * Are we in the middle of do_coredump?
1582 * If so and our tracer is also part of the coredump stopping
1583 * is a deadlock situation, and pointless because our tracer
1584 * is dead so don't allow us to stop.
1585 * If SIGKILL was already sent before the caller unlocked
1586 * ->siglock we must see ->core_waiters != 0. Otherwise it
1587 * is safe to enter schedule().
1588 */
1589 if (unlikely(current->mm->core_waiters) &&
1590 unlikely(current->mm == current->parent->mm))
1591 return 0;
1592
1593 return 1;
1594}
1595
1596/*
1597 * This must be called with current->sighand->siglock held.
1598 *
1599 * This should be the path for all ptrace stops.
1600 * We always set current->last_siginfo while stopped here.
1601 * That makes it a way to test a stopped process for
1602 * being ptrace-stopped vs being job-control-stopped.
1603 *
1604 * If we actually decide not to stop at all because the tracer is gone,
1605 * we leave nostop_code in current->exit_code.
1606 */
1607static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1608{
1609 /*
1610 * If there is a group stop in progress,
1611 * we must participate in the bookkeeping.
1612 */
1613 if (current->signal->group_stop_count > 0)
1614 --current->signal->group_stop_count;
1615
1616 current->last_siginfo = info;
1617 current->exit_code = exit_code;
1618
1619 /* Let the debugger run. */
1620 set_current_state(TASK_TRACED);
1621 spin_unlock_irq(&current->sighand->siglock);
1622 try_to_freeze();
1623 read_lock(&tasklist_lock);
1624 if (may_ptrace_stop()) {
1625 do_notify_parent_cldstop(current, CLD_TRAPPED);
1626 read_unlock(&tasklist_lock);
1627 schedule();
1628 } else {
1629 /*
1630 * By the time we got the lock, our tracer went away.
1631 * Don't stop here.
1632 */
1633 read_unlock(&tasklist_lock);
1634 set_current_state(TASK_RUNNING);
1635 current->exit_code = nostop_code;
1636 }
1637
1638 /*
1639 * We are back. Now reacquire the siglock before touching
1640 * last_siginfo, so that we are sure to have synchronized with
1641 * any signal-sending on another CPU that wants to examine it.
1642 */
1643 spin_lock_irq(&current->sighand->siglock);
1644 current->last_siginfo = NULL;
1645
1646 /*
1647 * Queued signals ignored us while we were stopped for tracing.
1648 * So check for any that we should take before resuming user mode.
1649 * This sets TIF_SIGPENDING, but never clears it.
1650 */
1651 recalc_sigpending_tsk(current);
1652}
1653
1654void ptrace_notify(int exit_code)
1655{
1656 siginfo_t info;
1657
1658 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1659
1660 memset(&info, 0, sizeof info);
1661 info.si_signo = SIGTRAP;
1662 info.si_code = exit_code;
1663 info.si_pid = task_pid_vnr(current);
1664 info.si_uid = current->uid;
1665
1666 /* Let the debugger run. */
1667 spin_lock_irq(&current->sighand->siglock);
1668 ptrace_stop(exit_code, 0, &info);
1669 spin_unlock_irq(&current->sighand->siglock);
1670}
1671
1672static void
1673finish_stop(int stop_count)
1674{
1675 /*
1676 * If there are no other threads in the group, or if there is
1677 * a group stop in progress and we are the last to stop,
1678 * report to the parent. When ptraced, every thread reports itself.
1679 */
1680 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1681 read_lock(&tasklist_lock);
1682 do_notify_parent_cldstop(current, CLD_STOPPED);
1683 read_unlock(&tasklist_lock);
1684 }
1685
1686 do {
1687 schedule();
1688 } while (try_to_freeze());
1689 /*
1690 * Now we don't run again until continued.
1691 */
1692 current->exit_code = 0;
1693}
1694
1695/*
1696 * This performs the stopping for SIGSTOP and other stop signals.
1697 * We have to stop all threads in the thread group.
1698 * Returns nonzero if we've actually stopped and released the siglock.
1699 * Returns zero if we didn't stop and still hold the siglock.
1700 */
1701static int do_signal_stop(int signr)
1702{
1703 struct signal_struct *sig = current->signal;
1704 int stop_count;
1705
1706 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1707 return 0;
1708
1709 if (sig->group_stop_count > 0) {
1710 /*
1711 * There is a group stop in progress. We don't need to
1712 * start another one.
1713 */
1714 stop_count = --sig->group_stop_count;
1715 } else {
1716 /*
1717 * There is no group stop already in progress.
1718 * We must initiate one now.
1719 */
1720 struct task_struct *t;
1721
1722 sig->group_exit_code = signr;
1723
1724 stop_count = 0;
1725 for (t = next_thread(current); t != current; t = next_thread(t))
1726 /*
1727 * Setting state to TASK_STOPPED for a group
1728 * stop is always done with the siglock held,
1729 * so this check has no races.
1730 */
1731 if (!t->exit_state &&
1732 !task_is_stopped_or_traced(t)) {
1733 stop_count++;
1734 signal_wake_up(t, 0);
1735 }
1736 sig->group_stop_count = stop_count;
1737 }
1738
1739 if (stop_count == 0)
1740 sig->flags = SIGNAL_STOP_STOPPED;
1741 current->exit_code = sig->group_exit_code;
1742 __set_current_state(TASK_STOPPED);
1743
1744 spin_unlock_irq(&current->sighand->siglock);
1745 finish_stop(stop_count);
1746 return 1;
1747}
1748
1749/*
1750 * Do appropriate magic when group_stop_count > 0.
1751 * We return nonzero if we stopped, after releasing the siglock.
1752 * We return zero if we still hold the siglock and should look
1753 * for another signal without checking group_stop_count again.
1754 */
1755static int handle_group_stop(void)
1756{
1757 int stop_count;
1758
1759 if (current->signal->group_exit_task == current) {
1760 /*
1761 * Group stop is so we can do a core dump,
1762 * We are the initiating thread, so get on with it.
1763 */
1764 current->signal->group_exit_task = NULL;
1765 return 0;
1766 }
1767
1768 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1769 /*
1770 * Group stop is so another thread can do a core dump,
1771 * or else we are racing against a death signal.
1772 * Just punt the stop so we can get the next signal.
1773 */
1774 return 0;
1775
1776 /*
1777 * There is a group stop in progress. We stop
1778 * without any associated signal being in our queue.
1779 */
1780 stop_count = --current->signal->group_stop_count;
1781 if (stop_count == 0)
1782 current->signal->flags = SIGNAL_STOP_STOPPED;
1783 current->exit_code = current->signal->group_exit_code;
1784 set_current_state(TASK_STOPPED);
1785 spin_unlock_irq(&current->sighand->siglock);
1786 finish_stop(stop_count);
1787 return 1;
1788}
1789
1790int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1791 struct pt_regs *regs, void *cookie)
1792{
1793 sigset_t *mask = &current->blocked;
1794 int signr = 0;
1795
1796 try_to_freeze();
1797
1798relock:
1799 spin_lock_irq(&current->sighand->siglock);
1800 for (;;) {
1801 struct k_sigaction *ka;
1802
1803 if (unlikely(current->signal->group_stop_count > 0) &&
1804 handle_group_stop())
1805 goto relock;
1806
1807 signr = dequeue_signal(current, mask, info);
1808
1809 if (!signr)
1810 break; /* will return 0 */
1811
1812 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1813 ptrace_signal_deliver(regs, cookie);
1814
1815 /* Let the debugger run. */
1816 ptrace_stop(signr, signr, info);
1817
1818 /* We're back. Did the debugger cancel the sig? */
1819 signr = current->exit_code;
1820 if (signr == 0)
1821 continue;
1822
1823 current->exit_code = 0;
1824
1825 /* Update the siginfo structure if the signal has
1826 changed. If the debugger wanted something
1827 specific in the siginfo structure then it should
1828 have updated *info via PTRACE_SETSIGINFO. */
1829 if (signr != info->si_signo) {
1830 info->si_signo = signr;
1831 info->si_errno = 0;
1832 info->si_code = SI_USER;
1833 info->si_pid = task_pid_vnr(current->parent);
1834 info->si_uid = current->parent->uid;
1835 }
1836
1837 /* If the (new) signal is now blocked, requeue it. */
1838 if (sigismember(&current->blocked, signr)) {
1839 specific_send_sig_info(signr, info, current);
1840 continue;
1841 }
1842 }
1843
1844 ka = &current->sighand->action[signr-1];
1845 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1846 continue;
1847 if (ka->sa.sa_handler != SIG_DFL) {
1848 /* Run the handler. */
1849 *return_ka = *ka;
1850
1851 if (ka->sa.sa_flags & SA_ONESHOT)
1852 ka->sa.sa_handler = SIG_DFL;
1853
1854 break; /* will return non-zero "signr" value */
1855 }
1856
1857 /*
1858 * Now we are doing the default action for this signal.
1859 */
1860 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1861 continue;
1862
1863 /*
1864 * Global init gets no signals it doesn't want.
1865 */
1866 if (is_global_init(current))
1867 continue;
1868
1869 if (sig_kernel_stop(signr)) {
1870 /*
1871 * The default action is to stop all threads in
1872 * the thread group. The job control signals
1873 * do nothing in an orphaned pgrp, but SIGSTOP
1874 * always works. Note that siglock needs to be
1875 * dropped during the call to is_orphaned_pgrp()
1876 * because of lock ordering with tasklist_lock.
1877 * This allows an intervening SIGCONT to be posted.
1878 * We need to check for that and bail out if necessary.
1879 */
1880 if (signr != SIGSTOP) {
1881 spin_unlock_irq(&current->sighand->siglock);
1882
1883 /* signals can be posted during this window */
1884
1885 if (is_current_pgrp_orphaned())
1886 goto relock;
1887
1888 spin_lock_irq(&current->sighand->siglock);
1889 }
1890
1891 if (likely(do_signal_stop(signr))) {
1892 /* It released the siglock. */
1893 goto relock;
1894 }
1895
1896 /*
1897 * We didn't actually stop, due to a race
1898 * with SIGCONT or something like that.
1899 */
1900 continue;
1901 }
1902
1903 spin_unlock_irq(&current->sighand->siglock);
1904
1905 /*
1906 * Anything else is fatal, maybe with a core dump.
1907 */
1908 current->flags |= PF_SIGNALED;
1909 if ((signr != SIGKILL) && print_fatal_signals)
1910 print_fatal_signal(regs, signr);
1911 if (sig_kernel_coredump(signr)) {
1912 /*
1913 * If it was able to dump core, this kills all
1914 * other threads in the group and synchronizes with
1915 * their demise. If we lost the race with another
1916 * thread getting here, it set group_exit_code
1917 * first and our do_group_exit call below will use
1918 * that value and ignore the one we pass it.
1919 */
1920 do_coredump((long)signr, signr, regs);
1921 }
1922
1923 /*
1924 * Death signals, no core dump.
1925 */
1926 do_group_exit(signr);
1927 /* NOTREACHED */
1928 }
1929 spin_unlock_irq(&current->sighand->siglock);
1930 return signr;
1931}
1932
1933EXPORT_SYMBOL(recalc_sigpending);
1934EXPORT_SYMBOL_GPL(dequeue_signal);
1935EXPORT_SYMBOL(flush_signals);
1936EXPORT_SYMBOL(force_sig);
1937EXPORT_SYMBOL(kill_proc);
1938EXPORT_SYMBOL(ptrace_notify);
1939EXPORT_SYMBOL(send_sig);
1940EXPORT_SYMBOL(send_sig_info);
1941EXPORT_SYMBOL(sigprocmask);
1942EXPORT_SYMBOL(block_all_signals);
1943EXPORT_SYMBOL(unblock_all_signals);
1944
1945
1946/*
1947 * System call entry points.
1948 */
1949
1950asmlinkage long sys_restart_syscall(void)
1951{
1952 struct restart_block *restart = &current_thread_info()->restart_block;
1953 return restart->fn(restart);
1954}
1955
1956long do_no_restart_syscall(struct restart_block *param)
1957{
1958 return -EINTR;
1959}
1960
1961/*
1962 * We don't need to get the kernel lock - this is all local to this
1963 * particular thread.. (and that's good, because this is _heavily_
1964 * used by various programs)
1965 */
1966
1967/*
1968 * This is also useful for kernel threads that want to temporarily
1969 * (or permanently) block certain signals.
1970 *
1971 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1972 * interface happily blocks "unblockable" signals like SIGKILL
1973 * and friends.
1974 */
1975int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1976{
1977 int error;
1978
1979 spin_lock_irq(&current->sighand->siglock);
1980 if (oldset)
1981 *oldset = current->blocked;
1982
1983 error = 0;
1984 switch (how) {
1985 case SIG_BLOCK:
1986 sigorsets(&current->blocked, &current->blocked, set);
1987 break;
1988 case SIG_UNBLOCK:
1989 signandsets(&current->blocked, &current->blocked, set);
1990 break;
1991 case SIG_SETMASK:
1992 current->blocked = *set;
1993 break;
1994 default:
1995 error = -EINVAL;
1996 }
1997 recalc_sigpending();
1998 spin_unlock_irq(&current->sighand->siglock);
1999
2000 return error;
2001}
2002
2003asmlinkage long
2004sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2005{
2006 int error = -EINVAL;
2007 sigset_t old_set, new_set;
2008
2009 /* XXX: Don't preclude handling different sized sigset_t's. */
2010 if (sigsetsize != sizeof(sigset_t))
2011 goto out;
2012
2013 if (set) {
2014 error = -EFAULT;
2015 if (copy_from_user(&new_set, set, sizeof(*set)))
2016 goto out;
2017 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2018
2019 error = sigprocmask(how, &new_set, &old_set);
2020 if (error)
2021 goto out;
2022 if (oset)
2023 goto set_old;
2024 } else if (oset) {
2025 spin_lock_irq(&current->sighand->siglock);
2026 old_set = current->blocked;
2027 spin_unlock_irq(&current->sighand->siglock);
2028
2029 set_old:
2030 error = -EFAULT;
2031 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2032 goto out;
2033 }
2034 error = 0;
2035out:
2036 return error;
2037}
2038
2039long do_sigpending(void __user *set, unsigned long sigsetsize)
2040{
2041 long error = -EINVAL;
2042 sigset_t pending;
2043
2044 if (sigsetsize > sizeof(sigset_t))
2045 goto out;
2046
2047 spin_lock_irq(&current->sighand->siglock);
2048 sigorsets(&pending, &current->pending.signal,
2049 &current->signal->shared_pending.signal);
2050 spin_unlock_irq(&current->sighand->siglock);
2051
2052 /* Outside the lock because only this thread touches it. */
2053 sigandsets(&pending, &current->blocked, &pending);
2054
2055 error = -EFAULT;
2056 if (!copy_to_user(set, &pending, sigsetsize))
2057 error = 0;
2058
2059out:
2060 return error;
2061}
2062
2063asmlinkage long
2064sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2065{
2066 return do_sigpending(set, sigsetsize);
2067}
2068
2069#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2070
2071int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2072{
2073 int err;
2074
2075 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2076 return -EFAULT;
2077 if (from->si_code < 0)
2078 return __copy_to_user(to, from, sizeof(siginfo_t))
2079 ? -EFAULT : 0;
2080 /*
2081 * If you change siginfo_t structure, please be sure
2082 * this code is fixed accordingly.
2083 * Please remember to update the signalfd_copyinfo() function
2084 * inside fs/signalfd.c too, in case siginfo_t changes.
2085 * It should never copy any pad contained in the structure
2086 * to avoid security leaks, but must copy the generic
2087 * 3 ints plus the relevant union member.
2088 */
2089 err = __put_user(from->si_signo, &to->si_signo);
2090 err |= __put_user(from->si_errno, &to->si_errno);
2091 err |= __put_user((short)from->si_code, &to->si_code);
2092 switch (from->si_code & __SI_MASK) {
2093 case __SI_KILL:
2094 err |= __put_user(from->si_pid, &to->si_pid);
2095 err |= __put_user(from->si_uid, &to->si_uid);
2096 break;
2097 case __SI_TIMER:
2098 err |= __put_user(from->si_tid, &to->si_tid);
2099 err |= __put_user(from->si_overrun, &to->si_overrun);
2100 err |= __put_user(from->si_ptr, &to->si_ptr);
2101 break;
2102 case __SI_POLL:
2103 err |= __put_user(from->si_band, &to->si_band);
2104 err |= __put_user(from->si_fd, &to->si_fd);
2105 break;
2106 case __SI_FAULT:
2107 err |= __put_user(from->si_addr, &to->si_addr);
2108#ifdef __ARCH_SI_TRAPNO
2109 err |= __put_user(from->si_trapno, &to->si_trapno);
2110#endif
2111 break;
2112 case __SI_CHLD:
2113 err |= __put_user(from->si_pid, &to->si_pid);
2114 err |= __put_user(from->si_uid, &to->si_uid);
2115 err |= __put_user(from->si_status, &to->si_status);
2116 err |= __put_user(from->si_utime, &to->si_utime);
2117 err |= __put_user(from->si_stime, &to->si_stime);
2118 break;
2119 case __SI_RT: /* This is not generated by the kernel as of now. */
2120 case __SI_MESGQ: /* But this is */
2121 err |= __put_user(from->si_pid, &to->si_pid);
2122 err |= __put_user(from->si_uid, &to->si_uid);
2123 err |= __put_user(from->si_ptr, &to->si_ptr);
2124 break;
2125 default: /* this is just in case for now ... */
2126 err |= __put_user(from->si_pid, &to->si_pid);
2127 err |= __put_user(from->si_uid, &to->si_uid);
2128 break;
2129 }
2130 return err;
2131}
2132
2133#endif
2134
2135asmlinkage long
2136sys_rt_sigtimedwait(const sigset_t __user *uthese,
2137 siginfo_t __user *uinfo,
2138 const struct timespec __user *uts,
2139 size_t sigsetsize)
2140{
2141 int ret, sig;
2142 sigset_t these;
2143 struct timespec ts;
2144 siginfo_t info;
2145 long timeout = 0;
2146
2147 /* XXX: Don't preclude handling different sized sigset_t's. */
2148 if (sigsetsize != sizeof(sigset_t))
2149 return -EINVAL;
2150
2151 if (copy_from_user(&these, uthese, sizeof(these)))
2152 return -EFAULT;
2153
2154 /*
2155 * Invert the set of allowed signals to get those we
2156 * want to block.
2157 */
2158 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2159 signotset(&these);
2160
2161 if (uts) {
2162 if (copy_from_user(&ts, uts, sizeof(ts)))
2163 return -EFAULT;
2164 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2165 || ts.tv_sec < 0)
2166 return -EINVAL;
2167 }
2168
2169 spin_lock_irq(&current->sighand->siglock);
2170 sig = dequeue_signal(current, &these, &info);
2171 if (!sig) {
2172 timeout = MAX_SCHEDULE_TIMEOUT;
2173 if (uts)
2174 timeout = (timespec_to_jiffies(&ts)
2175 + (ts.tv_sec || ts.tv_nsec));
2176
2177 if (timeout) {
2178 /* None ready -- temporarily unblock those we're
2179 * interested while we are sleeping in so that we'll
2180 * be awakened when they arrive. */
2181 current->real_blocked = current->blocked;
2182 sigandsets(&current->blocked, &current->blocked, &these);
2183 recalc_sigpending();
2184 spin_unlock_irq(&current->sighand->siglock);
2185
2186 timeout = schedule_timeout_interruptible(timeout);
2187
2188 spin_lock_irq(&current->sighand->siglock);
2189 sig = dequeue_signal(current, &these, &info);
2190 current->blocked = current->real_blocked;
2191 siginitset(&current->real_blocked, 0);
2192 recalc_sigpending();
2193 }
2194 }
2195 spin_unlock_irq(&current->sighand->siglock);
2196
2197 if (sig) {
2198 ret = sig;
2199 if (uinfo) {
2200 if (copy_siginfo_to_user(uinfo, &info))
2201 ret = -EFAULT;
2202 }
2203 } else {
2204 ret = -EAGAIN;
2205 if (timeout)
2206 ret = -EINTR;
2207 }
2208
2209 return ret;
2210}
2211
2212asmlinkage long
2213sys_kill(int pid, int sig)
2214{
2215 struct siginfo info;
2216
2217 info.si_signo = sig;
2218 info.si_errno = 0;
2219 info.si_code = SI_USER;
2220 info.si_pid = task_tgid_vnr(current);
2221 info.si_uid = current->uid;
2222
2223 return kill_something_info(sig, &info, pid);
2224}
2225
2226static int do_tkill(int tgid, int pid, int sig)
2227{
2228 int error;
2229 struct siginfo info;
2230 struct task_struct *p;
2231
2232 error = -ESRCH;
2233 info.si_signo = sig;
2234 info.si_errno = 0;
2235 info.si_code = SI_TKILL;
2236 info.si_pid = task_tgid_vnr(current);
2237 info.si_uid = current->uid;
2238
2239 read_lock(&tasklist_lock);
2240 p = find_task_by_vpid(pid);
2241 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2242 error = check_kill_permission(sig, &info, p);
2243 /*
2244 * The null signal is a permissions and process existence
2245 * probe. No signal is actually delivered.
2246 */
2247 if (!error && sig && p->sighand) {
2248 spin_lock_irq(&p->sighand->siglock);
2249 handle_stop_signal(sig, p);
2250 error = specific_send_sig_info(sig, &info, p);
2251 spin_unlock_irq(&p->sighand->siglock);
2252 }
2253 }
2254 read_unlock(&tasklist_lock);
2255
2256 return error;
2257}
2258
2259/**
2260 * sys_tgkill - send signal to one specific thread
2261 * @tgid: the thread group ID of the thread
2262 * @pid: the PID of the thread
2263 * @sig: signal to be sent
2264 *
2265 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2266 * exists but it's not belonging to the target process anymore. This
2267 * method solves the problem of threads exiting and PIDs getting reused.
2268 */
2269asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2270{
2271 /* This is only valid for single tasks */
2272 if (pid <= 0 || tgid <= 0)
2273 return -EINVAL;
2274
2275 return do_tkill(tgid, pid, sig);
2276}
2277
2278/*
2279 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2280 */
2281asmlinkage long
2282sys_tkill(int pid, int sig)
2283{
2284 /* This is only valid for single tasks */
2285 if (pid <= 0)
2286 return -EINVAL;
2287
2288 return do_tkill(0, pid, sig);
2289}
2290
2291asmlinkage long
2292sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2293{
2294 siginfo_t info;
2295
2296 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2297 return -EFAULT;
2298
2299 /* Not even root can pretend to send signals from the kernel.
2300 Nor can they impersonate a kill(), which adds source info. */
2301 if (info.si_code >= 0)
2302 return -EPERM;
2303 info.si_signo = sig;
2304
2305 /* POSIX.1b doesn't mention process groups. */
2306 return kill_proc_info(sig, &info, pid);
2307}
2308
2309int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2310{
2311 struct k_sigaction *k;
2312 sigset_t mask;
2313
2314 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2315 return -EINVAL;
2316
2317 k = &current->sighand->action[sig-1];
2318
2319 spin_lock_irq(&current->sighand->siglock);
2320 if (oact)
2321 *oact = *k;
2322
2323 if (act) {
2324 sigdelsetmask(&act->sa.sa_mask,
2325 sigmask(SIGKILL) | sigmask(SIGSTOP));
2326 *k = *act;
2327 /*
2328 * POSIX 3.3.1.3:
2329 * "Setting a signal action to SIG_IGN for a signal that is
2330 * pending shall cause the pending signal to be discarded,
2331 * whether or not it is blocked."
2332 *
2333 * "Setting a signal action to SIG_DFL for a signal that is
2334 * pending and whose default action is to ignore the signal
2335 * (for example, SIGCHLD), shall cause the pending signal to
2336 * be discarded, whether or not it is blocked"
2337 */
2338 if (act->sa.sa_handler == SIG_IGN ||
2339 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2340 struct task_struct *t = current;
2341 sigemptyset(&mask);
2342 sigaddset(&mask, sig);
2343 rm_from_queue_full(&mask, &t->signal->shared_pending);
2344 do {
2345 rm_from_queue_full(&mask, &t->pending);
2346 t = next_thread(t);
2347 } while (t != current);
2348 }
2349 }
2350
2351 spin_unlock_irq(&current->sighand->siglock);
2352 return 0;
2353}
2354
2355int
2356do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2357{
2358 stack_t oss;
2359 int error;
2360
2361 if (uoss) {
2362 oss.ss_sp = (void __user *) current->sas_ss_sp;
2363 oss.ss_size = current->sas_ss_size;
2364 oss.ss_flags = sas_ss_flags(sp);
2365 }
2366
2367 if (uss) {
2368 void __user *ss_sp;
2369 size_t ss_size;
2370 int ss_flags;
2371
2372 error = -EFAULT;
2373 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2374 || __get_user(ss_sp, &uss->ss_sp)
2375 || __get_user(ss_flags, &uss->ss_flags)
2376 || __get_user(ss_size, &uss->ss_size))
2377 goto out;
2378
2379 error = -EPERM;
2380 if (on_sig_stack(sp))
2381 goto out;
2382
2383 error = -EINVAL;
2384 /*
2385 *
2386 * Note - this code used to test ss_flags incorrectly
2387 * old code may have been written using ss_flags==0
2388 * to mean ss_flags==SS_ONSTACK (as this was the only
2389 * way that worked) - this fix preserves that older
2390 * mechanism
2391 */
2392 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2393 goto out;
2394
2395 if (ss_flags == SS_DISABLE) {
2396 ss_size = 0;
2397 ss_sp = NULL;
2398 } else {
2399 error = -ENOMEM;
2400 if (ss_size < MINSIGSTKSZ)
2401 goto out;
2402 }
2403
2404 current->sas_ss_sp = (unsigned long) ss_sp;
2405 current->sas_ss_size = ss_size;
2406 }
2407
2408 if (uoss) {
2409 error = -EFAULT;
2410 if (copy_to_user(uoss, &oss, sizeof(oss)))
2411 goto out;
2412 }
2413
2414 error = 0;
2415out:
2416 return error;
2417}
2418
2419#ifdef __ARCH_WANT_SYS_SIGPENDING
2420
2421asmlinkage long
2422sys_sigpending(old_sigset_t __user *set)
2423{
2424 return do_sigpending(set, sizeof(*set));
2425}
2426
2427#endif
2428
2429#ifdef __ARCH_WANT_SYS_SIGPROCMASK
2430/* Some platforms have their own version with special arguments others
2431 support only sys_rt_sigprocmask. */
2432
2433asmlinkage long
2434sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2435{
2436 int error;
2437 old_sigset_t old_set, new_set;
2438
2439 if (set) {
2440 error = -EFAULT;
2441 if (copy_from_user(&new_set, set, sizeof(*set)))
2442 goto out;
2443 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2444
2445 spin_lock_irq(&current->sighand->siglock);
2446 old_set = current->blocked.sig[0];
2447
2448 error = 0;
2449 switch (how) {
2450 default:
2451 error = -EINVAL;
2452 break;
2453 case SIG_BLOCK:
2454 sigaddsetmask(&current->blocked, new_set);
2455 break;
2456 case SIG_UNBLOCK:
2457 sigdelsetmask(&current->blocked, new_set);
2458 break;
2459 case SIG_SETMASK:
2460 current->blocked.sig[0] = new_set;
2461 break;
2462 }
2463
2464 recalc_sigpending();
2465 spin_unlock_irq(&current->sighand->siglock);
2466 if (error)
2467 goto out;
2468 if (oset)
2469 goto set_old;
2470 } else if (oset) {
2471 old_set = current->blocked.sig[0];
2472 set_old:
2473 error = -EFAULT;
2474 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2475 goto out;
2476 }
2477 error = 0;
2478out:
2479 return error;
2480}
2481#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2482
2483#ifdef __ARCH_WANT_SYS_RT_SIGACTION
2484asmlinkage long
2485sys_rt_sigaction(int sig,
2486 const struct sigaction __user *act,
2487 struct sigaction __user *oact,
2488 size_t sigsetsize)
2489{
2490 struct k_sigaction new_sa, old_sa;
2491 int ret = -EINVAL;
2492
2493 /* XXX: Don't preclude handling different sized sigset_t's. */
2494 if (sigsetsize != sizeof(sigset_t))
2495 goto out;
2496
2497 if (act) {
2498 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2499 return -EFAULT;
2500 }
2501
2502 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2503
2504 if (!ret && oact) {
2505 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2506 return -EFAULT;
2507 }
2508out:
2509 return ret;
2510}
2511#endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2512
2513#ifdef __ARCH_WANT_SYS_SGETMASK
2514
2515/*
2516 * For backwards compatibility. Functionality superseded by sigprocmask.
2517 */
2518asmlinkage long
2519sys_sgetmask(void)
2520{
2521 /* SMP safe */
2522 return current->blocked.sig[0];
2523}
2524
2525asmlinkage long
2526sys_ssetmask(int newmask)
2527{
2528 int old;
2529
2530 spin_lock_irq(&current->sighand->siglock);
2531 old = current->blocked.sig[0];
2532
2533 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2534 sigmask(SIGSTOP)));
2535 recalc_sigpending();
2536 spin_unlock_irq(&current->sighand->siglock);
2537
2538 return old;
2539}
2540#endif /* __ARCH_WANT_SGETMASK */
2541
2542#ifdef __ARCH_WANT_SYS_SIGNAL
2543/*
2544 * For backwards compatibility. Functionality superseded by sigaction.
2545 */
2546asmlinkage unsigned long
2547sys_signal(int sig, __sighandler_t handler)
2548{
2549 struct k_sigaction new_sa, old_sa;
2550 int ret;
2551
2552 new_sa.sa.sa_handler = handler;
2553 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2554 sigemptyset(&new_sa.sa.sa_mask);
2555
2556 ret = do_sigaction(sig, &new_sa, &old_sa);
2557
2558 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2559}
2560#endif /* __ARCH_WANT_SYS_SIGNAL */
2561
2562#ifdef __ARCH_WANT_SYS_PAUSE
2563
2564asmlinkage long
2565sys_pause(void)
2566{
2567 current->state = TASK_INTERRUPTIBLE;
2568 schedule();
2569 return -ERESTARTNOHAND;
2570}
2571
2572#endif
2573
2574#ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2575asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2576{
2577 sigset_t newset;
2578
2579 /* XXX: Don't preclude handling different sized sigset_t's. */
2580 if (sigsetsize != sizeof(sigset_t))
2581 return -EINVAL;
2582
2583 if (copy_from_user(&newset, unewset, sizeof(newset)))
2584 return -EFAULT;
2585 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2586
2587 spin_lock_irq(&current->sighand->siglock);
2588 current->saved_sigmask = current->blocked;
2589 current->blocked = newset;
2590 recalc_sigpending();
2591 spin_unlock_irq(&current->sighand->siglock);
2592
2593 current->state = TASK_INTERRUPTIBLE;
2594 schedule();
2595 set_thread_flag(TIF_RESTORE_SIGMASK);
2596 return -ERESTARTNOHAND;
2597}
2598#endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2599
2600__attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2601{
2602 return NULL;
2603}
2604
2605void __init signals_init(void)
2606{
2607 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2608}