]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - kernel/sched_rt.c
Net: rds: Makefile: Remove deprecated items
[net-next-2.6.git] / kernel / sched_rt.c
... / ...
CommitLineData
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6#ifdef CONFIG_RT_GROUP_SCHED
7
8#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
9
10static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
11{
12#ifdef CONFIG_SCHED_DEBUG
13 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
14#endif
15 return container_of(rt_se, struct task_struct, rt);
16}
17
18static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
19{
20 return rt_rq->rq;
21}
22
23static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
24{
25 return rt_se->rt_rq;
26}
27
28#else /* CONFIG_RT_GROUP_SCHED */
29
30#define rt_entity_is_task(rt_se) (1)
31
32static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
33{
34 return container_of(rt_se, struct task_struct, rt);
35}
36
37static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
38{
39 return container_of(rt_rq, struct rq, rt);
40}
41
42static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
43{
44 struct task_struct *p = rt_task_of(rt_se);
45 struct rq *rq = task_rq(p);
46
47 return &rq->rt;
48}
49
50#endif /* CONFIG_RT_GROUP_SCHED */
51
52#ifdef CONFIG_SMP
53
54static inline int rt_overloaded(struct rq *rq)
55{
56 return atomic_read(&rq->rd->rto_count);
57}
58
59static inline void rt_set_overload(struct rq *rq)
60{
61 if (!rq->online)
62 return;
63
64 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
65 /*
66 * Make sure the mask is visible before we set
67 * the overload count. That is checked to determine
68 * if we should look at the mask. It would be a shame
69 * if we looked at the mask, but the mask was not
70 * updated yet.
71 */
72 wmb();
73 atomic_inc(&rq->rd->rto_count);
74}
75
76static inline void rt_clear_overload(struct rq *rq)
77{
78 if (!rq->online)
79 return;
80
81 /* the order here really doesn't matter */
82 atomic_dec(&rq->rd->rto_count);
83 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
84}
85
86static void update_rt_migration(struct rt_rq *rt_rq)
87{
88 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
89 if (!rt_rq->overloaded) {
90 rt_set_overload(rq_of_rt_rq(rt_rq));
91 rt_rq->overloaded = 1;
92 }
93 } else if (rt_rq->overloaded) {
94 rt_clear_overload(rq_of_rt_rq(rt_rq));
95 rt_rq->overloaded = 0;
96 }
97}
98
99static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
100{
101 if (!rt_entity_is_task(rt_se))
102 return;
103
104 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
105
106 rt_rq->rt_nr_total++;
107 if (rt_se->nr_cpus_allowed > 1)
108 rt_rq->rt_nr_migratory++;
109
110 update_rt_migration(rt_rq);
111}
112
113static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
114{
115 if (!rt_entity_is_task(rt_se))
116 return;
117
118 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
119
120 rt_rq->rt_nr_total--;
121 if (rt_se->nr_cpus_allowed > 1)
122 rt_rq->rt_nr_migratory--;
123
124 update_rt_migration(rt_rq);
125}
126
127static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
128{
129 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
130 plist_node_init(&p->pushable_tasks, p->prio);
131 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
132}
133
134static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
135{
136 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
137}
138
139static inline int has_pushable_tasks(struct rq *rq)
140{
141 return !plist_head_empty(&rq->rt.pushable_tasks);
142}
143
144#else
145
146static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
147{
148}
149
150static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
151{
152}
153
154static inline
155void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
156{
157}
158
159static inline
160void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
161{
162}
163
164#endif /* CONFIG_SMP */
165
166static inline int on_rt_rq(struct sched_rt_entity *rt_se)
167{
168 return !list_empty(&rt_se->run_list);
169}
170
171#ifdef CONFIG_RT_GROUP_SCHED
172
173static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
174{
175 if (!rt_rq->tg)
176 return RUNTIME_INF;
177
178 return rt_rq->rt_runtime;
179}
180
181static inline u64 sched_rt_period(struct rt_rq *rt_rq)
182{
183 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
184}
185
186#define for_each_leaf_rt_rq(rt_rq, rq) \
187 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
188
189#define for_each_sched_rt_entity(rt_se) \
190 for (; rt_se; rt_se = rt_se->parent)
191
192static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
193{
194 return rt_se->my_q;
195}
196
197static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
198static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
199
200static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
201{
202 int this_cpu = smp_processor_id();
203 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
204 struct sched_rt_entity *rt_se;
205
206 rt_se = rt_rq->tg->rt_se[this_cpu];
207
208 if (rt_rq->rt_nr_running) {
209 if (rt_se && !on_rt_rq(rt_se))
210 enqueue_rt_entity(rt_se, false);
211 if (rt_rq->highest_prio.curr < curr->prio)
212 resched_task(curr);
213 }
214}
215
216static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
217{
218 int this_cpu = smp_processor_id();
219 struct sched_rt_entity *rt_se;
220
221 rt_se = rt_rq->tg->rt_se[this_cpu];
222
223 if (rt_se && on_rt_rq(rt_se))
224 dequeue_rt_entity(rt_se);
225}
226
227static inline int rt_rq_throttled(struct rt_rq *rt_rq)
228{
229 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
230}
231
232static int rt_se_boosted(struct sched_rt_entity *rt_se)
233{
234 struct rt_rq *rt_rq = group_rt_rq(rt_se);
235 struct task_struct *p;
236
237 if (rt_rq)
238 return !!rt_rq->rt_nr_boosted;
239
240 p = rt_task_of(rt_se);
241 return p->prio != p->normal_prio;
242}
243
244#ifdef CONFIG_SMP
245static inline const struct cpumask *sched_rt_period_mask(void)
246{
247 return cpu_rq(smp_processor_id())->rd->span;
248}
249#else
250static inline const struct cpumask *sched_rt_period_mask(void)
251{
252 return cpu_online_mask;
253}
254#endif
255
256static inline
257struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
258{
259 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
260}
261
262static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
263{
264 return &rt_rq->tg->rt_bandwidth;
265}
266
267#else /* !CONFIG_RT_GROUP_SCHED */
268
269static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
270{
271 return rt_rq->rt_runtime;
272}
273
274static inline u64 sched_rt_period(struct rt_rq *rt_rq)
275{
276 return ktime_to_ns(def_rt_bandwidth.rt_period);
277}
278
279#define for_each_leaf_rt_rq(rt_rq, rq) \
280 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
281
282#define for_each_sched_rt_entity(rt_se) \
283 for (; rt_se; rt_se = NULL)
284
285static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
286{
287 return NULL;
288}
289
290static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
291{
292 if (rt_rq->rt_nr_running)
293 resched_task(rq_of_rt_rq(rt_rq)->curr);
294}
295
296static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
297{
298}
299
300static inline int rt_rq_throttled(struct rt_rq *rt_rq)
301{
302 return rt_rq->rt_throttled;
303}
304
305static inline const struct cpumask *sched_rt_period_mask(void)
306{
307 return cpu_online_mask;
308}
309
310static inline
311struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
312{
313 return &cpu_rq(cpu)->rt;
314}
315
316static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
317{
318 return &def_rt_bandwidth;
319}
320
321#endif /* CONFIG_RT_GROUP_SCHED */
322
323#ifdef CONFIG_SMP
324/*
325 * We ran out of runtime, see if we can borrow some from our neighbours.
326 */
327static int do_balance_runtime(struct rt_rq *rt_rq)
328{
329 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
330 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
331 int i, weight, more = 0;
332 u64 rt_period;
333
334 weight = cpumask_weight(rd->span);
335
336 raw_spin_lock(&rt_b->rt_runtime_lock);
337 rt_period = ktime_to_ns(rt_b->rt_period);
338 for_each_cpu(i, rd->span) {
339 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
340 s64 diff;
341
342 if (iter == rt_rq)
343 continue;
344
345 raw_spin_lock(&iter->rt_runtime_lock);
346 /*
347 * Either all rqs have inf runtime and there's nothing to steal
348 * or __disable_runtime() below sets a specific rq to inf to
349 * indicate its been disabled and disalow stealing.
350 */
351 if (iter->rt_runtime == RUNTIME_INF)
352 goto next;
353
354 /*
355 * From runqueues with spare time, take 1/n part of their
356 * spare time, but no more than our period.
357 */
358 diff = iter->rt_runtime - iter->rt_time;
359 if (diff > 0) {
360 diff = div_u64((u64)diff, weight);
361 if (rt_rq->rt_runtime + diff > rt_period)
362 diff = rt_period - rt_rq->rt_runtime;
363 iter->rt_runtime -= diff;
364 rt_rq->rt_runtime += diff;
365 more = 1;
366 if (rt_rq->rt_runtime == rt_period) {
367 raw_spin_unlock(&iter->rt_runtime_lock);
368 break;
369 }
370 }
371next:
372 raw_spin_unlock(&iter->rt_runtime_lock);
373 }
374 raw_spin_unlock(&rt_b->rt_runtime_lock);
375
376 return more;
377}
378
379/*
380 * Ensure this RQ takes back all the runtime it lend to its neighbours.
381 */
382static void __disable_runtime(struct rq *rq)
383{
384 struct root_domain *rd = rq->rd;
385 struct rt_rq *rt_rq;
386
387 if (unlikely(!scheduler_running))
388 return;
389
390 for_each_leaf_rt_rq(rt_rq, rq) {
391 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
392 s64 want;
393 int i;
394
395 raw_spin_lock(&rt_b->rt_runtime_lock);
396 raw_spin_lock(&rt_rq->rt_runtime_lock);
397 /*
398 * Either we're all inf and nobody needs to borrow, or we're
399 * already disabled and thus have nothing to do, or we have
400 * exactly the right amount of runtime to take out.
401 */
402 if (rt_rq->rt_runtime == RUNTIME_INF ||
403 rt_rq->rt_runtime == rt_b->rt_runtime)
404 goto balanced;
405 raw_spin_unlock(&rt_rq->rt_runtime_lock);
406
407 /*
408 * Calculate the difference between what we started out with
409 * and what we current have, that's the amount of runtime
410 * we lend and now have to reclaim.
411 */
412 want = rt_b->rt_runtime - rt_rq->rt_runtime;
413
414 /*
415 * Greedy reclaim, take back as much as we can.
416 */
417 for_each_cpu(i, rd->span) {
418 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
419 s64 diff;
420
421 /*
422 * Can't reclaim from ourselves or disabled runqueues.
423 */
424 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
425 continue;
426
427 raw_spin_lock(&iter->rt_runtime_lock);
428 if (want > 0) {
429 diff = min_t(s64, iter->rt_runtime, want);
430 iter->rt_runtime -= diff;
431 want -= diff;
432 } else {
433 iter->rt_runtime -= want;
434 want -= want;
435 }
436 raw_spin_unlock(&iter->rt_runtime_lock);
437
438 if (!want)
439 break;
440 }
441
442 raw_spin_lock(&rt_rq->rt_runtime_lock);
443 /*
444 * We cannot be left wanting - that would mean some runtime
445 * leaked out of the system.
446 */
447 BUG_ON(want);
448balanced:
449 /*
450 * Disable all the borrow logic by pretending we have inf
451 * runtime - in which case borrowing doesn't make sense.
452 */
453 rt_rq->rt_runtime = RUNTIME_INF;
454 raw_spin_unlock(&rt_rq->rt_runtime_lock);
455 raw_spin_unlock(&rt_b->rt_runtime_lock);
456 }
457}
458
459static void disable_runtime(struct rq *rq)
460{
461 unsigned long flags;
462
463 raw_spin_lock_irqsave(&rq->lock, flags);
464 __disable_runtime(rq);
465 raw_spin_unlock_irqrestore(&rq->lock, flags);
466}
467
468static void __enable_runtime(struct rq *rq)
469{
470 struct rt_rq *rt_rq;
471
472 if (unlikely(!scheduler_running))
473 return;
474
475 /*
476 * Reset each runqueue's bandwidth settings
477 */
478 for_each_leaf_rt_rq(rt_rq, rq) {
479 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
480
481 raw_spin_lock(&rt_b->rt_runtime_lock);
482 raw_spin_lock(&rt_rq->rt_runtime_lock);
483 rt_rq->rt_runtime = rt_b->rt_runtime;
484 rt_rq->rt_time = 0;
485 rt_rq->rt_throttled = 0;
486 raw_spin_unlock(&rt_rq->rt_runtime_lock);
487 raw_spin_unlock(&rt_b->rt_runtime_lock);
488 }
489}
490
491static void enable_runtime(struct rq *rq)
492{
493 unsigned long flags;
494
495 raw_spin_lock_irqsave(&rq->lock, flags);
496 __enable_runtime(rq);
497 raw_spin_unlock_irqrestore(&rq->lock, flags);
498}
499
500static int balance_runtime(struct rt_rq *rt_rq)
501{
502 int more = 0;
503
504 if (rt_rq->rt_time > rt_rq->rt_runtime) {
505 raw_spin_unlock(&rt_rq->rt_runtime_lock);
506 more = do_balance_runtime(rt_rq);
507 raw_spin_lock(&rt_rq->rt_runtime_lock);
508 }
509
510 return more;
511}
512#else /* !CONFIG_SMP */
513static inline int balance_runtime(struct rt_rq *rt_rq)
514{
515 return 0;
516}
517#endif /* CONFIG_SMP */
518
519static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
520{
521 int i, idle = 1;
522 const struct cpumask *span;
523
524 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
525 return 1;
526
527 span = sched_rt_period_mask();
528 for_each_cpu(i, span) {
529 int enqueue = 0;
530 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
531 struct rq *rq = rq_of_rt_rq(rt_rq);
532
533 raw_spin_lock(&rq->lock);
534 if (rt_rq->rt_time) {
535 u64 runtime;
536
537 raw_spin_lock(&rt_rq->rt_runtime_lock);
538 if (rt_rq->rt_throttled)
539 balance_runtime(rt_rq);
540 runtime = rt_rq->rt_runtime;
541 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
542 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
543 rt_rq->rt_throttled = 0;
544 enqueue = 1;
545 }
546 if (rt_rq->rt_time || rt_rq->rt_nr_running)
547 idle = 0;
548 raw_spin_unlock(&rt_rq->rt_runtime_lock);
549 } else if (rt_rq->rt_nr_running)
550 idle = 0;
551
552 if (enqueue)
553 sched_rt_rq_enqueue(rt_rq);
554 raw_spin_unlock(&rq->lock);
555 }
556
557 return idle;
558}
559
560static inline int rt_se_prio(struct sched_rt_entity *rt_se)
561{
562#ifdef CONFIG_RT_GROUP_SCHED
563 struct rt_rq *rt_rq = group_rt_rq(rt_se);
564
565 if (rt_rq)
566 return rt_rq->highest_prio.curr;
567#endif
568
569 return rt_task_of(rt_se)->prio;
570}
571
572static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
573{
574 u64 runtime = sched_rt_runtime(rt_rq);
575
576 if (rt_rq->rt_throttled)
577 return rt_rq_throttled(rt_rq);
578
579 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
580 return 0;
581
582 balance_runtime(rt_rq);
583 runtime = sched_rt_runtime(rt_rq);
584 if (runtime == RUNTIME_INF)
585 return 0;
586
587 if (rt_rq->rt_time > runtime) {
588 rt_rq->rt_throttled = 1;
589 if (rt_rq_throttled(rt_rq)) {
590 sched_rt_rq_dequeue(rt_rq);
591 return 1;
592 }
593 }
594
595 return 0;
596}
597
598/*
599 * Update the current task's runtime statistics. Skip current tasks that
600 * are not in our scheduling class.
601 */
602static void update_curr_rt(struct rq *rq)
603{
604 struct task_struct *curr = rq->curr;
605 struct sched_rt_entity *rt_se = &curr->rt;
606 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
607 u64 delta_exec;
608
609 if (!task_has_rt_policy(curr))
610 return;
611
612 delta_exec = rq->clock_task - curr->se.exec_start;
613 if (unlikely((s64)delta_exec < 0))
614 delta_exec = 0;
615
616 schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
617
618 curr->se.sum_exec_runtime += delta_exec;
619 account_group_exec_runtime(curr, delta_exec);
620
621 curr->se.exec_start = rq->clock_task;
622 cpuacct_charge(curr, delta_exec);
623
624 sched_rt_avg_update(rq, delta_exec);
625
626 if (!rt_bandwidth_enabled())
627 return;
628
629 for_each_sched_rt_entity(rt_se) {
630 rt_rq = rt_rq_of_se(rt_se);
631
632 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
633 raw_spin_lock(&rt_rq->rt_runtime_lock);
634 rt_rq->rt_time += delta_exec;
635 if (sched_rt_runtime_exceeded(rt_rq))
636 resched_task(curr);
637 raw_spin_unlock(&rt_rq->rt_runtime_lock);
638 }
639 }
640}
641
642#if defined CONFIG_SMP
643
644static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
645
646static inline int next_prio(struct rq *rq)
647{
648 struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
649
650 if (next && rt_prio(next->prio))
651 return next->prio;
652 else
653 return MAX_RT_PRIO;
654}
655
656static void
657inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
658{
659 struct rq *rq = rq_of_rt_rq(rt_rq);
660
661 if (prio < prev_prio) {
662
663 /*
664 * If the new task is higher in priority than anything on the
665 * run-queue, we know that the previous high becomes our
666 * next-highest.
667 */
668 rt_rq->highest_prio.next = prev_prio;
669
670 if (rq->online)
671 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
672
673 } else if (prio == rt_rq->highest_prio.curr)
674 /*
675 * If the next task is equal in priority to the highest on
676 * the run-queue, then we implicitly know that the next highest
677 * task cannot be any lower than current
678 */
679 rt_rq->highest_prio.next = prio;
680 else if (prio < rt_rq->highest_prio.next)
681 /*
682 * Otherwise, we need to recompute next-highest
683 */
684 rt_rq->highest_prio.next = next_prio(rq);
685}
686
687static void
688dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
689{
690 struct rq *rq = rq_of_rt_rq(rt_rq);
691
692 if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
693 rt_rq->highest_prio.next = next_prio(rq);
694
695 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
696 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
697}
698
699#else /* CONFIG_SMP */
700
701static inline
702void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
703static inline
704void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
705
706#endif /* CONFIG_SMP */
707
708#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
709static void
710inc_rt_prio(struct rt_rq *rt_rq, int prio)
711{
712 int prev_prio = rt_rq->highest_prio.curr;
713
714 if (prio < prev_prio)
715 rt_rq->highest_prio.curr = prio;
716
717 inc_rt_prio_smp(rt_rq, prio, prev_prio);
718}
719
720static void
721dec_rt_prio(struct rt_rq *rt_rq, int prio)
722{
723 int prev_prio = rt_rq->highest_prio.curr;
724
725 if (rt_rq->rt_nr_running) {
726
727 WARN_ON(prio < prev_prio);
728
729 /*
730 * This may have been our highest task, and therefore
731 * we may have some recomputation to do
732 */
733 if (prio == prev_prio) {
734 struct rt_prio_array *array = &rt_rq->active;
735
736 rt_rq->highest_prio.curr =
737 sched_find_first_bit(array->bitmap);
738 }
739
740 } else
741 rt_rq->highest_prio.curr = MAX_RT_PRIO;
742
743 dec_rt_prio_smp(rt_rq, prio, prev_prio);
744}
745
746#else
747
748static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
749static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
750
751#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
752
753#ifdef CONFIG_RT_GROUP_SCHED
754
755static void
756inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
757{
758 if (rt_se_boosted(rt_se))
759 rt_rq->rt_nr_boosted++;
760
761 if (rt_rq->tg)
762 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
763}
764
765static void
766dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
767{
768 if (rt_se_boosted(rt_se))
769 rt_rq->rt_nr_boosted--;
770
771 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
772}
773
774#else /* CONFIG_RT_GROUP_SCHED */
775
776static void
777inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
778{
779 start_rt_bandwidth(&def_rt_bandwidth);
780}
781
782static inline
783void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
784
785#endif /* CONFIG_RT_GROUP_SCHED */
786
787static inline
788void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
789{
790 int prio = rt_se_prio(rt_se);
791
792 WARN_ON(!rt_prio(prio));
793 rt_rq->rt_nr_running++;
794
795 inc_rt_prio(rt_rq, prio);
796 inc_rt_migration(rt_se, rt_rq);
797 inc_rt_group(rt_se, rt_rq);
798}
799
800static inline
801void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
802{
803 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
804 WARN_ON(!rt_rq->rt_nr_running);
805 rt_rq->rt_nr_running--;
806
807 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
808 dec_rt_migration(rt_se, rt_rq);
809 dec_rt_group(rt_se, rt_rq);
810}
811
812static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
813{
814 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
815 struct rt_prio_array *array = &rt_rq->active;
816 struct rt_rq *group_rq = group_rt_rq(rt_se);
817 struct list_head *queue = array->queue + rt_se_prio(rt_se);
818
819 /*
820 * Don't enqueue the group if its throttled, or when empty.
821 * The latter is a consequence of the former when a child group
822 * get throttled and the current group doesn't have any other
823 * active members.
824 */
825 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
826 return;
827
828 if (head)
829 list_add(&rt_se->run_list, queue);
830 else
831 list_add_tail(&rt_se->run_list, queue);
832 __set_bit(rt_se_prio(rt_se), array->bitmap);
833
834 inc_rt_tasks(rt_se, rt_rq);
835}
836
837static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
838{
839 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
840 struct rt_prio_array *array = &rt_rq->active;
841
842 list_del_init(&rt_se->run_list);
843 if (list_empty(array->queue + rt_se_prio(rt_se)))
844 __clear_bit(rt_se_prio(rt_se), array->bitmap);
845
846 dec_rt_tasks(rt_se, rt_rq);
847}
848
849/*
850 * Because the prio of an upper entry depends on the lower
851 * entries, we must remove entries top - down.
852 */
853static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
854{
855 struct sched_rt_entity *back = NULL;
856
857 for_each_sched_rt_entity(rt_se) {
858 rt_se->back = back;
859 back = rt_se;
860 }
861
862 for (rt_se = back; rt_se; rt_se = rt_se->back) {
863 if (on_rt_rq(rt_se))
864 __dequeue_rt_entity(rt_se);
865 }
866}
867
868static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
869{
870 dequeue_rt_stack(rt_se);
871 for_each_sched_rt_entity(rt_se)
872 __enqueue_rt_entity(rt_se, head);
873}
874
875static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
876{
877 dequeue_rt_stack(rt_se);
878
879 for_each_sched_rt_entity(rt_se) {
880 struct rt_rq *rt_rq = group_rt_rq(rt_se);
881
882 if (rt_rq && rt_rq->rt_nr_running)
883 __enqueue_rt_entity(rt_se, false);
884 }
885}
886
887/*
888 * Adding/removing a task to/from a priority array:
889 */
890static void
891enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
892{
893 struct sched_rt_entity *rt_se = &p->rt;
894
895 if (flags & ENQUEUE_WAKEUP)
896 rt_se->timeout = 0;
897
898 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
899
900 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
901 enqueue_pushable_task(rq, p);
902}
903
904static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
905{
906 struct sched_rt_entity *rt_se = &p->rt;
907
908 update_curr_rt(rq);
909 dequeue_rt_entity(rt_se);
910
911 dequeue_pushable_task(rq, p);
912}
913
914/*
915 * Put task to the end of the run list without the overhead of dequeue
916 * followed by enqueue.
917 */
918static void
919requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
920{
921 if (on_rt_rq(rt_se)) {
922 struct rt_prio_array *array = &rt_rq->active;
923 struct list_head *queue = array->queue + rt_se_prio(rt_se);
924
925 if (head)
926 list_move(&rt_se->run_list, queue);
927 else
928 list_move_tail(&rt_se->run_list, queue);
929 }
930}
931
932static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
933{
934 struct sched_rt_entity *rt_se = &p->rt;
935 struct rt_rq *rt_rq;
936
937 for_each_sched_rt_entity(rt_se) {
938 rt_rq = rt_rq_of_se(rt_se);
939 requeue_rt_entity(rt_rq, rt_se, head);
940 }
941}
942
943static void yield_task_rt(struct rq *rq)
944{
945 requeue_task_rt(rq, rq->curr, 0);
946}
947
948#ifdef CONFIG_SMP
949static int find_lowest_rq(struct task_struct *task);
950
951static int
952select_task_rq_rt(struct rq *rq, struct task_struct *p, int sd_flag, int flags)
953{
954 if (sd_flag != SD_BALANCE_WAKE)
955 return smp_processor_id();
956
957 /*
958 * If the current task is an RT task, then
959 * try to see if we can wake this RT task up on another
960 * runqueue. Otherwise simply start this RT task
961 * on its current runqueue.
962 *
963 * We want to avoid overloading runqueues. If the woken
964 * task is a higher priority, then it will stay on this CPU
965 * and the lower prio task should be moved to another CPU.
966 * Even though this will probably make the lower prio task
967 * lose its cache, we do not want to bounce a higher task
968 * around just because it gave up its CPU, perhaps for a
969 * lock?
970 *
971 * For equal prio tasks, we just let the scheduler sort it out.
972 */
973 if (unlikely(rt_task(rq->curr)) &&
974 (rq->curr->rt.nr_cpus_allowed < 2 ||
975 rq->curr->prio < p->prio) &&
976 (p->rt.nr_cpus_allowed > 1)) {
977 int cpu = find_lowest_rq(p);
978
979 return (cpu == -1) ? task_cpu(p) : cpu;
980 }
981
982 /*
983 * Otherwise, just let it ride on the affined RQ and the
984 * post-schedule router will push the preempted task away
985 */
986 return task_cpu(p);
987}
988
989static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
990{
991 if (rq->curr->rt.nr_cpus_allowed == 1)
992 return;
993
994 if (p->rt.nr_cpus_allowed != 1
995 && cpupri_find(&rq->rd->cpupri, p, NULL))
996 return;
997
998 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
999 return;
1000
1001 /*
1002 * There appears to be other cpus that can accept
1003 * current and none to run 'p', so lets reschedule
1004 * to try and push current away:
1005 */
1006 requeue_task_rt(rq, p, 1);
1007 resched_task(rq->curr);
1008}
1009
1010#endif /* CONFIG_SMP */
1011
1012/*
1013 * Preempt the current task with a newly woken task if needed:
1014 */
1015static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1016{
1017 if (p->prio < rq->curr->prio) {
1018 resched_task(rq->curr);
1019 return;
1020 }
1021
1022#ifdef CONFIG_SMP
1023 /*
1024 * If:
1025 *
1026 * - the newly woken task is of equal priority to the current task
1027 * - the newly woken task is non-migratable while current is migratable
1028 * - current will be preempted on the next reschedule
1029 *
1030 * we should check to see if current can readily move to a different
1031 * cpu. If so, we will reschedule to allow the push logic to try
1032 * to move current somewhere else, making room for our non-migratable
1033 * task.
1034 */
1035 if (p->prio == rq->curr->prio && !need_resched())
1036 check_preempt_equal_prio(rq, p);
1037#endif
1038}
1039
1040static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1041 struct rt_rq *rt_rq)
1042{
1043 struct rt_prio_array *array = &rt_rq->active;
1044 struct sched_rt_entity *next = NULL;
1045 struct list_head *queue;
1046 int idx;
1047
1048 idx = sched_find_first_bit(array->bitmap);
1049 BUG_ON(idx >= MAX_RT_PRIO);
1050
1051 queue = array->queue + idx;
1052 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1053
1054 return next;
1055}
1056
1057static struct task_struct *_pick_next_task_rt(struct rq *rq)
1058{
1059 struct sched_rt_entity *rt_se;
1060 struct task_struct *p;
1061 struct rt_rq *rt_rq;
1062
1063 rt_rq = &rq->rt;
1064
1065 if (unlikely(!rt_rq->rt_nr_running))
1066 return NULL;
1067
1068 if (rt_rq_throttled(rt_rq))
1069 return NULL;
1070
1071 do {
1072 rt_se = pick_next_rt_entity(rq, rt_rq);
1073 BUG_ON(!rt_se);
1074 rt_rq = group_rt_rq(rt_se);
1075 } while (rt_rq);
1076
1077 p = rt_task_of(rt_se);
1078 p->se.exec_start = rq->clock_task;
1079
1080 return p;
1081}
1082
1083static struct task_struct *pick_next_task_rt(struct rq *rq)
1084{
1085 struct task_struct *p = _pick_next_task_rt(rq);
1086
1087 /* The running task is never eligible for pushing */
1088 if (p)
1089 dequeue_pushable_task(rq, p);
1090
1091#ifdef CONFIG_SMP
1092 /*
1093 * We detect this state here so that we can avoid taking the RQ
1094 * lock again later if there is no need to push
1095 */
1096 rq->post_schedule = has_pushable_tasks(rq);
1097#endif
1098
1099 return p;
1100}
1101
1102static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1103{
1104 update_curr_rt(rq);
1105 p->se.exec_start = 0;
1106
1107 /*
1108 * The previous task needs to be made eligible for pushing
1109 * if it is still active
1110 */
1111 if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
1112 enqueue_pushable_task(rq, p);
1113}
1114
1115#ifdef CONFIG_SMP
1116
1117/* Only try algorithms three times */
1118#define RT_MAX_TRIES 3
1119
1120static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
1121
1122static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1123{
1124 if (!task_running(rq, p) &&
1125 (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
1126 (p->rt.nr_cpus_allowed > 1))
1127 return 1;
1128 return 0;
1129}
1130
1131/* Return the second highest RT task, NULL otherwise */
1132static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
1133{
1134 struct task_struct *next = NULL;
1135 struct sched_rt_entity *rt_se;
1136 struct rt_prio_array *array;
1137 struct rt_rq *rt_rq;
1138 int idx;
1139
1140 for_each_leaf_rt_rq(rt_rq, rq) {
1141 array = &rt_rq->active;
1142 idx = sched_find_first_bit(array->bitmap);
1143next_idx:
1144 if (idx >= MAX_RT_PRIO)
1145 continue;
1146 if (next && next->prio < idx)
1147 continue;
1148 list_for_each_entry(rt_se, array->queue + idx, run_list) {
1149 struct task_struct *p;
1150
1151 if (!rt_entity_is_task(rt_se))
1152 continue;
1153
1154 p = rt_task_of(rt_se);
1155 if (pick_rt_task(rq, p, cpu)) {
1156 next = p;
1157 break;
1158 }
1159 }
1160 if (!next) {
1161 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1162 goto next_idx;
1163 }
1164 }
1165
1166 return next;
1167}
1168
1169static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1170
1171static int find_lowest_rq(struct task_struct *task)
1172{
1173 struct sched_domain *sd;
1174 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1175 int this_cpu = smp_processor_id();
1176 int cpu = task_cpu(task);
1177
1178 if (task->rt.nr_cpus_allowed == 1)
1179 return -1; /* No other targets possible */
1180
1181 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1182 return -1; /* No targets found */
1183
1184 /*
1185 * At this point we have built a mask of cpus representing the
1186 * lowest priority tasks in the system. Now we want to elect
1187 * the best one based on our affinity and topology.
1188 *
1189 * We prioritize the last cpu that the task executed on since
1190 * it is most likely cache-hot in that location.
1191 */
1192 if (cpumask_test_cpu(cpu, lowest_mask))
1193 return cpu;
1194
1195 /*
1196 * Otherwise, we consult the sched_domains span maps to figure
1197 * out which cpu is logically closest to our hot cache data.
1198 */
1199 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1200 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1201
1202 for_each_domain(cpu, sd) {
1203 if (sd->flags & SD_WAKE_AFFINE) {
1204 int best_cpu;
1205
1206 /*
1207 * "this_cpu" is cheaper to preempt than a
1208 * remote processor.
1209 */
1210 if (this_cpu != -1 &&
1211 cpumask_test_cpu(this_cpu, sched_domain_span(sd)))
1212 return this_cpu;
1213
1214 best_cpu = cpumask_first_and(lowest_mask,
1215 sched_domain_span(sd));
1216 if (best_cpu < nr_cpu_ids)
1217 return best_cpu;
1218 }
1219 }
1220
1221 /*
1222 * And finally, if there were no matches within the domains
1223 * just give the caller *something* to work with from the compatible
1224 * locations.
1225 */
1226 if (this_cpu != -1)
1227 return this_cpu;
1228
1229 cpu = cpumask_any(lowest_mask);
1230 if (cpu < nr_cpu_ids)
1231 return cpu;
1232 return -1;
1233}
1234
1235/* Will lock the rq it finds */
1236static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1237{
1238 struct rq *lowest_rq = NULL;
1239 int tries;
1240 int cpu;
1241
1242 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1243 cpu = find_lowest_rq(task);
1244
1245 if ((cpu == -1) || (cpu == rq->cpu))
1246 break;
1247
1248 lowest_rq = cpu_rq(cpu);
1249
1250 /* if the prio of this runqueue changed, try again */
1251 if (double_lock_balance(rq, lowest_rq)) {
1252 /*
1253 * We had to unlock the run queue. In
1254 * the mean time, task could have
1255 * migrated already or had its affinity changed.
1256 * Also make sure that it wasn't scheduled on its rq.
1257 */
1258 if (unlikely(task_rq(task) != rq ||
1259 !cpumask_test_cpu(lowest_rq->cpu,
1260 &task->cpus_allowed) ||
1261 task_running(rq, task) ||
1262 !task->se.on_rq)) {
1263
1264 raw_spin_unlock(&lowest_rq->lock);
1265 lowest_rq = NULL;
1266 break;
1267 }
1268 }
1269
1270 /* If this rq is still suitable use it. */
1271 if (lowest_rq->rt.highest_prio.curr > task->prio)
1272 break;
1273
1274 /* try again */
1275 double_unlock_balance(rq, lowest_rq);
1276 lowest_rq = NULL;
1277 }
1278
1279 return lowest_rq;
1280}
1281
1282static struct task_struct *pick_next_pushable_task(struct rq *rq)
1283{
1284 struct task_struct *p;
1285
1286 if (!has_pushable_tasks(rq))
1287 return NULL;
1288
1289 p = plist_first_entry(&rq->rt.pushable_tasks,
1290 struct task_struct, pushable_tasks);
1291
1292 BUG_ON(rq->cpu != task_cpu(p));
1293 BUG_ON(task_current(rq, p));
1294 BUG_ON(p->rt.nr_cpus_allowed <= 1);
1295
1296 BUG_ON(!p->se.on_rq);
1297 BUG_ON(!rt_task(p));
1298
1299 return p;
1300}
1301
1302/*
1303 * If the current CPU has more than one RT task, see if the non
1304 * running task can migrate over to a CPU that is running a task
1305 * of lesser priority.
1306 */
1307static int push_rt_task(struct rq *rq)
1308{
1309 struct task_struct *next_task;
1310 struct rq *lowest_rq;
1311
1312 if (!rq->rt.overloaded)
1313 return 0;
1314
1315 next_task = pick_next_pushable_task(rq);
1316 if (!next_task)
1317 return 0;
1318
1319retry:
1320 if (unlikely(next_task == rq->curr)) {
1321 WARN_ON(1);
1322 return 0;
1323 }
1324
1325 /*
1326 * It's possible that the next_task slipped in of
1327 * higher priority than current. If that's the case
1328 * just reschedule current.
1329 */
1330 if (unlikely(next_task->prio < rq->curr->prio)) {
1331 resched_task(rq->curr);
1332 return 0;
1333 }
1334
1335 /* We might release rq lock */
1336 get_task_struct(next_task);
1337
1338 /* find_lock_lowest_rq locks the rq if found */
1339 lowest_rq = find_lock_lowest_rq(next_task, rq);
1340 if (!lowest_rq) {
1341 struct task_struct *task;
1342 /*
1343 * find lock_lowest_rq releases rq->lock
1344 * so it is possible that next_task has migrated.
1345 *
1346 * We need to make sure that the task is still on the same
1347 * run-queue and is also still the next task eligible for
1348 * pushing.
1349 */
1350 task = pick_next_pushable_task(rq);
1351 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1352 /*
1353 * If we get here, the task hasnt moved at all, but
1354 * it has failed to push. We will not try again,
1355 * since the other cpus will pull from us when they
1356 * are ready.
1357 */
1358 dequeue_pushable_task(rq, next_task);
1359 goto out;
1360 }
1361
1362 if (!task)
1363 /* No more tasks, just exit */
1364 goto out;
1365
1366 /*
1367 * Something has shifted, try again.
1368 */
1369 put_task_struct(next_task);
1370 next_task = task;
1371 goto retry;
1372 }
1373
1374 deactivate_task(rq, next_task, 0);
1375 set_task_cpu(next_task, lowest_rq->cpu);
1376 activate_task(lowest_rq, next_task, 0);
1377
1378 resched_task(lowest_rq->curr);
1379
1380 double_unlock_balance(rq, lowest_rq);
1381
1382out:
1383 put_task_struct(next_task);
1384
1385 return 1;
1386}
1387
1388static void push_rt_tasks(struct rq *rq)
1389{
1390 /* push_rt_task will return true if it moved an RT */
1391 while (push_rt_task(rq))
1392 ;
1393}
1394
1395static int pull_rt_task(struct rq *this_rq)
1396{
1397 int this_cpu = this_rq->cpu, ret = 0, cpu;
1398 struct task_struct *p;
1399 struct rq *src_rq;
1400
1401 if (likely(!rt_overloaded(this_rq)))
1402 return 0;
1403
1404 for_each_cpu(cpu, this_rq->rd->rto_mask) {
1405 if (this_cpu == cpu)
1406 continue;
1407
1408 src_rq = cpu_rq(cpu);
1409
1410 /*
1411 * Don't bother taking the src_rq->lock if the next highest
1412 * task is known to be lower-priority than our current task.
1413 * This may look racy, but if this value is about to go
1414 * logically higher, the src_rq will push this task away.
1415 * And if its going logically lower, we do not care
1416 */
1417 if (src_rq->rt.highest_prio.next >=
1418 this_rq->rt.highest_prio.curr)
1419 continue;
1420
1421 /*
1422 * We can potentially drop this_rq's lock in
1423 * double_lock_balance, and another CPU could
1424 * alter this_rq
1425 */
1426 double_lock_balance(this_rq, src_rq);
1427
1428 /*
1429 * Are there still pullable RT tasks?
1430 */
1431 if (src_rq->rt.rt_nr_running <= 1)
1432 goto skip;
1433
1434 p = pick_next_highest_task_rt(src_rq, this_cpu);
1435
1436 /*
1437 * Do we have an RT task that preempts
1438 * the to-be-scheduled task?
1439 */
1440 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1441 WARN_ON(p == src_rq->curr);
1442 WARN_ON(!p->se.on_rq);
1443
1444 /*
1445 * There's a chance that p is higher in priority
1446 * than what's currently running on its cpu.
1447 * This is just that p is wakeing up and hasn't
1448 * had a chance to schedule. We only pull
1449 * p if it is lower in priority than the
1450 * current task on the run queue
1451 */
1452 if (p->prio < src_rq->curr->prio)
1453 goto skip;
1454
1455 ret = 1;
1456
1457 deactivate_task(src_rq, p, 0);
1458 set_task_cpu(p, this_cpu);
1459 activate_task(this_rq, p, 0);
1460 /*
1461 * We continue with the search, just in
1462 * case there's an even higher prio task
1463 * in another runqueue. (low likelyhood
1464 * but possible)
1465 */
1466 }
1467skip:
1468 double_unlock_balance(this_rq, src_rq);
1469 }
1470
1471 return ret;
1472}
1473
1474static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1475{
1476 /* Try to pull RT tasks here if we lower this rq's prio */
1477 if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
1478 pull_rt_task(rq);
1479}
1480
1481static void post_schedule_rt(struct rq *rq)
1482{
1483 push_rt_tasks(rq);
1484}
1485
1486/*
1487 * If we are not running and we are not going to reschedule soon, we should
1488 * try to push tasks away now
1489 */
1490static void task_woken_rt(struct rq *rq, struct task_struct *p)
1491{
1492 if (!task_running(rq, p) &&
1493 !test_tsk_need_resched(rq->curr) &&
1494 has_pushable_tasks(rq) &&
1495 p->rt.nr_cpus_allowed > 1 &&
1496 rt_task(rq->curr) &&
1497 (rq->curr->rt.nr_cpus_allowed < 2 ||
1498 rq->curr->prio < p->prio))
1499 push_rt_tasks(rq);
1500}
1501
1502static void set_cpus_allowed_rt(struct task_struct *p,
1503 const struct cpumask *new_mask)
1504{
1505 int weight = cpumask_weight(new_mask);
1506
1507 BUG_ON(!rt_task(p));
1508
1509 /*
1510 * Update the migration status of the RQ if we have an RT task
1511 * which is running AND changing its weight value.
1512 */
1513 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1514 struct rq *rq = task_rq(p);
1515
1516 if (!task_current(rq, p)) {
1517 /*
1518 * Make sure we dequeue this task from the pushable list
1519 * before going further. It will either remain off of
1520 * the list because we are no longer pushable, or it
1521 * will be requeued.
1522 */
1523 if (p->rt.nr_cpus_allowed > 1)
1524 dequeue_pushable_task(rq, p);
1525
1526 /*
1527 * Requeue if our weight is changing and still > 1
1528 */
1529 if (weight > 1)
1530 enqueue_pushable_task(rq, p);
1531
1532 }
1533
1534 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1535 rq->rt.rt_nr_migratory++;
1536 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1537 BUG_ON(!rq->rt.rt_nr_migratory);
1538 rq->rt.rt_nr_migratory--;
1539 }
1540
1541 update_rt_migration(&rq->rt);
1542 }
1543
1544 cpumask_copy(&p->cpus_allowed, new_mask);
1545 p->rt.nr_cpus_allowed = weight;
1546}
1547
1548/* Assumes rq->lock is held */
1549static void rq_online_rt(struct rq *rq)
1550{
1551 if (rq->rt.overloaded)
1552 rt_set_overload(rq);
1553
1554 __enable_runtime(rq);
1555
1556 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1557}
1558
1559/* Assumes rq->lock is held */
1560static void rq_offline_rt(struct rq *rq)
1561{
1562 if (rq->rt.overloaded)
1563 rt_clear_overload(rq);
1564
1565 __disable_runtime(rq);
1566
1567 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1568}
1569
1570/*
1571 * When switch from the rt queue, we bring ourselves to a position
1572 * that we might want to pull RT tasks from other runqueues.
1573 */
1574static void switched_from_rt(struct rq *rq, struct task_struct *p,
1575 int running)
1576{
1577 /*
1578 * If there are other RT tasks then we will reschedule
1579 * and the scheduling of the other RT tasks will handle
1580 * the balancing. But if we are the last RT task
1581 * we may need to handle the pulling of RT tasks
1582 * now.
1583 */
1584 if (!rq->rt.rt_nr_running)
1585 pull_rt_task(rq);
1586}
1587
1588static inline void init_sched_rt_class(void)
1589{
1590 unsigned int i;
1591
1592 for_each_possible_cpu(i)
1593 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1594 GFP_KERNEL, cpu_to_node(i));
1595}
1596#endif /* CONFIG_SMP */
1597
1598/*
1599 * When switching a task to RT, we may overload the runqueue
1600 * with RT tasks. In this case we try to push them off to
1601 * other runqueues.
1602 */
1603static void switched_to_rt(struct rq *rq, struct task_struct *p,
1604 int running)
1605{
1606 int check_resched = 1;
1607
1608 /*
1609 * If we are already running, then there's nothing
1610 * that needs to be done. But if we are not running
1611 * we may need to preempt the current running task.
1612 * If that current running task is also an RT task
1613 * then see if we can move to another run queue.
1614 */
1615 if (!running) {
1616#ifdef CONFIG_SMP
1617 if (rq->rt.overloaded && push_rt_task(rq) &&
1618 /* Don't resched if we changed runqueues */
1619 rq != task_rq(p))
1620 check_resched = 0;
1621#endif /* CONFIG_SMP */
1622 if (check_resched && p->prio < rq->curr->prio)
1623 resched_task(rq->curr);
1624 }
1625}
1626
1627/*
1628 * Priority of the task has changed. This may cause
1629 * us to initiate a push or pull.
1630 */
1631static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1632 int oldprio, int running)
1633{
1634 if (running) {
1635#ifdef CONFIG_SMP
1636 /*
1637 * If our priority decreases while running, we
1638 * may need to pull tasks to this runqueue.
1639 */
1640 if (oldprio < p->prio)
1641 pull_rt_task(rq);
1642 /*
1643 * If there's a higher priority task waiting to run
1644 * then reschedule. Note, the above pull_rt_task
1645 * can release the rq lock and p could migrate.
1646 * Only reschedule if p is still on the same runqueue.
1647 */
1648 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1649 resched_task(p);
1650#else
1651 /* For UP simply resched on drop of prio */
1652 if (oldprio < p->prio)
1653 resched_task(p);
1654#endif /* CONFIG_SMP */
1655 } else {
1656 /*
1657 * This task is not running, but if it is
1658 * greater than the current running task
1659 * then reschedule.
1660 */
1661 if (p->prio < rq->curr->prio)
1662 resched_task(rq->curr);
1663 }
1664}
1665
1666static void watchdog(struct rq *rq, struct task_struct *p)
1667{
1668 unsigned long soft, hard;
1669
1670 /* max may change after cur was read, this will be fixed next tick */
1671 soft = task_rlimit(p, RLIMIT_RTTIME);
1672 hard = task_rlimit_max(p, RLIMIT_RTTIME);
1673
1674 if (soft != RLIM_INFINITY) {
1675 unsigned long next;
1676
1677 p->rt.timeout++;
1678 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1679 if (p->rt.timeout > next)
1680 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1681 }
1682}
1683
1684static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1685{
1686 update_curr_rt(rq);
1687
1688 watchdog(rq, p);
1689
1690 /*
1691 * RR tasks need a special form of timeslice management.
1692 * FIFO tasks have no timeslices.
1693 */
1694 if (p->policy != SCHED_RR)
1695 return;
1696
1697 if (--p->rt.time_slice)
1698 return;
1699
1700 p->rt.time_slice = DEF_TIMESLICE;
1701
1702 /*
1703 * Requeue to the end of queue if we are not the only element
1704 * on the queue:
1705 */
1706 if (p->rt.run_list.prev != p->rt.run_list.next) {
1707 requeue_task_rt(rq, p, 0);
1708 set_tsk_need_resched(p);
1709 }
1710}
1711
1712static void set_curr_task_rt(struct rq *rq)
1713{
1714 struct task_struct *p = rq->curr;
1715
1716 p->se.exec_start = rq->clock_task;
1717
1718 /* The running task is never eligible for pushing */
1719 dequeue_pushable_task(rq, p);
1720}
1721
1722static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1723{
1724 /*
1725 * Time slice is 0 for SCHED_FIFO tasks
1726 */
1727 if (task->policy == SCHED_RR)
1728 return DEF_TIMESLICE;
1729 else
1730 return 0;
1731}
1732
1733static const struct sched_class rt_sched_class = {
1734 .next = &fair_sched_class,
1735 .enqueue_task = enqueue_task_rt,
1736 .dequeue_task = dequeue_task_rt,
1737 .yield_task = yield_task_rt,
1738
1739 .check_preempt_curr = check_preempt_curr_rt,
1740
1741 .pick_next_task = pick_next_task_rt,
1742 .put_prev_task = put_prev_task_rt,
1743
1744#ifdef CONFIG_SMP
1745 .select_task_rq = select_task_rq_rt,
1746
1747 .set_cpus_allowed = set_cpus_allowed_rt,
1748 .rq_online = rq_online_rt,
1749 .rq_offline = rq_offline_rt,
1750 .pre_schedule = pre_schedule_rt,
1751 .post_schedule = post_schedule_rt,
1752 .task_woken = task_woken_rt,
1753 .switched_from = switched_from_rt,
1754#endif
1755
1756 .set_curr_task = set_curr_task_rt,
1757 .task_tick = task_tick_rt,
1758
1759 .get_rr_interval = get_rr_interval_rt,
1760
1761 .prio_changed = prio_changed_rt,
1762 .switched_to = switched_to_rt,
1763};
1764
1765#ifdef CONFIG_SCHED_DEBUG
1766extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1767
1768static void print_rt_stats(struct seq_file *m, int cpu)
1769{
1770 struct rt_rq *rt_rq;
1771
1772 rcu_read_lock();
1773 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1774 print_rt_rq(m, cpu, rt_rq);
1775 rcu_read_unlock();
1776}
1777#endif /* CONFIG_SCHED_DEBUG */
1778