]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - kernel/module.c
tg3: 5719: Prevent tx data corruption
[net-next-2.6.git] / kernel / module.c
... / ...
CommitLineData
1/*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18*/
19#include <linux/module.h>
20#include <linux/moduleloader.h>
21#include <linux/ftrace_event.h>
22#include <linux/init.h>
23#include <linux/kallsyms.h>
24#include <linux/fs.h>
25#include <linux/sysfs.h>
26#include <linux/kernel.h>
27#include <linux/slab.h>
28#include <linux/vmalloc.h>
29#include <linux/elf.h>
30#include <linux/proc_fs.h>
31#include <linux/seq_file.h>
32#include <linux/syscalls.h>
33#include <linux/fcntl.h>
34#include <linux/rcupdate.h>
35#include <linux/capability.h>
36#include <linux/cpu.h>
37#include <linux/moduleparam.h>
38#include <linux/errno.h>
39#include <linux/err.h>
40#include <linux/vermagic.h>
41#include <linux/notifier.h>
42#include <linux/sched.h>
43#include <linux/stop_machine.h>
44#include <linux/device.h>
45#include <linux/string.h>
46#include <linux/mutex.h>
47#include <linux/rculist.h>
48#include <asm/uaccess.h>
49#include <asm/cacheflush.h>
50#include <asm/mmu_context.h>
51#include <linux/license.h>
52#include <asm/sections.h>
53#include <linux/tracepoint.h>
54#include <linux/ftrace.h>
55#include <linux/async.h>
56#include <linux/percpu.h>
57#include <linux/kmemleak.h>
58
59#define CREATE_TRACE_POINTS
60#include <trace/events/module.h>
61
62#if 0
63#define DEBUGP printk
64#else
65#define DEBUGP(fmt , a...)
66#endif
67
68#ifndef ARCH_SHF_SMALL
69#define ARCH_SHF_SMALL 0
70#endif
71
72/* If this is set, the section belongs in the init part of the module */
73#define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
74
75/*
76 * Mutex protects:
77 * 1) List of modules (also safely readable with preempt_disable),
78 * 2) module_use links,
79 * 3) module_addr_min/module_addr_max.
80 * (delete uses stop_machine/add uses RCU list operations). */
81DEFINE_MUTEX(module_mutex);
82EXPORT_SYMBOL_GPL(module_mutex);
83static LIST_HEAD(modules);
84#ifdef CONFIG_KGDB_KDB
85struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
86#endif /* CONFIG_KGDB_KDB */
87
88
89/* Block module loading/unloading? */
90int modules_disabled = 0;
91
92/* Waiting for a module to finish initializing? */
93static DECLARE_WAIT_QUEUE_HEAD(module_wq);
94
95static BLOCKING_NOTIFIER_HEAD(module_notify_list);
96
97/* Bounds of module allocation, for speeding __module_address.
98 * Protected by module_mutex. */
99static unsigned long module_addr_min = -1UL, module_addr_max = 0;
100
101int register_module_notifier(struct notifier_block * nb)
102{
103 return blocking_notifier_chain_register(&module_notify_list, nb);
104}
105EXPORT_SYMBOL(register_module_notifier);
106
107int unregister_module_notifier(struct notifier_block * nb)
108{
109 return blocking_notifier_chain_unregister(&module_notify_list, nb);
110}
111EXPORT_SYMBOL(unregister_module_notifier);
112
113struct load_info {
114 Elf_Ehdr *hdr;
115 unsigned long len;
116 Elf_Shdr *sechdrs;
117 char *secstrings, *strtab;
118 unsigned long *strmap;
119 unsigned long symoffs, stroffs;
120 struct _ddebug *debug;
121 unsigned int num_debug;
122 struct {
123 unsigned int sym, str, mod, vers, info, pcpu;
124 } index;
125};
126
127/* We require a truly strong try_module_get(): 0 means failure due to
128 ongoing or failed initialization etc. */
129static inline int strong_try_module_get(struct module *mod)
130{
131 if (mod && mod->state == MODULE_STATE_COMING)
132 return -EBUSY;
133 if (try_module_get(mod))
134 return 0;
135 else
136 return -ENOENT;
137}
138
139static inline void add_taint_module(struct module *mod, unsigned flag)
140{
141 add_taint(flag);
142 mod->taints |= (1U << flag);
143}
144
145/*
146 * A thread that wants to hold a reference to a module only while it
147 * is running can call this to safely exit. nfsd and lockd use this.
148 */
149void __module_put_and_exit(struct module *mod, long code)
150{
151 module_put(mod);
152 do_exit(code);
153}
154EXPORT_SYMBOL(__module_put_and_exit);
155
156/* Find a module section: 0 means not found. */
157static unsigned int find_sec(const struct load_info *info, const char *name)
158{
159 unsigned int i;
160
161 for (i = 1; i < info->hdr->e_shnum; i++) {
162 Elf_Shdr *shdr = &info->sechdrs[i];
163 /* Alloc bit cleared means "ignore it." */
164 if ((shdr->sh_flags & SHF_ALLOC)
165 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
166 return i;
167 }
168 return 0;
169}
170
171/* Find a module section, or NULL. */
172static void *section_addr(const struct load_info *info, const char *name)
173{
174 /* Section 0 has sh_addr 0. */
175 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
176}
177
178/* Find a module section, or NULL. Fill in number of "objects" in section. */
179static void *section_objs(const struct load_info *info,
180 const char *name,
181 size_t object_size,
182 unsigned int *num)
183{
184 unsigned int sec = find_sec(info, name);
185
186 /* Section 0 has sh_addr 0 and sh_size 0. */
187 *num = info->sechdrs[sec].sh_size / object_size;
188 return (void *)info->sechdrs[sec].sh_addr;
189}
190
191/* Provided by the linker */
192extern const struct kernel_symbol __start___ksymtab[];
193extern const struct kernel_symbol __stop___ksymtab[];
194extern const struct kernel_symbol __start___ksymtab_gpl[];
195extern const struct kernel_symbol __stop___ksymtab_gpl[];
196extern const struct kernel_symbol __start___ksymtab_gpl_future[];
197extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
198extern const unsigned long __start___kcrctab[];
199extern const unsigned long __start___kcrctab_gpl[];
200extern const unsigned long __start___kcrctab_gpl_future[];
201#ifdef CONFIG_UNUSED_SYMBOLS
202extern const struct kernel_symbol __start___ksymtab_unused[];
203extern const struct kernel_symbol __stop___ksymtab_unused[];
204extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
205extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
206extern const unsigned long __start___kcrctab_unused[];
207extern const unsigned long __start___kcrctab_unused_gpl[];
208#endif
209
210#ifndef CONFIG_MODVERSIONS
211#define symversion(base, idx) NULL
212#else
213#define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
214#endif
215
216static bool each_symbol_in_section(const struct symsearch *arr,
217 unsigned int arrsize,
218 struct module *owner,
219 bool (*fn)(const struct symsearch *syms,
220 struct module *owner,
221 unsigned int symnum, void *data),
222 void *data)
223{
224 unsigned int i, j;
225
226 for (j = 0; j < arrsize; j++) {
227 for (i = 0; i < arr[j].stop - arr[j].start; i++)
228 if (fn(&arr[j], owner, i, data))
229 return true;
230 }
231
232 return false;
233}
234
235/* Returns true as soon as fn returns true, otherwise false. */
236bool each_symbol(bool (*fn)(const struct symsearch *arr, struct module *owner,
237 unsigned int symnum, void *data), void *data)
238{
239 struct module *mod;
240 static const struct symsearch arr[] = {
241 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
242 NOT_GPL_ONLY, false },
243 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
244 __start___kcrctab_gpl,
245 GPL_ONLY, false },
246 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
247 __start___kcrctab_gpl_future,
248 WILL_BE_GPL_ONLY, false },
249#ifdef CONFIG_UNUSED_SYMBOLS
250 { __start___ksymtab_unused, __stop___ksymtab_unused,
251 __start___kcrctab_unused,
252 NOT_GPL_ONLY, true },
253 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
254 __start___kcrctab_unused_gpl,
255 GPL_ONLY, true },
256#endif
257 };
258
259 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
260 return true;
261
262 list_for_each_entry_rcu(mod, &modules, list) {
263 struct symsearch arr[] = {
264 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
265 NOT_GPL_ONLY, false },
266 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
267 mod->gpl_crcs,
268 GPL_ONLY, false },
269 { mod->gpl_future_syms,
270 mod->gpl_future_syms + mod->num_gpl_future_syms,
271 mod->gpl_future_crcs,
272 WILL_BE_GPL_ONLY, false },
273#ifdef CONFIG_UNUSED_SYMBOLS
274 { mod->unused_syms,
275 mod->unused_syms + mod->num_unused_syms,
276 mod->unused_crcs,
277 NOT_GPL_ONLY, true },
278 { mod->unused_gpl_syms,
279 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
280 mod->unused_gpl_crcs,
281 GPL_ONLY, true },
282#endif
283 };
284
285 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
286 return true;
287 }
288 return false;
289}
290EXPORT_SYMBOL_GPL(each_symbol);
291
292struct find_symbol_arg {
293 /* Input */
294 const char *name;
295 bool gplok;
296 bool warn;
297
298 /* Output */
299 struct module *owner;
300 const unsigned long *crc;
301 const struct kernel_symbol *sym;
302};
303
304static bool find_symbol_in_section(const struct symsearch *syms,
305 struct module *owner,
306 unsigned int symnum, void *data)
307{
308 struct find_symbol_arg *fsa = data;
309
310 if (strcmp(syms->start[symnum].name, fsa->name) != 0)
311 return false;
312
313 if (!fsa->gplok) {
314 if (syms->licence == GPL_ONLY)
315 return false;
316 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
317 printk(KERN_WARNING "Symbol %s is being used "
318 "by a non-GPL module, which will not "
319 "be allowed in the future\n", fsa->name);
320 printk(KERN_WARNING "Please see the file "
321 "Documentation/feature-removal-schedule.txt "
322 "in the kernel source tree for more details.\n");
323 }
324 }
325
326#ifdef CONFIG_UNUSED_SYMBOLS
327 if (syms->unused && fsa->warn) {
328 printk(KERN_WARNING "Symbol %s is marked as UNUSED, "
329 "however this module is using it.\n", fsa->name);
330 printk(KERN_WARNING
331 "This symbol will go away in the future.\n");
332 printk(KERN_WARNING
333 "Please evalute if this is the right api to use and if "
334 "it really is, submit a report the linux kernel "
335 "mailinglist together with submitting your code for "
336 "inclusion.\n");
337 }
338#endif
339
340 fsa->owner = owner;
341 fsa->crc = symversion(syms->crcs, symnum);
342 fsa->sym = &syms->start[symnum];
343 return true;
344}
345
346/* Find a symbol and return it, along with, (optional) crc and
347 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
348const struct kernel_symbol *find_symbol(const char *name,
349 struct module **owner,
350 const unsigned long **crc,
351 bool gplok,
352 bool warn)
353{
354 struct find_symbol_arg fsa;
355
356 fsa.name = name;
357 fsa.gplok = gplok;
358 fsa.warn = warn;
359
360 if (each_symbol(find_symbol_in_section, &fsa)) {
361 if (owner)
362 *owner = fsa.owner;
363 if (crc)
364 *crc = fsa.crc;
365 return fsa.sym;
366 }
367
368 DEBUGP("Failed to find symbol %s\n", name);
369 return NULL;
370}
371EXPORT_SYMBOL_GPL(find_symbol);
372
373/* Search for module by name: must hold module_mutex. */
374struct module *find_module(const char *name)
375{
376 struct module *mod;
377
378 list_for_each_entry(mod, &modules, list) {
379 if (strcmp(mod->name, name) == 0)
380 return mod;
381 }
382 return NULL;
383}
384EXPORT_SYMBOL_GPL(find_module);
385
386#ifdef CONFIG_SMP
387
388static inline void __percpu *mod_percpu(struct module *mod)
389{
390 return mod->percpu;
391}
392
393static int percpu_modalloc(struct module *mod,
394 unsigned long size, unsigned long align)
395{
396 if (align > PAGE_SIZE) {
397 printk(KERN_WARNING "%s: per-cpu alignment %li > %li\n",
398 mod->name, align, PAGE_SIZE);
399 align = PAGE_SIZE;
400 }
401
402 mod->percpu = __alloc_reserved_percpu(size, align);
403 if (!mod->percpu) {
404 printk(KERN_WARNING
405 "%s: Could not allocate %lu bytes percpu data\n",
406 mod->name, size);
407 return -ENOMEM;
408 }
409 mod->percpu_size = size;
410 return 0;
411}
412
413static void percpu_modfree(struct module *mod)
414{
415 free_percpu(mod->percpu);
416}
417
418static unsigned int find_pcpusec(struct load_info *info)
419{
420 return find_sec(info, ".data..percpu");
421}
422
423static void percpu_modcopy(struct module *mod,
424 const void *from, unsigned long size)
425{
426 int cpu;
427
428 for_each_possible_cpu(cpu)
429 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
430}
431
432/**
433 * is_module_percpu_address - test whether address is from module static percpu
434 * @addr: address to test
435 *
436 * Test whether @addr belongs to module static percpu area.
437 *
438 * RETURNS:
439 * %true if @addr is from module static percpu area
440 */
441bool is_module_percpu_address(unsigned long addr)
442{
443 struct module *mod;
444 unsigned int cpu;
445
446 preempt_disable();
447
448 list_for_each_entry_rcu(mod, &modules, list) {
449 if (!mod->percpu_size)
450 continue;
451 for_each_possible_cpu(cpu) {
452 void *start = per_cpu_ptr(mod->percpu, cpu);
453
454 if ((void *)addr >= start &&
455 (void *)addr < start + mod->percpu_size) {
456 preempt_enable();
457 return true;
458 }
459 }
460 }
461
462 preempt_enable();
463 return false;
464}
465
466#else /* ... !CONFIG_SMP */
467
468static inline void __percpu *mod_percpu(struct module *mod)
469{
470 return NULL;
471}
472static inline int percpu_modalloc(struct module *mod,
473 unsigned long size, unsigned long align)
474{
475 return -ENOMEM;
476}
477static inline void percpu_modfree(struct module *mod)
478{
479}
480static unsigned int find_pcpusec(struct load_info *info)
481{
482 return 0;
483}
484static inline void percpu_modcopy(struct module *mod,
485 const void *from, unsigned long size)
486{
487 /* pcpusec should be 0, and size of that section should be 0. */
488 BUG_ON(size != 0);
489}
490bool is_module_percpu_address(unsigned long addr)
491{
492 return false;
493}
494
495#endif /* CONFIG_SMP */
496
497#define MODINFO_ATTR(field) \
498static void setup_modinfo_##field(struct module *mod, const char *s) \
499{ \
500 mod->field = kstrdup(s, GFP_KERNEL); \
501} \
502static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
503 struct module *mod, char *buffer) \
504{ \
505 return sprintf(buffer, "%s\n", mod->field); \
506} \
507static int modinfo_##field##_exists(struct module *mod) \
508{ \
509 return mod->field != NULL; \
510} \
511static void free_modinfo_##field(struct module *mod) \
512{ \
513 kfree(mod->field); \
514 mod->field = NULL; \
515} \
516static struct module_attribute modinfo_##field = { \
517 .attr = { .name = __stringify(field), .mode = 0444 }, \
518 .show = show_modinfo_##field, \
519 .setup = setup_modinfo_##field, \
520 .test = modinfo_##field##_exists, \
521 .free = free_modinfo_##field, \
522};
523
524MODINFO_ATTR(version);
525MODINFO_ATTR(srcversion);
526
527static char last_unloaded_module[MODULE_NAME_LEN+1];
528
529#ifdef CONFIG_MODULE_UNLOAD
530
531EXPORT_TRACEPOINT_SYMBOL(module_get);
532
533/* Init the unload section of the module. */
534static int module_unload_init(struct module *mod)
535{
536 mod->refptr = alloc_percpu(struct module_ref);
537 if (!mod->refptr)
538 return -ENOMEM;
539
540 INIT_LIST_HEAD(&mod->source_list);
541 INIT_LIST_HEAD(&mod->target_list);
542
543 /* Hold reference count during initialization. */
544 __this_cpu_write(mod->refptr->incs, 1);
545 /* Backwards compatibility macros put refcount during init. */
546 mod->waiter = current;
547
548 return 0;
549}
550
551/* Does a already use b? */
552static int already_uses(struct module *a, struct module *b)
553{
554 struct module_use *use;
555
556 list_for_each_entry(use, &b->source_list, source_list) {
557 if (use->source == a) {
558 DEBUGP("%s uses %s!\n", a->name, b->name);
559 return 1;
560 }
561 }
562 DEBUGP("%s does not use %s!\n", a->name, b->name);
563 return 0;
564}
565
566/*
567 * Module a uses b
568 * - we add 'a' as a "source", 'b' as a "target" of module use
569 * - the module_use is added to the list of 'b' sources (so
570 * 'b' can walk the list to see who sourced them), and of 'a'
571 * targets (so 'a' can see what modules it targets).
572 */
573static int add_module_usage(struct module *a, struct module *b)
574{
575 struct module_use *use;
576
577 DEBUGP("Allocating new usage for %s.\n", a->name);
578 use = kmalloc(sizeof(*use), GFP_ATOMIC);
579 if (!use) {
580 printk(KERN_WARNING "%s: out of memory loading\n", a->name);
581 return -ENOMEM;
582 }
583
584 use->source = a;
585 use->target = b;
586 list_add(&use->source_list, &b->source_list);
587 list_add(&use->target_list, &a->target_list);
588 return 0;
589}
590
591/* Module a uses b: caller needs module_mutex() */
592int ref_module(struct module *a, struct module *b)
593{
594 int err;
595
596 if (b == NULL || already_uses(a, b))
597 return 0;
598
599 /* If module isn't available, we fail. */
600 err = strong_try_module_get(b);
601 if (err)
602 return err;
603
604 err = add_module_usage(a, b);
605 if (err) {
606 module_put(b);
607 return err;
608 }
609 return 0;
610}
611EXPORT_SYMBOL_GPL(ref_module);
612
613/* Clear the unload stuff of the module. */
614static void module_unload_free(struct module *mod)
615{
616 struct module_use *use, *tmp;
617
618 mutex_lock(&module_mutex);
619 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
620 struct module *i = use->target;
621 DEBUGP("%s unusing %s\n", mod->name, i->name);
622 module_put(i);
623 list_del(&use->source_list);
624 list_del(&use->target_list);
625 kfree(use);
626 }
627 mutex_unlock(&module_mutex);
628
629 free_percpu(mod->refptr);
630}
631
632#ifdef CONFIG_MODULE_FORCE_UNLOAD
633static inline int try_force_unload(unsigned int flags)
634{
635 int ret = (flags & O_TRUNC);
636 if (ret)
637 add_taint(TAINT_FORCED_RMMOD);
638 return ret;
639}
640#else
641static inline int try_force_unload(unsigned int flags)
642{
643 return 0;
644}
645#endif /* CONFIG_MODULE_FORCE_UNLOAD */
646
647struct stopref
648{
649 struct module *mod;
650 int flags;
651 int *forced;
652};
653
654/* Whole machine is stopped with interrupts off when this runs. */
655static int __try_stop_module(void *_sref)
656{
657 struct stopref *sref = _sref;
658
659 /* If it's not unused, quit unless we're forcing. */
660 if (module_refcount(sref->mod) != 0) {
661 if (!(*sref->forced = try_force_unload(sref->flags)))
662 return -EWOULDBLOCK;
663 }
664
665 /* Mark it as dying. */
666 sref->mod->state = MODULE_STATE_GOING;
667 return 0;
668}
669
670static int try_stop_module(struct module *mod, int flags, int *forced)
671{
672 if (flags & O_NONBLOCK) {
673 struct stopref sref = { mod, flags, forced };
674
675 return stop_machine(__try_stop_module, &sref, NULL);
676 } else {
677 /* We don't need to stop the machine for this. */
678 mod->state = MODULE_STATE_GOING;
679 synchronize_sched();
680 return 0;
681 }
682}
683
684unsigned int module_refcount(struct module *mod)
685{
686 unsigned int incs = 0, decs = 0;
687 int cpu;
688
689 for_each_possible_cpu(cpu)
690 decs += per_cpu_ptr(mod->refptr, cpu)->decs;
691 /*
692 * ensure the incs are added up after the decs.
693 * module_put ensures incs are visible before decs with smp_wmb.
694 *
695 * This 2-count scheme avoids the situation where the refcount
696 * for CPU0 is read, then CPU0 increments the module refcount,
697 * then CPU1 drops that refcount, then the refcount for CPU1 is
698 * read. We would record a decrement but not its corresponding
699 * increment so we would see a low count (disaster).
700 *
701 * Rare situation? But module_refcount can be preempted, and we
702 * might be tallying up 4096+ CPUs. So it is not impossible.
703 */
704 smp_rmb();
705 for_each_possible_cpu(cpu)
706 incs += per_cpu_ptr(mod->refptr, cpu)->incs;
707 return incs - decs;
708}
709EXPORT_SYMBOL(module_refcount);
710
711/* This exists whether we can unload or not */
712static void free_module(struct module *mod);
713
714static void wait_for_zero_refcount(struct module *mod)
715{
716 /* Since we might sleep for some time, release the mutex first */
717 mutex_unlock(&module_mutex);
718 for (;;) {
719 DEBUGP("Looking at refcount...\n");
720 set_current_state(TASK_UNINTERRUPTIBLE);
721 if (module_refcount(mod) == 0)
722 break;
723 schedule();
724 }
725 current->state = TASK_RUNNING;
726 mutex_lock(&module_mutex);
727}
728
729SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
730 unsigned int, flags)
731{
732 struct module *mod;
733 char name[MODULE_NAME_LEN];
734 int ret, forced = 0;
735
736 if (!capable(CAP_SYS_MODULE) || modules_disabled)
737 return -EPERM;
738
739 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
740 return -EFAULT;
741 name[MODULE_NAME_LEN-1] = '\0';
742
743 if (mutex_lock_interruptible(&module_mutex) != 0)
744 return -EINTR;
745
746 mod = find_module(name);
747 if (!mod) {
748 ret = -ENOENT;
749 goto out;
750 }
751
752 if (!list_empty(&mod->source_list)) {
753 /* Other modules depend on us: get rid of them first. */
754 ret = -EWOULDBLOCK;
755 goto out;
756 }
757
758 /* Doing init or already dying? */
759 if (mod->state != MODULE_STATE_LIVE) {
760 /* FIXME: if (force), slam module count and wake up
761 waiter --RR */
762 DEBUGP("%s already dying\n", mod->name);
763 ret = -EBUSY;
764 goto out;
765 }
766
767 /* If it has an init func, it must have an exit func to unload */
768 if (mod->init && !mod->exit) {
769 forced = try_force_unload(flags);
770 if (!forced) {
771 /* This module can't be removed */
772 ret = -EBUSY;
773 goto out;
774 }
775 }
776
777 /* Set this up before setting mod->state */
778 mod->waiter = current;
779
780 /* Stop the machine so refcounts can't move and disable module. */
781 ret = try_stop_module(mod, flags, &forced);
782 if (ret != 0)
783 goto out;
784
785 /* Never wait if forced. */
786 if (!forced && module_refcount(mod) != 0)
787 wait_for_zero_refcount(mod);
788
789 mutex_unlock(&module_mutex);
790 /* Final destruction now noone is using it. */
791 if (mod->exit != NULL)
792 mod->exit();
793 blocking_notifier_call_chain(&module_notify_list,
794 MODULE_STATE_GOING, mod);
795 async_synchronize_full();
796
797 /* Store the name of the last unloaded module for diagnostic purposes */
798 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
799
800 free_module(mod);
801 return 0;
802out:
803 mutex_unlock(&module_mutex);
804 return ret;
805}
806
807static inline void print_unload_info(struct seq_file *m, struct module *mod)
808{
809 struct module_use *use;
810 int printed_something = 0;
811
812 seq_printf(m, " %u ", module_refcount(mod));
813
814 /* Always include a trailing , so userspace can differentiate
815 between this and the old multi-field proc format. */
816 list_for_each_entry(use, &mod->source_list, source_list) {
817 printed_something = 1;
818 seq_printf(m, "%s,", use->source->name);
819 }
820
821 if (mod->init != NULL && mod->exit == NULL) {
822 printed_something = 1;
823 seq_printf(m, "[permanent],");
824 }
825
826 if (!printed_something)
827 seq_printf(m, "-");
828}
829
830void __symbol_put(const char *symbol)
831{
832 struct module *owner;
833
834 preempt_disable();
835 if (!find_symbol(symbol, &owner, NULL, true, false))
836 BUG();
837 module_put(owner);
838 preempt_enable();
839}
840EXPORT_SYMBOL(__symbol_put);
841
842/* Note this assumes addr is a function, which it currently always is. */
843void symbol_put_addr(void *addr)
844{
845 struct module *modaddr;
846 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
847
848 if (core_kernel_text(a))
849 return;
850
851 /* module_text_address is safe here: we're supposed to have reference
852 * to module from symbol_get, so it can't go away. */
853 modaddr = __module_text_address(a);
854 BUG_ON(!modaddr);
855 module_put(modaddr);
856}
857EXPORT_SYMBOL_GPL(symbol_put_addr);
858
859static ssize_t show_refcnt(struct module_attribute *mattr,
860 struct module *mod, char *buffer)
861{
862 return sprintf(buffer, "%u\n", module_refcount(mod));
863}
864
865static struct module_attribute refcnt = {
866 .attr = { .name = "refcnt", .mode = 0444 },
867 .show = show_refcnt,
868};
869
870void module_put(struct module *module)
871{
872 if (module) {
873 preempt_disable();
874 smp_wmb(); /* see comment in module_refcount */
875 __this_cpu_inc(module->refptr->decs);
876
877 trace_module_put(module, _RET_IP_);
878 /* Maybe they're waiting for us to drop reference? */
879 if (unlikely(!module_is_live(module)))
880 wake_up_process(module->waiter);
881 preempt_enable();
882 }
883}
884EXPORT_SYMBOL(module_put);
885
886#else /* !CONFIG_MODULE_UNLOAD */
887static inline void print_unload_info(struct seq_file *m, struct module *mod)
888{
889 /* We don't know the usage count, or what modules are using. */
890 seq_printf(m, " - -");
891}
892
893static inline void module_unload_free(struct module *mod)
894{
895}
896
897int ref_module(struct module *a, struct module *b)
898{
899 return strong_try_module_get(b);
900}
901EXPORT_SYMBOL_GPL(ref_module);
902
903static inline int module_unload_init(struct module *mod)
904{
905 return 0;
906}
907#endif /* CONFIG_MODULE_UNLOAD */
908
909static ssize_t show_initstate(struct module_attribute *mattr,
910 struct module *mod, char *buffer)
911{
912 const char *state = "unknown";
913
914 switch (mod->state) {
915 case MODULE_STATE_LIVE:
916 state = "live";
917 break;
918 case MODULE_STATE_COMING:
919 state = "coming";
920 break;
921 case MODULE_STATE_GOING:
922 state = "going";
923 break;
924 }
925 return sprintf(buffer, "%s\n", state);
926}
927
928static struct module_attribute initstate = {
929 .attr = { .name = "initstate", .mode = 0444 },
930 .show = show_initstate,
931};
932
933static struct module_attribute *modinfo_attrs[] = {
934 &modinfo_version,
935 &modinfo_srcversion,
936 &initstate,
937#ifdef CONFIG_MODULE_UNLOAD
938 &refcnt,
939#endif
940 NULL,
941};
942
943static const char vermagic[] = VERMAGIC_STRING;
944
945static int try_to_force_load(struct module *mod, const char *reason)
946{
947#ifdef CONFIG_MODULE_FORCE_LOAD
948 if (!test_taint(TAINT_FORCED_MODULE))
949 printk(KERN_WARNING "%s: %s: kernel tainted.\n",
950 mod->name, reason);
951 add_taint_module(mod, TAINT_FORCED_MODULE);
952 return 0;
953#else
954 return -ENOEXEC;
955#endif
956}
957
958#ifdef CONFIG_MODVERSIONS
959/* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
960static unsigned long maybe_relocated(unsigned long crc,
961 const struct module *crc_owner)
962{
963#ifdef ARCH_RELOCATES_KCRCTAB
964 if (crc_owner == NULL)
965 return crc - (unsigned long)reloc_start;
966#endif
967 return crc;
968}
969
970static int check_version(Elf_Shdr *sechdrs,
971 unsigned int versindex,
972 const char *symname,
973 struct module *mod,
974 const unsigned long *crc,
975 const struct module *crc_owner)
976{
977 unsigned int i, num_versions;
978 struct modversion_info *versions;
979
980 /* Exporting module didn't supply crcs? OK, we're already tainted. */
981 if (!crc)
982 return 1;
983
984 /* No versions at all? modprobe --force does this. */
985 if (versindex == 0)
986 return try_to_force_load(mod, symname) == 0;
987
988 versions = (void *) sechdrs[versindex].sh_addr;
989 num_versions = sechdrs[versindex].sh_size
990 / sizeof(struct modversion_info);
991
992 for (i = 0; i < num_versions; i++) {
993 if (strcmp(versions[i].name, symname) != 0)
994 continue;
995
996 if (versions[i].crc == maybe_relocated(*crc, crc_owner))
997 return 1;
998 DEBUGP("Found checksum %lX vs module %lX\n",
999 maybe_relocated(*crc, crc_owner), versions[i].crc);
1000 goto bad_version;
1001 }
1002
1003 printk(KERN_WARNING "%s: no symbol version for %s\n",
1004 mod->name, symname);
1005 return 0;
1006
1007bad_version:
1008 printk("%s: disagrees about version of symbol %s\n",
1009 mod->name, symname);
1010 return 0;
1011}
1012
1013static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1014 unsigned int versindex,
1015 struct module *mod)
1016{
1017 const unsigned long *crc;
1018
1019 /* Since this should be found in kernel (which can't be removed),
1020 * no locking is necessary. */
1021 if (!find_symbol(MODULE_SYMBOL_PREFIX "module_layout", NULL,
1022 &crc, true, false))
1023 BUG();
1024 return check_version(sechdrs, versindex, "module_layout", mod, crc,
1025 NULL);
1026}
1027
1028/* First part is kernel version, which we ignore if module has crcs. */
1029static inline int same_magic(const char *amagic, const char *bmagic,
1030 bool has_crcs)
1031{
1032 if (has_crcs) {
1033 amagic += strcspn(amagic, " ");
1034 bmagic += strcspn(bmagic, " ");
1035 }
1036 return strcmp(amagic, bmagic) == 0;
1037}
1038#else
1039static inline int check_version(Elf_Shdr *sechdrs,
1040 unsigned int versindex,
1041 const char *symname,
1042 struct module *mod,
1043 const unsigned long *crc,
1044 const struct module *crc_owner)
1045{
1046 return 1;
1047}
1048
1049static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1050 unsigned int versindex,
1051 struct module *mod)
1052{
1053 return 1;
1054}
1055
1056static inline int same_magic(const char *amagic, const char *bmagic,
1057 bool has_crcs)
1058{
1059 return strcmp(amagic, bmagic) == 0;
1060}
1061#endif /* CONFIG_MODVERSIONS */
1062
1063/* Resolve a symbol for this module. I.e. if we find one, record usage. */
1064static const struct kernel_symbol *resolve_symbol(struct module *mod,
1065 const struct load_info *info,
1066 const char *name,
1067 char ownername[])
1068{
1069 struct module *owner;
1070 const struct kernel_symbol *sym;
1071 const unsigned long *crc;
1072 int err;
1073
1074 mutex_lock(&module_mutex);
1075 sym = find_symbol(name, &owner, &crc,
1076 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1077 if (!sym)
1078 goto unlock;
1079
1080 if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1081 owner)) {
1082 sym = ERR_PTR(-EINVAL);
1083 goto getname;
1084 }
1085
1086 err = ref_module(mod, owner);
1087 if (err) {
1088 sym = ERR_PTR(err);
1089 goto getname;
1090 }
1091
1092getname:
1093 /* We must make copy under the lock if we failed to get ref. */
1094 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1095unlock:
1096 mutex_unlock(&module_mutex);
1097 return sym;
1098}
1099
1100static const struct kernel_symbol *
1101resolve_symbol_wait(struct module *mod,
1102 const struct load_info *info,
1103 const char *name)
1104{
1105 const struct kernel_symbol *ksym;
1106 char owner[MODULE_NAME_LEN];
1107
1108 if (wait_event_interruptible_timeout(module_wq,
1109 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1110 || PTR_ERR(ksym) != -EBUSY,
1111 30 * HZ) <= 0) {
1112 printk(KERN_WARNING "%s: gave up waiting for init of module %s.\n",
1113 mod->name, owner);
1114 }
1115 return ksym;
1116}
1117
1118/*
1119 * /sys/module/foo/sections stuff
1120 * J. Corbet <corbet@lwn.net>
1121 */
1122#ifdef CONFIG_SYSFS
1123
1124#ifdef CONFIG_KALLSYMS
1125static inline bool sect_empty(const Elf_Shdr *sect)
1126{
1127 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1128}
1129
1130struct module_sect_attr
1131{
1132 struct module_attribute mattr;
1133 char *name;
1134 unsigned long address;
1135};
1136
1137struct module_sect_attrs
1138{
1139 struct attribute_group grp;
1140 unsigned int nsections;
1141 struct module_sect_attr attrs[0];
1142};
1143
1144static ssize_t module_sect_show(struct module_attribute *mattr,
1145 struct module *mod, char *buf)
1146{
1147 struct module_sect_attr *sattr =
1148 container_of(mattr, struct module_sect_attr, mattr);
1149 return sprintf(buf, "0x%lx\n", sattr->address);
1150}
1151
1152static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1153{
1154 unsigned int section;
1155
1156 for (section = 0; section < sect_attrs->nsections; section++)
1157 kfree(sect_attrs->attrs[section].name);
1158 kfree(sect_attrs);
1159}
1160
1161static void add_sect_attrs(struct module *mod, const struct load_info *info)
1162{
1163 unsigned int nloaded = 0, i, size[2];
1164 struct module_sect_attrs *sect_attrs;
1165 struct module_sect_attr *sattr;
1166 struct attribute **gattr;
1167
1168 /* Count loaded sections and allocate structures */
1169 for (i = 0; i < info->hdr->e_shnum; i++)
1170 if (!sect_empty(&info->sechdrs[i]))
1171 nloaded++;
1172 size[0] = ALIGN(sizeof(*sect_attrs)
1173 + nloaded * sizeof(sect_attrs->attrs[0]),
1174 sizeof(sect_attrs->grp.attrs[0]));
1175 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1176 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1177 if (sect_attrs == NULL)
1178 return;
1179
1180 /* Setup section attributes. */
1181 sect_attrs->grp.name = "sections";
1182 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1183
1184 sect_attrs->nsections = 0;
1185 sattr = &sect_attrs->attrs[0];
1186 gattr = &sect_attrs->grp.attrs[0];
1187 for (i = 0; i < info->hdr->e_shnum; i++) {
1188 Elf_Shdr *sec = &info->sechdrs[i];
1189 if (sect_empty(sec))
1190 continue;
1191 sattr->address = sec->sh_addr;
1192 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1193 GFP_KERNEL);
1194 if (sattr->name == NULL)
1195 goto out;
1196 sect_attrs->nsections++;
1197 sysfs_attr_init(&sattr->mattr.attr);
1198 sattr->mattr.show = module_sect_show;
1199 sattr->mattr.store = NULL;
1200 sattr->mattr.attr.name = sattr->name;
1201 sattr->mattr.attr.mode = S_IRUGO;
1202 *(gattr++) = &(sattr++)->mattr.attr;
1203 }
1204 *gattr = NULL;
1205
1206 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1207 goto out;
1208
1209 mod->sect_attrs = sect_attrs;
1210 return;
1211 out:
1212 free_sect_attrs(sect_attrs);
1213}
1214
1215static void remove_sect_attrs(struct module *mod)
1216{
1217 if (mod->sect_attrs) {
1218 sysfs_remove_group(&mod->mkobj.kobj,
1219 &mod->sect_attrs->grp);
1220 /* We are positive that no one is using any sect attrs
1221 * at this point. Deallocate immediately. */
1222 free_sect_attrs(mod->sect_attrs);
1223 mod->sect_attrs = NULL;
1224 }
1225}
1226
1227/*
1228 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1229 */
1230
1231struct module_notes_attrs {
1232 struct kobject *dir;
1233 unsigned int notes;
1234 struct bin_attribute attrs[0];
1235};
1236
1237static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1238 struct bin_attribute *bin_attr,
1239 char *buf, loff_t pos, size_t count)
1240{
1241 /*
1242 * The caller checked the pos and count against our size.
1243 */
1244 memcpy(buf, bin_attr->private + pos, count);
1245 return count;
1246}
1247
1248static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1249 unsigned int i)
1250{
1251 if (notes_attrs->dir) {
1252 while (i-- > 0)
1253 sysfs_remove_bin_file(notes_attrs->dir,
1254 &notes_attrs->attrs[i]);
1255 kobject_put(notes_attrs->dir);
1256 }
1257 kfree(notes_attrs);
1258}
1259
1260static void add_notes_attrs(struct module *mod, const struct load_info *info)
1261{
1262 unsigned int notes, loaded, i;
1263 struct module_notes_attrs *notes_attrs;
1264 struct bin_attribute *nattr;
1265
1266 /* failed to create section attributes, so can't create notes */
1267 if (!mod->sect_attrs)
1268 return;
1269
1270 /* Count notes sections and allocate structures. */
1271 notes = 0;
1272 for (i = 0; i < info->hdr->e_shnum; i++)
1273 if (!sect_empty(&info->sechdrs[i]) &&
1274 (info->sechdrs[i].sh_type == SHT_NOTE))
1275 ++notes;
1276
1277 if (notes == 0)
1278 return;
1279
1280 notes_attrs = kzalloc(sizeof(*notes_attrs)
1281 + notes * sizeof(notes_attrs->attrs[0]),
1282 GFP_KERNEL);
1283 if (notes_attrs == NULL)
1284 return;
1285
1286 notes_attrs->notes = notes;
1287 nattr = &notes_attrs->attrs[0];
1288 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1289 if (sect_empty(&info->sechdrs[i]))
1290 continue;
1291 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1292 sysfs_bin_attr_init(nattr);
1293 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1294 nattr->attr.mode = S_IRUGO;
1295 nattr->size = info->sechdrs[i].sh_size;
1296 nattr->private = (void *) info->sechdrs[i].sh_addr;
1297 nattr->read = module_notes_read;
1298 ++nattr;
1299 }
1300 ++loaded;
1301 }
1302
1303 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1304 if (!notes_attrs->dir)
1305 goto out;
1306
1307 for (i = 0; i < notes; ++i)
1308 if (sysfs_create_bin_file(notes_attrs->dir,
1309 &notes_attrs->attrs[i]))
1310 goto out;
1311
1312 mod->notes_attrs = notes_attrs;
1313 return;
1314
1315 out:
1316 free_notes_attrs(notes_attrs, i);
1317}
1318
1319static void remove_notes_attrs(struct module *mod)
1320{
1321 if (mod->notes_attrs)
1322 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1323}
1324
1325#else
1326
1327static inline void add_sect_attrs(struct module *mod,
1328 const struct load_info *info)
1329{
1330}
1331
1332static inline void remove_sect_attrs(struct module *mod)
1333{
1334}
1335
1336static inline void add_notes_attrs(struct module *mod,
1337 const struct load_info *info)
1338{
1339}
1340
1341static inline void remove_notes_attrs(struct module *mod)
1342{
1343}
1344#endif /* CONFIG_KALLSYMS */
1345
1346static void add_usage_links(struct module *mod)
1347{
1348#ifdef CONFIG_MODULE_UNLOAD
1349 struct module_use *use;
1350 int nowarn;
1351
1352 mutex_lock(&module_mutex);
1353 list_for_each_entry(use, &mod->target_list, target_list) {
1354 nowarn = sysfs_create_link(use->target->holders_dir,
1355 &mod->mkobj.kobj, mod->name);
1356 }
1357 mutex_unlock(&module_mutex);
1358#endif
1359}
1360
1361static void del_usage_links(struct module *mod)
1362{
1363#ifdef CONFIG_MODULE_UNLOAD
1364 struct module_use *use;
1365
1366 mutex_lock(&module_mutex);
1367 list_for_each_entry(use, &mod->target_list, target_list)
1368 sysfs_remove_link(use->target->holders_dir, mod->name);
1369 mutex_unlock(&module_mutex);
1370#endif
1371}
1372
1373static int module_add_modinfo_attrs(struct module *mod)
1374{
1375 struct module_attribute *attr;
1376 struct module_attribute *temp_attr;
1377 int error = 0;
1378 int i;
1379
1380 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1381 (ARRAY_SIZE(modinfo_attrs) + 1)),
1382 GFP_KERNEL);
1383 if (!mod->modinfo_attrs)
1384 return -ENOMEM;
1385
1386 temp_attr = mod->modinfo_attrs;
1387 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1388 if (!attr->test ||
1389 (attr->test && attr->test(mod))) {
1390 memcpy(temp_attr, attr, sizeof(*temp_attr));
1391 sysfs_attr_init(&temp_attr->attr);
1392 error = sysfs_create_file(&mod->mkobj.kobj,&temp_attr->attr);
1393 ++temp_attr;
1394 }
1395 }
1396 return error;
1397}
1398
1399static void module_remove_modinfo_attrs(struct module *mod)
1400{
1401 struct module_attribute *attr;
1402 int i;
1403
1404 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1405 /* pick a field to test for end of list */
1406 if (!attr->attr.name)
1407 break;
1408 sysfs_remove_file(&mod->mkobj.kobj,&attr->attr);
1409 if (attr->free)
1410 attr->free(mod);
1411 }
1412 kfree(mod->modinfo_attrs);
1413}
1414
1415static int mod_sysfs_init(struct module *mod)
1416{
1417 int err;
1418 struct kobject *kobj;
1419
1420 if (!module_sysfs_initialized) {
1421 printk(KERN_ERR "%s: module sysfs not initialized\n",
1422 mod->name);
1423 err = -EINVAL;
1424 goto out;
1425 }
1426
1427 kobj = kset_find_obj(module_kset, mod->name);
1428 if (kobj) {
1429 printk(KERN_ERR "%s: module is already loaded\n", mod->name);
1430 kobject_put(kobj);
1431 err = -EINVAL;
1432 goto out;
1433 }
1434
1435 mod->mkobj.mod = mod;
1436
1437 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1438 mod->mkobj.kobj.kset = module_kset;
1439 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1440 "%s", mod->name);
1441 if (err)
1442 kobject_put(&mod->mkobj.kobj);
1443
1444 /* delay uevent until full sysfs population */
1445out:
1446 return err;
1447}
1448
1449static int mod_sysfs_setup(struct module *mod,
1450 const struct load_info *info,
1451 struct kernel_param *kparam,
1452 unsigned int num_params)
1453{
1454 int err;
1455
1456 err = mod_sysfs_init(mod);
1457 if (err)
1458 goto out;
1459
1460 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1461 if (!mod->holders_dir) {
1462 err = -ENOMEM;
1463 goto out_unreg;
1464 }
1465
1466 err = module_param_sysfs_setup(mod, kparam, num_params);
1467 if (err)
1468 goto out_unreg_holders;
1469
1470 err = module_add_modinfo_attrs(mod);
1471 if (err)
1472 goto out_unreg_param;
1473
1474 add_usage_links(mod);
1475 add_sect_attrs(mod, info);
1476 add_notes_attrs(mod, info);
1477
1478 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1479 return 0;
1480
1481out_unreg_param:
1482 module_param_sysfs_remove(mod);
1483out_unreg_holders:
1484 kobject_put(mod->holders_dir);
1485out_unreg:
1486 kobject_put(&mod->mkobj.kobj);
1487out:
1488 return err;
1489}
1490
1491static void mod_sysfs_fini(struct module *mod)
1492{
1493 remove_notes_attrs(mod);
1494 remove_sect_attrs(mod);
1495 kobject_put(&mod->mkobj.kobj);
1496}
1497
1498#else /* !CONFIG_SYSFS */
1499
1500static int mod_sysfs_setup(struct module *mod,
1501 const struct load_info *info,
1502 struct kernel_param *kparam,
1503 unsigned int num_params)
1504{
1505 return 0;
1506}
1507
1508static void mod_sysfs_fini(struct module *mod)
1509{
1510}
1511
1512static void module_remove_modinfo_attrs(struct module *mod)
1513{
1514}
1515
1516static void del_usage_links(struct module *mod)
1517{
1518}
1519
1520#endif /* CONFIG_SYSFS */
1521
1522static void mod_sysfs_teardown(struct module *mod)
1523{
1524 del_usage_links(mod);
1525 module_remove_modinfo_attrs(mod);
1526 module_param_sysfs_remove(mod);
1527 kobject_put(mod->mkobj.drivers_dir);
1528 kobject_put(mod->holders_dir);
1529 mod_sysfs_fini(mod);
1530}
1531
1532/*
1533 * unlink the module with the whole machine is stopped with interrupts off
1534 * - this defends against kallsyms not taking locks
1535 */
1536static int __unlink_module(void *_mod)
1537{
1538 struct module *mod = _mod;
1539 list_del(&mod->list);
1540 return 0;
1541}
1542
1543/* Free a module, remove from lists, etc. */
1544static void free_module(struct module *mod)
1545{
1546 trace_module_free(mod);
1547
1548 /* Delete from various lists */
1549 mutex_lock(&module_mutex);
1550 stop_machine(__unlink_module, mod, NULL);
1551 mutex_unlock(&module_mutex);
1552 mod_sysfs_teardown(mod);
1553
1554 /* Remove dynamic debug info */
1555 ddebug_remove_module(mod->name);
1556
1557 /* Arch-specific cleanup. */
1558 module_arch_cleanup(mod);
1559
1560 /* Module unload stuff */
1561 module_unload_free(mod);
1562
1563 /* Free any allocated parameters. */
1564 destroy_params(mod->kp, mod->num_kp);
1565
1566 /* This may be NULL, but that's OK */
1567 module_free(mod, mod->module_init);
1568 kfree(mod->args);
1569 percpu_modfree(mod);
1570
1571 /* Free lock-classes: */
1572 lockdep_free_key_range(mod->module_core, mod->core_size);
1573
1574 /* Finally, free the core (containing the module structure) */
1575 module_free(mod, mod->module_core);
1576
1577#ifdef CONFIG_MPU
1578 update_protections(current->mm);
1579#endif
1580}
1581
1582void *__symbol_get(const char *symbol)
1583{
1584 struct module *owner;
1585 const struct kernel_symbol *sym;
1586
1587 preempt_disable();
1588 sym = find_symbol(symbol, &owner, NULL, true, true);
1589 if (sym && strong_try_module_get(owner))
1590 sym = NULL;
1591 preempt_enable();
1592
1593 return sym ? (void *)sym->value : NULL;
1594}
1595EXPORT_SYMBOL_GPL(__symbol_get);
1596
1597/*
1598 * Ensure that an exported symbol [global namespace] does not already exist
1599 * in the kernel or in some other module's exported symbol table.
1600 *
1601 * You must hold the module_mutex.
1602 */
1603static int verify_export_symbols(struct module *mod)
1604{
1605 unsigned int i;
1606 struct module *owner;
1607 const struct kernel_symbol *s;
1608 struct {
1609 const struct kernel_symbol *sym;
1610 unsigned int num;
1611 } arr[] = {
1612 { mod->syms, mod->num_syms },
1613 { mod->gpl_syms, mod->num_gpl_syms },
1614 { mod->gpl_future_syms, mod->num_gpl_future_syms },
1615#ifdef CONFIG_UNUSED_SYMBOLS
1616 { mod->unused_syms, mod->num_unused_syms },
1617 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
1618#endif
1619 };
1620
1621 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1622 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1623 if (find_symbol(s->name, &owner, NULL, true, false)) {
1624 printk(KERN_ERR
1625 "%s: exports duplicate symbol %s"
1626 " (owned by %s)\n",
1627 mod->name, s->name, module_name(owner));
1628 return -ENOEXEC;
1629 }
1630 }
1631 }
1632 return 0;
1633}
1634
1635/* Change all symbols so that st_value encodes the pointer directly. */
1636static int simplify_symbols(struct module *mod, const struct load_info *info)
1637{
1638 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1639 Elf_Sym *sym = (void *)symsec->sh_addr;
1640 unsigned long secbase;
1641 unsigned int i;
1642 int ret = 0;
1643 const struct kernel_symbol *ksym;
1644
1645 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1646 const char *name = info->strtab + sym[i].st_name;
1647
1648 switch (sym[i].st_shndx) {
1649 case SHN_COMMON:
1650 /* We compiled with -fno-common. These are not
1651 supposed to happen. */
1652 DEBUGP("Common symbol: %s\n", name);
1653 printk("%s: please compile with -fno-common\n",
1654 mod->name);
1655 ret = -ENOEXEC;
1656 break;
1657
1658 case SHN_ABS:
1659 /* Don't need to do anything */
1660 DEBUGP("Absolute symbol: 0x%08lx\n",
1661 (long)sym[i].st_value);
1662 break;
1663
1664 case SHN_UNDEF:
1665 ksym = resolve_symbol_wait(mod, info, name);
1666 /* Ok if resolved. */
1667 if (ksym && !IS_ERR(ksym)) {
1668 sym[i].st_value = ksym->value;
1669 break;
1670 }
1671
1672 /* Ok if weak. */
1673 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
1674 break;
1675
1676 printk(KERN_WARNING "%s: Unknown symbol %s (err %li)\n",
1677 mod->name, name, PTR_ERR(ksym));
1678 ret = PTR_ERR(ksym) ?: -ENOENT;
1679 break;
1680
1681 default:
1682 /* Divert to percpu allocation if a percpu var. */
1683 if (sym[i].st_shndx == info->index.pcpu)
1684 secbase = (unsigned long)mod_percpu(mod);
1685 else
1686 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1687 sym[i].st_value += secbase;
1688 break;
1689 }
1690 }
1691
1692 return ret;
1693}
1694
1695static int apply_relocations(struct module *mod, const struct load_info *info)
1696{
1697 unsigned int i;
1698 int err = 0;
1699
1700 /* Now do relocations. */
1701 for (i = 1; i < info->hdr->e_shnum; i++) {
1702 unsigned int infosec = info->sechdrs[i].sh_info;
1703
1704 /* Not a valid relocation section? */
1705 if (infosec >= info->hdr->e_shnum)
1706 continue;
1707
1708 /* Don't bother with non-allocated sections */
1709 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1710 continue;
1711
1712 if (info->sechdrs[i].sh_type == SHT_REL)
1713 err = apply_relocate(info->sechdrs, info->strtab,
1714 info->index.sym, i, mod);
1715 else if (info->sechdrs[i].sh_type == SHT_RELA)
1716 err = apply_relocate_add(info->sechdrs, info->strtab,
1717 info->index.sym, i, mod);
1718 if (err < 0)
1719 break;
1720 }
1721 return err;
1722}
1723
1724/* Additional bytes needed by arch in front of individual sections */
1725unsigned int __weak arch_mod_section_prepend(struct module *mod,
1726 unsigned int section)
1727{
1728 /* default implementation just returns zero */
1729 return 0;
1730}
1731
1732/* Update size with this section: return offset. */
1733static long get_offset(struct module *mod, unsigned int *size,
1734 Elf_Shdr *sechdr, unsigned int section)
1735{
1736 long ret;
1737
1738 *size += arch_mod_section_prepend(mod, section);
1739 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
1740 *size = ret + sechdr->sh_size;
1741 return ret;
1742}
1743
1744/* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1745 might -- code, read-only data, read-write data, small data. Tally
1746 sizes, and place the offsets into sh_entsize fields: high bit means it
1747 belongs in init. */
1748static void layout_sections(struct module *mod, struct load_info *info)
1749{
1750 static unsigned long const masks[][2] = {
1751 /* NOTE: all executable code must be the first section
1752 * in this array; otherwise modify the text_size
1753 * finder in the two loops below */
1754 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1755 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1756 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1757 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1758 };
1759 unsigned int m, i;
1760
1761 for (i = 0; i < info->hdr->e_shnum; i++)
1762 info->sechdrs[i].sh_entsize = ~0UL;
1763
1764 DEBUGP("Core section allocation order:\n");
1765 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1766 for (i = 0; i < info->hdr->e_shnum; ++i) {
1767 Elf_Shdr *s = &info->sechdrs[i];
1768 const char *sname = info->secstrings + s->sh_name;
1769
1770 if ((s->sh_flags & masks[m][0]) != masks[m][0]
1771 || (s->sh_flags & masks[m][1])
1772 || s->sh_entsize != ~0UL
1773 || strstarts(sname, ".init"))
1774 continue;
1775 s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
1776 DEBUGP("\t%s\n", name);
1777 }
1778 if (m == 0)
1779 mod->core_text_size = mod->core_size;
1780 }
1781
1782 DEBUGP("Init section allocation order:\n");
1783 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1784 for (i = 0; i < info->hdr->e_shnum; ++i) {
1785 Elf_Shdr *s = &info->sechdrs[i];
1786 const char *sname = info->secstrings + s->sh_name;
1787
1788 if ((s->sh_flags & masks[m][0]) != masks[m][0]
1789 || (s->sh_flags & masks[m][1])
1790 || s->sh_entsize != ~0UL
1791 || !strstarts(sname, ".init"))
1792 continue;
1793 s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
1794 | INIT_OFFSET_MASK);
1795 DEBUGP("\t%s\n", sname);
1796 }
1797 if (m == 0)
1798 mod->init_text_size = mod->init_size;
1799 }
1800}
1801
1802static void set_license(struct module *mod, const char *license)
1803{
1804 if (!license)
1805 license = "unspecified";
1806
1807 if (!license_is_gpl_compatible(license)) {
1808 if (!test_taint(TAINT_PROPRIETARY_MODULE))
1809 printk(KERN_WARNING "%s: module license '%s' taints "
1810 "kernel.\n", mod->name, license);
1811 add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
1812 }
1813}
1814
1815/* Parse tag=value strings from .modinfo section */
1816static char *next_string(char *string, unsigned long *secsize)
1817{
1818 /* Skip non-zero chars */
1819 while (string[0]) {
1820 string++;
1821 if ((*secsize)-- <= 1)
1822 return NULL;
1823 }
1824
1825 /* Skip any zero padding. */
1826 while (!string[0]) {
1827 string++;
1828 if ((*secsize)-- <= 1)
1829 return NULL;
1830 }
1831 return string;
1832}
1833
1834static char *get_modinfo(struct load_info *info, const char *tag)
1835{
1836 char *p;
1837 unsigned int taglen = strlen(tag);
1838 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1839 unsigned long size = infosec->sh_size;
1840
1841 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
1842 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1843 return p + taglen + 1;
1844 }
1845 return NULL;
1846}
1847
1848static void setup_modinfo(struct module *mod, struct load_info *info)
1849{
1850 struct module_attribute *attr;
1851 int i;
1852
1853 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1854 if (attr->setup)
1855 attr->setup(mod, get_modinfo(info, attr->attr.name));
1856 }
1857}
1858
1859static void free_modinfo(struct module *mod)
1860{
1861 struct module_attribute *attr;
1862 int i;
1863
1864 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1865 if (attr->free)
1866 attr->free(mod);
1867 }
1868}
1869
1870#ifdef CONFIG_KALLSYMS
1871
1872/* lookup symbol in given range of kernel_symbols */
1873static const struct kernel_symbol *lookup_symbol(const char *name,
1874 const struct kernel_symbol *start,
1875 const struct kernel_symbol *stop)
1876{
1877 const struct kernel_symbol *ks = start;
1878 for (; ks < stop; ks++)
1879 if (strcmp(ks->name, name) == 0)
1880 return ks;
1881 return NULL;
1882}
1883
1884static int is_exported(const char *name, unsigned long value,
1885 const struct module *mod)
1886{
1887 const struct kernel_symbol *ks;
1888 if (!mod)
1889 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
1890 else
1891 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
1892 return ks != NULL && ks->value == value;
1893}
1894
1895/* As per nm */
1896static char elf_type(const Elf_Sym *sym, const struct load_info *info)
1897{
1898 const Elf_Shdr *sechdrs = info->sechdrs;
1899
1900 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
1901 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
1902 return 'v';
1903 else
1904 return 'w';
1905 }
1906 if (sym->st_shndx == SHN_UNDEF)
1907 return 'U';
1908 if (sym->st_shndx == SHN_ABS)
1909 return 'a';
1910 if (sym->st_shndx >= SHN_LORESERVE)
1911 return '?';
1912 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
1913 return 't';
1914 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
1915 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
1916 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
1917 return 'r';
1918 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
1919 return 'g';
1920 else
1921 return 'd';
1922 }
1923 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
1924 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
1925 return 's';
1926 else
1927 return 'b';
1928 }
1929 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
1930 ".debug")) {
1931 return 'n';
1932 }
1933 return '?';
1934}
1935
1936static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
1937 unsigned int shnum)
1938{
1939 const Elf_Shdr *sec;
1940
1941 if (src->st_shndx == SHN_UNDEF
1942 || src->st_shndx >= shnum
1943 || !src->st_name)
1944 return false;
1945
1946 sec = sechdrs + src->st_shndx;
1947 if (!(sec->sh_flags & SHF_ALLOC)
1948#ifndef CONFIG_KALLSYMS_ALL
1949 || !(sec->sh_flags & SHF_EXECINSTR)
1950#endif
1951 || (sec->sh_entsize & INIT_OFFSET_MASK))
1952 return false;
1953
1954 return true;
1955}
1956
1957static void layout_symtab(struct module *mod, struct load_info *info)
1958{
1959 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
1960 Elf_Shdr *strsect = info->sechdrs + info->index.str;
1961 const Elf_Sym *src;
1962 unsigned int i, nsrc, ndst;
1963
1964 /* Put symbol section at end of init part of module. */
1965 symsect->sh_flags |= SHF_ALLOC;
1966 symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
1967 info->index.sym) | INIT_OFFSET_MASK;
1968 DEBUGP("\t%s\n", info->secstrings + symsect->sh_name);
1969
1970 src = (void *)info->hdr + symsect->sh_offset;
1971 nsrc = symsect->sh_size / sizeof(*src);
1972 for (ndst = i = 1; i < nsrc; ++i, ++src)
1973 if (is_core_symbol(src, info->sechdrs, info->hdr->e_shnum)) {
1974 unsigned int j = src->st_name;
1975
1976 while (!__test_and_set_bit(j, info->strmap)
1977 && info->strtab[j])
1978 ++j;
1979 ++ndst;
1980 }
1981
1982 /* Append room for core symbols at end of core part. */
1983 info->symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
1984 mod->core_size = info->symoffs + ndst * sizeof(Elf_Sym);
1985
1986 /* Put string table section at end of init part of module. */
1987 strsect->sh_flags |= SHF_ALLOC;
1988 strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
1989 info->index.str) | INIT_OFFSET_MASK;
1990 DEBUGP("\t%s\n", info->secstrings + strsect->sh_name);
1991
1992 /* Append room for core symbols' strings at end of core part. */
1993 info->stroffs = mod->core_size;
1994 __set_bit(0, info->strmap);
1995 mod->core_size += bitmap_weight(info->strmap, strsect->sh_size);
1996}
1997
1998static void add_kallsyms(struct module *mod, const struct load_info *info)
1999{
2000 unsigned int i, ndst;
2001 const Elf_Sym *src;
2002 Elf_Sym *dst;
2003 char *s;
2004 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2005
2006 mod->symtab = (void *)symsec->sh_addr;
2007 mod->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2008 /* Make sure we get permanent strtab: don't use info->strtab. */
2009 mod->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2010
2011 /* Set types up while we still have access to sections. */
2012 for (i = 0; i < mod->num_symtab; i++)
2013 mod->symtab[i].st_info = elf_type(&mod->symtab[i], info);
2014
2015 mod->core_symtab = dst = mod->module_core + info->symoffs;
2016 src = mod->symtab;
2017 *dst = *src;
2018 for (ndst = i = 1; i < mod->num_symtab; ++i, ++src) {
2019 if (!is_core_symbol(src, info->sechdrs, info->hdr->e_shnum))
2020 continue;
2021 dst[ndst] = *src;
2022 dst[ndst].st_name = bitmap_weight(info->strmap,
2023 dst[ndst].st_name);
2024 ++ndst;
2025 }
2026 mod->core_num_syms = ndst;
2027
2028 mod->core_strtab = s = mod->module_core + info->stroffs;
2029 for (*s = 0, i = 1; i < info->sechdrs[info->index.str].sh_size; ++i)
2030 if (test_bit(i, info->strmap))
2031 *++s = mod->strtab[i];
2032}
2033#else
2034static inline void layout_symtab(struct module *mod, struct load_info *info)
2035{
2036}
2037
2038static void add_kallsyms(struct module *mod, struct load_info *info)
2039{
2040}
2041#endif /* CONFIG_KALLSYMS */
2042
2043static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2044{
2045 if (!debug)
2046 return;
2047#ifdef CONFIG_DYNAMIC_DEBUG
2048 if (ddebug_add_module(debug, num, debug->modname))
2049 printk(KERN_ERR "dynamic debug error adding module: %s\n",
2050 debug->modname);
2051#endif
2052}
2053
2054static void dynamic_debug_remove(struct _ddebug *debug)
2055{
2056 if (debug)
2057 ddebug_remove_module(debug->modname);
2058}
2059
2060static void *module_alloc_update_bounds(unsigned long size)
2061{
2062 void *ret = module_alloc(size);
2063
2064 if (ret) {
2065 mutex_lock(&module_mutex);
2066 /* Update module bounds. */
2067 if ((unsigned long)ret < module_addr_min)
2068 module_addr_min = (unsigned long)ret;
2069 if ((unsigned long)ret + size > module_addr_max)
2070 module_addr_max = (unsigned long)ret + size;
2071 mutex_unlock(&module_mutex);
2072 }
2073 return ret;
2074}
2075
2076#ifdef CONFIG_DEBUG_KMEMLEAK
2077static void kmemleak_load_module(const struct module *mod,
2078 const struct load_info *info)
2079{
2080 unsigned int i;
2081
2082 /* only scan the sections containing data */
2083 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2084
2085 for (i = 1; i < info->hdr->e_shnum; i++) {
2086 const char *name = info->secstrings + info->sechdrs[i].sh_name;
2087 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC))
2088 continue;
2089 if (!strstarts(name, ".data") && !strstarts(name, ".bss"))
2090 continue;
2091
2092 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2093 info->sechdrs[i].sh_size, GFP_KERNEL);
2094 }
2095}
2096#else
2097static inline void kmemleak_load_module(const struct module *mod,
2098 const struct load_info *info)
2099{
2100}
2101#endif
2102
2103/* Sets info->hdr and info->len. */
2104static int copy_and_check(struct load_info *info,
2105 const void __user *umod, unsigned long len,
2106 const char __user *uargs)
2107{
2108 int err;
2109 Elf_Ehdr *hdr;
2110
2111 if (len < sizeof(*hdr))
2112 return -ENOEXEC;
2113
2114 /* Suck in entire file: we'll want most of it. */
2115 /* vmalloc barfs on "unusual" numbers. Check here */
2116 if (len > 64 * 1024 * 1024 || (hdr = vmalloc(len)) == NULL)
2117 return -ENOMEM;
2118
2119 if (copy_from_user(hdr, umod, len) != 0) {
2120 err = -EFAULT;
2121 goto free_hdr;
2122 }
2123
2124 /* Sanity checks against insmoding binaries or wrong arch,
2125 weird elf version */
2126 if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0
2127 || hdr->e_type != ET_REL
2128 || !elf_check_arch(hdr)
2129 || hdr->e_shentsize != sizeof(Elf_Shdr)) {
2130 err = -ENOEXEC;
2131 goto free_hdr;
2132 }
2133
2134 if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) {
2135 err = -ENOEXEC;
2136 goto free_hdr;
2137 }
2138
2139 info->hdr = hdr;
2140 info->len = len;
2141 return 0;
2142
2143free_hdr:
2144 vfree(hdr);
2145 return err;
2146}
2147
2148static void free_copy(struct load_info *info)
2149{
2150 vfree(info->hdr);
2151}
2152
2153static int rewrite_section_headers(struct load_info *info)
2154{
2155 unsigned int i;
2156
2157 /* This should always be true, but let's be sure. */
2158 info->sechdrs[0].sh_addr = 0;
2159
2160 for (i = 1; i < info->hdr->e_shnum; i++) {
2161 Elf_Shdr *shdr = &info->sechdrs[i];
2162 if (shdr->sh_type != SHT_NOBITS
2163 && info->len < shdr->sh_offset + shdr->sh_size) {
2164 printk(KERN_ERR "Module len %lu truncated\n",
2165 info->len);
2166 return -ENOEXEC;
2167 }
2168
2169 /* Mark all sections sh_addr with their address in the
2170 temporary image. */
2171 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2172
2173#ifndef CONFIG_MODULE_UNLOAD
2174 /* Don't load .exit sections */
2175 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2176 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2177#endif
2178 }
2179
2180 /* Track but don't keep modinfo and version sections. */
2181 info->index.vers = find_sec(info, "__versions");
2182 info->index.info = find_sec(info, ".modinfo");
2183 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2184 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2185 return 0;
2186}
2187
2188/*
2189 * Set up our basic convenience variables (pointers to section headers,
2190 * search for module section index etc), and do some basic section
2191 * verification.
2192 *
2193 * Return the temporary module pointer (we'll replace it with the final
2194 * one when we move the module sections around).
2195 */
2196static struct module *setup_load_info(struct load_info *info)
2197{
2198 unsigned int i;
2199 int err;
2200 struct module *mod;
2201
2202 /* Set up the convenience variables */
2203 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2204 info->secstrings = (void *)info->hdr
2205 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2206
2207 err = rewrite_section_headers(info);
2208 if (err)
2209 return ERR_PTR(err);
2210
2211 /* Find internal symbols and strings. */
2212 for (i = 1; i < info->hdr->e_shnum; i++) {
2213 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2214 info->index.sym = i;
2215 info->index.str = info->sechdrs[i].sh_link;
2216 info->strtab = (char *)info->hdr
2217 + info->sechdrs[info->index.str].sh_offset;
2218 break;
2219 }
2220 }
2221
2222 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2223 if (!info->index.mod) {
2224 printk(KERN_WARNING "No module found in object\n");
2225 return ERR_PTR(-ENOEXEC);
2226 }
2227 /* This is temporary: point mod into copy of data. */
2228 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2229
2230 if (info->index.sym == 0) {
2231 printk(KERN_WARNING "%s: module has no symbols (stripped?)\n",
2232 mod->name);
2233 return ERR_PTR(-ENOEXEC);
2234 }
2235
2236 info->index.pcpu = find_pcpusec(info);
2237
2238 /* Check module struct version now, before we try to use module. */
2239 if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2240 return ERR_PTR(-ENOEXEC);
2241
2242 return mod;
2243}
2244
2245static int check_modinfo(struct module *mod, struct load_info *info)
2246{
2247 const char *modmagic = get_modinfo(info, "vermagic");
2248 int err;
2249
2250 /* This is allowed: modprobe --force will invalidate it. */
2251 if (!modmagic) {
2252 err = try_to_force_load(mod, "bad vermagic");
2253 if (err)
2254 return err;
2255 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2256 printk(KERN_ERR "%s: version magic '%s' should be '%s'\n",
2257 mod->name, modmagic, vermagic);
2258 return -ENOEXEC;
2259 }
2260
2261 if (get_modinfo(info, "staging")) {
2262 add_taint_module(mod, TAINT_CRAP);
2263 printk(KERN_WARNING "%s: module is from the staging directory,"
2264 " the quality is unknown, you have been warned.\n",
2265 mod->name);
2266 }
2267
2268 /* Set up license info based on the info section */
2269 set_license(mod, get_modinfo(info, "license"));
2270
2271 return 0;
2272}
2273
2274static void find_module_sections(struct module *mod, struct load_info *info)
2275{
2276 mod->kp = section_objs(info, "__param",
2277 sizeof(*mod->kp), &mod->num_kp);
2278 mod->syms = section_objs(info, "__ksymtab",
2279 sizeof(*mod->syms), &mod->num_syms);
2280 mod->crcs = section_addr(info, "__kcrctab");
2281 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2282 sizeof(*mod->gpl_syms),
2283 &mod->num_gpl_syms);
2284 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2285 mod->gpl_future_syms = section_objs(info,
2286 "__ksymtab_gpl_future",
2287 sizeof(*mod->gpl_future_syms),
2288 &mod->num_gpl_future_syms);
2289 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2290
2291#ifdef CONFIG_UNUSED_SYMBOLS
2292 mod->unused_syms = section_objs(info, "__ksymtab_unused",
2293 sizeof(*mod->unused_syms),
2294 &mod->num_unused_syms);
2295 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2296 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2297 sizeof(*mod->unused_gpl_syms),
2298 &mod->num_unused_gpl_syms);
2299 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2300#endif
2301#ifdef CONFIG_CONSTRUCTORS
2302 mod->ctors = section_objs(info, ".ctors",
2303 sizeof(*mod->ctors), &mod->num_ctors);
2304#endif
2305
2306#ifdef CONFIG_TRACEPOINTS
2307 mod->tracepoints = section_objs(info, "__tracepoints",
2308 sizeof(*mod->tracepoints),
2309 &mod->num_tracepoints);
2310#endif
2311#ifdef CONFIG_EVENT_TRACING
2312 mod->trace_events = section_objs(info, "_ftrace_events",
2313 sizeof(*mod->trace_events),
2314 &mod->num_trace_events);
2315 /*
2316 * This section contains pointers to allocated objects in the trace
2317 * code and not scanning it leads to false positives.
2318 */
2319 kmemleak_scan_area(mod->trace_events, sizeof(*mod->trace_events) *
2320 mod->num_trace_events, GFP_KERNEL);
2321#endif
2322#ifdef CONFIG_FTRACE_MCOUNT_RECORD
2323 /* sechdrs[0].sh_size is always zero */
2324 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
2325 sizeof(*mod->ftrace_callsites),
2326 &mod->num_ftrace_callsites);
2327#endif
2328
2329 mod->extable = section_objs(info, "__ex_table",
2330 sizeof(*mod->extable), &mod->num_exentries);
2331
2332 if (section_addr(info, "__obsparm"))
2333 printk(KERN_WARNING "%s: Ignoring obsolete parameters\n",
2334 mod->name);
2335
2336 info->debug = section_objs(info, "__verbose",
2337 sizeof(*info->debug), &info->num_debug);
2338}
2339
2340static int move_module(struct module *mod, struct load_info *info)
2341{
2342 int i;
2343 void *ptr;
2344
2345 /* Do the allocs. */
2346 ptr = module_alloc_update_bounds(mod->core_size);
2347 /*
2348 * The pointer to this block is stored in the module structure
2349 * which is inside the block. Just mark it as not being a
2350 * leak.
2351 */
2352 kmemleak_not_leak(ptr);
2353 if (!ptr)
2354 return -ENOMEM;
2355
2356 memset(ptr, 0, mod->core_size);
2357 mod->module_core = ptr;
2358
2359 ptr = module_alloc_update_bounds(mod->init_size);
2360 /*
2361 * The pointer to this block is stored in the module structure
2362 * which is inside the block. This block doesn't need to be
2363 * scanned as it contains data and code that will be freed
2364 * after the module is initialized.
2365 */
2366 kmemleak_ignore(ptr);
2367 if (!ptr && mod->init_size) {
2368 module_free(mod, mod->module_core);
2369 return -ENOMEM;
2370 }
2371 memset(ptr, 0, mod->init_size);
2372 mod->module_init = ptr;
2373
2374 /* Transfer each section which specifies SHF_ALLOC */
2375 DEBUGP("final section addresses:\n");
2376 for (i = 0; i < info->hdr->e_shnum; i++) {
2377 void *dest;
2378 Elf_Shdr *shdr = &info->sechdrs[i];
2379
2380 if (!(shdr->sh_flags & SHF_ALLOC))
2381 continue;
2382
2383 if (shdr->sh_entsize & INIT_OFFSET_MASK)
2384 dest = mod->module_init
2385 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2386 else
2387 dest = mod->module_core + shdr->sh_entsize;
2388
2389 if (shdr->sh_type != SHT_NOBITS)
2390 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2391 /* Update sh_addr to point to copy in image. */
2392 shdr->sh_addr = (unsigned long)dest;
2393 DEBUGP("\t0x%lx %s\n",
2394 shdr->sh_addr, info->secstrings + shdr->sh_name);
2395 }
2396
2397 return 0;
2398}
2399
2400static int check_module_license_and_versions(struct module *mod)
2401{
2402 /*
2403 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2404 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2405 * using GPL-only symbols it needs.
2406 */
2407 if (strcmp(mod->name, "ndiswrapper") == 0)
2408 add_taint(TAINT_PROPRIETARY_MODULE);
2409
2410 /* driverloader was caught wrongly pretending to be under GPL */
2411 if (strcmp(mod->name, "driverloader") == 0)
2412 add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
2413
2414#ifdef CONFIG_MODVERSIONS
2415 if ((mod->num_syms && !mod->crcs)
2416 || (mod->num_gpl_syms && !mod->gpl_crcs)
2417 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
2418#ifdef CONFIG_UNUSED_SYMBOLS
2419 || (mod->num_unused_syms && !mod->unused_crcs)
2420 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
2421#endif
2422 ) {
2423 return try_to_force_load(mod,
2424 "no versions for exported symbols");
2425 }
2426#endif
2427 return 0;
2428}
2429
2430static void flush_module_icache(const struct module *mod)
2431{
2432 mm_segment_t old_fs;
2433
2434 /* flush the icache in correct context */
2435 old_fs = get_fs();
2436 set_fs(KERNEL_DS);
2437
2438 /*
2439 * Flush the instruction cache, since we've played with text.
2440 * Do it before processing of module parameters, so the module
2441 * can provide parameter accessor functions of its own.
2442 */
2443 if (mod->module_init)
2444 flush_icache_range((unsigned long)mod->module_init,
2445 (unsigned long)mod->module_init
2446 + mod->init_size);
2447 flush_icache_range((unsigned long)mod->module_core,
2448 (unsigned long)mod->module_core + mod->core_size);
2449
2450 set_fs(old_fs);
2451}
2452
2453static struct module *layout_and_allocate(struct load_info *info)
2454{
2455 /* Module within temporary copy. */
2456 struct module *mod;
2457 Elf_Shdr *pcpusec;
2458 int err;
2459
2460 mod = setup_load_info(info);
2461 if (IS_ERR(mod))
2462 return mod;
2463
2464 err = check_modinfo(mod, info);
2465 if (err)
2466 return ERR_PTR(err);
2467
2468 /* Allow arches to frob section contents and sizes. */
2469 err = module_frob_arch_sections(info->hdr, info->sechdrs,
2470 info->secstrings, mod);
2471 if (err < 0)
2472 goto out;
2473
2474 pcpusec = &info->sechdrs[info->index.pcpu];
2475 if (pcpusec->sh_size) {
2476 /* We have a special allocation for this section. */
2477 err = percpu_modalloc(mod,
2478 pcpusec->sh_size, pcpusec->sh_addralign);
2479 if (err)
2480 goto out;
2481 pcpusec->sh_flags &= ~(unsigned long)SHF_ALLOC;
2482 }
2483
2484 /* Determine total sizes, and put offsets in sh_entsize. For now
2485 this is done generically; there doesn't appear to be any
2486 special cases for the architectures. */
2487 layout_sections(mod, info);
2488
2489 info->strmap = kzalloc(BITS_TO_LONGS(info->sechdrs[info->index.str].sh_size)
2490 * sizeof(long), GFP_KERNEL);
2491 if (!info->strmap) {
2492 err = -ENOMEM;
2493 goto free_percpu;
2494 }
2495 layout_symtab(mod, info);
2496
2497 /* Allocate and move to the final place */
2498 err = move_module(mod, info);
2499 if (err)
2500 goto free_strmap;
2501
2502 /* Module has been copied to its final place now: return it. */
2503 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2504 kmemleak_load_module(mod, info);
2505 return mod;
2506
2507free_strmap:
2508 kfree(info->strmap);
2509free_percpu:
2510 percpu_modfree(mod);
2511out:
2512 return ERR_PTR(err);
2513}
2514
2515/* mod is no longer valid after this! */
2516static void module_deallocate(struct module *mod, struct load_info *info)
2517{
2518 kfree(info->strmap);
2519 percpu_modfree(mod);
2520 module_free(mod, mod->module_init);
2521 module_free(mod, mod->module_core);
2522}
2523
2524static int post_relocation(struct module *mod, const struct load_info *info)
2525{
2526 /* Sort exception table now relocations are done. */
2527 sort_extable(mod->extable, mod->extable + mod->num_exentries);
2528
2529 /* Copy relocated percpu area over. */
2530 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2531 info->sechdrs[info->index.pcpu].sh_size);
2532
2533 /* Setup kallsyms-specific fields. */
2534 add_kallsyms(mod, info);
2535
2536 /* Arch-specific module finalizing. */
2537 return module_finalize(info->hdr, info->sechdrs, mod);
2538}
2539
2540/* Allocate and load the module: note that size of section 0 is always
2541 zero, and we rely on this for optional sections. */
2542static struct module *load_module(void __user *umod,
2543 unsigned long len,
2544 const char __user *uargs)
2545{
2546 struct load_info info = { NULL, };
2547 struct module *mod;
2548 long err;
2549
2550 DEBUGP("load_module: umod=%p, len=%lu, uargs=%p\n",
2551 umod, len, uargs);
2552
2553 /* Copy in the blobs from userspace, check they are vaguely sane. */
2554 err = copy_and_check(&info, umod, len, uargs);
2555 if (err)
2556 return ERR_PTR(err);
2557
2558 /* Figure out module layout, and allocate all the memory. */
2559 mod = layout_and_allocate(&info);
2560 if (IS_ERR(mod)) {
2561 err = PTR_ERR(mod);
2562 goto free_copy;
2563 }
2564
2565 /* Now module is in final location, initialize linked lists, etc. */
2566 err = module_unload_init(mod);
2567 if (err)
2568 goto free_module;
2569
2570 /* Now we've got everything in the final locations, we can
2571 * find optional sections. */
2572 find_module_sections(mod, &info);
2573
2574 err = check_module_license_and_versions(mod);
2575 if (err)
2576 goto free_unload;
2577
2578 /* Set up MODINFO_ATTR fields */
2579 setup_modinfo(mod, &info);
2580
2581 /* Fix up syms, so that st_value is a pointer to location. */
2582 err = simplify_symbols(mod, &info);
2583 if (err < 0)
2584 goto free_modinfo;
2585
2586 err = apply_relocations(mod, &info);
2587 if (err < 0)
2588 goto free_modinfo;
2589
2590 err = post_relocation(mod, &info);
2591 if (err < 0)
2592 goto free_modinfo;
2593
2594 flush_module_icache(mod);
2595
2596 /* Now copy in args */
2597 mod->args = strndup_user(uargs, ~0UL >> 1);
2598 if (IS_ERR(mod->args)) {
2599 err = PTR_ERR(mod->args);
2600 goto free_arch_cleanup;
2601 }
2602
2603 /* Mark state as coming so strong_try_module_get() ignores us. */
2604 mod->state = MODULE_STATE_COMING;
2605
2606 /* Now sew it into the lists so we can get lockdep and oops
2607 * info during argument parsing. Noone should access us, since
2608 * strong_try_module_get() will fail.
2609 * lockdep/oops can run asynchronous, so use the RCU list insertion
2610 * function to insert in a way safe to concurrent readers.
2611 * The mutex protects against concurrent writers.
2612 */
2613 mutex_lock(&module_mutex);
2614 if (find_module(mod->name)) {
2615 err = -EEXIST;
2616 goto unlock;
2617 }
2618
2619 /* This has to be done once we're sure module name is unique. */
2620 if (!mod->taints)
2621 dynamic_debug_setup(info.debug, info.num_debug);
2622
2623 /* Find duplicate symbols */
2624 err = verify_export_symbols(mod);
2625 if (err < 0)
2626 goto ddebug;
2627
2628 list_add_rcu(&mod->list, &modules);
2629 mutex_unlock(&module_mutex);
2630
2631 /* Module is ready to execute: parsing args may do that. */
2632 err = parse_args(mod->name, mod->args, mod->kp, mod->num_kp, NULL);
2633 if (err < 0)
2634 goto unlink;
2635
2636 /* Link in to syfs. */
2637 err = mod_sysfs_setup(mod, &info, mod->kp, mod->num_kp);
2638 if (err < 0)
2639 goto unlink;
2640
2641 /* Get rid of temporary copy and strmap. */
2642 kfree(info.strmap);
2643 free_copy(&info);
2644
2645 /* Done! */
2646 trace_module_load(mod);
2647 return mod;
2648
2649 unlink:
2650 mutex_lock(&module_mutex);
2651 /* Unlink carefully: kallsyms could be walking list. */
2652 list_del_rcu(&mod->list);
2653 ddebug:
2654 if (!mod->taints)
2655 dynamic_debug_remove(info.debug);
2656 unlock:
2657 mutex_unlock(&module_mutex);
2658 synchronize_sched();
2659 kfree(mod->args);
2660 free_arch_cleanup:
2661 module_arch_cleanup(mod);
2662 free_modinfo:
2663 free_modinfo(mod);
2664 free_unload:
2665 module_unload_free(mod);
2666 free_module:
2667 module_deallocate(mod, &info);
2668 free_copy:
2669 free_copy(&info);
2670 return ERR_PTR(err);
2671}
2672
2673/* Call module constructors. */
2674static void do_mod_ctors(struct module *mod)
2675{
2676#ifdef CONFIG_CONSTRUCTORS
2677 unsigned long i;
2678
2679 for (i = 0; i < mod->num_ctors; i++)
2680 mod->ctors[i]();
2681#endif
2682}
2683
2684/* This is where the real work happens */
2685SYSCALL_DEFINE3(init_module, void __user *, umod,
2686 unsigned long, len, const char __user *, uargs)
2687{
2688 struct module *mod;
2689 int ret = 0;
2690
2691 /* Must have permission */
2692 if (!capable(CAP_SYS_MODULE) || modules_disabled)
2693 return -EPERM;
2694
2695 /* Do all the hard work */
2696 mod = load_module(umod, len, uargs);
2697 if (IS_ERR(mod))
2698 return PTR_ERR(mod);
2699
2700 blocking_notifier_call_chain(&module_notify_list,
2701 MODULE_STATE_COMING, mod);
2702
2703 do_mod_ctors(mod);
2704 /* Start the module */
2705 if (mod->init != NULL)
2706 ret = do_one_initcall(mod->init);
2707 if (ret < 0) {
2708 /* Init routine failed: abort. Try to protect us from
2709 buggy refcounters. */
2710 mod->state = MODULE_STATE_GOING;
2711 synchronize_sched();
2712 module_put(mod);
2713 blocking_notifier_call_chain(&module_notify_list,
2714 MODULE_STATE_GOING, mod);
2715 free_module(mod);
2716 wake_up(&module_wq);
2717 return ret;
2718 }
2719 if (ret > 0) {
2720 printk(KERN_WARNING
2721"%s: '%s'->init suspiciously returned %d, it should follow 0/-E convention\n"
2722"%s: loading module anyway...\n",
2723 __func__, mod->name, ret,
2724 __func__);
2725 dump_stack();
2726 }
2727
2728 /* Now it's a first class citizen! Wake up anyone waiting for it. */
2729 mod->state = MODULE_STATE_LIVE;
2730 wake_up(&module_wq);
2731 blocking_notifier_call_chain(&module_notify_list,
2732 MODULE_STATE_LIVE, mod);
2733
2734 /* We need to finish all async code before the module init sequence is done */
2735 async_synchronize_full();
2736
2737 mutex_lock(&module_mutex);
2738 /* Drop initial reference. */
2739 module_put(mod);
2740 trim_init_extable(mod);
2741#ifdef CONFIG_KALLSYMS
2742 mod->num_symtab = mod->core_num_syms;
2743 mod->symtab = mod->core_symtab;
2744 mod->strtab = mod->core_strtab;
2745#endif
2746 module_free(mod, mod->module_init);
2747 mod->module_init = NULL;
2748 mod->init_size = 0;
2749 mod->init_text_size = 0;
2750 mutex_unlock(&module_mutex);
2751
2752 return 0;
2753}
2754
2755static inline int within(unsigned long addr, void *start, unsigned long size)
2756{
2757 return ((void *)addr >= start && (void *)addr < start + size);
2758}
2759
2760#ifdef CONFIG_KALLSYMS
2761/*
2762 * This ignores the intensely annoying "mapping symbols" found
2763 * in ARM ELF files: $a, $t and $d.
2764 */
2765static inline int is_arm_mapping_symbol(const char *str)
2766{
2767 return str[0] == '$' && strchr("atd", str[1])
2768 && (str[2] == '\0' || str[2] == '.');
2769}
2770
2771static const char *get_ksymbol(struct module *mod,
2772 unsigned long addr,
2773 unsigned long *size,
2774 unsigned long *offset)
2775{
2776 unsigned int i, best = 0;
2777 unsigned long nextval;
2778
2779 /* At worse, next value is at end of module */
2780 if (within_module_init(addr, mod))
2781 nextval = (unsigned long)mod->module_init+mod->init_text_size;
2782 else
2783 nextval = (unsigned long)mod->module_core+mod->core_text_size;
2784
2785 /* Scan for closest preceeding symbol, and next symbol. (ELF
2786 starts real symbols at 1). */
2787 for (i = 1; i < mod->num_symtab; i++) {
2788 if (mod->symtab[i].st_shndx == SHN_UNDEF)
2789 continue;
2790
2791 /* We ignore unnamed symbols: they're uninformative
2792 * and inserted at a whim. */
2793 if (mod->symtab[i].st_value <= addr
2794 && mod->symtab[i].st_value > mod->symtab[best].st_value
2795 && *(mod->strtab + mod->symtab[i].st_name) != '\0'
2796 && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
2797 best = i;
2798 if (mod->symtab[i].st_value > addr
2799 && mod->symtab[i].st_value < nextval
2800 && *(mod->strtab + mod->symtab[i].st_name) != '\0'
2801 && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
2802 nextval = mod->symtab[i].st_value;
2803 }
2804
2805 if (!best)
2806 return NULL;
2807
2808 if (size)
2809 *size = nextval - mod->symtab[best].st_value;
2810 if (offset)
2811 *offset = addr - mod->symtab[best].st_value;
2812 return mod->strtab + mod->symtab[best].st_name;
2813}
2814
2815/* For kallsyms to ask for address resolution. NULL means not found. Careful
2816 * not to lock to avoid deadlock on oopses, simply disable preemption. */
2817const char *module_address_lookup(unsigned long addr,
2818 unsigned long *size,
2819 unsigned long *offset,
2820 char **modname,
2821 char *namebuf)
2822{
2823 struct module *mod;
2824 const char *ret = NULL;
2825
2826 preempt_disable();
2827 list_for_each_entry_rcu(mod, &modules, list) {
2828 if (within_module_init(addr, mod) ||
2829 within_module_core(addr, mod)) {
2830 if (modname)
2831 *modname = mod->name;
2832 ret = get_ksymbol(mod, addr, size, offset);
2833 break;
2834 }
2835 }
2836 /* Make a copy in here where it's safe */
2837 if (ret) {
2838 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
2839 ret = namebuf;
2840 }
2841 preempt_enable();
2842 return ret;
2843}
2844
2845int lookup_module_symbol_name(unsigned long addr, char *symname)
2846{
2847 struct module *mod;
2848
2849 preempt_disable();
2850 list_for_each_entry_rcu(mod, &modules, list) {
2851 if (within_module_init(addr, mod) ||
2852 within_module_core(addr, mod)) {
2853 const char *sym;
2854
2855 sym = get_ksymbol(mod, addr, NULL, NULL);
2856 if (!sym)
2857 goto out;
2858 strlcpy(symname, sym, KSYM_NAME_LEN);
2859 preempt_enable();
2860 return 0;
2861 }
2862 }
2863out:
2864 preempt_enable();
2865 return -ERANGE;
2866}
2867
2868int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
2869 unsigned long *offset, char *modname, char *name)
2870{
2871 struct module *mod;
2872
2873 preempt_disable();
2874 list_for_each_entry_rcu(mod, &modules, list) {
2875 if (within_module_init(addr, mod) ||
2876 within_module_core(addr, mod)) {
2877 const char *sym;
2878
2879 sym = get_ksymbol(mod, addr, size, offset);
2880 if (!sym)
2881 goto out;
2882 if (modname)
2883 strlcpy(modname, mod->name, MODULE_NAME_LEN);
2884 if (name)
2885 strlcpy(name, sym, KSYM_NAME_LEN);
2886 preempt_enable();
2887 return 0;
2888 }
2889 }
2890out:
2891 preempt_enable();
2892 return -ERANGE;
2893}
2894
2895int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2896 char *name, char *module_name, int *exported)
2897{
2898 struct module *mod;
2899
2900 preempt_disable();
2901 list_for_each_entry_rcu(mod, &modules, list) {
2902 if (symnum < mod->num_symtab) {
2903 *value = mod->symtab[symnum].st_value;
2904 *type = mod->symtab[symnum].st_info;
2905 strlcpy(name, mod->strtab + mod->symtab[symnum].st_name,
2906 KSYM_NAME_LEN);
2907 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
2908 *exported = is_exported(name, *value, mod);
2909 preempt_enable();
2910 return 0;
2911 }
2912 symnum -= mod->num_symtab;
2913 }
2914 preempt_enable();
2915 return -ERANGE;
2916}
2917
2918static unsigned long mod_find_symname(struct module *mod, const char *name)
2919{
2920 unsigned int i;
2921
2922 for (i = 0; i < mod->num_symtab; i++)
2923 if (strcmp(name, mod->strtab+mod->symtab[i].st_name) == 0 &&
2924 mod->symtab[i].st_info != 'U')
2925 return mod->symtab[i].st_value;
2926 return 0;
2927}
2928
2929/* Look for this name: can be of form module:name. */
2930unsigned long module_kallsyms_lookup_name(const char *name)
2931{
2932 struct module *mod;
2933 char *colon;
2934 unsigned long ret = 0;
2935
2936 /* Don't lock: we're in enough trouble already. */
2937 preempt_disable();
2938 if ((colon = strchr(name, ':')) != NULL) {
2939 *colon = '\0';
2940 if ((mod = find_module(name)) != NULL)
2941 ret = mod_find_symname(mod, colon+1);
2942 *colon = ':';
2943 } else {
2944 list_for_each_entry_rcu(mod, &modules, list)
2945 if ((ret = mod_find_symname(mod, name)) != 0)
2946 break;
2947 }
2948 preempt_enable();
2949 return ret;
2950}
2951
2952int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
2953 struct module *, unsigned long),
2954 void *data)
2955{
2956 struct module *mod;
2957 unsigned int i;
2958 int ret;
2959
2960 list_for_each_entry(mod, &modules, list) {
2961 for (i = 0; i < mod->num_symtab; i++) {
2962 ret = fn(data, mod->strtab + mod->symtab[i].st_name,
2963 mod, mod->symtab[i].st_value);
2964 if (ret != 0)
2965 return ret;
2966 }
2967 }
2968 return 0;
2969}
2970#endif /* CONFIG_KALLSYMS */
2971
2972static char *module_flags(struct module *mod, char *buf)
2973{
2974 int bx = 0;
2975
2976 if (mod->taints ||
2977 mod->state == MODULE_STATE_GOING ||
2978 mod->state == MODULE_STATE_COMING) {
2979 buf[bx++] = '(';
2980 if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
2981 buf[bx++] = 'P';
2982 if (mod->taints & (1 << TAINT_FORCED_MODULE))
2983 buf[bx++] = 'F';
2984 if (mod->taints & (1 << TAINT_CRAP))
2985 buf[bx++] = 'C';
2986 /*
2987 * TAINT_FORCED_RMMOD: could be added.
2988 * TAINT_UNSAFE_SMP, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
2989 * apply to modules.
2990 */
2991
2992 /* Show a - for module-is-being-unloaded */
2993 if (mod->state == MODULE_STATE_GOING)
2994 buf[bx++] = '-';
2995 /* Show a + for module-is-being-loaded */
2996 if (mod->state == MODULE_STATE_COMING)
2997 buf[bx++] = '+';
2998 buf[bx++] = ')';
2999 }
3000 buf[bx] = '\0';
3001
3002 return buf;
3003}
3004
3005#ifdef CONFIG_PROC_FS
3006/* Called by the /proc file system to return a list of modules. */
3007static void *m_start(struct seq_file *m, loff_t *pos)
3008{
3009 mutex_lock(&module_mutex);
3010 return seq_list_start(&modules, *pos);
3011}
3012
3013static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3014{
3015 return seq_list_next(p, &modules, pos);
3016}
3017
3018static void m_stop(struct seq_file *m, void *p)
3019{
3020 mutex_unlock(&module_mutex);
3021}
3022
3023static int m_show(struct seq_file *m, void *p)
3024{
3025 struct module *mod = list_entry(p, struct module, list);
3026 char buf[8];
3027
3028 seq_printf(m, "%s %u",
3029 mod->name, mod->init_size + mod->core_size);
3030 print_unload_info(m, mod);
3031
3032 /* Informative for users. */
3033 seq_printf(m, " %s",
3034 mod->state == MODULE_STATE_GOING ? "Unloading":
3035 mod->state == MODULE_STATE_COMING ? "Loading":
3036 "Live");
3037 /* Used by oprofile and other similar tools. */
3038 seq_printf(m, " 0x%p", mod->module_core);
3039
3040 /* Taints info */
3041 if (mod->taints)
3042 seq_printf(m, " %s", module_flags(mod, buf));
3043
3044 seq_printf(m, "\n");
3045 return 0;
3046}
3047
3048/* Format: modulename size refcount deps address
3049
3050 Where refcount is a number or -, and deps is a comma-separated list
3051 of depends or -.
3052*/
3053static const struct seq_operations modules_op = {
3054 .start = m_start,
3055 .next = m_next,
3056 .stop = m_stop,
3057 .show = m_show
3058};
3059
3060static int modules_open(struct inode *inode, struct file *file)
3061{
3062 return seq_open(file, &modules_op);
3063}
3064
3065static const struct file_operations proc_modules_operations = {
3066 .open = modules_open,
3067 .read = seq_read,
3068 .llseek = seq_lseek,
3069 .release = seq_release,
3070};
3071
3072static int __init proc_modules_init(void)
3073{
3074 proc_create("modules", 0, NULL, &proc_modules_operations);
3075 return 0;
3076}
3077module_init(proc_modules_init);
3078#endif
3079
3080/* Given an address, look for it in the module exception tables. */
3081const struct exception_table_entry *search_module_extables(unsigned long addr)
3082{
3083 const struct exception_table_entry *e = NULL;
3084 struct module *mod;
3085
3086 preempt_disable();
3087 list_for_each_entry_rcu(mod, &modules, list) {
3088 if (mod->num_exentries == 0)
3089 continue;
3090
3091 e = search_extable(mod->extable,
3092 mod->extable + mod->num_exentries - 1,
3093 addr);
3094 if (e)
3095 break;
3096 }
3097 preempt_enable();
3098
3099 /* Now, if we found one, we are running inside it now, hence
3100 we cannot unload the module, hence no refcnt needed. */
3101 return e;
3102}
3103
3104/*
3105 * is_module_address - is this address inside a module?
3106 * @addr: the address to check.
3107 *
3108 * See is_module_text_address() if you simply want to see if the address
3109 * is code (not data).
3110 */
3111bool is_module_address(unsigned long addr)
3112{
3113 bool ret;
3114
3115 preempt_disable();
3116 ret = __module_address(addr) != NULL;
3117 preempt_enable();
3118
3119 return ret;
3120}
3121
3122/*
3123 * __module_address - get the module which contains an address.
3124 * @addr: the address.
3125 *
3126 * Must be called with preempt disabled or module mutex held so that
3127 * module doesn't get freed during this.
3128 */
3129struct module *__module_address(unsigned long addr)
3130{
3131 struct module *mod;
3132
3133 if (addr < module_addr_min || addr > module_addr_max)
3134 return NULL;
3135
3136 list_for_each_entry_rcu(mod, &modules, list)
3137 if (within_module_core(addr, mod)
3138 || within_module_init(addr, mod))
3139 return mod;
3140 return NULL;
3141}
3142EXPORT_SYMBOL_GPL(__module_address);
3143
3144/*
3145 * is_module_text_address - is this address inside module code?
3146 * @addr: the address to check.
3147 *
3148 * See is_module_address() if you simply want to see if the address is
3149 * anywhere in a module. See kernel_text_address() for testing if an
3150 * address corresponds to kernel or module code.
3151 */
3152bool is_module_text_address(unsigned long addr)
3153{
3154 bool ret;
3155
3156 preempt_disable();
3157 ret = __module_text_address(addr) != NULL;
3158 preempt_enable();
3159
3160 return ret;
3161}
3162
3163/*
3164 * __module_text_address - get the module whose code contains an address.
3165 * @addr: the address.
3166 *
3167 * Must be called with preempt disabled or module mutex held so that
3168 * module doesn't get freed during this.
3169 */
3170struct module *__module_text_address(unsigned long addr)
3171{
3172 struct module *mod = __module_address(addr);
3173 if (mod) {
3174 /* Make sure it's within the text section. */
3175 if (!within(addr, mod->module_init, mod->init_text_size)
3176 && !within(addr, mod->module_core, mod->core_text_size))
3177 mod = NULL;
3178 }
3179 return mod;
3180}
3181EXPORT_SYMBOL_GPL(__module_text_address);
3182
3183/* Don't grab lock, we're oopsing. */
3184void print_modules(void)
3185{
3186 struct module *mod;
3187 char buf[8];
3188
3189 printk(KERN_DEFAULT "Modules linked in:");
3190 /* Most callers should already have preempt disabled, but make sure */
3191 preempt_disable();
3192 list_for_each_entry_rcu(mod, &modules, list)
3193 printk(" %s%s", mod->name, module_flags(mod, buf));
3194 preempt_enable();
3195 if (last_unloaded_module[0])
3196 printk(" [last unloaded: %s]", last_unloaded_module);
3197 printk("\n");
3198}
3199
3200#ifdef CONFIG_MODVERSIONS
3201/* Generate the signature for all relevant module structures here.
3202 * If these change, we don't want to try to parse the module. */
3203void module_layout(struct module *mod,
3204 struct modversion_info *ver,
3205 struct kernel_param *kp,
3206 struct kernel_symbol *ks,
3207 struct tracepoint *tp)
3208{
3209}
3210EXPORT_SYMBOL(module_layout);
3211#endif
3212
3213#ifdef CONFIG_TRACEPOINTS
3214void module_update_tracepoints(void)
3215{
3216 struct module *mod;
3217
3218 mutex_lock(&module_mutex);
3219 list_for_each_entry(mod, &modules, list)
3220 if (!mod->taints)
3221 tracepoint_update_probe_range(mod->tracepoints,
3222 mod->tracepoints + mod->num_tracepoints);
3223 mutex_unlock(&module_mutex);
3224}
3225
3226/*
3227 * Returns 0 if current not found.
3228 * Returns 1 if current found.
3229 */
3230int module_get_iter_tracepoints(struct tracepoint_iter *iter)
3231{
3232 struct module *iter_mod;
3233 int found = 0;
3234
3235 mutex_lock(&module_mutex);
3236 list_for_each_entry(iter_mod, &modules, list) {
3237 if (!iter_mod->taints) {
3238 /*
3239 * Sorted module list
3240 */
3241 if (iter_mod < iter->module)
3242 continue;
3243 else if (iter_mod > iter->module)
3244 iter->tracepoint = NULL;
3245 found = tracepoint_get_iter_range(&iter->tracepoint,
3246 iter_mod->tracepoints,
3247 iter_mod->tracepoints
3248 + iter_mod->num_tracepoints);
3249 if (found) {
3250 iter->module = iter_mod;
3251 break;
3252 }
3253 }
3254 }
3255 mutex_unlock(&module_mutex);
3256 return found;
3257}
3258#endif