]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - kernel/futex.c
rcu: Fix TREE_PREEMPT_RCU CPU_HOTPLUG bad-luck hang
[net-next-2.6.git] / kernel / futex.c
... / ...
CommitLineData
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
57#include <linux/signal.h>
58#include <linux/module.h>
59#include <linux/magic.h>
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
62
63#include <asm/futex.h>
64
65#include "rtmutex_common.h"
66
67int __read_mostly futex_cmpxchg_enabled;
68
69#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
70
71/*
72 * Priority Inheritance state:
73 */
74struct futex_pi_state {
75 /*
76 * list of 'owned' pi_state instances - these have to be
77 * cleaned up in do_exit() if the task exits prematurely:
78 */
79 struct list_head list;
80
81 /*
82 * The PI object:
83 */
84 struct rt_mutex pi_mutex;
85
86 struct task_struct *owner;
87 atomic_t refcount;
88
89 union futex_key key;
90};
91
92/**
93 * struct futex_q - The hashed futex queue entry, one per waiting task
94 * @task: the task waiting on the futex
95 * @lock_ptr: the hash bucket lock
96 * @key: the key the futex is hashed on
97 * @pi_state: optional priority inheritance state
98 * @rt_waiter: rt_waiter storage for use with requeue_pi
99 * @requeue_pi_key: the requeue_pi target futex key
100 * @bitset: bitset for the optional bitmasked wakeup
101 *
102 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
103 * we can wake only the relevant ones (hashed queues may be shared).
104 *
105 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
106 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
107 * The order of wakup is always to make the first condition true, then
108 * the second.
109 *
110 * PI futexes are typically woken before they are removed from the hash list via
111 * the rt_mutex code. See unqueue_me_pi().
112 */
113struct futex_q {
114 struct plist_node list;
115
116 struct task_struct *task;
117 spinlock_t *lock_ptr;
118 union futex_key key;
119 struct futex_pi_state *pi_state;
120 struct rt_mutex_waiter *rt_waiter;
121 union futex_key *requeue_pi_key;
122 u32 bitset;
123};
124
125/*
126 * Hash buckets are shared by all the futex_keys that hash to the same
127 * location. Each key may have multiple futex_q structures, one for each task
128 * waiting on a futex.
129 */
130struct futex_hash_bucket {
131 spinlock_t lock;
132 struct plist_head chain;
133};
134
135static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
136
137/*
138 * We hash on the keys returned from get_futex_key (see below).
139 */
140static struct futex_hash_bucket *hash_futex(union futex_key *key)
141{
142 u32 hash = jhash2((u32*)&key->both.word,
143 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
144 key->both.offset);
145 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
146}
147
148/*
149 * Return 1 if two futex_keys are equal, 0 otherwise.
150 */
151static inline int match_futex(union futex_key *key1, union futex_key *key2)
152{
153 return (key1 && key2
154 && key1->both.word == key2->both.word
155 && key1->both.ptr == key2->both.ptr
156 && key1->both.offset == key2->both.offset);
157}
158
159/*
160 * Take a reference to the resource addressed by a key.
161 * Can be called while holding spinlocks.
162 *
163 */
164static void get_futex_key_refs(union futex_key *key)
165{
166 if (!key->both.ptr)
167 return;
168
169 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
170 case FUT_OFF_INODE:
171 atomic_inc(&key->shared.inode->i_count);
172 break;
173 case FUT_OFF_MMSHARED:
174 atomic_inc(&key->private.mm->mm_count);
175 break;
176 }
177}
178
179/*
180 * Drop a reference to the resource addressed by a key.
181 * The hash bucket spinlock must not be held.
182 */
183static void drop_futex_key_refs(union futex_key *key)
184{
185 if (!key->both.ptr) {
186 /* If we're here then we tried to put a key we failed to get */
187 WARN_ON_ONCE(1);
188 return;
189 }
190
191 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
192 case FUT_OFF_INODE:
193 iput(key->shared.inode);
194 break;
195 case FUT_OFF_MMSHARED:
196 mmdrop(key->private.mm);
197 break;
198 }
199}
200
201/**
202 * get_futex_key() - Get parameters which are the keys for a futex
203 * @uaddr: virtual address of the futex
204 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
205 * @key: address where result is stored.
206 * @rw: mapping needs to be read/write (values: VERIFY_READ,
207 * VERIFY_WRITE)
208 *
209 * Returns a negative error code or 0
210 * The key words are stored in *key on success.
211 *
212 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
213 * offset_within_page). For private mappings, it's (uaddr, current->mm).
214 * We can usually work out the index without swapping in the page.
215 *
216 * lock_page() might sleep, the caller should not hold a spinlock.
217 */
218static int
219get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
220{
221 unsigned long address = (unsigned long)uaddr;
222 struct mm_struct *mm = current->mm;
223 struct page *page;
224 int err;
225
226 /*
227 * The futex address must be "naturally" aligned.
228 */
229 key->both.offset = address % PAGE_SIZE;
230 if (unlikely((address % sizeof(u32)) != 0))
231 return -EINVAL;
232 address -= key->both.offset;
233
234 /*
235 * PROCESS_PRIVATE futexes are fast.
236 * As the mm cannot disappear under us and the 'key' only needs
237 * virtual address, we dont even have to find the underlying vma.
238 * Note : We do have to check 'uaddr' is a valid user address,
239 * but access_ok() should be faster than find_vma()
240 */
241 if (!fshared) {
242 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
243 return -EFAULT;
244 key->private.mm = mm;
245 key->private.address = address;
246 get_futex_key_refs(key);
247 return 0;
248 }
249
250again:
251 err = get_user_pages_fast(address, 1, rw == VERIFY_WRITE, &page);
252 if (err < 0)
253 return err;
254
255 page = compound_head(page);
256 lock_page(page);
257 if (!page->mapping) {
258 unlock_page(page);
259 put_page(page);
260 goto again;
261 }
262
263 /*
264 * Private mappings are handled in a simple way.
265 *
266 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
267 * it's a read-only handle, it's expected that futexes attach to
268 * the object not the particular process.
269 */
270 if (PageAnon(page)) {
271 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
272 key->private.mm = mm;
273 key->private.address = address;
274 } else {
275 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
276 key->shared.inode = page->mapping->host;
277 key->shared.pgoff = page->index;
278 }
279
280 get_futex_key_refs(key);
281
282 unlock_page(page);
283 put_page(page);
284 return 0;
285}
286
287static inline
288void put_futex_key(int fshared, union futex_key *key)
289{
290 drop_futex_key_refs(key);
291}
292
293/**
294 * fault_in_user_writeable() - Fault in user address and verify RW access
295 * @uaddr: pointer to faulting user space address
296 *
297 * Slow path to fixup the fault we just took in the atomic write
298 * access to @uaddr.
299 *
300 * We have no generic implementation of a non destructive write to the
301 * user address. We know that we faulted in the atomic pagefault
302 * disabled section so we can as well avoid the #PF overhead by
303 * calling get_user_pages() right away.
304 */
305static int fault_in_user_writeable(u32 __user *uaddr)
306{
307 int ret = get_user_pages(current, current->mm, (unsigned long)uaddr,
308 1, 1, 0, NULL, NULL);
309 return ret < 0 ? ret : 0;
310}
311
312/**
313 * futex_top_waiter() - Return the highest priority waiter on a futex
314 * @hb: the hash bucket the futex_q's reside in
315 * @key: the futex key (to distinguish it from other futex futex_q's)
316 *
317 * Must be called with the hb lock held.
318 */
319static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
320 union futex_key *key)
321{
322 struct futex_q *this;
323
324 plist_for_each_entry(this, &hb->chain, list) {
325 if (match_futex(&this->key, key))
326 return this;
327 }
328 return NULL;
329}
330
331static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
332{
333 u32 curval;
334
335 pagefault_disable();
336 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
337 pagefault_enable();
338
339 return curval;
340}
341
342static int get_futex_value_locked(u32 *dest, u32 __user *from)
343{
344 int ret;
345
346 pagefault_disable();
347 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
348 pagefault_enable();
349
350 return ret ? -EFAULT : 0;
351}
352
353
354/*
355 * PI code:
356 */
357static int refill_pi_state_cache(void)
358{
359 struct futex_pi_state *pi_state;
360
361 if (likely(current->pi_state_cache))
362 return 0;
363
364 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
365
366 if (!pi_state)
367 return -ENOMEM;
368
369 INIT_LIST_HEAD(&pi_state->list);
370 /* pi_mutex gets initialized later */
371 pi_state->owner = NULL;
372 atomic_set(&pi_state->refcount, 1);
373 pi_state->key = FUTEX_KEY_INIT;
374
375 current->pi_state_cache = pi_state;
376
377 return 0;
378}
379
380static struct futex_pi_state * alloc_pi_state(void)
381{
382 struct futex_pi_state *pi_state = current->pi_state_cache;
383
384 WARN_ON(!pi_state);
385 current->pi_state_cache = NULL;
386
387 return pi_state;
388}
389
390static void free_pi_state(struct futex_pi_state *pi_state)
391{
392 if (!atomic_dec_and_test(&pi_state->refcount))
393 return;
394
395 /*
396 * If pi_state->owner is NULL, the owner is most probably dying
397 * and has cleaned up the pi_state already
398 */
399 if (pi_state->owner) {
400 spin_lock_irq(&pi_state->owner->pi_lock);
401 list_del_init(&pi_state->list);
402 spin_unlock_irq(&pi_state->owner->pi_lock);
403
404 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
405 }
406
407 if (current->pi_state_cache)
408 kfree(pi_state);
409 else {
410 /*
411 * pi_state->list is already empty.
412 * clear pi_state->owner.
413 * refcount is at 0 - put it back to 1.
414 */
415 pi_state->owner = NULL;
416 atomic_set(&pi_state->refcount, 1);
417 current->pi_state_cache = pi_state;
418 }
419}
420
421/*
422 * Look up the task based on what TID userspace gave us.
423 * We dont trust it.
424 */
425static struct task_struct * futex_find_get_task(pid_t pid)
426{
427 struct task_struct *p;
428 const struct cred *cred = current_cred(), *pcred;
429
430 rcu_read_lock();
431 p = find_task_by_vpid(pid);
432 if (!p) {
433 p = ERR_PTR(-ESRCH);
434 } else {
435 pcred = __task_cred(p);
436 if (cred->euid != pcred->euid &&
437 cred->euid != pcred->uid)
438 p = ERR_PTR(-ESRCH);
439 else
440 get_task_struct(p);
441 }
442
443 rcu_read_unlock();
444
445 return p;
446}
447
448/*
449 * This task is holding PI mutexes at exit time => bad.
450 * Kernel cleans up PI-state, but userspace is likely hosed.
451 * (Robust-futex cleanup is separate and might save the day for userspace.)
452 */
453void exit_pi_state_list(struct task_struct *curr)
454{
455 struct list_head *next, *head = &curr->pi_state_list;
456 struct futex_pi_state *pi_state;
457 struct futex_hash_bucket *hb;
458 union futex_key key = FUTEX_KEY_INIT;
459
460 if (!futex_cmpxchg_enabled)
461 return;
462 /*
463 * We are a ZOMBIE and nobody can enqueue itself on
464 * pi_state_list anymore, but we have to be careful
465 * versus waiters unqueueing themselves:
466 */
467 spin_lock_irq(&curr->pi_lock);
468 while (!list_empty(head)) {
469
470 next = head->next;
471 pi_state = list_entry(next, struct futex_pi_state, list);
472 key = pi_state->key;
473 hb = hash_futex(&key);
474 spin_unlock_irq(&curr->pi_lock);
475
476 spin_lock(&hb->lock);
477
478 spin_lock_irq(&curr->pi_lock);
479 /*
480 * We dropped the pi-lock, so re-check whether this
481 * task still owns the PI-state:
482 */
483 if (head->next != next) {
484 spin_unlock(&hb->lock);
485 continue;
486 }
487
488 WARN_ON(pi_state->owner != curr);
489 WARN_ON(list_empty(&pi_state->list));
490 list_del_init(&pi_state->list);
491 pi_state->owner = NULL;
492 spin_unlock_irq(&curr->pi_lock);
493
494 rt_mutex_unlock(&pi_state->pi_mutex);
495
496 spin_unlock(&hb->lock);
497
498 spin_lock_irq(&curr->pi_lock);
499 }
500 spin_unlock_irq(&curr->pi_lock);
501}
502
503static int
504lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
505 union futex_key *key, struct futex_pi_state **ps)
506{
507 struct futex_pi_state *pi_state = NULL;
508 struct futex_q *this, *next;
509 struct plist_head *head;
510 struct task_struct *p;
511 pid_t pid = uval & FUTEX_TID_MASK;
512
513 head = &hb->chain;
514
515 plist_for_each_entry_safe(this, next, head, list) {
516 if (match_futex(&this->key, key)) {
517 /*
518 * Another waiter already exists - bump up
519 * the refcount and return its pi_state:
520 */
521 pi_state = this->pi_state;
522 /*
523 * Userspace might have messed up non PI and PI futexes
524 */
525 if (unlikely(!pi_state))
526 return -EINVAL;
527
528 WARN_ON(!atomic_read(&pi_state->refcount));
529 WARN_ON(pid && pi_state->owner &&
530 pi_state->owner->pid != pid);
531
532 atomic_inc(&pi_state->refcount);
533 *ps = pi_state;
534
535 return 0;
536 }
537 }
538
539 /*
540 * We are the first waiter - try to look up the real owner and attach
541 * the new pi_state to it, but bail out when TID = 0
542 */
543 if (!pid)
544 return -ESRCH;
545 p = futex_find_get_task(pid);
546 if (IS_ERR(p))
547 return PTR_ERR(p);
548
549 /*
550 * We need to look at the task state flags to figure out,
551 * whether the task is exiting. To protect against the do_exit
552 * change of the task flags, we do this protected by
553 * p->pi_lock:
554 */
555 spin_lock_irq(&p->pi_lock);
556 if (unlikely(p->flags & PF_EXITING)) {
557 /*
558 * The task is on the way out. When PF_EXITPIDONE is
559 * set, we know that the task has finished the
560 * cleanup:
561 */
562 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
563
564 spin_unlock_irq(&p->pi_lock);
565 put_task_struct(p);
566 return ret;
567 }
568
569 pi_state = alloc_pi_state();
570
571 /*
572 * Initialize the pi_mutex in locked state and make 'p'
573 * the owner of it:
574 */
575 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
576
577 /* Store the key for possible exit cleanups: */
578 pi_state->key = *key;
579
580 WARN_ON(!list_empty(&pi_state->list));
581 list_add(&pi_state->list, &p->pi_state_list);
582 pi_state->owner = p;
583 spin_unlock_irq(&p->pi_lock);
584
585 put_task_struct(p);
586
587 *ps = pi_state;
588
589 return 0;
590}
591
592/**
593 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
594 * @uaddr: the pi futex user address
595 * @hb: the pi futex hash bucket
596 * @key: the futex key associated with uaddr and hb
597 * @ps: the pi_state pointer where we store the result of the
598 * lookup
599 * @task: the task to perform the atomic lock work for. This will
600 * be "current" except in the case of requeue pi.
601 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
602 *
603 * Returns:
604 * 0 - ready to wait
605 * 1 - acquired the lock
606 * <0 - error
607 *
608 * The hb->lock and futex_key refs shall be held by the caller.
609 */
610static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
611 union futex_key *key,
612 struct futex_pi_state **ps,
613 struct task_struct *task, int set_waiters)
614{
615 int lock_taken, ret, ownerdied = 0;
616 u32 uval, newval, curval;
617
618retry:
619 ret = lock_taken = 0;
620
621 /*
622 * To avoid races, we attempt to take the lock here again
623 * (by doing a 0 -> TID atomic cmpxchg), while holding all
624 * the locks. It will most likely not succeed.
625 */
626 newval = task_pid_vnr(task);
627 if (set_waiters)
628 newval |= FUTEX_WAITERS;
629
630 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
631
632 if (unlikely(curval == -EFAULT))
633 return -EFAULT;
634
635 /*
636 * Detect deadlocks.
637 */
638 if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
639 return -EDEADLK;
640
641 /*
642 * Surprise - we got the lock. Just return to userspace:
643 */
644 if (unlikely(!curval))
645 return 1;
646
647 uval = curval;
648
649 /*
650 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
651 * to wake at the next unlock.
652 */
653 newval = curval | FUTEX_WAITERS;
654
655 /*
656 * There are two cases, where a futex might have no owner (the
657 * owner TID is 0): OWNER_DIED. We take over the futex in this
658 * case. We also do an unconditional take over, when the owner
659 * of the futex died.
660 *
661 * This is safe as we are protected by the hash bucket lock !
662 */
663 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
664 /* Keep the OWNER_DIED bit */
665 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
666 ownerdied = 0;
667 lock_taken = 1;
668 }
669
670 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
671
672 if (unlikely(curval == -EFAULT))
673 return -EFAULT;
674 if (unlikely(curval != uval))
675 goto retry;
676
677 /*
678 * We took the lock due to owner died take over.
679 */
680 if (unlikely(lock_taken))
681 return 1;
682
683 /*
684 * We dont have the lock. Look up the PI state (or create it if
685 * we are the first waiter):
686 */
687 ret = lookup_pi_state(uval, hb, key, ps);
688
689 if (unlikely(ret)) {
690 switch (ret) {
691 case -ESRCH:
692 /*
693 * No owner found for this futex. Check if the
694 * OWNER_DIED bit is set to figure out whether
695 * this is a robust futex or not.
696 */
697 if (get_futex_value_locked(&curval, uaddr))
698 return -EFAULT;
699
700 /*
701 * We simply start over in case of a robust
702 * futex. The code above will take the futex
703 * and return happy.
704 */
705 if (curval & FUTEX_OWNER_DIED) {
706 ownerdied = 1;
707 goto retry;
708 }
709 default:
710 break;
711 }
712 }
713
714 return ret;
715}
716
717/*
718 * The hash bucket lock must be held when this is called.
719 * Afterwards, the futex_q must not be accessed.
720 */
721static void wake_futex(struct futex_q *q)
722{
723 struct task_struct *p = q->task;
724
725 /*
726 * We set q->lock_ptr = NULL _before_ we wake up the task. If
727 * a non futex wake up happens on another CPU then the task
728 * might exit and p would dereference a non existing task
729 * struct. Prevent this by holding a reference on p across the
730 * wake up.
731 */
732 get_task_struct(p);
733
734 plist_del(&q->list, &q->list.plist);
735 /*
736 * The waiting task can free the futex_q as soon as
737 * q->lock_ptr = NULL is written, without taking any locks. A
738 * memory barrier is required here to prevent the following
739 * store to lock_ptr from getting ahead of the plist_del.
740 */
741 smp_wmb();
742 q->lock_ptr = NULL;
743
744 wake_up_state(p, TASK_NORMAL);
745 put_task_struct(p);
746}
747
748static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
749{
750 struct task_struct *new_owner;
751 struct futex_pi_state *pi_state = this->pi_state;
752 u32 curval, newval;
753
754 if (!pi_state)
755 return -EINVAL;
756
757 spin_lock(&pi_state->pi_mutex.wait_lock);
758 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
759
760 /*
761 * This happens when we have stolen the lock and the original
762 * pending owner did not enqueue itself back on the rt_mutex.
763 * Thats not a tragedy. We know that way, that a lock waiter
764 * is on the fly. We make the futex_q waiter the pending owner.
765 */
766 if (!new_owner)
767 new_owner = this->task;
768
769 /*
770 * We pass it to the next owner. (The WAITERS bit is always
771 * kept enabled while there is PI state around. We must also
772 * preserve the owner died bit.)
773 */
774 if (!(uval & FUTEX_OWNER_DIED)) {
775 int ret = 0;
776
777 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
778
779 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
780
781 if (curval == -EFAULT)
782 ret = -EFAULT;
783 else if (curval != uval)
784 ret = -EINVAL;
785 if (ret) {
786 spin_unlock(&pi_state->pi_mutex.wait_lock);
787 return ret;
788 }
789 }
790
791 spin_lock_irq(&pi_state->owner->pi_lock);
792 WARN_ON(list_empty(&pi_state->list));
793 list_del_init(&pi_state->list);
794 spin_unlock_irq(&pi_state->owner->pi_lock);
795
796 spin_lock_irq(&new_owner->pi_lock);
797 WARN_ON(!list_empty(&pi_state->list));
798 list_add(&pi_state->list, &new_owner->pi_state_list);
799 pi_state->owner = new_owner;
800 spin_unlock_irq(&new_owner->pi_lock);
801
802 spin_unlock(&pi_state->pi_mutex.wait_lock);
803 rt_mutex_unlock(&pi_state->pi_mutex);
804
805 return 0;
806}
807
808static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
809{
810 u32 oldval;
811
812 /*
813 * There is no waiter, so we unlock the futex. The owner died
814 * bit has not to be preserved here. We are the owner:
815 */
816 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
817
818 if (oldval == -EFAULT)
819 return oldval;
820 if (oldval != uval)
821 return -EAGAIN;
822
823 return 0;
824}
825
826/*
827 * Express the locking dependencies for lockdep:
828 */
829static inline void
830double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
831{
832 if (hb1 <= hb2) {
833 spin_lock(&hb1->lock);
834 if (hb1 < hb2)
835 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
836 } else { /* hb1 > hb2 */
837 spin_lock(&hb2->lock);
838 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
839 }
840}
841
842static inline void
843double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
844{
845 spin_unlock(&hb1->lock);
846 if (hb1 != hb2)
847 spin_unlock(&hb2->lock);
848}
849
850/*
851 * Wake up waiters matching bitset queued on this futex (uaddr).
852 */
853static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
854{
855 struct futex_hash_bucket *hb;
856 struct futex_q *this, *next;
857 struct plist_head *head;
858 union futex_key key = FUTEX_KEY_INIT;
859 int ret;
860
861 if (!bitset)
862 return -EINVAL;
863
864 ret = get_futex_key(uaddr, fshared, &key, VERIFY_READ);
865 if (unlikely(ret != 0))
866 goto out;
867
868 hb = hash_futex(&key);
869 spin_lock(&hb->lock);
870 head = &hb->chain;
871
872 plist_for_each_entry_safe(this, next, head, list) {
873 if (match_futex (&this->key, &key)) {
874 if (this->pi_state || this->rt_waiter) {
875 ret = -EINVAL;
876 break;
877 }
878
879 /* Check if one of the bits is set in both bitsets */
880 if (!(this->bitset & bitset))
881 continue;
882
883 wake_futex(this);
884 if (++ret >= nr_wake)
885 break;
886 }
887 }
888
889 spin_unlock(&hb->lock);
890 put_futex_key(fshared, &key);
891out:
892 return ret;
893}
894
895/*
896 * Wake up all waiters hashed on the physical page that is mapped
897 * to this virtual address:
898 */
899static int
900futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
901 int nr_wake, int nr_wake2, int op)
902{
903 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
904 struct futex_hash_bucket *hb1, *hb2;
905 struct plist_head *head;
906 struct futex_q *this, *next;
907 int ret, op_ret;
908
909retry:
910 ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
911 if (unlikely(ret != 0))
912 goto out;
913 ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
914 if (unlikely(ret != 0))
915 goto out_put_key1;
916
917 hb1 = hash_futex(&key1);
918 hb2 = hash_futex(&key2);
919
920retry_private:
921 double_lock_hb(hb1, hb2);
922 op_ret = futex_atomic_op_inuser(op, uaddr2);
923 if (unlikely(op_ret < 0)) {
924
925 double_unlock_hb(hb1, hb2);
926
927#ifndef CONFIG_MMU
928 /*
929 * we don't get EFAULT from MMU faults if we don't have an MMU,
930 * but we might get them from range checking
931 */
932 ret = op_ret;
933 goto out_put_keys;
934#endif
935
936 if (unlikely(op_ret != -EFAULT)) {
937 ret = op_ret;
938 goto out_put_keys;
939 }
940
941 ret = fault_in_user_writeable(uaddr2);
942 if (ret)
943 goto out_put_keys;
944
945 if (!fshared)
946 goto retry_private;
947
948 put_futex_key(fshared, &key2);
949 put_futex_key(fshared, &key1);
950 goto retry;
951 }
952
953 head = &hb1->chain;
954
955 plist_for_each_entry_safe(this, next, head, list) {
956 if (match_futex (&this->key, &key1)) {
957 wake_futex(this);
958 if (++ret >= nr_wake)
959 break;
960 }
961 }
962
963 if (op_ret > 0) {
964 head = &hb2->chain;
965
966 op_ret = 0;
967 plist_for_each_entry_safe(this, next, head, list) {
968 if (match_futex (&this->key, &key2)) {
969 wake_futex(this);
970 if (++op_ret >= nr_wake2)
971 break;
972 }
973 }
974 ret += op_ret;
975 }
976
977 double_unlock_hb(hb1, hb2);
978out_put_keys:
979 put_futex_key(fshared, &key2);
980out_put_key1:
981 put_futex_key(fshared, &key1);
982out:
983 return ret;
984}
985
986/**
987 * requeue_futex() - Requeue a futex_q from one hb to another
988 * @q: the futex_q to requeue
989 * @hb1: the source hash_bucket
990 * @hb2: the target hash_bucket
991 * @key2: the new key for the requeued futex_q
992 */
993static inline
994void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
995 struct futex_hash_bucket *hb2, union futex_key *key2)
996{
997
998 /*
999 * If key1 and key2 hash to the same bucket, no need to
1000 * requeue.
1001 */
1002 if (likely(&hb1->chain != &hb2->chain)) {
1003 plist_del(&q->list, &hb1->chain);
1004 plist_add(&q->list, &hb2->chain);
1005 q->lock_ptr = &hb2->lock;
1006#ifdef CONFIG_DEBUG_PI_LIST
1007 q->list.plist.lock = &hb2->lock;
1008#endif
1009 }
1010 get_futex_key_refs(key2);
1011 q->key = *key2;
1012}
1013
1014/**
1015 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1016 * @q: the futex_q
1017 * @key: the key of the requeue target futex
1018 * @hb: the hash_bucket of the requeue target futex
1019 *
1020 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1021 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1022 * to the requeue target futex so the waiter can detect the wakeup on the right
1023 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1024 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1025 * to protect access to the pi_state to fixup the owner later. Must be called
1026 * with both q->lock_ptr and hb->lock held.
1027 */
1028static inline
1029void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1030 struct futex_hash_bucket *hb)
1031{
1032 drop_futex_key_refs(&q->key);
1033 get_futex_key_refs(key);
1034 q->key = *key;
1035
1036 WARN_ON(plist_node_empty(&q->list));
1037 plist_del(&q->list, &q->list.plist);
1038
1039 WARN_ON(!q->rt_waiter);
1040 q->rt_waiter = NULL;
1041
1042 q->lock_ptr = &hb->lock;
1043#ifdef CONFIG_DEBUG_PI_LIST
1044 q->list.plist.lock = &hb->lock;
1045#endif
1046
1047 wake_up_state(q->task, TASK_NORMAL);
1048}
1049
1050/**
1051 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1052 * @pifutex: the user address of the to futex
1053 * @hb1: the from futex hash bucket, must be locked by the caller
1054 * @hb2: the to futex hash bucket, must be locked by the caller
1055 * @key1: the from futex key
1056 * @key2: the to futex key
1057 * @ps: address to store the pi_state pointer
1058 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1059 *
1060 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1061 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1062 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1063 * hb1 and hb2 must be held by the caller.
1064 *
1065 * Returns:
1066 * 0 - failed to acquire the lock atomicly
1067 * 1 - acquired the lock
1068 * <0 - error
1069 */
1070static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1071 struct futex_hash_bucket *hb1,
1072 struct futex_hash_bucket *hb2,
1073 union futex_key *key1, union futex_key *key2,
1074 struct futex_pi_state **ps, int set_waiters)
1075{
1076 struct futex_q *top_waiter = NULL;
1077 u32 curval;
1078 int ret;
1079
1080 if (get_futex_value_locked(&curval, pifutex))
1081 return -EFAULT;
1082
1083 /*
1084 * Find the top_waiter and determine if there are additional waiters.
1085 * If the caller intends to requeue more than 1 waiter to pifutex,
1086 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1087 * as we have means to handle the possible fault. If not, don't set
1088 * the bit unecessarily as it will force the subsequent unlock to enter
1089 * the kernel.
1090 */
1091 top_waiter = futex_top_waiter(hb1, key1);
1092
1093 /* There are no waiters, nothing for us to do. */
1094 if (!top_waiter)
1095 return 0;
1096
1097 /* Ensure we requeue to the expected futex. */
1098 if (!match_futex(top_waiter->requeue_pi_key, key2))
1099 return -EINVAL;
1100
1101 /*
1102 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1103 * the contended case or if set_waiters is 1. The pi_state is returned
1104 * in ps in contended cases.
1105 */
1106 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1107 set_waiters);
1108 if (ret == 1)
1109 requeue_pi_wake_futex(top_waiter, key2, hb2);
1110
1111 return ret;
1112}
1113
1114/**
1115 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1116 * uaddr1: source futex user address
1117 * uaddr2: target futex user address
1118 * nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1119 * nr_requeue: number of waiters to requeue (0-INT_MAX)
1120 * requeue_pi: if we are attempting to requeue from a non-pi futex to a
1121 * pi futex (pi to pi requeue is not supported)
1122 *
1123 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1124 * uaddr2 atomically on behalf of the top waiter.
1125 *
1126 * Returns:
1127 * >=0 - on success, the number of tasks requeued or woken
1128 * <0 - on error
1129 */
1130static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
1131 int nr_wake, int nr_requeue, u32 *cmpval,
1132 int requeue_pi)
1133{
1134 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1135 int drop_count = 0, task_count = 0, ret;
1136 struct futex_pi_state *pi_state = NULL;
1137 struct futex_hash_bucket *hb1, *hb2;
1138 struct plist_head *head1;
1139 struct futex_q *this, *next;
1140 u32 curval2;
1141
1142 if (requeue_pi) {
1143 /*
1144 * requeue_pi requires a pi_state, try to allocate it now
1145 * without any locks in case it fails.
1146 */
1147 if (refill_pi_state_cache())
1148 return -ENOMEM;
1149 /*
1150 * requeue_pi must wake as many tasks as it can, up to nr_wake
1151 * + nr_requeue, since it acquires the rt_mutex prior to
1152 * returning to userspace, so as to not leave the rt_mutex with
1153 * waiters and no owner. However, second and third wake-ups
1154 * cannot be predicted as they involve race conditions with the
1155 * first wake and a fault while looking up the pi_state. Both
1156 * pthread_cond_signal() and pthread_cond_broadcast() should
1157 * use nr_wake=1.
1158 */
1159 if (nr_wake != 1)
1160 return -EINVAL;
1161 }
1162
1163retry:
1164 if (pi_state != NULL) {
1165 /*
1166 * We will have to lookup the pi_state again, so free this one
1167 * to keep the accounting correct.
1168 */
1169 free_pi_state(pi_state);
1170 pi_state = NULL;
1171 }
1172
1173 ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
1174 if (unlikely(ret != 0))
1175 goto out;
1176 ret = get_futex_key(uaddr2, fshared, &key2,
1177 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1178 if (unlikely(ret != 0))
1179 goto out_put_key1;
1180
1181 hb1 = hash_futex(&key1);
1182 hb2 = hash_futex(&key2);
1183
1184retry_private:
1185 double_lock_hb(hb1, hb2);
1186
1187 if (likely(cmpval != NULL)) {
1188 u32 curval;
1189
1190 ret = get_futex_value_locked(&curval, uaddr1);
1191
1192 if (unlikely(ret)) {
1193 double_unlock_hb(hb1, hb2);
1194
1195 ret = get_user(curval, uaddr1);
1196 if (ret)
1197 goto out_put_keys;
1198
1199 if (!fshared)
1200 goto retry_private;
1201
1202 put_futex_key(fshared, &key2);
1203 put_futex_key(fshared, &key1);
1204 goto retry;
1205 }
1206 if (curval != *cmpval) {
1207 ret = -EAGAIN;
1208 goto out_unlock;
1209 }
1210 }
1211
1212 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1213 /*
1214 * Attempt to acquire uaddr2 and wake the top waiter. If we
1215 * intend to requeue waiters, force setting the FUTEX_WAITERS
1216 * bit. We force this here where we are able to easily handle
1217 * faults rather in the requeue loop below.
1218 */
1219 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1220 &key2, &pi_state, nr_requeue);
1221
1222 /*
1223 * At this point the top_waiter has either taken uaddr2 or is
1224 * waiting on it. If the former, then the pi_state will not
1225 * exist yet, look it up one more time to ensure we have a
1226 * reference to it.
1227 */
1228 if (ret == 1) {
1229 WARN_ON(pi_state);
1230 task_count++;
1231 ret = get_futex_value_locked(&curval2, uaddr2);
1232 if (!ret)
1233 ret = lookup_pi_state(curval2, hb2, &key2,
1234 &pi_state);
1235 }
1236
1237 switch (ret) {
1238 case 0:
1239 break;
1240 case -EFAULT:
1241 double_unlock_hb(hb1, hb2);
1242 put_futex_key(fshared, &key2);
1243 put_futex_key(fshared, &key1);
1244 ret = fault_in_user_writeable(uaddr2);
1245 if (!ret)
1246 goto retry;
1247 goto out;
1248 case -EAGAIN:
1249 /* The owner was exiting, try again. */
1250 double_unlock_hb(hb1, hb2);
1251 put_futex_key(fshared, &key2);
1252 put_futex_key(fshared, &key1);
1253 cond_resched();
1254 goto retry;
1255 default:
1256 goto out_unlock;
1257 }
1258 }
1259
1260 head1 = &hb1->chain;
1261 plist_for_each_entry_safe(this, next, head1, list) {
1262 if (task_count - nr_wake >= nr_requeue)
1263 break;
1264
1265 if (!match_futex(&this->key, &key1))
1266 continue;
1267
1268 /*
1269 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1270 * be paired with each other and no other futex ops.
1271 */
1272 if ((requeue_pi && !this->rt_waiter) ||
1273 (!requeue_pi && this->rt_waiter)) {
1274 ret = -EINVAL;
1275 break;
1276 }
1277
1278 /*
1279 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1280 * lock, we already woke the top_waiter. If not, it will be
1281 * woken by futex_unlock_pi().
1282 */
1283 if (++task_count <= nr_wake && !requeue_pi) {
1284 wake_futex(this);
1285 continue;
1286 }
1287
1288 /* Ensure we requeue to the expected futex for requeue_pi. */
1289 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1290 ret = -EINVAL;
1291 break;
1292 }
1293
1294 /*
1295 * Requeue nr_requeue waiters and possibly one more in the case
1296 * of requeue_pi if we couldn't acquire the lock atomically.
1297 */
1298 if (requeue_pi) {
1299 /* Prepare the waiter to take the rt_mutex. */
1300 atomic_inc(&pi_state->refcount);
1301 this->pi_state = pi_state;
1302 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1303 this->rt_waiter,
1304 this->task, 1);
1305 if (ret == 1) {
1306 /* We got the lock. */
1307 requeue_pi_wake_futex(this, &key2, hb2);
1308 continue;
1309 } else if (ret) {
1310 /* -EDEADLK */
1311 this->pi_state = NULL;
1312 free_pi_state(pi_state);
1313 goto out_unlock;
1314 }
1315 }
1316 requeue_futex(this, hb1, hb2, &key2);
1317 drop_count++;
1318 }
1319
1320out_unlock:
1321 double_unlock_hb(hb1, hb2);
1322
1323 /*
1324 * drop_futex_key_refs() must be called outside the spinlocks. During
1325 * the requeue we moved futex_q's from the hash bucket at key1 to the
1326 * one at key2 and updated their key pointer. We no longer need to
1327 * hold the references to key1.
1328 */
1329 while (--drop_count >= 0)
1330 drop_futex_key_refs(&key1);
1331
1332out_put_keys:
1333 put_futex_key(fshared, &key2);
1334out_put_key1:
1335 put_futex_key(fshared, &key1);
1336out:
1337 if (pi_state != NULL)
1338 free_pi_state(pi_state);
1339 return ret ? ret : task_count;
1340}
1341
1342/* The key must be already stored in q->key. */
1343static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1344{
1345 struct futex_hash_bucket *hb;
1346
1347 get_futex_key_refs(&q->key);
1348 hb = hash_futex(&q->key);
1349 q->lock_ptr = &hb->lock;
1350
1351 spin_lock(&hb->lock);
1352 return hb;
1353}
1354
1355static inline void
1356queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1357{
1358 spin_unlock(&hb->lock);
1359 drop_futex_key_refs(&q->key);
1360}
1361
1362/**
1363 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1364 * @q: The futex_q to enqueue
1365 * @hb: The destination hash bucket
1366 *
1367 * The hb->lock must be held by the caller, and is released here. A call to
1368 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1369 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1370 * or nothing if the unqueue is done as part of the wake process and the unqueue
1371 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1372 * an example).
1373 */
1374static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1375{
1376 int prio;
1377
1378 /*
1379 * The priority used to register this element is
1380 * - either the real thread-priority for the real-time threads
1381 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1382 * - or MAX_RT_PRIO for non-RT threads.
1383 * Thus, all RT-threads are woken first in priority order, and
1384 * the others are woken last, in FIFO order.
1385 */
1386 prio = min(current->normal_prio, MAX_RT_PRIO);
1387
1388 plist_node_init(&q->list, prio);
1389#ifdef CONFIG_DEBUG_PI_LIST
1390 q->list.plist.lock = &hb->lock;
1391#endif
1392 plist_add(&q->list, &hb->chain);
1393 q->task = current;
1394 spin_unlock(&hb->lock);
1395}
1396
1397/**
1398 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1399 * @q: The futex_q to unqueue
1400 *
1401 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1402 * be paired with exactly one earlier call to queue_me().
1403 *
1404 * Returns:
1405 * 1 - if the futex_q was still queued (and we removed unqueued it)
1406 * 0 - if the futex_q was already removed by the waking thread
1407 */
1408static int unqueue_me(struct futex_q *q)
1409{
1410 spinlock_t *lock_ptr;
1411 int ret = 0;
1412
1413 /* In the common case we don't take the spinlock, which is nice. */
1414retry:
1415 lock_ptr = q->lock_ptr;
1416 barrier();
1417 if (lock_ptr != NULL) {
1418 spin_lock(lock_ptr);
1419 /*
1420 * q->lock_ptr can change between reading it and
1421 * spin_lock(), causing us to take the wrong lock. This
1422 * corrects the race condition.
1423 *
1424 * Reasoning goes like this: if we have the wrong lock,
1425 * q->lock_ptr must have changed (maybe several times)
1426 * between reading it and the spin_lock(). It can
1427 * change again after the spin_lock() but only if it was
1428 * already changed before the spin_lock(). It cannot,
1429 * however, change back to the original value. Therefore
1430 * we can detect whether we acquired the correct lock.
1431 */
1432 if (unlikely(lock_ptr != q->lock_ptr)) {
1433 spin_unlock(lock_ptr);
1434 goto retry;
1435 }
1436 WARN_ON(plist_node_empty(&q->list));
1437 plist_del(&q->list, &q->list.plist);
1438
1439 BUG_ON(q->pi_state);
1440
1441 spin_unlock(lock_ptr);
1442 ret = 1;
1443 }
1444
1445 drop_futex_key_refs(&q->key);
1446 return ret;
1447}
1448
1449/*
1450 * PI futexes can not be requeued and must remove themself from the
1451 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1452 * and dropped here.
1453 */
1454static void unqueue_me_pi(struct futex_q *q)
1455{
1456 WARN_ON(plist_node_empty(&q->list));
1457 plist_del(&q->list, &q->list.plist);
1458
1459 BUG_ON(!q->pi_state);
1460 free_pi_state(q->pi_state);
1461 q->pi_state = NULL;
1462
1463 spin_unlock(q->lock_ptr);
1464
1465 drop_futex_key_refs(&q->key);
1466}
1467
1468/*
1469 * Fixup the pi_state owner with the new owner.
1470 *
1471 * Must be called with hash bucket lock held and mm->sem held for non
1472 * private futexes.
1473 */
1474static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1475 struct task_struct *newowner, int fshared)
1476{
1477 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1478 struct futex_pi_state *pi_state = q->pi_state;
1479 struct task_struct *oldowner = pi_state->owner;
1480 u32 uval, curval, newval;
1481 int ret;
1482
1483 /* Owner died? */
1484 if (!pi_state->owner)
1485 newtid |= FUTEX_OWNER_DIED;
1486
1487 /*
1488 * We are here either because we stole the rtmutex from the
1489 * pending owner or we are the pending owner which failed to
1490 * get the rtmutex. We have to replace the pending owner TID
1491 * in the user space variable. This must be atomic as we have
1492 * to preserve the owner died bit here.
1493 *
1494 * Note: We write the user space value _before_ changing the pi_state
1495 * because we can fault here. Imagine swapped out pages or a fork
1496 * that marked all the anonymous memory readonly for cow.
1497 *
1498 * Modifying pi_state _before_ the user space value would
1499 * leave the pi_state in an inconsistent state when we fault
1500 * here, because we need to drop the hash bucket lock to
1501 * handle the fault. This might be observed in the PID check
1502 * in lookup_pi_state.
1503 */
1504retry:
1505 if (get_futex_value_locked(&uval, uaddr))
1506 goto handle_fault;
1507
1508 while (1) {
1509 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1510
1511 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1512
1513 if (curval == -EFAULT)
1514 goto handle_fault;
1515 if (curval == uval)
1516 break;
1517 uval = curval;
1518 }
1519
1520 /*
1521 * We fixed up user space. Now we need to fix the pi_state
1522 * itself.
1523 */
1524 if (pi_state->owner != NULL) {
1525 spin_lock_irq(&pi_state->owner->pi_lock);
1526 WARN_ON(list_empty(&pi_state->list));
1527 list_del_init(&pi_state->list);
1528 spin_unlock_irq(&pi_state->owner->pi_lock);
1529 }
1530
1531 pi_state->owner = newowner;
1532
1533 spin_lock_irq(&newowner->pi_lock);
1534 WARN_ON(!list_empty(&pi_state->list));
1535 list_add(&pi_state->list, &newowner->pi_state_list);
1536 spin_unlock_irq(&newowner->pi_lock);
1537 return 0;
1538
1539 /*
1540 * To handle the page fault we need to drop the hash bucket
1541 * lock here. That gives the other task (either the pending
1542 * owner itself or the task which stole the rtmutex) the
1543 * chance to try the fixup of the pi_state. So once we are
1544 * back from handling the fault we need to check the pi_state
1545 * after reacquiring the hash bucket lock and before trying to
1546 * do another fixup. When the fixup has been done already we
1547 * simply return.
1548 */
1549handle_fault:
1550 spin_unlock(q->lock_ptr);
1551
1552 ret = fault_in_user_writeable(uaddr);
1553
1554 spin_lock(q->lock_ptr);
1555
1556 /*
1557 * Check if someone else fixed it for us:
1558 */
1559 if (pi_state->owner != oldowner)
1560 return 0;
1561
1562 if (ret)
1563 return ret;
1564
1565 goto retry;
1566}
1567
1568/*
1569 * In case we must use restart_block to restart a futex_wait,
1570 * we encode in the 'flags' shared capability
1571 */
1572#define FLAGS_SHARED 0x01
1573#define FLAGS_CLOCKRT 0x02
1574#define FLAGS_HAS_TIMEOUT 0x04
1575
1576static long futex_wait_restart(struct restart_block *restart);
1577
1578/**
1579 * fixup_owner() - Post lock pi_state and corner case management
1580 * @uaddr: user address of the futex
1581 * @fshared: whether the futex is shared (1) or not (0)
1582 * @q: futex_q (contains pi_state and access to the rt_mutex)
1583 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1584 *
1585 * After attempting to lock an rt_mutex, this function is called to cleanup
1586 * the pi_state owner as well as handle race conditions that may allow us to
1587 * acquire the lock. Must be called with the hb lock held.
1588 *
1589 * Returns:
1590 * 1 - success, lock taken
1591 * 0 - success, lock not taken
1592 * <0 - on error (-EFAULT)
1593 */
1594static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
1595 int locked)
1596{
1597 struct task_struct *owner;
1598 int ret = 0;
1599
1600 if (locked) {
1601 /*
1602 * Got the lock. We might not be the anticipated owner if we
1603 * did a lock-steal - fix up the PI-state in that case:
1604 */
1605 if (q->pi_state->owner != current)
1606 ret = fixup_pi_state_owner(uaddr, q, current, fshared);
1607 goto out;
1608 }
1609
1610 /*
1611 * Catch the rare case, where the lock was released when we were on the
1612 * way back before we locked the hash bucket.
1613 */
1614 if (q->pi_state->owner == current) {
1615 /*
1616 * Try to get the rt_mutex now. This might fail as some other
1617 * task acquired the rt_mutex after we removed ourself from the
1618 * rt_mutex waiters list.
1619 */
1620 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1621 locked = 1;
1622 goto out;
1623 }
1624
1625 /*
1626 * pi_state is incorrect, some other task did a lock steal and
1627 * we returned due to timeout or signal without taking the
1628 * rt_mutex. Too late. We can access the rt_mutex_owner without
1629 * locking, as the other task is now blocked on the hash bucket
1630 * lock. Fix the state up.
1631 */
1632 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1633 ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
1634 goto out;
1635 }
1636
1637 /*
1638 * Paranoia check. If we did not take the lock, then we should not be
1639 * the owner, nor the pending owner, of the rt_mutex.
1640 */
1641 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1642 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1643 "pi-state %p\n", ret,
1644 q->pi_state->pi_mutex.owner,
1645 q->pi_state->owner);
1646
1647out:
1648 return ret ? ret : locked;
1649}
1650
1651/**
1652 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1653 * @hb: the futex hash bucket, must be locked by the caller
1654 * @q: the futex_q to queue up on
1655 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1656 */
1657static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1658 struct hrtimer_sleeper *timeout)
1659{
1660 /*
1661 * The task state is guaranteed to be set before another task can
1662 * wake it. set_current_state() is implemented using set_mb() and
1663 * queue_me() calls spin_unlock() upon completion, both serializing
1664 * access to the hash list and forcing another memory barrier.
1665 */
1666 set_current_state(TASK_INTERRUPTIBLE);
1667 queue_me(q, hb);
1668
1669 /* Arm the timer */
1670 if (timeout) {
1671 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1672 if (!hrtimer_active(&timeout->timer))
1673 timeout->task = NULL;
1674 }
1675
1676 /*
1677 * If we have been removed from the hash list, then another task
1678 * has tried to wake us, and we can skip the call to schedule().
1679 */
1680 if (likely(!plist_node_empty(&q->list))) {
1681 /*
1682 * If the timer has already expired, current will already be
1683 * flagged for rescheduling. Only call schedule if there
1684 * is no timeout, or if it has yet to expire.
1685 */
1686 if (!timeout || timeout->task)
1687 schedule();
1688 }
1689 __set_current_state(TASK_RUNNING);
1690}
1691
1692/**
1693 * futex_wait_setup() - Prepare to wait on a futex
1694 * @uaddr: the futex userspace address
1695 * @val: the expected value
1696 * @fshared: whether the futex is shared (1) or not (0)
1697 * @q: the associated futex_q
1698 * @hb: storage for hash_bucket pointer to be returned to caller
1699 *
1700 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1701 * compare it with the expected value. Handle atomic faults internally.
1702 * Return with the hb lock held and a q.key reference on success, and unlocked
1703 * with no q.key reference on failure.
1704 *
1705 * Returns:
1706 * 0 - uaddr contains val and hb has been locked
1707 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1708 */
1709static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
1710 struct futex_q *q, struct futex_hash_bucket **hb)
1711{
1712 u32 uval;
1713 int ret;
1714
1715 /*
1716 * Access the page AFTER the hash-bucket is locked.
1717 * Order is important:
1718 *
1719 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1720 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1721 *
1722 * The basic logical guarantee of a futex is that it blocks ONLY
1723 * if cond(var) is known to be true at the time of blocking, for
1724 * any cond. If we queued after testing *uaddr, that would open
1725 * a race condition where we could block indefinitely with
1726 * cond(var) false, which would violate the guarantee.
1727 *
1728 * A consequence is that futex_wait() can return zero and absorb
1729 * a wakeup when *uaddr != val on entry to the syscall. This is
1730 * rare, but normal.
1731 */
1732retry:
1733 q->key = FUTEX_KEY_INIT;
1734 ret = get_futex_key(uaddr, fshared, &q->key, VERIFY_READ);
1735 if (unlikely(ret != 0))
1736 return ret;
1737
1738retry_private:
1739 *hb = queue_lock(q);
1740
1741 ret = get_futex_value_locked(&uval, uaddr);
1742
1743 if (ret) {
1744 queue_unlock(q, *hb);
1745
1746 ret = get_user(uval, uaddr);
1747 if (ret)
1748 goto out;
1749
1750 if (!fshared)
1751 goto retry_private;
1752
1753 put_futex_key(fshared, &q->key);
1754 goto retry;
1755 }
1756
1757 if (uval != val) {
1758 queue_unlock(q, *hb);
1759 ret = -EWOULDBLOCK;
1760 }
1761
1762out:
1763 if (ret)
1764 put_futex_key(fshared, &q->key);
1765 return ret;
1766}
1767
1768static int futex_wait(u32 __user *uaddr, int fshared,
1769 u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1770{
1771 struct hrtimer_sleeper timeout, *to = NULL;
1772 struct restart_block *restart;
1773 struct futex_hash_bucket *hb;
1774 struct futex_q q;
1775 int ret;
1776
1777 if (!bitset)
1778 return -EINVAL;
1779
1780 q.pi_state = NULL;
1781 q.bitset = bitset;
1782 q.rt_waiter = NULL;
1783 q.requeue_pi_key = NULL;
1784
1785 if (abs_time) {
1786 to = &timeout;
1787
1788 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
1789 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1790 hrtimer_init_sleeper(to, current);
1791 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1792 current->timer_slack_ns);
1793 }
1794
1795retry:
1796 /* Prepare to wait on uaddr. */
1797 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
1798 if (ret)
1799 goto out;
1800
1801 /* queue_me and wait for wakeup, timeout, or a signal. */
1802 futex_wait_queue_me(hb, &q, to);
1803
1804 /* If we were woken (and unqueued), we succeeded, whatever. */
1805 ret = 0;
1806 if (!unqueue_me(&q))
1807 goto out_put_key;
1808 ret = -ETIMEDOUT;
1809 if (to && !to->task)
1810 goto out_put_key;
1811
1812 /*
1813 * We expect signal_pending(current), but we might be the
1814 * victim of a spurious wakeup as well.
1815 */
1816 if (!signal_pending(current)) {
1817 put_futex_key(fshared, &q.key);
1818 goto retry;
1819 }
1820
1821 ret = -ERESTARTSYS;
1822 if (!abs_time)
1823 goto out_put_key;
1824
1825 restart = &current_thread_info()->restart_block;
1826 restart->fn = futex_wait_restart;
1827 restart->futex.uaddr = (u32 *)uaddr;
1828 restart->futex.val = val;
1829 restart->futex.time = abs_time->tv64;
1830 restart->futex.bitset = bitset;
1831 restart->futex.flags = FLAGS_HAS_TIMEOUT;
1832
1833 if (fshared)
1834 restart->futex.flags |= FLAGS_SHARED;
1835 if (clockrt)
1836 restart->futex.flags |= FLAGS_CLOCKRT;
1837
1838 ret = -ERESTART_RESTARTBLOCK;
1839
1840out_put_key:
1841 put_futex_key(fshared, &q.key);
1842out:
1843 if (to) {
1844 hrtimer_cancel(&to->timer);
1845 destroy_hrtimer_on_stack(&to->timer);
1846 }
1847 return ret;
1848}
1849
1850
1851static long futex_wait_restart(struct restart_block *restart)
1852{
1853 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1854 int fshared = 0;
1855 ktime_t t, *tp = NULL;
1856
1857 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1858 t.tv64 = restart->futex.time;
1859 tp = &t;
1860 }
1861 restart->fn = do_no_restart_syscall;
1862 if (restart->futex.flags & FLAGS_SHARED)
1863 fshared = 1;
1864 return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1865 restart->futex.bitset,
1866 restart->futex.flags & FLAGS_CLOCKRT);
1867}
1868
1869
1870/*
1871 * Userspace tried a 0 -> TID atomic transition of the futex value
1872 * and failed. The kernel side here does the whole locking operation:
1873 * if there are waiters then it will block, it does PI, etc. (Due to
1874 * races the kernel might see a 0 value of the futex too.)
1875 */
1876static int futex_lock_pi(u32 __user *uaddr, int fshared,
1877 int detect, ktime_t *time, int trylock)
1878{
1879 struct hrtimer_sleeper timeout, *to = NULL;
1880 struct futex_hash_bucket *hb;
1881 struct futex_q q;
1882 int res, ret;
1883
1884 if (refill_pi_state_cache())
1885 return -ENOMEM;
1886
1887 if (time) {
1888 to = &timeout;
1889 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1890 HRTIMER_MODE_ABS);
1891 hrtimer_init_sleeper(to, current);
1892 hrtimer_set_expires(&to->timer, *time);
1893 }
1894
1895 q.pi_state = NULL;
1896 q.rt_waiter = NULL;
1897 q.requeue_pi_key = NULL;
1898retry:
1899 q.key = FUTEX_KEY_INIT;
1900 ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE);
1901 if (unlikely(ret != 0))
1902 goto out;
1903
1904retry_private:
1905 hb = queue_lock(&q);
1906
1907 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1908 if (unlikely(ret)) {
1909 switch (ret) {
1910 case 1:
1911 /* We got the lock. */
1912 ret = 0;
1913 goto out_unlock_put_key;
1914 case -EFAULT:
1915 goto uaddr_faulted;
1916 case -EAGAIN:
1917 /*
1918 * Task is exiting and we just wait for the
1919 * exit to complete.
1920 */
1921 queue_unlock(&q, hb);
1922 put_futex_key(fshared, &q.key);
1923 cond_resched();
1924 goto retry;
1925 default:
1926 goto out_unlock_put_key;
1927 }
1928 }
1929
1930 /*
1931 * Only actually queue now that the atomic ops are done:
1932 */
1933 queue_me(&q, hb);
1934
1935 WARN_ON(!q.pi_state);
1936 /*
1937 * Block on the PI mutex:
1938 */
1939 if (!trylock)
1940 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1941 else {
1942 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1943 /* Fixup the trylock return value: */
1944 ret = ret ? 0 : -EWOULDBLOCK;
1945 }
1946
1947 spin_lock(q.lock_ptr);
1948 /*
1949 * Fixup the pi_state owner and possibly acquire the lock if we
1950 * haven't already.
1951 */
1952 res = fixup_owner(uaddr, fshared, &q, !ret);
1953 /*
1954 * If fixup_owner() returned an error, proprogate that. If it acquired
1955 * the lock, clear our -ETIMEDOUT or -EINTR.
1956 */
1957 if (res)
1958 ret = (res < 0) ? res : 0;
1959
1960 /*
1961 * If fixup_owner() faulted and was unable to handle the fault, unlock
1962 * it and return the fault to userspace.
1963 */
1964 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
1965 rt_mutex_unlock(&q.pi_state->pi_mutex);
1966
1967 /* Unqueue and drop the lock */
1968 unqueue_me_pi(&q);
1969
1970 goto out;
1971
1972out_unlock_put_key:
1973 queue_unlock(&q, hb);
1974
1975out_put_key:
1976 put_futex_key(fshared, &q.key);
1977out:
1978 if (to)
1979 destroy_hrtimer_on_stack(&to->timer);
1980 return ret != -EINTR ? ret : -ERESTARTNOINTR;
1981
1982uaddr_faulted:
1983 queue_unlock(&q, hb);
1984
1985 ret = fault_in_user_writeable(uaddr);
1986 if (ret)
1987 goto out_put_key;
1988
1989 if (!fshared)
1990 goto retry_private;
1991
1992 put_futex_key(fshared, &q.key);
1993 goto retry;
1994}
1995
1996/*
1997 * Userspace attempted a TID -> 0 atomic transition, and failed.
1998 * This is the in-kernel slowpath: we look up the PI state (if any),
1999 * and do the rt-mutex unlock.
2000 */
2001static int futex_unlock_pi(u32 __user *uaddr, int fshared)
2002{
2003 struct futex_hash_bucket *hb;
2004 struct futex_q *this, *next;
2005 u32 uval;
2006 struct plist_head *head;
2007 union futex_key key = FUTEX_KEY_INIT;
2008 int ret;
2009
2010retry:
2011 if (get_user(uval, uaddr))
2012 return -EFAULT;
2013 /*
2014 * We release only a lock we actually own:
2015 */
2016 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
2017 return -EPERM;
2018
2019 ret = get_futex_key(uaddr, fshared, &key, VERIFY_WRITE);
2020 if (unlikely(ret != 0))
2021 goto out;
2022
2023 hb = hash_futex(&key);
2024 spin_lock(&hb->lock);
2025
2026 /*
2027 * To avoid races, try to do the TID -> 0 atomic transition
2028 * again. If it succeeds then we can return without waking
2029 * anyone else up:
2030 */
2031 if (!(uval & FUTEX_OWNER_DIED))
2032 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
2033
2034
2035 if (unlikely(uval == -EFAULT))
2036 goto pi_faulted;
2037 /*
2038 * Rare case: we managed to release the lock atomically,
2039 * no need to wake anyone else up:
2040 */
2041 if (unlikely(uval == task_pid_vnr(current)))
2042 goto out_unlock;
2043
2044 /*
2045 * Ok, other tasks may need to be woken up - check waiters
2046 * and do the wakeup if necessary:
2047 */
2048 head = &hb->chain;
2049
2050 plist_for_each_entry_safe(this, next, head, list) {
2051 if (!match_futex (&this->key, &key))
2052 continue;
2053 ret = wake_futex_pi(uaddr, uval, this);
2054 /*
2055 * The atomic access to the futex value
2056 * generated a pagefault, so retry the
2057 * user-access and the wakeup:
2058 */
2059 if (ret == -EFAULT)
2060 goto pi_faulted;
2061 goto out_unlock;
2062 }
2063 /*
2064 * No waiters - kernel unlocks the futex:
2065 */
2066 if (!(uval & FUTEX_OWNER_DIED)) {
2067 ret = unlock_futex_pi(uaddr, uval);
2068 if (ret == -EFAULT)
2069 goto pi_faulted;
2070 }
2071
2072out_unlock:
2073 spin_unlock(&hb->lock);
2074 put_futex_key(fshared, &key);
2075
2076out:
2077 return ret;
2078
2079pi_faulted:
2080 spin_unlock(&hb->lock);
2081 put_futex_key(fshared, &key);
2082
2083 ret = fault_in_user_writeable(uaddr);
2084 if (!ret)
2085 goto retry;
2086
2087 return ret;
2088}
2089
2090/**
2091 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2092 * @hb: the hash_bucket futex_q was original enqueued on
2093 * @q: the futex_q woken while waiting to be requeued
2094 * @key2: the futex_key of the requeue target futex
2095 * @timeout: the timeout associated with the wait (NULL if none)
2096 *
2097 * Detect if the task was woken on the initial futex as opposed to the requeue
2098 * target futex. If so, determine if it was a timeout or a signal that caused
2099 * the wakeup and return the appropriate error code to the caller. Must be
2100 * called with the hb lock held.
2101 *
2102 * Returns
2103 * 0 - no early wakeup detected
2104 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2105 */
2106static inline
2107int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2108 struct futex_q *q, union futex_key *key2,
2109 struct hrtimer_sleeper *timeout)
2110{
2111 int ret = 0;
2112
2113 /*
2114 * With the hb lock held, we avoid races while we process the wakeup.
2115 * We only need to hold hb (and not hb2) to ensure atomicity as the
2116 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2117 * It can't be requeued from uaddr2 to something else since we don't
2118 * support a PI aware source futex for requeue.
2119 */
2120 if (!match_futex(&q->key, key2)) {
2121 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2122 /*
2123 * We were woken prior to requeue by a timeout or a signal.
2124 * Unqueue the futex_q and determine which it was.
2125 */
2126 plist_del(&q->list, &q->list.plist);
2127
2128 /* Handle spurious wakeups gracefully */
2129 ret = -EAGAIN;
2130 if (timeout && !timeout->task)
2131 ret = -ETIMEDOUT;
2132 else if (signal_pending(current))
2133 ret = -ERESTARTNOINTR;
2134 }
2135 return ret;
2136}
2137
2138/**
2139 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2140 * @uaddr: the futex we initially wait on (non-pi)
2141 * @fshared: whether the futexes are shared (1) or not (0). They must be
2142 * the same type, no requeueing from private to shared, etc.
2143 * @val: the expected value of uaddr
2144 * @abs_time: absolute timeout
2145 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2146 * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2147 * @uaddr2: the pi futex we will take prior to returning to user-space
2148 *
2149 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2150 * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
2151 * complete the acquisition of the rt_mutex prior to returning to userspace.
2152 * This ensures the rt_mutex maintains an owner when it has waiters; without
2153 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2154 * need to.
2155 *
2156 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2157 * via the following:
2158 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2159 * 2) wakeup on uaddr2 after a requeue
2160 * 3) signal
2161 * 4) timeout
2162 *
2163 * If 3, cleanup and return -ERESTARTNOINTR.
2164 *
2165 * If 2, we may then block on trying to take the rt_mutex and return via:
2166 * 5) successful lock
2167 * 6) signal
2168 * 7) timeout
2169 * 8) other lock acquisition failure
2170 *
2171 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2172 *
2173 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2174 *
2175 * Returns:
2176 * 0 - On success
2177 * <0 - On error
2178 */
2179static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
2180 u32 val, ktime_t *abs_time, u32 bitset,
2181 int clockrt, u32 __user *uaddr2)
2182{
2183 struct hrtimer_sleeper timeout, *to = NULL;
2184 struct rt_mutex_waiter rt_waiter;
2185 struct rt_mutex *pi_mutex = NULL;
2186 struct futex_hash_bucket *hb;
2187 union futex_key key2;
2188 struct futex_q q;
2189 int res, ret;
2190
2191 if (!bitset)
2192 return -EINVAL;
2193
2194 if (abs_time) {
2195 to = &timeout;
2196 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
2197 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2198 hrtimer_init_sleeper(to, current);
2199 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2200 current->timer_slack_ns);
2201 }
2202
2203 /*
2204 * The waiter is allocated on our stack, manipulated by the requeue
2205 * code while we sleep on uaddr.
2206 */
2207 debug_rt_mutex_init_waiter(&rt_waiter);
2208 rt_waiter.task = NULL;
2209
2210retry:
2211 key2 = FUTEX_KEY_INIT;
2212 ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
2213 if (unlikely(ret != 0))
2214 goto out;
2215
2216 q.pi_state = NULL;
2217 q.bitset = bitset;
2218 q.rt_waiter = &rt_waiter;
2219 q.requeue_pi_key = &key2;
2220
2221 /* Prepare to wait on uaddr. */
2222 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
2223 if (ret)
2224 goto out_key2;
2225
2226 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2227 futex_wait_queue_me(hb, &q, to);
2228
2229 spin_lock(&hb->lock);
2230 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2231 spin_unlock(&hb->lock);
2232 if (ret)
2233 goto out_put_keys;
2234
2235 /*
2236 * In order for us to be here, we know our q.key == key2, and since
2237 * we took the hb->lock above, we also know that futex_requeue() has
2238 * completed and we no longer have to concern ourselves with a wakeup
2239 * race with the atomic proxy lock acquition by the requeue code.
2240 */
2241
2242 /* Check if the requeue code acquired the second futex for us. */
2243 if (!q.rt_waiter) {
2244 /*
2245 * Got the lock. We might not be the anticipated owner if we
2246 * did a lock-steal - fix up the PI-state in that case.
2247 */
2248 if (q.pi_state && (q.pi_state->owner != current)) {
2249 spin_lock(q.lock_ptr);
2250 ret = fixup_pi_state_owner(uaddr2, &q, current,
2251 fshared);
2252 spin_unlock(q.lock_ptr);
2253 }
2254 } else {
2255 /*
2256 * We have been woken up by futex_unlock_pi(), a timeout, or a
2257 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2258 * the pi_state.
2259 */
2260 WARN_ON(!&q.pi_state);
2261 pi_mutex = &q.pi_state->pi_mutex;
2262 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2263 debug_rt_mutex_free_waiter(&rt_waiter);
2264
2265 spin_lock(q.lock_ptr);
2266 /*
2267 * Fixup the pi_state owner and possibly acquire the lock if we
2268 * haven't already.
2269 */
2270 res = fixup_owner(uaddr2, fshared, &q, !ret);
2271 /*
2272 * If fixup_owner() returned an error, proprogate that. If it
2273 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2274 */
2275 if (res)
2276 ret = (res < 0) ? res : 0;
2277
2278 /* Unqueue and drop the lock. */
2279 unqueue_me_pi(&q);
2280 }
2281
2282 /*
2283 * If fixup_pi_state_owner() faulted and was unable to handle the
2284 * fault, unlock the rt_mutex and return the fault to userspace.
2285 */
2286 if (ret == -EFAULT) {
2287 if (rt_mutex_owner(pi_mutex) == current)
2288 rt_mutex_unlock(pi_mutex);
2289 } else if (ret == -EINTR) {
2290 /*
2291 * We've already been requeued, but cannot restart by calling
2292 * futex_lock_pi() directly. We could restart this syscall, but
2293 * it would detect that the user space "val" changed and return
2294 * -EWOULDBLOCK. Save the overhead of the restart and return
2295 * -EWOULDBLOCK directly.
2296 */
2297 ret = -EWOULDBLOCK;
2298 }
2299
2300out_put_keys:
2301 put_futex_key(fshared, &q.key);
2302out_key2:
2303 put_futex_key(fshared, &key2);
2304
2305 /* Spurious wakeup ? */
2306 if (ret == -EAGAIN)
2307 goto retry;
2308out:
2309 if (to) {
2310 hrtimer_cancel(&to->timer);
2311 destroy_hrtimer_on_stack(&to->timer);
2312 }
2313 return ret;
2314}
2315
2316/*
2317 * Support for robust futexes: the kernel cleans up held futexes at
2318 * thread exit time.
2319 *
2320 * Implementation: user-space maintains a per-thread list of locks it
2321 * is holding. Upon do_exit(), the kernel carefully walks this list,
2322 * and marks all locks that are owned by this thread with the
2323 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2324 * always manipulated with the lock held, so the list is private and
2325 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2326 * field, to allow the kernel to clean up if the thread dies after
2327 * acquiring the lock, but just before it could have added itself to
2328 * the list. There can only be one such pending lock.
2329 */
2330
2331/**
2332 * sys_set_robust_list() - Set the robust-futex list head of a task
2333 * @head: pointer to the list-head
2334 * @len: length of the list-head, as userspace expects
2335 */
2336SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2337 size_t, len)
2338{
2339 if (!futex_cmpxchg_enabled)
2340 return -ENOSYS;
2341 /*
2342 * The kernel knows only one size for now:
2343 */
2344 if (unlikely(len != sizeof(*head)))
2345 return -EINVAL;
2346
2347 current->robust_list = head;
2348
2349 return 0;
2350}
2351
2352/**
2353 * sys_get_robust_list() - Get the robust-futex list head of a task
2354 * @pid: pid of the process [zero for current task]
2355 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2356 * @len_ptr: pointer to a length field, the kernel fills in the header size
2357 */
2358SYSCALL_DEFINE3(get_robust_list, int, pid,
2359 struct robust_list_head __user * __user *, head_ptr,
2360 size_t __user *, len_ptr)
2361{
2362 struct robust_list_head __user *head;
2363 unsigned long ret;
2364 const struct cred *cred = current_cred(), *pcred;
2365
2366 if (!futex_cmpxchg_enabled)
2367 return -ENOSYS;
2368
2369 if (!pid)
2370 head = current->robust_list;
2371 else {
2372 struct task_struct *p;
2373
2374 ret = -ESRCH;
2375 rcu_read_lock();
2376 p = find_task_by_vpid(pid);
2377 if (!p)
2378 goto err_unlock;
2379 ret = -EPERM;
2380 pcred = __task_cred(p);
2381 if (cred->euid != pcred->euid &&
2382 cred->euid != pcred->uid &&
2383 !capable(CAP_SYS_PTRACE))
2384 goto err_unlock;
2385 head = p->robust_list;
2386 rcu_read_unlock();
2387 }
2388
2389 if (put_user(sizeof(*head), len_ptr))
2390 return -EFAULT;
2391 return put_user(head, head_ptr);
2392
2393err_unlock:
2394 rcu_read_unlock();
2395
2396 return ret;
2397}
2398
2399/*
2400 * Process a futex-list entry, check whether it's owned by the
2401 * dying task, and do notification if so:
2402 */
2403int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2404{
2405 u32 uval, nval, mval;
2406
2407retry:
2408 if (get_user(uval, uaddr))
2409 return -1;
2410
2411 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2412 /*
2413 * Ok, this dying thread is truly holding a futex
2414 * of interest. Set the OWNER_DIED bit atomically
2415 * via cmpxchg, and if the value had FUTEX_WAITERS
2416 * set, wake up a waiter (if any). (We have to do a
2417 * futex_wake() even if OWNER_DIED is already set -
2418 * to handle the rare but possible case of recursive
2419 * thread-death.) The rest of the cleanup is done in
2420 * userspace.
2421 */
2422 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2423 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
2424
2425 if (nval == -EFAULT)
2426 return -1;
2427
2428 if (nval != uval)
2429 goto retry;
2430
2431 /*
2432 * Wake robust non-PI futexes here. The wakeup of
2433 * PI futexes happens in exit_pi_state():
2434 */
2435 if (!pi && (uval & FUTEX_WAITERS))
2436 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2437 }
2438 return 0;
2439}
2440
2441/*
2442 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2443 */
2444static inline int fetch_robust_entry(struct robust_list __user **entry,
2445 struct robust_list __user * __user *head,
2446 int *pi)
2447{
2448 unsigned long uentry;
2449
2450 if (get_user(uentry, (unsigned long __user *)head))
2451 return -EFAULT;
2452
2453 *entry = (void __user *)(uentry & ~1UL);
2454 *pi = uentry & 1;
2455
2456 return 0;
2457}
2458
2459/*
2460 * Walk curr->robust_list (very carefully, it's a userspace list!)
2461 * and mark any locks found there dead, and notify any waiters.
2462 *
2463 * We silently return on any sign of list-walking problem.
2464 */
2465void exit_robust_list(struct task_struct *curr)
2466{
2467 struct robust_list_head __user *head = curr->robust_list;
2468 struct robust_list __user *entry, *next_entry, *pending;
2469 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
2470 unsigned long futex_offset;
2471 int rc;
2472
2473 if (!futex_cmpxchg_enabled)
2474 return;
2475
2476 /*
2477 * Fetch the list head (which was registered earlier, via
2478 * sys_set_robust_list()):
2479 */
2480 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2481 return;
2482 /*
2483 * Fetch the relative futex offset:
2484 */
2485 if (get_user(futex_offset, &head->futex_offset))
2486 return;
2487 /*
2488 * Fetch any possibly pending lock-add first, and handle it
2489 * if it exists:
2490 */
2491 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2492 return;
2493
2494 next_entry = NULL; /* avoid warning with gcc */
2495 while (entry != &head->list) {
2496 /*
2497 * Fetch the next entry in the list before calling
2498 * handle_futex_death:
2499 */
2500 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2501 /*
2502 * A pending lock might already be on the list, so
2503 * don't process it twice:
2504 */
2505 if (entry != pending)
2506 if (handle_futex_death((void __user *)entry + futex_offset,
2507 curr, pi))
2508 return;
2509 if (rc)
2510 return;
2511 entry = next_entry;
2512 pi = next_pi;
2513 /*
2514 * Avoid excessively long or circular lists:
2515 */
2516 if (!--limit)
2517 break;
2518
2519 cond_resched();
2520 }
2521
2522 if (pending)
2523 handle_futex_death((void __user *)pending + futex_offset,
2524 curr, pip);
2525}
2526
2527long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2528 u32 __user *uaddr2, u32 val2, u32 val3)
2529{
2530 int clockrt, ret = -ENOSYS;
2531 int cmd = op & FUTEX_CMD_MASK;
2532 int fshared = 0;
2533
2534 if (!(op & FUTEX_PRIVATE_FLAG))
2535 fshared = 1;
2536
2537 clockrt = op & FUTEX_CLOCK_REALTIME;
2538 if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2539 return -ENOSYS;
2540
2541 switch (cmd) {
2542 case FUTEX_WAIT:
2543 val3 = FUTEX_BITSET_MATCH_ANY;
2544 case FUTEX_WAIT_BITSET:
2545 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
2546 break;
2547 case FUTEX_WAKE:
2548 val3 = FUTEX_BITSET_MATCH_ANY;
2549 case FUTEX_WAKE_BITSET:
2550 ret = futex_wake(uaddr, fshared, val, val3);
2551 break;
2552 case FUTEX_REQUEUE:
2553 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
2554 break;
2555 case FUTEX_CMP_REQUEUE:
2556 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2557 0);
2558 break;
2559 case FUTEX_WAKE_OP:
2560 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2561 break;
2562 case FUTEX_LOCK_PI:
2563 if (futex_cmpxchg_enabled)
2564 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2565 break;
2566 case FUTEX_UNLOCK_PI:
2567 if (futex_cmpxchg_enabled)
2568 ret = futex_unlock_pi(uaddr, fshared);
2569 break;
2570 case FUTEX_TRYLOCK_PI:
2571 if (futex_cmpxchg_enabled)
2572 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2573 break;
2574 case FUTEX_WAIT_REQUEUE_PI:
2575 val3 = FUTEX_BITSET_MATCH_ANY;
2576 ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
2577 clockrt, uaddr2);
2578 break;
2579 case FUTEX_CMP_REQUEUE_PI:
2580 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2581 1);
2582 break;
2583 default:
2584 ret = -ENOSYS;
2585 }
2586 return ret;
2587}
2588
2589
2590SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2591 struct timespec __user *, utime, u32 __user *, uaddr2,
2592 u32, val3)
2593{
2594 struct timespec ts;
2595 ktime_t t, *tp = NULL;
2596 u32 val2 = 0;
2597 int cmd = op & FUTEX_CMD_MASK;
2598
2599 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2600 cmd == FUTEX_WAIT_BITSET ||
2601 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2602 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2603 return -EFAULT;
2604 if (!timespec_valid(&ts))
2605 return -EINVAL;
2606
2607 t = timespec_to_ktime(ts);
2608 if (cmd == FUTEX_WAIT)
2609 t = ktime_add_safe(ktime_get(), t);
2610 tp = &t;
2611 }
2612 /*
2613 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2614 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2615 */
2616 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2617 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2618 val2 = (u32) (unsigned long) utime;
2619
2620 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2621}
2622
2623static int __init futex_init(void)
2624{
2625 u32 curval;
2626 int i;
2627
2628 /*
2629 * This will fail and we want it. Some arch implementations do
2630 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2631 * functionality. We want to know that before we call in any
2632 * of the complex code paths. Also we want to prevent
2633 * registration of robust lists in that case. NULL is
2634 * guaranteed to fault and we get -EFAULT on functional
2635 * implementation, the non functional ones will return
2636 * -ENOSYS.
2637 */
2638 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2639 if (curval == -EFAULT)
2640 futex_cmpxchg_enabled = 1;
2641
2642 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2643 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2644 spin_lock_init(&futex_queues[i].lock);
2645 }
2646
2647 return 0;
2648}
2649__initcall(futex_init);