]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - kernel/exit.c
exit: add lock context annotation on find_new_reaper()
[net-next-2.6.git] / kernel / exit.c
... / ...
CommitLineData
1/*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7#include <linux/mm.h>
8#include <linux/slab.h>
9#include <linux/interrupt.h>
10#include <linux/module.h>
11#include <linux/capability.h>
12#include <linux/completion.h>
13#include <linux/personality.h>
14#include <linux/tty.h>
15#include <linux/iocontext.h>
16#include <linux/key.h>
17#include <linux/security.h>
18#include <linux/cpu.h>
19#include <linux/acct.h>
20#include <linux/tsacct_kern.h>
21#include <linux/file.h>
22#include <linux/fdtable.h>
23#include <linux/binfmts.h>
24#include <linux/nsproxy.h>
25#include <linux/pid_namespace.h>
26#include <linux/ptrace.h>
27#include <linux/profile.h>
28#include <linux/mount.h>
29#include <linux/proc_fs.h>
30#include <linux/kthread.h>
31#include <linux/mempolicy.h>
32#include <linux/taskstats_kern.h>
33#include <linux/delayacct.h>
34#include <linux/freezer.h>
35#include <linux/cgroup.h>
36#include <linux/syscalls.h>
37#include <linux/signal.h>
38#include <linux/posix-timers.h>
39#include <linux/cn_proc.h>
40#include <linux/mutex.h>
41#include <linux/futex.h>
42#include <linux/pipe_fs_i.h>
43#include <linux/audit.h> /* for audit_free() */
44#include <linux/resource.h>
45#include <linux/blkdev.h>
46#include <linux/task_io_accounting_ops.h>
47#include <linux/tracehook.h>
48#include <linux/fs_struct.h>
49#include <linux/init_task.h>
50#include <linux/perf_event.h>
51#include <trace/events/sched.h>
52#include <linux/hw_breakpoint.h>
53#include <linux/oom.h>
54
55#include <asm/uaccess.h>
56#include <asm/unistd.h>
57#include <asm/pgtable.h>
58#include <asm/mmu_context.h>
59
60static void exit_mm(struct task_struct * tsk);
61
62static void __unhash_process(struct task_struct *p, bool group_dead)
63{
64 nr_threads--;
65 detach_pid(p, PIDTYPE_PID);
66 if (group_dead) {
67 detach_pid(p, PIDTYPE_PGID);
68 detach_pid(p, PIDTYPE_SID);
69
70 list_del_rcu(&p->tasks);
71 list_del_init(&p->sibling);
72 __get_cpu_var(process_counts)--;
73 }
74 list_del_rcu(&p->thread_group);
75}
76
77/*
78 * This function expects the tasklist_lock write-locked.
79 */
80static void __exit_signal(struct task_struct *tsk)
81{
82 struct signal_struct *sig = tsk->signal;
83 bool group_dead = thread_group_leader(tsk);
84 struct sighand_struct *sighand;
85 struct tty_struct *uninitialized_var(tty);
86
87 sighand = rcu_dereference_check(tsk->sighand,
88 rcu_read_lock_held() ||
89 lockdep_tasklist_lock_is_held());
90 spin_lock(&sighand->siglock);
91
92 posix_cpu_timers_exit(tsk);
93 if (group_dead) {
94 posix_cpu_timers_exit_group(tsk);
95 tty = sig->tty;
96 sig->tty = NULL;
97 } else {
98 /*
99 * If there is any task waiting for the group exit
100 * then notify it:
101 */
102 if (sig->notify_count > 0 && !--sig->notify_count)
103 wake_up_process(sig->group_exit_task);
104
105 if (tsk == sig->curr_target)
106 sig->curr_target = next_thread(tsk);
107 /*
108 * Accumulate here the counters for all threads but the
109 * group leader as they die, so they can be added into
110 * the process-wide totals when those are taken.
111 * The group leader stays around as a zombie as long
112 * as there are other threads. When it gets reaped,
113 * the exit.c code will add its counts into these totals.
114 * We won't ever get here for the group leader, since it
115 * will have been the last reference on the signal_struct.
116 */
117 sig->utime = cputime_add(sig->utime, tsk->utime);
118 sig->stime = cputime_add(sig->stime, tsk->stime);
119 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
120 sig->min_flt += tsk->min_flt;
121 sig->maj_flt += tsk->maj_flt;
122 sig->nvcsw += tsk->nvcsw;
123 sig->nivcsw += tsk->nivcsw;
124 sig->inblock += task_io_get_inblock(tsk);
125 sig->oublock += task_io_get_oublock(tsk);
126 task_io_accounting_add(&sig->ioac, &tsk->ioac);
127 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
128 }
129
130 sig->nr_threads--;
131 __unhash_process(tsk, group_dead);
132
133 /*
134 * Do this under ->siglock, we can race with another thread
135 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
136 */
137 flush_sigqueue(&tsk->pending);
138 tsk->sighand = NULL;
139 spin_unlock(&sighand->siglock);
140
141 __cleanup_sighand(sighand);
142 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
143 if (group_dead) {
144 flush_sigqueue(&sig->shared_pending);
145 tty_kref_put(tty);
146 }
147}
148
149static void delayed_put_task_struct(struct rcu_head *rhp)
150{
151 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
152
153 perf_event_delayed_put(tsk);
154 trace_sched_process_free(tsk);
155 put_task_struct(tsk);
156}
157
158
159void release_task(struct task_struct * p)
160{
161 struct task_struct *leader;
162 int zap_leader;
163repeat:
164 tracehook_prepare_release_task(p);
165 /* don't need to get the RCU readlock here - the process is dead and
166 * can't be modifying its own credentials. But shut RCU-lockdep up */
167 rcu_read_lock();
168 atomic_dec(&__task_cred(p)->user->processes);
169 rcu_read_unlock();
170
171 proc_flush_task(p);
172
173 write_lock_irq(&tasklist_lock);
174 tracehook_finish_release_task(p);
175 __exit_signal(p);
176
177 /*
178 * If we are the last non-leader member of the thread
179 * group, and the leader is zombie, then notify the
180 * group leader's parent process. (if it wants notification.)
181 */
182 zap_leader = 0;
183 leader = p->group_leader;
184 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
185 BUG_ON(task_detached(leader));
186 do_notify_parent(leader, leader->exit_signal);
187 /*
188 * If we were the last child thread and the leader has
189 * exited already, and the leader's parent ignores SIGCHLD,
190 * then we are the one who should release the leader.
191 *
192 * do_notify_parent() will have marked it self-reaping in
193 * that case.
194 */
195 zap_leader = task_detached(leader);
196
197 /*
198 * This maintains the invariant that release_task()
199 * only runs on a task in EXIT_DEAD, just for sanity.
200 */
201 if (zap_leader)
202 leader->exit_state = EXIT_DEAD;
203 }
204
205 write_unlock_irq(&tasklist_lock);
206 release_thread(p);
207 call_rcu(&p->rcu, delayed_put_task_struct);
208
209 p = leader;
210 if (unlikely(zap_leader))
211 goto repeat;
212}
213
214/*
215 * This checks not only the pgrp, but falls back on the pid if no
216 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
217 * without this...
218 *
219 * The caller must hold rcu lock or the tasklist lock.
220 */
221struct pid *session_of_pgrp(struct pid *pgrp)
222{
223 struct task_struct *p;
224 struct pid *sid = NULL;
225
226 p = pid_task(pgrp, PIDTYPE_PGID);
227 if (p == NULL)
228 p = pid_task(pgrp, PIDTYPE_PID);
229 if (p != NULL)
230 sid = task_session(p);
231
232 return sid;
233}
234
235/*
236 * Determine if a process group is "orphaned", according to the POSIX
237 * definition in 2.2.2.52. Orphaned process groups are not to be affected
238 * by terminal-generated stop signals. Newly orphaned process groups are
239 * to receive a SIGHUP and a SIGCONT.
240 *
241 * "I ask you, have you ever known what it is to be an orphan?"
242 */
243static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
244{
245 struct task_struct *p;
246
247 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
248 if ((p == ignored_task) ||
249 (p->exit_state && thread_group_empty(p)) ||
250 is_global_init(p->real_parent))
251 continue;
252
253 if (task_pgrp(p->real_parent) != pgrp &&
254 task_session(p->real_parent) == task_session(p))
255 return 0;
256 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
257
258 return 1;
259}
260
261int is_current_pgrp_orphaned(void)
262{
263 int retval;
264
265 read_lock(&tasklist_lock);
266 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
267 read_unlock(&tasklist_lock);
268
269 return retval;
270}
271
272static int has_stopped_jobs(struct pid *pgrp)
273{
274 int retval = 0;
275 struct task_struct *p;
276
277 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
278 if (!task_is_stopped(p))
279 continue;
280 retval = 1;
281 break;
282 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
283 return retval;
284}
285
286/*
287 * Check to see if any process groups have become orphaned as
288 * a result of our exiting, and if they have any stopped jobs,
289 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
290 */
291static void
292kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
293{
294 struct pid *pgrp = task_pgrp(tsk);
295 struct task_struct *ignored_task = tsk;
296
297 if (!parent)
298 /* exit: our father is in a different pgrp than
299 * we are and we were the only connection outside.
300 */
301 parent = tsk->real_parent;
302 else
303 /* reparent: our child is in a different pgrp than
304 * we are, and it was the only connection outside.
305 */
306 ignored_task = NULL;
307
308 if (task_pgrp(parent) != pgrp &&
309 task_session(parent) == task_session(tsk) &&
310 will_become_orphaned_pgrp(pgrp, ignored_task) &&
311 has_stopped_jobs(pgrp)) {
312 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
313 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
314 }
315}
316
317/**
318 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
319 *
320 * If a kernel thread is launched as a result of a system call, or if
321 * it ever exits, it should generally reparent itself to kthreadd so it
322 * isn't in the way of other processes and is correctly cleaned up on exit.
323 *
324 * The various task state such as scheduling policy and priority may have
325 * been inherited from a user process, so we reset them to sane values here.
326 *
327 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
328 */
329static void reparent_to_kthreadd(void)
330{
331 write_lock_irq(&tasklist_lock);
332
333 ptrace_unlink(current);
334 /* Reparent to init */
335 current->real_parent = current->parent = kthreadd_task;
336 list_move_tail(&current->sibling, &current->real_parent->children);
337
338 /* Set the exit signal to SIGCHLD so we signal init on exit */
339 current->exit_signal = SIGCHLD;
340
341 if (task_nice(current) < 0)
342 set_user_nice(current, 0);
343 /* cpus_allowed? */
344 /* rt_priority? */
345 /* signals? */
346 memcpy(current->signal->rlim, init_task.signal->rlim,
347 sizeof(current->signal->rlim));
348
349 atomic_inc(&init_cred.usage);
350 commit_creds(&init_cred);
351 write_unlock_irq(&tasklist_lock);
352}
353
354void __set_special_pids(struct pid *pid)
355{
356 struct task_struct *curr = current->group_leader;
357
358 if (task_session(curr) != pid)
359 change_pid(curr, PIDTYPE_SID, pid);
360
361 if (task_pgrp(curr) != pid)
362 change_pid(curr, PIDTYPE_PGID, pid);
363}
364
365static void set_special_pids(struct pid *pid)
366{
367 write_lock_irq(&tasklist_lock);
368 __set_special_pids(pid);
369 write_unlock_irq(&tasklist_lock);
370}
371
372/*
373 * Let kernel threads use this to say that they allow a certain signal.
374 * Must not be used if kthread was cloned with CLONE_SIGHAND.
375 */
376int allow_signal(int sig)
377{
378 if (!valid_signal(sig) || sig < 1)
379 return -EINVAL;
380
381 spin_lock_irq(&current->sighand->siglock);
382 /* This is only needed for daemonize()'ed kthreads */
383 sigdelset(&current->blocked, sig);
384 /*
385 * Kernel threads handle their own signals. Let the signal code
386 * know it'll be handled, so that they don't get converted to
387 * SIGKILL or just silently dropped.
388 */
389 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
390 recalc_sigpending();
391 spin_unlock_irq(&current->sighand->siglock);
392 return 0;
393}
394
395EXPORT_SYMBOL(allow_signal);
396
397int disallow_signal(int sig)
398{
399 if (!valid_signal(sig) || sig < 1)
400 return -EINVAL;
401
402 spin_lock_irq(&current->sighand->siglock);
403 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
404 recalc_sigpending();
405 spin_unlock_irq(&current->sighand->siglock);
406 return 0;
407}
408
409EXPORT_SYMBOL(disallow_signal);
410
411/*
412 * Put all the gunge required to become a kernel thread without
413 * attached user resources in one place where it belongs.
414 */
415
416void daemonize(const char *name, ...)
417{
418 va_list args;
419 sigset_t blocked;
420
421 va_start(args, name);
422 vsnprintf(current->comm, sizeof(current->comm), name, args);
423 va_end(args);
424
425 /*
426 * If we were started as result of loading a module, close all of the
427 * user space pages. We don't need them, and if we didn't close them
428 * they would be locked into memory.
429 */
430 exit_mm(current);
431 /*
432 * We don't want to have TIF_FREEZE set if the system-wide hibernation
433 * or suspend transition begins right now.
434 */
435 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
436
437 if (current->nsproxy != &init_nsproxy) {
438 get_nsproxy(&init_nsproxy);
439 switch_task_namespaces(current, &init_nsproxy);
440 }
441 set_special_pids(&init_struct_pid);
442 proc_clear_tty(current);
443
444 /* Block and flush all signals */
445 sigfillset(&blocked);
446 sigprocmask(SIG_BLOCK, &blocked, NULL);
447 flush_signals(current);
448
449 /* Become as one with the init task */
450
451 daemonize_fs_struct();
452 exit_files(current);
453 current->files = init_task.files;
454 atomic_inc(&current->files->count);
455
456 reparent_to_kthreadd();
457}
458
459EXPORT_SYMBOL(daemonize);
460
461static void close_files(struct files_struct * files)
462{
463 int i, j;
464 struct fdtable *fdt;
465
466 j = 0;
467
468 /*
469 * It is safe to dereference the fd table without RCU or
470 * ->file_lock because this is the last reference to the
471 * files structure. But use RCU to shut RCU-lockdep up.
472 */
473 rcu_read_lock();
474 fdt = files_fdtable(files);
475 rcu_read_unlock();
476 for (;;) {
477 unsigned long set;
478 i = j * __NFDBITS;
479 if (i >= fdt->max_fds)
480 break;
481 set = fdt->open_fds->fds_bits[j++];
482 while (set) {
483 if (set & 1) {
484 struct file * file = xchg(&fdt->fd[i], NULL);
485 if (file) {
486 filp_close(file, files);
487 cond_resched();
488 }
489 }
490 i++;
491 set >>= 1;
492 }
493 }
494}
495
496struct files_struct *get_files_struct(struct task_struct *task)
497{
498 struct files_struct *files;
499
500 task_lock(task);
501 files = task->files;
502 if (files)
503 atomic_inc(&files->count);
504 task_unlock(task);
505
506 return files;
507}
508
509void put_files_struct(struct files_struct *files)
510{
511 struct fdtable *fdt;
512
513 if (atomic_dec_and_test(&files->count)) {
514 close_files(files);
515 /*
516 * Free the fd and fdset arrays if we expanded them.
517 * If the fdtable was embedded, pass files for freeing
518 * at the end of the RCU grace period. Otherwise,
519 * you can free files immediately.
520 */
521 rcu_read_lock();
522 fdt = files_fdtable(files);
523 if (fdt != &files->fdtab)
524 kmem_cache_free(files_cachep, files);
525 free_fdtable(fdt);
526 rcu_read_unlock();
527 }
528}
529
530void reset_files_struct(struct files_struct *files)
531{
532 struct task_struct *tsk = current;
533 struct files_struct *old;
534
535 old = tsk->files;
536 task_lock(tsk);
537 tsk->files = files;
538 task_unlock(tsk);
539 put_files_struct(old);
540}
541
542void exit_files(struct task_struct *tsk)
543{
544 struct files_struct * files = tsk->files;
545
546 if (files) {
547 task_lock(tsk);
548 tsk->files = NULL;
549 task_unlock(tsk);
550 put_files_struct(files);
551 }
552}
553
554#ifdef CONFIG_MM_OWNER
555/*
556 * Task p is exiting and it owned mm, lets find a new owner for it
557 */
558static inline int
559mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
560{
561 /*
562 * If there are other users of the mm and the owner (us) is exiting
563 * we need to find a new owner to take on the responsibility.
564 */
565 if (atomic_read(&mm->mm_users) <= 1)
566 return 0;
567 if (mm->owner != p)
568 return 0;
569 return 1;
570}
571
572void mm_update_next_owner(struct mm_struct *mm)
573{
574 struct task_struct *c, *g, *p = current;
575
576retry:
577 if (!mm_need_new_owner(mm, p))
578 return;
579
580 read_lock(&tasklist_lock);
581 /*
582 * Search in the children
583 */
584 list_for_each_entry(c, &p->children, sibling) {
585 if (c->mm == mm)
586 goto assign_new_owner;
587 }
588
589 /*
590 * Search in the siblings
591 */
592 list_for_each_entry(c, &p->real_parent->children, sibling) {
593 if (c->mm == mm)
594 goto assign_new_owner;
595 }
596
597 /*
598 * Search through everything else. We should not get
599 * here often
600 */
601 do_each_thread(g, c) {
602 if (c->mm == mm)
603 goto assign_new_owner;
604 } while_each_thread(g, c);
605
606 read_unlock(&tasklist_lock);
607 /*
608 * We found no owner yet mm_users > 1: this implies that we are
609 * most likely racing with swapoff (try_to_unuse()) or /proc or
610 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
611 */
612 mm->owner = NULL;
613 return;
614
615assign_new_owner:
616 BUG_ON(c == p);
617 get_task_struct(c);
618 /*
619 * The task_lock protects c->mm from changing.
620 * We always want mm->owner->mm == mm
621 */
622 task_lock(c);
623 /*
624 * Delay read_unlock() till we have the task_lock()
625 * to ensure that c does not slip away underneath us
626 */
627 read_unlock(&tasklist_lock);
628 if (c->mm != mm) {
629 task_unlock(c);
630 put_task_struct(c);
631 goto retry;
632 }
633 mm->owner = c;
634 task_unlock(c);
635 put_task_struct(c);
636}
637#endif /* CONFIG_MM_OWNER */
638
639/*
640 * Turn us into a lazy TLB process if we
641 * aren't already..
642 */
643static void exit_mm(struct task_struct * tsk)
644{
645 struct mm_struct *mm = tsk->mm;
646 struct core_state *core_state;
647
648 mm_release(tsk, mm);
649 if (!mm)
650 return;
651 /*
652 * Serialize with any possible pending coredump.
653 * We must hold mmap_sem around checking core_state
654 * and clearing tsk->mm. The core-inducing thread
655 * will increment ->nr_threads for each thread in the
656 * group with ->mm != NULL.
657 */
658 down_read(&mm->mmap_sem);
659 core_state = mm->core_state;
660 if (core_state) {
661 struct core_thread self;
662 up_read(&mm->mmap_sem);
663
664 self.task = tsk;
665 self.next = xchg(&core_state->dumper.next, &self);
666 /*
667 * Implies mb(), the result of xchg() must be visible
668 * to core_state->dumper.
669 */
670 if (atomic_dec_and_test(&core_state->nr_threads))
671 complete(&core_state->startup);
672
673 for (;;) {
674 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
675 if (!self.task) /* see coredump_finish() */
676 break;
677 schedule();
678 }
679 __set_task_state(tsk, TASK_RUNNING);
680 down_read(&mm->mmap_sem);
681 }
682 atomic_inc(&mm->mm_count);
683 BUG_ON(mm != tsk->active_mm);
684 /* more a memory barrier than a real lock */
685 task_lock(tsk);
686 tsk->mm = NULL;
687 up_read(&mm->mmap_sem);
688 enter_lazy_tlb(mm, current);
689 /* We don't want this task to be frozen prematurely */
690 clear_freeze_flag(tsk);
691 if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
692 atomic_dec(&mm->oom_disable_count);
693 task_unlock(tsk);
694 mm_update_next_owner(mm);
695 mmput(mm);
696}
697
698/*
699 * When we die, we re-parent all our children.
700 * Try to give them to another thread in our thread
701 * group, and if no such member exists, give it to
702 * the child reaper process (ie "init") in our pid
703 * space.
704 */
705static struct task_struct *find_new_reaper(struct task_struct *father)
706 __releases(&tasklist_lock)
707 __acquires(&tasklist_lock)
708{
709 struct pid_namespace *pid_ns = task_active_pid_ns(father);
710 struct task_struct *thread;
711
712 thread = father;
713 while_each_thread(father, thread) {
714 if (thread->flags & PF_EXITING)
715 continue;
716 if (unlikely(pid_ns->child_reaper == father))
717 pid_ns->child_reaper = thread;
718 return thread;
719 }
720
721 if (unlikely(pid_ns->child_reaper == father)) {
722 write_unlock_irq(&tasklist_lock);
723 if (unlikely(pid_ns == &init_pid_ns))
724 panic("Attempted to kill init!");
725
726 zap_pid_ns_processes(pid_ns);
727 write_lock_irq(&tasklist_lock);
728 /*
729 * We can not clear ->child_reaper or leave it alone.
730 * There may by stealth EXIT_DEAD tasks on ->children,
731 * forget_original_parent() must move them somewhere.
732 */
733 pid_ns->child_reaper = init_pid_ns.child_reaper;
734 }
735
736 return pid_ns->child_reaper;
737}
738
739/*
740* Any that need to be release_task'd are put on the @dead list.
741 */
742static void reparent_leader(struct task_struct *father, struct task_struct *p,
743 struct list_head *dead)
744{
745 list_move_tail(&p->sibling, &p->real_parent->children);
746
747 if (task_detached(p))
748 return;
749 /*
750 * If this is a threaded reparent there is no need to
751 * notify anyone anything has happened.
752 */
753 if (same_thread_group(p->real_parent, father))
754 return;
755
756 /* We don't want people slaying init. */
757 p->exit_signal = SIGCHLD;
758
759 /* If it has exited notify the new parent about this child's death. */
760 if (!task_ptrace(p) &&
761 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
762 do_notify_parent(p, p->exit_signal);
763 if (task_detached(p)) {
764 p->exit_state = EXIT_DEAD;
765 list_move_tail(&p->sibling, dead);
766 }
767 }
768
769 kill_orphaned_pgrp(p, father);
770}
771
772static void forget_original_parent(struct task_struct *father)
773{
774 struct task_struct *p, *n, *reaper;
775 LIST_HEAD(dead_children);
776
777 write_lock_irq(&tasklist_lock);
778 /*
779 * Note that exit_ptrace() and find_new_reaper() might
780 * drop tasklist_lock and reacquire it.
781 */
782 exit_ptrace(father);
783 reaper = find_new_reaper(father);
784
785 list_for_each_entry_safe(p, n, &father->children, sibling) {
786 struct task_struct *t = p;
787 do {
788 t->real_parent = reaper;
789 if (t->parent == father) {
790 BUG_ON(task_ptrace(t));
791 t->parent = t->real_parent;
792 }
793 if (t->pdeath_signal)
794 group_send_sig_info(t->pdeath_signal,
795 SEND_SIG_NOINFO, t);
796 } while_each_thread(p, t);
797 reparent_leader(father, p, &dead_children);
798 }
799 write_unlock_irq(&tasklist_lock);
800
801 BUG_ON(!list_empty(&father->children));
802
803 list_for_each_entry_safe(p, n, &dead_children, sibling) {
804 list_del_init(&p->sibling);
805 release_task(p);
806 }
807}
808
809/*
810 * Send signals to all our closest relatives so that they know
811 * to properly mourn us..
812 */
813static void exit_notify(struct task_struct *tsk, int group_dead)
814{
815 int signal;
816 void *cookie;
817
818 /*
819 * This does two things:
820 *
821 * A. Make init inherit all the child processes
822 * B. Check to see if any process groups have become orphaned
823 * as a result of our exiting, and if they have any stopped
824 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
825 */
826 forget_original_parent(tsk);
827 exit_task_namespaces(tsk);
828
829 write_lock_irq(&tasklist_lock);
830 if (group_dead)
831 kill_orphaned_pgrp(tsk->group_leader, NULL);
832
833 /* Let father know we died
834 *
835 * Thread signals are configurable, but you aren't going to use
836 * that to send signals to arbitary processes.
837 * That stops right now.
838 *
839 * If the parent exec id doesn't match the exec id we saved
840 * when we started then we know the parent has changed security
841 * domain.
842 *
843 * If our self_exec id doesn't match our parent_exec_id then
844 * we have changed execution domain as these two values started
845 * the same after a fork.
846 */
847 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
848 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
849 tsk->self_exec_id != tsk->parent_exec_id))
850 tsk->exit_signal = SIGCHLD;
851
852 signal = tracehook_notify_death(tsk, &cookie, group_dead);
853 if (signal >= 0)
854 signal = do_notify_parent(tsk, signal);
855
856 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
857
858 /* mt-exec, de_thread() is waiting for group leader */
859 if (unlikely(tsk->signal->notify_count < 0))
860 wake_up_process(tsk->signal->group_exit_task);
861 write_unlock_irq(&tasklist_lock);
862
863 tracehook_report_death(tsk, signal, cookie, group_dead);
864
865 /* If the process is dead, release it - nobody will wait for it */
866 if (signal == DEATH_REAP)
867 release_task(tsk);
868}
869
870#ifdef CONFIG_DEBUG_STACK_USAGE
871static void check_stack_usage(void)
872{
873 static DEFINE_SPINLOCK(low_water_lock);
874 static int lowest_to_date = THREAD_SIZE;
875 unsigned long free;
876
877 free = stack_not_used(current);
878
879 if (free >= lowest_to_date)
880 return;
881
882 spin_lock(&low_water_lock);
883 if (free < lowest_to_date) {
884 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
885 "left\n",
886 current->comm, free);
887 lowest_to_date = free;
888 }
889 spin_unlock(&low_water_lock);
890}
891#else
892static inline void check_stack_usage(void) {}
893#endif
894
895NORET_TYPE void do_exit(long code)
896{
897 struct task_struct *tsk = current;
898 int group_dead;
899
900 profile_task_exit(tsk);
901
902 WARN_ON(atomic_read(&tsk->fs_excl));
903
904 if (unlikely(in_interrupt()))
905 panic("Aiee, killing interrupt handler!");
906 if (unlikely(!tsk->pid))
907 panic("Attempted to kill the idle task!");
908
909 tracehook_report_exit(&code);
910
911 validate_creds_for_do_exit(tsk);
912
913 /*
914 * We're taking recursive faults here in do_exit. Safest is to just
915 * leave this task alone and wait for reboot.
916 */
917 if (unlikely(tsk->flags & PF_EXITING)) {
918 printk(KERN_ALERT
919 "Fixing recursive fault but reboot is needed!\n");
920 /*
921 * We can do this unlocked here. The futex code uses
922 * this flag just to verify whether the pi state
923 * cleanup has been done or not. In the worst case it
924 * loops once more. We pretend that the cleanup was
925 * done as there is no way to return. Either the
926 * OWNER_DIED bit is set by now or we push the blocked
927 * task into the wait for ever nirwana as well.
928 */
929 tsk->flags |= PF_EXITPIDONE;
930 set_current_state(TASK_UNINTERRUPTIBLE);
931 schedule();
932 }
933
934 exit_irq_thread();
935
936 exit_signals(tsk); /* sets PF_EXITING */
937 /*
938 * tsk->flags are checked in the futex code to protect against
939 * an exiting task cleaning up the robust pi futexes.
940 */
941 smp_mb();
942 raw_spin_unlock_wait(&tsk->pi_lock);
943
944 if (unlikely(in_atomic()))
945 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
946 current->comm, task_pid_nr(current),
947 preempt_count());
948
949 acct_update_integrals(tsk);
950 /* sync mm's RSS info before statistics gathering */
951 if (tsk->mm)
952 sync_mm_rss(tsk, tsk->mm);
953 group_dead = atomic_dec_and_test(&tsk->signal->live);
954 if (group_dead) {
955 hrtimer_cancel(&tsk->signal->real_timer);
956 exit_itimers(tsk->signal);
957 if (tsk->mm)
958 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
959 }
960 acct_collect(code, group_dead);
961 if (group_dead)
962 tty_audit_exit();
963 if (unlikely(tsk->audit_context))
964 audit_free(tsk);
965
966 tsk->exit_code = code;
967 taskstats_exit(tsk, group_dead);
968
969 exit_mm(tsk);
970
971 if (group_dead)
972 acct_process();
973 trace_sched_process_exit(tsk);
974
975 exit_sem(tsk);
976 exit_files(tsk);
977 exit_fs(tsk);
978 check_stack_usage();
979 exit_thread();
980 cgroup_exit(tsk, 1);
981
982 if (group_dead)
983 disassociate_ctty(1);
984
985 module_put(task_thread_info(tsk)->exec_domain->module);
986
987 proc_exit_connector(tsk);
988
989 /*
990 * FIXME: do that only when needed, using sched_exit tracepoint
991 */
992 flush_ptrace_hw_breakpoint(tsk);
993 /*
994 * Flush inherited counters to the parent - before the parent
995 * gets woken up by child-exit notifications.
996 */
997 perf_event_exit_task(tsk);
998
999 exit_notify(tsk, group_dead);
1000#ifdef CONFIG_NUMA
1001 task_lock(tsk);
1002 mpol_put(tsk->mempolicy);
1003 tsk->mempolicy = NULL;
1004 task_unlock(tsk);
1005#endif
1006#ifdef CONFIG_FUTEX
1007 if (unlikely(current->pi_state_cache))
1008 kfree(current->pi_state_cache);
1009#endif
1010 /*
1011 * Make sure we are holding no locks:
1012 */
1013 debug_check_no_locks_held(tsk);
1014 /*
1015 * We can do this unlocked here. The futex code uses this flag
1016 * just to verify whether the pi state cleanup has been done
1017 * or not. In the worst case it loops once more.
1018 */
1019 tsk->flags |= PF_EXITPIDONE;
1020
1021 if (tsk->io_context)
1022 exit_io_context(tsk);
1023
1024 if (tsk->splice_pipe)
1025 __free_pipe_info(tsk->splice_pipe);
1026
1027 validate_creds_for_do_exit(tsk);
1028
1029 preempt_disable();
1030 exit_rcu();
1031 /* causes final put_task_struct in finish_task_switch(). */
1032 tsk->state = TASK_DEAD;
1033 schedule();
1034 BUG();
1035 /* Avoid "noreturn function does return". */
1036 for (;;)
1037 cpu_relax(); /* For when BUG is null */
1038}
1039
1040EXPORT_SYMBOL_GPL(do_exit);
1041
1042NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1043{
1044 if (comp)
1045 complete(comp);
1046
1047 do_exit(code);
1048}
1049
1050EXPORT_SYMBOL(complete_and_exit);
1051
1052SYSCALL_DEFINE1(exit, int, error_code)
1053{
1054 do_exit((error_code&0xff)<<8);
1055}
1056
1057/*
1058 * Take down every thread in the group. This is called by fatal signals
1059 * as well as by sys_exit_group (below).
1060 */
1061NORET_TYPE void
1062do_group_exit(int exit_code)
1063{
1064 struct signal_struct *sig = current->signal;
1065
1066 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1067
1068 if (signal_group_exit(sig))
1069 exit_code = sig->group_exit_code;
1070 else if (!thread_group_empty(current)) {
1071 struct sighand_struct *const sighand = current->sighand;
1072 spin_lock_irq(&sighand->siglock);
1073 if (signal_group_exit(sig))
1074 /* Another thread got here before we took the lock. */
1075 exit_code = sig->group_exit_code;
1076 else {
1077 sig->group_exit_code = exit_code;
1078 sig->flags = SIGNAL_GROUP_EXIT;
1079 zap_other_threads(current);
1080 }
1081 spin_unlock_irq(&sighand->siglock);
1082 }
1083
1084 do_exit(exit_code);
1085 /* NOTREACHED */
1086}
1087
1088/*
1089 * this kills every thread in the thread group. Note that any externally
1090 * wait4()-ing process will get the correct exit code - even if this
1091 * thread is not the thread group leader.
1092 */
1093SYSCALL_DEFINE1(exit_group, int, error_code)
1094{
1095 do_group_exit((error_code & 0xff) << 8);
1096 /* NOTREACHED */
1097 return 0;
1098}
1099
1100struct wait_opts {
1101 enum pid_type wo_type;
1102 int wo_flags;
1103 struct pid *wo_pid;
1104
1105 struct siginfo __user *wo_info;
1106 int __user *wo_stat;
1107 struct rusage __user *wo_rusage;
1108
1109 wait_queue_t child_wait;
1110 int notask_error;
1111};
1112
1113static inline
1114struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1115{
1116 if (type != PIDTYPE_PID)
1117 task = task->group_leader;
1118 return task->pids[type].pid;
1119}
1120
1121static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1122{
1123 return wo->wo_type == PIDTYPE_MAX ||
1124 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1125}
1126
1127static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1128{
1129 if (!eligible_pid(wo, p))
1130 return 0;
1131 /* Wait for all children (clone and not) if __WALL is set;
1132 * otherwise, wait for clone children *only* if __WCLONE is
1133 * set; otherwise, wait for non-clone children *only*. (Note:
1134 * A "clone" child here is one that reports to its parent
1135 * using a signal other than SIGCHLD.) */
1136 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1137 && !(wo->wo_flags & __WALL))
1138 return 0;
1139
1140 return 1;
1141}
1142
1143static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1144 pid_t pid, uid_t uid, int why, int status)
1145{
1146 struct siginfo __user *infop;
1147 int retval = wo->wo_rusage
1148 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1149
1150 put_task_struct(p);
1151 infop = wo->wo_info;
1152 if (infop) {
1153 if (!retval)
1154 retval = put_user(SIGCHLD, &infop->si_signo);
1155 if (!retval)
1156 retval = put_user(0, &infop->si_errno);
1157 if (!retval)
1158 retval = put_user((short)why, &infop->si_code);
1159 if (!retval)
1160 retval = put_user(pid, &infop->si_pid);
1161 if (!retval)
1162 retval = put_user(uid, &infop->si_uid);
1163 if (!retval)
1164 retval = put_user(status, &infop->si_status);
1165 }
1166 if (!retval)
1167 retval = pid;
1168 return retval;
1169}
1170
1171/*
1172 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1173 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1174 * the lock and this task is uninteresting. If we return nonzero, we have
1175 * released the lock and the system call should return.
1176 */
1177static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1178{
1179 unsigned long state;
1180 int retval, status, traced;
1181 pid_t pid = task_pid_vnr(p);
1182 uid_t uid = __task_cred(p)->uid;
1183 struct siginfo __user *infop;
1184
1185 if (!likely(wo->wo_flags & WEXITED))
1186 return 0;
1187
1188 if (unlikely(wo->wo_flags & WNOWAIT)) {
1189 int exit_code = p->exit_code;
1190 int why;
1191
1192 get_task_struct(p);
1193 read_unlock(&tasklist_lock);
1194 if ((exit_code & 0x7f) == 0) {
1195 why = CLD_EXITED;
1196 status = exit_code >> 8;
1197 } else {
1198 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1199 status = exit_code & 0x7f;
1200 }
1201 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1202 }
1203
1204 /*
1205 * Try to move the task's state to DEAD
1206 * only one thread is allowed to do this:
1207 */
1208 state = xchg(&p->exit_state, EXIT_DEAD);
1209 if (state != EXIT_ZOMBIE) {
1210 BUG_ON(state != EXIT_DEAD);
1211 return 0;
1212 }
1213
1214 traced = ptrace_reparented(p);
1215 /*
1216 * It can be ptraced but not reparented, check
1217 * !task_detached() to filter out sub-threads.
1218 */
1219 if (likely(!traced) && likely(!task_detached(p))) {
1220 struct signal_struct *psig;
1221 struct signal_struct *sig;
1222 unsigned long maxrss;
1223 cputime_t tgutime, tgstime;
1224
1225 /*
1226 * The resource counters for the group leader are in its
1227 * own task_struct. Those for dead threads in the group
1228 * are in its signal_struct, as are those for the child
1229 * processes it has previously reaped. All these
1230 * accumulate in the parent's signal_struct c* fields.
1231 *
1232 * We don't bother to take a lock here to protect these
1233 * p->signal fields, because they are only touched by
1234 * __exit_signal, which runs with tasklist_lock
1235 * write-locked anyway, and so is excluded here. We do
1236 * need to protect the access to parent->signal fields,
1237 * as other threads in the parent group can be right
1238 * here reaping other children at the same time.
1239 *
1240 * We use thread_group_times() to get times for the thread
1241 * group, which consolidates times for all threads in the
1242 * group including the group leader.
1243 */
1244 thread_group_times(p, &tgutime, &tgstime);
1245 spin_lock_irq(&p->real_parent->sighand->siglock);
1246 psig = p->real_parent->signal;
1247 sig = p->signal;
1248 psig->cutime =
1249 cputime_add(psig->cutime,
1250 cputime_add(tgutime,
1251 sig->cutime));
1252 psig->cstime =
1253 cputime_add(psig->cstime,
1254 cputime_add(tgstime,
1255 sig->cstime));
1256 psig->cgtime =
1257 cputime_add(psig->cgtime,
1258 cputime_add(p->gtime,
1259 cputime_add(sig->gtime,
1260 sig->cgtime)));
1261 psig->cmin_flt +=
1262 p->min_flt + sig->min_flt + sig->cmin_flt;
1263 psig->cmaj_flt +=
1264 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1265 psig->cnvcsw +=
1266 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1267 psig->cnivcsw +=
1268 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1269 psig->cinblock +=
1270 task_io_get_inblock(p) +
1271 sig->inblock + sig->cinblock;
1272 psig->coublock +=
1273 task_io_get_oublock(p) +
1274 sig->oublock + sig->coublock;
1275 maxrss = max(sig->maxrss, sig->cmaxrss);
1276 if (psig->cmaxrss < maxrss)
1277 psig->cmaxrss = maxrss;
1278 task_io_accounting_add(&psig->ioac, &p->ioac);
1279 task_io_accounting_add(&psig->ioac, &sig->ioac);
1280 spin_unlock_irq(&p->real_parent->sighand->siglock);
1281 }
1282
1283 /*
1284 * Now we are sure this task is interesting, and no other
1285 * thread can reap it because we set its state to EXIT_DEAD.
1286 */
1287 read_unlock(&tasklist_lock);
1288
1289 retval = wo->wo_rusage
1290 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1291 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1292 ? p->signal->group_exit_code : p->exit_code;
1293 if (!retval && wo->wo_stat)
1294 retval = put_user(status, wo->wo_stat);
1295
1296 infop = wo->wo_info;
1297 if (!retval && infop)
1298 retval = put_user(SIGCHLD, &infop->si_signo);
1299 if (!retval && infop)
1300 retval = put_user(0, &infop->si_errno);
1301 if (!retval && infop) {
1302 int why;
1303
1304 if ((status & 0x7f) == 0) {
1305 why = CLD_EXITED;
1306 status >>= 8;
1307 } else {
1308 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1309 status &= 0x7f;
1310 }
1311 retval = put_user((short)why, &infop->si_code);
1312 if (!retval)
1313 retval = put_user(status, &infop->si_status);
1314 }
1315 if (!retval && infop)
1316 retval = put_user(pid, &infop->si_pid);
1317 if (!retval && infop)
1318 retval = put_user(uid, &infop->si_uid);
1319 if (!retval)
1320 retval = pid;
1321
1322 if (traced) {
1323 write_lock_irq(&tasklist_lock);
1324 /* We dropped tasklist, ptracer could die and untrace */
1325 ptrace_unlink(p);
1326 /*
1327 * If this is not a detached task, notify the parent.
1328 * If it's still not detached after that, don't release
1329 * it now.
1330 */
1331 if (!task_detached(p)) {
1332 do_notify_parent(p, p->exit_signal);
1333 if (!task_detached(p)) {
1334 p->exit_state = EXIT_ZOMBIE;
1335 p = NULL;
1336 }
1337 }
1338 write_unlock_irq(&tasklist_lock);
1339 }
1340 if (p != NULL)
1341 release_task(p);
1342
1343 return retval;
1344}
1345
1346static int *task_stopped_code(struct task_struct *p, bool ptrace)
1347{
1348 if (ptrace) {
1349 if (task_is_stopped_or_traced(p))
1350 return &p->exit_code;
1351 } else {
1352 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1353 return &p->signal->group_exit_code;
1354 }
1355 return NULL;
1356}
1357
1358/*
1359 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1360 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1361 * the lock and this task is uninteresting. If we return nonzero, we have
1362 * released the lock and the system call should return.
1363 */
1364static int wait_task_stopped(struct wait_opts *wo,
1365 int ptrace, struct task_struct *p)
1366{
1367 struct siginfo __user *infop;
1368 int retval, exit_code, *p_code, why;
1369 uid_t uid = 0; /* unneeded, required by compiler */
1370 pid_t pid;
1371
1372 /*
1373 * Traditionally we see ptrace'd stopped tasks regardless of options.
1374 */
1375 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1376 return 0;
1377
1378 exit_code = 0;
1379 spin_lock_irq(&p->sighand->siglock);
1380
1381 p_code = task_stopped_code(p, ptrace);
1382 if (unlikely(!p_code))
1383 goto unlock_sig;
1384
1385 exit_code = *p_code;
1386 if (!exit_code)
1387 goto unlock_sig;
1388
1389 if (!unlikely(wo->wo_flags & WNOWAIT))
1390 *p_code = 0;
1391
1392 uid = task_uid(p);
1393unlock_sig:
1394 spin_unlock_irq(&p->sighand->siglock);
1395 if (!exit_code)
1396 return 0;
1397
1398 /*
1399 * Now we are pretty sure this task is interesting.
1400 * Make sure it doesn't get reaped out from under us while we
1401 * give up the lock and then examine it below. We don't want to
1402 * keep holding onto the tasklist_lock while we call getrusage and
1403 * possibly take page faults for user memory.
1404 */
1405 get_task_struct(p);
1406 pid = task_pid_vnr(p);
1407 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1408 read_unlock(&tasklist_lock);
1409
1410 if (unlikely(wo->wo_flags & WNOWAIT))
1411 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1412
1413 retval = wo->wo_rusage
1414 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1415 if (!retval && wo->wo_stat)
1416 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1417
1418 infop = wo->wo_info;
1419 if (!retval && infop)
1420 retval = put_user(SIGCHLD, &infop->si_signo);
1421 if (!retval && infop)
1422 retval = put_user(0, &infop->si_errno);
1423 if (!retval && infop)
1424 retval = put_user((short)why, &infop->si_code);
1425 if (!retval && infop)
1426 retval = put_user(exit_code, &infop->si_status);
1427 if (!retval && infop)
1428 retval = put_user(pid, &infop->si_pid);
1429 if (!retval && infop)
1430 retval = put_user(uid, &infop->si_uid);
1431 if (!retval)
1432 retval = pid;
1433 put_task_struct(p);
1434
1435 BUG_ON(!retval);
1436 return retval;
1437}
1438
1439/*
1440 * Handle do_wait work for one task in a live, non-stopped state.
1441 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1442 * the lock and this task is uninteresting. If we return nonzero, we have
1443 * released the lock and the system call should return.
1444 */
1445static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1446{
1447 int retval;
1448 pid_t pid;
1449 uid_t uid;
1450
1451 if (!unlikely(wo->wo_flags & WCONTINUED))
1452 return 0;
1453
1454 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1455 return 0;
1456
1457 spin_lock_irq(&p->sighand->siglock);
1458 /* Re-check with the lock held. */
1459 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1460 spin_unlock_irq(&p->sighand->siglock);
1461 return 0;
1462 }
1463 if (!unlikely(wo->wo_flags & WNOWAIT))
1464 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1465 uid = task_uid(p);
1466 spin_unlock_irq(&p->sighand->siglock);
1467
1468 pid = task_pid_vnr(p);
1469 get_task_struct(p);
1470 read_unlock(&tasklist_lock);
1471
1472 if (!wo->wo_info) {
1473 retval = wo->wo_rusage
1474 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1475 put_task_struct(p);
1476 if (!retval && wo->wo_stat)
1477 retval = put_user(0xffff, wo->wo_stat);
1478 if (!retval)
1479 retval = pid;
1480 } else {
1481 retval = wait_noreap_copyout(wo, p, pid, uid,
1482 CLD_CONTINUED, SIGCONT);
1483 BUG_ON(retval == 0);
1484 }
1485
1486 return retval;
1487}
1488
1489/*
1490 * Consider @p for a wait by @parent.
1491 *
1492 * -ECHILD should be in ->notask_error before the first call.
1493 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1494 * Returns zero if the search for a child should continue;
1495 * then ->notask_error is 0 if @p is an eligible child,
1496 * or another error from security_task_wait(), or still -ECHILD.
1497 */
1498static int wait_consider_task(struct wait_opts *wo, int ptrace,
1499 struct task_struct *p)
1500{
1501 int ret = eligible_child(wo, p);
1502 if (!ret)
1503 return ret;
1504
1505 ret = security_task_wait(p);
1506 if (unlikely(ret < 0)) {
1507 /*
1508 * If we have not yet seen any eligible child,
1509 * then let this error code replace -ECHILD.
1510 * A permission error will give the user a clue
1511 * to look for security policy problems, rather
1512 * than for mysterious wait bugs.
1513 */
1514 if (wo->notask_error)
1515 wo->notask_error = ret;
1516 return 0;
1517 }
1518
1519 if (likely(!ptrace) && unlikely(task_ptrace(p))) {
1520 /*
1521 * This child is hidden by ptrace.
1522 * We aren't allowed to see it now, but eventually we will.
1523 */
1524 wo->notask_error = 0;
1525 return 0;
1526 }
1527
1528 if (p->exit_state == EXIT_DEAD)
1529 return 0;
1530
1531 /*
1532 * We don't reap group leaders with subthreads.
1533 */
1534 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1535 return wait_task_zombie(wo, p);
1536
1537 /*
1538 * It's stopped or running now, so it might
1539 * later continue, exit, or stop again.
1540 */
1541 wo->notask_error = 0;
1542
1543 if (task_stopped_code(p, ptrace))
1544 return wait_task_stopped(wo, ptrace, p);
1545
1546 return wait_task_continued(wo, p);
1547}
1548
1549/*
1550 * Do the work of do_wait() for one thread in the group, @tsk.
1551 *
1552 * -ECHILD should be in ->notask_error before the first call.
1553 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1554 * Returns zero if the search for a child should continue; then
1555 * ->notask_error is 0 if there were any eligible children,
1556 * or another error from security_task_wait(), or still -ECHILD.
1557 */
1558static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1559{
1560 struct task_struct *p;
1561
1562 list_for_each_entry(p, &tsk->children, sibling) {
1563 int ret = wait_consider_task(wo, 0, p);
1564 if (ret)
1565 return ret;
1566 }
1567
1568 return 0;
1569}
1570
1571static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1572{
1573 struct task_struct *p;
1574
1575 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1576 int ret = wait_consider_task(wo, 1, p);
1577 if (ret)
1578 return ret;
1579 }
1580
1581 return 0;
1582}
1583
1584static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1585 int sync, void *key)
1586{
1587 struct wait_opts *wo = container_of(wait, struct wait_opts,
1588 child_wait);
1589 struct task_struct *p = key;
1590
1591 if (!eligible_pid(wo, p))
1592 return 0;
1593
1594 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1595 return 0;
1596
1597 return default_wake_function(wait, mode, sync, key);
1598}
1599
1600void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1601{
1602 __wake_up_sync_key(&parent->signal->wait_chldexit,
1603 TASK_INTERRUPTIBLE, 1, p);
1604}
1605
1606static long do_wait(struct wait_opts *wo)
1607{
1608 struct task_struct *tsk;
1609 int retval;
1610
1611 trace_sched_process_wait(wo->wo_pid);
1612
1613 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1614 wo->child_wait.private = current;
1615 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1616repeat:
1617 /*
1618 * If there is nothing that can match our critiera just get out.
1619 * We will clear ->notask_error to zero if we see any child that
1620 * might later match our criteria, even if we are not able to reap
1621 * it yet.
1622 */
1623 wo->notask_error = -ECHILD;
1624 if ((wo->wo_type < PIDTYPE_MAX) &&
1625 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1626 goto notask;
1627
1628 set_current_state(TASK_INTERRUPTIBLE);
1629 read_lock(&tasklist_lock);
1630 tsk = current;
1631 do {
1632 retval = do_wait_thread(wo, tsk);
1633 if (retval)
1634 goto end;
1635
1636 retval = ptrace_do_wait(wo, tsk);
1637 if (retval)
1638 goto end;
1639
1640 if (wo->wo_flags & __WNOTHREAD)
1641 break;
1642 } while_each_thread(current, tsk);
1643 read_unlock(&tasklist_lock);
1644
1645notask:
1646 retval = wo->notask_error;
1647 if (!retval && !(wo->wo_flags & WNOHANG)) {
1648 retval = -ERESTARTSYS;
1649 if (!signal_pending(current)) {
1650 schedule();
1651 goto repeat;
1652 }
1653 }
1654end:
1655 __set_current_state(TASK_RUNNING);
1656 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1657 return retval;
1658}
1659
1660SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1661 infop, int, options, struct rusage __user *, ru)
1662{
1663 struct wait_opts wo;
1664 struct pid *pid = NULL;
1665 enum pid_type type;
1666 long ret;
1667
1668 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1669 return -EINVAL;
1670 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1671 return -EINVAL;
1672
1673 switch (which) {
1674 case P_ALL:
1675 type = PIDTYPE_MAX;
1676 break;
1677 case P_PID:
1678 type = PIDTYPE_PID;
1679 if (upid <= 0)
1680 return -EINVAL;
1681 break;
1682 case P_PGID:
1683 type = PIDTYPE_PGID;
1684 if (upid <= 0)
1685 return -EINVAL;
1686 break;
1687 default:
1688 return -EINVAL;
1689 }
1690
1691 if (type < PIDTYPE_MAX)
1692 pid = find_get_pid(upid);
1693
1694 wo.wo_type = type;
1695 wo.wo_pid = pid;
1696 wo.wo_flags = options;
1697 wo.wo_info = infop;
1698 wo.wo_stat = NULL;
1699 wo.wo_rusage = ru;
1700 ret = do_wait(&wo);
1701
1702 if (ret > 0) {
1703 ret = 0;
1704 } else if (infop) {
1705 /*
1706 * For a WNOHANG return, clear out all the fields
1707 * we would set so the user can easily tell the
1708 * difference.
1709 */
1710 if (!ret)
1711 ret = put_user(0, &infop->si_signo);
1712 if (!ret)
1713 ret = put_user(0, &infop->si_errno);
1714 if (!ret)
1715 ret = put_user(0, &infop->si_code);
1716 if (!ret)
1717 ret = put_user(0, &infop->si_pid);
1718 if (!ret)
1719 ret = put_user(0, &infop->si_uid);
1720 if (!ret)
1721 ret = put_user(0, &infop->si_status);
1722 }
1723
1724 put_pid(pid);
1725
1726 /* avoid REGPARM breakage on x86: */
1727 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1728 return ret;
1729}
1730
1731SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1732 int, options, struct rusage __user *, ru)
1733{
1734 struct wait_opts wo;
1735 struct pid *pid = NULL;
1736 enum pid_type type;
1737 long ret;
1738
1739 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1740 __WNOTHREAD|__WCLONE|__WALL))
1741 return -EINVAL;
1742
1743 if (upid == -1)
1744 type = PIDTYPE_MAX;
1745 else if (upid < 0) {
1746 type = PIDTYPE_PGID;
1747 pid = find_get_pid(-upid);
1748 } else if (upid == 0) {
1749 type = PIDTYPE_PGID;
1750 pid = get_task_pid(current, PIDTYPE_PGID);
1751 } else /* upid > 0 */ {
1752 type = PIDTYPE_PID;
1753 pid = find_get_pid(upid);
1754 }
1755
1756 wo.wo_type = type;
1757 wo.wo_pid = pid;
1758 wo.wo_flags = options | WEXITED;
1759 wo.wo_info = NULL;
1760 wo.wo_stat = stat_addr;
1761 wo.wo_rusage = ru;
1762 ret = do_wait(&wo);
1763 put_pid(pid);
1764
1765 /* avoid REGPARM breakage on x86: */
1766 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1767 return ret;
1768}
1769
1770#ifdef __ARCH_WANT_SYS_WAITPID
1771
1772/*
1773 * sys_waitpid() remains for compatibility. waitpid() should be
1774 * implemented by calling sys_wait4() from libc.a.
1775 */
1776SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1777{
1778 return sys_wait4(pid, stat_addr, options, NULL);
1779}
1780
1781#endif