]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - include/linux/skbuff.h
[NET]: Prevent transmission after dev_deactivate
[net-next-2.6.git] / include / linux / skbuff.h
... / ...
CommitLineData
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
17#include <linux/kernel.h>
18#include <linux/compiler.h>
19#include <linux/time.h>
20#include <linux/cache.h>
21
22#include <asm/atomic.h>
23#include <asm/types.h>
24#include <linux/spinlock.h>
25#include <linux/mm.h>
26#include <linux/highmem.h>
27#include <linux/poll.h>
28#include <linux/net.h>
29#include <linux/textsearch.h>
30#include <net/checksum.h>
31#include <linux/dmaengine.h>
32
33#define HAVE_ALLOC_SKB /* For the drivers to know */
34#define HAVE_ALIGNABLE_SKB /* Ditto 8) */
35
36#define CHECKSUM_NONE 0
37#define CHECKSUM_HW 1
38#define CHECKSUM_UNNECESSARY 2
39
40#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
41 ~(SMP_CACHE_BYTES - 1))
42#define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \
43 sizeof(struct skb_shared_info)) & \
44 ~(SMP_CACHE_BYTES - 1))
45#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
46#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
47
48/* A. Checksumming of received packets by device.
49 *
50 * NONE: device failed to checksum this packet.
51 * skb->csum is undefined.
52 *
53 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
54 * skb->csum is undefined.
55 * It is bad option, but, unfortunately, many of vendors do this.
56 * Apparently with secret goal to sell you new device, when you
57 * will add new protocol to your host. F.e. IPv6. 8)
58 *
59 * HW: the most generic way. Device supplied checksum of _all_
60 * the packet as seen by netif_rx in skb->csum.
61 * NOTE: Even if device supports only some protocols, but
62 * is able to produce some skb->csum, it MUST use HW,
63 * not UNNECESSARY.
64 *
65 * B. Checksumming on output.
66 *
67 * NONE: skb is checksummed by protocol or csum is not required.
68 *
69 * HW: device is required to csum packet as seen by hard_start_xmit
70 * from skb->h.raw to the end and to record the checksum
71 * at skb->h.raw+skb->csum.
72 *
73 * Device must show its capabilities in dev->features, set
74 * at device setup time.
75 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
76 * everything.
77 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
78 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
79 * TCP/UDP over IPv4. Sigh. Vendors like this
80 * way by an unknown reason. Though, see comment above
81 * about CHECKSUM_UNNECESSARY. 8)
82 *
83 * Any questions? No questions, good. --ANK
84 */
85
86struct net_device;
87
88#ifdef CONFIG_NETFILTER
89struct nf_conntrack {
90 atomic_t use;
91 void (*destroy)(struct nf_conntrack *);
92};
93
94#ifdef CONFIG_BRIDGE_NETFILTER
95struct nf_bridge_info {
96 atomic_t use;
97 struct net_device *physindev;
98 struct net_device *physoutdev;
99#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
100 struct net_device *netoutdev;
101#endif
102 unsigned int mask;
103 unsigned long data[32 / sizeof(unsigned long)];
104};
105#endif
106
107#endif
108
109struct sk_buff_head {
110 /* These two members must be first. */
111 struct sk_buff *next;
112 struct sk_buff *prev;
113
114 __u32 qlen;
115 spinlock_t lock;
116};
117
118struct sk_buff;
119
120/* To allow 64K frame to be packed as single skb without frag_list */
121#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
122
123typedef struct skb_frag_struct skb_frag_t;
124
125struct skb_frag_struct {
126 struct page *page;
127 __u16 page_offset;
128 __u16 size;
129};
130
131/* This data is invariant across clones and lives at
132 * the end of the header data, ie. at skb->end.
133 */
134struct skb_shared_info {
135 atomic_t dataref;
136 unsigned short nr_frags;
137 unsigned short tso_size;
138 unsigned short tso_segs;
139 unsigned short ufo_size;
140 unsigned int ip6_frag_id;
141 struct sk_buff *frag_list;
142 skb_frag_t frags[MAX_SKB_FRAGS];
143};
144
145/* We divide dataref into two halves. The higher 16 bits hold references
146 * to the payload part of skb->data. The lower 16 bits hold references to
147 * the entire skb->data. It is up to the users of the skb to agree on
148 * where the payload starts.
149 *
150 * All users must obey the rule that the skb->data reference count must be
151 * greater than or equal to the payload reference count.
152 *
153 * Holding a reference to the payload part means that the user does not
154 * care about modifications to the header part of skb->data.
155 */
156#define SKB_DATAREF_SHIFT 16
157#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
158
159struct skb_timeval {
160 u32 off_sec;
161 u32 off_usec;
162};
163
164
165enum {
166 SKB_FCLONE_UNAVAILABLE,
167 SKB_FCLONE_ORIG,
168 SKB_FCLONE_CLONE,
169};
170
171/**
172 * struct sk_buff - socket buffer
173 * @next: Next buffer in list
174 * @prev: Previous buffer in list
175 * @sk: Socket we are owned by
176 * @tstamp: Time we arrived
177 * @dev: Device we arrived on/are leaving by
178 * @input_dev: Device we arrived on
179 * @h: Transport layer header
180 * @nh: Network layer header
181 * @mac: Link layer header
182 * @dst: destination entry
183 * @sp: the security path, used for xfrm
184 * @cb: Control buffer. Free for use by every layer. Put private vars here
185 * @len: Length of actual data
186 * @data_len: Data length
187 * @mac_len: Length of link layer header
188 * @csum: Checksum
189 * @local_df: allow local fragmentation
190 * @cloned: Head may be cloned (check refcnt to be sure)
191 * @nohdr: Payload reference only, must not modify header
192 * @pkt_type: Packet class
193 * @fclone: skbuff clone status
194 * @ip_summed: Driver fed us an IP checksum
195 * @priority: Packet queueing priority
196 * @users: User count - see {datagram,tcp}.c
197 * @protocol: Packet protocol from driver
198 * @truesize: Buffer size
199 * @head: Head of buffer
200 * @data: Data head pointer
201 * @tail: Tail pointer
202 * @end: End pointer
203 * @destructor: Destruct function
204 * @nfmark: Can be used for communication between hooks
205 * @nfct: Associated connection, if any
206 * @ipvs_property: skbuff is owned by ipvs
207 * @nfctinfo: Relationship of this skb to the connection
208 * @nfct_reasm: netfilter conntrack re-assembly pointer
209 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
210 * @tc_index: Traffic control index
211 * @tc_verd: traffic control verdict
212 * @secmark: security marking
213 */
214
215struct sk_buff {
216 /* These two members must be first. */
217 struct sk_buff *next;
218 struct sk_buff *prev;
219
220 struct sock *sk;
221 struct skb_timeval tstamp;
222 struct net_device *dev;
223 struct net_device *input_dev;
224
225 union {
226 struct tcphdr *th;
227 struct udphdr *uh;
228 struct icmphdr *icmph;
229 struct igmphdr *igmph;
230 struct iphdr *ipiph;
231 struct ipv6hdr *ipv6h;
232 unsigned char *raw;
233 } h;
234
235 union {
236 struct iphdr *iph;
237 struct ipv6hdr *ipv6h;
238 struct arphdr *arph;
239 unsigned char *raw;
240 } nh;
241
242 union {
243 unsigned char *raw;
244 } mac;
245
246 struct dst_entry *dst;
247 struct sec_path *sp;
248
249 /*
250 * This is the control buffer. It is free to use for every
251 * layer. Please put your private variables there. If you
252 * want to keep them across layers you have to do a skb_clone()
253 * first. This is owned by whoever has the skb queued ATM.
254 */
255 char cb[48];
256
257 unsigned int len,
258 data_len,
259 mac_len,
260 csum;
261 __u32 priority;
262 __u8 local_df:1,
263 cloned:1,
264 ip_summed:2,
265 nohdr:1,
266 nfctinfo:3;
267 __u8 pkt_type:3,
268 fclone:2,
269 ipvs_property:1;
270 __be16 protocol;
271
272 void (*destructor)(struct sk_buff *skb);
273#ifdef CONFIG_NETFILTER
274 struct nf_conntrack *nfct;
275#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
276 struct sk_buff *nfct_reasm;
277#endif
278#ifdef CONFIG_BRIDGE_NETFILTER
279 struct nf_bridge_info *nf_bridge;
280#endif
281 __u32 nfmark;
282#endif /* CONFIG_NETFILTER */
283#ifdef CONFIG_NET_SCHED
284 __u16 tc_index; /* traffic control index */
285#ifdef CONFIG_NET_CLS_ACT
286 __u16 tc_verd; /* traffic control verdict */
287#endif
288#endif
289#ifdef CONFIG_NET_DMA
290 dma_cookie_t dma_cookie;
291#endif
292#ifdef CONFIG_NETWORK_SECMARK
293 __u32 secmark;
294#endif
295
296
297 /* These elements must be at the end, see alloc_skb() for details. */
298 unsigned int truesize;
299 atomic_t users;
300 unsigned char *head,
301 *data,
302 *tail,
303 *end;
304};
305
306#ifdef __KERNEL__
307/*
308 * Handling routines are only of interest to the kernel
309 */
310#include <linux/slab.h>
311
312#include <asm/system.h>
313
314extern void kfree_skb(struct sk_buff *skb);
315extern void __kfree_skb(struct sk_buff *skb);
316extern struct sk_buff *__alloc_skb(unsigned int size,
317 gfp_t priority, int fclone);
318static inline struct sk_buff *alloc_skb(unsigned int size,
319 gfp_t priority)
320{
321 return __alloc_skb(size, priority, 0);
322}
323
324static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
325 gfp_t priority)
326{
327 return __alloc_skb(size, priority, 1);
328}
329
330extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
331 unsigned int size,
332 gfp_t priority);
333extern void kfree_skbmem(struct sk_buff *skb);
334extern struct sk_buff *skb_clone(struct sk_buff *skb,
335 gfp_t priority);
336extern struct sk_buff *skb_copy(const struct sk_buff *skb,
337 gfp_t priority);
338extern struct sk_buff *pskb_copy(struct sk_buff *skb,
339 gfp_t gfp_mask);
340extern int pskb_expand_head(struct sk_buff *skb,
341 int nhead, int ntail,
342 gfp_t gfp_mask);
343extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
344 unsigned int headroom);
345extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
346 int newheadroom, int newtailroom,
347 gfp_t priority);
348extern int skb_pad(struct sk_buff *skb, int pad);
349#define dev_kfree_skb(a) kfree_skb(a)
350extern void skb_over_panic(struct sk_buff *skb, int len,
351 void *here);
352extern void skb_under_panic(struct sk_buff *skb, int len,
353 void *here);
354extern void skb_truesize_bug(struct sk_buff *skb);
355
356static inline void skb_truesize_check(struct sk_buff *skb)
357{
358 if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
359 skb_truesize_bug(skb);
360}
361
362extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
363 int getfrag(void *from, char *to, int offset,
364 int len,int odd, struct sk_buff *skb),
365 void *from, int length);
366
367struct skb_seq_state
368{
369 __u32 lower_offset;
370 __u32 upper_offset;
371 __u32 frag_idx;
372 __u32 stepped_offset;
373 struct sk_buff *root_skb;
374 struct sk_buff *cur_skb;
375 __u8 *frag_data;
376};
377
378extern void skb_prepare_seq_read(struct sk_buff *skb,
379 unsigned int from, unsigned int to,
380 struct skb_seq_state *st);
381extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
382 struct skb_seq_state *st);
383extern void skb_abort_seq_read(struct skb_seq_state *st);
384
385extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
386 unsigned int to, struct ts_config *config,
387 struct ts_state *state);
388
389/* Internal */
390#define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))
391
392/**
393 * skb_queue_empty - check if a queue is empty
394 * @list: queue head
395 *
396 * Returns true if the queue is empty, false otherwise.
397 */
398static inline int skb_queue_empty(const struct sk_buff_head *list)
399{
400 return list->next == (struct sk_buff *)list;
401}
402
403/**
404 * skb_get - reference buffer
405 * @skb: buffer to reference
406 *
407 * Makes another reference to a socket buffer and returns a pointer
408 * to the buffer.
409 */
410static inline struct sk_buff *skb_get(struct sk_buff *skb)
411{
412 atomic_inc(&skb->users);
413 return skb;
414}
415
416/*
417 * If users == 1, we are the only owner and are can avoid redundant
418 * atomic change.
419 */
420
421/**
422 * skb_cloned - is the buffer a clone
423 * @skb: buffer to check
424 *
425 * Returns true if the buffer was generated with skb_clone() and is
426 * one of multiple shared copies of the buffer. Cloned buffers are
427 * shared data so must not be written to under normal circumstances.
428 */
429static inline int skb_cloned(const struct sk_buff *skb)
430{
431 return skb->cloned &&
432 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
433}
434
435/**
436 * skb_header_cloned - is the header a clone
437 * @skb: buffer to check
438 *
439 * Returns true if modifying the header part of the buffer requires
440 * the data to be copied.
441 */
442static inline int skb_header_cloned(const struct sk_buff *skb)
443{
444 int dataref;
445
446 if (!skb->cloned)
447 return 0;
448
449 dataref = atomic_read(&skb_shinfo(skb)->dataref);
450 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
451 return dataref != 1;
452}
453
454/**
455 * skb_header_release - release reference to header
456 * @skb: buffer to operate on
457 *
458 * Drop a reference to the header part of the buffer. This is done
459 * by acquiring a payload reference. You must not read from the header
460 * part of skb->data after this.
461 */
462static inline void skb_header_release(struct sk_buff *skb)
463{
464 BUG_ON(skb->nohdr);
465 skb->nohdr = 1;
466 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
467}
468
469/**
470 * skb_shared - is the buffer shared
471 * @skb: buffer to check
472 *
473 * Returns true if more than one person has a reference to this
474 * buffer.
475 */
476static inline int skb_shared(const struct sk_buff *skb)
477{
478 return atomic_read(&skb->users) != 1;
479}
480
481/**
482 * skb_share_check - check if buffer is shared and if so clone it
483 * @skb: buffer to check
484 * @pri: priority for memory allocation
485 *
486 * If the buffer is shared the buffer is cloned and the old copy
487 * drops a reference. A new clone with a single reference is returned.
488 * If the buffer is not shared the original buffer is returned. When
489 * being called from interrupt status or with spinlocks held pri must
490 * be GFP_ATOMIC.
491 *
492 * NULL is returned on a memory allocation failure.
493 */
494static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
495 gfp_t pri)
496{
497 might_sleep_if(pri & __GFP_WAIT);
498 if (skb_shared(skb)) {
499 struct sk_buff *nskb = skb_clone(skb, pri);
500 kfree_skb(skb);
501 skb = nskb;
502 }
503 return skb;
504}
505
506/*
507 * Copy shared buffers into a new sk_buff. We effectively do COW on
508 * packets to handle cases where we have a local reader and forward
509 * and a couple of other messy ones. The normal one is tcpdumping
510 * a packet thats being forwarded.
511 */
512
513/**
514 * skb_unshare - make a copy of a shared buffer
515 * @skb: buffer to check
516 * @pri: priority for memory allocation
517 *
518 * If the socket buffer is a clone then this function creates a new
519 * copy of the data, drops a reference count on the old copy and returns
520 * the new copy with the reference count at 1. If the buffer is not a clone
521 * the original buffer is returned. When called with a spinlock held or
522 * from interrupt state @pri must be %GFP_ATOMIC
523 *
524 * %NULL is returned on a memory allocation failure.
525 */
526static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
527 gfp_t pri)
528{
529 might_sleep_if(pri & __GFP_WAIT);
530 if (skb_cloned(skb)) {
531 struct sk_buff *nskb = skb_copy(skb, pri);
532 kfree_skb(skb); /* Free our shared copy */
533 skb = nskb;
534 }
535 return skb;
536}
537
538/**
539 * skb_peek
540 * @list_: list to peek at
541 *
542 * Peek an &sk_buff. Unlike most other operations you _MUST_
543 * be careful with this one. A peek leaves the buffer on the
544 * list and someone else may run off with it. You must hold
545 * the appropriate locks or have a private queue to do this.
546 *
547 * Returns %NULL for an empty list or a pointer to the head element.
548 * The reference count is not incremented and the reference is therefore
549 * volatile. Use with caution.
550 */
551static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
552{
553 struct sk_buff *list = ((struct sk_buff *)list_)->next;
554 if (list == (struct sk_buff *)list_)
555 list = NULL;
556 return list;
557}
558
559/**
560 * skb_peek_tail
561 * @list_: list to peek at
562 *
563 * Peek an &sk_buff. Unlike most other operations you _MUST_
564 * be careful with this one. A peek leaves the buffer on the
565 * list and someone else may run off with it. You must hold
566 * the appropriate locks or have a private queue to do this.
567 *
568 * Returns %NULL for an empty list or a pointer to the tail element.
569 * The reference count is not incremented and the reference is therefore
570 * volatile. Use with caution.
571 */
572static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
573{
574 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
575 if (list == (struct sk_buff *)list_)
576 list = NULL;
577 return list;
578}
579
580/**
581 * skb_queue_len - get queue length
582 * @list_: list to measure
583 *
584 * Return the length of an &sk_buff queue.
585 */
586static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
587{
588 return list_->qlen;
589}
590
591static inline void skb_queue_head_init(struct sk_buff_head *list)
592{
593 spin_lock_init(&list->lock);
594 list->prev = list->next = (struct sk_buff *)list;
595 list->qlen = 0;
596}
597
598/*
599 * Insert an sk_buff at the start of a list.
600 *
601 * The "__skb_xxxx()" functions are the non-atomic ones that
602 * can only be called with interrupts disabled.
603 */
604
605/**
606 * __skb_queue_after - queue a buffer at the list head
607 * @list: list to use
608 * @prev: place after this buffer
609 * @newsk: buffer to queue
610 *
611 * Queue a buffer int the middle of a list. This function takes no locks
612 * and you must therefore hold required locks before calling it.
613 *
614 * A buffer cannot be placed on two lists at the same time.
615 */
616static inline void __skb_queue_after(struct sk_buff_head *list,
617 struct sk_buff *prev,
618 struct sk_buff *newsk)
619{
620 struct sk_buff *next;
621 list->qlen++;
622
623 next = prev->next;
624 newsk->next = next;
625 newsk->prev = prev;
626 next->prev = prev->next = newsk;
627}
628
629/**
630 * __skb_queue_head - queue a buffer at the list head
631 * @list: list to use
632 * @newsk: buffer to queue
633 *
634 * Queue a buffer at the start of a list. This function takes no locks
635 * and you must therefore hold required locks before calling it.
636 *
637 * A buffer cannot be placed on two lists at the same time.
638 */
639extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
640static inline void __skb_queue_head(struct sk_buff_head *list,
641 struct sk_buff *newsk)
642{
643 __skb_queue_after(list, (struct sk_buff *)list, newsk);
644}
645
646/**
647 * __skb_queue_tail - queue a buffer at the list tail
648 * @list: list to use
649 * @newsk: buffer to queue
650 *
651 * Queue a buffer at the end of a list. This function takes no locks
652 * and you must therefore hold required locks before calling it.
653 *
654 * A buffer cannot be placed on two lists at the same time.
655 */
656extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
657static inline void __skb_queue_tail(struct sk_buff_head *list,
658 struct sk_buff *newsk)
659{
660 struct sk_buff *prev, *next;
661
662 list->qlen++;
663 next = (struct sk_buff *)list;
664 prev = next->prev;
665 newsk->next = next;
666 newsk->prev = prev;
667 next->prev = prev->next = newsk;
668}
669
670
671/**
672 * __skb_dequeue - remove from the head of the queue
673 * @list: list to dequeue from
674 *
675 * Remove the head of the list. This function does not take any locks
676 * so must be used with appropriate locks held only. The head item is
677 * returned or %NULL if the list is empty.
678 */
679extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
680static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
681{
682 struct sk_buff *next, *prev, *result;
683
684 prev = (struct sk_buff *) list;
685 next = prev->next;
686 result = NULL;
687 if (next != prev) {
688 result = next;
689 next = next->next;
690 list->qlen--;
691 next->prev = prev;
692 prev->next = next;
693 result->next = result->prev = NULL;
694 }
695 return result;
696}
697
698
699/*
700 * Insert a packet on a list.
701 */
702extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
703static inline void __skb_insert(struct sk_buff *newsk,
704 struct sk_buff *prev, struct sk_buff *next,
705 struct sk_buff_head *list)
706{
707 newsk->next = next;
708 newsk->prev = prev;
709 next->prev = prev->next = newsk;
710 list->qlen++;
711}
712
713/*
714 * Place a packet after a given packet in a list.
715 */
716extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
717static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
718{
719 __skb_insert(newsk, old, old->next, list);
720}
721
722/*
723 * remove sk_buff from list. _Must_ be called atomically, and with
724 * the list known..
725 */
726extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
727static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
728{
729 struct sk_buff *next, *prev;
730
731 list->qlen--;
732 next = skb->next;
733 prev = skb->prev;
734 skb->next = skb->prev = NULL;
735 next->prev = prev;
736 prev->next = next;
737}
738
739
740/* XXX: more streamlined implementation */
741
742/**
743 * __skb_dequeue_tail - remove from the tail of the queue
744 * @list: list to dequeue from
745 *
746 * Remove the tail of the list. This function does not take any locks
747 * so must be used with appropriate locks held only. The tail item is
748 * returned or %NULL if the list is empty.
749 */
750extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
751static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
752{
753 struct sk_buff *skb = skb_peek_tail(list);
754 if (skb)
755 __skb_unlink(skb, list);
756 return skb;
757}
758
759
760static inline int skb_is_nonlinear(const struct sk_buff *skb)
761{
762 return skb->data_len;
763}
764
765static inline unsigned int skb_headlen(const struct sk_buff *skb)
766{
767 return skb->len - skb->data_len;
768}
769
770static inline int skb_pagelen(const struct sk_buff *skb)
771{
772 int i, len = 0;
773
774 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
775 len += skb_shinfo(skb)->frags[i].size;
776 return len + skb_headlen(skb);
777}
778
779static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
780 struct page *page, int off, int size)
781{
782 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
783
784 frag->page = page;
785 frag->page_offset = off;
786 frag->size = size;
787 skb_shinfo(skb)->nr_frags = i + 1;
788}
789
790#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
791#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
792#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
793
794/*
795 * Add data to an sk_buff
796 */
797static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
798{
799 unsigned char *tmp = skb->tail;
800 SKB_LINEAR_ASSERT(skb);
801 skb->tail += len;
802 skb->len += len;
803 return tmp;
804}
805
806/**
807 * skb_put - add data to a buffer
808 * @skb: buffer to use
809 * @len: amount of data to add
810 *
811 * This function extends the used data area of the buffer. If this would
812 * exceed the total buffer size the kernel will panic. A pointer to the
813 * first byte of the extra data is returned.
814 */
815static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
816{
817 unsigned char *tmp = skb->tail;
818 SKB_LINEAR_ASSERT(skb);
819 skb->tail += len;
820 skb->len += len;
821 if (unlikely(skb->tail>skb->end))
822 skb_over_panic(skb, len, current_text_addr());
823 return tmp;
824}
825
826static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
827{
828 skb->data -= len;
829 skb->len += len;
830 return skb->data;
831}
832
833/**
834 * skb_push - add data to the start of a buffer
835 * @skb: buffer to use
836 * @len: amount of data to add
837 *
838 * This function extends the used data area of the buffer at the buffer
839 * start. If this would exceed the total buffer headroom the kernel will
840 * panic. A pointer to the first byte of the extra data is returned.
841 */
842static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
843{
844 skb->data -= len;
845 skb->len += len;
846 if (unlikely(skb->data<skb->head))
847 skb_under_panic(skb, len, current_text_addr());
848 return skb->data;
849}
850
851static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
852{
853 skb->len -= len;
854 BUG_ON(skb->len < skb->data_len);
855 return skb->data += len;
856}
857
858/**
859 * skb_pull - remove data from the start of a buffer
860 * @skb: buffer to use
861 * @len: amount of data to remove
862 *
863 * This function removes data from the start of a buffer, returning
864 * the memory to the headroom. A pointer to the next data in the buffer
865 * is returned. Once the data has been pulled future pushes will overwrite
866 * the old data.
867 */
868static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
869{
870 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
871}
872
873extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
874
875static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
876{
877 if (len > skb_headlen(skb) &&
878 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
879 return NULL;
880 skb->len -= len;
881 return skb->data += len;
882}
883
884static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
885{
886 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
887}
888
889static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
890{
891 if (likely(len <= skb_headlen(skb)))
892 return 1;
893 if (unlikely(len > skb->len))
894 return 0;
895 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
896}
897
898/**
899 * skb_headroom - bytes at buffer head
900 * @skb: buffer to check
901 *
902 * Return the number of bytes of free space at the head of an &sk_buff.
903 */
904static inline int skb_headroom(const struct sk_buff *skb)
905{
906 return skb->data - skb->head;
907}
908
909/**
910 * skb_tailroom - bytes at buffer end
911 * @skb: buffer to check
912 *
913 * Return the number of bytes of free space at the tail of an sk_buff
914 */
915static inline int skb_tailroom(const struct sk_buff *skb)
916{
917 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
918}
919
920/**
921 * skb_reserve - adjust headroom
922 * @skb: buffer to alter
923 * @len: bytes to move
924 *
925 * Increase the headroom of an empty &sk_buff by reducing the tail
926 * room. This is only allowed for an empty buffer.
927 */
928static inline void skb_reserve(struct sk_buff *skb, int len)
929{
930 skb->data += len;
931 skb->tail += len;
932}
933
934/*
935 * CPUs often take a performance hit when accessing unaligned memory
936 * locations. The actual performance hit varies, it can be small if the
937 * hardware handles it or large if we have to take an exception and fix it
938 * in software.
939 *
940 * Since an ethernet header is 14 bytes network drivers often end up with
941 * the IP header at an unaligned offset. The IP header can be aligned by
942 * shifting the start of the packet by 2 bytes. Drivers should do this
943 * with:
944 *
945 * skb_reserve(NET_IP_ALIGN);
946 *
947 * The downside to this alignment of the IP header is that the DMA is now
948 * unaligned. On some architectures the cost of an unaligned DMA is high
949 * and this cost outweighs the gains made by aligning the IP header.
950 *
951 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
952 * to be overridden.
953 */
954#ifndef NET_IP_ALIGN
955#define NET_IP_ALIGN 2
956#endif
957
958/*
959 * The networking layer reserves some headroom in skb data (via
960 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
961 * the header has to grow. In the default case, if the header has to grow
962 * 16 bytes or less we avoid the reallocation.
963 *
964 * Unfortunately this headroom changes the DMA alignment of the resulting
965 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
966 * on some architectures. An architecture can override this value,
967 * perhaps setting it to a cacheline in size (since that will maintain
968 * cacheline alignment of the DMA). It must be a power of 2.
969 *
970 * Various parts of the networking layer expect at least 16 bytes of
971 * headroom, you should not reduce this.
972 */
973#ifndef NET_SKB_PAD
974#define NET_SKB_PAD 16
975#endif
976
977extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
978
979static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
980{
981 if (unlikely(skb->data_len)) {
982 WARN_ON(1);
983 return;
984 }
985 skb->len = len;
986 skb->tail = skb->data + len;
987}
988
989/**
990 * skb_trim - remove end from a buffer
991 * @skb: buffer to alter
992 * @len: new length
993 *
994 * Cut the length of a buffer down by removing data from the tail. If
995 * the buffer is already under the length specified it is not modified.
996 * The skb must be linear.
997 */
998static inline void skb_trim(struct sk_buff *skb, unsigned int len)
999{
1000 if (skb->len > len)
1001 __skb_trim(skb, len);
1002}
1003
1004
1005static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1006{
1007 if (skb->data_len)
1008 return ___pskb_trim(skb, len);
1009 __skb_trim(skb, len);
1010 return 0;
1011}
1012
1013static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1014{
1015 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1016}
1017
1018/**
1019 * skb_orphan - orphan a buffer
1020 * @skb: buffer to orphan
1021 *
1022 * If a buffer currently has an owner then we call the owner's
1023 * destructor function and make the @skb unowned. The buffer continues
1024 * to exist but is no longer charged to its former owner.
1025 */
1026static inline void skb_orphan(struct sk_buff *skb)
1027{
1028 if (skb->destructor)
1029 skb->destructor(skb);
1030 skb->destructor = NULL;
1031 skb->sk = NULL;
1032}
1033
1034/**
1035 * __skb_queue_purge - empty a list
1036 * @list: list to empty
1037 *
1038 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1039 * the list and one reference dropped. This function does not take the
1040 * list lock and the caller must hold the relevant locks to use it.
1041 */
1042extern void skb_queue_purge(struct sk_buff_head *list);
1043static inline void __skb_queue_purge(struct sk_buff_head *list)
1044{
1045 struct sk_buff *skb;
1046 while ((skb = __skb_dequeue(list)) != NULL)
1047 kfree_skb(skb);
1048}
1049
1050#ifndef CONFIG_HAVE_ARCH_DEV_ALLOC_SKB
1051/**
1052 * __dev_alloc_skb - allocate an skbuff for sending
1053 * @length: length to allocate
1054 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1055 *
1056 * Allocate a new &sk_buff and assign it a usage count of one. The
1057 * buffer has unspecified headroom built in. Users should allocate
1058 * the headroom they think they need without accounting for the
1059 * built in space. The built in space is used for optimisations.
1060 *
1061 * %NULL is returned in there is no free memory.
1062 */
1063static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1064 gfp_t gfp_mask)
1065{
1066 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1067 if (likely(skb))
1068 skb_reserve(skb, NET_SKB_PAD);
1069 return skb;
1070}
1071#else
1072extern struct sk_buff *__dev_alloc_skb(unsigned int length, int gfp_mask);
1073#endif
1074
1075/**
1076 * dev_alloc_skb - allocate an skbuff for sending
1077 * @length: length to allocate
1078 *
1079 * Allocate a new &sk_buff and assign it a usage count of one. The
1080 * buffer has unspecified headroom built in. Users should allocate
1081 * the headroom they think they need without accounting for the
1082 * built in space. The built in space is used for optimisations.
1083 *
1084 * %NULL is returned in there is no free memory. Although this function
1085 * allocates memory it can be called from an interrupt.
1086 */
1087static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1088{
1089 return __dev_alloc_skb(length, GFP_ATOMIC);
1090}
1091
1092/**
1093 * skb_cow - copy header of skb when it is required
1094 * @skb: buffer to cow
1095 * @headroom: needed headroom
1096 *
1097 * If the skb passed lacks sufficient headroom or its data part
1098 * is shared, data is reallocated. If reallocation fails, an error
1099 * is returned and original skb is not changed.
1100 *
1101 * The result is skb with writable area skb->head...skb->tail
1102 * and at least @headroom of space at head.
1103 */
1104static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1105{
1106 int delta = (headroom > NET_SKB_PAD ? headroom : NET_SKB_PAD) -
1107 skb_headroom(skb);
1108
1109 if (delta < 0)
1110 delta = 0;
1111
1112 if (delta || skb_cloned(skb))
1113 return pskb_expand_head(skb, (delta + (NET_SKB_PAD-1)) &
1114 ~(NET_SKB_PAD-1), 0, GFP_ATOMIC);
1115 return 0;
1116}
1117
1118/**
1119 * skb_padto - pad an skbuff up to a minimal size
1120 * @skb: buffer to pad
1121 * @len: minimal length
1122 *
1123 * Pads up a buffer to ensure the trailing bytes exist and are
1124 * blanked. If the buffer already contains sufficient data it
1125 * is untouched. Otherwise it is extended. Returns zero on
1126 * success. The skb is freed on error.
1127 */
1128
1129static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1130{
1131 unsigned int size = skb->len;
1132 if (likely(size >= len))
1133 return 0;
1134 return skb_pad(skb, len-size);
1135}
1136
1137static inline int skb_add_data(struct sk_buff *skb,
1138 char __user *from, int copy)
1139{
1140 const int off = skb->len;
1141
1142 if (skb->ip_summed == CHECKSUM_NONE) {
1143 int err = 0;
1144 unsigned int csum = csum_and_copy_from_user(from,
1145 skb_put(skb, copy),
1146 copy, 0, &err);
1147 if (!err) {
1148 skb->csum = csum_block_add(skb->csum, csum, off);
1149 return 0;
1150 }
1151 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1152 return 0;
1153
1154 __skb_trim(skb, off);
1155 return -EFAULT;
1156}
1157
1158static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1159 struct page *page, int off)
1160{
1161 if (i) {
1162 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1163
1164 return page == frag->page &&
1165 off == frag->page_offset + frag->size;
1166 }
1167 return 0;
1168}
1169
1170static inline int __skb_linearize(struct sk_buff *skb)
1171{
1172 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1173}
1174
1175/**
1176 * skb_linearize - convert paged skb to linear one
1177 * @skb: buffer to linarize
1178 *
1179 * If there is no free memory -ENOMEM is returned, otherwise zero
1180 * is returned and the old skb data released.
1181 */
1182static inline int skb_linearize(struct sk_buff *skb)
1183{
1184 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1185}
1186
1187/**
1188 * skb_linearize_cow - make sure skb is linear and writable
1189 * @skb: buffer to process
1190 *
1191 * If there is no free memory -ENOMEM is returned, otherwise zero
1192 * is returned and the old skb data released.
1193 */
1194static inline int skb_linearize_cow(struct sk_buff *skb)
1195{
1196 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1197 __skb_linearize(skb) : 0;
1198}
1199
1200/**
1201 * skb_postpull_rcsum - update checksum for received skb after pull
1202 * @skb: buffer to update
1203 * @start: start of data before pull
1204 * @len: length of data pulled
1205 *
1206 * After doing a pull on a received packet, you need to call this to
1207 * update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE
1208 * so that it can be recomputed from scratch.
1209 */
1210
1211static inline void skb_postpull_rcsum(struct sk_buff *skb,
1212 const void *start, unsigned int len)
1213{
1214 if (skb->ip_summed == CHECKSUM_HW)
1215 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1216}
1217
1218unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1219
1220/**
1221 * pskb_trim_rcsum - trim received skb and update checksum
1222 * @skb: buffer to trim
1223 * @len: new length
1224 *
1225 * This is exactly the same as pskb_trim except that it ensures the
1226 * checksum of received packets are still valid after the operation.
1227 */
1228
1229static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1230{
1231 if (likely(len >= skb->len))
1232 return 0;
1233 if (skb->ip_summed == CHECKSUM_HW)
1234 skb->ip_summed = CHECKSUM_NONE;
1235 return __pskb_trim(skb, len);
1236}
1237
1238static inline void *kmap_skb_frag(const skb_frag_t *frag)
1239{
1240#ifdef CONFIG_HIGHMEM
1241 BUG_ON(in_irq());
1242
1243 local_bh_disable();
1244#endif
1245 return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
1246}
1247
1248static inline void kunmap_skb_frag(void *vaddr)
1249{
1250 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1251#ifdef CONFIG_HIGHMEM
1252 local_bh_enable();
1253#endif
1254}
1255
1256#define skb_queue_walk(queue, skb) \
1257 for (skb = (queue)->next; \
1258 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1259 skb = skb->next)
1260
1261#define skb_queue_reverse_walk(queue, skb) \
1262 for (skb = (queue)->prev; \
1263 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1264 skb = skb->prev)
1265
1266
1267extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1268 int noblock, int *err);
1269extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1270 struct poll_table_struct *wait);
1271extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1272 int offset, struct iovec *to,
1273 int size);
1274extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1275 int hlen,
1276 struct iovec *iov);
1277extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1278extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1279 unsigned int flags);
1280extern unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1281 int len, unsigned int csum);
1282extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1283 void *to, int len);
1284extern int skb_store_bits(const struct sk_buff *skb, int offset,
1285 void *from, int len);
1286extern unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb,
1287 int offset, u8 *to, int len,
1288 unsigned int csum);
1289extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1290extern void skb_split(struct sk_buff *skb,
1291 struct sk_buff *skb1, const u32 len);
1292
1293extern void skb_release_data(struct sk_buff *skb);
1294
1295static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1296 int len, void *buffer)
1297{
1298 int hlen = skb_headlen(skb);
1299
1300 if (hlen - offset >= len)
1301 return skb->data + offset;
1302
1303 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1304 return NULL;
1305
1306 return buffer;
1307}
1308
1309extern void skb_init(void);
1310extern void skb_add_mtu(int mtu);
1311
1312/**
1313 * skb_get_timestamp - get timestamp from a skb
1314 * @skb: skb to get stamp from
1315 * @stamp: pointer to struct timeval to store stamp in
1316 *
1317 * Timestamps are stored in the skb as offsets to a base timestamp.
1318 * This function converts the offset back to a struct timeval and stores
1319 * it in stamp.
1320 */
1321static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1322{
1323 stamp->tv_sec = skb->tstamp.off_sec;
1324 stamp->tv_usec = skb->tstamp.off_usec;
1325}
1326
1327/**
1328 * skb_set_timestamp - set timestamp of a skb
1329 * @skb: skb to set stamp of
1330 * @stamp: pointer to struct timeval to get stamp from
1331 *
1332 * Timestamps are stored in the skb as offsets to a base timestamp.
1333 * This function converts a struct timeval to an offset and stores
1334 * it in the skb.
1335 */
1336static inline void skb_set_timestamp(struct sk_buff *skb, const struct timeval *stamp)
1337{
1338 skb->tstamp.off_sec = stamp->tv_sec;
1339 skb->tstamp.off_usec = stamp->tv_usec;
1340}
1341
1342extern void __net_timestamp(struct sk_buff *skb);
1343
1344extern unsigned int __skb_checksum_complete(struct sk_buff *skb);
1345
1346/**
1347 * skb_checksum_complete - Calculate checksum of an entire packet
1348 * @skb: packet to process
1349 *
1350 * This function calculates the checksum over the entire packet plus
1351 * the value of skb->csum. The latter can be used to supply the
1352 * checksum of a pseudo header as used by TCP/UDP. It returns the
1353 * checksum.
1354 *
1355 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1356 * this function can be used to verify that checksum on received
1357 * packets. In that case the function should return zero if the
1358 * checksum is correct. In particular, this function will return zero
1359 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1360 * hardware has already verified the correctness of the checksum.
1361 */
1362static inline unsigned int skb_checksum_complete(struct sk_buff *skb)
1363{
1364 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
1365 __skb_checksum_complete(skb);
1366}
1367
1368#ifdef CONFIG_NETFILTER
1369static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1370{
1371 if (nfct && atomic_dec_and_test(&nfct->use))
1372 nfct->destroy(nfct);
1373}
1374static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1375{
1376 if (nfct)
1377 atomic_inc(&nfct->use);
1378}
1379#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1380static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1381{
1382 if (skb)
1383 atomic_inc(&skb->users);
1384}
1385static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1386{
1387 if (skb)
1388 kfree_skb(skb);
1389}
1390#endif
1391#ifdef CONFIG_BRIDGE_NETFILTER
1392static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1393{
1394 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1395 kfree(nf_bridge);
1396}
1397static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1398{
1399 if (nf_bridge)
1400 atomic_inc(&nf_bridge->use);
1401}
1402#endif /* CONFIG_BRIDGE_NETFILTER */
1403static inline void nf_reset(struct sk_buff *skb)
1404{
1405 nf_conntrack_put(skb->nfct);
1406 skb->nfct = NULL;
1407#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1408 nf_conntrack_put_reasm(skb->nfct_reasm);
1409 skb->nfct_reasm = NULL;
1410#endif
1411#ifdef CONFIG_BRIDGE_NETFILTER
1412 nf_bridge_put(skb->nf_bridge);
1413 skb->nf_bridge = NULL;
1414#endif
1415}
1416
1417#else /* CONFIG_NETFILTER */
1418static inline void nf_reset(struct sk_buff *skb) {}
1419#endif /* CONFIG_NETFILTER */
1420
1421#ifdef CONFIG_NETWORK_SECMARK
1422static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1423{
1424 to->secmark = from->secmark;
1425}
1426
1427static inline void skb_init_secmark(struct sk_buff *skb)
1428{
1429 skb->secmark = 0;
1430}
1431#else
1432static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1433{ }
1434
1435static inline void skb_init_secmark(struct sk_buff *skb)
1436{ }
1437#endif
1438
1439#endif /* __KERNEL__ */
1440#endif /* _LINUX_SKBUFF_H */