]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - include/linux/skbuff.h
[CREDITS]: Update Arnaldo entry
[net-next-2.6.git] / include / linux / skbuff.h
... / ...
CommitLineData
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
17#include <linux/kernel.h>
18#include <linux/compiler.h>
19#include <linux/time.h>
20#include <linux/cache.h>
21
22#include <asm/atomic.h>
23#include <asm/types.h>
24#include <linux/spinlock.h>
25#include <linux/net.h>
26#include <linux/textsearch.h>
27#include <net/checksum.h>
28#include <linux/rcupdate.h>
29#include <linux/dmaengine.h>
30#include <linux/hrtimer.h>
31
32#define HAVE_ALLOC_SKB /* For the drivers to know */
33#define HAVE_ALIGNABLE_SKB /* Ditto 8) */
34
35#define CHECKSUM_NONE 0
36#define CHECKSUM_PARTIAL 1
37#define CHECKSUM_UNNECESSARY 2
38#define CHECKSUM_COMPLETE 3
39
40#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
41 ~(SMP_CACHE_BYTES - 1))
42#define SKB_WITH_OVERHEAD(X) \
43 (((X) - sizeof(struct skb_shared_info)) & \
44 ~(SMP_CACHE_BYTES - 1))
45#define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
49
50/* A. Checksumming of received packets by device.
51 *
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
54 *
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
60 *
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * not UNNECESSARY.
66 *
67 * B. Checksumming on output.
68 *
69 * NONE: skb is checksummed by protocol or csum is not required.
70 *
71 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
72 * from skb->transport_header to the end and to record the checksum
73 * at skb->transport_header + skb->csum.
74 *
75 * Device must show its capabilities in dev->features, set
76 * at device setup time.
77 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
78 * everything.
79 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
80 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
81 * TCP/UDP over IPv4. Sigh. Vendors like this
82 * way by an unknown reason. Though, see comment above
83 * about CHECKSUM_UNNECESSARY. 8)
84 *
85 * Any questions? No questions, good. --ANK
86 */
87
88struct net_device;
89
90#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
91struct nf_conntrack {
92 atomic_t use;
93};
94#endif
95
96#ifdef CONFIG_BRIDGE_NETFILTER
97struct nf_bridge_info {
98 atomic_t use;
99 struct net_device *physindev;
100 struct net_device *physoutdev;
101#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
102 struct net_device *netoutdev;
103#endif
104 unsigned int mask;
105 unsigned long data[32 / sizeof(unsigned long)];
106};
107#endif
108
109struct sk_buff_head {
110 /* These two members must be first. */
111 struct sk_buff *next;
112 struct sk_buff *prev;
113
114 __u32 qlen;
115 spinlock_t lock;
116};
117
118struct sk_buff;
119
120/* To allow 64K frame to be packed as single skb without frag_list */
121#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
122
123typedef struct skb_frag_struct skb_frag_t;
124
125struct skb_frag_struct {
126 struct page *page;
127 __u16 page_offset;
128 __u16 size;
129};
130
131/* This data is invariant across clones and lives at
132 * the end of the header data, ie. at skb->end.
133 */
134struct skb_shared_info {
135 atomic_t dataref;
136 unsigned short nr_frags;
137 unsigned short gso_size;
138 /* Warning: this field is not always filled in (UFO)! */
139 unsigned short gso_segs;
140 unsigned short gso_type;
141 __be32 ip6_frag_id;
142 struct sk_buff *frag_list;
143 skb_frag_t frags[MAX_SKB_FRAGS];
144};
145
146/* We divide dataref into two halves. The higher 16 bits hold references
147 * to the payload part of skb->data. The lower 16 bits hold references to
148 * the entire skb->data. It is up to the users of the skb to agree on
149 * where the payload starts.
150 *
151 * All users must obey the rule that the skb->data reference count must be
152 * greater than or equal to the payload reference count.
153 *
154 * Holding a reference to the payload part means that the user does not
155 * care about modifications to the header part of skb->data.
156 */
157#define SKB_DATAREF_SHIFT 16
158#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
159
160
161enum {
162 SKB_FCLONE_UNAVAILABLE,
163 SKB_FCLONE_ORIG,
164 SKB_FCLONE_CLONE,
165};
166
167enum {
168 SKB_GSO_TCPV4 = 1 << 0,
169 SKB_GSO_UDP = 1 << 1,
170
171 /* This indicates the skb is from an untrusted source. */
172 SKB_GSO_DODGY = 1 << 2,
173
174 /* This indicates the tcp segment has CWR set. */
175 SKB_GSO_TCP_ECN = 1 << 3,
176
177 SKB_GSO_TCPV6 = 1 << 4,
178};
179
180#if BITS_PER_LONG > 32
181#define NET_SKBUFF_DATA_USES_OFFSET 1
182#endif
183
184#ifdef NET_SKBUFF_DATA_USES_OFFSET
185typedef unsigned int sk_buff_data_t;
186#else
187typedef unsigned char *sk_buff_data_t;
188#endif
189
190/**
191 * struct sk_buff - socket buffer
192 * @next: Next buffer in list
193 * @prev: Previous buffer in list
194 * @sk: Socket we are owned by
195 * @tstamp: Time we arrived
196 * @dev: Device we arrived on/are leaving by
197 * @iif: ifindex of device we arrived on
198 * @h: Transport layer header
199 * @network_header: Network layer header
200 * @mac_header: Link layer header
201 * @dst: destination entry
202 * @sp: the security path, used for xfrm
203 * @cb: Control buffer. Free for use by every layer. Put private vars here
204 * @len: Length of actual data
205 * @data_len: Data length
206 * @mac_len: Length of link layer header
207 * @csum: Checksum
208 * @local_df: allow local fragmentation
209 * @cloned: Head may be cloned (check refcnt to be sure)
210 * @nohdr: Payload reference only, must not modify header
211 * @pkt_type: Packet class
212 * @fclone: skbuff clone status
213 * @ip_summed: Driver fed us an IP checksum
214 * @priority: Packet queueing priority
215 * @users: User count - see {datagram,tcp}.c
216 * @protocol: Packet protocol from driver
217 * @truesize: Buffer size
218 * @head: Head of buffer
219 * @data: Data head pointer
220 * @tail: Tail pointer
221 * @end: End pointer
222 * @destructor: Destruct function
223 * @mark: Generic packet mark
224 * @nfct: Associated connection, if any
225 * @ipvs_property: skbuff is owned by ipvs
226 * @nfctinfo: Relationship of this skb to the connection
227 * @nfct_reasm: netfilter conntrack re-assembly pointer
228 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
229 * @tc_index: Traffic control index
230 * @tc_verd: traffic control verdict
231 * @dma_cookie: a cookie to one of several possible DMA operations
232 * done by skb DMA functions
233 * @secmark: security marking
234 */
235
236struct sk_buff {
237 /* These two members must be first. */
238 struct sk_buff *next;
239 struct sk_buff *prev;
240
241 struct sock *sk;
242 ktime_t tstamp;
243 struct net_device *dev;
244 int iif;
245 /* 4 byte hole on 64 bit*/
246
247 struct dst_entry *dst;
248 struct sec_path *sp;
249
250 /*
251 * This is the control buffer. It is free to use for every
252 * layer. Please put your private variables there. If you
253 * want to keep them across layers you have to do a skb_clone()
254 * first. This is owned by whoever has the skb queued ATM.
255 */
256 char cb[48];
257
258 unsigned int len,
259 data_len,
260 mac_len;
261 union {
262 __wsum csum;
263 __u32 csum_offset;
264 };
265 __u32 priority;
266 __u8 local_df:1,
267 cloned:1,
268 ip_summed:2,
269 nohdr:1,
270 nfctinfo:3;
271 __u8 pkt_type:3,
272 fclone:2,
273 ipvs_property:1;
274 __be16 protocol;
275
276 void (*destructor)(struct sk_buff *skb);
277#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
278 struct nf_conntrack *nfct;
279 struct sk_buff *nfct_reasm;
280#endif
281#ifdef CONFIG_BRIDGE_NETFILTER
282 struct nf_bridge_info *nf_bridge;
283#endif
284#ifdef CONFIG_NET_SCHED
285 __u16 tc_index; /* traffic control index */
286#ifdef CONFIG_NET_CLS_ACT
287 __u16 tc_verd; /* traffic control verdict */
288#endif
289#endif
290#ifdef CONFIG_NET_DMA
291 dma_cookie_t dma_cookie;
292#endif
293#ifdef CONFIG_NETWORK_SECMARK
294 __u32 secmark;
295#endif
296
297 __u32 mark;
298
299 sk_buff_data_t transport_header;
300 sk_buff_data_t network_header;
301 sk_buff_data_t mac_header;
302 /* These elements must be at the end, see alloc_skb() for details. */
303 sk_buff_data_t tail;
304 sk_buff_data_t end;
305 unsigned char *head,
306 *data;
307 unsigned int truesize;
308 atomic_t users;
309};
310
311#ifdef __KERNEL__
312/*
313 * Handling routines are only of interest to the kernel
314 */
315#include <linux/slab.h>
316
317#include <asm/system.h>
318
319extern void kfree_skb(struct sk_buff *skb);
320extern void __kfree_skb(struct sk_buff *skb);
321extern struct sk_buff *__alloc_skb(unsigned int size,
322 gfp_t priority, int fclone, int node);
323static inline struct sk_buff *alloc_skb(unsigned int size,
324 gfp_t priority)
325{
326 return __alloc_skb(size, priority, 0, -1);
327}
328
329static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
330 gfp_t priority)
331{
332 return __alloc_skb(size, priority, 1, -1);
333}
334
335extern void kfree_skbmem(struct sk_buff *skb);
336extern struct sk_buff *skb_clone(struct sk_buff *skb,
337 gfp_t priority);
338extern struct sk_buff *skb_copy(const struct sk_buff *skb,
339 gfp_t priority);
340extern struct sk_buff *pskb_copy(struct sk_buff *skb,
341 gfp_t gfp_mask);
342extern int pskb_expand_head(struct sk_buff *skb,
343 int nhead, int ntail,
344 gfp_t gfp_mask);
345extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
346 unsigned int headroom);
347extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
348 int newheadroom, int newtailroom,
349 gfp_t priority);
350extern int skb_pad(struct sk_buff *skb, int pad);
351#define dev_kfree_skb(a) kfree_skb(a)
352extern void skb_over_panic(struct sk_buff *skb, int len,
353 void *here);
354extern void skb_under_panic(struct sk_buff *skb, int len,
355 void *here);
356extern void skb_truesize_bug(struct sk_buff *skb);
357
358static inline void skb_truesize_check(struct sk_buff *skb)
359{
360 if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
361 skb_truesize_bug(skb);
362}
363
364extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
365 int getfrag(void *from, char *to, int offset,
366 int len,int odd, struct sk_buff *skb),
367 void *from, int length);
368
369struct skb_seq_state
370{
371 __u32 lower_offset;
372 __u32 upper_offset;
373 __u32 frag_idx;
374 __u32 stepped_offset;
375 struct sk_buff *root_skb;
376 struct sk_buff *cur_skb;
377 __u8 *frag_data;
378};
379
380extern void skb_prepare_seq_read(struct sk_buff *skb,
381 unsigned int from, unsigned int to,
382 struct skb_seq_state *st);
383extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
384 struct skb_seq_state *st);
385extern void skb_abort_seq_read(struct skb_seq_state *st);
386
387extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
388 unsigned int to, struct ts_config *config,
389 struct ts_state *state);
390
391#ifdef NET_SKBUFF_DATA_USES_OFFSET
392static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
393{
394 return skb->head + skb->end;
395}
396#else
397static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
398{
399 return skb->end;
400}
401#endif
402
403/* Internal */
404#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
405
406/**
407 * skb_queue_empty - check if a queue is empty
408 * @list: queue head
409 *
410 * Returns true if the queue is empty, false otherwise.
411 */
412static inline int skb_queue_empty(const struct sk_buff_head *list)
413{
414 return list->next == (struct sk_buff *)list;
415}
416
417/**
418 * skb_get - reference buffer
419 * @skb: buffer to reference
420 *
421 * Makes another reference to a socket buffer and returns a pointer
422 * to the buffer.
423 */
424static inline struct sk_buff *skb_get(struct sk_buff *skb)
425{
426 atomic_inc(&skb->users);
427 return skb;
428}
429
430/*
431 * If users == 1, we are the only owner and are can avoid redundant
432 * atomic change.
433 */
434
435/**
436 * skb_cloned - is the buffer a clone
437 * @skb: buffer to check
438 *
439 * Returns true if the buffer was generated with skb_clone() and is
440 * one of multiple shared copies of the buffer. Cloned buffers are
441 * shared data so must not be written to under normal circumstances.
442 */
443static inline int skb_cloned(const struct sk_buff *skb)
444{
445 return skb->cloned &&
446 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
447}
448
449/**
450 * skb_header_cloned - is the header a clone
451 * @skb: buffer to check
452 *
453 * Returns true if modifying the header part of the buffer requires
454 * the data to be copied.
455 */
456static inline int skb_header_cloned(const struct sk_buff *skb)
457{
458 int dataref;
459
460 if (!skb->cloned)
461 return 0;
462
463 dataref = atomic_read(&skb_shinfo(skb)->dataref);
464 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
465 return dataref != 1;
466}
467
468/**
469 * skb_header_release - release reference to header
470 * @skb: buffer to operate on
471 *
472 * Drop a reference to the header part of the buffer. This is done
473 * by acquiring a payload reference. You must not read from the header
474 * part of skb->data after this.
475 */
476static inline void skb_header_release(struct sk_buff *skb)
477{
478 BUG_ON(skb->nohdr);
479 skb->nohdr = 1;
480 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
481}
482
483/**
484 * skb_shared - is the buffer shared
485 * @skb: buffer to check
486 *
487 * Returns true if more than one person has a reference to this
488 * buffer.
489 */
490static inline int skb_shared(const struct sk_buff *skb)
491{
492 return atomic_read(&skb->users) != 1;
493}
494
495/**
496 * skb_share_check - check if buffer is shared and if so clone it
497 * @skb: buffer to check
498 * @pri: priority for memory allocation
499 *
500 * If the buffer is shared the buffer is cloned and the old copy
501 * drops a reference. A new clone with a single reference is returned.
502 * If the buffer is not shared the original buffer is returned. When
503 * being called from interrupt status or with spinlocks held pri must
504 * be GFP_ATOMIC.
505 *
506 * NULL is returned on a memory allocation failure.
507 */
508static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
509 gfp_t pri)
510{
511 might_sleep_if(pri & __GFP_WAIT);
512 if (skb_shared(skb)) {
513 struct sk_buff *nskb = skb_clone(skb, pri);
514 kfree_skb(skb);
515 skb = nskb;
516 }
517 return skb;
518}
519
520/*
521 * Copy shared buffers into a new sk_buff. We effectively do COW on
522 * packets to handle cases where we have a local reader and forward
523 * and a couple of other messy ones. The normal one is tcpdumping
524 * a packet thats being forwarded.
525 */
526
527/**
528 * skb_unshare - make a copy of a shared buffer
529 * @skb: buffer to check
530 * @pri: priority for memory allocation
531 *
532 * If the socket buffer is a clone then this function creates a new
533 * copy of the data, drops a reference count on the old copy and returns
534 * the new copy with the reference count at 1. If the buffer is not a clone
535 * the original buffer is returned. When called with a spinlock held or
536 * from interrupt state @pri must be %GFP_ATOMIC
537 *
538 * %NULL is returned on a memory allocation failure.
539 */
540static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
541 gfp_t pri)
542{
543 might_sleep_if(pri & __GFP_WAIT);
544 if (skb_cloned(skb)) {
545 struct sk_buff *nskb = skb_copy(skb, pri);
546 kfree_skb(skb); /* Free our shared copy */
547 skb = nskb;
548 }
549 return skb;
550}
551
552/**
553 * skb_peek
554 * @list_: list to peek at
555 *
556 * Peek an &sk_buff. Unlike most other operations you _MUST_
557 * be careful with this one. A peek leaves the buffer on the
558 * list and someone else may run off with it. You must hold
559 * the appropriate locks or have a private queue to do this.
560 *
561 * Returns %NULL for an empty list or a pointer to the head element.
562 * The reference count is not incremented and the reference is therefore
563 * volatile. Use with caution.
564 */
565static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
566{
567 struct sk_buff *list = ((struct sk_buff *)list_)->next;
568 if (list == (struct sk_buff *)list_)
569 list = NULL;
570 return list;
571}
572
573/**
574 * skb_peek_tail
575 * @list_: list to peek at
576 *
577 * Peek an &sk_buff. Unlike most other operations you _MUST_
578 * be careful with this one. A peek leaves the buffer on the
579 * list and someone else may run off with it. You must hold
580 * the appropriate locks or have a private queue to do this.
581 *
582 * Returns %NULL for an empty list or a pointer to the tail element.
583 * The reference count is not incremented and the reference is therefore
584 * volatile. Use with caution.
585 */
586static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
587{
588 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
589 if (list == (struct sk_buff *)list_)
590 list = NULL;
591 return list;
592}
593
594/**
595 * skb_queue_len - get queue length
596 * @list_: list to measure
597 *
598 * Return the length of an &sk_buff queue.
599 */
600static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
601{
602 return list_->qlen;
603}
604
605/*
606 * This function creates a split out lock class for each invocation;
607 * this is needed for now since a whole lot of users of the skb-queue
608 * infrastructure in drivers have different locking usage (in hardirq)
609 * than the networking core (in softirq only). In the long run either the
610 * network layer or drivers should need annotation to consolidate the
611 * main types of usage into 3 classes.
612 */
613static inline void skb_queue_head_init(struct sk_buff_head *list)
614{
615 spin_lock_init(&list->lock);
616 list->prev = list->next = (struct sk_buff *)list;
617 list->qlen = 0;
618}
619
620static inline void skb_queue_head_init_class(struct sk_buff_head *list,
621 struct lock_class_key *class)
622{
623 skb_queue_head_init(list);
624 lockdep_set_class(&list->lock, class);
625}
626
627/*
628 * Insert an sk_buff at the start of a list.
629 *
630 * The "__skb_xxxx()" functions are the non-atomic ones that
631 * can only be called with interrupts disabled.
632 */
633
634/**
635 * __skb_queue_after - queue a buffer at the list head
636 * @list: list to use
637 * @prev: place after this buffer
638 * @newsk: buffer to queue
639 *
640 * Queue a buffer int the middle of a list. This function takes no locks
641 * and you must therefore hold required locks before calling it.
642 *
643 * A buffer cannot be placed on two lists at the same time.
644 */
645static inline void __skb_queue_after(struct sk_buff_head *list,
646 struct sk_buff *prev,
647 struct sk_buff *newsk)
648{
649 struct sk_buff *next;
650 list->qlen++;
651
652 next = prev->next;
653 newsk->next = next;
654 newsk->prev = prev;
655 next->prev = prev->next = newsk;
656}
657
658/**
659 * __skb_queue_head - queue a buffer at the list head
660 * @list: list to use
661 * @newsk: buffer to queue
662 *
663 * Queue a buffer at the start of a list. This function takes no locks
664 * and you must therefore hold required locks before calling it.
665 *
666 * A buffer cannot be placed on two lists at the same time.
667 */
668extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
669static inline void __skb_queue_head(struct sk_buff_head *list,
670 struct sk_buff *newsk)
671{
672 __skb_queue_after(list, (struct sk_buff *)list, newsk);
673}
674
675/**
676 * __skb_queue_tail - queue a buffer at the list tail
677 * @list: list to use
678 * @newsk: buffer to queue
679 *
680 * Queue a buffer at the end of a list. This function takes no locks
681 * and you must therefore hold required locks before calling it.
682 *
683 * A buffer cannot be placed on two lists at the same time.
684 */
685extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
686static inline void __skb_queue_tail(struct sk_buff_head *list,
687 struct sk_buff *newsk)
688{
689 struct sk_buff *prev, *next;
690
691 list->qlen++;
692 next = (struct sk_buff *)list;
693 prev = next->prev;
694 newsk->next = next;
695 newsk->prev = prev;
696 next->prev = prev->next = newsk;
697}
698
699
700/**
701 * __skb_dequeue - remove from the head of the queue
702 * @list: list to dequeue from
703 *
704 * Remove the head of the list. This function does not take any locks
705 * so must be used with appropriate locks held only. The head item is
706 * returned or %NULL if the list is empty.
707 */
708extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
709static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
710{
711 struct sk_buff *next, *prev, *result;
712
713 prev = (struct sk_buff *) list;
714 next = prev->next;
715 result = NULL;
716 if (next != prev) {
717 result = next;
718 next = next->next;
719 list->qlen--;
720 next->prev = prev;
721 prev->next = next;
722 result->next = result->prev = NULL;
723 }
724 return result;
725}
726
727
728/*
729 * Insert a packet on a list.
730 */
731extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
732static inline void __skb_insert(struct sk_buff *newsk,
733 struct sk_buff *prev, struct sk_buff *next,
734 struct sk_buff_head *list)
735{
736 newsk->next = next;
737 newsk->prev = prev;
738 next->prev = prev->next = newsk;
739 list->qlen++;
740}
741
742/*
743 * Place a packet after a given packet in a list.
744 */
745extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
746static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
747{
748 __skb_insert(newsk, old, old->next, list);
749}
750
751/*
752 * remove sk_buff from list. _Must_ be called atomically, and with
753 * the list known..
754 */
755extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
756static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
757{
758 struct sk_buff *next, *prev;
759
760 list->qlen--;
761 next = skb->next;
762 prev = skb->prev;
763 skb->next = skb->prev = NULL;
764 next->prev = prev;
765 prev->next = next;
766}
767
768
769/* XXX: more streamlined implementation */
770
771/**
772 * __skb_dequeue_tail - remove from the tail of the queue
773 * @list: list to dequeue from
774 *
775 * Remove the tail of the list. This function does not take any locks
776 * so must be used with appropriate locks held only. The tail item is
777 * returned or %NULL if the list is empty.
778 */
779extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
780static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
781{
782 struct sk_buff *skb = skb_peek_tail(list);
783 if (skb)
784 __skb_unlink(skb, list);
785 return skb;
786}
787
788
789static inline int skb_is_nonlinear(const struct sk_buff *skb)
790{
791 return skb->data_len;
792}
793
794static inline unsigned int skb_headlen(const struct sk_buff *skb)
795{
796 return skb->len - skb->data_len;
797}
798
799static inline int skb_pagelen(const struct sk_buff *skb)
800{
801 int i, len = 0;
802
803 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
804 len += skb_shinfo(skb)->frags[i].size;
805 return len + skb_headlen(skb);
806}
807
808static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
809 struct page *page, int off, int size)
810{
811 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
812
813 frag->page = page;
814 frag->page_offset = off;
815 frag->size = size;
816 skb_shinfo(skb)->nr_frags = i + 1;
817}
818
819#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
820#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
821#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
822
823#ifdef NET_SKBUFF_DATA_USES_OFFSET
824static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
825{
826 return skb->head + skb->tail;
827}
828
829static inline void skb_reset_tail_pointer(struct sk_buff *skb)
830{
831 skb->tail = skb->data - skb->head;
832}
833
834static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
835{
836 skb_reset_tail_pointer(skb);
837 skb->tail += offset;
838}
839#else /* NET_SKBUFF_DATA_USES_OFFSET */
840static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
841{
842 return skb->tail;
843}
844
845static inline void skb_reset_tail_pointer(struct sk_buff *skb)
846{
847 skb->tail = skb->data;
848}
849
850static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
851{
852 skb->tail = skb->data + offset;
853}
854
855#endif /* NET_SKBUFF_DATA_USES_OFFSET */
856
857/*
858 * Add data to an sk_buff
859 */
860static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
861{
862 unsigned char *tmp = skb_tail_pointer(skb);
863 SKB_LINEAR_ASSERT(skb);
864 skb->tail += len;
865 skb->len += len;
866 return tmp;
867}
868
869/**
870 * skb_put - add data to a buffer
871 * @skb: buffer to use
872 * @len: amount of data to add
873 *
874 * This function extends the used data area of the buffer. If this would
875 * exceed the total buffer size the kernel will panic. A pointer to the
876 * first byte of the extra data is returned.
877 */
878static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
879{
880 unsigned char *tmp = skb_tail_pointer(skb);
881 SKB_LINEAR_ASSERT(skb);
882 skb->tail += len;
883 skb->len += len;
884 if (unlikely(skb->tail > skb->end))
885 skb_over_panic(skb, len, current_text_addr());
886 return tmp;
887}
888
889static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
890{
891 skb->data -= len;
892 skb->len += len;
893 return skb->data;
894}
895
896/**
897 * skb_push - add data to the start of a buffer
898 * @skb: buffer to use
899 * @len: amount of data to add
900 *
901 * This function extends the used data area of the buffer at the buffer
902 * start. If this would exceed the total buffer headroom the kernel will
903 * panic. A pointer to the first byte of the extra data is returned.
904 */
905static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
906{
907 skb->data -= len;
908 skb->len += len;
909 if (unlikely(skb->data<skb->head))
910 skb_under_panic(skb, len, current_text_addr());
911 return skb->data;
912}
913
914static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
915{
916 skb->len -= len;
917 BUG_ON(skb->len < skb->data_len);
918 return skb->data += len;
919}
920
921/**
922 * skb_pull - remove data from the start of a buffer
923 * @skb: buffer to use
924 * @len: amount of data to remove
925 *
926 * This function removes data from the start of a buffer, returning
927 * the memory to the headroom. A pointer to the next data in the buffer
928 * is returned. Once the data has been pulled future pushes will overwrite
929 * the old data.
930 */
931static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
932{
933 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
934}
935
936extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
937
938static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
939{
940 if (len > skb_headlen(skb) &&
941 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
942 return NULL;
943 skb->len -= len;
944 return skb->data += len;
945}
946
947static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
948{
949 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
950}
951
952static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
953{
954 if (likely(len <= skb_headlen(skb)))
955 return 1;
956 if (unlikely(len > skb->len))
957 return 0;
958 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
959}
960
961/**
962 * skb_headroom - bytes at buffer head
963 * @skb: buffer to check
964 *
965 * Return the number of bytes of free space at the head of an &sk_buff.
966 */
967static inline int skb_headroom(const struct sk_buff *skb)
968{
969 return skb->data - skb->head;
970}
971
972/**
973 * skb_tailroom - bytes at buffer end
974 * @skb: buffer to check
975 *
976 * Return the number of bytes of free space at the tail of an sk_buff
977 */
978static inline int skb_tailroom(const struct sk_buff *skb)
979{
980 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
981}
982
983/**
984 * skb_reserve - adjust headroom
985 * @skb: buffer to alter
986 * @len: bytes to move
987 *
988 * Increase the headroom of an empty &sk_buff by reducing the tail
989 * room. This is only allowed for an empty buffer.
990 */
991static inline void skb_reserve(struct sk_buff *skb, int len)
992{
993 skb->data += len;
994 skb->tail += len;
995}
996
997#ifdef NET_SKBUFF_DATA_USES_OFFSET
998static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
999{
1000 return skb->head + skb->transport_header;
1001}
1002
1003static inline void skb_reset_transport_header(struct sk_buff *skb)
1004{
1005 skb->transport_header = skb->data - skb->head;
1006}
1007
1008static inline void skb_set_transport_header(struct sk_buff *skb,
1009 const int offset)
1010{
1011 skb_reset_transport_header(skb);
1012 skb->transport_header += offset;
1013}
1014
1015static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1016{
1017 return skb->head + skb->network_header;
1018}
1019
1020static inline void skb_reset_network_header(struct sk_buff *skb)
1021{
1022 skb->network_header = skb->data - skb->head;
1023}
1024
1025static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1026{
1027 skb_reset_network_header(skb);
1028 skb->network_header += offset;
1029}
1030
1031static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1032{
1033 return skb->head + skb->mac_header;
1034}
1035
1036static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1037{
1038 return skb->mac_header != ~0U;
1039}
1040
1041static inline void skb_reset_mac_header(struct sk_buff *skb)
1042{
1043 skb->mac_header = skb->data - skb->head;
1044}
1045
1046static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1047{
1048 skb_reset_mac_header(skb);
1049 skb->mac_header += offset;
1050}
1051
1052#else /* NET_SKBUFF_DATA_USES_OFFSET */
1053
1054static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1055{
1056 return skb->transport_header;
1057}
1058
1059static inline void skb_reset_transport_header(struct sk_buff *skb)
1060{
1061 skb->transport_header = skb->data;
1062}
1063
1064static inline void skb_set_transport_header(struct sk_buff *skb,
1065 const int offset)
1066{
1067 skb->transport_header = skb->data + offset;
1068}
1069
1070static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1071{
1072 return skb->network_header;
1073}
1074
1075static inline void skb_reset_network_header(struct sk_buff *skb)
1076{
1077 skb->network_header = skb->data;
1078}
1079
1080static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1081{
1082 skb->network_header = skb->data + offset;
1083}
1084
1085static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1086{
1087 return skb->mac_header;
1088}
1089
1090static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1091{
1092 return skb->mac_header != NULL;
1093}
1094
1095static inline void skb_reset_mac_header(struct sk_buff *skb)
1096{
1097 skb->mac_header = skb->data;
1098}
1099
1100static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1101{
1102 skb->mac_header = skb->data + offset;
1103}
1104#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1105
1106static inline int skb_transport_offset(const struct sk_buff *skb)
1107{
1108 return skb_transport_header(skb) - skb->data;
1109}
1110
1111static inline u32 skb_network_header_len(const struct sk_buff *skb)
1112{
1113 return skb->transport_header - skb->network_header;
1114}
1115
1116static inline int skb_network_offset(const struct sk_buff *skb)
1117{
1118 return skb_network_header(skb) - skb->data;
1119}
1120
1121/*
1122 * CPUs often take a performance hit when accessing unaligned memory
1123 * locations. The actual performance hit varies, it can be small if the
1124 * hardware handles it or large if we have to take an exception and fix it
1125 * in software.
1126 *
1127 * Since an ethernet header is 14 bytes network drivers often end up with
1128 * the IP header at an unaligned offset. The IP header can be aligned by
1129 * shifting the start of the packet by 2 bytes. Drivers should do this
1130 * with:
1131 *
1132 * skb_reserve(NET_IP_ALIGN);
1133 *
1134 * The downside to this alignment of the IP header is that the DMA is now
1135 * unaligned. On some architectures the cost of an unaligned DMA is high
1136 * and this cost outweighs the gains made by aligning the IP header.
1137 *
1138 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1139 * to be overridden.
1140 */
1141#ifndef NET_IP_ALIGN
1142#define NET_IP_ALIGN 2
1143#endif
1144
1145/*
1146 * The networking layer reserves some headroom in skb data (via
1147 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1148 * the header has to grow. In the default case, if the header has to grow
1149 * 16 bytes or less we avoid the reallocation.
1150 *
1151 * Unfortunately this headroom changes the DMA alignment of the resulting
1152 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1153 * on some architectures. An architecture can override this value,
1154 * perhaps setting it to a cacheline in size (since that will maintain
1155 * cacheline alignment of the DMA). It must be a power of 2.
1156 *
1157 * Various parts of the networking layer expect at least 16 bytes of
1158 * headroom, you should not reduce this.
1159 */
1160#ifndef NET_SKB_PAD
1161#define NET_SKB_PAD 16
1162#endif
1163
1164extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1165
1166static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1167{
1168 if (unlikely(skb->data_len)) {
1169 WARN_ON(1);
1170 return;
1171 }
1172 skb->len = len;
1173 skb_set_tail_pointer(skb, len);
1174}
1175
1176/**
1177 * skb_trim - remove end from a buffer
1178 * @skb: buffer to alter
1179 * @len: new length
1180 *
1181 * Cut the length of a buffer down by removing data from the tail. If
1182 * the buffer is already under the length specified it is not modified.
1183 * The skb must be linear.
1184 */
1185static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1186{
1187 if (skb->len > len)
1188 __skb_trim(skb, len);
1189}
1190
1191
1192static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1193{
1194 if (skb->data_len)
1195 return ___pskb_trim(skb, len);
1196 __skb_trim(skb, len);
1197 return 0;
1198}
1199
1200static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1201{
1202 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1203}
1204
1205/**
1206 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1207 * @skb: buffer to alter
1208 * @len: new length
1209 *
1210 * This is identical to pskb_trim except that the caller knows that
1211 * the skb is not cloned so we should never get an error due to out-
1212 * of-memory.
1213 */
1214static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1215{
1216 int err = pskb_trim(skb, len);
1217 BUG_ON(err);
1218}
1219
1220/**
1221 * skb_orphan - orphan a buffer
1222 * @skb: buffer to orphan
1223 *
1224 * If a buffer currently has an owner then we call the owner's
1225 * destructor function and make the @skb unowned. The buffer continues
1226 * to exist but is no longer charged to its former owner.
1227 */
1228static inline void skb_orphan(struct sk_buff *skb)
1229{
1230 if (skb->destructor)
1231 skb->destructor(skb);
1232 skb->destructor = NULL;
1233 skb->sk = NULL;
1234}
1235
1236/**
1237 * __skb_queue_purge - empty a list
1238 * @list: list to empty
1239 *
1240 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1241 * the list and one reference dropped. This function does not take the
1242 * list lock and the caller must hold the relevant locks to use it.
1243 */
1244extern void skb_queue_purge(struct sk_buff_head *list);
1245static inline void __skb_queue_purge(struct sk_buff_head *list)
1246{
1247 struct sk_buff *skb;
1248 while ((skb = __skb_dequeue(list)) != NULL)
1249 kfree_skb(skb);
1250}
1251
1252/**
1253 * __dev_alloc_skb - allocate an skbuff for receiving
1254 * @length: length to allocate
1255 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1256 *
1257 * Allocate a new &sk_buff and assign it a usage count of one. The
1258 * buffer has unspecified headroom built in. Users should allocate
1259 * the headroom they think they need without accounting for the
1260 * built in space. The built in space is used for optimisations.
1261 *
1262 * %NULL is returned if there is no free memory.
1263 */
1264static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1265 gfp_t gfp_mask)
1266{
1267 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1268 if (likely(skb))
1269 skb_reserve(skb, NET_SKB_PAD);
1270 return skb;
1271}
1272
1273/**
1274 * dev_alloc_skb - allocate an skbuff for receiving
1275 * @length: length to allocate
1276 *
1277 * Allocate a new &sk_buff and assign it a usage count of one. The
1278 * buffer has unspecified headroom built in. Users should allocate
1279 * the headroom they think they need without accounting for the
1280 * built in space. The built in space is used for optimisations.
1281 *
1282 * %NULL is returned if there is no free memory. Although this function
1283 * allocates memory it can be called from an interrupt.
1284 */
1285static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1286{
1287 return __dev_alloc_skb(length, GFP_ATOMIC);
1288}
1289
1290extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1291 unsigned int length, gfp_t gfp_mask);
1292
1293/**
1294 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1295 * @dev: network device to receive on
1296 * @length: length to allocate
1297 *
1298 * Allocate a new &sk_buff and assign it a usage count of one. The
1299 * buffer has unspecified headroom built in. Users should allocate
1300 * the headroom they think they need without accounting for the
1301 * built in space. The built in space is used for optimisations.
1302 *
1303 * %NULL is returned if there is no free memory. Although this function
1304 * allocates memory it can be called from an interrupt.
1305 */
1306static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1307 unsigned int length)
1308{
1309 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1310}
1311
1312/**
1313 * skb_cow - copy header of skb when it is required
1314 * @skb: buffer to cow
1315 * @headroom: needed headroom
1316 *
1317 * If the skb passed lacks sufficient headroom or its data part
1318 * is shared, data is reallocated. If reallocation fails, an error
1319 * is returned and original skb is not changed.
1320 *
1321 * The result is skb with writable area skb->head...skb->tail
1322 * and at least @headroom of space at head.
1323 */
1324static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1325{
1326 int delta = (headroom > NET_SKB_PAD ? headroom : NET_SKB_PAD) -
1327 skb_headroom(skb);
1328
1329 if (delta < 0)
1330 delta = 0;
1331
1332 if (delta || skb_cloned(skb))
1333 return pskb_expand_head(skb, (delta + (NET_SKB_PAD-1)) &
1334 ~(NET_SKB_PAD-1), 0, GFP_ATOMIC);
1335 return 0;
1336}
1337
1338/**
1339 * skb_padto - pad an skbuff up to a minimal size
1340 * @skb: buffer to pad
1341 * @len: minimal length
1342 *
1343 * Pads up a buffer to ensure the trailing bytes exist and are
1344 * blanked. If the buffer already contains sufficient data it
1345 * is untouched. Otherwise it is extended. Returns zero on
1346 * success. The skb is freed on error.
1347 */
1348
1349static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1350{
1351 unsigned int size = skb->len;
1352 if (likely(size >= len))
1353 return 0;
1354 return skb_pad(skb, len-size);
1355}
1356
1357static inline int skb_add_data(struct sk_buff *skb,
1358 char __user *from, int copy)
1359{
1360 const int off = skb->len;
1361
1362 if (skb->ip_summed == CHECKSUM_NONE) {
1363 int err = 0;
1364 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1365 copy, 0, &err);
1366 if (!err) {
1367 skb->csum = csum_block_add(skb->csum, csum, off);
1368 return 0;
1369 }
1370 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1371 return 0;
1372
1373 __skb_trim(skb, off);
1374 return -EFAULT;
1375}
1376
1377static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1378 struct page *page, int off)
1379{
1380 if (i) {
1381 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1382
1383 return page == frag->page &&
1384 off == frag->page_offset + frag->size;
1385 }
1386 return 0;
1387}
1388
1389static inline int __skb_linearize(struct sk_buff *skb)
1390{
1391 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1392}
1393
1394/**
1395 * skb_linearize - convert paged skb to linear one
1396 * @skb: buffer to linarize
1397 *
1398 * If there is no free memory -ENOMEM is returned, otherwise zero
1399 * is returned and the old skb data released.
1400 */
1401static inline int skb_linearize(struct sk_buff *skb)
1402{
1403 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1404}
1405
1406/**
1407 * skb_linearize_cow - make sure skb is linear and writable
1408 * @skb: buffer to process
1409 *
1410 * If there is no free memory -ENOMEM is returned, otherwise zero
1411 * is returned and the old skb data released.
1412 */
1413static inline int skb_linearize_cow(struct sk_buff *skb)
1414{
1415 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1416 __skb_linearize(skb) : 0;
1417}
1418
1419/**
1420 * skb_postpull_rcsum - update checksum for received skb after pull
1421 * @skb: buffer to update
1422 * @start: start of data before pull
1423 * @len: length of data pulled
1424 *
1425 * After doing a pull on a received packet, you need to call this to
1426 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1427 * CHECKSUM_NONE so that it can be recomputed from scratch.
1428 */
1429
1430static inline void skb_postpull_rcsum(struct sk_buff *skb,
1431 const void *start, unsigned int len)
1432{
1433 if (skb->ip_summed == CHECKSUM_COMPLETE)
1434 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1435}
1436
1437unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1438
1439/**
1440 * pskb_trim_rcsum - trim received skb and update checksum
1441 * @skb: buffer to trim
1442 * @len: new length
1443 *
1444 * This is exactly the same as pskb_trim except that it ensures the
1445 * checksum of received packets are still valid after the operation.
1446 */
1447
1448static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1449{
1450 if (likely(len >= skb->len))
1451 return 0;
1452 if (skb->ip_summed == CHECKSUM_COMPLETE)
1453 skb->ip_summed = CHECKSUM_NONE;
1454 return __pskb_trim(skb, len);
1455}
1456
1457#define skb_queue_walk(queue, skb) \
1458 for (skb = (queue)->next; \
1459 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1460 skb = skb->next)
1461
1462#define skb_queue_reverse_walk(queue, skb) \
1463 for (skb = (queue)->prev; \
1464 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1465 skb = skb->prev)
1466
1467
1468extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1469 int noblock, int *err);
1470extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1471 struct poll_table_struct *wait);
1472extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1473 int offset, struct iovec *to,
1474 int size);
1475extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1476 int hlen,
1477 struct iovec *iov);
1478extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1479extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1480 unsigned int flags);
1481extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1482 int len, __wsum csum);
1483extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1484 void *to, int len);
1485extern int skb_store_bits(const struct sk_buff *skb, int offset,
1486 void *from, int len);
1487extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1488 int offset, u8 *to, int len,
1489 __wsum csum);
1490extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1491extern void skb_split(struct sk_buff *skb,
1492 struct sk_buff *skb1, const u32 len);
1493
1494extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1495
1496static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1497 int len, void *buffer)
1498{
1499 int hlen = skb_headlen(skb);
1500
1501 if (hlen - offset >= len)
1502 return skb->data + offset;
1503
1504 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1505 return NULL;
1506
1507 return buffer;
1508}
1509
1510static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1511 void *to,
1512 const unsigned int len)
1513{
1514 memcpy(to, skb->data, len);
1515}
1516
1517static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1518 const int offset, void *to,
1519 const unsigned int len)
1520{
1521 memcpy(to, skb->data + offset, len);
1522}
1523
1524static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1525 const void *from,
1526 const unsigned int len)
1527{
1528 memcpy(skb->data, from, len);
1529}
1530
1531static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1532 const int offset,
1533 const void *from,
1534 const unsigned int len)
1535{
1536 memcpy(skb->data + offset, from, len);
1537}
1538
1539extern void skb_init(void);
1540
1541/**
1542 * skb_get_timestamp - get timestamp from a skb
1543 * @skb: skb to get stamp from
1544 * @stamp: pointer to struct timeval to store stamp in
1545 *
1546 * Timestamps are stored in the skb as offsets to a base timestamp.
1547 * This function converts the offset back to a struct timeval and stores
1548 * it in stamp.
1549 */
1550static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1551{
1552 *stamp = ktime_to_timeval(skb->tstamp);
1553}
1554
1555static inline void __net_timestamp(struct sk_buff *skb)
1556{
1557 skb->tstamp = ktime_get_real();
1558}
1559
1560
1561extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1562extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1563
1564/**
1565 * skb_checksum_complete - Calculate checksum of an entire packet
1566 * @skb: packet to process
1567 *
1568 * This function calculates the checksum over the entire packet plus
1569 * the value of skb->csum. The latter can be used to supply the
1570 * checksum of a pseudo header as used by TCP/UDP. It returns the
1571 * checksum.
1572 *
1573 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1574 * this function can be used to verify that checksum on received
1575 * packets. In that case the function should return zero if the
1576 * checksum is correct. In particular, this function will return zero
1577 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1578 * hardware has already verified the correctness of the checksum.
1579 */
1580static inline unsigned int skb_checksum_complete(struct sk_buff *skb)
1581{
1582 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
1583 __skb_checksum_complete(skb);
1584}
1585
1586#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1587extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1588static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1589{
1590 if (nfct && atomic_dec_and_test(&nfct->use))
1591 nf_conntrack_destroy(nfct);
1592}
1593static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1594{
1595 if (nfct)
1596 atomic_inc(&nfct->use);
1597}
1598static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1599{
1600 if (skb)
1601 atomic_inc(&skb->users);
1602}
1603static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1604{
1605 if (skb)
1606 kfree_skb(skb);
1607}
1608#endif
1609#ifdef CONFIG_BRIDGE_NETFILTER
1610static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1611{
1612 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1613 kfree(nf_bridge);
1614}
1615static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1616{
1617 if (nf_bridge)
1618 atomic_inc(&nf_bridge->use);
1619}
1620#endif /* CONFIG_BRIDGE_NETFILTER */
1621static inline void nf_reset(struct sk_buff *skb)
1622{
1623#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1624 nf_conntrack_put(skb->nfct);
1625 skb->nfct = NULL;
1626 nf_conntrack_put_reasm(skb->nfct_reasm);
1627 skb->nfct_reasm = NULL;
1628#endif
1629#ifdef CONFIG_BRIDGE_NETFILTER
1630 nf_bridge_put(skb->nf_bridge);
1631 skb->nf_bridge = NULL;
1632#endif
1633}
1634
1635/* Note: This doesn't put any conntrack and bridge info in dst. */
1636static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1637{
1638#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1639 dst->nfct = src->nfct;
1640 nf_conntrack_get(src->nfct);
1641 dst->nfctinfo = src->nfctinfo;
1642 dst->nfct_reasm = src->nfct_reasm;
1643 nf_conntrack_get_reasm(src->nfct_reasm);
1644#endif
1645#ifdef CONFIG_BRIDGE_NETFILTER
1646 dst->nf_bridge = src->nf_bridge;
1647 nf_bridge_get(src->nf_bridge);
1648#endif
1649}
1650
1651static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1652{
1653#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1654 nf_conntrack_put(dst->nfct);
1655 nf_conntrack_put_reasm(dst->nfct_reasm);
1656#endif
1657#ifdef CONFIG_BRIDGE_NETFILTER
1658 nf_bridge_put(dst->nf_bridge);
1659#endif
1660 __nf_copy(dst, src);
1661}
1662
1663#ifdef CONFIG_NETWORK_SECMARK
1664static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1665{
1666 to->secmark = from->secmark;
1667}
1668
1669static inline void skb_init_secmark(struct sk_buff *skb)
1670{
1671 skb->secmark = 0;
1672}
1673#else
1674static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1675{ }
1676
1677static inline void skb_init_secmark(struct sk_buff *skb)
1678{ }
1679#endif
1680
1681static inline int skb_is_gso(const struct sk_buff *skb)
1682{
1683 return skb_shinfo(skb)->gso_size;
1684}
1685
1686static inline void skb_forward_csum(struct sk_buff *skb)
1687{
1688 /* Unfortunately we don't support this one. Any brave souls? */
1689 if (skb->ip_summed == CHECKSUM_COMPLETE)
1690 skb->ip_summed = CHECKSUM_NONE;
1691}
1692
1693#endif /* __KERNEL__ */
1694#endif /* _LINUX_SKBUFF_H */