]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - include/linux/skbuff.h
infiniband: remove dev_base_lock use
[net-next-2.6.git] / include / linux / skbuff.h
... / ...
CommitLineData
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
17#include <linux/kernel.h>
18#include <linux/kmemcheck.h>
19#include <linux/compiler.h>
20#include <linux/time.h>
21#include <linux/cache.h>
22
23#include <asm/atomic.h>
24#include <asm/types.h>
25#include <linux/spinlock.h>
26#include <linux/net.h>
27#include <linux/textsearch.h>
28#include <net/checksum.h>
29#include <linux/rcupdate.h>
30#include <linux/dmaengine.h>
31#include <linux/hrtimer.h>
32
33/* Don't change this without changing skb_csum_unnecessary! */
34#define CHECKSUM_NONE 0
35#define CHECKSUM_UNNECESSARY 1
36#define CHECKSUM_COMPLETE 2
37#define CHECKSUM_PARTIAL 3
38
39#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
40 ~(SMP_CACHE_BYTES - 1))
41#define SKB_WITH_OVERHEAD(X) \
42 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
43#define SKB_MAX_ORDER(X, ORDER) \
44 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
45#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
46#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
47
48/* A. Checksumming of received packets by device.
49 *
50 * NONE: device failed to checksum this packet.
51 * skb->csum is undefined.
52 *
53 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
54 * skb->csum is undefined.
55 * It is bad option, but, unfortunately, many of vendors do this.
56 * Apparently with secret goal to sell you new device, when you
57 * will add new protocol to your host. F.e. IPv6. 8)
58 *
59 * COMPLETE: the most generic way. Device supplied checksum of _all_
60 * the packet as seen by netif_rx in skb->csum.
61 * NOTE: Even if device supports only some protocols, but
62 * is able to produce some skb->csum, it MUST use COMPLETE,
63 * not UNNECESSARY.
64 *
65 * PARTIAL: identical to the case for output below. This may occur
66 * on a packet received directly from another Linux OS, e.g.,
67 * a virtualised Linux kernel on the same host. The packet can
68 * be treated in the same way as UNNECESSARY except that on
69 * output (i.e., forwarding) the checksum must be filled in
70 * by the OS or the hardware.
71 *
72 * B. Checksumming on output.
73 *
74 * NONE: skb is checksummed by protocol or csum is not required.
75 *
76 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
77 * from skb->csum_start to the end and to record the checksum
78 * at skb->csum_start + skb->csum_offset.
79 *
80 * Device must show its capabilities in dev->features, set
81 * at device setup time.
82 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
83 * everything.
84 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
85 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
86 * TCP/UDP over IPv4. Sigh. Vendors like this
87 * way by an unknown reason. Though, see comment above
88 * about CHECKSUM_UNNECESSARY. 8)
89 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
90 *
91 * Any questions? No questions, good. --ANK
92 */
93
94struct net_device;
95struct scatterlist;
96struct pipe_inode_info;
97
98#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
99struct nf_conntrack {
100 atomic_t use;
101};
102#endif
103
104#ifdef CONFIG_BRIDGE_NETFILTER
105struct nf_bridge_info {
106 atomic_t use;
107 struct net_device *physindev;
108 struct net_device *physoutdev;
109 unsigned int mask;
110 unsigned long data[32 / sizeof(unsigned long)];
111};
112#endif
113
114struct sk_buff_head {
115 /* These two members must be first. */
116 struct sk_buff *next;
117 struct sk_buff *prev;
118
119 __u32 qlen;
120 spinlock_t lock;
121};
122
123struct sk_buff;
124
125/* To allow 64K frame to be packed as single skb without frag_list */
126#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
127
128typedef struct skb_frag_struct skb_frag_t;
129
130struct skb_frag_struct {
131 struct page *page;
132#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
133 __u32 page_offset;
134 __u32 size;
135#else
136 __u16 page_offset;
137 __u16 size;
138#endif
139};
140
141#define HAVE_HW_TIME_STAMP
142
143/**
144 * struct skb_shared_hwtstamps - hardware time stamps
145 * @hwtstamp: hardware time stamp transformed into duration
146 * since arbitrary point in time
147 * @syststamp: hwtstamp transformed to system time base
148 *
149 * Software time stamps generated by ktime_get_real() are stored in
150 * skb->tstamp. The relation between the different kinds of time
151 * stamps is as follows:
152 *
153 * syststamp and tstamp can be compared against each other in
154 * arbitrary combinations. The accuracy of a
155 * syststamp/tstamp/"syststamp from other device" comparison is
156 * limited by the accuracy of the transformation into system time
157 * base. This depends on the device driver and its underlying
158 * hardware.
159 *
160 * hwtstamps can only be compared against other hwtstamps from
161 * the same device.
162 *
163 * This structure is attached to packets as part of the
164 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
165 */
166struct skb_shared_hwtstamps {
167 ktime_t hwtstamp;
168 ktime_t syststamp;
169};
170
171/* Definitions for tx_flags in struct skb_shared_info */
172enum {
173 /* generate hardware time stamp */
174 SKBTX_HW_TSTAMP = 1 << 0,
175
176 /* generate software time stamp */
177 SKBTX_SW_TSTAMP = 1 << 1,
178
179 /* device driver is going to provide hardware time stamp */
180 SKBTX_IN_PROGRESS = 1 << 2,
181
182 /* ensure the originating sk reference is available on driver level */
183 SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
184};
185
186/* This data is invariant across clones and lives at
187 * the end of the header data, ie. at skb->end.
188 */
189struct skb_shared_info {
190 unsigned short nr_frags;
191 unsigned short gso_size;
192 /* Warning: this field is not always filled in (UFO)! */
193 unsigned short gso_segs;
194 unsigned short gso_type;
195 __be32 ip6_frag_id;
196 __u8 tx_flags;
197 struct sk_buff *frag_list;
198 struct skb_shared_hwtstamps hwtstamps;
199
200 /*
201 * Warning : all fields before dataref are cleared in __alloc_skb()
202 */
203 atomic_t dataref;
204
205 /* Intermediate layers must ensure that destructor_arg
206 * remains valid until skb destructor */
207 void * destructor_arg;
208 /* must be last field, see pskb_expand_head() */
209 skb_frag_t frags[MAX_SKB_FRAGS];
210};
211
212/* We divide dataref into two halves. The higher 16 bits hold references
213 * to the payload part of skb->data. The lower 16 bits hold references to
214 * the entire skb->data. A clone of a headerless skb holds the length of
215 * the header in skb->hdr_len.
216 *
217 * All users must obey the rule that the skb->data reference count must be
218 * greater than or equal to the payload reference count.
219 *
220 * Holding a reference to the payload part means that the user does not
221 * care about modifications to the header part of skb->data.
222 */
223#define SKB_DATAREF_SHIFT 16
224#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
225
226
227enum {
228 SKB_FCLONE_UNAVAILABLE,
229 SKB_FCLONE_ORIG,
230 SKB_FCLONE_CLONE,
231};
232
233enum {
234 SKB_GSO_TCPV4 = 1 << 0,
235 SKB_GSO_UDP = 1 << 1,
236
237 /* This indicates the skb is from an untrusted source. */
238 SKB_GSO_DODGY = 1 << 2,
239
240 /* This indicates the tcp segment has CWR set. */
241 SKB_GSO_TCP_ECN = 1 << 3,
242
243 SKB_GSO_TCPV6 = 1 << 4,
244
245 SKB_GSO_FCOE = 1 << 5,
246};
247
248#if BITS_PER_LONG > 32
249#define NET_SKBUFF_DATA_USES_OFFSET 1
250#endif
251
252#ifdef NET_SKBUFF_DATA_USES_OFFSET
253typedef unsigned int sk_buff_data_t;
254#else
255typedef unsigned char *sk_buff_data_t;
256#endif
257
258/**
259 * struct sk_buff - socket buffer
260 * @next: Next buffer in list
261 * @prev: Previous buffer in list
262 * @sk: Socket we are owned by
263 * @tstamp: Time we arrived
264 * @dev: Device we arrived on/are leaving by
265 * @transport_header: Transport layer header
266 * @network_header: Network layer header
267 * @mac_header: Link layer header
268 * @_skb_refdst: destination entry (with norefcount bit)
269 * @sp: the security path, used for xfrm
270 * @cb: Control buffer. Free for use by every layer. Put private vars here
271 * @len: Length of actual data
272 * @data_len: Data length
273 * @mac_len: Length of link layer header
274 * @hdr_len: writable header length of cloned skb
275 * @csum: Checksum (must include start/offset pair)
276 * @csum_start: Offset from skb->head where checksumming should start
277 * @csum_offset: Offset from csum_start where checksum should be stored
278 * @local_df: allow local fragmentation
279 * @cloned: Head may be cloned (check refcnt to be sure)
280 * @nohdr: Payload reference only, must not modify header
281 * @pkt_type: Packet class
282 * @fclone: skbuff clone status
283 * @ip_summed: Driver fed us an IP checksum
284 * @priority: Packet queueing priority
285 * @users: User count - see {datagram,tcp}.c
286 * @protocol: Packet protocol from driver
287 * @truesize: Buffer size
288 * @head: Head of buffer
289 * @data: Data head pointer
290 * @tail: Tail pointer
291 * @end: End pointer
292 * @destructor: Destruct function
293 * @mark: Generic packet mark
294 * @nfct: Associated connection, if any
295 * @ipvs_property: skbuff is owned by ipvs
296 * @peeked: this packet has been seen already, so stats have been
297 * done for it, don't do them again
298 * @nf_trace: netfilter packet trace flag
299 * @nfctinfo: Relationship of this skb to the connection
300 * @nfct_reasm: netfilter conntrack re-assembly pointer
301 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
302 * @skb_iif: ifindex of device we arrived on
303 * @rxhash: the packet hash computed on receive
304 * @queue_mapping: Queue mapping for multiqueue devices
305 * @tc_index: Traffic control index
306 * @tc_verd: traffic control verdict
307 * @ndisc_nodetype: router type (from link layer)
308 * @dma_cookie: a cookie to one of several possible DMA operations
309 * done by skb DMA functions
310 * @secmark: security marking
311 * @vlan_tci: vlan tag control information
312 */
313
314struct sk_buff {
315 /* These two members must be first. */
316 struct sk_buff *next;
317 struct sk_buff *prev;
318
319 ktime_t tstamp;
320
321 struct sock *sk;
322 struct net_device *dev;
323
324 /*
325 * This is the control buffer. It is free to use for every
326 * layer. Please put your private variables there. If you
327 * want to keep them across layers you have to do a skb_clone()
328 * first. This is owned by whoever has the skb queued ATM.
329 */
330 char cb[48] __aligned(8);
331
332 unsigned long _skb_refdst;
333#ifdef CONFIG_XFRM
334 struct sec_path *sp;
335#endif
336 unsigned int len,
337 data_len;
338 __u16 mac_len,
339 hdr_len;
340 union {
341 __wsum csum;
342 struct {
343 __u16 csum_start;
344 __u16 csum_offset;
345 };
346 };
347 __u32 priority;
348 kmemcheck_bitfield_begin(flags1);
349 __u8 local_df:1,
350 cloned:1,
351 ip_summed:2,
352 nohdr:1,
353 nfctinfo:3;
354 __u8 pkt_type:3,
355 fclone:2,
356 ipvs_property:1,
357 peeked:1,
358 nf_trace:1;
359 kmemcheck_bitfield_end(flags1);
360 __be16 protocol;
361
362 void (*destructor)(struct sk_buff *skb);
363#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
364 struct nf_conntrack *nfct;
365 struct sk_buff *nfct_reasm;
366#endif
367#ifdef CONFIG_BRIDGE_NETFILTER
368 struct nf_bridge_info *nf_bridge;
369#endif
370
371 int skb_iif;
372#ifdef CONFIG_NET_SCHED
373 __u16 tc_index; /* traffic control index */
374#ifdef CONFIG_NET_CLS_ACT
375 __u16 tc_verd; /* traffic control verdict */
376#endif
377#endif
378
379 __u32 rxhash;
380
381 kmemcheck_bitfield_begin(flags2);
382 __u16 queue_mapping:16;
383#ifdef CONFIG_IPV6_NDISC_NODETYPE
384 __u8 ndisc_nodetype:2,
385 deliver_no_wcard:1;
386#else
387 __u8 deliver_no_wcard:1;
388#endif
389 kmemcheck_bitfield_end(flags2);
390
391 /* 0/14 bit hole */
392
393#ifdef CONFIG_NET_DMA
394 dma_cookie_t dma_cookie;
395#endif
396#ifdef CONFIG_NETWORK_SECMARK
397 __u32 secmark;
398#endif
399 union {
400 __u32 mark;
401 __u32 dropcount;
402 };
403
404 __u16 vlan_tci;
405
406 sk_buff_data_t transport_header;
407 sk_buff_data_t network_header;
408 sk_buff_data_t mac_header;
409 /* These elements must be at the end, see alloc_skb() for details. */
410 sk_buff_data_t tail;
411 sk_buff_data_t end;
412 unsigned char *head,
413 *data;
414 unsigned int truesize;
415 atomic_t users;
416};
417
418#ifdef __KERNEL__
419/*
420 * Handling routines are only of interest to the kernel
421 */
422#include <linux/slab.h>
423
424#include <asm/system.h>
425
426/*
427 * skb might have a dst pointer attached, refcounted or not.
428 * _skb_refdst low order bit is set if refcount was _not_ taken
429 */
430#define SKB_DST_NOREF 1UL
431#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
432
433/**
434 * skb_dst - returns skb dst_entry
435 * @skb: buffer
436 *
437 * Returns skb dst_entry, regardless of reference taken or not.
438 */
439static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
440{
441 /* If refdst was not refcounted, check we still are in a
442 * rcu_read_lock section
443 */
444 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
445 !rcu_read_lock_held() &&
446 !rcu_read_lock_bh_held());
447 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
448}
449
450/**
451 * skb_dst_set - sets skb dst
452 * @skb: buffer
453 * @dst: dst entry
454 *
455 * Sets skb dst, assuming a reference was taken on dst and should
456 * be released by skb_dst_drop()
457 */
458static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
459{
460 skb->_skb_refdst = (unsigned long)dst;
461}
462
463extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
464
465/**
466 * skb_dst_is_noref - Test if skb dst isnt refcounted
467 * @skb: buffer
468 */
469static inline bool skb_dst_is_noref(const struct sk_buff *skb)
470{
471 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
472}
473
474static inline struct rtable *skb_rtable(const struct sk_buff *skb)
475{
476 return (struct rtable *)skb_dst(skb);
477}
478
479extern void kfree_skb(struct sk_buff *skb);
480extern void consume_skb(struct sk_buff *skb);
481extern void __kfree_skb(struct sk_buff *skb);
482extern struct sk_buff *__alloc_skb(unsigned int size,
483 gfp_t priority, int fclone, int node);
484static inline struct sk_buff *alloc_skb(unsigned int size,
485 gfp_t priority)
486{
487 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
488}
489
490static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
491 gfp_t priority)
492{
493 return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
494}
495
496extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
497
498extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
499extern struct sk_buff *skb_clone(struct sk_buff *skb,
500 gfp_t priority);
501extern struct sk_buff *skb_copy(const struct sk_buff *skb,
502 gfp_t priority);
503extern struct sk_buff *pskb_copy(struct sk_buff *skb,
504 gfp_t gfp_mask);
505extern int pskb_expand_head(struct sk_buff *skb,
506 int nhead, int ntail,
507 gfp_t gfp_mask);
508extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
509 unsigned int headroom);
510extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
511 int newheadroom, int newtailroom,
512 gfp_t priority);
513extern int skb_to_sgvec(struct sk_buff *skb,
514 struct scatterlist *sg, int offset,
515 int len);
516extern int skb_cow_data(struct sk_buff *skb, int tailbits,
517 struct sk_buff **trailer);
518extern int skb_pad(struct sk_buff *skb, int pad);
519#define dev_kfree_skb(a) consume_skb(a)
520
521extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
522 int getfrag(void *from, char *to, int offset,
523 int len,int odd, struct sk_buff *skb),
524 void *from, int length);
525
526struct skb_seq_state {
527 __u32 lower_offset;
528 __u32 upper_offset;
529 __u32 frag_idx;
530 __u32 stepped_offset;
531 struct sk_buff *root_skb;
532 struct sk_buff *cur_skb;
533 __u8 *frag_data;
534};
535
536extern void skb_prepare_seq_read(struct sk_buff *skb,
537 unsigned int from, unsigned int to,
538 struct skb_seq_state *st);
539extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
540 struct skb_seq_state *st);
541extern void skb_abort_seq_read(struct skb_seq_state *st);
542
543extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
544 unsigned int to, struct ts_config *config,
545 struct ts_state *state);
546
547extern __u32 __skb_get_rxhash(struct sk_buff *skb);
548static inline __u32 skb_get_rxhash(struct sk_buff *skb)
549{
550 if (!skb->rxhash)
551 skb->rxhash = __skb_get_rxhash(skb);
552
553 return skb->rxhash;
554}
555
556#ifdef NET_SKBUFF_DATA_USES_OFFSET
557static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
558{
559 return skb->head + skb->end;
560}
561#else
562static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
563{
564 return skb->end;
565}
566#endif
567
568/* Internal */
569#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
570
571static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
572{
573 return &skb_shinfo(skb)->hwtstamps;
574}
575
576/**
577 * skb_queue_empty - check if a queue is empty
578 * @list: queue head
579 *
580 * Returns true if the queue is empty, false otherwise.
581 */
582static inline int skb_queue_empty(const struct sk_buff_head *list)
583{
584 return list->next == (struct sk_buff *)list;
585}
586
587/**
588 * skb_queue_is_last - check if skb is the last entry in the queue
589 * @list: queue head
590 * @skb: buffer
591 *
592 * Returns true if @skb is the last buffer on the list.
593 */
594static inline bool skb_queue_is_last(const struct sk_buff_head *list,
595 const struct sk_buff *skb)
596{
597 return skb->next == (struct sk_buff *)list;
598}
599
600/**
601 * skb_queue_is_first - check if skb is the first entry in the queue
602 * @list: queue head
603 * @skb: buffer
604 *
605 * Returns true if @skb is the first buffer on the list.
606 */
607static inline bool skb_queue_is_first(const struct sk_buff_head *list,
608 const struct sk_buff *skb)
609{
610 return skb->prev == (struct sk_buff *)list;
611}
612
613/**
614 * skb_queue_next - return the next packet in the queue
615 * @list: queue head
616 * @skb: current buffer
617 *
618 * Return the next packet in @list after @skb. It is only valid to
619 * call this if skb_queue_is_last() evaluates to false.
620 */
621static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
622 const struct sk_buff *skb)
623{
624 /* This BUG_ON may seem severe, but if we just return then we
625 * are going to dereference garbage.
626 */
627 BUG_ON(skb_queue_is_last(list, skb));
628 return skb->next;
629}
630
631/**
632 * skb_queue_prev - return the prev packet in the queue
633 * @list: queue head
634 * @skb: current buffer
635 *
636 * Return the prev packet in @list before @skb. It is only valid to
637 * call this if skb_queue_is_first() evaluates to false.
638 */
639static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
640 const struct sk_buff *skb)
641{
642 /* This BUG_ON may seem severe, but if we just return then we
643 * are going to dereference garbage.
644 */
645 BUG_ON(skb_queue_is_first(list, skb));
646 return skb->prev;
647}
648
649/**
650 * skb_get - reference buffer
651 * @skb: buffer to reference
652 *
653 * Makes another reference to a socket buffer and returns a pointer
654 * to the buffer.
655 */
656static inline struct sk_buff *skb_get(struct sk_buff *skb)
657{
658 atomic_inc(&skb->users);
659 return skb;
660}
661
662/*
663 * If users == 1, we are the only owner and are can avoid redundant
664 * atomic change.
665 */
666
667/**
668 * skb_cloned - is the buffer a clone
669 * @skb: buffer to check
670 *
671 * Returns true if the buffer was generated with skb_clone() and is
672 * one of multiple shared copies of the buffer. Cloned buffers are
673 * shared data so must not be written to under normal circumstances.
674 */
675static inline int skb_cloned(const struct sk_buff *skb)
676{
677 return skb->cloned &&
678 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
679}
680
681/**
682 * skb_header_cloned - is the header a clone
683 * @skb: buffer to check
684 *
685 * Returns true if modifying the header part of the buffer requires
686 * the data to be copied.
687 */
688static inline int skb_header_cloned(const struct sk_buff *skb)
689{
690 int dataref;
691
692 if (!skb->cloned)
693 return 0;
694
695 dataref = atomic_read(&skb_shinfo(skb)->dataref);
696 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
697 return dataref != 1;
698}
699
700/**
701 * skb_header_release - release reference to header
702 * @skb: buffer to operate on
703 *
704 * Drop a reference to the header part of the buffer. This is done
705 * by acquiring a payload reference. You must not read from the header
706 * part of skb->data after this.
707 */
708static inline void skb_header_release(struct sk_buff *skb)
709{
710 BUG_ON(skb->nohdr);
711 skb->nohdr = 1;
712 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
713}
714
715/**
716 * skb_shared - is the buffer shared
717 * @skb: buffer to check
718 *
719 * Returns true if more than one person has a reference to this
720 * buffer.
721 */
722static inline int skb_shared(const struct sk_buff *skb)
723{
724 return atomic_read(&skb->users) != 1;
725}
726
727/**
728 * skb_share_check - check if buffer is shared and if so clone it
729 * @skb: buffer to check
730 * @pri: priority for memory allocation
731 *
732 * If the buffer is shared the buffer is cloned and the old copy
733 * drops a reference. A new clone with a single reference is returned.
734 * If the buffer is not shared the original buffer is returned. When
735 * being called from interrupt status or with spinlocks held pri must
736 * be GFP_ATOMIC.
737 *
738 * NULL is returned on a memory allocation failure.
739 */
740static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
741 gfp_t pri)
742{
743 might_sleep_if(pri & __GFP_WAIT);
744 if (skb_shared(skb)) {
745 struct sk_buff *nskb = skb_clone(skb, pri);
746 kfree_skb(skb);
747 skb = nskb;
748 }
749 return skb;
750}
751
752/*
753 * Copy shared buffers into a new sk_buff. We effectively do COW on
754 * packets to handle cases where we have a local reader and forward
755 * and a couple of other messy ones. The normal one is tcpdumping
756 * a packet thats being forwarded.
757 */
758
759/**
760 * skb_unshare - make a copy of a shared buffer
761 * @skb: buffer to check
762 * @pri: priority for memory allocation
763 *
764 * If the socket buffer is a clone then this function creates a new
765 * copy of the data, drops a reference count on the old copy and returns
766 * the new copy with the reference count at 1. If the buffer is not a clone
767 * the original buffer is returned. When called with a spinlock held or
768 * from interrupt state @pri must be %GFP_ATOMIC
769 *
770 * %NULL is returned on a memory allocation failure.
771 */
772static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
773 gfp_t pri)
774{
775 might_sleep_if(pri & __GFP_WAIT);
776 if (skb_cloned(skb)) {
777 struct sk_buff *nskb = skb_copy(skb, pri);
778 kfree_skb(skb); /* Free our shared copy */
779 skb = nskb;
780 }
781 return skb;
782}
783
784/**
785 * skb_peek - peek at the head of an &sk_buff_head
786 * @list_: list to peek at
787 *
788 * Peek an &sk_buff. Unlike most other operations you _MUST_
789 * be careful with this one. A peek leaves the buffer on the
790 * list and someone else may run off with it. You must hold
791 * the appropriate locks or have a private queue to do this.
792 *
793 * Returns %NULL for an empty list or a pointer to the head element.
794 * The reference count is not incremented and the reference is therefore
795 * volatile. Use with caution.
796 */
797static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
798{
799 struct sk_buff *list = ((struct sk_buff *)list_)->next;
800 if (list == (struct sk_buff *)list_)
801 list = NULL;
802 return list;
803}
804
805/**
806 * skb_peek_tail - peek at the tail of an &sk_buff_head
807 * @list_: list to peek at
808 *
809 * Peek an &sk_buff. Unlike most other operations you _MUST_
810 * be careful with this one. A peek leaves the buffer on the
811 * list and someone else may run off with it. You must hold
812 * the appropriate locks or have a private queue to do this.
813 *
814 * Returns %NULL for an empty list or a pointer to the tail element.
815 * The reference count is not incremented and the reference is therefore
816 * volatile. Use with caution.
817 */
818static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
819{
820 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
821 if (list == (struct sk_buff *)list_)
822 list = NULL;
823 return list;
824}
825
826/**
827 * skb_queue_len - get queue length
828 * @list_: list to measure
829 *
830 * Return the length of an &sk_buff queue.
831 */
832static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
833{
834 return list_->qlen;
835}
836
837/**
838 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
839 * @list: queue to initialize
840 *
841 * This initializes only the list and queue length aspects of
842 * an sk_buff_head object. This allows to initialize the list
843 * aspects of an sk_buff_head without reinitializing things like
844 * the spinlock. It can also be used for on-stack sk_buff_head
845 * objects where the spinlock is known to not be used.
846 */
847static inline void __skb_queue_head_init(struct sk_buff_head *list)
848{
849 list->prev = list->next = (struct sk_buff *)list;
850 list->qlen = 0;
851}
852
853/*
854 * This function creates a split out lock class for each invocation;
855 * this is needed for now since a whole lot of users of the skb-queue
856 * infrastructure in drivers have different locking usage (in hardirq)
857 * than the networking core (in softirq only). In the long run either the
858 * network layer or drivers should need annotation to consolidate the
859 * main types of usage into 3 classes.
860 */
861static inline void skb_queue_head_init(struct sk_buff_head *list)
862{
863 spin_lock_init(&list->lock);
864 __skb_queue_head_init(list);
865}
866
867static inline void skb_queue_head_init_class(struct sk_buff_head *list,
868 struct lock_class_key *class)
869{
870 skb_queue_head_init(list);
871 lockdep_set_class(&list->lock, class);
872}
873
874/*
875 * Insert an sk_buff on a list.
876 *
877 * The "__skb_xxxx()" functions are the non-atomic ones that
878 * can only be called with interrupts disabled.
879 */
880extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
881static inline void __skb_insert(struct sk_buff *newsk,
882 struct sk_buff *prev, struct sk_buff *next,
883 struct sk_buff_head *list)
884{
885 newsk->next = next;
886 newsk->prev = prev;
887 next->prev = prev->next = newsk;
888 list->qlen++;
889}
890
891static inline void __skb_queue_splice(const struct sk_buff_head *list,
892 struct sk_buff *prev,
893 struct sk_buff *next)
894{
895 struct sk_buff *first = list->next;
896 struct sk_buff *last = list->prev;
897
898 first->prev = prev;
899 prev->next = first;
900
901 last->next = next;
902 next->prev = last;
903}
904
905/**
906 * skb_queue_splice - join two skb lists, this is designed for stacks
907 * @list: the new list to add
908 * @head: the place to add it in the first list
909 */
910static inline void skb_queue_splice(const struct sk_buff_head *list,
911 struct sk_buff_head *head)
912{
913 if (!skb_queue_empty(list)) {
914 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
915 head->qlen += list->qlen;
916 }
917}
918
919/**
920 * skb_queue_splice - join two skb lists and reinitialise the emptied list
921 * @list: the new list to add
922 * @head: the place to add it in the first list
923 *
924 * The list at @list is reinitialised
925 */
926static inline void skb_queue_splice_init(struct sk_buff_head *list,
927 struct sk_buff_head *head)
928{
929 if (!skb_queue_empty(list)) {
930 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
931 head->qlen += list->qlen;
932 __skb_queue_head_init(list);
933 }
934}
935
936/**
937 * skb_queue_splice_tail - join two skb lists, each list being a queue
938 * @list: the new list to add
939 * @head: the place to add it in the first list
940 */
941static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
942 struct sk_buff_head *head)
943{
944 if (!skb_queue_empty(list)) {
945 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
946 head->qlen += list->qlen;
947 }
948}
949
950/**
951 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
952 * @list: the new list to add
953 * @head: the place to add it in the first list
954 *
955 * Each of the lists is a queue.
956 * The list at @list is reinitialised
957 */
958static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
959 struct sk_buff_head *head)
960{
961 if (!skb_queue_empty(list)) {
962 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
963 head->qlen += list->qlen;
964 __skb_queue_head_init(list);
965 }
966}
967
968/**
969 * __skb_queue_after - queue a buffer at the list head
970 * @list: list to use
971 * @prev: place after this buffer
972 * @newsk: buffer to queue
973 *
974 * Queue a buffer int the middle of a list. This function takes no locks
975 * and you must therefore hold required locks before calling it.
976 *
977 * A buffer cannot be placed on two lists at the same time.
978 */
979static inline void __skb_queue_after(struct sk_buff_head *list,
980 struct sk_buff *prev,
981 struct sk_buff *newsk)
982{
983 __skb_insert(newsk, prev, prev->next, list);
984}
985
986extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
987 struct sk_buff_head *list);
988
989static inline void __skb_queue_before(struct sk_buff_head *list,
990 struct sk_buff *next,
991 struct sk_buff *newsk)
992{
993 __skb_insert(newsk, next->prev, next, list);
994}
995
996/**
997 * __skb_queue_head - queue a buffer at the list head
998 * @list: list to use
999 * @newsk: buffer to queue
1000 *
1001 * Queue a buffer at the start of a list. This function takes no locks
1002 * and you must therefore hold required locks before calling it.
1003 *
1004 * A buffer cannot be placed on two lists at the same time.
1005 */
1006extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1007static inline void __skb_queue_head(struct sk_buff_head *list,
1008 struct sk_buff *newsk)
1009{
1010 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1011}
1012
1013/**
1014 * __skb_queue_tail - queue a buffer at the list tail
1015 * @list: list to use
1016 * @newsk: buffer to queue
1017 *
1018 * Queue a buffer at the end of a list. This function takes no locks
1019 * and you must therefore hold required locks before calling it.
1020 *
1021 * A buffer cannot be placed on two lists at the same time.
1022 */
1023extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1024static inline void __skb_queue_tail(struct sk_buff_head *list,
1025 struct sk_buff *newsk)
1026{
1027 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1028}
1029
1030/*
1031 * remove sk_buff from list. _Must_ be called atomically, and with
1032 * the list known..
1033 */
1034extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1035static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1036{
1037 struct sk_buff *next, *prev;
1038
1039 list->qlen--;
1040 next = skb->next;
1041 prev = skb->prev;
1042 skb->next = skb->prev = NULL;
1043 next->prev = prev;
1044 prev->next = next;
1045}
1046
1047/**
1048 * __skb_dequeue - remove from the head of the queue
1049 * @list: list to dequeue from
1050 *
1051 * Remove the head of the list. This function does not take any locks
1052 * so must be used with appropriate locks held only. The head item is
1053 * returned or %NULL if the list is empty.
1054 */
1055extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1056static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1057{
1058 struct sk_buff *skb = skb_peek(list);
1059 if (skb)
1060 __skb_unlink(skb, list);
1061 return skb;
1062}
1063
1064/**
1065 * __skb_dequeue_tail - remove from the tail of the queue
1066 * @list: list to dequeue from
1067 *
1068 * Remove the tail of the list. This function does not take any locks
1069 * so must be used with appropriate locks held only. The tail item is
1070 * returned or %NULL if the list is empty.
1071 */
1072extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1073static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1074{
1075 struct sk_buff *skb = skb_peek_tail(list);
1076 if (skb)
1077 __skb_unlink(skb, list);
1078 return skb;
1079}
1080
1081
1082static inline int skb_is_nonlinear(const struct sk_buff *skb)
1083{
1084 return skb->data_len;
1085}
1086
1087static inline unsigned int skb_headlen(const struct sk_buff *skb)
1088{
1089 return skb->len - skb->data_len;
1090}
1091
1092static inline int skb_pagelen(const struct sk_buff *skb)
1093{
1094 int i, len = 0;
1095
1096 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1097 len += skb_shinfo(skb)->frags[i].size;
1098 return len + skb_headlen(skb);
1099}
1100
1101static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1102 struct page *page, int off, int size)
1103{
1104 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1105
1106 frag->page = page;
1107 frag->page_offset = off;
1108 frag->size = size;
1109 skb_shinfo(skb)->nr_frags = i + 1;
1110}
1111
1112extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1113 int off, int size);
1114
1115#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1116#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1117#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1118
1119#ifdef NET_SKBUFF_DATA_USES_OFFSET
1120static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1121{
1122 return skb->head + skb->tail;
1123}
1124
1125static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1126{
1127 skb->tail = skb->data - skb->head;
1128}
1129
1130static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1131{
1132 skb_reset_tail_pointer(skb);
1133 skb->tail += offset;
1134}
1135#else /* NET_SKBUFF_DATA_USES_OFFSET */
1136static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1137{
1138 return skb->tail;
1139}
1140
1141static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1142{
1143 skb->tail = skb->data;
1144}
1145
1146static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1147{
1148 skb->tail = skb->data + offset;
1149}
1150
1151#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1152
1153/*
1154 * Add data to an sk_buff
1155 */
1156extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1157static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1158{
1159 unsigned char *tmp = skb_tail_pointer(skb);
1160 SKB_LINEAR_ASSERT(skb);
1161 skb->tail += len;
1162 skb->len += len;
1163 return tmp;
1164}
1165
1166extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1167static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1168{
1169 skb->data -= len;
1170 skb->len += len;
1171 return skb->data;
1172}
1173
1174extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1175static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1176{
1177 skb->len -= len;
1178 BUG_ON(skb->len < skb->data_len);
1179 return skb->data += len;
1180}
1181
1182static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1183{
1184 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1185}
1186
1187extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1188
1189static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1190{
1191 if (len > skb_headlen(skb) &&
1192 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1193 return NULL;
1194 skb->len -= len;
1195 return skb->data += len;
1196}
1197
1198static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1199{
1200 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1201}
1202
1203static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1204{
1205 if (likely(len <= skb_headlen(skb)))
1206 return 1;
1207 if (unlikely(len > skb->len))
1208 return 0;
1209 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1210}
1211
1212/**
1213 * skb_headroom - bytes at buffer head
1214 * @skb: buffer to check
1215 *
1216 * Return the number of bytes of free space at the head of an &sk_buff.
1217 */
1218static inline unsigned int skb_headroom(const struct sk_buff *skb)
1219{
1220 return skb->data - skb->head;
1221}
1222
1223/**
1224 * skb_tailroom - bytes at buffer end
1225 * @skb: buffer to check
1226 *
1227 * Return the number of bytes of free space at the tail of an sk_buff
1228 */
1229static inline int skb_tailroom(const struct sk_buff *skb)
1230{
1231 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1232}
1233
1234/**
1235 * skb_reserve - adjust headroom
1236 * @skb: buffer to alter
1237 * @len: bytes to move
1238 *
1239 * Increase the headroom of an empty &sk_buff by reducing the tail
1240 * room. This is only allowed for an empty buffer.
1241 */
1242static inline void skb_reserve(struct sk_buff *skb, int len)
1243{
1244 skb->data += len;
1245 skb->tail += len;
1246}
1247
1248#ifdef NET_SKBUFF_DATA_USES_OFFSET
1249static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1250{
1251 return skb->head + skb->transport_header;
1252}
1253
1254static inline void skb_reset_transport_header(struct sk_buff *skb)
1255{
1256 skb->transport_header = skb->data - skb->head;
1257}
1258
1259static inline void skb_set_transport_header(struct sk_buff *skb,
1260 const int offset)
1261{
1262 skb_reset_transport_header(skb);
1263 skb->transport_header += offset;
1264}
1265
1266static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1267{
1268 return skb->head + skb->network_header;
1269}
1270
1271static inline void skb_reset_network_header(struct sk_buff *skb)
1272{
1273 skb->network_header = skb->data - skb->head;
1274}
1275
1276static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1277{
1278 skb_reset_network_header(skb);
1279 skb->network_header += offset;
1280}
1281
1282static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1283{
1284 return skb->head + skb->mac_header;
1285}
1286
1287static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1288{
1289 return skb->mac_header != ~0U;
1290}
1291
1292static inline void skb_reset_mac_header(struct sk_buff *skb)
1293{
1294 skb->mac_header = skb->data - skb->head;
1295}
1296
1297static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1298{
1299 skb_reset_mac_header(skb);
1300 skb->mac_header += offset;
1301}
1302
1303#else /* NET_SKBUFF_DATA_USES_OFFSET */
1304
1305static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1306{
1307 return skb->transport_header;
1308}
1309
1310static inline void skb_reset_transport_header(struct sk_buff *skb)
1311{
1312 skb->transport_header = skb->data;
1313}
1314
1315static inline void skb_set_transport_header(struct sk_buff *skb,
1316 const int offset)
1317{
1318 skb->transport_header = skb->data + offset;
1319}
1320
1321static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1322{
1323 return skb->network_header;
1324}
1325
1326static inline void skb_reset_network_header(struct sk_buff *skb)
1327{
1328 skb->network_header = skb->data;
1329}
1330
1331static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1332{
1333 skb->network_header = skb->data + offset;
1334}
1335
1336static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1337{
1338 return skb->mac_header;
1339}
1340
1341static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1342{
1343 return skb->mac_header != NULL;
1344}
1345
1346static inline void skb_reset_mac_header(struct sk_buff *skb)
1347{
1348 skb->mac_header = skb->data;
1349}
1350
1351static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1352{
1353 skb->mac_header = skb->data + offset;
1354}
1355#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1356
1357static inline int skb_transport_offset(const struct sk_buff *skb)
1358{
1359 return skb_transport_header(skb) - skb->data;
1360}
1361
1362static inline u32 skb_network_header_len(const struct sk_buff *skb)
1363{
1364 return skb->transport_header - skb->network_header;
1365}
1366
1367static inline int skb_network_offset(const struct sk_buff *skb)
1368{
1369 return skb_network_header(skb) - skb->data;
1370}
1371
1372static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1373{
1374 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1375}
1376
1377/*
1378 * CPUs often take a performance hit when accessing unaligned memory
1379 * locations. The actual performance hit varies, it can be small if the
1380 * hardware handles it or large if we have to take an exception and fix it
1381 * in software.
1382 *
1383 * Since an ethernet header is 14 bytes network drivers often end up with
1384 * the IP header at an unaligned offset. The IP header can be aligned by
1385 * shifting the start of the packet by 2 bytes. Drivers should do this
1386 * with:
1387 *
1388 * skb_reserve(skb, NET_IP_ALIGN);
1389 *
1390 * The downside to this alignment of the IP header is that the DMA is now
1391 * unaligned. On some architectures the cost of an unaligned DMA is high
1392 * and this cost outweighs the gains made by aligning the IP header.
1393 *
1394 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1395 * to be overridden.
1396 */
1397#ifndef NET_IP_ALIGN
1398#define NET_IP_ALIGN 2
1399#endif
1400
1401/*
1402 * The networking layer reserves some headroom in skb data (via
1403 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1404 * the header has to grow. In the default case, if the header has to grow
1405 * 32 bytes or less we avoid the reallocation.
1406 *
1407 * Unfortunately this headroom changes the DMA alignment of the resulting
1408 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1409 * on some architectures. An architecture can override this value,
1410 * perhaps setting it to a cacheline in size (since that will maintain
1411 * cacheline alignment of the DMA). It must be a power of 2.
1412 *
1413 * Various parts of the networking layer expect at least 32 bytes of
1414 * headroom, you should not reduce this.
1415 *
1416 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1417 * to reduce average number of cache lines per packet.
1418 * get_rps_cpus() for example only access one 64 bytes aligned block :
1419 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1420 */
1421#ifndef NET_SKB_PAD
1422#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
1423#endif
1424
1425extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1426
1427static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1428{
1429 if (unlikely(skb->data_len)) {
1430 WARN_ON(1);
1431 return;
1432 }
1433 skb->len = len;
1434 skb_set_tail_pointer(skb, len);
1435}
1436
1437extern void skb_trim(struct sk_buff *skb, unsigned int len);
1438
1439static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1440{
1441 if (skb->data_len)
1442 return ___pskb_trim(skb, len);
1443 __skb_trim(skb, len);
1444 return 0;
1445}
1446
1447static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1448{
1449 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1450}
1451
1452/**
1453 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1454 * @skb: buffer to alter
1455 * @len: new length
1456 *
1457 * This is identical to pskb_trim except that the caller knows that
1458 * the skb is not cloned so we should never get an error due to out-
1459 * of-memory.
1460 */
1461static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1462{
1463 int err = pskb_trim(skb, len);
1464 BUG_ON(err);
1465}
1466
1467/**
1468 * skb_orphan - orphan a buffer
1469 * @skb: buffer to orphan
1470 *
1471 * If a buffer currently has an owner then we call the owner's
1472 * destructor function and make the @skb unowned. The buffer continues
1473 * to exist but is no longer charged to its former owner.
1474 */
1475static inline void skb_orphan(struct sk_buff *skb)
1476{
1477 if (skb->destructor)
1478 skb->destructor(skb);
1479 skb->destructor = NULL;
1480 skb->sk = NULL;
1481}
1482
1483/**
1484 * __skb_queue_purge - empty a list
1485 * @list: list to empty
1486 *
1487 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1488 * the list and one reference dropped. This function does not take the
1489 * list lock and the caller must hold the relevant locks to use it.
1490 */
1491extern void skb_queue_purge(struct sk_buff_head *list);
1492static inline void __skb_queue_purge(struct sk_buff_head *list)
1493{
1494 struct sk_buff *skb;
1495 while ((skb = __skb_dequeue(list)) != NULL)
1496 kfree_skb(skb);
1497}
1498
1499/**
1500 * __dev_alloc_skb - allocate an skbuff for receiving
1501 * @length: length to allocate
1502 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1503 *
1504 * Allocate a new &sk_buff and assign it a usage count of one. The
1505 * buffer has unspecified headroom built in. Users should allocate
1506 * the headroom they think they need without accounting for the
1507 * built in space. The built in space is used for optimisations.
1508 *
1509 * %NULL is returned if there is no free memory.
1510 */
1511static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1512 gfp_t gfp_mask)
1513{
1514 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1515 if (likely(skb))
1516 skb_reserve(skb, NET_SKB_PAD);
1517 return skb;
1518}
1519
1520extern struct sk_buff *dev_alloc_skb(unsigned int length);
1521
1522extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1523 unsigned int length, gfp_t gfp_mask);
1524
1525/**
1526 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1527 * @dev: network device to receive on
1528 * @length: length to allocate
1529 *
1530 * Allocate a new &sk_buff and assign it a usage count of one. The
1531 * buffer has unspecified headroom built in. Users should allocate
1532 * the headroom they think they need without accounting for the
1533 * built in space. The built in space is used for optimisations.
1534 *
1535 * %NULL is returned if there is no free memory. Although this function
1536 * allocates memory it can be called from an interrupt.
1537 */
1538static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1539 unsigned int length)
1540{
1541 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1542}
1543
1544static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1545 unsigned int length)
1546{
1547 struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN);
1548
1549 if (NET_IP_ALIGN && skb)
1550 skb_reserve(skb, NET_IP_ALIGN);
1551 return skb;
1552}
1553
1554/**
1555 * __netdev_alloc_page - allocate a page for ps-rx on a specific device
1556 * @dev: network device to receive on
1557 * @gfp_mask: alloc_pages_node mask
1558 *
1559 * Allocate a new page. dev currently unused.
1560 *
1561 * %NULL is returned if there is no free memory.
1562 */
1563static inline struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
1564{
1565 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, 0);
1566}
1567
1568/**
1569 * netdev_alloc_page - allocate a page for ps-rx on a specific device
1570 * @dev: network device to receive on
1571 *
1572 * Allocate a new page. dev currently unused.
1573 *
1574 * %NULL is returned if there is no free memory.
1575 */
1576static inline struct page *netdev_alloc_page(struct net_device *dev)
1577{
1578 return __netdev_alloc_page(dev, GFP_ATOMIC);
1579}
1580
1581static inline void netdev_free_page(struct net_device *dev, struct page *page)
1582{
1583 __free_page(page);
1584}
1585
1586/**
1587 * skb_clone_writable - is the header of a clone writable
1588 * @skb: buffer to check
1589 * @len: length up to which to write
1590 *
1591 * Returns true if modifying the header part of the cloned buffer
1592 * does not requires the data to be copied.
1593 */
1594static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1595{
1596 return !skb_header_cloned(skb) &&
1597 skb_headroom(skb) + len <= skb->hdr_len;
1598}
1599
1600static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1601 int cloned)
1602{
1603 int delta = 0;
1604
1605 if (headroom < NET_SKB_PAD)
1606 headroom = NET_SKB_PAD;
1607 if (headroom > skb_headroom(skb))
1608 delta = headroom - skb_headroom(skb);
1609
1610 if (delta || cloned)
1611 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1612 GFP_ATOMIC);
1613 return 0;
1614}
1615
1616/**
1617 * skb_cow - copy header of skb when it is required
1618 * @skb: buffer to cow
1619 * @headroom: needed headroom
1620 *
1621 * If the skb passed lacks sufficient headroom or its data part
1622 * is shared, data is reallocated. If reallocation fails, an error
1623 * is returned and original skb is not changed.
1624 *
1625 * The result is skb with writable area skb->head...skb->tail
1626 * and at least @headroom of space at head.
1627 */
1628static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1629{
1630 return __skb_cow(skb, headroom, skb_cloned(skb));
1631}
1632
1633/**
1634 * skb_cow_head - skb_cow but only making the head writable
1635 * @skb: buffer to cow
1636 * @headroom: needed headroom
1637 *
1638 * This function is identical to skb_cow except that we replace the
1639 * skb_cloned check by skb_header_cloned. It should be used when
1640 * you only need to push on some header and do not need to modify
1641 * the data.
1642 */
1643static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1644{
1645 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1646}
1647
1648/**
1649 * skb_padto - pad an skbuff up to a minimal size
1650 * @skb: buffer to pad
1651 * @len: minimal length
1652 *
1653 * Pads up a buffer to ensure the trailing bytes exist and are
1654 * blanked. If the buffer already contains sufficient data it
1655 * is untouched. Otherwise it is extended. Returns zero on
1656 * success. The skb is freed on error.
1657 */
1658
1659static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1660{
1661 unsigned int size = skb->len;
1662 if (likely(size >= len))
1663 return 0;
1664 return skb_pad(skb, len - size);
1665}
1666
1667static inline int skb_add_data(struct sk_buff *skb,
1668 char __user *from, int copy)
1669{
1670 const int off = skb->len;
1671
1672 if (skb->ip_summed == CHECKSUM_NONE) {
1673 int err = 0;
1674 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1675 copy, 0, &err);
1676 if (!err) {
1677 skb->csum = csum_block_add(skb->csum, csum, off);
1678 return 0;
1679 }
1680 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1681 return 0;
1682
1683 __skb_trim(skb, off);
1684 return -EFAULT;
1685}
1686
1687static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1688 struct page *page, int off)
1689{
1690 if (i) {
1691 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1692
1693 return page == frag->page &&
1694 off == frag->page_offset + frag->size;
1695 }
1696 return 0;
1697}
1698
1699static inline int __skb_linearize(struct sk_buff *skb)
1700{
1701 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1702}
1703
1704/**
1705 * skb_linearize - convert paged skb to linear one
1706 * @skb: buffer to linarize
1707 *
1708 * If there is no free memory -ENOMEM is returned, otherwise zero
1709 * is returned and the old skb data released.
1710 */
1711static inline int skb_linearize(struct sk_buff *skb)
1712{
1713 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1714}
1715
1716/**
1717 * skb_linearize_cow - make sure skb is linear and writable
1718 * @skb: buffer to process
1719 *
1720 * If there is no free memory -ENOMEM is returned, otherwise zero
1721 * is returned and the old skb data released.
1722 */
1723static inline int skb_linearize_cow(struct sk_buff *skb)
1724{
1725 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1726 __skb_linearize(skb) : 0;
1727}
1728
1729/**
1730 * skb_postpull_rcsum - update checksum for received skb after pull
1731 * @skb: buffer to update
1732 * @start: start of data before pull
1733 * @len: length of data pulled
1734 *
1735 * After doing a pull on a received packet, you need to call this to
1736 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1737 * CHECKSUM_NONE so that it can be recomputed from scratch.
1738 */
1739
1740static inline void skb_postpull_rcsum(struct sk_buff *skb,
1741 const void *start, unsigned int len)
1742{
1743 if (skb->ip_summed == CHECKSUM_COMPLETE)
1744 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1745}
1746
1747unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1748
1749/**
1750 * pskb_trim_rcsum - trim received skb and update checksum
1751 * @skb: buffer to trim
1752 * @len: new length
1753 *
1754 * This is exactly the same as pskb_trim except that it ensures the
1755 * checksum of received packets are still valid after the operation.
1756 */
1757
1758static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1759{
1760 if (likely(len >= skb->len))
1761 return 0;
1762 if (skb->ip_summed == CHECKSUM_COMPLETE)
1763 skb->ip_summed = CHECKSUM_NONE;
1764 return __pskb_trim(skb, len);
1765}
1766
1767#define skb_queue_walk(queue, skb) \
1768 for (skb = (queue)->next; \
1769 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1770 skb = skb->next)
1771
1772#define skb_queue_walk_safe(queue, skb, tmp) \
1773 for (skb = (queue)->next, tmp = skb->next; \
1774 skb != (struct sk_buff *)(queue); \
1775 skb = tmp, tmp = skb->next)
1776
1777#define skb_queue_walk_from(queue, skb) \
1778 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1779 skb = skb->next)
1780
1781#define skb_queue_walk_from_safe(queue, skb, tmp) \
1782 for (tmp = skb->next; \
1783 skb != (struct sk_buff *)(queue); \
1784 skb = tmp, tmp = skb->next)
1785
1786#define skb_queue_reverse_walk(queue, skb) \
1787 for (skb = (queue)->prev; \
1788 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1789 skb = skb->prev)
1790
1791
1792static inline bool skb_has_frag_list(const struct sk_buff *skb)
1793{
1794 return skb_shinfo(skb)->frag_list != NULL;
1795}
1796
1797static inline void skb_frag_list_init(struct sk_buff *skb)
1798{
1799 skb_shinfo(skb)->frag_list = NULL;
1800}
1801
1802static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
1803{
1804 frag->next = skb_shinfo(skb)->frag_list;
1805 skb_shinfo(skb)->frag_list = frag;
1806}
1807
1808#define skb_walk_frags(skb, iter) \
1809 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
1810
1811extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1812 int *peeked, int *err);
1813extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1814 int noblock, int *err);
1815extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1816 struct poll_table_struct *wait);
1817extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1818 int offset, struct iovec *to,
1819 int size);
1820extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1821 int hlen,
1822 struct iovec *iov);
1823extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
1824 int offset,
1825 const struct iovec *from,
1826 int from_offset,
1827 int len);
1828extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
1829 int offset,
1830 const struct iovec *to,
1831 int to_offset,
1832 int size);
1833extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1834extern void skb_free_datagram_locked(struct sock *sk,
1835 struct sk_buff *skb);
1836extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1837 unsigned int flags);
1838extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1839 int len, __wsum csum);
1840extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1841 void *to, int len);
1842extern int skb_store_bits(struct sk_buff *skb, int offset,
1843 const void *from, int len);
1844extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1845 int offset, u8 *to, int len,
1846 __wsum csum);
1847extern int skb_splice_bits(struct sk_buff *skb,
1848 unsigned int offset,
1849 struct pipe_inode_info *pipe,
1850 unsigned int len,
1851 unsigned int flags);
1852extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1853extern void skb_split(struct sk_buff *skb,
1854 struct sk_buff *skb1, const u32 len);
1855extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1856 int shiftlen);
1857
1858extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1859
1860static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1861 int len, void *buffer)
1862{
1863 int hlen = skb_headlen(skb);
1864
1865 if (hlen - offset >= len)
1866 return skb->data + offset;
1867
1868 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1869 return NULL;
1870
1871 return buffer;
1872}
1873
1874static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1875 void *to,
1876 const unsigned int len)
1877{
1878 memcpy(to, skb->data, len);
1879}
1880
1881static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1882 const int offset, void *to,
1883 const unsigned int len)
1884{
1885 memcpy(to, skb->data + offset, len);
1886}
1887
1888static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1889 const void *from,
1890 const unsigned int len)
1891{
1892 memcpy(skb->data, from, len);
1893}
1894
1895static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1896 const int offset,
1897 const void *from,
1898 const unsigned int len)
1899{
1900 memcpy(skb->data + offset, from, len);
1901}
1902
1903extern void skb_init(void);
1904
1905static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1906{
1907 return skb->tstamp;
1908}
1909
1910/**
1911 * skb_get_timestamp - get timestamp from a skb
1912 * @skb: skb to get stamp from
1913 * @stamp: pointer to struct timeval to store stamp in
1914 *
1915 * Timestamps are stored in the skb as offsets to a base timestamp.
1916 * This function converts the offset back to a struct timeval and stores
1917 * it in stamp.
1918 */
1919static inline void skb_get_timestamp(const struct sk_buff *skb,
1920 struct timeval *stamp)
1921{
1922 *stamp = ktime_to_timeval(skb->tstamp);
1923}
1924
1925static inline void skb_get_timestampns(const struct sk_buff *skb,
1926 struct timespec *stamp)
1927{
1928 *stamp = ktime_to_timespec(skb->tstamp);
1929}
1930
1931static inline void __net_timestamp(struct sk_buff *skb)
1932{
1933 skb->tstamp = ktime_get_real();
1934}
1935
1936static inline ktime_t net_timedelta(ktime_t t)
1937{
1938 return ktime_sub(ktime_get_real(), t);
1939}
1940
1941static inline ktime_t net_invalid_timestamp(void)
1942{
1943 return ktime_set(0, 0);
1944}
1945
1946extern void skb_timestamping_init(void);
1947
1948#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
1949
1950extern void skb_clone_tx_timestamp(struct sk_buff *skb);
1951extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
1952
1953#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
1954
1955static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
1956{
1957}
1958
1959static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
1960{
1961 return false;
1962}
1963
1964#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
1965
1966/**
1967 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
1968 *
1969 * @skb: clone of the the original outgoing packet
1970 * @hwtstamps: hardware time stamps
1971 *
1972 */
1973void skb_complete_tx_timestamp(struct sk_buff *skb,
1974 struct skb_shared_hwtstamps *hwtstamps);
1975
1976/**
1977 * skb_tstamp_tx - queue clone of skb with send time stamps
1978 * @orig_skb: the original outgoing packet
1979 * @hwtstamps: hardware time stamps, may be NULL if not available
1980 *
1981 * If the skb has a socket associated, then this function clones the
1982 * skb (thus sharing the actual data and optional structures), stores
1983 * the optional hardware time stamping information (if non NULL) or
1984 * generates a software time stamp (otherwise), then queues the clone
1985 * to the error queue of the socket. Errors are silently ignored.
1986 */
1987extern void skb_tstamp_tx(struct sk_buff *orig_skb,
1988 struct skb_shared_hwtstamps *hwtstamps);
1989
1990static inline void sw_tx_timestamp(struct sk_buff *skb)
1991{
1992 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
1993 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
1994 skb_tstamp_tx(skb, NULL);
1995}
1996
1997/**
1998 * skb_tx_timestamp() - Driver hook for transmit timestamping
1999 *
2000 * Ethernet MAC Drivers should call this function in their hard_xmit()
2001 * function as soon as possible after giving the sk_buff to the MAC
2002 * hardware, but before freeing the sk_buff.
2003 *
2004 * @skb: A socket buffer.
2005 */
2006static inline void skb_tx_timestamp(struct sk_buff *skb)
2007{
2008 skb_clone_tx_timestamp(skb);
2009 sw_tx_timestamp(skb);
2010}
2011
2012extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2013extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2014
2015static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2016{
2017 return skb->ip_summed & CHECKSUM_UNNECESSARY;
2018}
2019
2020/**
2021 * skb_checksum_complete - Calculate checksum of an entire packet
2022 * @skb: packet to process
2023 *
2024 * This function calculates the checksum over the entire packet plus
2025 * the value of skb->csum. The latter can be used to supply the
2026 * checksum of a pseudo header as used by TCP/UDP. It returns the
2027 * checksum.
2028 *
2029 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2030 * this function can be used to verify that checksum on received
2031 * packets. In that case the function should return zero if the
2032 * checksum is correct. In particular, this function will return zero
2033 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2034 * hardware has already verified the correctness of the checksum.
2035 */
2036static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2037{
2038 return skb_csum_unnecessary(skb) ?
2039 0 : __skb_checksum_complete(skb);
2040}
2041
2042#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2043extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2044static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2045{
2046 if (nfct && atomic_dec_and_test(&nfct->use))
2047 nf_conntrack_destroy(nfct);
2048}
2049static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2050{
2051 if (nfct)
2052 atomic_inc(&nfct->use);
2053}
2054static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2055{
2056 if (skb)
2057 atomic_inc(&skb->users);
2058}
2059static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2060{
2061 if (skb)
2062 kfree_skb(skb);
2063}
2064#endif
2065#ifdef CONFIG_BRIDGE_NETFILTER
2066static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2067{
2068 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2069 kfree(nf_bridge);
2070}
2071static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2072{
2073 if (nf_bridge)
2074 atomic_inc(&nf_bridge->use);
2075}
2076#endif /* CONFIG_BRIDGE_NETFILTER */
2077static inline void nf_reset(struct sk_buff *skb)
2078{
2079#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2080 nf_conntrack_put(skb->nfct);
2081 skb->nfct = NULL;
2082 nf_conntrack_put_reasm(skb->nfct_reasm);
2083 skb->nfct_reasm = NULL;
2084#endif
2085#ifdef CONFIG_BRIDGE_NETFILTER
2086 nf_bridge_put(skb->nf_bridge);
2087 skb->nf_bridge = NULL;
2088#endif
2089}
2090
2091/* Note: This doesn't put any conntrack and bridge info in dst. */
2092static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2093{
2094#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2095 dst->nfct = src->nfct;
2096 nf_conntrack_get(src->nfct);
2097 dst->nfctinfo = src->nfctinfo;
2098 dst->nfct_reasm = src->nfct_reasm;
2099 nf_conntrack_get_reasm(src->nfct_reasm);
2100#endif
2101#ifdef CONFIG_BRIDGE_NETFILTER
2102 dst->nf_bridge = src->nf_bridge;
2103 nf_bridge_get(src->nf_bridge);
2104#endif
2105}
2106
2107static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2108{
2109#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2110 nf_conntrack_put(dst->nfct);
2111 nf_conntrack_put_reasm(dst->nfct_reasm);
2112#endif
2113#ifdef CONFIG_BRIDGE_NETFILTER
2114 nf_bridge_put(dst->nf_bridge);
2115#endif
2116 __nf_copy(dst, src);
2117}
2118
2119#ifdef CONFIG_NETWORK_SECMARK
2120static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2121{
2122 to->secmark = from->secmark;
2123}
2124
2125static inline void skb_init_secmark(struct sk_buff *skb)
2126{
2127 skb->secmark = 0;
2128}
2129#else
2130static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2131{ }
2132
2133static inline void skb_init_secmark(struct sk_buff *skb)
2134{ }
2135#endif
2136
2137static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2138{
2139 skb->queue_mapping = queue_mapping;
2140}
2141
2142static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2143{
2144 return skb->queue_mapping;
2145}
2146
2147static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2148{
2149 to->queue_mapping = from->queue_mapping;
2150}
2151
2152static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2153{
2154 skb->queue_mapping = rx_queue + 1;
2155}
2156
2157static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2158{
2159 return skb->queue_mapping - 1;
2160}
2161
2162static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2163{
2164 return skb->queue_mapping != 0;
2165}
2166
2167extern u16 skb_tx_hash(const struct net_device *dev,
2168 const struct sk_buff *skb);
2169
2170#ifdef CONFIG_XFRM
2171static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2172{
2173 return skb->sp;
2174}
2175#else
2176static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2177{
2178 return NULL;
2179}
2180#endif
2181
2182static inline int skb_is_gso(const struct sk_buff *skb)
2183{
2184 return skb_shinfo(skb)->gso_size;
2185}
2186
2187static inline int skb_is_gso_v6(const struct sk_buff *skb)
2188{
2189 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2190}
2191
2192extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2193
2194static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2195{
2196 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2197 * wanted then gso_type will be set. */
2198 struct skb_shared_info *shinfo = skb_shinfo(skb);
2199 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2200 unlikely(shinfo->gso_type == 0)) {
2201 __skb_warn_lro_forwarding(skb);
2202 return true;
2203 }
2204 return false;
2205}
2206
2207static inline void skb_forward_csum(struct sk_buff *skb)
2208{
2209 /* Unfortunately we don't support this one. Any brave souls? */
2210 if (skb->ip_summed == CHECKSUM_COMPLETE)
2211 skb->ip_summed = CHECKSUM_NONE;
2212}
2213
2214/**
2215 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2216 * @skb: skb to check
2217 *
2218 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2219 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2220 * use this helper, to document places where we make this assertion.
2221 */
2222static inline void skb_checksum_none_assert(struct sk_buff *skb)
2223{
2224#ifdef DEBUG
2225 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2226#endif
2227}
2228
2229bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2230#endif /* __KERNEL__ */
2231#endif /* _LINUX_SKBUFF_H */