]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - include/linux/skbuff.h
[UDP]: Restore missing inDatagrams increments
[net-next-2.6.git] / include / linux / skbuff.h
... / ...
CommitLineData
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
17#include <linux/kernel.h>
18#include <linux/compiler.h>
19#include <linux/time.h>
20#include <linux/cache.h>
21
22#include <asm/atomic.h>
23#include <asm/types.h>
24#include <linux/spinlock.h>
25#include <linux/net.h>
26#include <linux/textsearch.h>
27#include <net/checksum.h>
28#include <linux/rcupdate.h>
29#include <linux/dmaengine.h>
30#include <linux/hrtimer.h>
31
32#define HAVE_ALLOC_SKB /* For the drivers to know */
33#define HAVE_ALIGNABLE_SKB /* Ditto 8) */
34
35/* Don't change this without changing skb_csum_unnecessary! */
36#define CHECKSUM_NONE 0
37#define CHECKSUM_UNNECESSARY 1
38#define CHECKSUM_COMPLETE 2
39#define CHECKSUM_PARTIAL 3
40
41#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43#define SKB_WITH_OVERHEAD(X) \
44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45#define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
49
50/* A. Checksumming of received packets by device.
51 *
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
54 *
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
60 *
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * not UNNECESSARY.
66 *
67 * PARTIAL: identical to the case for output below. This may occur
68 * on a packet received directly from another Linux OS, e.g.,
69 * a virtualised Linux kernel on the same host. The packet can
70 * be treated in the same way as UNNECESSARY except that on
71 * output (i.e., forwarding) the checksum must be filled in
72 * by the OS or the hardware.
73 *
74 * B. Checksumming on output.
75 *
76 * NONE: skb is checksummed by protocol or csum is not required.
77 *
78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
79 * from skb->csum_start to the end and to record the checksum
80 * at skb->csum_start + skb->csum_offset.
81 *
82 * Device must show its capabilities in dev->features, set
83 * at device setup time.
84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
85 * everything.
86 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
88 * TCP/UDP over IPv4. Sigh. Vendors like this
89 * way by an unknown reason. Though, see comment above
90 * about CHECKSUM_UNNECESSARY. 8)
91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
92 *
93 * Any questions? No questions, good. --ANK
94 */
95
96struct net_device;
97struct scatterlist;
98struct pipe_inode_info;
99
100#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101struct nf_conntrack {
102 atomic_t use;
103};
104#endif
105
106#ifdef CONFIG_BRIDGE_NETFILTER
107struct nf_bridge_info {
108 atomic_t use;
109 struct net_device *physindev;
110 struct net_device *physoutdev;
111#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
112 struct net_device *netoutdev;
113#endif
114 unsigned int mask;
115 unsigned long data[32 / sizeof(unsigned long)];
116};
117#endif
118
119struct sk_buff_head {
120 /* These two members must be first. */
121 struct sk_buff *next;
122 struct sk_buff *prev;
123
124 __u32 qlen;
125 spinlock_t lock;
126};
127
128struct sk_buff;
129
130/* To allow 64K frame to be packed as single skb without frag_list */
131#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
132
133typedef struct skb_frag_struct skb_frag_t;
134
135struct skb_frag_struct {
136 struct page *page;
137 __u32 page_offset;
138 __u32 size;
139};
140
141/* This data is invariant across clones and lives at
142 * the end of the header data, ie. at skb->end.
143 */
144struct skb_shared_info {
145 atomic_t dataref;
146 unsigned short nr_frags;
147 unsigned short gso_size;
148 /* Warning: this field is not always filled in (UFO)! */
149 unsigned short gso_segs;
150 unsigned short gso_type;
151 __be32 ip6_frag_id;
152 struct sk_buff *frag_list;
153 skb_frag_t frags[MAX_SKB_FRAGS];
154};
155
156/* We divide dataref into two halves. The higher 16 bits hold references
157 * to the payload part of skb->data. The lower 16 bits hold references to
158 * the entire skb->data. A clone of a headerless skb holds the length of
159 * the header in skb->hdr_len.
160 *
161 * All users must obey the rule that the skb->data reference count must be
162 * greater than or equal to the payload reference count.
163 *
164 * Holding a reference to the payload part means that the user does not
165 * care about modifications to the header part of skb->data.
166 */
167#define SKB_DATAREF_SHIFT 16
168#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
169
170
171enum {
172 SKB_FCLONE_UNAVAILABLE,
173 SKB_FCLONE_ORIG,
174 SKB_FCLONE_CLONE,
175};
176
177enum {
178 SKB_GSO_TCPV4 = 1 << 0,
179 SKB_GSO_UDP = 1 << 1,
180
181 /* This indicates the skb is from an untrusted source. */
182 SKB_GSO_DODGY = 1 << 2,
183
184 /* This indicates the tcp segment has CWR set. */
185 SKB_GSO_TCP_ECN = 1 << 3,
186
187 SKB_GSO_TCPV6 = 1 << 4,
188};
189
190#if BITS_PER_LONG > 32
191#define NET_SKBUFF_DATA_USES_OFFSET 1
192#endif
193
194#ifdef NET_SKBUFF_DATA_USES_OFFSET
195typedef unsigned int sk_buff_data_t;
196#else
197typedef unsigned char *sk_buff_data_t;
198#endif
199
200/**
201 * struct sk_buff - socket buffer
202 * @next: Next buffer in list
203 * @prev: Previous buffer in list
204 * @sk: Socket we are owned by
205 * @tstamp: Time we arrived
206 * @dev: Device we arrived on/are leaving by
207 * @transport_header: Transport layer header
208 * @network_header: Network layer header
209 * @mac_header: Link layer header
210 * @dst: destination entry
211 * @sp: the security path, used for xfrm
212 * @cb: Control buffer. Free for use by every layer. Put private vars here
213 * @len: Length of actual data
214 * @data_len: Data length
215 * @mac_len: Length of link layer header
216 * @hdr_len: writable header length of cloned skb
217 * @csum: Checksum (must include start/offset pair)
218 * @csum_start: Offset from skb->head where checksumming should start
219 * @csum_offset: Offset from csum_start where checksum should be stored
220 * @local_df: allow local fragmentation
221 * @cloned: Head may be cloned (check refcnt to be sure)
222 * @nohdr: Payload reference only, must not modify header
223 * @pkt_type: Packet class
224 * @fclone: skbuff clone status
225 * @ip_summed: Driver fed us an IP checksum
226 * @priority: Packet queueing priority
227 * @users: User count - see {datagram,tcp}.c
228 * @protocol: Packet protocol from driver
229 * @truesize: Buffer size
230 * @head: Head of buffer
231 * @data: Data head pointer
232 * @tail: Tail pointer
233 * @end: End pointer
234 * @destructor: Destruct function
235 * @mark: Generic packet mark
236 * @nfct: Associated connection, if any
237 * @ipvs_property: skbuff is owned by ipvs
238 * @nf_trace: netfilter packet trace flag
239 * @nfctinfo: Relationship of this skb to the connection
240 * @nfct_reasm: netfilter conntrack re-assembly pointer
241 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
242 * @iif: ifindex of device we arrived on
243 * @queue_mapping: Queue mapping for multiqueue devices
244 * @tc_index: Traffic control index
245 * @tc_verd: traffic control verdict
246 * @dma_cookie: a cookie to one of several possible DMA operations
247 * done by skb DMA functions
248 * @secmark: security marking
249 */
250
251struct sk_buff {
252 /* These two members must be first. */
253 struct sk_buff *next;
254 struct sk_buff *prev;
255
256 struct sock *sk;
257 ktime_t tstamp;
258 struct net_device *dev;
259
260 struct dst_entry *dst;
261 struct sec_path *sp;
262
263 /*
264 * This is the control buffer. It is free to use for every
265 * layer. Please put your private variables there. If you
266 * want to keep them across layers you have to do a skb_clone()
267 * first. This is owned by whoever has the skb queued ATM.
268 */
269 char cb[48];
270
271 unsigned int len,
272 data_len;
273 __u16 mac_len,
274 hdr_len;
275 union {
276 __wsum csum;
277 struct {
278 __u16 csum_start;
279 __u16 csum_offset;
280 };
281 };
282 __u32 priority;
283 __u8 local_df:1,
284 cloned:1,
285 ip_summed:2,
286 nohdr:1,
287 nfctinfo:3;
288 __u8 pkt_type:3,
289 fclone:2,
290 ipvs_property:1,
291 nf_trace:1;
292 __be16 protocol;
293
294 void (*destructor)(struct sk_buff *skb);
295#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
296 struct nf_conntrack *nfct;
297 struct sk_buff *nfct_reasm;
298#endif
299#ifdef CONFIG_BRIDGE_NETFILTER
300 struct nf_bridge_info *nf_bridge;
301#endif
302
303 int iif;
304#ifdef CONFIG_NETDEVICES_MULTIQUEUE
305 __u16 queue_mapping;
306#endif
307#ifdef CONFIG_NET_SCHED
308 __u16 tc_index; /* traffic control index */
309#ifdef CONFIG_NET_CLS_ACT
310 __u16 tc_verd; /* traffic control verdict */
311#endif
312#endif
313 /* 2 byte hole */
314
315#ifdef CONFIG_NET_DMA
316 dma_cookie_t dma_cookie;
317#endif
318#ifdef CONFIG_NETWORK_SECMARK
319 __u32 secmark;
320#endif
321
322 __u32 mark;
323
324 sk_buff_data_t transport_header;
325 sk_buff_data_t network_header;
326 sk_buff_data_t mac_header;
327 /* These elements must be at the end, see alloc_skb() for details. */
328 sk_buff_data_t tail;
329 sk_buff_data_t end;
330 unsigned char *head,
331 *data;
332 unsigned int truesize;
333 atomic_t users;
334};
335
336#ifdef __KERNEL__
337/*
338 * Handling routines are only of interest to the kernel
339 */
340#include <linux/slab.h>
341
342#include <asm/system.h>
343
344extern void kfree_skb(struct sk_buff *skb);
345extern void __kfree_skb(struct sk_buff *skb);
346extern struct sk_buff *__alloc_skb(unsigned int size,
347 gfp_t priority, int fclone, int node);
348static inline struct sk_buff *alloc_skb(unsigned int size,
349 gfp_t priority)
350{
351 return __alloc_skb(size, priority, 0, -1);
352}
353
354static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
355 gfp_t priority)
356{
357 return __alloc_skb(size, priority, 1, -1);
358}
359
360extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
361extern struct sk_buff *skb_clone(struct sk_buff *skb,
362 gfp_t priority);
363extern struct sk_buff *skb_copy(const struct sk_buff *skb,
364 gfp_t priority);
365extern struct sk_buff *pskb_copy(struct sk_buff *skb,
366 gfp_t gfp_mask);
367extern int pskb_expand_head(struct sk_buff *skb,
368 int nhead, int ntail,
369 gfp_t gfp_mask);
370extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
371 unsigned int headroom);
372extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
373 int newheadroom, int newtailroom,
374 gfp_t priority);
375extern int skb_to_sgvec(struct sk_buff *skb,
376 struct scatterlist *sg, int offset,
377 int len);
378extern int skb_cow_data(struct sk_buff *skb, int tailbits,
379 struct sk_buff **trailer);
380extern int skb_pad(struct sk_buff *skb, int pad);
381#define dev_kfree_skb(a) kfree_skb(a)
382extern void skb_over_panic(struct sk_buff *skb, int len,
383 void *here);
384extern void skb_under_panic(struct sk_buff *skb, int len,
385 void *here);
386extern void skb_truesize_bug(struct sk_buff *skb);
387
388static inline void skb_truesize_check(struct sk_buff *skb)
389{
390 int len = sizeof(struct sk_buff) + skb->len;
391
392 if (unlikely((int)skb->truesize < len))
393 skb_truesize_bug(skb);
394}
395
396extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
397 int getfrag(void *from, char *to, int offset,
398 int len,int odd, struct sk_buff *skb),
399 void *from, int length);
400
401struct skb_seq_state
402{
403 __u32 lower_offset;
404 __u32 upper_offset;
405 __u32 frag_idx;
406 __u32 stepped_offset;
407 struct sk_buff *root_skb;
408 struct sk_buff *cur_skb;
409 __u8 *frag_data;
410};
411
412extern void skb_prepare_seq_read(struct sk_buff *skb,
413 unsigned int from, unsigned int to,
414 struct skb_seq_state *st);
415extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
416 struct skb_seq_state *st);
417extern void skb_abort_seq_read(struct skb_seq_state *st);
418
419extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
420 unsigned int to, struct ts_config *config,
421 struct ts_state *state);
422
423#ifdef NET_SKBUFF_DATA_USES_OFFSET
424static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
425{
426 return skb->head + skb->end;
427}
428#else
429static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
430{
431 return skb->end;
432}
433#endif
434
435/* Internal */
436#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
437
438/**
439 * skb_queue_empty - check if a queue is empty
440 * @list: queue head
441 *
442 * Returns true if the queue is empty, false otherwise.
443 */
444static inline int skb_queue_empty(const struct sk_buff_head *list)
445{
446 return list->next == (struct sk_buff *)list;
447}
448
449/**
450 * skb_get - reference buffer
451 * @skb: buffer to reference
452 *
453 * Makes another reference to a socket buffer and returns a pointer
454 * to the buffer.
455 */
456static inline struct sk_buff *skb_get(struct sk_buff *skb)
457{
458 atomic_inc(&skb->users);
459 return skb;
460}
461
462/*
463 * If users == 1, we are the only owner and are can avoid redundant
464 * atomic change.
465 */
466
467/**
468 * skb_cloned - is the buffer a clone
469 * @skb: buffer to check
470 *
471 * Returns true if the buffer was generated with skb_clone() and is
472 * one of multiple shared copies of the buffer. Cloned buffers are
473 * shared data so must not be written to under normal circumstances.
474 */
475static inline int skb_cloned(const struct sk_buff *skb)
476{
477 return skb->cloned &&
478 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
479}
480
481/**
482 * skb_header_cloned - is the header a clone
483 * @skb: buffer to check
484 *
485 * Returns true if modifying the header part of the buffer requires
486 * the data to be copied.
487 */
488static inline int skb_header_cloned(const struct sk_buff *skb)
489{
490 int dataref;
491
492 if (!skb->cloned)
493 return 0;
494
495 dataref = atomic_read(&skb_shinfo(skb)->dataref);
496 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
497 return dataref != 1;
498}
499
500/**
501 * skb_header_release - release reference to header
502 * @skb: buffer to operate on
503 *
504 * Drop a reference to the header part of the buffer. This is done
505 * by acquiring a payload reference. You must not read from the header
506 * part of skb->data after this.
507 */
508static inline void skb_header_release(struct sk_buff *skb)
509{
510 BUG_ON(skb->nohdr);
511 skb->nohdr = 1;
512 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
513}
514
515/**
516 * skb_shared - is the buffer shared
517 * @skb: buffer to check
518 *
519 * Returns true if more than one person has a reference to this
520 * buffer.
521 */
522static inline int skb_shared(const struct sk_buff *skb)
523{
524 return atomic_read(&skb->users) != 1;
525}
526
527/**
528 * skb_share_check - check if buffer is shared and if so clone it
529 * @skb: buffer to check
530 * @pri: priority for memory allocation
531 *
532 * If the buffer is shared the buffer is cloned and the old copy
533 * drops a reference. A new clone with a single reference is returned.
534 * If the buffer is not shared the original buffer is returned. When
535 * being called from interrupt status or with spinlocks held pri must
536 * be GFP_ATOMIC.
537 *
538 * NULL is returned on a memory allocation failure.
539 */
540static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
541 gfp_t pri)
542{
543 might_sleep_if(pri & __GFP_WAIT);
544 if (skb_shared(skb)) {
545 struct sk_buff *nskb = skb_clone(skb, pri);
546 kfree_skb(skb);
547 skb = nskb;
548 }
549 return skb;
550}
551
552/*
553 * Copy shared buffers into a new sk_buff. We effectively do COW on
554 * packets to handle cases where we have a local reader and forward
555 * and a couple of other messy ones. The normal one is tcpdumping
556 * a packet thats being forwarded.
557 */
558
559/**
560 * skb_unshare - make a copy of a shared buffer
561 * @skb: buffer to check
562 * @pri: priority for memory allocation
563 *
564 * If the socket buffer is a clone then this function creates a new
565 * copy of the data, drops a reference count on the old copy and returns
566 * the new copy with the reference count at 1. If the buffer is not a clone
567 * the original buffer is returned. When called with a spinlock held or
568 * from interrupt state @pri must be %GFP_ATOMIC
569 *
570 * %NULL is returned on a memory allocation failure.
571 */
572static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
573 gfp_t pri)
574{
575 might_sleep_if(pri & __GFP_WAIT);
576 if (skb_cloned(skb)) {
577 struct sk_buff *nskb = skb_copy(skb, pri);
578 kfree_skb(skb); /* Free our shared copy */
579 skb = nskb;
580 }
581 return skb;
582}
583
584/**
585 * skb_peek
586 * @list_: list to peek at
587 *
588 * Peek an &sk_buff. Unlike most other operations you _MUST_
589 * be careful with this one. A peek leaves the buffer on the
590 * list and someone else may run off with it. You must hold
591 * the appropriate locks or have a private queue to do this.
592 *
593 * Returns %NULL for an empty list or a pointer to the head element.
594 * The reference count is not incremented and the reference is therefore
595 * volatile. Use with caution.
596 */
597static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
598{
599 struct sk_buff *list = ((struct sk_buff *)list_)->next;
600 if (list == (struct sk_buff *)list_)
601 list = NULL;
602 return list;
603}
604
605/**
606 * skb_peek_tail
607 * @list_: list to peek at
608 *
609 * Peek an &sk_buff. Unlike most other operations you _MUST_
610 * be careful with this one. A peek leaves the buffer on the
611 * list and someone else may run off with it. You must hold
612 * the appropriate locks or have a private queue to do this.
613 *
614 * Returns %NULL for an empty list or a pointer to the tail element.
615 * The reference count is not incremented and the reference is therefore
616 * volatile. Use with caution.
617 */
618static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
619{
620 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
621 if (list == (struct sk_buff *)list_)
622 list = NULL;
623 return list;
624}
625
626/**
627 * skb_queue_len - get queue length
628 * @list_: list to measure
629 *
630 * Return the length of an &sk_buff queue.
631 */
632static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
633{
634 return list_->qlen;
635}
636
637/*
638 * This function creates a split out lock class for each invocation;
639 * this is needed for now since a whole lot of users of the skb-queue
640 * infrastructure in drivers have different locking usage (in hardirq)
641 * than the networking core (in softirq only). In the long run either the
642 * network layer or drivers should need annotation to consolidate the
643 * main types of usage into 3 classes.
644 */
645static inline void skb_queue_head_init(struct sk_buff_head *list)
646{
647 spin_lock_init(&list->lock);
648 list->prev = list->next = (struct sk_buff *)list;
649 list->qlen = 0;
650}
651
652static inline void skb_queue_head_init_class(struct sk_buff_head *list,
653 struct lock_class_key *class)
654{
655 skb_queue_head_init(list);
656 lockdep_set_class(&list->lock, class);
657}
658
659/*
660 * Insert an sk_buff at the start of a list.
661 *
662 * The "__skb_xxxx()" functions are the non-atomic ones that
663 * can only be called with interrupts disabled.
664 */
665
666/**
667 * __skb_queue_after - queue a buffer at the list head
668 * @list: list to use
669 * @prev: place after this buffer
670 * @newsk: buffer to queue
671 *
672 * Queue a buffer int the middle of a list. This function takes no locks
673 * and you must therefore hold required locks before calling it.
674 *
675 * A buffer cannot be placed on two lists at the same time.
676 */
677static inline void __skb_queue_after(struct sk_buff_head *list,
678 struct sk_buff *prev,
679 struct sk_buff *newsk)
680{
681 struct sk_buff *next;
682 list->qlen++;
683
684 next = prev->next;
685 newsk->next = next;
686 newsk->prev = prev;
687 next->prev = prev->next = newsk;
688}
689
690/**
691 * __skb_queue_head - queue a buffer at the list head
692 * @list: list to use
693 * @newsk: buffer to queue
694 *
695 * Queue a buffer at the start of a list. This function takes no locks
696 * and you must therefore hold required locks before calling it.
697 *
698 * A buffer cannot be placed on two lists at the same time.
699 */
700extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
701static inline void __skb_queue_head(struct sk_buff_head *list,
702 struct sk_buff *newsk)
703{
704 __skb_queue_after(list, (struct sk_buff *)list, newsk);
705}
706
707/**
708 * __skb_queue_tail - queue a buffer at the list tail
709 * @list: list to use
710 * @newsk: buffer to queue
711 *
712 * Queue a buffer at the end of a list. This function takes no locks
713 * and you must therefore hold required locks before calling it.
714 *
715 * A buffer cannot be placed on two lists at the same time.
716 */
717extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
718static inline void __skb_queue_tail(struct sk_buff_head *list,
719 struct sk_buff *newsk)
720{
721 struct sk_buff *prev, *next;
722
723 list->qlen++;
724 next = (struct sk_buff *)list;
725 prev = next->prev;
726 newsk->next = next;
727 newsk->prev = prev;
728 next->prev = prev->next = newsk;
729}
730
731
732/**
733 * __skb_dequeue - remove from the head of the queue
734 * @list: list to dequeue from
735 *
736 * Remove the head of the list. This function does not take any locks
737 * so must be used with appropriate locks held only. The head item is
738 * returned or %NULL if the list is empty.
739 */
740extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
741static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
742{
743 struct sk_buff *next, *prev, *result;
744
745 prev = (struct sk_buff *) list;
746 next = prev->next;
747 result = NULL;
748 if (next != prev) {
749 result = next;
750 next = next->next;
751 list->qlen--;
752 next->prev = prev;
753 prev->next = next;
754 result->next = result->prev = NULL;
755 }
756 return result;
757}
758
759
760/*
761 * Insert a packet on a list.
762 */
763extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
764static inline void __skb_insert(struct sk_buff *newsk,
765 struct sk_buff *prev, struct sk_buff *next,
766 struct sk_buff_head *list)
767{
768 newsk->next = next;
769 newsk->prev = prev;
770 next->prev = prev->next = newsk;
771 list->qlen++;
772}
773
774/*
775 * Place a packet after a given packet in a list.
776 */
777extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
778static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
779{
780 __skb_insert(newsk, old, old->next, list);
781}
782
783/*
784 * remove sk_buff from list. _Must_ be called atomically, and with
785 * the list known..
786 */
787extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
788static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
789{
790 struct sk_buff *next, *prev;
791
792 list->qlen--;
793 next = skb->next;
794 prev = skb->prev;
795 skb->next = skb->prev = NULL;
796 next->prev = prev;
797 prev->next = next;
798}
799
800
801/* XXX: more streamlined implementation */
802
803/**
804 * __skb_dequeue_tail - remove from the tail of the queue
805 * @list: list to dequeue from
806 *
807 * Remove the tail of the list. This function does not take any locks
808 * so must be used with appropriate locks held only. The tail item is
809 * returned or %NULL if the list is empty.
810 */
811extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
812static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
813{
814 struct sk_buff *skb = skb_peek_tail(list);
815 if (skb)
816 __skb_unlink(skb, list);
817 return skb;
818}
819
820
821static inline int skb_is_nonlinear(const struct sk_buff *skb)
822{
823 return skb->data_len;
824}
825
826static inline unsigned int skb_headlen(const struct sk_buff *skb)
827{
828 return skb->len - skb->data_len;
829}
830
831static inline int skb_pagelen(const struct sk_buff *skb)
832{
833 int i, len = 0;
834
835 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
836 len += skb_shinfo(skb)->frags[i].size;
837 return len + skb_headlen(skb);
838}
839
840static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
841 struct page *page, int off, int size)
842{
843 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
844
845 frag->page = page;
846 frag->page_offset = off;
847 frag->size = size;
848 skb_shinfo(skb)->nr_frags = i + 1;
849}
850
851#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
852#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
853#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
854
855#ifdef NET_SKBUFF_DATA_USES_OFFSET
856static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
857{
858 return skb->head + skb->tail;
859}
860
861static inline void skb_reset_tail_pointer(struct sk_buff *skb)
862{
863 skb->tail = skb->data - skb->head;
864}
865
866static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
867{
868 skb_reset_tail_pointer(skb);
869 skb->tail += offset;
870}
871#else /* NET_SKBUFF_DATA_USES_OFFSET */
872static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
873{
874 return skb->tail;
875}
876
877static inline void skb_reset_tail_pointer(struct sk_buff *skb)
878{
879 skb->tail = skb->data;
880}
881
882static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
883{
884 skb->tail = skb->data + offset;
885}
886
887#endif /* NET_SKBUFF_DATA_USES_OFFSET */
888
889/*
890 * Add data to an sk_buff
891 */
892static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
893{
894 unsigned char *tmp = skb_tail_pointer(skb);
895 SKB_LINEAR_ASSERT(skb);
896 skb->tail += len;
897 skb->len += len;
898 return tmp;
899}
900
901/**
902 * skb_put - add data to a buffer
903 * @skb: buffer to use
904 * @len: amount of data to add
905 *
906 * This function extends the used data area of the buffer. If this would
907 * exceed the total buffer size the kernel will panic. A pointer to the
908 * first byte of the extra data is returned.
909 */
910static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
911{
912 unsigned char *tmp = skb_tail_pointer(skb);
913 SKB_LINEAR_ASSERT(skb);
914 skb->tail += len;
915 skb->len += len;
916 if (unlikely(skb->tail > skb->end))
917 skb_over_panic(skb, len, current_text_addr());
918 return tmp;
919}
920
921static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
922{
923 skb->data -= len;
924 skb->len += len;
925 return skb->data;
926}
927
928/**
929 * skb_push - add data to the start of a buffer
930 * @skb: buffer to use
931 * @len: amount of data to add
932 *
933 * This function extends the used data area of the buffer at the buffer
934 * start. If this would exceed the total buffer headroom the kernel will
935 * panic. A pointer to the first byte of the extra data is returned.
936 */
937static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
938{
939 skb->data -= len;
940 skb->len += len;
941 if (unlikely(skb->data<skb->head))
942 skb_under_panic(skb, len, current_text_addr());
943 return skb->data;
944}
945
946static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
947{
948 skb->len -= len;
949 BUG_ON(skb->len < skb->data_len);
950 return skb->data += len;
951}
952
953/**
954 * skb_pull - remove data from the start of a buffer
955 * @skb: buffer to use
956 * @len: amount of data to remove
957 *
958 * This function removes data from the start of a buffer, returning
959 * the memory to the headroom. A pointer to the next data in the buffer
960 * is returned. Once the data has been pulled future pushes will overwrite
961 * the old data.
962 */
963static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
964{
965 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
966}
967
968extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
969
970static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
971{
972 if (len > skb_headlen(skb) &&
973 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
974 return NULL;
975 skb->len -= len;
976 return skb->data += len;
977}
978
979static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
980{
981 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
982}
983
984static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
985{
986 if (likely(len <= skb_headlen(skb)))
987 return 1;
988 if (unlikely(len > skb->len))
989 return 0;
990 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
991}
992
993/**
994 * skb_headroom - bytes at buffer head
995 * @skb: buffer to check
996 *
997 * Return the number of bytes of free space at the head of an &sk_buff.
998 */
999static inline unsigned int skb_headroom(const struct sk_buff *skb)
1000{
1001 return skb->data - skb->head;
1002}
1003
1004/**
1005 * skb_tailroom - bytes at buffer end
1006 * @skb: buffer to check
1007 *
1008 * Return the number of bytes of free space at the tail of an sk_buff
1009 */
1010static inline int skb_tailroom(const struct sk_buff *skb)
1011{
1012 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1013}
1014
1015/**
1016 * skb_reserve - adjust headroom
1017 * @skb: buffer to alter
1018 * @len: bytes to move
1019 *
1020 * Increase the headroom of an empty &sk_buff by reducing the tail
1021 * room. This is only allowed for an empty buffer.
1022 */
1023static inline void skb_reserve(struct sk_buff *skb, int len)
1024{
1025 skb->data += len;
1026 skb->tail += len;
1027}
1028
1029#ifdef NET_SKBUFF_DATA_USES_OFFSET
1030static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1031{
1032 return skb->head + skb->transport_header;
1033}
1034
1035static inline void skb_reset_transport_header(struct sk_buff *skb)
1036{
1037 skb->transport_header = skb->data - skb->head;
1038}
1039
1040static inline void skb_set_transport_header(struct sk_buff *skb,
1041 const int offset)
1042{
1043 skb_reset_transport_header(skb);
1044 skb->transport_header += offset;
1045}
1046
1047static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1048{
1049 return skb->head + skb->network_header;
1050}
1051
1052static inline void skb_reset_network_header(struct sk_buff *skb)
1053{
1054 skb->network_header = skb->data - skb->head;
1055}
1056
1057static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1058{
1059 skb_reset_network_header(skb);
1060 skb->network_header += offset;
1061}
1062
1063static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1064{
1065 return skb->head + skb->mac_header;
1066}
1067
1068static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1069{
1070 return skb->mac_header != ~0U;
1071}
1072
1073static inline void skb_reset_mac_header(struct sk_buff *skb)
1074{
1075 skb->mac_header = skb->data - skb->head;
1076}
1077
1078static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1079{
1080 skb_reset_mac_header(skb);
1081 skb->mac_header += offset;
1082}
1083
1084#else /* NET_SKBUFF_DATA_USES_OFFSET */
1085
1086static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1087{
1088 return skb->transport_header;
1089}
1090
1091static inline void skb_reset_transport_header(struct sk_buff *skb)
1092{
1093 skb->transport_header = skb->data;
1094}
1095
1096static inline void skb_set_transport_header(struct sk_buff *skb,
1097 const int offset)
1098{
1099 skb->transport_header = skb->data + offset;
1100}
1101
1102static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1103{
1104 return skb->network_header;
1105}
1106
1107static inline void skb_reset_network_header(struct sk_buff *skb)
1108{
1109 skb->network_header = skb->data;
1110}
1111
1112static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1113{
1114 skb->network_header = skb->data + offset;
1115}
1116
1117static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1118{
1119 return skb->mac_header;
1120}
1121
1122static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1123{
1124 return skb->mac_header != NULL;
1125}
1126
1127static inline void skb_reset_mac_header(struct sk_buff *skb)
1128{
1129 skb->mac_header = skb->data;
1130}
1131
1132static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1133{
1134 skb->mac_header = skb->data + offset;
1135}
1136#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1137
1138static inline int skb_transport_offset(const struct sk_buff *skb)
1139{
1140 return skb_transport_header(skb) - skb->data;
1141}
1142
1143static inline u32 skb_network_header_len(const struct sk_buff *skb)
1144{
1145 return skb->transport_header - skb->network_header;
1146}
1147
1148static inline int skb_network_offset(const struct sk_buff *skb)
1149{
1150 return skb_network_header(skb) - skb->data;
1151}
1152
1153/*
1154 * CPUs often take a performance hit when accessing unaligned memory
1155 * locations. The actual performance hit varies, it can be small if the
1156 * hardware handles it or large if we have to take an exception and fix it
1157 * in software.
1158 *
1159 * Since an ethernet header is 14 bytes network drivers often end up with
1160 * the IP header at an unaligned offset. The IP header can be aligned by
1161 * shifting the start of the packet by 2 bytes. Drivers should do this
1162 * with:
1163 *
1164 * skb_reserve(NET_IP_ALIGN);
1165 *
1166 * The downside to this alignment of the IP header is that the DMA is now
1167 * unaligned. On some architectures the cost of an unaligned DMA is high
1168 * and this cost outweighs the gains made by aligning the IP header.
1169 *
1170 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1171 * to be overridden.
1172 */
1173#ifndef NET_IP_ALIGN
1174#define NET_IP_ALIGN 2
1175#endif
1176
1177/*
1178 * The networking layer reserves some headroom in skb data (via
1179 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1180 * the header has to grow. In the default case, if the header has to grow
1181 * 16 bytes or less we avoid the reallocation.
1182 *
1183 * Unfortunately this headroom changes the DMA alignment of the resulting
1184 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1185 * on some architectures. An architecture can override this value,
1186 * perhaps setting it to a cacheline in size (since that will maintain
1187 * cacheline alignment of the DMA). It must be a power of 2.
1188 *
1189 * Various parts of the networking layer expect at least 16 bytes of
1190 * headroom, you should not reduce this.
1191 */
1192#ifndef NET_SKB_PAD
1193#define NET_SKB_PAD 16
1194#endif
1195
1196extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1197
1198static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1199{
1200 if (unlikely(skb->data_len)) {
1201 WARN_ON(1);
1202 return;
1203 }
1204 skb->len = len;
1205 skb_set_tail_pointer(skb, len);
1206}
1207
1208/**
1209 * skb_trim - remove end from a buffer
1210 * @skb: buffer to alter
1211 * @len: new length
1212 *
1213 * Cut the length of a buffer down by removing data from the tail. If
1214 * the buffer is already under the length specified it is not modified.
1215 * The skb must be linear.
1216 */
1217static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1218{
1219 if (skb->len > len)
1220 __skb_trim(skb, len);
1221}
1222
1223
1224static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1225{
1226 if (skb->data_len)
1227 return ___pskb_trim(skb, len);
1228 __skb_trim(skb, len);
1229 return 0;
1230}
1231
1232static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1233{
1234 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1235}
1236
1237/**
1238 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1239 * @skb: buffer to alter
1240 * @len: new length
1241 *
1242 * This is identical to pskb_trim except that the caller knows that
1243 * the skb is not cloned so we should never get an error due to out-
1244 * of-memory.
1245 */
1246static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1247{
1248 int err = pskb_trim(skb, len);
1249 BUG_ON(err);
1250}
1251
1252/**
1253 * skb_orphan - orphan a buffer
1254 * @skb: buffer to orphan
1255 *
1256 * If a buffer currently has an owner then we call the owner's
1257 * destructor function and make the @skb unowned. The buffer continues
1258 * to exist but is no longer charged to its former owner.
1259 */
1260static inline void skb_orphan(struct sk_buff *skb)
1261{
1262 if (skb->destructor)
1263 skb->destructor(skb);
1264 skb->destructor = NULL;
1265 skb->sk = NULL;
1266}
1267
1268/**
1269 * __skb_queue_purge - empty a list
1270 * @list: list to empty
1271 *
1272 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1273 * the list and one reference dropped. This function does not take the
1274 * list lock and the caller must hold the relevant locks to use it.
1275 */
1276extern void skb_queue_purge(struct sk_buff_head *list);
1277static inline void __skb_queue_purge(struct sk_buff_head *list)
1278{
1279 struct sk_buff *skb;
1280 while ((skb = __skb_dequeue(list)) != NULL)
1281 kfree_skb(skb);
1282}
1283
1284/**
1285 * __dev_alloc_skb - allocate an skbuff for receiving
1286 * @length: length to allocate
1287 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1288 *
1289 * Allocate a new &sk_buff and assign it a usage count of one. The
1290 * buffer has unspecified headroom built in. Users should allocate
1291 * the headroom they think they need without accounting for the
1292 * built in space. The built in space is used for optimisations.
1293 *
1294 * %NULL is returned if there is no free memory.
1295 */
1296static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1297 gfp_t gfp_mask)
1298{
1299 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1300 if (likely(skb))
1301 skb_reserve(skb, NET_SKB_PAD);
1302 return skb;
1303}
1304
1305/**
1306 * dev_alloc_skb - allocate an skbuff for receiving
1307 * @length: length to allocate
1308 *
1309 * Allocate a new &sk_buff and assign it a usage count of one. The
1310 * buffer has unspecified headroom built in. Users should allocate
1311 * the headroom they think they need without accounting for the
1312 * built in space. The built in space is used for optimisations.
1313 *
1314 * %NULL is returned if there is no free memory. Although this function
1315 * allocates memory it can be called from an interrupt.
1316 */
1317static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1318{
1319 return __dev_alloc_skb(length, GFP_ATOMIC);
1320}
1321
1322extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1323 unsigned int length, gfp_t gfp_mask);
1324
1325/**
1326 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1327 * @dev: network device to receive on
1328 * @length: length to allocate
1329 *
1330 * Allocate a new &sk_buff and assign it a usage count of one. The
1331 * buffer has unspecified headroom built in. Users should allocate
1332 * the headroom they think they need without accounting for the
1333 * built in space. The built in space is used for optimisations.
1334 *
1335 * %NULL is returned if there is no free memory. Although this function
1336 * allocates memory it can be called from an interrupt.
1337 */
1338static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1339 unsigned int length)
1340{
1341 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1342}
1343
1344/**
1345 * skb_clone_writable - is the header of a clone writable
1346 * @skb: buffer to check
1347 * @len: length up to which to write
1348 *
1349 * Returns true if modifying the header part of the cloned buffer
1350 * does not requires the data to be copied.
1351 */
1352static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1353{
1354 return !skb_header_cloned(skb) &&
1355 skb_headroom(skb) + len <= skb->hdr_len;
1356}
1357
1358static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1359 int cloned)
1360{
1361 int delta = 0;
1362
1363 if (headroom < NET_SKB_PAD)
1364 headroom = NET_SKB_PAD;
1365 if (headroom > skb_headroom(skb))
1366 delta = headroom - skb_headroom(skb);
1367
1368 if (delta || cloned)
1369 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1370 GFP_ATOMIC);
1371 return 0;
1372}
1373
1374/**
1375 * skb_cow - copy header of skb when it is required
1376 * @skb: buffer to cow
1377 * @headroom: needed headroom
1378 *
1379 * If the skb passed lacks sufficient headroom or its data part
1380 * is shared, data is reallocated. If reallocation fails, an error
1381 * is returned and original skb is not changed.
1382 *
1383 * The result is skb with writable area skb->head...skb->tail
1384 * and at least @headroom of space at head.
1385 */
1386static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1387{
1388 return __skb_cow(skb, headroom, skb_cloned(skb));
1389}
1390
1391/**
1392 * skb_cow_head - skb_cow but only making the head writable
1393 * @skb: buffer to cow
1394 * @headroom: needed headroom
1395 *
1396 * This function is identical to skb_cow except that we replace the
1397 * skb_cloned check by skb_header_cloned. It should be used when
1398 * you only need to push on some header and do not need to modify
1399 * the data.
1400 */
1401static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1402{
1403 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1404}
1405
1406/**
1407 * skb_padto - pad an skbuff up to a minimal size
1408 * @skb: buffer to pad
1409 * @len: minimal length
1410 *
1411 * Pads up a buffer to ensure the trailing bytes exist and are
1412 * blanked. If the buffer already contains sufficient data it
1413 * is untouched. Otherwise it is extended. Returns zero on
1414 * success. The skb is freed on error.
1415 */
1416
1417static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1418{
1419 unsigned int size = skb->len;
1420 if (likely(size >= len))
1421 return 0;
1422 return skb_pad(skb, len-size);
1423}
1424
1425static inline int skb_add_data(struct sk_buff *skb,
1426 char __user *from, int copy)
1427{
1428 const int off = skb->len;
1429
1430 if (skb->ip_summed == CHECKSUM_NONE) {
1431 int err = 0;
1432 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1433 copy, 0, &err);
1434 if (!err) {
1435 skb->csum = csum_block_add(skb->csum, csum, off);
1436 return 0;
1437 }
1438 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1439 return 0;
1440
1441 __skb_trim(skb, off);
1442 return -EFAULT;
1443}
1444
1445static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1446 struct page *page, int off)
1447{
1448 if (i) {
1449 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1450
1451 return page == frag->page &&
1452 off == frag->page_offset + frag->size;
1453 }
1454 return 0;
1455}
1456
1457static inline int __skb_linearize(struct sk_buff *skb)
1458{
1459 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1460}
1461
1462/**
1463 * skb_linearize - convert paged skb to linear one
1464 * @skb: buffer to linarize
1465 *
1466 * If there is no free memory -ENOMEM is returned, otherwise zero
1467 * is returned and the old skb data released.
1468 */
1469static inline int skb_linearize(struct sk_buff *skb)
1470{
1471 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1472}
1473
1474/**
1475 * skb_linearize_cow - make sure skb is linear and writable
1476 * @skb: buffer to process
1477 *
1478 * If there is no free memory -ENOMEM is returned, otherwise zero
1479 * is returned and the old skb data released.
1480 */
1481static inline int skb_linearize_cow(struct sk_buff *skb)
1482{
1483 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1484 __skb_linearize(skb) : 0;
1485}
1486
1487/**
1488 * skb_postpull_rcsum - update checksum for received skb after pull
1489 * @skb: buffer to update
1490 * @start: start of data before pull
1491 * @len: length of data pulled
1492 *
1493 * After doing a pull on a received packet, you need to call this to
1494 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1495 * CHECKSUM_NONE so that it can be recomputed from scratch.
1496 */
1497
1498static inline void skb_postpull_rcsum(struct sk_buff *skb,
1499 const void *start, unsigned int len)
1500{
1501 if (skb->ip_summed == CHECKSUM_COMPLETE)
1502 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1503}
1504
1505unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1506
1507/**
1508 * pskb_trim_rcsum - trim received skb and update checksum
1509 * @skb: buffer to trim
1510 * @len: new length
1511 *
1512 * This is exactly the same as pskb_trim except that it ensures the
1513 * checksum of received packets are still valid after the operation.
1514 */
1515
1516static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1517{
1518 if (likely(len >= skb->len))
1519 return 0;
1520 if (skb->ip_summed == CHECKSUM_COMPLETE)
1521 skb->ip_summed = CHECKSUM_NONE;
1522 return __pskb_trim(skb, len);
1523}
1524
1525#define skb_queue_walk(queue, skb) \
1526 for (skb = (queue)->next; \
1527 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1528 skb = skb->next)
1529
1530#define skb_queue_walk_safe(queue, skb, tmp) \
1531 for (skb = (queue)->next, tmp = skb->next; \
1532 skb != (struct sk_buff *)(queue); \
1533 skb = tmp, tmp = skb->next)
1534
1535#define skb_queue_reverse_walk(queue, skb) \
1536 for (skb = (queue)->prev; \
1537 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1538 skb = skb->prev)
1539
1540
1541extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1542 int noblock, int *err);
1543extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1544 struct poll_table_struct *wait);
1545extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1546 int offset, struct iovec *to,
1547 int size);
1548extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1549 int hlen,
1550 struct iovec *iov);
1551extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1552extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1553 unsigned int flags);
1554extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1555 int len, __wsum csum);
1556extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1557 void *to, int len);
1558extern int skb_store_bits(struct sk_buff *skb, int offset,
1559 const void *from, int len);
1560extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1561 int offset, u8 *to, int len,
1562 __wsum csum);
1563extern int skb_splice_bits(struct sk_buff *skb,
1564 unsigned int offset,
1565 struct pipe_inode_info *pipe,
1566 unsigned int len,
1567 unsigned int flags);
1568extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1569extern void skb_split(struct sk_buff *skb,
1570 struct sk_buff *skb1, const u32 len);
1571
1572extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1573
1574static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1575 int len, void *buffer)
1576{
1577 int hlen = skb_headlen(skb);
1578
1579 if (hlen - offset >= len)
1580 return skb->data + offset;
1581
1582 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1583 return NULL;
1584
1585 return buffer;
1586}
1587
1588static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1589 void *to,
1590 const unsigned int len)
1591{
1592 memcpy(to, skb->data, len);
1593}
1594
1595static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1596 const int offset, void *to,
1597 const unsigned int len)
1598{
1599 memcpy(to, skb->data + offset, len);
1600}
1601
1602static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1603 const void *from,
1604 const unsigned int len)
1605{
1606 memcpy(skb->data, from, len);
1607}
1608
1609static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1610 const int offset,
1611 const void *from,
1612 const unsigned int len)
1613{
1614 memcpy(skb->data + offset, from, len);
1615}
1616
1617extern void skb_init(void);
1618
1619/**
1620 * skb_get_timestamp - get timestamp from a skb
1621 * @skb: skb to get stamp from
1622 * @stamp: pointer to struct timeval to store stamp in
1623 *
1624 * Timestamps are stored in the skb as offsets to a base timestamp.
1625 * This function converts the offset back to a struct timeval and stores
1626 * it in stamp.
1627 */
1628static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1629{
1630 *stamp = ktime_to_timeval(skb->tstamp);
1631}
1632
1633static inline void __net_timestamp(struct sk_buff *skb)
1634{
1635 skb->tstamp = ktime_get_real();
1636}
1637
1638static inline ktime_t net_timedelta(ktime_t t)
1639{
1640 return ktime_sub(ktime_get_real(), t);
1641}
1642
1643static inline ktime_t net_invalid_timestamp(void)
1644{
1645 return ktime_set(0, 0);
1646}
1647
1648extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1649extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1650
1651static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1652{
1653 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1654}
1655
1656/**
1657 * skb_checksum_complete - Calculate checksum of an entire packet
1658 * @skb: packet to process
1659 *
1660 * This function calculates the checksum over the entire packet plus
1661 * the value of skb->csum. The latter can be used to supply the
1662 * checksum of a pseudo header as used by TCP/UDP. It returns the
1663 * checksum.
1664 *
1665 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1666 * this function can be used to verify that checksum on received
1667 * packets. In that case the function should return zero if the
1668 * checksum is correct. In particular, this function will return zero
1669 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1670 * hardware has already verified the correctness of the checksum.
1671 */
1672static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1673{
1674 return skb_csum_unnecessary(skb) ?
1675 0 : __skb_checksum_complete(skb);
1676}
1677
1678#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1679extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1680static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1681{
1682 if (nfct && atomic_dec_and_test(&nfct->use))
1683 nf_conntrack_destroy(nfct);
1684}
1685static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1686{
1687 if (nfct)
1688 atomic_inc(&nfct->use);
1689}
1690static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1691{
1692 if (skb)
1693 atomic_inc(&skb->users);
1694}
1695static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1696{
1697 if (skb)
1698 kfree_skb(skb);
1699}
1700#endif
1701#ifdef CONFIG_BRIDGE_NETFILTER
1702static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1703{
1704 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1705 kfree(nf_bridge);
1706}
1707static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1708{
1709 if (nf_bridge)
1710 atomic_inc(&nf_bridge->use);
1711}
1712#endif /* CONFIG_BRIDGE_NETFILTER */
1713static inline void nf_reset(struct sk_buff *skb)
1714{
1715#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1716 nf_conntrack_put(skb->nfct);
1717 skb->nfct = NULL;
1718 nf_conntrack_put_reasm(skb->nfct_reasm);
1719 skb->nfct_reasm = NULL;
1720#endif
1721#ifdef CONFIG_BRIDGE_NETFILTER
1722 nf_bridge_put(skb->nf_bridge);
1723 skb->nf_bridge = NULL;
1724#endif
1725}
1726
1727/* Note: This doesn't put any conntrack and bridge info in dst. */
1728static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1729{
1730#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1731 dst->nfct = src->nfct;
1732 nf_conntrack_get(src->nfct);
1733 dst->nfctinfo = src->nfctinfo;
1734 dst->nfct_reasm = src->nfct_reasm;
1735 nf_conntrack_get_reasm(src->nfct_reasm);
1736#endif
1737#ifdef CONFIG_BRIDGE_NETFILTER
1738 dst->nf_bridge = src->nf_bridge;
1739 nf_bridge_get(src->nf_bridge);
1740#endif
1741}
1742
1743static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1744{
1745#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1746 nf_conntrack_put(dst->nfct);
1747 nf_conntrack_put_reasm(dst->nfct_reasm);
1748#endif
1749#ifdef CONFIG_BRIDGE_NETFILTER
1750 nf_bridge_put(dst->nf_bridge);
1751#endif
1752 __nf_copy(dst, src);
1753}
1754
1755#ifdef CONFIG_NETWORK_SECMARK
1756static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1757{
1758 to->secmark = from->secmark;
1759}
1760
1761static inline void skb_init_secmark(struct sk_buff *skb)
1762{
1763 skb->secmark = 0;
1764}
1765#else
1766static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1767{ }
1768
1769static inline void skb_init_secmark(struct sk_buff *skb)
1770{ }
1771#endif
1772
1773static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1774{
1775#ifdef CONFIG_NETDEVICES_MULTIQUEUE
1776 skb->queue_mapping = queue_mapping;
1777#endif
1778}
1779
1780static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
1781{
1782#ifdef CONFIG_NETDEVICES_MULTIQUEUE
1783 return skb->queue_mapping;
1784#else
1785 return 0;
1786#endif
1787}
1788
1789static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1790{
1791#ifdef CONFIG_NETDEVICES_MULTIQUEUE
1792 to->queue_mapping = from->queue_mapping;
1793#endif
1794}
1795
1796static inline int skb_is_gso(const struct sk_buff *skb)
1797{
1798 return skb_shinfo(skb)->gso_size;
1799}
1800
1801static inline int skb_is_gso_v6(const struct sk_buff *skb)
1802{
1803 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
1804}
1805
1806static inline void skb_forward_csum(struct sk_buff *skb)
1807{
1808 /* Unfortunately we don't support this one. Any brave souls? */
1809 if (skb->ip_summed == CHECKSUM_COMPLETE)
1810 skb->ip_summed = CHECKSUM_NONE;
1811}
1812
1813#endif /* __KERNEL__ */
1814#endif /* _LINUX_SKBUFF_H */